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Abstract

In this thesis, we establish some ergodic theorems related to Ap(G), the Figà-

Talamanca-Herz algebra of a locally compact group G. This thesis is divided

in two main portions.

The �rst part is primarily concerned with the study of ergodic sequences

in Ap(G) and with a newly introduced notion of ergodic multipliers. After

presenting a full description of the non-degenerate ∗-representations of Ap(G)

and of their extensions to the multiplier algebra MAp(G), it is shown that, for

all locally compact groups, the weakly ergodic sequences in MAp(G) coincide

with the strongly ergodic ones, and that they are, in a sense, approximat-

ing sequences for the topologically invariant means on some spaces of linear

functionals on Ap(G). Next, motivated by the study of ergodic sequences of

iterates, we introduce a notion of ergodic multipliers, and we provide a solution

to the dual version of the complete mixing problem for probability measures.

The second part is of a more abstract nature and deals with some er-

godic and �xed point properties of ϕ-amenable Banach algebras. Among

other things, we prove a mean ergodic theorem, establish the uniqueness of

a two-sided ϕ-mean on the weakly almost periodic functionals, and provide a

simpler proof of a �xed point theorem which is well known in the context of

semigroups. We also study the norm spectrum of some linear functionals on

Ap(G) and present a new characterization of discrete groups.
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Chapter 1

Introduction.

In the �rst half of the twentieth century, many researchers in harmonic anal-

ysis were working with locally compact Abelian groups, especially with their

group algebra L1(G) and their measure algebra M(G). However, as many lo-

cally compact groups are not Abelian, it was desirable and natural to look

for non-commutative versions of the classical results available in commutative

harmonic analysis. Thus, a new direction of research was instigated by P. Ey-

mard [28] in 1964, when he introduced and pioneered the study of the Fourier

algebra A(G) and of the Fourier-Stieltjes algebra B(G) for all locally compact

groups. Many analysts then became interested in these new algebras since, in

the case when G is Abelian, A(G) can be identi�ed with L1(Ĝ) via the Fourier

transform and B(G) with M(Ĝ) via the Fourier-Stieltjes transform, Ĝ being

the dual group of G.

In 1965, A. Figà-Talamanca [31] introduced an Lp-version of A(G) for lo-

cally compact Abelian groups, which he reasonably denoted Ap(G) as A2(G) =

A(G). But Figà-Talamanca was mainly concerned with the study of multipli-

ers of Lp(G) and so did not prove that Ap(G) is an algebra. Indeed, it was

only a few years later that C. S. Herz [48] realized that Ap(G) is closed un-

der pointwise multiplication via an application of the theory of Banach space

tensor products. Since Herz's seminal paper, the algebra Ap(G) is known as

the Figà-Talamanca-Herz algebra, and Ap(G), as well as its multiplier algebra

MAp(G), have enjoyed a great deal of attention and are still under current

investigations. See [48, 24, 43, 45, 77, 17] and the references therein.

In this thesis, we establish several theorems related to Ap(G), all of them
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being of an ergodic nature. They are discussed independently in di�erent chap-

ters, which are organized as follows:

In Chapter 2, we collect the necessary de�nitions and preliminary results

needed in the sequel. In Chapter 3, we describe all the non-degenerate ∗-
representations of Ap(G), and we show in Section 3.2 that they are de�ned,

up to unitary equivalence, by pointwise multiplication on some L2-space. In

Section 3.3, we prove the existence of a unique extension of any such represen-

tation to the multiplier algebra MAp(G).

In Chapter 4, we apply the results of the previous chapter to study ergodic

sequences in MAp(G). In particular, we show in Section 4.1 that for all locally

compact groups, the weakly ergodic sequences coincide with the strongly er-

godic ones, and that these sequences approximate, in the weak∗ topology, the

topologically invariant mean on some spaces of linear functionals on Ap(G).

Some functorial properties are considered in Section 4.2, and examples of er-

godic sequences are given in Section 4.3 using a notion of well distribution.

In Chapter 5, motivated by the study of ergodic sequences of iterates, we in-

troduce a notion of ergodic and mixing multipliers of Ap(G). We show in

Section 5.1 that the ergodic multipliers coincide with the mixing ones, and

this provides a solution to a dual version of the complete mixing problem for

probability measures. We also characterize the existence of such multipliers. In

Section 5.2, we solve a similar problem in the more general context of a Taube-

rian regular semisimple commutative Banach algebra, in which the multipliers

are ergodic (respectively mixing) with respect to a set of spectral synthesis.

In the second part, we deal with some ergodic and �xed point properties of

ϕ-amenable Banach algebras, a class of Banach algebras which include the

left amenable Lau algebras as well as the Figà-Talamanca-Herz algebras. As

a tool for the next sections, we present in Section 6.1 a new characterization

of left amenability for semigroups in terms of certain Hahn-Banach separation

properties. In Section 6.2, we present new proofs of several known results (see

[58, 96, 67]). In Section 6.3, we prove a mean ergodic theorem in the general

setting of ϕ-amenable Banach algebras, and we also show the uniqueness of a

two-sided ϕ-mean on the weakly almost periodic functionals. As an applica-

tion, we obtain in Section 6.4 a direct sum decomposition for some subspaces of

weakly almost periodic functionals. In Section 6.5, we consider various �xed

point properties which characterize ϕ-amenability. Among other things, we
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prove an analogue of a �xed point theorem which is well known in the context

of semigroups [79, Theorem 3.], and our proof greatly simpli�es the original

one.

In Chapter 7, by means of some of our previous results, we describe the norm

spectrum of any weakly almost periodic functional on Ap(G) in terms of the

topologically invariant mean. In particular, this leads to a new characteriza-

tion of discrete groups.

A list of the main results of this thesis goes as follows:

Theorem 4.1.3. Let (vn) be a sequence in Sp
M. The following assertions are

equivalent:

(i) (vn) is strongly ergodic.

(ii) (vn) is weakly ergodic.

(iii) For every x ∈ G, x 6= e, vn(x)→ 0.

(iv) For every T ∈ Cδ,p(G), 〈vn, T 〉 → 〈Ψ, T 〉.

(v) For every T ∈ Mp(G), 〈vn, T 〉 → 〈Ψ, T 〉.

Theorem 5.2.1. Let T ∈ M(A) such that ||T || = 1 = T̂ (ϕ) for all ϕ ∈ F . If
F is a set of spectral synthesis, then the following statements are equivalent:

(i) T̂ n(γ)→ 0 pointwise for all γ ∈ 4(A) r F .

(ii) |T̂ (γ)| < 1 for all γ ∈ 4(A) r F .

(iii) T is completely F -mixing.

(iv) T is F -mixing.

(v) T is weakly F -mixing.

(vi) T is F -ergodic.

(vii) IT = k(F ).

(viii) {f ∈ A∗ : T ∗f = f} = span(F )
w∗

.

(ix) F = FT , where FT := {γ ∈ 4(A) : T̂ (γ) = 1}.
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Corollary 6.3.7. Let C be a non-empty closed A-invariant subset of wap(A)

such that Cϕ ⊆ C. Suppose that A admits a two-sided ϕ-mean of norm one.

Then there exists a unique non-expansive retraction P from C onto Fix(Sϕ)

such that PTµ = TµP = P for each µ ∈ Mϕ, and Px ∈ {u · x : u ∈ Sϕ} for
each x ∈ C.
Moreover, if (µα) is an ergodic net in Mϕ, then there exists a subnet (µβ) of

(µα) such that Tµβ converges to P in the weak operator topology.

Theorem 6.5.5. Let X be a topologically left invariant subspace of A∗ with

ϕ ∈ X, and such that condition (6.6) is satis�ed. The following assertions are

equivalent:

(i) There exists a ϕ-mean Ψ on X with ||Ψ|| = 1.

(ii) For each x ∈ X, there exists λ ∈ C such that λϕ ∈ {u · x : u ∈ Sϕ}
w∗

.

Theorem 7.1. Let G be a discrete group, and x ∈ G be arbitrary. The

following assertions hold:

(a) For any T ∈ PMp(G), T 6= 0, x ∈ σ∗(T ) if and only if 〈Ψx, T 〉 6= 0.

(b) For any T ∈WAPp(G), T 6= 0, x ∈ σ(T ) if and only if 〈Ψx, T 〉 6= 0 if and

only if T = cλp(x) +T0 for some c ∈ C, c 6= 0, and T0 ∈ {S ∈WAPp(G) :

Ψx(S) = 0}.

(c) For any T ∈ APp(G), T 6= 0, x ∈ σ(T ) if and only if 〈Ψx, T 〉 6= 0 if and

only if T = cλp(x) + T0 for some c ∈ C, c 6= 0, and T0 ∈ {S ∈ APp(G) :

Ψx(S) = 0}.
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Chapter 2

Preliminaries.

2.1 Analysis on locally compact groups.

Given a Banach space X we denote its dual space by X∗. If Y is a subset of

X∗, the σ(X, Y )-topology is the weakest topology on X such that every linear

functional φ ∈ Y is continuous. Given a dual pair (X, Y ), by φ(x) or 〈φ, x〉 we
will usually denote the value of φ at x.

For a locally compact Hausdor� space X, we denote by CB(X) (respectively

C0(X), C00(X)) the space of all complex-valued bounded continuous functions

on X (resp. which vanish at in�nity, with compact support), equipped with

the sup-norm ||.||sup.

A locally compact group is a pair (G, τ), where G is a group and τ is a locally

compact Hausdor� topology on G, such that the map G × G → G, (x, y) 7→
xy−1 is continuous when G × G is equipped with the product topology. The

identity element of the group will be denoted e.

Following Bourbaki's terminology [8, Chap. 3], we call an element µ ∈ C00(G)∗

a (complex ) Radon measure on G. Since the space C00(G) can be viewed as

the union of C00(G,K), where K runs over all compact subsets of G and

C00(G,K) := {f ∈ C00(G) : supp(f) ⊆ K}, we may de�ne an inductive limit

topology on C00(G). Applying the criterion of continuity in inductive limits,

we may as well describe a Radon measure as follows: a linear functional µ

on C00(G) is a Radon measure on G if for every compact subset K of G,

there is a positive constant cK such that |〈µ, f〉| ≤ cK supx∈K |f(x)| whenever
f ∈ C00(G,K). We say that µ is bounded if there is C > 0 such that |〈µ, f〉| ≤
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C ||f ||sup for all f ∈ C00(G), and we say that µ is positive if 〈µ, f〉 ≥ 0 for

every f ∈ C+
00(G), where C+

00(G) stands for the set of all real-valued functions

in C00(G) which are non-negative. We write M(G) for the space of all bounded

Radon measures on G, and M+(G) for the positive bounded Radon measures

on G. Unless otherwise stated, by �measure� we always mean a bounded Radon

measure, and for any f ∈ C00(G) we may write 〈µ, f〉 =
∫
f(x) dµ(x). By the

Riesz representation theorem, there is a one-to-one correspondence between

positive Radon measures on G and positive regular Borel measures on G. For

a complex-valued function f on G we will use the following notations:

`xf(y) = f(xy), rxf(y) = f(yx), for x, y ∈ G,

f̌(x) = f(x−1), f̃(x) = f(x−1), for x ∈ G.

A non-zero positive Radon measure m on G is called a left Haar measure on

G if m is left invariant, i.e., 〈m, `xf〉 = 〈m, f〉 for all x ∈ G, f ∈ C00(G).

The most remarkable feature of a locally compact group G is certainly the

existence of a left Haar measure on G, which is unique up to multiplication

by a positive constant. Thus, measure theory and functional analysis may be

used as important tools for the study of locally compact groups.

Let G be a locally compact group, and letm be a �xed left Haar measure on G.

For f ∈ C00(G) we write 〈m, f〉 =
∫
f(x) dx. For each 1 ≤ p <∞, the space of

all p-integrable functions on G is denoted by L p(G), and (Lp(G), ||.||p) will de-
note the Banach space of all equivalence classes of p-integrable functions, where

two functions f, g ∈ L p(G) are said to be equivalent if
∫
|f(x)−g(x)|p dx = 0.

For p = ∞, (L∞(G), ||.||∞) is the Banach space of all equivalence classes of

(Haar) measurable functions which are uniformly bounded outside a locally

negligible set, i.e., a set A such that m(A ∩K) = 0 for every compact subset

K of G). For [f ] ∈ L∞(G),

||[f ]||∞ := inf{C > 0 : |f(x)| ≤ C for locally almost all x ∈ G}.

Let WAP(G) (resp. AP(G)) denote the space of all weakly almost periodic

(resp. almost periodic) functions on G, i.e., all f ∈ L∞(G) for which the left

orbit Lf := {`xf : x ∈ G} is relatively weakly compact (resp. relatively norm
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compact). In general, the following inclusions can be veri�ed:

AP(G)⊕ C0(G) ⊆ WAP(G) ⊆ CB(G) ⊆ L∞(G).

For a continuous function, we identify the function with its equivalence class.

Furthermore, the spaces C0(G), CB(G) and L∞(G) are commutative C∗-

algebras with pointwise multiplication and involution given by conjugation. In

order to de�ne a structure of involutive Banach algebra on L1(G) and M(G)

one must consider the convolution product∫
f(x) d(µ ∗ ν)(x) :=

∫ ∫
f(xy) dµ(x)dν(y), for f ∈ C00(G), µ, ν ∈ M(G);

f ∗ g(x) :=

∫
f(xy) g(y−1) dy, for f, g ∈ L 1(G), and almost all x ∈ G.

Equipped with these products and the following involutions∫
f(x) dµ∗(x) :=

∫
f̌(x) dµ(x), for f ∈ C00(G), µ ∈ M(G);

f ∗(x) := 4G(x−1) f̃(x), for f ∈ L 1(G), x ∈ G,

where 4G is the modular function of G, M(G) and L1(G) become involutive

Banach algebras. For each 1 ≤ p ≤ ∞, the left regular representation of G

(resp. M(G)) on Lp(G) is given by

λp : G→ B(Lp(G)), λp(x)([f ]) = [`x−1f ]

(resp. λp : M(G)→ B(Lp(G)), λp(µ)([f ]) = [µ ∗ f ]),

where B(Lp(G)) is the Banach algebra of all bounded linear operators on

Lp(G). A crucial property of the convolution product is the following: if

1 < p <∞ and p′ = p
p−1

, then for any f ∈ L p(G), g ∈ L p′(G), f ∗ ǧ(x) exists

everywhere and de�nes a function in C0(G).

References: [8], [50], [33].
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2.2 The Figà-Talamanca-Herz algebras and re-

lated spaces.

From now on and throughout this thesis, we let G be a locally compact group

with a �xed left Haar measure m = dx, and 1 < p, p′ <∞ such that 1
p
+ 1

p′
= 1.

Let Ap(G) denote the space of all continuous functions u : G → C which can

be represented as

(2.1) u =
∞∑
n=1

`n ∗ ǩn for some kn ∈ L p(G), `n ∈ L p′(G),

so that
∞∑
n=1

Np(kn)Np′(`n) < ∞, where Nq(f) := ||[f ]||q. Then Ap(G) is a

dense linear subspace of C0(G). Under pointwise multiplication and with the

norm given by

||u||Ap := inf
∞∑
n=1

Np(kn)Np′(`n),

where the in�mum runs over all the possible representations of u as in (2.1),

Ap(G) is a Tauberian semisimple regular commutative Banach algebra, nowa-

days known as the the Figà-Talamanca-Herz algebra of G, or sometimes called

the generalized Fourier algebra of G.

Let PMp(G) denote the w∗-closure of λp(M(G)) in B(Lp(G)), where the w∗-

topology is the σ(B(Lp(G)),Lp(G)⊗̂Lp′(G))-topology, ⊗̂ being the completed

projective tensor product. The elements in PMp(G) are called p-pseudo-

measures, and they form a Banach algebra when endowed with the opera-

tor norm. Moreover, PMp(G) is isometrically isomorphic to the dual space

Ap(G)∗ and the w∗-topology σ(B(Lp(G)),Lp(G)⊗̂Lp′(G)) is carried over to

the w∗-topology σ(Ap(G)∗,Ap(G)). In particular, the measure algebra M(G)

can be viewed as a subset of Ap(G)∗ via

〈λp(µ), u〉 =

∫
u(x) dµ(x), for u ∈ Ap(G), µ ∈ M(G).

Let PFp(G) denote the norm-closure of λp(L1(G)) in B(Lp(G)). The elements

in PFp(G) are called p-pseudofunctions, and they form a closed subalgebra of

PMp(G). Under pointwise multiplication, the dual space Wp(G) := PFp(G)∗
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is a commutative Banach algebra of continuous functions on G.

Remark 2.2.1. In case p = 2, A2(G) is the Fourier algebra A(G), PM2(G) is the

group von Neumann algebra VN(G), PF2(G) is the reduced group C∗-algebra

C∗ρ(G), and W2(G) is the reduced Fourier-Stieltjes algebra Bρ(G). See [28, 30].

A multiplier function of Ap(G) is a continuous function v : G → C such

that vu ∈ Ap(G) whenever u ∈ Ap(G). We write MAp(G) for the commu-

tative Banach algebra of all multiplier functions of Ap(G), equipped with the

multiplier norm

||v||M := sup{||vu||Ap : u ∈ Ap(G), ||u||Ap ≤ 1}.

In general, the following inclusions hold:

Ap(G) ⊆ Wp(G) ⊆ MAp(G),

and

||u||sup ≤ ||u||M ≤ ||u||Wp ≤ ||u||Ap for u ∈ Ap(G).

If G is amenable (see de�nition below), then Wp(G) = MAp(G).

References: [29], [48], [13], [85], [23].

Arising from the theory of Banach algebras, Ap(G) naturally acts on its

dual space PMp(G), and this action is even well-de�ned for the multiplier

algebra MAp(G). Thus, the Banach spaces PMp(G) and PMp(G)∗ are both

MAp(G)-modules under the actions

〈v · T, u〉 := 〈T, vu〉, and 〈v · Φ, T 〉 := 〈Φ, v · T 〉,

for v ∈ MAp(G), u ∈ Ap(G), T ∈ PMp(G) and Φ ∈ PMp(G)∗.

Next, we list four closed subspaces of PMp(G) that are of interest to us. We

follow the notations of [24].

Cδ,p(G) := span{λp(x) : x ∈ G}
||.||PMp ;

Mp(G) := {λp(µ) : µ ∈ M(G)}
||.||PMp ;

APp(G) :=

{
T ∈ PMp(G) :

Ap(G)→PMp(G)

u 7→ u · T is a compact operator

}
.
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WAPp(G) :=

{
T ∈ PMp(G) :

Ap(G)→PMp(G)

u 7→ u · T is a weakly compact operator

}
.

In general, the following inclusions are satis�ed:

Cδ,p(G) ⊆ Mp(G) ⊆ WAPp(G) ⊆ PMp(G) and Cδ,p(G) ⊆ APp(G).

Moreover, Cδ,p(G), PFp(G), Mp(G), APp(G) and WAPp(G) are norm-closed

MAp(G)-submodules of PMp(G) [43], and Cδ,p(G) contains the identity λp(e)

of PMp(G).

Remark 2.2.2. If G is Abelian and Ĝ denotes its dual group, then Cδ,2(G) =

AP(Ĝ) = AP2(G), PF2(G) = C0(Ĝ), M2(G) is the ||.||∞-closure of the Fourier-
Stieltjes algebra B(Ĝ) in L∞(Ĝ), and WAP2(G) = WAP(Ĝ) [26]. If G is not

necessarily Abelian, then Cδ,2(G) is sometimes denoted C∗δ(G), as in [65] and

[70] for instance.

2.3 Amenable groups and topologically invariant

means.

Let G be a locally compact group, and let X be a translation-invariant sub-

space of L∞(G) containing 1G, the constant one function. A linear functional

m ∈ X∗ is called a mean if ||m|| = 1 = m(1G). If X is a C∗-subalgebra of

L∞(G), then m is a mean if and only if m ≥ 0 and ||m|| = 1. A mean m ∈ X∗

is said to be left invariant if 〈m, `af〉 = 〈m, f〉 for all f ∈ X, a ∈ G. If X is

topologically left invariant, i.e., ϕ ∗ f ∈ X for all ϕ ∈ L1(G), f ∈ X, then a

mean m ∈ X∗ is said to be topologically left invariant if 〈m,ϕ ∗ f〉 = 〈m, f〉
for all ϕ ∈ L1(G), ϕ ≥ 0, ||ϕ||1 = 1, and all f ∈ X. In particular, on L∞(G),

the existence of a left invariant mean is equivalent to the existence of a topo-

logically left invariant mean, and in case such a mean exists, then G is called

amenable. The class of amenable groups includes all solvable groups and all

compact groups. However, the free group on two generators is not amenable.

Remark 2.3.1. It is known that a locally compact group G is amenable if and

only if Ap(G) admits a bounded approximate identity [48]. Other character-

izations of the amenability of G in terms of the algebras Ap(G) are given in

[38] (see also [34]).
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References: [47], [84], [85], [92].

Analogously, a mean on PMp(G) is de�ned as a linear functional Φ ∈
PMp(G)∗ such that ||Φ|| = 1 = Φ(λp(e)). In addition, if v · Φ = v(e) Φ for all

v ∈ MAp(G), then we say that Φ is topologically invariant. E. E. Granirer [43]

showed that the set of topologically invariant means on PMp(G) is never empty,

and also that such a topologically invariant mean on WAPp(G) is unique.

By restriction, there is a unique topologically invariant mean on Cδ,p(G) and

Mp(G) [44, Proposition 3.].
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Chapter 3

Non-degenerate ∗-representations
of Ap(G) and MAp(G).

In this chapter, we shall describe all non-degenerate ∗-representations of Ap(G)

along with their extensions to the multiplier algebra MAp(G). The main results

are Theorem 3.2.4 and Theorem 3.3.3. Our study of ∗-representations of Ap(G)

was motivated by the lemmas presented in section 2. of [70], where Theorem

3.3.3 is proved for the special case p = 2, under the additional assumption that

G is amenable. We repeat these lemmas in section 3.1 below, but since their

extensions to the case 1 < p <∞ do not require any major transformation of

the proofs given in [70], we omit their proofs.

Throughout this chapter, let 1 < p <∞ and G be a locally compact group.

3.1 Two preliminary lemmas.

Lemma 3.1.1. For any positive bounded Radon measure µ ∈ M+(G) we de�ne

the linear operator Sµ : Ap(G)→ B(L2(G, µ)) by

Sµ(u)([h]) = [uh] for u ∈ Ap(G) and [h] ∈ L2(G, µ).

Then the map u 7→ Sµ(u) is a cyclic ∗-representation of Ap(G) as bounded

linear operators on L2(G, µ), with cyclic vector [1] ∈ L2(G, µ).

Furthermore,

〈u, µ〉Ap(G),M(G) = 〈Sµ(u)([1]), [1]〉 for any u ∈ Ap(G).
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For a locally compact Hausdor� space X, it is known that every cyclic

∗-representation of C0(X) as bounded linear operators on a Hilbert space H

is unitarily equivalent to a representation of the form {Sµ,L2(X,µ)} for a

positive bounded measure µ on X [50, Theorem (C.36)]. A similar result for

the Fourier algebra A(G) appears in [70, Lemma 2.2.]. The analogous version

for Ap(G) is:

Lemma 3.1.2. Let {T,H } be a cyclic ∗-representation of Ap(G). Then there

exists a positive measure µ ∈ M+(G) such that {T,H } is unitarily equivalent

to {Sµ,L2(G, µ)}, i.e., there exists a surjective linear isometry W from H

onto L2(G, µ) such that WT (u) = Sµ(u)W for all u ∈ Ap(G).

3.2 Description of the ∗-representations of Ap(G).

By means of the lemmas presented in the �rst section, we completely char-

acterize all the ∗-representations of Ap(G), up to unitary equivalence. Before

stating the main results, the following preliminary lemmas are needed.

Lemma 3.2.1. Let µα, µβ ∈ M+(G) be such that supp(µα) ∩ supp(µβ) = ∅.
Then we have:

L2(G, µα) ∩ L2(G, µβ) = {[0]}.

Proof. Let [f ] ∈ L2(G, µα)∩ L2(G, µβ) and assume that [f ] 6= [0]. In particu-

lar, |f(x)|2 6= 0 almost everywhere. Then it follows that
∫
|f(x)|2 dµα(x) 6= 0

and
∫
|f(x)|2 dµβ(x) 6= 0 [8, chap. IV, �2, no 3, Theorem 1]. Therefore, |f |2 6=

0 in supp(µα) and |f |2 6= 0 in supp(µβ), hence |f |2 6= 0 in supp(µα)∩ supp(µβ)

[8, chap. III, �2, no 3, Proposition 8]. So there exists x ∈ supp(µα)∩ supp(µβ)

such that |f(x)|2 6= 0. Contradiction.

�

Lemma 3.2.2. Let (µα)α∈I be a summable family of positive bounded measures

on G and assume that the supports of the measures µα are pairwise disjoint.

If µ is the sum of the measures µα, then L2(G, µ) is isometrically isomorphic

to
∑⊕

α∈I L2(G, µα).

Proof. Let [h] ∈ L2(G, µ). Then |h|2 is µα-integrable for each α ∈ I [9, �2, no

2, Proposition 3]. By Lemma 3.2.1, [h] ∈ L2(G, µα) for a unique α ∈ I unless
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[h] = [0]. In every instance,

L2(G, µ) ⊆
∑⊕

α∈I
L2(G, µα).

Now using the de�nition of the direct sum of Hilbert spaces, and by [9, �2,

no 2, Proposition 3], the conclusion follows from an argument similar to that

used in the proof of [50, Theorem (C.37)].

�

Proposition 3.2.3. For any positive Radon measure µ on G, µ not necessarily

bounded, we de�ne the linear operator Sµ : Ap(G)→ B(L2(G, µ)) by

Sµ(u)([h]) = [uh] for u ∈ Ap(G) and [h] ∈ L2(G, µ).

Then the map u 7→ Sµ(u) is a non-degenerate ∗-representation of Ap(G) in

B(L2(G, µ)).

Proof. Let µ be a positive Radon measure on G, and let KG denote the set

of all compact subsets of G. Since KG is a µ-dense set for G [8, chap. IV, �5,

no 8], by applying [9, �2, no 3, Proposition 4.] we may write µ =
∑

α∈I µα for

a summable family (µα)α∈I of positive bounded measures on G, such that the

supports supp(µα) are pairwise disjoint. It is then straightforward to verify

that Sµ is a ∗-representation of Ap(G) in B(L2(G, µ)). To prove its non-

degeneracy, we will show that Sµ is a direct sum of cyclic ∗-representations.
By Lemma 3.1.1, the operators Sµα are cyclic ∗-representations, and for any

[h] =
∑

α[hα] ∈
∑⊕

α∈I L2(G, µα) we have by Lemma 3.2.2 that∑
α∈I

Sµα(u)([hα]) =
∑
α∈I

[uhα] = [uh] = Sµ(u)([h]).

That is, {Sµ,L2(G, µ)} is the direct sum of {Sµα ,L2(G, µα)}, and it follows

that {Sµ,L2(G, µ)} is non-degenerate by [100, Proposition 9.17].

�

The main result of this section is the following:

Theorem 3.2.4. For any non-degenerate ∗-representation {T,H } of Ap(G),

there exists a positive Radon measure µ on G, possibly unbounded, such that

{T,H } is unitarily equivalent to {Sµ,L2(G, µ)}.
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Proof. By [100, Proposition 9.17] we may write {T,H } =
∑⊕

α∈I{Tα,Hα} for
some cyclic ∗-representations {Tα,Hα}. By Lemma 3.1.2, each {Tα,Hα} is
unitarily equivalent, for some µα ∈ M+(G), to {Sµα ,L2(G, µα)}. We now claim

that the family (µα)α∈I is summable. Indeed, for ([hα])α∈I ∈
∑⊕

α∈I L2(G, µα)

we have ∑
α∈I

∫
G

|hα(x)|2 dµα(x) < ∞.

In particular,

(3.1)
∑
α∈I

∫
G

|f(x)|2 dµα(x) < ∞, for any f ∈ C+
00(G).

Thus, applying the Cauchy-Schwarz inequality for any f ∈ C+
00(G), we obtain

∑
α∈I

∫
G

|f(x)| dµα(x) ≤
∑
α∈I

(∫
G

|f(x)|2 dµα(x)

) 1
2
(∫

G

1 dµα(x)

) 1
2

≤ sup
α∈I

(µα(G))
1
2

∑
α∈I

(∫
G

|f(x)|2 dµα(x)

) 1
2

< ∞,

after making use of the boundedness of each µα and by (3.1). Hence (µα)α∈I

is summable [9, �2, no 1]. We set µ =
∑

α∈I µα, so that µ is a positive

Radon measure, which is not necessarily bounded [9, �2, no 1]. Therefore, by

Proposition 3.2.3 we get

{T,H } =
∑⊕

α∈I
{Tα,Hα} ∼=

∑⊕

α∈I
{Sµα ,L2(G, µα)} = {Sµ,L2(G, µ)}.

�

3.3 Extension to ∗-representations of MAp(G).

We start this section by developing a general process for extending any non-

degenerate ∗-representation of Ap(G) to a unique non-degenerate ∗-representa-
tion of MAp(G). This work was inspired by the comments after Lemma 2.2

in [70], where our next lemma and proposition were proved for the case p = 2

and G amenable. We here give an improvement of these results since we are

able to get rid of the assumption of amenability.
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Lemma 3.3.1. Let {T,H } be a non-degenerate ∗-representation of Ap(G).

For any v ∈ MAp(G) and any u ∈ Ap(G), the following inequality holds:

||T (vu) ξ|| ≤ ||v||M ||T (u) ξ|| for every ξ ∈H .

Proof. We �rst consider the representation {Sµ,L2(G, µ)} as de�ned in Propo-
sition 3.2.3. Let v ∈ MAp(G), u ∈ Ap(G) and [h] ∈ L2(G, µ) be arbitrary.

Then we have

||Sµ(vu)([h])||22 =

∫
G

|v(x)u(x)h(x)|2 dµ(x)

≤ ||v||2sup

∫
G

|u(x)h(x)|2dµ(x) ≤ ||v||2M ||Sµ(u)([h])||22.

Now let {T,H } be an arbitrary non-degenerate ∗-representation of Ap(G).

By Theorem 3.2.4, {T,H } is unitarily equivalent to {Sµ,L2(G, µ)} for some

positive Radon measure µ on G. Let W be the corresponding linear isometry

from H onto L2(G, µ). Thus, for any ξ ∈H ,

||T (vu)ξ|| = ||W ∗Sµ(vu)Wξ||

≤ ||W ∗|| ||Sµ(vu)Wξ|| = ||Sµ(vu)Wξ||

≤ ||v||M ||Sµ(u)Wξ|| = ||v||M ||WT (u)ξ||

≤ ||v||M ||W || ||T (u)ξ|| = ||v||M ||T (u)ξ||.

�

Proposition 3.3.2. For any non-degenerate ∗-representation T of Ap(G) and

any v ∈ MAp(G), there exists a unique bounded linear operator on H , denoted

S = T̃ (v), such that

(3.2) S ◦ T (u) = T (vu) for every u ∈ Ap(G).

Furthermore, T̃ (u) = T (u) for all u ∈ Ap(G).

Proof. First we consider T cyclic, with cyclic vector ξ0 ∈H . In this case, it

su�ces to de�ne S on span(T (Ap(G))ξ0) since span(T (Ap(G))ξ0) = H . Then

16



for any v ∈ MAp(G) we may de�ne

S(T (u)ξ0) := T (vu)ξ0 for u ∈ Ap(G).

Fix v ∈ MAp(G). We notice that S is linear since T is a homomorphism,

and by Lemma 3.3.1, S is a bounded linear operator on 〈T (Ap(G))ξ0〉 with
||S|| ≤ ||v||M . As span(T (Ap(G))ξ0) is dense in H , S may be extended

uniquely to a bounded linear operator on H , which we also denote by S.

Moreover, by a similar density argument, it su�ces to verify (3.2) for a vector

of the form T (φ)ξ0, φ ∈ Ap(G). In fact, for u ∈ Ap(G) we have

S ◦ T (u)(T (φ)ξ0) = S(T (uφ)ξ0) = T (vuφ)ξ0 = T (vu)(T (φ)ξ0).

Next, let {T,H } be a non-degenerate ∗-representation of Ap(G). Again,

we may write {T,H } =
∑⊕

α∈I{Tα,Hα} for some cyclic ∗-representations
{Tα,Hα} [100, Proposition 9.17]. For any v ∈ MAp(G) we de�ne

S :=
∑⊕

α∈I
Sα,

where Sα is the bounded linear operator on Hα associated to {Tα,Hα} as

above. Thus, for any u ∈ Ap(G) we have

S ◦ T (u) =
∑⊕

α∈I
Sα ◦ Tα(u) =

∑⊕

α∈I
Tα(vu) = T (vu).

Finally, we observe that S is uniquely determined by T using (3.2).

�

Remark 3.3.1. We observe that the procedure developed in Lemma 3.3.1 and

Proposition 3.3.2 apply similarly to Wp(G) or to any ∗-algebra A which satisfy

Ap(G) ⊆ A ⊆ MAp(G).

A well known result states that every non-degenerate ∗-representation of

L1(G) admits a unique extension to M(G). Our next theorem, which is the

main result of this section, presents an analogue of this result in the �dual

framework� of the Figà-Talamanca-Herz algebras. Although the proof for

L1(G) makes use of an approximate identity, we do not require the group G to

be amenable in our setting, thanks to Lemma 3.3.1 and Proposition 3.3.2. We
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recall that a locally compact group G is amenable if and only if Ap(G) admits

a bounded approximate identity [48, Theorem 6.].

Theorem 3.3.3. For any non-degenerate ∗-representation {T,H } of Ap(G),

the map T̃ : MAp(G) → B(H ) is a non-degenerate ∗-representation of

MAp(G) in B(H ).

Proof. We start by verifying that T̃ is a homomorphism. Let v, w ∈ MAp(G).

We have, for any u ∈ Ap(G):

(3.3) T̃ (v)T̃ (w)T (u) = T̃ (v)T (wu) = T (vwu) = T̃ (vw)T (u).

By non-degeneracy of T , i.e., span{T (u)ξ : u ∈ Ap(G), ξ ∈ H } is dense

in H , (3.3) shows that T̃ is a homomorphism. Next, for any v ∈ MAp(G),

u ∈ Ap(G), and ξ, η ∈H , we establish the following identity:

(3.4) 〈T̃ (v̄)T (u)ξ, η〉 = 〈T (u)T̃ (v)∗ξ, η〉.

Indeed,

〈T̃ (v̄)T (u)ξ, η〉 = 〈T (v̄u)ξ, η〉 = 〈T (vū)ξ, η〉

= 〈T (vū)∗ξ, η〉 = 〈ξ, T (vū)η〉

= 〈ξ, T̃ (v)T (ū)η〉 = 〈T̃ (v)∗ξ, T (u)∗η〉

= 〈T (u)T̃ (v)∗ξ, η〉,

where we used the fact that T is a ∗-representation of Ap(G). Since Ap(G)

and MAp(G) are commutative Banach algebras, and since T and T̃ are homo-

morphisms, it follows that

T (u)T̃ (v) = T̃ (v)T (u) for every u ∈ Ap(G), v ∈ MAp(G),

and via (3.4)

〈T̃ (v̄)T (u)ξ, η〉 = 〈T (u)T̃ (v̄)ξ, η〉 = 〈T̃ (v)∗T (u)ξ, η〉.

This shows that T̃ preserves involution, hence is a ∗-representation of MAp(G)

in B(H ). The non-degeneracy of T̃ is an immediate consequence of the non-
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degeneracy of T .

�

Corollary 3.3.4. Let {T,H } be a ∗-representation of MAp(G). Assume that

the restriction, denoted TA, of T to Ap(G) is non-degenerate. Then T̃A = T ,

and T is non-degenerate.

Proof. For any v ∈ MAp(G), u ∈ Ap(G), we have:

T̃A(v)TA(u) = TA(vu) = T (vu) = T (v)T (u) = T (v)TA(u).

By non-degeneracy of {TA,H }, this shows that T̃A(v) = T (v) for all v ∈
MAp(G). Hence T̃A = T . By Theorem 3.3.3, {T,H } is non-degenerate.

�

Corollary 3.3.5. Let {T,H } be a ∗-representation of MAp(G) such that

the restriction of T to Ap(G) is non-degenerate. Then {T,H } is unitarily

equivalent, for a positive Radon measure µ on G, to the non-degenerate ∗-
representation {S̃µ,L2(G, µ)}, de�ned by

S̃µ(v)([h]) = [v h], for v ∈ MAp(G), [h] ∈ L2(G, µ).

Proof. Let µ be a positive Radon measure onG and {Sµ,L2(G, µ)} be the non-
degenerate ∗-representation of Ap(G) de�ned as in Proposition 3.2.3. Then

the extension S̃µ, de�ned on MAp(G), is given by S̃µ(v)([h]) = [v h] for all

v ∈ MAp(G), [h] ∈ L2(G, µ). Indeed, for any u ∈ Ap(G) we have

S̃µ(v)Sµ(u)([h]) = Sµ(vu)([h]) = [vuh] = [v] · Sµ(u)([h]).

Now the corollary follows from Theorem 3.2.4 and Corollary 3.3.4.

�

Remark 3.3.2. (a) Through all this section, we may replace MAp(G) by Wp(G),

or by any ∗-algebra A which satisfy Ap(G) ⊆ A ⊆ MAp(G), without any

transformation in the proofs. For the case p = 2, MA2(G) may be replaced by

the Fourier-Stieltjes algebra B(G) or by the reduced Fourier-Stieltjes algebra

Bρ(G).
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(b) In the previous two corollaries, we note that the condition �the restric-

tion of T to Ap(G) is non-degenerate� cannot generally be dropped as the

following example vindicates: Let G be a non-discrete locally compact group,

identify L1(G) with the subalgebra of M(G) consisting of the measures that

are absolutely continuous with respect to the left Haar measure, and let π be

a continuous unitary representation of G. Then the representation T of M(G)

given by T (ν) =
∑

x∈G ν({x})π(x) is non-degenerate but will be identically

zero when restricted to L1(G). In this case, T is not unitarily equivalent to a

representation of the form S̃µ.

The next result is analogous to Theorem (22.11) in [50], where this result

is proved for the measure algebra.

Corollary 3.3.6. If λ denotes the left Haar measure on G, then the non-

degenerate ∗-representation {S̃λ,L2(G, λ)} of MAp(G) is faithful.

Proof. Let u ∈ MAp(G) such that u 6= 0 and let x ∈ G such that u(x) 6= 0.

Let h ∈ C00(G) such that h(x) 6= 0. Then uh(x) 6= 0 and uh is continuous

with compact support so that |uh|2 ∈ C+
00(G) and |uh|2 6= 0. Therefore, by

the property of the Haar integral [50, Theorem (15.5)(i)] we obtain:∫
G

|uh(x)|2 dx = ||[uh]||22 > 0,

hence [uh] 6= 0.

�

This leads us to the following interesting observation concerning the (mul-

tiplier algebra of the) Figà-Talamanca-Herz algebras:

Corollary 3.3.7. For any 1 < p < ∞ and any locally compact group G,

MAp(G) is embedded in a self-adjoint subalgebra of B(L2(G)).

Remark 3.3.3. Along with the results of N. J. Young [108], Proposition 3.3.6

implies that WAPp(G), the weakly almost periodic functionals on Ap(G), form

a separating set for Ap(G). Similar statements can be made for the weakly

almost periodic functionals on MAp(G). This result is new even in the case

p = 2 and G non-Abelian, or when G is non-discrete, in which case Ap(G) is

not Arens regular [36, Theorem 3.2] (see also [37]). For related material, we

refer the reader to [16] and [24].
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Chapter 4

Ergodic sequences in Ap(G) and

MAp(G).

Let G be a locally compact group and let P1(G) be the set of continuous

positive de�nite functions φ on G such that φ(e) = 1. Improving results of

J. Blum and B. Eisenberg [7] and of P. Milnes and A. L. T. Paterson [78], A.

T.-M. Lau and V. Losert [70] proved that if G is amenable, the following are

equivalent for a sequence (un) in P1(G):

(i) (un) is strongly ergodic.

(ii) (un) is weakly ergodic.

(iii) For each x ∈ G, x 6= e, un(x)→ 0.

(iv) For each T ∈ C∗δ(G), 〈un, T 〉 → 〈Ψ, T 〉, where Ψ is the unique topologi-

cally invariant mean on C∗δ(G).

In this section, by means of the results proved in Chapter 3, we shall extend

Lau and Losert's theorem to the setting of Ap(G) and MAp(G): we shall give

an improvement to condition (iv) above by replacing Cδ,p(G) by Mp(G), and

we also remove the assumption of amenability (Theorem 4.1.3).

Throughout this chapter, we let 1 < p < ∞, G be a locally compact group,

and Ψ be the unique topologically invariant mean on WAPp(G).
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4.1 The main result.

In order to allow the discussion of ergodic sequences in Ap(G) and MAp(G),

we introduce the following notation:

Sp
A = {u ∈ Ap(G) : ||u||Ap = 1 = u(e)},

Sp
M = {v ∈ MAp(G) : ||v||M = 1 = v(e)}.

Sp
A and Sp

M are commutative semigroups with pointwise multiplication and are

convex sets [43, Proposition 1.].

A typical example of an element in Sp
A is the function ϕU , U being any

compact open subset of G, de�ned by

ϕU(x) =
1

m(U)
1U ∗ 1̃U(x) =

m(xU ∩ U)

m(U)
.

Indeed,

0 ≤ ϕU(x) ≤ 1 = ϕU(e) ≤ ||ϕU ||∞
≤ ||ϕU ||Ap = inf

{∑
||kn||p ||`n||p′ : ϕU =

∑
`n ∗ ǩn

}
≤ 1

m(U)
||1U ||p ||1U ||p′

=
1

m(U)
(m(U))

1
p (m(U))

1
p′ = 1.

Lemma 4.1.1. For every x ∈ G, x 6= e, we have

〈Ψ, λp(x)〉 = 0.

Proof. Fix x ∈ G, x 6= e. By semisimplicity of Ap(G) and since the spectrum

of Ap(G) is identi�ed with G [48, Theorem 3.], the Gelfand representation

theorem [62, Theorem 3.1.1] insures the existence of some u ∈ Ap(G) such that

u(x) 6= u(e). In fact, there exists u ∈ Ap(G) such that u(e) = 0 and u(x) 6= 0

(see the proof of Lemma 6.2.3). Then 〈u ·Ψ, λp(x)〉 = u(e)〈Ψ, λp(x)〉 = 0. But

〈u ·Ψ, λp(x)〉 = 〈Ψ, u · λp(x)〉 = 〈Ψ, u(x)λp(x)〉 = u(x)〈Ψ, λp(x)〉,
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so that u(x)〈Ψ, λp(x)〉 = 0. Therefore, 〈Ψ, λp(x)〉 = 0 since u(x) 6= 0.

�

Lemma 4.1.2. Let (vn) be a sequence in MAp(G). The following are equiva-

lent:

(a) vn → 1{e} pointwise, where 1{e} is the characteristic function of {e}.

(b) For every ϕ ∈ Cδ,p(G), 〈vn, ϕ〉 → 〈Ψ, ϕ〉.

Proof. (a) ⇒ (b): Let x ∈ G. If x 6= e, then 〈Ψ, λp(x)〉 = 0 by Lemma 4.1.1.

Since vn(x) = 〈vn, λp(x)〉 → 0, we obtain that 〈vn, λp(x)〉 → 〈Ψ, λp(x)〉. If

x = e, then vn(e) = 〈vn, λp(e)〉 → 1 = 〈Ψ, λp(e)〉.
(b)⇒ (a): Let x ∈ G. If x = e, then 〈Ψ, λp(x)〉 = 1, and vn(e) = 〈vn, λp(e)〉 →
〈Ψ, λp(e)〉 = 1. If x 6= e, then 〈Ψ, λp(x)〉 = 0 by Lemma 4.1.1, and vn(x) =

〈vn, λp(x)〉 → 〈Ψ, λp(x)〉 = 0.

�

With the notation of Proposition 3.3.2 and Theorem 3.3.3 we introduce the

following:

De�nition 1. Let (vn) be a sequence in Sp
M. We say that (vn) is strongly (resp.

weakly) ergodic if for any non-degenerate ∗-representation {π,H } of Ap(G)

and any ξ ∈ H , the sequence (π̃(vn)ξ) converges strongly (resp. weakly) to

some θ ∈Hf , where

Hf := {ϑ ∈H : π(u)ϑ = ϑ for all u ∈ Sp
A}.

Example. In view of Theorem 4.1.3 and Proposition 4.1.5 below, if G is �rst

countable and {Un} is a collection of compact symmetric open neighborhoods

of e such that U2
n+1 ⊆ Un, then the sequence (ϕUn) is ergodic in Sp

A, where

ϕUn = 1
m(Un)

1Un ∗ ˇ1Un .

The next theorem extends [70, Theorem 3.3] to all locally compact groups,

and is viewed as the main result of this section. We also consider an additional

condition (condition (v)), which turns out to characterize ergodicity as well,

and which seems to be new even for the case p = 2 and G Abelian.

Theorem 4.1.3. Let (vn) be a sequence in Sp
M. The following assertions are

equivalent:
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(i) (vn) is strongly ergodic.

(ii) (vn) is weakly ergodic.

(iii) For every x ∈ G, x 6= e, vn(x)→ 0.

(iv) For every T ∈ Cδ,p(G), 〈vn, T 〉 → 〈Ψ, T 〉.

(v) For every T ∈ Mp(G), 〈vn, T 〉 → 〈Ψ, T 〉.

Proof. The implications (i) ⇒ (ii) and (v) ⇒ (iv) are obvious, whereas the

equivalence (iii) ⇔ (iv) is proved in Lemma 4.1.2.

(ii)⇒ (iii): Fix x ∈ G, x 6= e, and let {π,C} be the ∗-representation of Ap(G)

given by π(u)(z) = u(x)z, for u ∈ Ap(G), z ∈ C. By (3.2) of Proposition 3.3.2,

there exists a unique extension π̃ with π̃(v)(z) = v(x)z for all v ∈ MAp(G),

z ∈ C. The �xed point set of π is

{λ ∈ C : π(u)(λ) = λ for all u ∈ Sp
A} = {λ ∈ C : u(x)λ = λ for all u ∈ Sp

A}

= {0},

where the last equality follows since Ap(G) is semisimple with spectrum G.

By weak ergodicity of (vn), it follows that 〈π(vn)(z1), z2〉 = vn(x)z1z2 → 0 for

all z1, z2 ∈ C, hence vn(x)→ 0.

(iii) ⇒ (i): Let {π,H } be a non-degenerate ∗-representation of Ap(G). We

�rst consider the representation {Sµ,L2(G, µ)} of Proposition 3.2.3. By Propo-
sition 3.3.2, Sµ extends uniquely to MAp(G), and S̃µ(v)([h]) = [vh] for all

v ∈ MAp(G), [h] ∈ L2(G, µ). For any [h] ∈ L2(G, µ) we have:

||S̃µ(vn)([h])− S̃µ(vm)([h])||22 =

∫
G

|(vn h − vm h)(x)|2 dµ(x)

=

∫
G

|vn(x)− vm(x)|2 |h(x)|2 dµ(x).

As n,m→∞, |vn(x)− vm(x)|2 |h(x)|2 → 0 by (iii). Moreover,

|vn(x)− vm(x)|2 |h(x)|2 ≤ (|vn(x)|+ |vm(x)|)2 |h(x)|2

≤ (||vn||sup + ||vm||sup)2 |h(x)|2

≤ (||vn||M + ||vm||M)2 |h(x)|2

≤ (1 + 1)2 |h(x)|2 = 4 |h(x)|2.
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Since the function 4|h|2 belongs to L 1(G, µ), we can apply the Lebesgue dom-

inated convergence theorem, and we obtain that

lim
n,m→∞

||S̃µ(vn)([h])−S̃µ(vm)([h])||22 =

∫
G

lim
n,m→∞

|vn(x)−vm(x)|2 |h(x)|2 dµ(x) = 0.

That is, (S̃µ(vn)([h])) is a Cauchy sequence in L2(G, µ), and consequently

converges to some [f ] ∈ L2(G, µ). Another application of the dominated con-

vergence theorem yields that, for any v ∈ Sp
M, [h] ∈ L2(G, µ),

(4.1)

||S̃µ(v)(S̃µ(vn)([h]))−S̃µ(vn)([h])||22 =

∫
G

|v(x)vn(x)−vn(x)|2|h(x)|2dµ(x)→ 0.

Hence the limit [f ] is a �xed point of {Sµ,L2(G, µ)}.
Now take an arbitrary non-degenerate ∗-representation {π,H }. For all u ∈
Ap(G), it follows by Theorem 3.2.4 that π(u) = W ∗Sµ(u)W for a linear isom-

etry W from H onto L2(G, µ). Then, for any u ∈ Sp
A, v ∈ Sp

M, ξ ∈ H , we

have

||π̃(v)(π̃(vn)(π(u)ξ)) − π̃(vn)(π(u)ξ)|| = ||π(vvnu)ξ − π(vnu)ξ||

= ||W ∗Sµ(vvnu)Wξ −W ∗Sµ(vnu)Wξ||

= ||W ∗(Sµ(vvnu)Wξ − Sµ(vnu)Wξ)||

≤ ||W ∗|| ||Sµ(vvnu)Wξ − Sµ(vnu)Wξ||2
= ||Sµ(vvnu)Wξ − Sµ(vnu)Wξ||2
= ||S̃µ(v)(S̃µ(vn)(Sµ(u)Wξ))− S̃µ(vn)(Sµ(u)Wξ)||2
→ 0 by (4.1).

Therefore, by non-degeneracy of π it follows that, for all ξ ∈ H , (π̃(vn)ξ)

converges to a �xed point of π. Indeed, (π̃(vn)ξ) converges to an element in

{ξ ∈H : π̃(v)ξ = ξ for all v ∈ Sp
M}, which is contained in Hf . Thus, (vn) is

strongly ergodic.

(iii) ⇒ (v): Assume that (vn) converges pointwise to 1{e}. In particular,

|vn(x)| ≤ ||vn||sup ≤ ||vn||M = 1, i.e., |vn| ≤ 1G. Let µ ∈ M(G). Since µ

is bounded, 1G ∈ L 1(G, µ). Thus, the dominated convergence theorem is
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applicable, and we obtain

lim
n
〈vn, µ〉 = lim

n

∫
G

vn(x) dµ(x) =

∫
G

lim
n
vn(x) dµ(x)

=

∫
G

1{e}(x) dµ(x) = µ({e}) = 〈Ψ, µ〉,

where the last equality follows by [43, Proposition 10.].

Next, let T ∈ Mp(G) and let (µn) ⊂ M(G) such that ||T − µn||PMp → 0. Then

we have:

|〈vn, T 〉 − 〈Ψ, T 〉| ≤ |〈vn, T 〉 − 〈vn, µn〉|+ |〈vn, µn〉 − 〈Ψ, µn〉|

+ |〈Ψ, µn〉 − 〈Ψ, T 〉|

≤ ||vn||M ||T − µn||PMp + |〈vn, µn〉 − 〈Ψ, µn〉|

+ ||Ψ|| ||µn − T ||PMp

→ 0.

Therefore, 〈vn, T 〉 → 〈Ψ, T 〉.
�

The next corollary is now immediate and provides an analogue of [70,

Theorem 3.1].

Corollary 4.1.4. Let (un) be a sequence in Sp
A. The following assertions are

equivalent:

(i) (un) is strongly ergodic.

(ii) (un) is weakly ergodic.

(iii) For all x ∈ G, x 6= e, un(x)→ 0.

(iv) For every ϕ ∈ Cδ,p(G), 〈un, ϕ〉 → 〈Ψ, ϕ〉.

(v) For every T ∈ Mp(G), 〈un, T 〉 → 〈Ψ, T 〉.

In regards to the existence of ergodic sequences in MAp(G), the proof of

the next proposition may be patterned after that of [70, Corollary 3.2], and so

we omit the details.

Proposition 4.1.5. Let G be a locally compact group. Then MAp(G) contains

a strongly ergodic sequence if and only if G is �rst countable.
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4.2 Functorial properties.

Proposition 4.2.1. Let G be a locally compact group and H be a closed sub-

group of G. If (un) is an ergodic sequence in Sp
A(G), then the sequence of

restrictions (ResH un) is ergodic in Sp
A(H).

Proof. Let u ∈ Sp
A(G). By [48, Theorem 1.] we have

1 = ResH u(e) ≤ ||ResH u||sup ≤ ||ResH u||Ap(H) ≤ ||u||Ap(G) = 1,

hence ResH u ∈ Sp
A(H).

Now let (un) be an ergodic sequence in Sp
A(G). By Corollary 4.1.4, un(x)→ 0

for each x ∈ G, x 6= e. In particular, for each y ∈ H, y 6= e, (ResH un)(y) =

un(y)→ 0, hence (ResH un) is ergodic in Sp
A(H).

�

Proposition 4.2.2. Let G be a locally compact group and H be an open sub-

group of G. If (un) is an ergodic sequence in Sp
A(H), then the sequence (ůn) is

ergodic in Sp
A(G), where for any h ∈ Ap(H) the function h̊ ∈ Ap(G) is de�ned

by h̊(x) = h(x) if x ∈ H, and h̊(x) = 0 if x 6∈ H.

Proof. Let u ∈ Sp
A(H). By [48, Proposition 5.] we have

1 = ů(e) ≤ ||̊u||sup ≤ ||̊u||Ap(G) = ||u||Ap(H) = 1,

hence ů ∈ Sp
A(G). The conclusion now follows from Corollary 4.1.4.

�

4.3 Examples via well distributed sequences.

V. Losert and H. Rindler [75] introduced a notion of well distributed sequence

in semitopological semigroups and showed the existence of a well distributed

sequence generator. After recalling their de�nition, we will adapt it to get

a notion of well distributed sequences in the Figà-Talamanca-Herz algebras,

which lead to some examples of ergodic sequences.

De�nition 2. A semitopological semigroup S is an (algebraic) semigroup

equipped with a Hausdor� topology τ for which the multiplication in S is
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separately continuous, that is, for any �xed s ∈ S, the mappings t 7→ st and

t 7→ ts are continuous (with respect to τ).

Examples. 1. Let A be a Banach algebra, and let S denote its (closed)

unit ball. Then S, equipped with the (induced) norm topology, is a

semitopological semigroup. In this case, the multiplication in S is even

jointly continuous, that is, the map S×S → S, (s, t) 7→ st, is continuous

when S × S has the product topology.

As a consequence, ifA = Ap(G) (resp. A = MAp(G)), then Sp
A (resp. Sp

M)

is a semitopological semigroup whose multiplication is jointly continuous.

2. Let G be a locally compact group, A = PMp(G), and S denote the

(closed) unit ball of A. Then S, equipped with the weak∗ topology, is

a semitopological semigroup. However, if G is not compact, then the

multiplication in S is not jointly continuous; the reverse is also true. See

[69, Theorem 8.8].

De�nition 3. Let S be a semitopological semigroup. A sequence (xn) in S is

said to be well distributed (respectively uniformly distributed) if the following

condition is satis�ed: for any ε > 0, whenever {T,H } is a continuous repre-

sentation of S as contractions on a Hilbert space H , and η ∈H , there exists

N0 ∈ N such that for all N ≥ N0,∥∥∥∥∥ 1

N

k+N∑
n=k+1

T (xn)η − Pfη

∥∥∥∥∥ < ε for all k ∈ N

(
respectively

∥∥∥∥∥ 1

N

N∑
n=1

T (xn)η − Pfη

∥∥∥∥∥ < ε

)
,

where Pf denotes the orthogonal projection from H onto the �xed point set

Hf of T .

Theorem 4.3.1. [75, Theorem 1.] There exists a sequence of integers (rj) with

the following universal property: if S is any semitopological semigroup and (an)

any sequence in S generating a dense subsemigroup of S, then the sequence (xn)

is well distributed, where x1 = ar1, x2 = ar1 · ar2 , . . . , xn = ar1 · · · arn , . . .
Such a sequence (rj) is called a well distributed sequence generator (w.d.s.g.).
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De�nition 4. A sequence (un) in Sp
A is said to be well distributed if the

following condition is satis�ed: for any ε > 0, whenever {T,H } is a non-

degenerate ∗-representation of Ap(G), η ∈ H , there exists N0 ∈ N such that

for all N ≥ N0,∥∥∥∥∥ 1

N

k+N∑
n=k+1

T (un)η − Pfη

∥∥∥∥∥ < ε for all k ∈ N,

where Pf denotes the orthogonal projection from H onto Hf .

Remark 4.3.1. Let (un) be a sequence in Sp
A. If (un) is well distributed, then

the sequence

(
1

N

k+N∑
n=k+1

un

)
N

is strongly ergodic for all k ∈ N.

Lemma 4.3.2. Let u ∈ Ap(G) with ||u||Ap ≤ 1, and let {T,H } be a cyclic

∗-representation of Ap(G). Then T (u) is a contractive operator on H .

Proof. First consider the representation {Sµ,L2(G, µ)} as in Lemma 3.1.1.

For any u ∈ Ap(G) with ||u||Ap ≤ 1 and any h ∈ L2(G, µ) we have

||Sµ(u)(h)||2 = ||uh||2 ≤ ||u||Ap ||h||2 ≤ ||h||2.

Hence Sµ(u) is a contraction on L2(G, µ).

If {T,H } is an arbitrary cyclic ∗-representation of Ap(G), then by Lemma

3.1.2, there exists an isometryW from H onto L2(G, µ), for some µ ∈ M+(G),

such that T (u) = W ∗Sµ(u)W for all u ∈ Ap(G). Thus, for any u ∈ Ap(G)

with ||u||Ap ≤ 1 it ensues that

||T (u)|| = ||W ∗Sµ(u)W || ≤ ||W ∗|| ||Sµ(u)|| ||W || = ||Sµ(u)|| ≤ ||u||Ap ≤ 1,

hence T (u) is a contraction on H .

�

Lemma 4.3.3. Let S be a subsemigroup of Sp
A, (un) be a sequence in S such

that (un) generates a dense subsemigroup of S, and let (rj) be a w.d.s.g.. If

(xn) denotes the sequence of Theorem 4.3.1, the following condition is satis�ed:

29



whenever {T,H } is a cyclic ∗-representation of Ap(G) the equation

lim
N→∞

1

N

k+N∑
n=k+1

T (xn) = Pf

holds uniformly in k with respect to the strong operator topology of B(H ).

Proof. It is a consequence of Theorem 4.3.1 and Lemma 4.3.2.

�

Theorem 4.3.4. Let S be a subsemigroup of Sp
A, (un) be a sequence in S

such that (un) generates a dense subsemigroup of S, and let (rj) be a w.d.s.g..

Then the sequence (xn) is well distributed in the sense of De�nition 4, where

x1 = ur1 , x2 = ur1 · ur2 , . . . , xn = ur1 · · ·urn , . . ..

Proof. Let {T,H } be a non-degenerate ∗-representation of Ap(G), and let

{Tα,Hα} be cyclic ∗-representations of Ap(G) such that T =
∑

α Tα and H =⊕
α Hα. For each α, let Pα,f be the orthogonal projection from Hα onto the

�xed point set Hα,f , and let Pf be the orthogonal projection from H onto

Hf . Then we have:

Hf = {ξ ∈H : T (u)ξ = ξ for all u ∈ Sp
A}

=

{
(ξα) ∈

⊕
α

Hα :

(∑
α

Tα(u)

)
(ξα) = (ξα) for all u ∈ Sp

A

}

=

{
(ξα) ∈

⊕
α

Hα : Tα(u)ξα = ξα for all u ∈ Sp
A and for all α

}

=

{
(ξα) ∈

⊕
α

Hα : ξα ∈Hα,f for all α

}
=
⊕
α

Hα,f .

Hence Pf =
∑

α Pα,f . Moreover, by Lemma 4.3.3,

lim
N→∞

1

N

k+N∑
n=k+1

Tα(xn) = Pα,f for all α and all k ∈ N.

30



So we conclude that

lim
N→∞

1

N

k+N∑
n=k+1

T (xn) = lim
N→∞

T

(
1

N

k+N∑
n=k+1

xn

)

= lim
N→∞

∑
α

Tα

(
1

N

k+N∑
n=k+1

xn

)

=
∑
α

lim
N→∞

Tα

(
1

N

k+N∑
n=k+1

xn

)
=

∑
α

Pα,f = Pf ,

that is, (xn) is well distributed in the sense of De�nition 4.

�
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Chapter 5

Complete mixing problem for

multipliers.

The motivation for this chapter is the following question: For a �xed u ∈ Sp
M,

when is the sequence (un) of iterates of u strongly ergodic? In considering this

problem, we are led to introduce a natural notion of ergodicity for multipliers,

as well as various notions of mixing, all re�ecting the well known theory of

ergodic and mixing probability measures on locally compact (Abelian) groups

[10, 32] (see also [86, 90, 39, 53, 54, 2, 1, 74, 14, 4]). In particular, using the

theory of random walks and boundaries on groups, W. Jaworski [53] shows

that if G is a locally compact Abelian group, a probability measure on G is

ergodic if and only if it is completely mixing. In this paper, we shall not

only provide a di�erent proof of Jaworski's result, which is very transparent

from the point of view of harmonic analysis, but we shall also extend it to

all multipliers of any Tauberian, semisimple, regular, commutative Banach

algebra, hence to the algebra MAp(G) of any locally compact group (Theorem

5.1.1). Thus, we provide a solution to the dual version of the complete mixing

problem, which states that ergodicity and mixing are equivalent notions, and

in doing so, we unify the Foguel type theorem and the Choquet-Deny type

theorem recently considered by E. Kaniuth, A. T.-M. Lau and A. Ülger in

[56] (Theorem 5.2.1). In addition, we also get rid of the assumption that the

algebra admits a bounded approximate identity in [56, Theorem 3.4].

Lately, the complete mixing problem for measures has been de�nitely solved in

the case of [SIN] groups [54] and in the case of locally compact motion groups
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[2]. However, the problem seems to be still open in the case of σ-compact

locally compact groups. See [54, 2] for more information on this problem.

Finally, we want to mention that it is Jaworski's papers [53, 54], Kaniuth et al.

paper [56], and Lemma 3.2.6 in [11] that gave us the impetus to study these

notions in our context.

Throughout this section, we let A be a Tauberian, semisimple, regular,

commutative Banach algebra. We denote its Gelfand spectrum by 4(A) and

the Gelfand tranform by a 7→ â, where â(ϕ) = ϕ(a) for any ϕ ∈ 4(A). For

any closed subset F of 4(A) we write

j(F ) = {a ∈ A : supp(â) is compact, supp(â) ∩ F = ∅},

and

k(F ) = {a ∈ A : â(ϕ) = 0 for allϕ ∈ F}.

If F is a singleton, say {φ}, we write k(φ) instead of k({φ}). We say that F is

a set of spectral synthesis if j(F ) = k(F ). See [62, chapter 8.] or [55, chapter

5.] for more information. Our notation here agrees with the one used in [56].

Remark 5.1. We recall that Ap(G) is a Tauberian, semisimple, regular, com-

mutative Banach algebra [48, Proposition 3.] and that the group G may be

identi�ed with the Gelfand spectrum of Ap(G) [48, Theorem 3.]. It is known

that singletons in G are always sets of spectral synthesis [48, 29] and so are

the closed normal subgroups of G [48, Proposition 2.] (see also [20, Corollary

4.] and [22]).

A linear operator T : A → A is called a multiplier of A if T (ab) = aT (b)

holds for all a, b ∈ A. We write M(A) for the unital commutative Banach

algebra of all multipliers of A. For each T ∈ M(A) we let T̂ denote the

unique function in CB(4(A)) such that T̂ (a)(ϕ) = T̂ (ϕ)â(ϕ) for all a ∈ A

and ϕ ∈ 4(A) [61, Theorem 1.2.2]. The book of R. Larsen [61] is a standard

reference for multipliers.

Remark 5.2. T. Miao [77, Proposition 3.1] showed that MAp(G) = M(Ap(G))

for any locally compact group G.

We now introduce the notion of ergodicity and mixing for multipliers. Com-

pare with [90] and [54].
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De�nition 5. Let F be a closed subset in 4(A), and let T ∈M(A) such that

||T || = 1 = T̂ (ϕ) for all ϕ ∈ F . We say that T is F -ergodic if

lim
n→∞

∥∥∥∥∥ 1

n

n∑
k=1

T k(a)

∥∥∥∥∥ = 0 for all a ∈ k(F );

T is weakly F -mixing if

lim
n→∞

1

n

n∑
k=1

|〈T k(a), f〉| = 0 for all a ∈ k(F ) and all f ∈ A∗;

T is F -mixing if

lim
n→∞

|〈T n(a), f〉| = 0 for all a ∈ k(F ) and all f ∈ A∗;

T is completely F -mixing if

lim
n→∞

||T n(a)|| = 0 for all a ∈ k(F ).

5.1 Ergodic multipliers of Ap(G).

We �rst consider the case when A = Ap(G) and F = {e}. Write Ap(G)0 :=

{v ∈ Ap(G) : v(e) = 0} = k(e), and for u ∈ MAp(G), let Iu be the norm

closure of {uf − f : f ∈ Ap(G)}. According to [11], the elements of the

annihilator I⊥u are called u-harmonic functionals. In the sequel, we shall say

that u is �ergodic� instead of �{e}-ergodic�, and so on.

Then the complete mixing problem for multipliers of Ap(G) is solved in the

next theorem.

Theorem 5.1.1. Let G be a locally compact group and let u ∈ Sp
M. The

following statements are equivalent:

(i) (un)n∈N is strongly ergodic.

(ii) For any neighborhood V of e, un(x)→ 0 for all x ∈ Gr V .

(iii) |u(x)| < 1 for all x ∈ G, x 6= e.

(iv) u is completely mixing.
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(v) u is mixing.

(vi) u is weakly mixing.

(vii) u is ergodic.

(viii) Iu = Ap(G)0.

(ix) I⊥u = Cλp(e).

Proof. (i) ⇔ (iii): Assume that (i) holds. We recall from Theorem 4.1.3 that

(un) is ergodic if and only if un(x)→ 0 for all x ∈ G, x 6= e. Since ||u||M = 1,

it follows that |u(x)| ≤ ||u||sup ≤ ||u||M = 1 for all x ∈ G, hence |u(x)| < 1

whenever x 6= e. The reverse implication is trivial.

(ii) ⇔ (iii) is a consequence of (i) ⇔ (iii).

(iii) ⇔ (iv): If (iii) holds, then limn ||unv||Ap = 0 for all v ∈ j(e) by [56,

Theorem 2.1]. Let a ∈ Ap(G)0. Since {e} is a set of spectral synthesis, for any
ε > 0 there exists b ∈ j(e) such that ||a− b||Ap < ε. Then

||una||Ap ≤ ||un(a− b)||Ap + ||unb||Ap

≤ ||un||M||a− b||Ap + ||unb||Ap < ε+ ||unb||Ap .

Therefore, limn ||una||Ap = 0 for all a ∈ Ap(G)0. The reverse implication also

follows from [56, Theorem 2.1].

The implications (iv) ⇒ (v) ⇒ (vi) and (iv) ⇒ (vii) may be proved with

standard calculations.

(vi) ⇒ (ix): Clearly, Cλp(e) ⊆ I⊥u . To prove the reverse inclusion, let T ∈ I⊥u
and a ∈ Ap(G)0. By assumption,

(5.1) lim
n→∞

1

n

n∑
k=1

|〈uka, T 〉| = 0.

Since T ∈ I⊥u , it may be seen that 〈T, v〉 = 〈T, uv〉 and that v · T ∈ I⊥u , for
all v ∈ Ap(G). Hence, 〈uka, T 〉 = 〈a, T 〉. By (5.1) we have 〈a, T 〉 = 0, and

a ·T = 0 (using the fact that Ap(G)0 is a closed ideal). Thus, by the de�nition

of the support of a p-pseudomeasure ([48, p. 119], [23, Chapter 6.]), it follows
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that

(5.2) a(x) = 0 for all x ∈ supp(T ), whenever a ∈ Ap(G)0.

If supp(T ) 6= {e} and x ∈ supp(T ), x 6= e, by regularity of Ap(G) there exists

v ∈ Ap(G) such that v(x) = 1 and v(e) = 0. But this contradicts (5.2).

Therefore, supp(T ) = {e} and by the �Lemme de contraction des supports�

[29, p. 63] we then conclude that T ∈ Cλp(e).
(vii) ⇒ (ix) Let T ∈ PMp(G) such that u · T = T , and let a ∈ Ap(G)0. By

assumption, 1
n

∑n
i=1 u

ia converges to 0 in norm, hence weakly; in particular,∣∣∣∣∣
〈

1

n

n∑
i=1

uia, T

〉∣∣∣∣∣ → 0 as n→∞.

However, 〈
1

n

n∑
i=1

uia, T

〉
=

〈
a,

1

n

n∑
i=1

ui · T

〉

=

〈
a,

1

n

n∑
i=1

ui−1 · T

〉
= 〈a, T 〉.

Thus, 〈a, T 〉 = 0, and (5.2) holds. The rest of the proof is now similar to (vi)

⇒ (ix).

(viii) ⇔ (ix) follows by [62, Theorem 7.1.2] since Ap(G) is regular.

(ix) ⇒ (iii): We will show that {e} = {x ∈ G : u(x) = 1} and the desired

conclusion will be immediate. Since u ∈ Sp
M, we only need to verify that,

if u(x) = 1 for some x ∈ G, then x = e. To that matter, let v ∈ Ap(G)

be arbitrary. Then we have 〈v − uv, λp(x)〉 = v(x) − u(x)v(x) = 0, hence

λp(x) ∈ I⊥u = Cλp(e), and as u(x) = 1, it ensues that λp(x) = λp(e). But by

semisimplicity of Ap(G), the map λp : G→ PMp(G) is injective, and therefore

x = e.

�

Remark 5.1.1. We obtain Jaworski's result, mentioned in the introduction, by

assuming G to be Abelian and by taking p = 2 in Theorem 5.1.1. Indeed, it

is well known that the multipliers of L1(G) are in one-to-one correspondence

with the bounded Radon measures on G [61].
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We now turn to the question of the existence of ergodic multipliers. The

next lemma is certainly well known and is presented here without proof. The

case in which p = 2 is the content of [40, Corollary 6.9].

Lemma 5.1.2. Let G be a locally compact group. Then Ap(G) is separable if

and only if G is second countable.

Following the notation introduced in [105], we let J := {Iu : u ∈ Sp
A}. J

is a set consisting of closed ideals in Ap(G), which we regard as being partially

ordered by inclusion.

Theorem 5.1.3. Let G be a locally compact group. The following statements

are equivalent:

(i) G is �rst countable.

(ii) There exists an ergodic u ∈ Sp
A.

(iii) There exists an ergodic v ∈ Sp
M.

(iv) J has a unique maximal ideal, namely Ap(G)0.

Proof. We start by noticing that (ii) ⇔ (iii) holds once we know that, if

v ∈ Sp
M is ergodic, then vu ∈ Sp

A is ergodic for all u ∈ Sp
A.

(ii) ⇔ (iv): If u ∈ Sp
A is ergodic, then Ap(G)0 = Iu ∈ J , and Ap(G)0

is clearly the unique maximal ideal in J . Conversely, if J has a unique

maximal ideal, say Iu for some u ∈ Sp
A, then Iu = Ap(G)0 and u is ergodic

given Theorem 5.1.1. Indeed, using Lemma 6.2.4 in Chapter 6, one can show

that Ap(G)0 = span{Iσ : σ ∈ Sp
A} (see [11, Lemma 3.2.3] for the case p = 2),

and it then follows by maximality of Iu that Ap(G)0 ⊆ Iu.

(iii) ⇒ (i) is a consequence of Theorem 5.1.1 and Proposition 4.1.5.

(i) ⇒ (ii): Let us �rst assume that G is second countable, and let ε > 0,

f1, . . . , fn ∈ Ap(G)0. By Lemma 5.1.2, Ap(G)0 is separable, and by Lemma

6.2.5 in Chapter 6, we have for each i = 1, . . . , n,

0 = |fi(e)| = inf{||ufi||Ap : u ∈ Sp
A} < ε.

Let ui ∈ Sp
A such that ||uifi|| < ε, and set u = u1 · · ·un ∈ Sp

A. So we have

d(fi, Iu) = inf{||fi − ψ|| : ψ ∈ Iu} ≤ ||fi − (fi − ufi)|| < ε.
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Therefore, applying [105, Lemma 1.1 and Remark (3), p. 210] we obtain the

existence of some u0 ∈ Sp
A such that Iu0 = Ap(G)0, that is, u0 is ergodic.

Now let {Un} be a countable basis of compact symmetric open neighborhoods

of e such that U2
n+1 ⊆ Un, and assume that G is σ-compact. By the Kakutani-

Kodaira Theorem [50, Theorem (8.7)], there exists a compact normal subgroup

K of G such that G/K is second countable and K ⊆
⋂∞
n=1 Un. By above, there

exists an ergodic u ∈ Sp
A(G/K), i.e., un(xK) → 0 for all x ∈ G, xK 6= eK.

Given [48, Proposition 6.], u ◦ q ∈ Sp
A whenever u ∈ Sp

A(G/K), where q : G→
G/K is the quotient map. And if V is an arbitrary neighborhood of e and

x ∈ G r V , then xK 6= eK since
⋂∞
n=1 Un ⊆ V so that x 6∈ K. Therefore,

(u ◦ q)n(x) = un(xK)→ 0 and u ◦ q is ergodic in Sp
A by Theorem 5.1.1.

Finally, in the general case, pick an open σ-compact subgroup H of G [50,

Theorem (7.5)]. Then there exists an ergodic u ∈ Sp
A(H), and ů ∈ Sp

A is

ergodic by Proposition 4.2.2 and Theorem 5.1.1.

�

Remark 5.1.2. a) In the context of the group algebra L1(G) of a second count-

able locally compact group, properties (iii) and (iv) were shown to be equiv-

alent to amenability of G by J. Rosenblatt [90] and G. A. Willis [105] re-

spectively.

b) For the case p = 2, Theorem 5.1.3 was proved in [83, Proposition 2.4]. See

also [11, Proposition 3.2.7].

Corollary 5.1.4. If G is a �rst countable locally compact group, then Ap(G)0

is always of the form Iu for some u ∈ Sp
A.

The next corollary displays an interesting connection with �xed point prop-

erties of p-pseudomeasures.

Corollary 5.1.5. Let T ∈ PMp(G) and let u0 ∈ Sp
A be ergodic. Then T is

a u0-harmonic functional if and only if T is a u-harmonic functional for all

u ∈ Sp
A. In other words, T is a �xed point under the action of u0 if and only

if T is a common �xed point for all u ∈ Sp
A.

Proof.

I⊥u0
= Cλp(e) = {T ∈ PMp(G) : u · T = T for all u ∈ Sp

A}.
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(See Lemma 6.2.4 in Chapter 6.).

�

5.2 F -ergodic multipliers.

In this section, we show that Theorem 5.1.1 is still true for any Tauberian,

semisimple, regular, commutative Banach algebra A, and for any closed subset

F ⊆ 4(A). This leads to an improvement of [56, Theorem 3.4] where the

algebra was assumed to have a bounded approximate identity, and it also

shows that Theorem 2.1 and Theorem 3.4 in [56] are mutually equivalent if F

is a set of spectral synthesis. Nevertheless, the properties (ii), (iii), (vii), (viii)

and (ix), in Theorem 5.2.1 below were �rst considered by Kaniuth, Lau, and

Ülger in [56].

We now �x a commutative Banach algebra A which is Tauberian, semisim-

ple and regular, and we let F be a closed subset of 4(A).

Theorem 5.2.1. Let T ∈ M(A) such that ||T || = 1 = T̂ (ϕ) for all ϕ ∈ F . If
F is a set of spectral synthesis, then the following statements are equivalent:

(i) T̂ n(γ)→ 0 pointwise for all γ ∈ 4(A) r F .

(ii) |T̂ (γ)| < 1 for all γ ∈ 4(A) r F .

(iii) T is completely F -mixing.

(iv) T is F -mixing.

(v) T is weakly F -mixing.

(vi) T is F -ergodic.

(vii) IT = k(F ).

(viii) {f ∈ A∗ : T ∗f = f} = span(F )
w∗

.

(ix) F = FT , where FT := {γ ∈ 4(A) : T̂ (γ) = 1}.

Proof. The implications (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇒ (v) and (iii) ⇒ (vi)

follows similarly as in the proof of Theorem 5.1.1. (ix) ⇒ (ii) is obvious, and

(vii) ⇔ (viii) is a consequence of the regularity of A (see [62, Theorem 7.1.2]
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and [56, Lemma 3.1.(v)]).

(viii) ⇒ (ix): By our assumption on T , we only need to show that FT ⊆ F .

Let γ ∈ FT and assume that γ 6∈ F . Since A is regular, there exists a ∈ A such

that â(γ) = 1 and â|F ≡ 0. Moreover, 〈a − T (a), γ〉 = â(γ) − T̂ (γ)â(γ) = 0,

hence γ ∈ I⊥T = {f ∈ A∗ : T ∗f = f} = span(F )
w∗

. So there exist ci ∈ C and

γi ∈ F such that
nα∑
i=1

ciγi
w∗−→ γ.

In particular,
∑nα

i=1 ci〈γi, a〉 → 〈γ, a〉 = 1. But since γi ∈ F , 〈γi, a〉 = 0, which

is a contradiction. Therefore, γ ∈ F .
(vi) ⇒ (viii): Let f ∈ A∗ such that T ∗f = f . As in the proof of Theorem

5.1.1, we have for every a ∈ k(F ):

(5.3)

〈
1

n

n∑
k=1

T k(a), f

〉
= 〈a, f〉.

By assumption, limn→∞
∥∥ 1
n

∑n
k=1 T

k(a)
∥∥ = 0, hence we obtain that

lim
n→∞

∣∣∣∣∣
〈

1

n

n∑
k=1

T k(a), f

〉∣∣∣∣∣ = 0.

Therefore, 〈a, f〉 = 0 by (5.3), so that f ∈ k(F )⊥ = span(F )
w∗

[56, Lemma

3.1.(v)].

The proof of (v) ⇒ (viii) is similar to (vi) ⇒ (viii).

�

Corollary 5.2.2. Let T ∈ M(A) with ||T || = 1. If FT is a set of spectral

synthesis, then T is FT -ergodic.

Remark 5.2.1. a) In Theorem 5.2.1, the assumption that F is a set of spectral

synthesis cannot be removed, as Example 3.5 in [56] vindicates.

b) If G is an amenable locally compact group, then every u ∈ B(G) with

||u||B(G) = 1 is Fu-ergodic. [56, Corollary 4.6].

c) If G is a non-discrete locally compact group, then there exists u ∈ B(G)

such that ||u||sup = 1 and Fu fails to be a set of spectral synthesis [56,
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Corollary 4.4]. Moreover, if G is also amenable, then u cannot be power

bounded [56, Theorem 4.1]. In every instance, there is no closed subset

F ⊆ G, which is of spectral synthesis, such that u is F -ergodic.

Proposition 5.2.3. Let A be a Tauberian, semisimple and regular, commu-

tative Banach algebra and φ ∈ 4(A). Assume that the following assertions

hold:

(i) {φ} is a set of spectral synthesis.

(ii) Sφ := {u ∈ A : ||u|| = û(φ) = 1} is not empty and acts ergodically on

A∗, i.e.,

{Φ ∈ A∗ : Φ · u = Φ for all u ∈ Sφ} = {λφ : λ ∈ C}.

(iii) A is separable.

Then there exists a φ-ergodic multiplier in Sφ.

For ease of notation we write A0,φ := {a ∈ A : â(φ) = 0}, which is clearly

a closed subspace of A, and for T ∈M(A) we write IT := (I − T )(A).

Proof. Let ε > 0 and f1, . . . , fn ∈ A0,φ. By Theorem 6.2.1 in Chapter 6. we

have

0 = |〈φ, fi〉| = inf{||ufi|| : u ∈ Sφ} < ε, for each i = 1, . . . , n.

Let ui ∈ Sφ such that ||uifi|| < ε, and set u = u1 · · ·un ∈ Sφ. Then ||ufi|| < ε,

and fi − ufi ∈ Iu for each i = 1, . . . , n. Therefore,

d(fi, Iu) = inf{||fi − ψ|| : ψ ∈ Iu} ≤ ||fi − (fi − ufi)|| < ε.

Since A is separable, so is A0,φ. Thus, we can now apply [105, Lemma 1.1 &

Remark (3), p. 210] to obtain the existence of some u ∈ Sφ such that Iu = A0,φ,

that is, u is φ-ergodic given Theorem 5.2.1.

�

Corollary 5.2.4. Let A, φ and Sφ as in Proposition 5.2.3. Let T ∈ A∗ and
let u0 ∈ Sφ. Assume that u0 is φ-ergodic. Then T is a �xed point under the

action of u0 if and only if T is a common �xed point for all u ∈ Sφ.
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Proof. It is an immediate consequence of Theorem 5.2.1.(ix) and of the hy-

pothesis on Sφ.

�

We end this chapter with a list of Banach algebras for which the content of

Theorem 5.2.1 is applicable:

1. A = L1(G) for any locally compact Abelian group G.

2. A = A(G) forG = SLn(R), or for any connected semisimple non-compact

Lie group with �nite center. In this case, Theorem 5.2.1 seems to be

a new result since such groups do not admit a bounded approximate

identity for A(G) [21, section 4.]. More generally, Theorem 5.2.1 applies

to the Figà-Talamanca-Herz algebra of all non-amenable locally compact

groups, and for any 1 < p <∞.

3. Let 1 < p <∞ and 1 ≤ r ≤ ∞, and A = Ar
p(G) := Ap(G)∩Lr(G) be the

Figà-Talamanca-Herz-Lebesgue algebra of a locally compact group G, as

studied by E. E. Granirer [45]. If there exists an approximate identity

(uα) in Ap(G) which is bounded in the multiplier norm ||.||M , and if

(uα) is in Ar
p(G), then the conclusion of Theorem 5.2.1 is also veri�ed

for any multiplier T of Ar
p(G) with ||T || = 1 = T (e). Indeed, this is a

consequence of [45, Theorem 1., Corollary 2. & Theorem 11.] and of

Theorem 5.2.1.

4. A = Lp(G) for any compact Abelian group G and any 1 ≤ p <∞, where

the multiplication is given by the convolution product. In this case,

every singleton in Ĝ, the dual group of G, is a set of spectral synthesis.

In addition, if p = 1, then every closed subset of Ĝ is a set of spectral

synthesis [62, Corollary 8.3.2].

5. A = C0(X) for a non-empty locally compact Hausdor� space X. In this

case, every closed subset in X is a set of spectral synthesis [15, Theorem

4.2.1].

6. A = S1(G), any Segal algebra of a locally compact Abelian group G [87,

�6.2]. In this case, every singleton in Ĝ is a set of spectral synthesis.

Examples of such algebras include
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(a) A = L1(G)∩Lp(G), 1 < p <∞, with the norm ||f || = ||f ||1 + ||f ||p.

(b) A = the algebra of all functions f ∈ L1(G) whose Fourier transform

f̂ belongs to Lp(Ĝ), 1 ≤ p <∞, with the norm ||f || = ||f ||1 + ||f̂ ||p.

7. A = BVC0(R), the algebra of all complex-valued continuous functions on

R which are of bounded variation and which vanish at in�nity, endowed

with pointwise multiplication and the norm ||f || = ||f ||sup + VarR(f). In

this case, every singleton in R is a set of spectral synthesis [80, Proposi-

tion 2.6].

8. Let (K, d) be a non-empty compact metric space, and let 0 < α < 1.

(a) A = LipαK, the algebra of Lipschitz functions of order α, endowed

with pointwise multiplication and the norm ||f ||α = ||f ||sup + pα(f),

where

pα(f) = sup

{
|f(x)− f(y)|
d(x, y)α

: x, y ∈ K, x 6= y

}
.

In this case, every clopen (i.e., open and closed) subset of K is a set

of spectral synthesis [15, Theorem 4.4.24, Theorem 4.4.31].

(b) A = lipαK, the subalgebra of LipαK consisting of all functions f

such that
|f(x)− f(y)|
d(x, y)α

→ 0 as d(x, y) → 0.

In this case, every closed subset of K is a set of spectral synthesis

[15, Theorem 4.4.30].
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Chapter 6

Ergodic theorems for ϕ-amenable

Banach algebras.

In this chapter, after proving a new characterization of left amenability for

semigroups, we consider various ergodic and �xed point properties which char-

acterize ϕ-amenability of Banach algebras. Among other things, we prove a

mean ergodic theorem in that setting, and we establish the uniqueness of a

ϕ-mean on the weakly almost periodic functionals.

6.1 Left amenability of semigroups.

Let S be a semitopological semigroup. We denote by CB(S) the space of all

continuous bounded functions f : S → C. For s ∈ S and f ∈ CB(S), the left

translate of f by s is de�ned by `sf(t) = f(st) for t ∈ S. Then f is said to be

left uniformly continuous if the map s 7→ `sf is continuous with respect to the

norm topology of CB(S). We write LUC(S) for the space of all left uniformly

continuous functions on S. In particular, LUC(S) is a norm-closed, conjugate-

closed, translation-invariant sub-C∗-algebra of CB(S) containing the constant

functions.

Let m ∈ LUC(S)∗. Then m is called a mean on LUC(S) if m(1S) = 1 = ||m||,
where 1S denotes the constant one function. We say that m is left invariant if

m(`sf) = m(f) for all s ∈ S, f ∈ LUC(S).

The notion of amenability for semigroups was �rst studied by M. M. Day

[18, 19]. Since then, the subject has attracted many mathematicians (see [84,
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85] and the references therein). The following de�nition is due to I. Namioka

[81].

De�nition 6. A semitopological semigroup S is called left amenable if LUC(S)

admits a left invariant mean.

Remark 6.1.1. It is well known that every Abelian semitopological semigroup

is left amenable.

A. T.-M. Lau [63, 68] studied various Hahn-Banach type properties which

characterize left amenability of semitopological semigroups. See also [35].

In this section, we add two other Hahn-Banach separation properties to the

list of properties characterizing left amenability. As an application, we will

obtain in the next section some properties of Ap(G) which are �of an ergodic

nature�.

From now on and for the rest of this section, let S be a semitopological semi-

group.

De�nition 7. By a continuous anti-representation of S on a normed linear

space X we mean an anti-homomorphism T : S → L (X) such that T is

continuous with respect to the strong operator topology, L (X) being the

algebra of bounded linear operators on X.

For any x ∈ X we de�ne the orbit of x as the set OS(x) := {Tsx : s ∈ S},
and we write K(x) := coOS(x).

De�nition 8. S is said to have the Hahn-Banach separation property I (HBSP

I) if the following is satis�ed: for any continuous anti-representation T of S as

linear contractions on a normed linear space X, and for any closed invariant

subspace Y of X such that X r Y contains an invariant element x0, there

exists an invariant linear functional Φ on X such that Φ(x0) = 1, Φ(y) = 0 for

every y ∈ Y , and ||Φ|| ≤ 1
d(x0,Y )

.

De�nition 9. S is said to have the Hahn-Banach separation property II

(HBSP II) if the following is satis�ed: for any continuous anti-representation

T of S as linear contractions on a normed linear space X, any closed invariant

subspace Y of X, and any f ∈ X such that d := d(K(f), Y ) > 0, there exists

an invariant linear functional Ψ on X such that Ψ = 0 on Y , Ψ(f) = 1, and

||Ψ|| ≤ 1
d
.
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Remark 6.1.2. (i) If f is invariant, then K(f) = {f}, so that the HBSP II is

clearly stronger than the HBSP I.

(ii) By [63, Theorem 1.(b)] and [12, Corollary 6.4, p.78], if S is left amenable,

the following Hahn-Banach extension property is satis�ed: for any right linear

action of S on a topological vector space E, if p is a seminorm on X such that

p(s ·x) ≤ p(x) for all s ∈ S, x ∈ E, and if φ is an invariant linear functional on

an invariant subspace F of E such that |φ| ≤ p, then there exists an invariant

extension φ̃ of φ to E such that |φ̃| ≤ p.

The next theorem generalizes Theorem A. in [91].

Theorem 6.1.1. Assume that S has an identity. Then the following state-

ments are equivalent:

(i) S is left amenable.

(ii) S has the HBSP I.

(iii) S has the HBSP II.

Proof. (i) ⇒ (iii): Let T , X, Y , and f as in the HBSP II. We may assume

that S has an identity e such that Te is the identity transformation on X. Let

W be the linear span of Y and K(f), i.e., any w ∈ W is of the form

(6.1) w = y +
m∑
j=1

αj

n∑
i=1

λi,jTsi,jf with y ∈ Y.

For such w, Tsw = Tsy +
∑

αj
∑

λi,jTsi,jsf , and Tsw ∈ W since Y is

invariant. Hence W is invariant. Now we de�ne a linear functional φ on W

by:

φ(w) =
m∑
j=1

αj d if w = y +
m∑
j=1

αj

n∑
i=1

λi,jTsi,jf,

where d = d(K(f), Y ) > 0. Clearly, φ is invariant, φ(y) = 0 for every y ∈ Y ,
and φ(f) = d. Set p(x) = ||x||, for x ∈ X. Then |φ(y)| = 0 ≤ p(y) for every

y ∈ Y , and for every w of the form (6.1) with
m∑
j=1

αj 6= 0,

|φ(w)| =

∣∣∣∣∣
m∑
j=1

αj

∣∣∣∣∣ d ≤
∣∣∣∣∣
m∑
j=1

αj

∣∣∣∣∣
∥∥∥∥∥

n∑
i=1

λi,jTsi,jf −
−y∑
αj

∥∥∥∥∥ = p(w).
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Since S is left amenable, we may apply [63, Theorem 1.(b)] to obtain an

invariant linear functional φ̃ on X with φ̃(w) = φ(w) for all w ∈ W , and

|φ̃(x)| ≤ p(x) for all x ∈ X. Thus, the invariant linear functional Ψ := φ̃
d

meets the requirements for the HBSP II.

(ii)⇒ (i): Consider the continuous anti-representation of S given by left trans-

lation on LUC(S), i.e., Tsf = `sf for s ∈ S, f ∈ LUC(S). For each s ∈ S,
Ts is obviously a linear contraction. The constant function 1S is (translation)

invariant, so that K(1S) = {1S}, and {0} is a closed invariant subspace of

LUC(S) which does not contain 1S. By assumption, there exists an invariant

linear functional Ψ on LUC(S) such that Ψ(0) = 0, Ψ(1S) = 1 and ||Ψ|| ≤ 1.

So ||Ψ|| = 1, and Ψ is a left invariant mean on LUC(S).

�

We recall that Sp
A = {u ∈ Ap(G) : u(e) = 1 = ||u||Ap} is an Abelian

semitopological semigroup, hence is left amenable. A �rst consequence of

Theorem 6.1.1 is the following

Corollary 6.1.2. Let 1 < p <∞ and let G be a locally compact group. For any

closed Sp
A-invariant subspace Y of PMp(G) which does not contain λp(e), there

exists a topologically left invariant mean Ψ on PMp(G) such that Ψ vanishes

identically on Y .

Remark 6.1.3. We may replace PMp(G) by any topologically invariant closed

subspace of PMp(G) containing λp(e).

6.2 Ergodic characterization.

As a consequence of Theorem 6.1.1 we �nd an ergodic property which is equiv-

alent to a unital Banach algebra, or a semisimple commutative Banach algebra

being ϕ-amenable with a ϕ-mean of norm one.

We start with the de�nition of ϕ-amenable Banach algebras [58, 57, 98, 52].

De�nition 10. Let A be a Banach algebra, and let ϕ be a non-zero multi-

plicative linear functional from A into C. A is called ϕ-amenable if A admits

a ϕ-mean, i.e., a continuous linear functional m ∈ A∗∗ such that 〈m,ϕ〉 = 1

and 〈m, f · a〉 = ϕ(a)〈m, f〉 for all f ∈ A∗ and a ∈ A, where 〈f · a, b〉 = 〈f, ab〉,
b ∈ A.
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The property we mentioned above is de�ned next.

De�nition 11. Let A be a Banach algebra and let ϕ be a non-zero multiplica-

tive linear functional from A into C. Set Sϕ := {u ∈ A : ||u|| = 1 = ϕ(u)}.
We say that Sϕ acts ergodically on A∗ if

Fix(Sϕ) := {f ∈ A∗ : u · f = f for all u ∈ Sϕ} = {λϕ : λ ∈ C},

where 〈u · f, a〉 = 〈f, au〉, u ∈ Sϕ, a ∈ A, f ∈ A∗. In other words, Sϕ acts

ergodically on A∗ if the only common �xed points (for Sϕ) are the constant

multiples of ϕ.

Remark 6.2.1. Equipped with the relative norm topology of A, Sϕ is a semi-

topological semigroup and a convex set.

Let A be a Banach algebra and let ϕ be a non-zero multiplicative linear

functional from A into C such that Sϕ is not empty and left amenable as

a semigroup. Consider the antilinear action of Sϕ on A given by the usual

reverse multiplication of A. Then this antilinear action of Sϕ on A de�nes a

continuous anti-representation of Sϕ as linear contractions on A.

Theorem 6.2.1. If A is unital, then the following assertions are equivalent:

(i) A is ϕ-amenable with a ϕ-mean of norm one.

(ii) Sϕ acts ergodically on A∗.

(iii) For every f ∈ A we have:

|〈ϕ, f〉| = inf{||fu|| : u ∈ Sϕ}.

Proof. The equivalence (i) ⇔ (iii) is a consequence of [57, Theorem 2.4].

(ii) ⇒ (iii): As Sϕ is not empty, we �rst notice that ||ϕ|| = 1. Let f ∈ A with

d = d(0, K(f)) ≥ 0, where K(f) = {fu : u ∈ Sϕ}. By Theorem 6.1.1 there

exists Φ ∈ A∗ such that 〈Φ, f〉 = d, ||Φ|| ≤ 1, and u ·Φ = Φ for all u ∈ Sϕ. By
assumption, Φ = λϕ for some λ ∈ C. Then we have:

|λ| = ||λϕ|| = ||Φ|| ≤ 1 and d = |〈Φ, f〉| = |〈λϕ, f〉| = |λ| |〈ϕ, f〉| ≤ |〈ϕ, f〉|.

48



Since d = inf{||fu|| : u ∈ Sϕ} and |〈ϕ, f〉| = |ϕ(u)〈ϕ, f〉| ≤ ||fu|| for all

u ∈ Sϕ, we conclude that |〈ϕ, f〉| ≤ d.

(i) ⇒ (ii): Let Φ ∈ Fix(Sϕ). Then {u · Φ : u ∈ Sϕ}
w∗

= {Φ}. By [57, Corol-

lary 2.3], Φ ∈ span(ϕ), hence Sϕ acts ergodically on A∗.

�

In Theorem 6.2.1 we assumed A to be unital in order that Sϕ has an iden-

tity and that Theorem 6.1.1 is applicable. It is natural to ask what happens in

case A is not unital. As a partial answer, we present below an argument such

that the conclusion of Theorem 6.2.1 is still valid when A is commutative and

semisimple.

From now on, unless otherwise stated, let A be a semisimple commutative

Banach algebra, M(A) be its multiplier algebra, and ϕ be a non-zero multi-

plicative linear functional from A into C, abbreviated ϕ ∈ 4(A). We write

SA := {u ∈ A : ||u|| = 1 = ϕ(u)}

and

SM := {T ∈ M(A) : ||T ||M = 1 = ϕ(T )}.

We note that ϕ(T ), also denoted T̂ (ϕ), is well de�ned by [61, Theorem 1.2.2],

and by [61, Theorem 1.1.4] we may identify any u ∈ SA with the multiplier

Lu ∈ SM where Luv := uv for any v ∈ A. Also, since M(A) is a unital com-

mutative Banach algebra, Theorem 6.2.1 holds for M(A) and ϕ ∈ 4(M(A)).

Remark 6.2.2. By an easy application of [57, Theorem 2.4], the following as-

sertions are equivalent for any semisimple commutative Banach algebra A and

any ϕ ∈ 4(A):

(i) There exists a ϕ-mean m on A such that ||m|| = 1.

(ii) There exists a net (vβ) in M(A) such that ϕ(vβ) = 1 for all β, ||vβ|| → 1,

and ||vβa|| → |ϕ(a)| for all a ∈ A.

By Remark 6.2.2 and by the proof of Theorem 6.2.1, if SA acts ergodically

on A∗, SM also acts ergodically on A∗, and for any f ∈ A we then have:

|〈ϕ, f〉| = inf{||uf || : u ∈ SM} = inf{||uf || : u ∈ SA}.
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Consequently, we obtain:

Theorem 6.2.2. The following assertions are equivalent:

(i) A is ϕ-amenable with a ϕ-mean of norm one.

(ii) SA (= Sϕ) acts ergodically on A∗.

(iii) SM acts ergodically on A∗.

By Theorem 6.2.2 we can now deduce that Ap(G) is ϕ-amenable with a ϕ-

mean of norm one for any ϕ ∈ 4(Ap(G)), an assertion that was �rst obtained

by M. Sangani Monfared [96, Lemma 3.1].

The next lemma is certainly well known, but we repeat it here for the sake of

completeness.

Lemma 6.2.3. Let G be a locally compact group. For any x ∈ G, x 6= e, there

exists u ∈ Sp
A such that u(x) = 0.

Proof. Let x ∈ G, x 6= e. Let U ⊆ G be an open neighborhood of e such that

x 6∈ U , and let V ⊆ G be a symmetric compact neighborhood of e such that

V 2 ⊆ U . We set:

u(x) =
1

λ(V )
χV ∗ χ̃V (x) =

λ(xV ∩ V )

λ(V )
.

Then u belongs to Sp
A and u(x) = 0 since xV ∩ V = ∅.

�

Remark 6.2.3. For the de�nition of the support of an element T ∈ PMp(G) and

its properties, we refer to [28, Propositions (4.4),(4.6),(4.8)], [48, Proposition

10.], [29, �6], [97, Lemmas 3.7, 3.8] and [23, Chapter 6.].

Lemma 6.2.4. Let G be a locally compact group. Then Sp
A acts ergodically on

PMp(G).

Proof. Let T ∈ PMp(G). If T = cλp(e) for some c ∈ C, then it is clear that

T ∈ Fix(Sp
A).

On the other hand, if T 6= 0 and u · T = T for all u ∈ Sp
A, then by [48,

Proposition 10.],

supp(T ) = supp(u · T ) ⊆ supp(u) ∩ supp(T ),
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hence

supp(T ) ⊆ supp(u) for all u ∈ Sp
A.

So if x ∈ supp(T ) and x 6= e, then x ∈ supp(u) for all u ∈ Sp
A, but this is

impossible by Lemma 6.2.3. Therefore x = e, supp(T ) = {e}, and it follows

by the �Lemme de contraction des supports� [29, �6.] that T = cλp(e) for some

c ∈ C.
�

Corollary 6.2.5. For any locally compact group G, and φ ∈ Ap(G), we have:

(6.2) |φ(e)| = inf{||φu||Ap : u ∈ Sp
A}.

Corollary 6.2.6. [96, Lemma 3.1] For any locally compact group G and for

every ϕ ∈ 4(Ap(G)), Ap(G) is ϕ-amenable with a ϕ-mean of norm one.

Remark 6.2.4. A. T.-M. Lau [67] introduced the notion of F -algebras, nowa-

days known as Lau algebras, as follows: an F -algebra is a pair (A,M), where

A is a Banach algebra and M is a W ∗-algebra, such that A is the predual of

M , and the identity of M is a multiplicative linear functional on A. Examples

of Lau algebras include the Fourier algebra A(G), the Fourier-Stieltjes algebra

B(G), the group algebra L1(G) of a locally compact group G, and the measure

algebra M(X) = C0(X)∗ of a locally compact semigroup X. Then, resulting

from the study of these algebras, Lau [67, Corollary 4.9] showed that equation

(6.2) holds for the Fourier algebra A(G) of any locally compact group. Earlier,

H. Reiter showed that the validity of equation (6.2) for L1(G) is equivalent to

the amenability of the group [47, �3.7].

6.3 A mean ergodic theorem.

Providing a non-linear version of the celebrated von Neumann mean ergodic

theorem, J.-B. Baillon [3] proved a mean ergodic theorem for a non-expansive

mapping on a Hilbert space. Generalizing Baillon's theorem, W. Takahashi

[99] and G. Rodé [89] established an analogous result for a semigroup of non-

expansive mappings acting on a Hilbert space. Finally, A. T.-M. Lau, N. Shioji

and W. Takahashi [72] extended these results to semigroups of non-expansive

mappings acting on some Banach spaces. In this section, we shall obtain a
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similar mean ergodic theorem in the setting of ϕ-amenable Banach algebras,

and in passing, we shall also prove the uniqueness of a two-sided ϕ-mean on

the weakly almost periodic functionals.

Throughout the rest of this chapter, let A be a Banach algebra and ϕ be a

non-zero multiplicative linear functional from A into C. Set

Sϕ := {u ∈ A : ||u|| = 1 = ϕ(u)} and Mϕ := {µ ∈ A∗∗ : ||µ|| = 1 = µ(ϕ)}.

It follows by the Banach-Alaoglu Theorem that Mϕ is a w∗-compact convex

subset of A∗∗. In the sequel, we assume that Sϕ is w∗-dense in Mϕ. In partic-

ular, this is satis�ed if A is the predual of any W ∗-algebra [41, Proposition 3.]

or if A = Ap(G) [76, Lemma 1.1 & Remark 1.2].

Let wap(A) denote the space of all weakly almost periodic functionals on

A. We recall that a continuous linear functional f on A belongs to wap(A) if

and only if the map Lf : A→ A∗, a 7→ f ·a, is weakly compact, or equivalently,

if the map Rf : A→ A∗, a 7→ a · f , is weakly compact. For more information,

see [16] and the references therein.

Let C be a non-empty A-invariant closed subset of wap(A) such that Cϕ
is contained in C. Clearly, the action of Sϕ on C is non-expansive, that is,

||u · x− u · y|| ≤ ||x− y|| for all u ∈ Sϕ, x, y ∈ C.
For any x ∈ wap(A) and Φ ∈ A∗∗ we de�ne a mapping Πx,Φ : A → C as

follows: for a ∈ A,
Πx,Φ(a) := 〈a · x,Φ〉.

Then Πx,Φ is a continuous linear functional on A, i.e., Πx,Φ ∈ A∗.

Lemma 6.3.1. For any µ ∈Mϕ there exists a map Tµ : C → C such that

〈Tµx,Φ〉 = 〈µ,Πx,Φ〉 for all x ∈ C and Φ ∈ A∗∗.

Proof. Let µ ∈ Mϕ, x ∈ C, Φ ∈ A∗∗ be arbitrary. Let (uα) be a net in Sϕ
such that µ = w∗ − limα uα. Then

(6.3) 〈uα · x,Φ〉 = 〈uα,Πx,Φ〉 → 〈µ,Πx,Φ〉.

Let ν be a weak cluster point of (uα · x); such a point exists since the weak

closure of {u · x : u ∈ Sϕ} is weakly compact. So there is a subnet (uβ · x) of
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(uα ·x) such that (uβ ·x) converges weakly to ν. Observe that ν ∈ {uβ · x}
w
⊆

{u · x : u ∈ Sϕ}
w

= {u · x : u ∈ Sϕ}
||.||
⊆ C by Mazur's theorem and since C

is closed. Therefore,

〈uβ · x,Φ〉 = 〈uβ,Πx,Φ〉 → 〈ν,Φ〉,

and (6.3) implies 〈ν,Φ〉 = 〈µ,Πx,Φ〉. A fortiori, ν depends on µ and x, and

〈uα,Πx,Φ〉 → 〈ν,Φ〉.

Thus, we may de�ne Tµ by setting Tµx := ν.

�

Remark 6.3.1. The map Tµ may be seen as an analogue of the Bochner integral

de�ned in [89, II(f)].

We recall that the set of all common �xed points for the action of Sϕ on

A∗ is denoted by

Fix(Sϕ) := {f ∈ A∗ : u · f = f for all u ∈ Sϕ}.

For the rest of this section, we assume that A is ϕ-amenable with a ϕ-mean of

norm one, so that Fix(Sϕ) = Cϕ. See the proof of Theorem 6.2.1.

Lemma 6.3.2. Let Ψ be a ϕ-mean on wap(A) with ||Ψ|| = 1.

(i) For all x ∈ wap(A), TΨx = 〈Ψ, x〉ϕ.
(ii) TΨ is a (linear) projection from wap(A) onto Fix(Sϕ).

(iii) TΨ is a non-expansive retraction from C onto Fix(Sϕ).

Proof. (i) Let x ∈ wap(A) and let (uα) be a net in Sϕ such that w∗ −
limα uα = Ψ. For any Φ ∈ A∗∗ we have

〈uα · x,Φ〉 = 〈uα,Πx,Φ〉 → 〈Ψ,Πx,Φ〉 = 〈TΨx,Φ〉,

that is, uα · x→ TΨx in the weak topology. In particular, for any φ ∈ A,

〈uα · x, φ〉 → 〈TΨx, φ〉.
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But

〈uα · x, φ〉 = 〈uα, x · φ〉 → 〈Ψ, x · φ〉,

and since Ψ is a ϕ-mean, 〈Ψ, x · φ〉 = ϕ(φ)〈Ψ, x〉. Therefore, TΨx =

〈Ψ, x〉ϕ.

(ii) Let λ ∈ C and x, y ∈ wap(A). Then for any Φ ∈ A∗∗, Πλx+y,Φ =

λΠx,Φ + Πy,Φ. Thus, for each µ ∈Mϕ, Tµ(λx+ y) = λTµ(x) + Tµ(y), and

Tµ : wap(A)→ wap(A) is linear.

It remains to show that TΨ is an idempotent. Using the fact that Ψ is a

ϕ-mean, we have for any x ∈ wap(A):

TΨ(TΨx) = 〈Ψ, TΨx〉ϕ = 〈Ψ, 〈Ψ, x〉ϕ〉ϕ

= 〈Ψ, x〉 〈Ψ, ϕ〉ϕ = 〈Ψ, x〉ϕ = TΨx.

(iii) We �rst notice that TΨ : C → C is not linear since C is not a subspace.

Then, similarly as in (b), it follows that TΨ is a retraction from C onto

Fix(Sϕ). Moreover, for any x, y ∈ C we have

||TΨx− TΨy|| = |〈Ψ, x− y〉| ||ϕ|| ≤ ||Ψ|| ||x− y|| = ||x− y||,

which shows that TΨ is non-expansive.

�

De�nition 12. Let Ψ ∈ A∗∗. Then Ψ is called a two-sided ϕ-mean (on A∗)

of norm one if Ψ ∈Mϕ and 〈Ψ, f · a〉 = ϕ(a)〈Ψ, f〉 = 〈Ψ, a · f〉 for all a ∈ A,
f ∈ A∗. Obviously, if A is commutative, any ϕ-mean is automatically two-

sided.

The next lemma is an analogue of [60, Lemma 2.].

Lemma 6.3.3. Let Ψ be a two-sided ϕ-mean on wap(A) with ||Ψ|| = 1.

(i) For any u ∈ Sϕ, x ∈ wap(A), we have:

TΨ(x · u) = (TΨx) · u = u · TΨx = TΨ(u · x) = TΨx.

(ii) For any µ ∈Mϕ, x ∈ wap(A), we have:

TΨTµx = TµTΨx = TΨx.
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Proof. (i) Let u ∈ Sϕ and x ∈ wap(A). By Lemma 6.3.2, and since Ψ is a

two-sided ϕ-mean, we have:

TΨ(x · u) = 〈Ψ, x · u〉ϕ = ϕ(u) 〈Ψ, x〉ϕ = TΨx

= 〈Ψ, u · x〉ϕ = TΨ(u · x).

Also, by multiplicativity of ϕ,

(TΨx) · u = 〈Ψ, x〉ϕ · u = ϕ(u) 〈Ψ, x〉ϕ = TΨx.

Similarly for u · (TΨx).

(ii) Let µ ∈Mϕ and x ∈ wap(A). For any Φ ∈ A∗∗ and a ∈ A we have:

(6.4) ΠTΨx,Φ(a) = 〈a · TΨx,Φ〉 = ϕ(a) 〈TΨx,Φ〉;

and since Ψ is a two-sided ϕ-mean,

(6.5) Πx,Ψ(a) = 〈a · x,Ψ〉 = ϕ(a) 〈Ψ, x〉 = 〈TΨx, a〉.

By (6.4),

〈TµTΨx,Φ〉 = 〈µ,ΠTΨx,Φ〉 = 〈TΨx,Φ〉µ(ϕ) = 〈TΨx,Φ〉;

and by (6.5), Lemma 6.3.1, Lemma 6.3.2 and the Goldstine Theorem,

〈TΨTµx,Φ〉 = 〈 〈Ψ, Tµx〉ϕ,Φ〉 = 〈 〈µ,Πx,Ψ〉ϕ,Φ〉

= 〈µ, ϕ〉 〈Ψ, x〉 〈ϕ,Φ〉 = 〈TΨx,Φ〉.

�

Remark 6.3.2. We recall that a closed subspace X of A∗ is topologically left

invariant if x · a ∈ X for all a ∈ A, x ∈ X. Then we observe that in the

above two lemmas, we may replace wap(A) by any topologically left invariant

subspace X of wap(A) containing ϕ. We will show in Section 6.5 that Lemma

6.3.2 and Lemma 6.3.3.(i) actually characterize the existence of a ϕ-mean of

norm one.
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Now, as a consequence of Lemma 6.3.2.(i) and Lemma 6.3.3.(ii), we obtain

the uniqueness of a two-sided ϕ-mean on wap(A) of norm one.

Lemma 6.3.4. Let Ψ1, Ψ2 be two two-sided ϕ-mean on wap(A) with ||Ψ1|| =
||Ψ2|| = 1. Then TΨ1 = TΨ2.

Proposition 6.3.5. Let A be a Banach algebra, and suppose that A admits

a two-sided ϕ-mean Ψ of norm one. Then the restriction of Ψ to wap(A) is

unique.

De�nition 13. Let (µα) be a net in Mϕ. We say that (µα) is left ergodic if

w∗ − limα(a · µα − ϕ(a)µα) = 0 for all a ∈ A. We say that (µα) is ergodic if

w∗ − lim
α

(a · µα − ϕ(a)µα) = w∗ − lim
α

(µα · a− ϕ(a)µα) = 0, for all a ∈ A.

Remark 6.3.3. It follows from [58, Theorem 1.4] that A is ϕ-amenable with

a ϕ-mean of norm one if and only if there exists a left ergodic net in Mϕ.

Similarly, A admits a two-sided ϕ-mean of norm one if and only if there exists

an ergodic net in Mϕ.

Theorem 6.3.6. Let X be a topologically left invariant subspace of wap(A)

containing ϕ, and let (µα) be a net in Mϕ. If (µα) is left ergodic, then there ex-

ists a subnet (µβ) of (µα) such that Tµβ converges in the weak operator topology

to a linear projection from X onto Fix(Sϕ).

Proof. Let Ψ be a weak∗ cluster point of (µα), and let (µβ) be a subnet of (µα)

such that µβ
w∗−→ Ψ; such Ψ exists since Mϕ is w∗-compact. By assumption,

〈a · µα − ϕ(a)µα, f〉 → 0 for all a ∈ A, f ∈ A∗. So in particular,

〈µβ, f · a− ϕ(a)f〉 → 0 for all a ∈ A, f ∈ A∗.

Then, 〈Ψ, f ·a−ϕ(a)f〉 = 0 for all a ∈ A, f ∈ A∗, so Ψ is a ϕ-mean. Moreover,

Ψ ∈ {µβ}
w∗

⊆ Mϕ
w∗

= Mϕ since Mϕ is w∗-closed. Hence Ψ is a ϕ-mean of

norm one. Finally, by Lemma 6.3.2.(ii) and Remark 6.3.2, TΨ is a projection

onto Fix(Sϕ), and by Lemma 6.3.1 we have, for any x ∈ X and any Φ ∈ A∗∗,

〈Tµβx,Φ〉 = 〈µβ,Πx,Φ〉 → 〈Ψ,Πx,Φ〉 = 〈TΨx,Φ〉,

that is, Tµβ → TΨ in the weak operator topology. �
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The next corollary follows from Lemma 6.3.1, Lemma 6.3.2.(iii), Proposi-

tion 6.3.5, and from the proof of Theorem 6.3.6.

Corollary 6.3.7. Let C be a non-empty closed A-invariant subset of wap(A)

such that Cϕ ⊆ C. Suppose that A admits a two-sided ϕ-mean of norm one.

Then there exists a unique non-expansive retraction P from C onto Fix(Sϕ)

such that PTµ = TµP = P for each µ ∈ Mϕ, and Px ∈ {u · x : u ∈ Sϕ} for
each x ∈ C.
Moreover, if (µα) is an ergodic net in Mϕ, then there exists a subnet (µβ) of

(µα) such that Tµβ converges to P in the weak operator topology.

Remark 6.3.4. (a) Theorem 6.3.6 and Corollary 6.3.7 may be compared with

[72, Theorem 1. and Theorem 2.], [60, Theorem 1.], [89, Theorem], [99,

Theorem 1.], and [27, Theorem 4.1].

(b) In Corollary 6.3.7, if C is convex, then the retraction P is an a�ne map,

and if C is a linear space, then P is a linear projection.

(c) Let C be a non-empty closed A-invariant subset of wap(A) such that Cϕ ⊆
C. Then for every x ∈ C we have {u · x : u ∈ Sϕ} ∩ Fix(Sϕ) 6= ∅ by

Lemma 6.3.1 and Lemma 6.3.2. Furthermore, a two-sided ϕ-mean Ψ on

wap(A) with ||Ψ|| = 1 is unique by Proposition 6.3.5. In this case,

{u · x : u ∈ Sϕ} ∩ Fix(Sϕ) = {〈Ψ, x〉ϕ}.

Indeed, if ν ∈ {u · x : u ∈ Sϕ} ∩ Fix(Sϕ), then ν = λϕ for some λ ∈ C
since Sϕ acts ergodically on A∗, and there is a net (uα) in Sϕ such that

uα · x → ν in norm, hence weakly. Now let µ ∈ Mϕ be a weak∗ cluster

point of (uα), and let (uβ) be a subnet of (uα) such that uβ
w∗−→ µ. Thus,

from the proof of Lemma 6.3.1 we deduce that ν = Tµx, hence Tµx = λϕ.

So we have:

λ = 〈Ψ, λϕ〉 = 〈Ψ, Tµx〉 = 〈µ,Πx,Ψ〉 = 〈µ, 〈Ψ, x〉ϕ〉 = 〈Ψ, x〉

since 〈Πx,Ψ, a〉 = 〈a · x,Ψ〉 = ϕ(a)〈Ψ, x〉 for all a ∈ A.
Compare with [27, Theorem 5.3] and [60, Lemma 4.].

Examples. 1. Let G be an amenable locally compact group, A = L1(G)

and ϕ = δe ∈ L∞(G), the evaluation functional at e. In this case, the
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ϕ-means of norm one are nothing but the topologically invariant means

on L∞(G) = A∗. Therefore Proposition 6.3.5 provides a di�erent proof,

in the amenable case, of a famous result due to C. Ryll-Nardzewski [95,

Theorem 4.(3)], which asserts the uniqueness of a topologically invariant

mean on the space WAP(G) of all weakly almost periodic functions on

G. We recall that wap(L1(G)) = WAP(G) by [102, Theorem 4.]. Note

that Ryll-Nardzewski's result is true for any locally compact group.

2. Let G be a locally compact group, A = Ap(G) and ϕ = λp(e). Here

again, the ϕ-means of norm one are nothing but the topologically in-

variant means on PMp(G) = A∗. Then, Proposition 6.3.5 yields the

uniqueness of a topologically invariant mean on WAPp(G), a result that

was �rst established in [43, Proposition 9.]. Also, we obtain the existence

of a projection P from WAPp(G) onto Fix(Sp
A); this may have been de-

duced from [42, Theorem 6.] but we here obtain a precise de�nition

of P (Lemma 6.3.2.(i)). Furthermore, with the terminology of [73] and

by Remark 6.3.4.(c), if (uα) is an ergodic net in Sp
A, the conclusion of

Corollary 6.3.7 is equivalent to saying that the representation of Sp
A on

WAPp(G), given by the usual module action, is averageable. Thus, for

X = WAPp(G), Corollary 6.3.7 may be regarded as an analogue of a the-

orem due to C. Ryll-Nardzewski [94], who established the averageability

of the representation given by left translation on the weakly almost peri-

odic functions on a locally compact group. For X = APp(G), Corollary

6.3.7 may be seen as an analogue of a theorem of J. von Neumann [104].

3. Let A be an F -algebra as introduced in [67] (see Remark 6.2.4). If there

is a topologically (two-sided) invariant mean on A∗, which is the case

if A is commutative, then a topologically invariant mean on wap(A) is

unique by Proposition 6.3.5. In particular, this applies when A is the

measure algebra of a locally compact commutative semigroup, and when

A is the measure algebra of an amenable locally compact group. In this

case, these results are new.
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6.4 Decomposition of subspaces of wap(A).

Let X be a topologically invariant subspace of wap(A) containing ϕ. Assume

that A admits a two-sided ϕ-mean of norm one, which we denote by Ψ. Then

Lemma 6.3.3 and the second statement of Corollary 6.3.7 assert that TΨ is the

zero of the semigroup {Tu : u ∈ Sϕ}
wot

, where Tux := u · x, x ∈ X. Moreover,

for each x ∈ X, the closure of {u · x : u ∈ Sϕ} contains a unique common

�xed point for Sϕ by Remark 6.3.4.(c). Thus, an application of [6, Theorem

3.6, Chapter 6.] yields the following decomposition of X:

Theorem 6.4.1. The following statements hold:

(i)

Xf := {x ∈ X : u · x = x for all u ∈ Sϕ}

= {TΨx : x ∈ X} = {〈Ψ, x〉ϕ : x ∈ X} = Cϕ.

(ii)

Xd := span{u · x− x : u ∈ Sϕ, x ∈ X}

= {x ∈ X : 0 ∈ {u · x : u ∈ Sϕ}} = {x ∈ X : 〈Ψ, x〉 = 0}.

(iii)

X = Xf ⊕ Xd.

Remark 6.4.1. Let G be a locally compact group and let x ∈ G. The set of

topologically invariant x-means on PMp(G) is denoted by TIMp(x). Recall

that Ψ ∈ TIMp(x) if and only if Ψ ∈ PMp(G)∗, ||Ψ|| = 1 = 〈Ψ, λp(x)〉,
and 〈Ψ, T · u〉 = u(x)〈Ψ, T 〉 for all u ∈ Ap(G), T ∈ PMp(G). In particular,

TIMp(e) = TIMp(Ĝ) is the set of all topologically invariant means on PMp(G).

Furthermore, for all x ∈ G, the following can easily be proved ([51, p. 216],

[24, Proposition 5.2]):

TIMp(x) = { xm : m ∈ TIMp(Ĝ)},

where 〈 xm,T 〉 = 〈m, x−1T 〉, 〈 xT, u〉 = 〈T, xu〉, and xu is the left translate of

u by x, for u ∈ Ap(G), T ∈ PMp(G). In particular, for any x ∈ G there exists
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a unique topologically invariant x-mean on WAPp(G) by Proposition 6.3.5.

Corollary 6.4.2. Let G be a locally compact group, x ∈ G, X be a topologically

invariant subspace of WAPp(G) such that λp(x) ∈ X, and Ψx be the unique

topologically invariant x-mean on WAPp(G). Then

X = Cλp(x) ⊕ {T ∈ X : Ψx(T ) = 0}.

In particular, 〈Ψx, λp(z)〉 = 0 for every z ∈ G, z 6= x, and

WAPp(G) = Cλp(x) ⊕ {T ∈WAPp(G) : Ψx(T ) = 0}

= APp(G) + {T ∈WAPp(G) : Ψx(T ) = 0}.

The third statement of Theorem 6.4.1 may be compared with [101, Theo-

rem 2.11.(iii), p.23] whereas the second statement of Corollary 6.4.2 may be

compared with [43, Proposition 10.], [51, Lemma 3.14.(a)], and Lemma 4.1.1

of the present thesis.

6.5 Fixed point characterizations.

Let X be a topologically left invariant subspace of A∗ with ϕ ∈ X, and such

that

(6.6) for each x ∈ X, {u · x : u ∈ Sϕ}
w∗

⊂ X.

Let B(X) denote the space of bounded linear operators from X into itself.

For any x ∈ X, a ∈ A, if Πx,a(T ) := 〈Tx, a〉 for T ∈ B(X), then Πx,a de�nes a

seminorm on B(X), and the locally convex topology generated by the family

{Πx,a : x ∈ X, a ∈ A} is called the weak∗ operator topology, abbreviated w∗ot.

In particular, if we regard Sϕ as a semigroup of bounded linear operators on X

- via the usual module action of A on A∗ - then Sϕ
w∗ot

is w∗ot-compact since

so is the closed unit ball of B(X). See [93].

Remark 6.5.1. We recall that a topologically left invariant subspace X of A∗ is

topologically left introverted if mL(x) ∈ X for any x ∈ X, where 〈mL(x), a〉 =

〈m,x · a〉 for a ∈ A, x ∈ X, m ∈ X∗. Then, by [71, Lemma 1.2], any

topologically left introverted subspace of A∗ satis�es condition (6.6) above. In
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particular, this is the case if X = A · A∗, X = wap(A), or if X is any norm

closed topologically left invariant subspace of wap(A).

Lemma 6.5.1. For every x ∈ X, Sϕx
w∗

is w∗-compact, and

Sϕx
w∗

= Sϕ
w∗ot

x.

Proof. Let x ∈ X be �xed. Observe that the map φx : B(X) → X, de�ned

by φx(T ) := Tx, is w∗ot-w∗ continuous. Then, since Sϕ
w∗ot

is w∗ot compact,

Sϕ
w∗ot

x is w∗-compact as the continuous image of a compact set. Now let

a ∈ Sϕx
w∗

. Then there is a net (uα) in Sϕ such that uα · x
w∗−→ a. Let ν be

a w∗ot cluster point of (uα) and let (uβ) be a subnet of (uα) such that (uβ)

converges to ν in the weak∗ operator topology, i.e., ΠT,b(uβ)→ ΠT,b(ν) for all

T ∈ A∗, b ∈ A. In particular, 〈uβ · x, b〉 → 〈νx, b〉 for all b ∈ A. Hence a = νx,

and a ∈ Sϕ
w∗ot

x. It also follows that Sϕx
w∗

is w∗-compact.

On the other hand, if a ∈ Sϕ
w∗ot

x, there is U ∈ Sϕ
w∗ot

such that a = Ux,

and there is a net (uα) in Sϕ such that uα
w∗ot−→ U . In particular, 〈uα · x, b〉 →

〈Ux, b〉 = 〈a, b〉 for all b ∈ A, that is, uα · x
w∗−→ a. Hence a ∈ Sϕx

w∗

.

�

Imitating the proof of Lemma 6.3.1 and Lemma 6.3.2, the next lemma is

easily veri�ed.

Lemma 6.5.2. For any µ ∈Mϕ there exists a map Tµ ∈ B(X) such that

〈Tµx, a〉 = 〈µ,Πx,a〉 = 〈µ, a · x〉 for all x ∈ X and a ∈ A,

and Tµx ∈ Sϕx
w∗

. Moreover, TΨx = 〈Ψ, x〉ϕ for all x ∈ X, if Ψ is a ϕ-mean

on A∗ of norm one.

Theorem 6.5.3. Let X be a topologically left invariant subspace of A∗ with

ϕ ∈ X, and such that condition (6.6) is satis�ed. Assume that Sϕ is left

amenable as a semitopological semigroup and spanSϕ = A. Then the following

assertions are equivalent:

(i) A is ϕ-amenable with a ϕ-mean of norm one.

(ii) There exists a ϕ-mean of norm one on X.
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(iii) For any topologically left invariant subspace Y ⊆ A∗ with ϕ ∈ Y and

such that (6.6) is satis�ed, there exists P ∈ Sϕ
w∗ot

such that P (y · a) =

(Py) · a = ϕ(a)Py for all a ∈ A, y ∈ Y , where w∗ot designates the weak∗

operator topology on B(Y ).

Proof. (i) ⇒ (iii): Let Ψ ∈ A∗∗ be a ϕ-mean of norm one. Then P := TΨ ∈
Sϕ

w∗ot
by Lemma 6.5.2 and Lemma 6.5.1, and the remaining assertion follows

from Lemma 6.3.3.

(iii) ⇒ (ii): Let P ∈ Sϕ
w∗ot

such that P (x · a) = (Px) · a = ϕ(a)Px for all

a ∈ A, x ∈ X. By Lemma 6.5.1, Sϕ
w∗ot

x = Sϕx
w∗

for all x ∈ X. So for every

x ∈ X, there exists a net (uα) in Sϕ such that uα · x
w∗→ Px. Let µ ∈Mϕ be a

weak∗ cluster point of (uα) and let (uβ) be a subnet of (uα) such that uβ
w∗→ µ.

In particular, 〈uβ, x〉 → 〈µ, x〉 for all x ∈ X. Then, for every a ∈ A we have:

〈uβ · x, a〉 → 〈Px, a〉

= 〈uβ, x · a〉 → 〈µ, x · a〉 = 〈µ · x, a〉,

hence Px = µ ·x for all x ∈ X. By assumption, µ ·(x ·a) = (µ ·x) ·a = ϕ(a)µ ·x
for all x ∈ X, a ∈ A. Therefore, for every u ∈ Sϕ, u · µ is a ϕ-mean on X of

norm one. Indeed,

〈u · µ, x · a〉 = 〈µ, x · a · u〉 = 〈µ · x, au〉 = 〈µ · x · a, u〉

= ϕ(a) 〈µ · x, u〉 = ϕ(a) 〈u · µ, x〉, for all x ∈ X, a ∈ A.

(ii) ⇒ (i): Let Ψ be a ϕ-mean on X with ||Ψ|| = 1. By the Hahn-Banach

Theorem, there exists an extension Ψ1 ∈ A∗∗ of Ψ which preserves the norm.

Furthermore, since ϕ ∈ X, Ψ1(ϕ) = Ψ(ϕ) = 1, hence Ψ1 ∈ Mϕ. Now let

M ∈ `∞(Sϕ)∗ be a translation invariant mean and de�ne Ψ0 ∈ A∗∗ by 〈Ψ0, f〉 =

M(Πf,Ψ1), where Πf,Ψ1 ∈ `∞(Sϕ) is given by Πf,Ψ1(u) = 〈Ψ1, f · u〉 for u ∈ Sϕ.
Then it is straightforward to see that Ψ0 ∈ Mϕ, and for all f ∈ A∗, u ∈ Sϕ,
we have

〈Ψ0, f · u〉 = M(Πf ·u,Ψ1) = M(`uΠf,Ψ1) = M(Πf,Ψ1) = 〈Ψ0, f〉.

Therefore, since spanSϕ = A, we conclude that Ψ0 is a ϕ-mean on A∗ which

is of norm one. �
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Remark 6.5.2. 1. The equivalence (i) ⇔ (iii) holds even without the as-

sumption that Sϕ is left amenable and that spanSϕ = A.

2. For left amenable F -algebras, a �xed point characterization of a similar

nature can be found in [82].

Corollary 6.5.4. Let G be a locally compact group. For any topologically

invariant topologically introverted subspace X of PMp(G) containing λp(e),

there exists P ∈ Sp
A

w∗ot
such that P (x · u) = (Px) · u = u(e)Px for all u ∈

Ap(G), x ∈ X.

Next, by means of Lemma 6.5.2 and [64, Theorem 2.1], we are able to

obtain an analogue of a famous �xed point theorem due to T. Mitchell [79,

Theorem 3.]. It may also be compared with the main theorem in [46] and with

[106, Theorem 5.4].

Theorem 6.5.5. Let X be a topologically left invariant subspace of A∗ with

ϕ ∈ X, and such that condition (6.6) is satis�ed. The following assertions are

equivalent:

(i) There exists a ϕ-mean Ψ on X with ||Ψ|| = 1.

(ii) For each x ∈ X, there exists λ ∈ C such that λϕ ∈ {u · x : u ∈ Sϕ}
w∗

.

Proof. The implication (i)⇒ (ii) is a direct consequence of Lemma 6.5.2. For

the reverse implication, let X = A∗ and set F := Cϕ. By [64, Theorem 2.1],

there exists an F -stationary operator P on A∗ and P ∈ Sϕ
w∗ot

. Let (uα) in

Sϕ such that uα
w∗ot→ P , that is 〈uα · f, a〉 → 〈Pf, a〉 for all f ∈ A∗, a ∈ A.

Now, for a �xed u0 ∈ Sϕ, we de�ne Ψ(f) := 〈Pf, u0〉 for f ∈ A∗. It is then

straightforward to verify that ||Ψ|| = 1. For any f ∈ A∗, we denote by λf the

complex number that satis�es Pf = λfϕ; such λf exists by the de�nition of

stationarity [64]. So for any f ∈ A∗, a ∈ A, we have:

〈uα · (f · a), u0〉 = 〈uα · f, au0〉 → 〈Pf, au0〉 = 〈λfϕ, au0〉

= ϕ(a)λf = ϕ(a)〈Pf, u0〉 = ϕ(a)Ψ(f)

and

〈uα · (f · a), u0〉 → 〈P (f · a), u0〉 = λf ·a

= Ψ(f · a).
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Therefore, Ψ(f · a) = λf ·a = ϕ(a)λf = ϕ(a)Ψ(f), which shows that Ψ is a

ϕ-mean on A∗. By restriction, Ψ is also a ϕ-mean on X, and this completes

the proof.

�

We conclude this section with one last �xed point characterization of ϕ-

amenability. First, analogously to [25, Lemma 7.1], we need the following

lemma:

Lemma 6.5.6. Let X be a topologically left invariant subspace of A∗ with

ϕ ∈ X. The following assertions are equivalent:

(i) There exists Ψ ∈ X∗ such that ||Ψ|| = 1 = Ψ(ϕ) and 〈Ψ, x · u〉 = 〈Ψ, x〉
for all x ∈ X, u ∈ Sϕ.

(ii) There exists a net (uα) in Sϕ such that, for each u ∈ Sϕ, uuα − uα → 0

in the weak topology σ(A,X).

Proof. Assume that there exists Ψ ∈ X∗ as in (i). By the Hahn-Banach

Theorem, Ψ has a norm-preserving extension to A∗∗, which we also denote by

Ψ. Let (uα) be a net in Sϕ such that uα
w∗→ Ψ. Then, for any x ∈ X, u ∈ Sϕ,

we have:

〈uuα − uα, x〉 = 〈uα, x · u− u〉 → 〈Ψ, x · u− x〉 = 0.

Conversely, assume that there exists a net (uα) as in (ii), and let µ ∈Mϕ be

a weak∗ cluster point of (uα). Denote the restriction of µ to X by Ψ. Then,

for any x ∈ X, u ∈ Sϕ, we have:

〈Ψ, x · u〉 − 〈Ψ, x〉 = lim
α
〈uα, x · u〉 − lim

α
〈uα, x〉 = lim

α
〈uuα − uα, x〉 = 0.

�

Theorem 6.5.7. Let X be a topologically left introverted subspace of A∗ with

ϕ ∈ X. Assume that Sϕ is left amenable as a semitopological semigroup and

that spanSϕ = A. Then the following assertions are equivalent:

(i) A is ϕ-amenable with a ϕ-mean of norm one.

(ii) There exists a ϕ-mean on X of norm one.
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(iii) Whenever Sϕ acts on a compact convex subset K of a separated locally

convex space E, and the action is linear and σ(A,X)-separately contin-

uous, then K contains a common �xed point for Sϕ.

Proof. The implications (i) ⇒ (ii) is trivial.

(ii) ⇒ (iii): Let E and K as in the hypotheses of (iii), let Q be a family of

continuous seminorms on E which determines the topology of E, and let s ∈ K
be �xed. By Lemma 6.5.6, there exists (uα) in Sϕ such that uuα − uα

σ(A,X)−→ 0

for each u ∈ Sϕ. Since K is Sϕ-invariant, uα · s ∈ K, and by compactness of

K, we may assume, after passing to a subnet if necessary, that uα · s converges
to some s0 ∈ K, i.e., ρ(uα · s − s0) → 0 for all ρ ∈ Q. Therefore, for any

u ∈ Sϕ, ρ ∈ Q, we have:

ρ(u · s0 − s0) ≤ ρ(u · (s0 − uα · s)) + ρ((uuα − uα) · s) + ρ(uα · s− s0) → 0,

hence u · s0 = s0 for all u ∈ Sϕ.
(iii) ⇒ (ii): Let E = X∗ endowed with the weak∗ topology. Then the action

of A on E, given by the usual module action, is obviously linear. Moreover, if

aα
σ(A,X)−→ a in A, m ∈ E and x ∈ X, then

|〈aα ·m,x〉 − 〈a ·m,x〉| = |〈m,x · (aα − a)〉|

= |〈mL(x), aα − a〉| → 0,

since X is topologically left introverted. Also, if mβ
w∗−→ m in E, a ∈ A and

x ∈ X, then

|〈a ·mβ, x〉 − 〈a ·m,x〉| = |〈mβ, x · a〉 − 〈m,x · a〉|

= |〈mβ −m,x · a〉| → 0.

Therefore, the action of A on E is σ(A,X)-separately continuous.

Now set K := {µ ∈ X∗ : ||µ|| = 1 = µ(ϕ)}. Then K is a compact convex

subset in E and, by assumption, contains a common �xed point for Sϕ, say

Ψ. Thus, 〈Ψ, x · u〉 = 〈u · Ψ, x〉 = 〈Ψ, x〉 for all x ∈ X, u ∈ Sϕ, hence Ψ is a

ϕ-mean on X, of norm one, as spanSϕ = A.

The proof of (ii) ⇒ (i) is similar to that of (ii) ⇒ (i) in Theorem 6.5.3.

�

65



Remark 6.5.3. The equivalence (i)⇔ (iii) was obtained in [107] for A = L1(G)

and in [25] for F -algebras.

Corollary 6.5.8. Let G be a locally compact group. For any topologically

introverted subspace X of PMp(G) containing λp(e), if Sp
A acts on a compact

convex subset K of a separated locally convex space E such that the action

is linear and σ(A,X)-separately continuous, then K contains a common �xed

point for Sp
A.
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Chapter 7

Spectrums in PMp(G) and

discreteness of G.

De�nition 14. Let A be a commutative Banach algebra. For f ∈ A∗ we

de�ne

σ(f) := {a · f : a ∈ A}
||.||
∩4(A), the norm spectrum of f ;

σ∗(f) := {a · f : a ∈ A}
w∗

∩4(A), the weak∗ spectrum of f,

where 4(A) denotes the Gelfand spectrum of A.

The norm spectrum has been studied in [51] and [103], and recently in [80].

The weak∗ spectrum is partly studied in [56] and is denominated as the support

in that paper. In particular, it is proved in [56, Lemma 3.1.(i)] that if A is

regular, Tauberian and semisimple, then σ∗(f) 6= ∅ for all f ∈ A∗, f 6= 0. See

also [49, �40] and [59, chap. VI, �6] for the case when A = L1(G) of a locally

compact Abelian group. However, the norm spectrum σ(f) may well be empty

even if f is a non-zero function in L∞(R), as is the case if f ∈ C0(R). But it

is known that σ(f) 6= ∅ for every almost periodic function f on R [59, chap.

VI, �5], and also for every almost periodic function on any locally compact

Abelian group [5, Theorem 2.2.3, p. 110]. For the case when A = Ap(G), Z.

Hu [51] showed that σ(T ) 6= ∅ for all T ∈ Cδ,p(G), T 6= 0, whenever G is

discrete or amenable as discrete.

In this chapter, we consider analogues of the aforementioned results, and using

the decomposition of WAPp(G) (Section 6.4) we obtain, in case G is a discrete
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group, a criterion for the non-emptiness of the spectrum of non-zero elements

in WAPp(G) in terms of topologically invariant means on PMp(G). As a

consequence, we show that the norm and weak∗ spectrum coincide for non-

zero weakly almost periodic functionals, and this, in turn, characterize the

discreteness of G.

Throughout this section, let G be a discrete group, and for any x ∈ G, let
Ψx be the unique topologically invariant x-mean on PMp(G), that is, Ψx ∈
{Ψ ∈ PMp(G)∗ : ||Ψ|| = 1 = 〈Ψ, λp(x)〉} and 〈Ψx, u · T 〉 = u(x)〈Ψx, T 〉 for
all u ∈ Ap(G), T ∈ PMp(G). Since G is discrete, Ψx(T ) = 〈T, δx〉 for all

T ∈ PMp(G), where δx ∈ Ap(G) is the point mass at x (see [88, Theorem 1.]

for the case p = 2; the proof is similar for the general case).

The next theorem may be compared with [51, Lemma 3.14.(a)].

Theorem 7.1. Let G be a discrete group, and x ∈ G be arbitrary. The

following assertions hold:

(a) For any T ∈ PMp(G), T 6= 0, x ∈ σ∗(T ) if and only if 〈Ψx, T 〉 6= 0.

(b) For any T ∈WAPp(G), T 6= 0, x ∈ σ(T ) if and only if 〈Ψx, T 〉 6= 0 if and

only if T = cλp(x) +T0 for some c ∈ C, c 6= 0, and T0 ∈ {S ∈WAPp(G) :

Ψx(S) = 0}.

(c) For any T ∈ APp(G), T 6= 0, x ∈ σ(T ) if and only if 〈Ψx, T 〉 6= 0 if and

only if T = cλp(x) + T0 for some c ∈ C, c 6= 0, and T0 ∈ {S ∈ APp(G) :

Ψx(S) = 0}.

Proof. (a) Let T ∈ PMp(G), T 6= 0. First assume that x ∈ σ∗(T ). Then, by

de�nition of σ∗(T ), there is a net (fα) in Ap(G) such that fα · T converges

to λp(x) in the weak∗ topology of PMp(G). In particular,

〈fα · T, δx〉 = fα(x)〈Ψx, T 〉 → 〈λp(x), δx〉 = 1,

hence 〈Ψx, T 〉 6= 0.

On the other hand, we assume that 〈Ψx, T 〉 6= 0, and we let (Vα) be a

basis for the neighborhood system of x, directed by inclusion. Proceeding

as in [48, p. 100], we choose K = {x} and Fα = G r Vα, and we let

Uα be a symmetric compact neighborhood of the identity e in G such

that KU2
α ∩ Fα = ∅. Then we de�ne uα = 1

m(Uα)
1xUα ∗ ˇ1Uα , so that
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uα ∈ {u ∈ Ap(G) : ||u||Ap = 1 = u(x)} and uα(z) = 0 for all z ∈
Fα. Moreover, since

⋂
α Vα = {x}, it follows that supp(uα) ↓ {x}, hence

uα(z) → 0 pointwise for all z ∈ G, z 6= x. Now, with an argument

similar to the proof of Lemma 4.1.2, we conclude that for any ϕ ∈ Cδ,p(G),

〈uα, ϕ〉 → 〈Ψx, ϕ〉, where Ψx is the unique topologically invariant x-mean

on PMp(G). Since Cδ,p(G) = Ap(G) · PMp(G) [43, Proposition 15.(a)], we

have for all u ∈ Ap(G),

〈uα · T, u〉 = 〈uα, u · T 〉 → 〈Ψx, u · T 〉 = 〈〈Ψx, T 〉λp(x), u〉,

that is, uα ·T converges to 〈Ψx, T 〉λp(x) in the weak∗ topology of PMp(G).

Since 〈Ψx, T 〉 6= 0, we may set vα = 1
〈Ψx,T 〉uα. Then vα ·T

w∗−→ λp(x), hence

x ∈ σ∗(T ).

(b) Let T ∈WAPp(G), T 6= 0. If x ∈ σ(T ), then x ∈ σ∗(T ), and 〈Ψx, T 〉 6= 0

by (a). Conversely, if 〈Ψx, T 〉 6= 0, then similarly as in (a), there exists

a net (uα) in {u ∈ Ap(G) : ||u||Ap = 1 = u(x)} such that uα · T
w∗−→

〈Ψx, T 〉λp(x). Since T is a weakly almost periodic functional and the net

(uα) is bounded, we conclude that the convergence is in the weak topology,

hence

λp(x) ∈ {u · T : u ∈ Ap(G)}
w

= {u · T : u ∈ Ap(G)}
||.||
,

where the last equality holds by Mazur's Theorem.

The last assertion is a consequence of Theorem 6.4.1.

(c) The proof is identical to (b).

�

The next corollary is an immediate consequence of Theorem 7.1 and [56,

Lemma 3.1.(a)]. It generalizes [51, Corollary 3.15.(c)].

Corollary 7.2. Let G be a discrete group. Then

σ(T ) = σ∗(T ) 6= ∅ for all T ∈WAPp(G), T 6= 0.

In combination with results of A. Ülger [103] and B. Forrest [36], the next

corollary is an application of Corollary 7.2 and of [51, Corollary 3.15.(b)]. It
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is actually an improvement of [51, Corollary 3.15.(b)] since we replace Cδ,p(G)

by WAPp(G). Below, the equivalences (a) ⇔ (b) ⇔ (d) were proved in [103,

Theorem 3.6], whereas the equivalence (c) ⇔ (d) was proved in [36, Lemma

3.3]. For the case p = 2, (c) ⇔ (d) is due to A. T.-M. Lau [66, Theorem 3.7].

The properties (e) and (f) are new.

Corollary 7.3. Let G be a locally compact group. The following assertions

are equivalent:

(a) For each u ∈ Ap(G), the (left) multiplication operator τu, de�ned by

τu(v) = uv for v ∈ Ap(G), is compact.

(b) For each u ∈ Ap(G), the multiplication operator τu is weakly compact.

(c) Ap(G) is an ideal in PMp(G)∗.

(d) G is discrete.

(e) For all T ∈ APp(G), T 6= 0, σ(T ) = σ∗(T ).

(f) For all T ∈WAPp(G), T 6= 0, σ(T ) = σ∗(T ).
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Chapter 8

Open problems

1. Is it possible to �nd an Lp-version of the results of Chapter 3? More

precisely, could we �nd a description of the representations of Ap(G) as

bounded operators on a QSLp-space? Where a QSLp-space is a Banach

space that is isometrically isomorphic to a quotient of a subspace of an

Lp-space.

2. Given any ϕ-amenable Banach algebra, is it possible to introduce a no-

tion of ergodic sequence? Could we �nd a characterization of such se-

quences similar to that of Theorem 4.1.3?

3. In order to solve the complete mixing problem for the measure algebra of

a σ-compact locally compact group, could we adapt our approach used

to solve the dual version of this problem (see Chapter 5)?

4. Do any of the results of Chapter 6 yield some interesting properties

of (non-commutative) left amenable F -algebras? For instance, given a

left amenable F -algebra (A,M) and a left Banach A-submodule X of

wap(A) containing the identity 1 ∈ M , is it possible to establish the

uniqueness of a projection P from X onto C1 such that for each x ∈ X,

Px ∈ {u · x : u ∈ SA}
w
, where SA denotes the set of all normal states

on M (see Corollary 6.3.7)? Furthermore, is it possible to �nd a direct

sum decomposition for X similar to that of Theorem 6.4.1?
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