Air pollution exposure and respiratory emergency visits among children in Edmonton

by

Chunhui Tian

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Epidemiology

School of Public Health University of Alberta

© Chunhui Tian, 2022

Abstract

Ambient air pollution remains a significant public health concern in Alberta. Exposure to air pollution is associated with numerous adverse respiratory effects in children, especially wheezing, asthma, and bronchitis. Events such as wildfires can trigger an acute respiratory response due to the smoke produced. Over the past few years, Edmonton has experienced poor air quality days due to wildfire activities in Alberta and other provinces such as British Columbia. However, relatively little has been done to examine the health impacts of these events, particularly in vulnerable groups such as children.

In this study, air pollution data and the data of respiratory visits to emergency departments (ED) among children in Edmonton between 2016 to 2018 were collected. Time-series analysis with Poisson regression was used to explore associations between air pollution (carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), fine particulate matter (PM_{2.5}), and sulfur dioxide (SO₂)) levels and daily respiratory emergency visits (wheezing, asthma, and bronchitis) among children (under 17 years of age) in the Edmonton area between 2016 to 2018, a period of heightened wildfire smoke activity. Wildfire models, non-wildfire models, and yearly models were built to explore the impacts of wildfires on children's respiratory health. The differences between different sexes and ages were also examined. Multivariable logistic regression and multiple linear regression were applied to examine associations between air pollution levels and hospital admissions for respiratory conditions and length of stay (LOS) in ED (minutes) among children.

Strong evidence of positive associations between daily respiratory ED visits among children in Edmonton and exposures to NO₂ and O₃ was found. Clear differences by sex and age were observed. Male children were found to be more affected by air pollution than female children, and older children (5-16 years old) were more affected than younger children (0-4 years old).

Meanwhile, stronger associations were found in the wildfire season than in the non-wildfire season during the study period. Also, the consistency of the strongest associations, the greatest number of wildfire activities, and the strongest wildfire-related air pollution was found in 2016, the year of the Fort McMurray wildfire occurred. Additionally, hospital admissions were not associated with air pollution exposures. LOS was positively associated with exposures to NO₂ and PM_{2.5}.

In conclusion, this study indicates evidence of positive associations between air pollution levels (NO₂ and O₃) and increases in daily respiratory ED visits among children under 17 years old in Edmonton between 2016 to 2018. Results also indicate the adverse impacts of wildfire-related air pollution on children's respiratory health. The findings of this study are useful in terms of guiding health care providers, informing air quality advisories, and generating advice regarding children in Alberta. To protect children's health in Edmonton and in Canada, a recommendation is to conduct further health risk assessments and reduce children's exposure to air pollution. Meanwhile, further studies are needed to address knowledge gaps on the health impacts of wildfire-related air pollution, examining the causes of increasing wildfires such as climate change, and investigating preventive measures to reduce wildfire hazards and maintain population health, especially in susceptible groups like children.

Preface

This thesis is an original work by Chunhui Tian, under the supervision of Drs. Shelby Yamamoto, Alvaro Osornio Vargas, and Yan Yuan. The research project, of which this thesis is a part, received ethics approval for this study from the University of Alberta (Pro00090081). No part of this thesis has been previously published.

Acknowledgements

As an international student, the two and a half years I spent at the University of Alberta will be an unforgettable memory in my life.

My special and sincerest thank you to my supervisor, Shelby. It was a great pleasure to work with you in the University of Alberta. I am so lucky, grateful, and thankful that I had the chance to work with one of the most knowledgeable, supportive, and caring supervisors. I cannot thank you enough for your support during my graduate period.

My sincerest thanks to my committee, Dr. Alvaro Osornio Vargas and Dr. Yan Yuan, for your assistance and support of my master's thesis. Your guidance and feedback have been invaluable and greatly added to my experience in academia. My special thanks to Dr. William Craig for helping us collect data, answer medical questions, and give feedback to my thesis.

Thank you to everyone in the Climate, Health, and Environment Epidemiology Research Group Lab, previous and current. It was a great pleasure to work with you both. A special thank you to Dr. Charlene Nielsen for helping me make the professional and great map in my thesis.

To mom, dad, and Hongwei, thank you for your continued encouragement, love, and support. You all inspire me so much, in your own, unique ways. The journey getting here was not easy and I'm so grateful to have had you by my side every step of the way.

The journey through this master's program was an unforgettable experience. I am so grateful and thankful to everyone that has been a part of my life in some form these past two and a half years.

Table of Contents

Abstract	ii
Preface	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xiii
Chapter 1: Introduction	1
1.1 Air pollution and health impacts	1
1.2 At-risk groups	
1.3 Factors influencing the association between air pollution and emer	gency visits for respiratory
diseases among children	5
1.4 Significance	6
1.5 Objectives	7
References	
Chapter 2: Methodology	
2.1 Study area and population	
2.2 Data collection	
2.3 Statistical analysis	
2.3.1 Descriptive analysis	20
2.3.2 Time-series regression analysis	21
2.3.3 Multivariable logistic regression and multiple linear regressio	n23
2.4 Ethical considerations	
2.5 Software	
References	

Chapter 3: Results	27
3.1 Descriptive analysis	27
3.1.1 Summary of health data	27
3.1.2 Summary of air pollution data	29
3.1.3 Summary of meteorological factors	34
3.1.4 Summary of missing data	
3.2 Results of time-series regression	
3.2.1 Results of lag selection for time-series models	
3.2.2 Results of time-series three-year models	
3.2.3 Results of time-series sex-stratified models	
3.2.4 Results of time-series age-stratified models	67
3.2.5 Results of time-series wildfire and non-wildfire models	
3.2.6 Results of time-series yearly models	100
3.2.7 Measures of model fit	122
3.2.8 Summary of time-series results	
3.3 Results of multivariable logistic regression and multiple linear regression	129
3.3.1 Results of multivariable logistic regression	129
3.3.2 Results of multiple linear regression	132
3.3.3 Measures of model fit	
References	
Chapter 4: Discussion	
4.1 Associations between daily respiratory ED visits among children and exposure to air	pollution (CO,
NO ₂ , O ₃ , PM _{2.5} , and SO ₂) among children under 17 years old in Edmonton between 2016	to 2018 138
4.2 Impacts of wildfires on daily respiratory ED visits among children under 17 years old	in Edmonton
between 2016 to 2018	141

4.3 Associations between air pollution exposure and hospital admissions and LOS due to respirat	ory
diseases for in Edmonton among children under 17 years old between 2016 to 2018	142
4.4 Limitations	143
References	145
Conclusions	148
Bibliography	149
Appendices	161
Appendix 1: Results of lag selection of time-series regression	161
Appendix 2: Results of time-series models without air pollutants	190

List of Tables

Table 3.1 Summary of emergency visits for asthma, wheezing, and bronchiolitis among children under 17
ages in Edmonton between 2016 to 2018
Table 3.2 Summary of monitoring data of air pollutants 30
Table 3.3 Summary of land use regression data of air pollutants 31
Table 3.4 Summary of missing data of monitoring data
Table 3.5 Summary of missing data of LUR data 37
Table 3.6 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to CO in Edmonton between 2016 to 2018
Table 3.7 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to NO ₂ in Edmonton between 2016 to 2018
Table 3.8 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to O ₃ in Edmonton between 2016 to 2018
Table 3.9 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to PM2.5 in Edmonton between 2016 to 2018
Table 3.10 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to SO2 in Edmonton between 2016 to 2018
Table 3.11 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among female children and exposure to CO in Edmonton between 2016 to 2018
Table 3.12 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among male children and exposure to CO in Edmonton between 2016 to 2018
Table 3.13 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among female children and exposure to NO ₂ in Edmonton between 2016 to 2018
Table 3.14 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among male children and exposure to NO ₂ in Edmonton between 2016 to 2018
Table 3.15 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among female children and exposure to O3 in Edmonton between 2016 to 2018
Table 3.16 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among male children and exposure to O ₃ in Edmonton between 2016 to 2018
Table 3.17 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among female children and exposure to PM _{2.5} in Edmonton between 2016 to 2018
Table 3.18 Results of time-series sex-stratified model of associations between daily respiratory ED visits
among male children and exposure to PM _{2.5} in Edmonton between 2016 to 2018

Table 3.19 Results of time-series sex-stratified model of associations between daily respiratory ED visits Table 3.20 Results of time-series sex-stratified model of associations between daily respiratory ED visits Table 3.21 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.22 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.23 Results of time-series age-stratified model of associations between daily respiratory ED visits among younger children (0-4 years old) and exposure to NO₂ in Edmonton between 2016 to 2018.........71 Table 3.24 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.25 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.26 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.27 Results of time-series age-stratified model of associations between daily respiratory ED visits among younger children (0-4 years old) and exposure to PM_{2.5} in Edmonton between 2016 to 2018 78 Table 3.28 Results of time-series age-stratified model of associations between daily respiratory ED visits among older children (5-16 years old) and exposure to PM2.5 in Edmonton between 2016 to 2018...........80 Table 3.29 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.30 Results of time-series age-stratified model of associations between daily respiratory ED visits Table 3.31 Results of time-series wildfire model of associations between daily respiratory ED visits Table 3.32 Results of time-series wildfire model of associations between daily respiratory ED visits Table 3.33 Results of time-series wildfire model of associations between daily respiratory ED visits Table 3.34 Results of time-series wildfire model of associations between daily respiratory ED visits
 Table 3.35 Results of time-series wildfire model of associations between daily respiratory ED visits

Table 3.36 Results of time-series non-wildfire model of associations between daily respiratory ED visits
among children under 17 ages and exposure to CO in Edmonton between 2016 to 201893
Table 3.37 Results of time-series non-wildfire model of associations between daily respiratory ED visits
among children under 17 ages and exposure to NO2 in Edmonton between 2016 to 201894
Table 3.38 Results of time-series non-wildfire model of associations between daily respiratory ED visits
among children under 17 ages and exposure to O_3 in Edmonton between 2016 to 201896
Table 3.39 Results of time-series non-wildfire model of associations between daily respiratory ED visits
among children under 17 ages and exposure to PM2.5 in Edmonton between 2016 to 201897
Table 3.40 Results of time-series non-wildfire model of associations between daily respiratory ED visits
among children under 17 ages and exposure to SO2 in Edmonton between 2016 to 201899
Table 3.41 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to CO in Edmonton in 2016101
Table 3.42 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to NO2 in Edmonton in 2016
Table 3.43 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to O3 in Edmonton in 2016 104
Table 3.44 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to PM _{2.5} in Edmonton in 2016105
Table 3.45 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to SO ₂ in Edmonton in 2016106
Table 3.46 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to CO in Edmonton in 2017108
Table 3.47 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to NO2 in Edmonton in 2017 109
Table 3.48 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to O3 in Edmonton in 2017
Table 3.49 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to PM2.5 in Edmonton in 2017112
Table 3.50 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to SO ₂ in Edmonton in 2017113
Table 3.51 Results of time-series yearly models of associations between daily respiratory ED visits
among children under 17 ages and exposure to CO in Edmonton in 2018
Table 3.52 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to NO ₂ in Edmonton in 2018

Table 3.53 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to O3 in Edmonton in 2018 117
Table 3.54 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to PM _{2.5} in Edmonton in 2018119
Table 3.55 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to SO ₂ in Edmonton in 2018120
Table 3.56 Summary of significant results from time-series analysis
Table 3.57 Results of multivariable logistic regression of the associations between pediatric hospital
admissions for respiratory diseases and exposure to NO2 in Edmonton between 2016 to 2018129
Table 3.58 Results of multivariable logistic regression of the associations between pediatric hospital
admissions for respiratory diseases and exposure to O3 in Edmonton between 2016 to 2018130
Table 3.59 Results of multivariable logistic regression of the associations between pediatric hospital
admissions for respiratory diseases and exposure to PM2.5 in Edmonton between 2016 to 2018
Table 3.60 Results of multivariable logistic regression of the associations between pediatric hospital
admissions for respiratory diseases and exposure to SO2 in Edmonton between 2016 to 2018131
Table 3.61 Results of multiple linear regression of associations between LOS and exposure to NO2
among children under 17 ages in Edmonton between 2016 to 2018
Table 3.62 Results of multiple linear regression of associations between LOS and exposure to O3 among
children under 17 ages in Edmonton between 2016 to 2018
Table 3.63 Results of multiple linear regression of associations between LOS and exposure to PM _{2.5}
among children under 17 ages in Edmonton between 2016 to 2018
Table 3.64 Results of multiple linear regression of associations between LOS and exposure to SO_2 among
children under 17 ages in Edmonton between 2016 to 2018
Table 3.65 Results of Hosmer and Lemeshow's goodness-of-fit test for multivariable logistic regression
models

List of Figures

Figure 3.1 Daily respiratory emergency department visits among children under 17 ages in Edmonton
between 2016 and 2018 (A) and in 2016 with seasons (B)
Figure 3.2 Daily mean concentrations of (A) CO, (B) NO ₂ , (C) O ₃ , (D) PM _{2.5} and (E) SO ₂ in Edmonton
between 2016 to 2018 with WHO guidelines and Canadian ambient air quality standards of 24-hour
average concentrations
Figure 3.3 Daily average (A) temperature, (B) precipitation, and (C) relative humidity in Edmonton from
2016 to 2018
Figure 3.4 Residual plots of three-year models for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)123
Figure 3.5 Residual plots of sex-stratified female models for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and
SO ₂ (E)
Figure 3.6 Residual plots of sex-stratified male models for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂
(E)
Figure 3.7 Residual plots of age-stratified models of 0 to 4 ages for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D),
and SO ₂ (E)
Figure 3.8 Residual plots of age-stratified models of 5-16 ages for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D),
and SO ₂ (E)
Figure 3.9 Residual plots of wildfire season models for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)
Figure 3.10 Residual plots of non-wildfire models for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)
Figure 3.11 Residual plots of yearly models of 2016 for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)
Figure 3.12 Residual plots of yearly models of 2017 for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)
Figure 3.13 Residual plots of yearly models of 2018 for CO (A), NO ₂ (B), O ₃ (C), PM _{2.5} (D), and SO ₂ (E)
Figure 3.14 Plots of jackknife residuals of multiple linear regression models for (A) NO ₂ , (B) O ₃ , (C)
PM _{2.5} and (D) SO ₂

Chapter 1: Introduction

1.1 Air pollution and health impacts

Air pollution is contamination of the indoor or outdoor environment by any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere¹. Outdoor air pollution is a global problem with serious effects on human health². It has been associated with various health conditions, including asthma, cardiovascular diseases, respiratory infections, adverse birth outcomes, and cancer³. Recent studies have also linked exposure to fine particulate matter (PM_{2.5}) with type 2 diabetes incidence and mortality, adverse reproductive outcomes, and neurologic effects⁴. According to the World Health Organization (WHO), ambient air pollution accounted for an estimated 4.2 million deaths per year due to stroke, heart disease, lung cancer, and chronic respiratory diseases in 2016. Around 91% of the world's population lives in places where average annual air quality levels exceed WHO limits¹. Every day around 93% of the world's children under the age of 15 years (1.8 billion children) are at serious health risk due to polluted air. Approximately 600,000 children died from acute lower respiratory infections caused by polluted air in 2016¹.

In North America, the rapid evolution of technologies and growing demand for ground, marine, and air transportation, as well as the increasingly frequent wildfires, lead to significant increases in emissions of pollutants. The increasing frequency and intensity of wildfires has a strong association with the extreme temperature, relative humidity, and soil moisture anomalies⁵. As a result, the continuing need to focus on the human and environmental impacts of atmospheric pollutants is not waning, despite some gains. In 2018, approximately 1.6 million tonnes (Mt) of PM_{2.5} were emitted in Canada. From 1990 to 2018, total particulate matter emissions have increased by 39%, and PM₁₀ increase by 30%⁶. In 2018, 811 kilotons (Kt) of sulfur oxides (SO_x) were emitted⁶. Overall, however, SOx emissions decreased by 73% (2.2 Mt) between 1990 and 2018⁶. For nitrogen oxides, approximately 1.8 Mt of NO_x was released in Canada in 2018⁶. From 1990 to 2018, national nitrogen oxides (NOx) emissions also decreased by 25% (601 kt)⁶.

In Alberta, strong economic activity and population growth have led to increases and projections of continual emissions increases of some air pollutants⁷. According to the report of emission trends and projections in Alberta, from 1990 to 2020, the emissions of NO_x, SO_x, and PM_{2.5} increased by approximately 250 Kt tonnes, 100Kt tonnes, and 200Kt tonnes, respectively⁷. Meanwhile, the

increasing wildfire activities in and near Alberta also impact the air quality significantly⁸. Across Alberta, 1376, 1244, and 1288 wildfires occurred there in 2016, 2017, and 2018, respectively⁹. In 2016, Alberta suffered one of the most devastating wildfires in its history, the Fort McMurray wildfire, burning about 590,000 hectares of areas, and destroying 2,400 buildings¹⁰. There were 5203, 5652, 7067 wildfires in Canada in 2016, 2017, and 2018, respectively, suggesting an upward trend⁸. Also, British Columbia, a province in which wildfires occur most frequently in Canada¹¹, routinely affects the air quality of Alberta as its neighboring province. Alberta is also affected by wildfires in the United States. The U.S. recorded 52,934 wildfires in 2020¹², often sending smoke to other locations, including Canada. Elevated CO, NO₂, and O₃ levels are observed when wildfires occur^{13,14} Wildfire smoke was the largest contributor to PM_{2.5} in the province, according to the 2015 Alberta Air Zones Report¹³.

As the capital city of Alberta, Edmonton's air pollution is a matter of concern. The 2018 annual average concentration of SO₂, NO₂, O₃, CO, PM_{2.5} ranged from 1.0-1.7 ppb, 7.88-16.07 ppb, 22.0-28.3 ppb, 0.2-0.3 ppb, and 5.9-11.4 μ g/m³, respectively¹⁵. Compared with other main Canadian cities, the annual average concentrations of NO₂ and PM_{2.5} in Edmonton are ranked third and fifth out of 24 communities, higher than the national average. There were 93 exceedance events for the 24-hour average concentration of PM_{2.5} in 2018, observed as an increasing trend during the 18 years of monitoring¹⁵. Exceedance events indicate that the 24-hour average concentration of PM_{2.5} is 15 μ g/m^{3 17}. Air pollution in Edmonton is typically affected by wildfire smoke from April to September (due to wildfires in Alberta, British Columbia, and the US, as mentioned above)¹⁵.

In Canada, it was estimated that 2,682 premature deaths, 10,966 hospital admissions, 92,690 emergency department visits, 62.3 million doctor's office visits, and \$257,934 million in health care costs resulted from air pollution in 2008¹⁸. Several national-level studies in Canada suggested that mortality from all-cause, cardiovascular disease, respiratory disease, ischaemic heart disease, and cancer increase with the rise of particulates (PM_{2.5}, PM₁₀, total suspended particles) and gaseous (O₃, CO, SO₂, NO₂) pollutants^{19–22}. A study that included 117 health regions in Canada showed strong associations between PM_{2.5} and diabetes, asthma, and high blood pressure²³. Diseases such as acute myocardial infarction, systemic autoimmune rheumatic disease, ischemic

stroke, otitis media, depression, and substance abuse were also found to be affected by air pollution^{24–33}. In addition, there is increasing evidence of air pollution contributing to adverse birth outcomes and early childhood diseases in Canada^{34,35}.

In Alberta, 173 premature deaths, 894 hospital admissions, 8,638 emergency department visits, 54,887 doctor's office visits, and \$34.9 million in health care costs were associated with air pollution in 2008¹⁸. A case-crossover study in northern Alberta indicated that the interquartile range of the 5-day average for NO₂ and CO levels between April and September was associated with a 50% and 48% increase, respectively, in the number of emergency department visits involving children from 2 to 4 years and the elderly (>75 years)³⁶. O₃ and particulate matter levels were also correlated with asthma visits³⁶. The impact of the adverse effects of air pollution on children's health may also be compounded by projected population growth. The population of those aged 5 to 17 years is predicted to increase by 2.1% annually in Alberta between 2017 to 2025^{37} .

Regional variations in the impacts of air pollution also occur as pollutant sources and population densities differ across Alberta. Stieb et al.³⁸ observed that certain areas of Alberta (Lloydminster, Red Deer, and Edmonton) experienced increases in fine particulate matter levels between 2000-2011 that were linked to increases in mortality of 3.8%, 4.3%, and 1.8%, respectively. Future projections for 2050 indicate worsening air quality in many Canadian communities, which will increase health risks, especially for sensitive groups such as children^{39,40}.

1.2 At-risk groups

Inequities in the impacts of air pollution have been observed: children, pregnant women, the elderly, and those with pre-existing medical conditions are susceptible to air pollution³. Children are a particularly susceptible population³. The health impacts of air pollution on children begin during the prenatal period when air pollution can impair organogenesis and organ development, leading to long-term complications, even death⁴¹. There is evidence showing that intrauterine exposure to air pollution is associated with an increased incidence of neurodevelopmental problems such as attention-deficit hyperactivity disorder, autism spectrum disorders, academic failure, and the start of Alzheimer's pathogenesis^{42–45}. Prenatal exposure to air pollutants also

adversely affects lung development and respiratory health in children^{41,46,47}. A recent systematic review indicates that air pollution exposure during pregnancy, especially NO₂ and PM, increases the risk of infant mortality⁴⁸.

Early exposure to ambient air pollution may affect children's normal growth and lung development, as their immune and organ systems are still developing^{49,50}. Young children have a greater permeability of the lung epithelial layer as lung functionality is not fully developed until about the age of six⁵⁰. Children inhale more air per unit body weight than adults, increasing their susceptibility to air pollution⁵¹. Also, children are involved in vigorous outdoor activities and spend more time outdoors, compared to adults^{52,53}. A study conducted in U.S. inner cities indicated that higher concentrations of NO₂, PM_{2.5} and SO₂ were associated with significantly lower pulmonary function of schoolchildren⁵⁴. Also, short-term O₃ exposure was linked with lower levels of lung function (both FEV1 and FVC) in healthy children and those with asthma from a study in Mexico City⁵⁵.

Epidemiological studies from around the world report associations between air pollution exposure in children and adverse health outcomes such as the development and exacerbation of wheezing, asthma, allergies, pneumonia, atopic dermatitis, otitis media, and leukemia^{50,56–70}. In Canada, those most affected are children, and asthma remains the leading cause of hospitalization among Canadian children³⁶. It is estimated that more than 3.8 million people in Canada currently suffer from asthma, of which about 850,000 are children under the age of 14. A systematic review focused on Southeast Asia observed that each increase of 10µg/m³ in concentrations of PM_{2.5} was associated with a 1-2% increase in the risk of wheeze-associated disorders⁶⁹. A study in the United States among children aged 0 to 4 showed that O₃ had the strongest associations with upper respiratory infection in children⁷¹. In a time-series study conducted in China, NO₂ presented the most significant effect on childhood asthma hospital admissions⁷². Similar results were found in a study based in Edmonton, where O₃ and NO₂ were significant associated with the increase of emergency department visits for asthma among children below ten years old²⁷. Further, it is demonstrated that compared with younger children aged 0 to 5 years old, children aged 6 to 18 were more vulnerable to the adverse effects of air pollution⁷². According to the government of Alberta, the population of those aged 5 to 17 years is expected to increase by 2.1% annually between 2017 to 2025 in the province³⁷. As a result, it is imperative to study the health impacts of air pollution on children, as they will invite some of the largest health risks and gains⁷³.

1.3 Factors influencing the association between air pollution and emergency visits for respiratory diseases among children

Wheeze, asthma, and bronchiolitis are common, heterogeneous respiratory diseases caused by a combination of genetic and environmental influences⁷⁴. It is well recognized that exposure to outdoor air pollution adversely affects respiratory health, and children are considered to be more susceptible to the effects of ambient air pollution⁷⁵. There are many factors that can affect the associations between air pollution and emergency visits for respiratory diseases among children. Two studies conducted in Canada, in Alberta and Windsor, Ontario, indicated that associations between ambient air pollution levels and ED visits for respiratory diseases among children were particularly pronounced during transitions between seasons (April, May, September, October)^{36,75}. Jalaludin et al⁷⁶ also observed that associations between ambient air pollutants and ED visits for asthma in children were greater in the warm season in Sydney, Australia. However, a study conducted in another Australian city, Adelaide, showed that the association was stronger in the cool season compared to the warm season⁷⁷. Three studies conducted in Atlanta, U.S.; Athens, Greece; and Ningbo, China reported stronger associations of air pollution for older children aged 5-14 years^{74,78,79}. Conversely, a study conducted in Lanzhou, China demonstrated that younger children aged 0 to 3 years were most affected by air pollution⁸⁰. A study conducted in Palermo, Italy found that the associations of air pollution and ED visits were greater in female children than male children⁸¹. Moreover, studies found that temperature was a risk factor, while the wind was a protective factor for the health impact of air pollutants on children^{78,82}. Influenza episodes can also influence the results^{78,82}. As a result, season, age, sex, meteorological variables, and influenza activities interact and might confound the outcomes of the association between respiratory disease and air pollutant exposure among children.

The findings above indicate that the air pollution effects differed among countries and cities. Villeneuve et al³⁶ observed that sources of air pollution in Alberta in 2007 represented a mixture of industry and traffic, different from the present situation in which wildfires substantially add to the deterioration of air quality¹⁵. In comparison, in Windsor, Canada, the main source stems primarily from industry⁷⁵. The Australian city of Adelaide also had mixed sources of air pollution, including motor vehicles, industrial production, home heating sources, and bushfires, as well as dust storms⁷⁷. The study in Athens, Greece mainly focused on air pollution from desert dust⁷⁸. The

Chinese city of Lanzhou is an industrial city, which is also affected by dust storms⁸⁰. The air pollution of Palermo, Italy was reported as mainly stemming from traffic⁸¹. There is evidence that many environmental factors are associated with the development and exacerbation of asthma, including allergens, airborne irritants, weather conditions and indoor conditions⁸³. As a result, sources of air pollution are also an important factor affecting the association between air pollution levels and respiratory diseases.

1.4 Significance

There are only a few studies focusing on the acute effects of ambient air pollution in infants and children in Alberta. The most recent study examined the monthly patterns of all ages asthma presentations to EDs between 1999-2011⁸⁴, and the results showed that the strongest estimates occurred in the pediatric subgroup⁸⁴. Therefore, this study aims to evaluate the acute effects of daily relationships, using data of daily concentration of air pollutants and daily ED attendances for respiratory diseases among children between 2016 to 2018. This period covers a gap in which there were notable changes in sources and concentrations of air pollutants. As previously mentioned, there has been a significant increase in wildfire activity in and around Alberta between 2016 to 2018. Meanwhile, the most recent study examining acute effects of ambient air pollution in infants and children in Alberta was in 2015⁸⁴. Therefore, 2016 to 2018 was chosen to be the study period, during which the wildfires occurred more frequently. The aim was to explore more recent trends of air pollution levels and respiratory health conditions among children in Alberta in the face of increasing wildfire smoke exposure.

Previous studies have shown that public health information about environmental events, such as poor air quality and adverse meteorological conditions, do not reach the population⁸⁵. A study in six U.S. states (Colorado, Florida, Indiana, Kansas, Massachusetts, and Wisconsin) found that compared with single media alerts, awareness of media alerts, as well as health professional advice, can encourage both sensitive groups and the general public to make more informed decisions regarding activities during harmful air pollution episodes⁸⁶. The findings from this study can help inform health professional advice and media alerts to better guide the public. Findings will be widely shared and posted on Twitter, Facebook, and other social media platforms.

In conclusion, the results of this study will show current trends in air pollution levels and respiratory health conditions among children, as well as illustrate the health impacts of wildfire-related air pollution, an increasingly important source of air pollution in Edmonton. Additionally, these results can help to guide health care providers and inform sensitive populations in Alberta.

1.5 Objectives

- To investigate trends in associations between air pollution (fine particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide) levels and respiratory (wheeze, asthma, bronchiolitis) emergency departments visits in Edmonton among children under 17 years of age between 2016-2018.
- To investigate the associations between air pollution (fine particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide) exposure and respiratory (wheeze, asthma, bronchiolitis) hospital admissions and LOS among children under 17 years of age in Edmonton between 2016-2018.
- To explore the impacts of wildfire-related air pollution on respiratory (wheeze, asthma, bronchiolitis) health among children under 17 years of age in Edmonton between 2016-2018.

References

- Ambient air pollution: Health impacts. World Health Organization. http://www.who.int/airpollution/ambient/health-impacts/en/
- Rodriguez-Villamizar LA, Magico A, Osornio-Vargas A, Rowe BH. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. *Can Respir J.* 2015;22(5):282-292. doi:10.1155/2015/263427
- Brunekreef B, Holgate ST. Air pollution and health. *Lancet*. 2002;360(9341):1233-1242. doi:10.1016/S0140-6736(02)11274-8
- 4. Boogaard H, Walker K, Cohen AJ. Air pollution: The emergence of a major global health risk factor. *Int Health*. 2019;11(6):417-421. doi:10.1093/inthealth/ihz078
- Piyush Jain, Dante Castellanos-Acuna, Sean C. P. Coogan JTA& MDF. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. *Nat Clim Chang.* 2021;109(2):1877-1897. doi:https://doi.org/10.1038/s41558-021-01224-1
- Environment Canada. Air Pollutant Emissions Inventory.; 2015. http://www.ec.gc.ca/inrpnpri/donneesdata/ap/index.cfm?do=ap_result&process=true§or=&lang=en&year=2013&substance =nox&location=CA&submit=Submit
- 7. Environment A. Alberta Air Emissions Trends and Projections. Published online 2008.
- Canada NR. Indicator: Forest fires | Natural Resources Canada. Nat Resour Canada. Published online 2018. https://www.nrcan.gc.ca/our-natural-resources/forestsforestry/state-canadas-forests-report/how-does-disturbance-shape-canad/indicator-forestfires/16392%0Ahttps://www.nrcan.gc.ca/forests/report/disturbance/16392
- Alberta government. Historical Wildfire Database: Alberta wildfire records. Alberta wildfire. Published 2020. https://wildfire.alberta.ca/resources/historical-data/historicalwildfire-database.aspx
- Petoukhov V, Petri S, Kornhuber K, Thonicke K, Coumou D, Schellnhuber HJ. Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics. *Sci Rep.* 2018;8(1):1-10. doi:10.1038/s41598-018-30812-z
- Matz CJ, Egyed M, Xi G, et al. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). *Sci Total Environ*. 2020;725:138506. doi:10.1016/j.scitotenv.2020.138506

- Iskin EP, Wohl E. Wildfire and the patterns of floodplain large wood on the Merced River, Yosemite National Park, California, USA. *Geomorphology*. 2021;389:107805. doi:10.1016/j.geomorph.2021.107805
- Alberta Environment and Parks. *Alberta: Air Zones Report 2015-2017.*; 2015. http://esrd.alberta.ca/air/management-frameworks/canadian-ambient-air-quality-standardsfor-particulate-matter-and-ozone/documents/AlbertaAirZonesReport-2011-13-Sep2015.pdf
- Urbanski S. Wildland fire emissions, carbon, and climate: Emission factors. *For Ecol Manage*. 2014;317:51-60. doi:10.1016/j.foreco.2013.05.045
- 15. Airshed A capital. Ambient Air Quality Annual Report 2018 Table of Contents.; 2018.
- Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators Air Quality.; 2018. www.canada.ca/en/environment-climatechange/services/environmental-indicators/air-
- 17. Ambinet Air Pollution. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- Canadian Medical Association. No Breathing Room -- National Illness Costs of Air Pollution. Vol 42.; 2008. doi:10.1017/CBO9781107415324.004
- Crouse DL, Peters PA, van Donkelaar A, et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A canadian national-level cohort study. *Environ Health Perspect*. 2012;120(5):708-714. doi:10.1289/ehp.1104049
- Crouse DL, Peters PA, Villeneuve PJ, et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; A subset of the Canadian Census Health and Environment Cohort (CanCHEC). *J Expo Sci Environ Epidemiol*. 2015;25(5):482-489. doi:10.1038/jes.2014.89
- Villeneuve PJ, Burnett RT, Shi Y, et al. A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. *J Expo Anal Environ Epidemiol.* 2003;13(6):427-435. doi:10.1038/sj.jea.7500292
- Goldberg MS, Burnett RT, Brook J, Bailar JC, Valois MF, Vincent R. Associations between daily cause-specific mortality and concentrations of ground-level ozone in Montreal, Quebec. *Am J Epidemiol*. 2001;154(9):817-826. doi:10.1093/aje/154.9.817

- Requia WJ, Adams MD, Koutrakis P. Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. *Sci Total Environ*. 2017;584-585:1077-1083. doi:10.1016/j.scitotenv.2017.01.166
- Wang X, Kindzierski W, Kaul P, Sun Q. Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: A three-step procedure case-crossover study. *PLoS One*. 2015;10(7):1-16. doi:10.1371/journal.pone.0132769
- Bernatsky S, Smargiassi A, Barnabe C, et al. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. *Environ Res.* 2016;146:85-91. doi:10.1016/j.envres.2015.12.021
- Brook RD, Kousha T. Air Pollution and Emergency Department Visits for Hypertension in Edmonton and Calgary, Canada: A Case-Crossover Study. *Am J Hypertens*. 2015;28(9):1121-1126. doi:10.1093/ajh/hpu302
- Szyszkowicz M. Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada. *Int J Occup Med Environ Health*. 2008;21(1):25-30. doi:10.2478/v10001-008-0002-3
- Rodriguez-Villamizar LA, Rosychuk RJ, Osornio-Vargas A, Villeneuve PJ, Rowe BH. Proximity to two main sources of industrial outdoor air pollution and emergency department visits for childhood asthma in Edmonton, Canada. *Can J Public Heal*. 2017;108(5-6):e523-e529. doi:10.17269/cjph.108.6136
- 29. Chen L, Villeneuve PJ, Rowe BH, Liu L, Stieb DM. The Air Quality Health Index as a predictor of emergency department visits for ischemic stroke in Edmonton, Canada. J Expo Sci Environ Epidemiol. 2014;24(4):358-364. doi:10.1038/jes.2013.82
- Villeneuve PJ, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. *Eur J Epidemiol*. 2006;21(9):689-700. doi:10.1007/s10654-006-9050-9
- Zemek R, Szyszkowicz M, Rowe BH. Air pollution and emergency department visits for otitis media: A case-crossover study in edmonton, Canada. *Environ Health Perspect*. 2010;118(11):1631-1636. doi:10.1289/ehp.0901675
- 32. Szyszkowicz M. Air pollution and emergency department visits for depression in Edmonton, Canada. *Int J Occup Med Environ Health*. 2007;20(3):241-245.

doi:10.2478/v10001-007-0024-2

- Szyszkowicz M, Thomson EM, Colman I, Rowe BH. Ambient air pollution exposure and emergency department visits for substance abuse. *PLoS One*. 2018;13(6):1-13. doi:10.1371/journal.pone.0199826
- Lavigne É, Bélair MA, Do MT, et al. Maternal exposure to ambient air pollution and risk of early childhood cancers: A population-based study in Ontario, Canada. *Environ Int*. 2017;100(2):139-147. doi:10.1016/j.envint.2017.01.004
- 35. Klepac P, Locatelli I, Korošec S, Künzli N, Kukec A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. *Environ Res.* 2018;167(April):144-159. doi:10.1016/j.envres.2018.07.008
- 36. Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada. *Environ Heal A Glob Access Sci Source*. 2007;6:1-15. doi:10.1186/1476-069X-6-40
- 37. Population statistics _ Alberta.
- Stieb DM, Judek S, van Donkelaar A, et al. Estimated public health impacts of changes in concentrations of fine particle air pollution in Canada, 2000 to 2011. *Can J Public Heal*. 2015;106(6):e362-e368. doi:10.17269/CJPH.106.4983
- Carvalho H. Air pollution-related deaths in Europe-time for action. J Glob Health.
 2019;9(2):2-5. doi:10.7189/jogh.09.020308
- Nielsen CC, Amrhein CG, Shah PS, Stieb DM, Osornio-Vargas AR. Space-time hot spots of critically ill small for gestational age newborns and industrial air pollutants in major metropolitan areas of Canada. *Environ Res.* 2020;186(April):109472. doi:10.1016/j.envres.2020.109472
- 41. Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. *Paediatr Respir Rev.* 2017;21:38-46. doi:10.1016/j.prrv.2016.08.008
- Myhre O, Låg M, Villanger GD, et al. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. *Toxicol Appl Pharmacol*. 2018;354(March):196-214. doi:10.1016/j.taap.2018.03.015

- Zheng T, Zhang J, Sommer K, et al. Effects of Environmental Exposures on Fetal and Childhood Growth Trajectories. *Ann Glob Heal*. 2016;82(1):41-99. doi:10.1016/j.aogh.2016.01.008
- 44. Sram RJ, Veleminsky M, Stejskalovà J. The impact of air pollution to central nervous system in children and adults. *Neuroendocrinol Lett.* 2017;38(6):389-396.
- Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. *Rev Neurol (Paris)*. 2016;172(1):69-80. doi:10.1016/j.neurol.2015.10.008
- Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D'Angiulli A, Torres-Jardón R. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. *Environ Res.* 2015;137:157-169. doi:10.1016/j.envres.2014.12.012
- Rosas-Salazar C, Hartert T V. Prenatal exposures and the development of childhood wheezing illnesses. *Curr Opin Allergy Clin Immunol*. 2017;17(2):110-115. doi:10.1097/ACI.00000000000342
- Kihal-Talantikite W, Marchetta GP, Deguen S. Infant mortality related to NO2 and PM exposure: Systematic review and meta-analysis. *Int J Environ Res Public Health*. 2020;17(8):1-24. doi:10.3390/ijerph17082623
- Vrijheid M, Casas M, Gascon M, Valvi D, Nieuwenhuijsen M. Environmental pollutants and child health-A review of recent concerns. *Int J Hyg Environ Health*. 2016;219(4-5):331-342. doi:10.1016/j.ijheh.2016.05.001
- 50. da Costa e Oliveira JR, Base LH, de Abreu LC, Filho CF, Ferreira C, Morawska L.
 Ultrafine particles and children's health: Literature review. *Paediatr Respir Rev.*2019;32:73-81. doi:10.1016/j.prrv.2019.06.003
- Nhung NTT, Amini H, Schindler C, et al. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of timeseries and case-crossover studies. *Environ Pollut*. 2017;230:1000-1008. doi:10.1016/j.envpol.2017.07.063
- 52. Balbus JM, Malina C. Identifying vulnerable subpopulations for climate change health effects in the United States. *J Occup Environ Med.* 2009;51(1):33-37.

doi:10.1097/JOM.0b013e318193e12e

- 53. Matz CJ, Stieb DM, Davis K, et al. Effects of age, season, gender and urban-rural status on time-activity: Canadian human activity pattern survey 2 (CHAPS 2). *Int J Environ Res Public Health*. 2014;11(2):2108-2124. doi:10.3390/ijerph110202108
- O'Connor GT, Neas L, Vaughn B, et al. Acute respiratory health effects of air pollution on children with asthma in US inner cities. *J Allergy Clin Immunol*. 2008;121(5):1133-1140. doi:10.1016/j.jaci.2008.02.020
- 55. Castillejos M, Gold DR, Damokosh AI, et al. Acute effects of ozone on the pulmonary function of exercising schoolchildren from Mexico City. *Am J Respir Crit Care Med*. 1995;152(5 I):1501-1507. doi:10.1164/ajrccm.152.5.7582284
- Houdouin V, Dubus JC. What is the impact of outdoor pollution on children's asthma? Arch Pediatr. 2019;26(8):487-491. doi:10.1016/j.arcped.2019.10.007
- Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. *Environ Res*. 2017;159(36):519-530. doi:10.1016/j.envres.2017.08.038
- 58. Bowatte G, Lodge C, Lowe AJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a metaanalysis of birth cohort studies. *Allergy Eur J Allergy Clin Immunol*. 2015;70(3):245-256. doi:10.1111/all.12561
- Bowatte G, Tham R, Perret JL, et al. Air pollution and otitis media in children: A systematic review of literature. *Int J Environ Res Public Health*. 2018;15(2):1-20. doi:10.3390/ijerph15020257
- 60. Ahn K. The role of air pollutants in atopic dermatitis. *J Allergy Clin Immunol*. 2014;134(5):993-999. doi:10.1016/j.jaci.2014.09.023
- Boothe VL, Boehmer TK, Wendel AM, Yip FY. Residential traffic exposure and childhood leukemia: A systematic review and meta-analysis. *Am J Prev Med*. 2014;46(4):413-422. doi:10.1016/j.amepre.2013.11.004
- Filippini T, Heck JE, Malagoli C, Giovane C Del, Vinceti M. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. *J Environ Sci Heal Part C Environ Carcinog Ecotoxicol Rev.* 2015;33(1):36-66. doi:10.1080/10590501.2015.1002999

- 63. Buteau S, Doucet M, Tétreault LF, et al. A population-based birth cohort study of the association between childhood-onset asthma and exposure to industrial air pollutant emissions. *Environ Int.* 2018;121(August):23-30. doi:10.1016/j.envint.2018.08.040
- Zou QY, Shen Y, Ke X, Hong SL, Kang HY. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. *Int J Pediatr Otorhinolaryngol*. 2018;112(June):82-90. doi:10.1016/j.ijporl.2018.06.039
- Burbank AJ, Peden DB. Assessing the impact of air pollution on childhood asthma morbidity: How, when, and what to do. *Curr Opin Allergy Clin Immunol*. 2018;18(2):124-131. doi:10.1097/ACI.00000000000422
- 66. Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel metaanalysis. *PLoS One*. 2017;12(3):1-15. doi:10.1371/journal.pone.0174050
- 67. Khreis H, Nieuwenhuijsen MJ. Traffic-related air pollution and childhood asthma: Recent advances and remaining gaps in the exposure assessment methods. *Int J Environ Res Public Health*. 2017;14(3):1-20. doi:10.3390/ijerph14030312
- 68. Pollock J, Shi L, Gimbel RW. Outdoor Environment and Pediatric Asthma: An Update on the Evidence from North America. *Can Respir J*. 2017;2017. doi:10.1155/2017/8921917
- Luong LMT, Sly PD, Thai PK, Phung D. Impact of ambient air pollution and wheezeassociated disorders in children in Southeast Asia: A systematic review and meta-analysis. *Rev Environ Health*. 2019;34(2):125-139. doi:10.1515/reveh-2018-0079
- 70. Tétreault LF, Doucet M, Gamache P, et al. Childhood exposure to ambient air pollutants and the onset of asthma: An administrative cohort study in Québec. *Environ Health Perspect.* 2016;124(8):1276-1282. doi:10.1289/ehp.1509838
- Gleason JA, Fagliano JA. Associations of daily pediatric asthma emergency department visits with air pollution in Newark, NJ: Utilizing time-series and case-crossover study designs. *J Asthma*. 2015;52(8):815-822. doi:10.3109/02770903.2015.1033726
- 72. Zhang Y, Ni H, Bai L, et al. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. *Environ Res.* 2019;169(November 2018):510-516. doi:10.1016/j.envres.2018.11.043
- 73. Watts N, Adger WN, Agnolucci P. Health and climate change: Policy responses to protect

public health. *Environnement, Risques et Sante*. 2015;14(6):466-468. doi:10.1016/S0140-6736(15)60854-6

- 74. Alhanti BA, Chang HH, Winquist A, Mulholland JA, Darrow LA, Sarnat SE. Ambient air pollution and emergency department visits for asthma: A multi-city assessment of effect modification by age. *J Expo Sci Environ Epidemiol*. 2016;26(2):180-188. doi:10.1038/jes.2015.57
- Lavigne E, Villeneuve PJ, Cakmak S. Air pollution and emergency department visits for asthma in Windsor, Canada. *Can J Public Heal*. 2012;103(1):4-8. doi:10.1007/bf03404060
- Jalaludin B, Khalaj B, Sheppeard V, Morgan G. Air pollution and ED visits for asthma in Australian children: A case-crossover analysis. *Int Arch Occup Environ Health*. 2008;81(8):967-974. doi:10.1007/s00420-007-0290-0
- 77. Chen K, Glonek G, Hansen A, et al. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: time-series and case–crossover analyses. *Clin Exp Allergy*. 2016;46(11):1416-1430. doi:10.1111/cea.12795
- 78. Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. *Environ Res.* 2011;111(3):418-424. doi:10.1016/j.envres.2011.01.014
- 79. Zheng P wen, Wang J bing, Zhang Z yu, et al. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis. *Environ Sci Pollut Res*. 2017;24(23):18860-18869. doi:10.1007/s11356-017-9279-8
- Ma Y, Yue L, Liu J, et al. Association of air pollution with outpatient visits for respiratory diseases of children in an ex-heavily polluted Northwestern city, China. *BMC Public Health*. 2020;20(1):1-15. doi:10.1186/s12889-020-08933-w
- Tramuto F, Cusimano R, Cerame G, et al. Urban air pollution and emergency room admissions for respiratory symptoms: A case-crossover study in Palermo, Italy. *Environ Heal A Glob Access Sci Source*. 2011;10(1):31. doi:10.1186/1476-069X-10-31
- Mazenq J, Dubus JC, Gaudart J, et al. Air pollution and children's asthma-related emergency hospital visits in southeastern France. *Eur J Pediatr*. 2017;176(6):705-711. doi:10.1007/s00431-017-2900-5

- Network GA. *The Global Asthma Report 2018*.; 2018. http://globalasthmareport.org/burden/burden.php
- Rosychuk RJ, Youngson E, Rowe BH. Presentations to Alberta Emergency Departments for Asthma: A Time Series Analysis. *Acad Emerg Med.* 2015;22(8):942-949. doi:10.1111/acem.12725
- Semenza JC, Wilson DJ, Parra J, et al. Public perception and behavior change in relationship to hot weather and air pollution. *Environ Res.* 2008;107(3):401-411. doi:10.1016/j.envres.2008.03.005
- 86. Wen XJ, Balluz L, Mokdad A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, BRFSS, 2005. *J Community Health.* 2009;34(1):40-46. doi:10.1007/s10900-008-9126-4

Chapter 2: Methodology

2.1 Study area and population

The study area was Edmonton, the capital city of the Canadian province of Alberta, including St. Albert and Sherwood Park. The metro area of Edmonton had a population of 972,223 in 2019, making it Alberta's second-largest city and Canada's fifth-largest municipality¹. The population of children under 15 years old was 150,980, comprising 15.5% of the total population in Edmonton. Edmonton is near the world's 3rd largest proven oil reserves and Alberta's vast natural gas deposits, so it has a well developed petrochemical industry². The population of interest for this study was children under 17 years of age, as evidence suggests that this group is among the most affected by air pollution^{3,4}. Figure 2.1 shows a map of Edmonton including air pollution monitoring stations, forested areas, and wind direction.

Figure 2.1 Map of Edmonton with air pollution monitoring stations, forested area, and wind direction

2.2 Data collection

<u>Air pollution monitoring data:</u> The study includes air pollutant data on carbon monoxide (CO), nitrogen dioxide (NO₂), ozone (O₃), fine particulate matter (PM_{2.5}), and sulfur dioxide (SO₂) in Edmonton between 2016 to 2018. These are the most widely and consistently monitored air pollutants and have been shown to affect children adversely⁵. Data on these five air pollutants was obtained from the National Air Pollution Surveillance (NAPS) program, freely available from Environment and Climate Change Canada⁶. CO, NO₂, O₃, PM_{2.5} and SO₂ were obtained as hourly mean concentrations from six monitoring stations (Edmonton Central, Edmonton East, Edmonton South, Edmonton McIntyre, St. Albert, and Woodcraft, as shown in figure 2.1).

Air pollution data from land use regression models: Land use regression models (LUR) are capable of estimating air pollution exposure based on geographical location⁷. The LUR data representing yearly mean concentrations of NO₂, O₃, PM_{2.5}, and SO₂ by postal codes were obtained from the Canadian Urban Environmental Health Research Consortium website. Bootstrap approach of the random selection of monitors and leave-one-out analysis were applied to validate the LUR model⁸. The most recent data for 2015 for NO₂, 2016 for O₃ and SO₂, and 2016 to 2018 for PM_{2.5} were used in the study. The LUR data can reflect the difference in air pollution exposure between different geographical locations (postal codes) of participants. This is different from monitoring data that were averaged across the whole city. Thus, the daily monitoring data were used for time-series analysis and the LUR data were used for multiple linear regression and multivariate logistic regression.

<u>Meteorological variables</u>: Data on meteorological variables in Edmonton between 2016 to 2018 were obtained from the Alberta Climate Information Service, including temperature (°C), relative humidity (%), and precipitation (mm). The data included daily means of the three meteorological variables.

<u>Flu data</u>: Data on influenza activity was obtained from the Strategic Analytics & Decision Support team at Alberta Health Services. Influenza was diagnosed according to clinical standards and were not confirmed through laboratory testing.

<u>Children's respiratory ED visits data</u>: Data on children's respiratory ED visits and total ED visits in Edmonton during 2016 to 2018 were obtained via the Strategic Analytics & Decision Support team in the Department of Pediatrics, Faculty of Medicine & Dentistry, and University of Alberta.

The data included date of visit, hospital admission (yes/no/transfer), age (years), sex (male/female), postal code (only children with postal codes belonging to Edmonton were included), length of stay (LOS) in ED, and the Canadian Triage and Acuity Scale (CTAS) score of each visitor. LOS is the number of minutes children spent in the ED. In general, longer LOS could be an indicator of higher severity of conditions. Total daily ED visits divided by children's daily respiratory ED visits was calculated as an indication the busyness of ED, which can affect LOS duration. CTAS score is also an indicator of severity with five levels: level 1: resuscitation – conditions that are threats to life or limb; level 2: emergent – conditions that are a potential threat to life, limb, or function; level 3: urgent – serious conditions that require emergency intervention; level 4: less urgent – conditions that require or that may be part of a chronic problem⁹. CTAS scores are assigned at initial presentation to the ED. Causes of hospital visits were coded according to the International Classification of Diseases, Revision 10 (ICD-10): asthma (J45.00), wheeze (R06.2), and bronchiolitis (J21)¹⁰.

<u>Pampalon index data</u>: The Pampalon index¹¹ was used to assign socioeconomic status (SES) for each of the participants. This was obtained from the website of Statistics Canada. Children's SES (1 (lowest) to 5 (highest)) were assigned by postal code.

<u>Wildfire season and non-wildfire season</u>: According to the Alberta wildfire website, wildfire season is from April to September while non-wildfire season runs from October to March¹².

2.3 Statistical analysis

The sample size in time-series analysis was the numbers of days of study period. For time-series three-year models (including sex- and age-stratified models), sample size was 1,096 days (from January 1,2016 to December 31, 2018). For time-series wildfire models, the sample size was 549 (total days in wildfire seasons over three years). For time-series non-wildfire models, the sample size was 547 (total days in non-wildfire seasons over three years). The sample size of time-series yearly models was 366, 365, and 365 for 2016, 2017, and 2018, respectively.

The sample size for multiple linear regression and multivariable logistic regression was the visits included. For NO₂, O₃, and SO₂, the sample size was 2,753 as the study focused on 2016 visits

data, to correspond with available air pollutant data. For PM_{2.5}, the sample size was 8,250, which was number of visits over the three years, for which additional pollutant data was available (2016-2018).

2.3.1 Descriptive analysis

Descriptive analyses were first performed to examine the data. Summary statistics of air pollutant monitor data were calculated. Daily mean concentrations of CO (ppm), NO₂ (ppm), PM_{2.5} (μ g/m³), and SO₂ (ppm) were calculated based on the hourly mean concentration of each day. The 8-hour daily maximum concentration of O₃ (ppm) was calculated. Only days with valid values $\geq 80\%$ were included. Average concentrations of air pollutants in different years, seasons of the year, monitor locations, wildfire seasons, and non-wildfire seasons were calculated across the study period (2016-2018). Four seasons were divided according to temperature: March to May (spring), June to August (summer), September to October (fall), and November to February (winter)¹³. Time series diagrams of the daily mean concentration of O₃ were generated to show trends over the study period. Children's counts and proportions of ED visits for respiratory symptoms were also calculated by sex, age, hospital admissions (yes/no), ICD-10 diagnosis, year, season, and CTAS score.

Missing data were also explored. The monitoring data included hourly mean concentrations of air pollutants of each day from 2016 to 2018: one data point was one hourly mean value. The total days were 1,096 and the total number of data points from each monitor was 26,304 (1096 × 24). A day with more than 20% missing data points (\geq 5) was regarded as a missing day. The calculation of missing data points and missing days did not include monitors if a particular pollutant was not measured at that station. CO levels were measured at Edmonton central, Edmonton east, Edmonton south, and St. Albert stations, but not at Edmonton McIntyre and Woodcraft. Similarly, the calculation of missing values of NO₂ and O₃ included all stations except for Edmonton McIntyre. PM_{2.5} included all stations except Edmonton East and St. Albert. The missing values of LUR data and other variables were also explored.

2.3.2 Time-series regression analysis

Daily mean concentration and maximum daily moving average concentration based on monitoring data were used in time-series regression analysis. Time-series regression studies examine short-term associations between exposure and outcome of interest regularly over a period of time in a population^{14,15}. The aim of time-series regression analyses is to investigate whether changes in the exposure can explain some of the short-term variations in an outcome¹⁵. Previous studies have used this approach in examining associations between air pollution and adverse health outcomes^{10,16–25}. The outpatient and ED visits among children with respiratory disease (wheeze, asthma, and bronchiolitis) is a low probability event, which results in a distribution similar to that of the Poisson distribution. Therefore, Poisson regression and negative binomial regression models were conducted after testing overdispersion^{25,26}.

Different lag structures (e.g., lag 0: same-day effects, lag 1: effects observed after one day) were examined for the air pollutants and covariates to account for lagged exposure effects, which were also adjusted for collinearity (constrained distributed lag models)¹⁵. In unconstrained models, the estimated individual lag effects were confounded by each other, so the constrained models were used to control the collinearity. The constrained lags were decided by the patterns revealed in the unconstrained model and lags with close values were defined to be the same¹⁵. Too many lags in the model could increase the error, and too few lags could omit crucial relevant information. In time series analysis, three criteria, the Akaike's information criterion (AIC), the Hannan and Quinn information criterion (HQ), and the Schwarz's Bayesian information criterion (SBIC), are commonly used to determine the optimal numbers of lags²⁷. The AIC is used for monthly data, and HQIC and SBIC are typically used for quarterly data²⁷. Since daily data were utilized in this study, AIC was selected as the most appropriate criterion for this study.

Potential confounders or interaction terms that might impact the association between air pollution exposure and counts of respiratory visits to the emergency department were identified. Factors varying over time, including seasonality, average daily temperature, relative humidity, statutory holidays and weekends, and influenza activity (counts), were identified as critical potential confounders and were adjusted in the model^{15,22,28}. Confounders such as age, sex, and socioeconomic status that typically influence non-ecological studies remain relatively stable and are assumed to change relatively slowly with this study design because the relationship is estimated

at the population level (e.g., population sex distribution). Long-term trends and seasonality were controlled for as a fixed effect by periodic functions (Fourier terms). Flexible spline functions were also assessed but resulted in model convergence issues. The linearity assumption of continuous variables (air pollutants concentrations, temperature, humidity, influenza activity) was examined by generating a scatter plot. Air pollutants concentrations did not meet the linearity assumption, so the natural log of air pollutants was used in the model. Variable flu also did not meet the linearity assumption and there were lots of 0 value. In order to avoid large numbers of missing values after transformation, a constant of 1 was added to each value of flu and then transformed into natural log. Potential collinearity between independent variables was examined using the Variance inflation factor (VIF). The purposeful selection method based on a prior knowledge was employed to build the model. The model-building steps were repeated for each sex (males, females) and age group (younger children: 0-4 years old, older children: 5-16 years old) to examine the difference by effects of sex and age. Time series regression models were also built for wildfire and nonwildfire seasons and for each year (2016-2018) to explore the impact of wildfire activity in and around Alberta on the risk of ED visits for respiratory symptoms among children. Model fit was examined by checking residuals. Therefore, ten kinds of time-series models were built in this study: three-year models, sex-stratified models (male and female), age-stratified models (0-4 years old and 5-16 years old), wildfire season models, non-wildfire models, and models for each year (2016, 2017, and 2018). The three-year models, sex-stratified models, and age-stratified models have the same number of lags of each variable because they were based on the same study period (2016 to 2018). The wildfire season models only included wildfire seasons (April to September) for the three years, and the non-wildfire season models only included non-wildfire seasons (January to March and October to December) for the three years. Models for each year were based on a oneyear period. Therefore, the lag selection for wildfire season model, non-wildfire season models, and yearly models was different. Models without air pollutants were also built as baseline timeseries models. Models with air pollutants were compared with the baseline models by AIC and BIC.

2.3.3 Multivariable logistic regression and multiple linear regression

LUR data were used for multivariable logistic regression and multiple linear regression. Multivariable logistic regression was conducted to explore the association between air pollution exposure and hospital admissions (yes/no) (transfer and yes were combined into one group) for respiratory reasons (wheeze, asthma, and bronchiolitis) among children. Multiple linear regression was conducted to explore the association between air pollution exposure and LOS. Models were adjusted for the potential confounders including age (continuous variable), sex (male, female), socioeconomic status (1 (lowest) to 5 (highest)), the rate of ED visits among children to total ED visits per day, and CTAS score. None of the children assessed as CTAS 5 were admitted to the hospital and the numbers were fewer than other four groups, so CTAS 5 was combined with CTAS 4 to create a new CTAS 4 category and was set to be the reference group. The number assessed as CTAS 1 was too small to be the reference group. A purposeful selection method was used to build the model, based on a priori knowledge. Model fit was assessed by conducting a goodness-of-fit test and checking residuals. Only the 2015 LUR data of NO2 was obtained, so the 2016 visits data was used for NO₂. Only 2016 LUR data for O₃ and SO₂ was obtained so 2016 visits data were used. LUR data between 2016 to 2018 of PM2.5 was available so three years' visits data was used. Linear assumption of continuous variables was examined. O₃ and age did not meet the linear assumption, so they were transformed into quartiles.

2.4 Ethical considerations

We have received ethics approval for this study from the University of Alberta (Pro00090081).

2.5 Software

STATA 16.1 and R Studio were employed for statistical analysis in this study.
References

- Edmonton Government. 2019 Edmonton Municipal Census Results. Published 2019. https://www.edmonton.ca/city_government/facts_figures/municipal-census-results
- 2. Ambinet Air Pollution. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- Perspectives S. Canada in Changing CLimate: Sector Perspectives on Impcats and Adaptation.; 2014. http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/assess/2014/pdf/Ful l-Report_Eng.pdf
- Grigg J. Air pollution and children's respiratory health gaps in the global evidence. *Clin Exp Allergy*. 2011;41(8):1072-1075. doi:10.1111/j.1365-2222.2011.03790.x
- Rodriguez-Villamizar LA, Magico A, Osornio-Vargas A, Rowe BH. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. *Can Respir J.* 2015;22(5):282-292. doi:10.1155/2015/263427
- Canada. National Air Pollution Surveillance (NAPS) Program Open Government Portal. Published online 2019. https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b
- Mo Y, Booker D, Zhao S, et al. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. *Sci Total Environ*. 2021;778:146305. doi:10.1016/j.scitotenv.2021.146305
- Hystad P, Setton E, Cervantes A, et al. Creating national air pollution models for population exposure assessment in Canada. *Environ Health Perspect*. 2011;119(8):1123-1129. doi:10.1289/ehp.1002976
- 9. Canadian Ministry of Health and Long-Term Care. Prehospital Canadian Triage Acuity Scale: Prehospital CTAS Paramedic Guide. 2016;2:1-98. http://www.lhsc.on.ca/About_Us/Base_Hospital_Program/Medical_Directives/Prehospital CTASParamedicGuide December312016 Version2.0.pdf
- 10. Zheng P wen, Wang J bing, Zhang Z yu, et al. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series

analysis. *Environ Sci Pollut Res*. 2017;24(23):18860-18869. doi:10.1007/s11356-017-9279-8

- Chan E, Serrano J, Chen L, Stieb DM, Jerrett M, Osornio-Vargas A. Development of a Canadian socioeconomic status index for the study of health outcomes related to environmental pollution Biostatistics and methods. *BMC Public Health*. 2015;15(1):1-8. doi:10.1186/s12889-015-1992-y
- 12. Wildfire Status. Alberta wildfire. https://wildfire.alberta.ca/wildfire-status/default.aspx
- 13. Ltd NU. *The 4 Seasons : Edmonton's Historical Weather Records*. University of Alberta Library; 1969.
- Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. *Int J Epidemiol*. 2017;46(1):348-355. doi:10.1093/ije/dyw098
- Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. *Int J Epidemiol*. 2013;42(4):1187-1195. doi:10.1093/ije/dyt092
- Zhang Y, Ni H, Bai L, et al. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. *Environ Res.* 2019;169(November 2018):510-516. doi:10.1016/j.envres.2018.11.043
- Gestro M, Condemi V, Bardi L, Fantino C, Solimene U. Meteorological factors, air pollutants, and emergency department visits for otitis media: a time series study. *Int J Biometeorol.* 2017;61(10):1749-1764. doi:10.1007/s00484-017-1356-7
- Rosychuk RJ, Youngson E, Rowe BH. Presentations to Alberta Emergency Departments for Asthma: A Time Series Analysis. *Acad Emerg Med.* 2015;22(8):942-949. doi:10.1111/acem.12725
- Guo Y, Gasparrini A, Li S, et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. *PLoS Med*. 2018;15(7):1-17. doi:10.1371/journal.pmed.1002629
- Ma Y, Yue L, Liu J, et al. Association of air pollution with outpatient visits for respiratory diseases of children in an ex-heavily polluted Northwestern city, China. *BMC Public Health*. 2020;20(1):1-15. doi:10.1186/s12889-020-08933-w

- Cheng CY, Cheng SY, Chen CC, Pan HY, Wu KH, Cheng FJ. Ambient air pollution is associated with pediatric pneumonia: A time-stratified case-crossover study in an urban area. *Environ Heal A Glob Access Sci Source*. 2019;18(1):1-9. doi:10.1186/s12940-019-0520-4
- 22. Darrow LA, Klein M, Dana Flanders W, Mulholland JA, Tolbert PE, Strickland MJ. Air pollution and acute respiratory infections among children 0-4 years of age: An 18-year time-series study. *Am J Epidemiol*. 2014;180(10):968-977. doi:10.1093/aje/kwu234
- Ignotti E, Hacon S de S, Junger WL, et al. Air pollution and hospital admissions for respiratory diseases in the subequatorial amazon: A time series approach. *Cad Saude Publica*. 2010;26(4):747-761. doi:10.1590/s0102-311x2010000400017
- Zheng XY, Ding H, Jiang LN, et al. Association between Air pollutants and asthma emergency room visits and hospital admissions in time series studies: A systematic review and meta-Analysis. *PLoS One*. 2015;10(9). doi:10.1371/journal.pone.0138146
- Díaz J, Arroyo V, Ortiz C, Carmona R, Linares C. Effect of environmental factors on low weight in non-premature births: A time series analysis. *PLoS One*. 2016;11(10):1-14. doi:10.1371/journal.pone.0164741
- Weber EJ, Silverman RA, Callaham ML, et al. A prospective multicenter study of factors associated with hospital admission among adults with acute asthma. *Am J Med*. 2002;113(5):371-378. doi:10.1016/S0002-9343(02)01242-1
- 27. Torres-reyna O. Time Series (Princeton).
- Rodopoulou S, Chalbot MC, Samoli E, DuBois DW, San Filippo BD, Kavouras IG. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. *Environ Res.* 2014;129:39-46. doi:10.1016/j.envres.2013.12.006

Chapter 3: Results

3.1 Descriptive analysis

3.1.1 Summary of health data

As table 3.1 shows, a total of 8,250 emergency department visits for respiratory diseases among children between 2016-2018 in Edmonton were included in the study. Age groups are divided based on the subgroups used in the Canadian Census. Children aged 0 to 4 visited emergency rooms for respiratory problems at a much higher rate (69.5%) than any other age group. Male children visited the ED more often than female children, representing 62.53% of the total visits. More than half of the visits (56.1%) were for *Predominantly allergic asthma without stated status asthmaticus* (ICD-10 code J4500). Only 13.7% of visits resulted in hospital inpatient admission after attending the ED. The proportion of visits to emergency rooms for respiratory diseases was lowest in summer (15.0%) and higher in fall and winter (28.8%, 31.8%). Most of ED visits were assigned to CTAS 3 (49%) and fewest were assigned to CTAS 5 (0.32%). Figure 3.1 shows the daily respiratory ED visits among children under 17 years old in Edmonton between 2016 to 2018. Visits could represent the same child on multiple occasions. The prevalence of the daily respiratory ED visits among children was used in this study, rather than incident cases.

Characteristic	Number of visits	%
Age (in years)		
0-4	5731	69.5
5-9	1557	18.9
10-14	765	9.3
15-16	197	2.4
Sex		
Male	5158	62.5
Female	3092	37.5
Diagnosis type		
ICD-10 code J210-Acute bronchiolitis due to respiratory syncytial virus	76	0.9
ICD-10 code J211-Acute bronchiolitis due to human metapneumovirus	4	0.1
ICD-10 code J218-Acute bronchiolitis due to other specified organisms	38	0.5
ICD-10 code J219-Acute bronchiolitis, unspecified	3017	36.6
ICD-10 code J4500-Predominantly allergic asthma without stated status asth	maticus 4631	56.1
ICD-10 code J4501-Predominantly allergic asthma with stated status asthma	ticus 21	0.3

Table 3.1 Summary of emergency visits for asthma, wheezing, and bronchiolitis among children under 17 ages in Edmonton between 2016 to 2018

ICD-10 code R062-Wheezing		463	5.6
Admitted To Inpatient			
No		7122	86.3
Transferred to other facilities		203	2.5
Yes		925	11.2
Year			
2016		2753	33.4
2017		2792	33.9
2018		2705	32.8
Season			
Spring (March to May)		2013	24.4
Summer (June to Aug)		1237	15.0
Fall (Sep to Oct)		1595	19.3
Winter (Nov to Feb)		3405	41.3
CTAS Score			
1		45	0.6
2		3,644	44.2
3		4,043	49.0
4		492	6.0
5		26	0.3
Total		8250	100
	Mean		SD
LOS (minutes)	252.77		153.1

Figure 3.1 Daily respiratory emergency department visits among children under 17 ages in Edmonton between 2016 and 2018 (A) and in 2016 with seasons (B)

3.1.2 Summary of air pollution data

Table 3.2 presents the summary of the monitored air pollutant data. Figure 3.2 shows changes in the daily mean concentration of pollutants. WHO guidelines of 24-hour average concentrations of NO₂, PM_{2.5} and SO₂, and 8-hour daily maximum concentration of O₃ are shown in the figure. Canadian ambient air quality standards of 24-hour average concentrations of PM_{2.5} and 8-hour daily maximum concentration of O₃ are also shown in the figure. From 2016 to 2018, the annual mean concentration of PM_{2.5} in Edmonton increased. Other pollutants had no obvious trend. The mean concentration of CO was the highest in winter, and PM_{2.5} was the highest in summer. There was a significant peak in the daily mean concentration of both CO and PM_{2.5} in the second half of 2018. The concentration of NO₂ was the lowest in summer and the highest in winter, while the concentration of O₃ was highest in summer and lowest in winter, showing expected opposite trends.

Table 3.3 presents a summary of the LUR data. The LUR annual mean and median concentrations of PM_{2.5} calculated from 2016 to 2018 were lower than annual mean monitored concentrations of

2016 to 2018. Similarly, the annual mean and median concentrations of SO_2 calculated from 2016 LUR data were lower than annual mean concentrations of 2016 monitored data. For O_3 , the LUR data was provided as an annual mean concentration, and the monitoring data was based on mean 8-hour daily maximum concentrations, so they cannot directly compare. However, the annual mean concentration of O_3 of the 2016 LUR data appears to be higher than that of the 2016 monitoring data.

		CO (ppm)	NO ₂ (ppm)	O ₃ (ppm)	$PM_{2.5} (\mu g/m^3)$	SO ₂ (ppm)
Year						
	Mean	0.2351	0.0117	0.0293	7.3700	0.0006
	SD	0.0703	0.0070	0.0119	4.7162	0.0006
	Min	0.0914	0.0014	0.0023	1.3859	0.0000
2016	P25	0.1914	0.0065	0.0208	4.5060	0.0002
	Median	0.2292	0.0097	0.0287	6.1042	0.0004
	P75	0.2681	0.0154	0.0373	8.6250	0.0009
	Max	0.4722	0.0360	0.0646	40.021	0.0044
	Mean	0.2460	0.0128	0.0305	8.9148	0.0006
	SD	0.0668	0.0070	0.0100	6.1473	0.0007
	Min	0.1095	0.0029	0.0068	1.6250	0.0000
2017	P25	0.2021	0.0077	0.0233	5.1250	0.0002
	Median	0.2333	0.0104	0.0304	7.5208	0.0004
	P75	0.2750	0.0164	0.0369	10.146	0.0008
	Max	0.5146	0.0336	0.0648	48.583	0.0053
	Mean	0.2469	0.0129	0.0325	10.370	0.0006
	SD	0.0974	0.0076	0.0136	13.436	0.0006
	Min	0.1304	0.0026	0.0048	1.3056	0.0000
2018	P25	0.1924	0.0070	0.0222	5.0208	0.0002
	Median	0.2174	0.0107	0.0316	6.9886	0.0004
	P75	0.2696	0.0170	0.0428	10.917	0.0008
	Max	0.9239	0.0390	0.0692	119.46	0.0051
Season						
	Mean	0.2391	0.0105	0.0391	8.4422	0.0007
	SD	0.0477	0.0056	0.0100	5.3742	0.0007
Spring	Min	0.1315	0.0014	0.0115	1.3859	0.0000
(March to	P25	0.2067	0.0065	0.0325	4.9479	0.0002
May)	Median	0.2314	0.0095	0.0401	7.2301	0.0004
	P75	0.2543	0.0132	0.0458	10.298	0.0010
	Max	0.4319	0.0390	0.0647	44.771	0.0051

Table 3.2 Summary of monitoring data of air pollutants

	Mean	0.2266	0.0071	0.0373	11.796	0.0007
	SD	0.1064	0.0025	0.0104	15.460	0.0006
Summer	Min	0.0914	0.0026	0.0118	1.3056	0.0000
(June to	P25	0.1689	0.0053	0.0305	5.2396	0.0002
Aug)	Median	0.2037	0.0070	0.0360	7.6458	0.0004
	P75	0.2460	0.0087	0.0443	11.271	0.0010
	Max	0.9239	0.0176	0.0692	119.46	0.0032
	Mean	0.2280	0.0127	0.0224	6.9722	0.0005
	SD	0.0677	0.0060	0.0085	4.2487	0.0005
E 11 (C t.	Min	0.1042	0.0024	0.0023	1.3864	0.0000
Fall (Sep to Oct)	P25	0.1826	0.0083	0.0173	4.2708	0.0001
000)	Median	0.2141	0.0113	0.0227	5.9167	0.0003
	P75	0.2620	0.0162	0.0271	8.5208	0.0006
	Max	0.5104	0.0332	0.0648	26.833	0.0053
	Mean	0.2765	0.0195	0.0240	8.2922	0.0006
	SD	0.0737	0.0074	0.0081	5.1512	0.0005
Winter	Min	0.1417	0.0051	0.0063	1.7500	0.0000
(Nov to	P25	0.2194	0.0135	0.0182	4.8125	0.0002
Feb)	Median	0.2639	0.0189	0.0243	7.0417	0.0005
	P75	0.3200	0.0251	0.0307	9.5625	0.0008
	Max	0.5599	0.0374	0.0394	40.021	0.0031
	Mean	0.2427	0.0124	0.0308	8.8836	0.0006
	SD	0.0792	0.0072	0.0120	9.0272	0.0006
	Min	0.0914	0.0014	0.0023	1.3056	0.0000
Overall	P25	0.1960	0.0071	0.0222	4.8750	0.0002
	Median	0.2281	0.0102	0.0302	6.9167	0.0004
	P75	0.2711	0.0163	0.0386	9.9074	0.0009
	Max	0.9239	0.0398	0.0692	119.46	0.0051

Table 3.3 Summary of land use regression data of air pollutants

	NO ₂ (ppm) (2015)	O ₃ (ppm) (2016)	PM _{2.5} (µg/m ³) (2016-2018)	SO ₂ (ppm) (2016)
Mean	0.0132	0.0321	7.8927	0.0003
SD	0.0033	0.0013	1.5844	0.0001
Min	0.0055	0.0307	4.8000	0.0001
P25	0.0112	0.0310	6.6000	0.0002
Median	0.0125	0.0314	7.8000	0.0002
P75	0.0149	0.0329	8.8000	0.0004
Max	0.0321	0.0382	11.9000	0.0007

В

С

D

Figure 3.2 Daily mean concentrations of (A) CO, (B) NO₂, (C) O₃, (D) PM_{2.5} and \bigcirc SO₂ in Edmonton between 2016 to 2018 with WHO guidelines¹ and Canadian ambient air quality standards² of 24-hour average concentrations (there is no guideline for CO)

3.1.3 Summary of meteorological factors

Between 2016 to 2018, the average temperature in Edmonton was 3.78 °C, with a minimum daily average temperature of -30.09 °C and a maximum of 22.81 °C. The average precipitation was 1.20 mm. The daily average precipitation ranged from 0 to 33.96 mm. For humidity, the three-year average was 71.4%. The minimum daily average humidity was 25.4%, and the maximum was 98.3%. The daily average temperature and precipitation in Edmonton showed significant seasonality. Annually, the temperature gradually rose from winter to summer, reached its peak, and then gradually decreased. Precipitation tended to occur when the temperature was higher. For humidity, the lowest daily average usually occurred in summer. A summary of meteorological factors in Edmonton from January 01, 2016, to December 31, 2018, is presented in figure 3.3.

Figure 3.3 Daily average (A) temperature, (B) precipitation, and (C) relative humidity in Edmonton from 2016 to 2018

3.1.4 Summary of missing data

Table 3.4 shows the summary of missing monitoring data. The original data was hourly mean concentrations of air pollutants for each day from 2016 to 2018. One data point was one hourly mean value. The total amount of data points in each area were 26,304 and the total days were 1,096. A day with more than 20% missing data points was regarded as a missing day. As stated in the methods, the calculation of missing data points and missing days did not include pollutants that were specifically not measured there. The monitoring data of NO₂ had the highest percentage of missing data (5.9%) and missing days (6.0%). In contrast, the monitoring data of PM_{2.5} had the lowest percentage of missing data (2.3%), and SO₂ had the lowest percentage of missing days (2.9%).

Table 3.5 shows the summary of missing LUR data. As stated in methods, 2016 ED visit data was used for NO₂, O₃, and SO₂, so the total number of data points for these three pollutants was 2,753

36

for each pollutant. ED visit data between 2016 to 2018 was used for $PM_{2.5}$, so the total number of data points was 8,250. NO₂ had the highest percentage of missing values (5.45%), followed by SO₂ (4.27%). Health data is matched to LUR data by postal code. Missing data means that there was no LUR data for that postal code.

For other variables, meteorological data and flu data did not have missing values. SES had 253 (3.1%) missing values in three year, 59 (2.1%) missing values in 2016, 88 (3.2%) missing values in 2017, and 106 (3.9%) missing values in 2018.

Area				Pollutant		
		СО	NO_2	O ₃	PM _{2.5}	SO_2
Control	Missing data points	592 (2.3%)	653 (2.5%)	617 (2.4%)	1591 (6.1%)	-
Central	Missing days	19 (1.7%)	34 (3.1%)	13 (1.2%)	72 (6.6%)	-
Fast	Missing data points	610 (2.3%)	767 (2.9%)	729 (2.8%)	-	597 (2.3%)
Last	Missing days	19 (1.7%)	35 (3.2%)	18 (1.6%)	-	21 (1.9%)
South	Missing data points	1037 (3.9%)	1106 (4.2%)	795 (3.0%)	306 (1.2%)	749 (2.9%)
South	Missing days	39 (3.6%)	59 (5.4%)	19 (1.7%)	21 (1.9%)	22 (2.0%)
McIntvre	Missing data points	-	-	-	513 (2.0%)	-
Wienntyre	Missing days	-	-	-	37 (3.4%)	-
St Albert	Missing data points	3219 (12.2%)	3391 (12.9%)	3182 (12.1%)	-	-
St. Albert	Missing days	116 (10.6%)	144 (13.1%)	110 (10.0%)	-	-
Woodcraft	Missing data points	-	1802 (6.9%)	1662 (6.3%)	47 (0.2%)	1642 (6.2%)
wooderan	Missing days	-	58 (5.3%)	52 (4.7%)	9 (0.8%)	51 (4.7%)
Total	Missing data points	5458 (5.2%)	7719 (5.9%)	6985 (5.3%)	2457 (2.3%)	2988 (3.8%)
i Otal	Missing days	193 (4.4%)	330 (6.0%)	212 (3.9%)	139 (3.2%)	94 (2.9%)

Table 3.4 Summary of missing data of monitoring data

Table 3.5 Summary of missing data of LUR data

			Pollutant	
	NO ₂ (2015)	O ₃ (2016)	PM _{2.5} (2016-2018)	SO ₂ (2016)
Missing values	150	1	7	118
Total values	2753	2753	8250	2753
Percentage	5.5%	0.04%	0.1%	4.3%

3.2 Results of time-series regression

3.2.1 Results of lag selection for time-series models

As stated in the methods, in time series analysis, three criteria, the Aka'ke's information criterion (AIC), the Hannan and Quinn information criterion (HQ), and the Schw'rz's Bayesian information criterion (SBIC), were used to determine the optimal numbers of lags. The AIC was used for monthly data, and HQIC and SBIC were used for quarterly data³. Since daily data were utilized in this study, AIC was the most appropriate criterion for this study.

In this study, three kinds of time-series models were built: the three-year model, wildfire and nonwildfire models, and models for each year (2016, 2017, and 2018). Three-year models were also stratified by age and sex. According to the results of the AIC, for the three-year models, the optimal number of lags for air pollutants CO, NO₂, O₃, PM_{2.5}, and SO₂ were 8, 14, 11, 7, and 9, respectively. The optimal number of lags for the covariate's temperature, humidity, and flu were 10, 13, and 1, respectively.

Models for wildfire season and non-wildfire season were built to explore differences in respiratory emergency department visits among children from 2016 to 2018. For air pollutants CO, NO₂, O₃, PM_{2.5}, and SO₂ during the wildfire season, the most appropriate number of lags were 9, 13, 11, 7, and 0, respectively. For meteorological factors temperature, and humidity, the optimal number of lags were 6 and 1. The variable flu does not fit this model due to the small number of cases during the wildfire seasons. For non-wildfire models, the optimal number of lags were 3, 10, 8, 3, and 10 for air pollutants CO, NO₂, O₃, PM_{2.5}, and SO₂, respectively. The optimal number of lags for covariates temperature, humidity, and flu in non-wildfire models were 8, 3, and 1, respectively.

Models for the separate years 2016, 2017, and 2018 were built to further explore the impacts of wildfires on children's respiratory issues in Edmonton. According to the AIC, the optimal number of lags were 7, 7, 15, 7, and 0 for CO, NO₂, O₃, PM_{2.5}, and SO₂, respectively, in the 2016 models. The optimal number of lags were 3, 1, and 1, respectively, for covariates temperature, humidity, and flu. For 2017 models, the optimal number of lags for air pollutants CO, NO₂, O₃, PM_{2.5}, and SO₂, were 8, 14, 11, 9, and 9, respectively. Moreover, for covariates temperature, humidity, and flu, the optimal number of lags were 10, 5, 1, respectively. For 2018 models, the optimal numbers

for air pollutants CO, NO₂, O₃, PM_{2.5}, and SO₂ were 13, 14, 9, 6, and 9, respectively. For temperature, humidity, and flu, the optimal lags were 8, 1, and 0, respectively.

The complete tables are shown in Appendix: A1 to A8 for three-year models, A9 to A15 for wildfire models, A16 to A23 for non-wildfire models, A24 to A31 for models of 2016, A32 to A39 for models of 2017, and A40 to A 47 for models of 2018.

3.2.2 Results of time-series three-year models

Tables 3.6 to 3.10 show the results of the time-series three-year model for five air pollutants and selected lags over the study period. Incidence rate ratios (IRR) and 95% confidence intervals for daily respiratory emergency visits are shown for a one unit increase in the natural log of air pollutants concentrations. Strong evidence of significant increases in daily respiratory emergency department visits with increasing NO₂ concentrations for the 4-day lag was found. The estimated IRR for daily respiratory ED visits with the increase of NO₂ was 1.085 (95%CI: 1.007, 1.169) indicating an 8.5% increase in expected daily respiratory ED visits among children for one unit increase of natural log after adjusting for other variables. In other words, the expected daily respiratory ED visits among children increased by 8.5% when 4-day lag NO₂ concentrations increased (e-1) times after adjusting for other variables (e: Euler's number. The value is approximately 2.71828). The expected daily respiratory ED visits among children increased by [(IRR-1) * 100] % when pollutant concentration increased (e-1) times, after adjusting for other variables. Results also show evidence of positive associations between daily respiratory ED visits and mean daily O₃ concentration for 5-, 9-, and 11-day lags and evidence of a negative association for 4-day lag. The estimated IRR for the positive association was 1.080 (95%CI: 1.018, 1.146), and for the negative association was 0.880 (95% CI: 0.804, 0.981). The IRR of 5-, 9-, and 11-day lags exposure of O_3 concentration was the same because they were defined as the same in the constrained model. There were no significant associations between daily respiratory ED visits and CO, PM_{2.5} and SO₂ concentrations.

Both AIC and BIC in CO and PM_{2.5} three-year models were only slightly larger than that of the baseline model. AIC in NO₂ and O₃ three-year models were smaller than that of the baseline model, though BIC was larger than that in the baseline model. For three-year SO₂ model, both AIC and

BIC in the three-year model were smaller than in the baseline model. Results of the three-year baseline model are presented in Appendix 2 Table A 2.1.

The number of observations included in models of CO, O₃, and PM_{2.5} was 1,083. This was obtained from 1,096 (total days over three years) minus 13 (maximum number of lags (humidity)). The number of observations of NO₂ model was 1,082, being obtained from 1,096 minus 14 (maximum number of lags (NO₂)). The number of observations included in the SO₂ model was only 647 because there were 58 missing values of SO₂ due to natural log transformation (original value was 0). From SO₂_lag0 to SO₂_lag9, there were 10 variables with 580 missing values in total. Only 436 observations were excluded from the model due to overlap. Thus, the total number of observations was 1,096 minus 13 minus 436.

 Table 3.6 Results of time-series three-year model of associations between daily respiratory ED visits among children under 17 ages and exposure to CO in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.946	0.035	-1.510	0.130	0.881	1.017	
CO_lag1	0.946	0.035	-1.510	0.130	0.881	1.017	
CO_lag2	0.998	0.040	-0.060	0.954	0.922	1.080	
CO_lag3	0.932	0.063	-1.040	0.300	0.816	1.065	
CO_lag4	0.998	0.040	-0.060	0.954	0.922	1.080	
CO_lag5	0.893	0.060	-1.690	0.090	0.783	1.018	*
CO_lag6	1.016	0.069	0.240	0.811	0.890	1.161	
CO_lag7	0.998	0.040	-0.060	0.954	0.922	1.080	
CO_lag8	1.034	0.063	0.550	0.584	0.918	1.165	
Temperature_lag0	1.007	0.005	1.550	0.121	0.998	1.016	
Temperature_lag1	0.994	0.006	-0.900	0.368	0.982	1.007	
Temperature_lag2	1.008	0.006	1.290	0.195	0.996	1.021	
Temperature_lag3	0.994	0.006	-0.930	0.352	0.982	1.007	
Temperature_lag4	1.007	0.007	1.060	0.290	0.994	1.020	
Temperature_lag5	0.997	0.006	-0.540	0.586	0.984	1.009	
Temperature_lag6	0.998	0.006	-0.330	0.738	0.985	1.010	
Temperature_lag7	1.001	0.006	0.100	0.921	0.988	1.013	
Temperature_lag8	1.002	0.006	0.290	0.772	0.989	1.014	
Temperature_lag9	1.006	0.006	1.030	0.304	0.994	1.019	
Temperature_lag10	0.995	0.004	-1.230	0.219	0.986	1.003	
Humidity_lag0	1.000	0.002	0.050	0.958	0.997	1.003	
Humidity_lag1	0.999	0.002	-0.440	0.659	0.995	1.003	
Humidity_lag2	1.000	0.002	0.170	0.869	0.997	1.004	
Humidity_lag3	1.000	0.002	-0.060	0.950	0.996	1.004	
Humidity_lag4	1.001	0.002	0.510	0.613	0.997	1.005	

Humidity_lag5	1.000	0.002	-0.190	0.846	0.996	1.003	
Humidity_lag6	0.999	0.002	-0.330	0.742	0.996	1.003	
Humidity_lag7	0.999	0.002	-0.610	0.544	0.995	1.003	
Humidity_lag8	1.002	0.002	1.030	0.304	0.998	1.006	
Humidity_lag9	1.000	0.002	0.240	0.812	0.997	1.004	
Humidity_lag10	1.001	0.002	0.510	0.611	0.997	1.005	
Humidity_lag11	1.000	0.002	-0.240	0.813	0.996	1.003	
Humidity_lag12	1.000	0.002	0.010	0.989	0.996	1.004	
Humidity_lag13	1.001	0.001	0.420	0.676	0.998	1.003	
0b.H&W	1.000						
1.H&W	1.081	0.031	2.690	0.007	1.021	1.144	***
Flu_lag0	0.985	0.029	-0.510	0.612	0.930	1.044	
Flu_lag1	0.990	0.030	-0.350	0.724	0.933	1.049	
Flu_lag2	0.940	0.028	-2.070	0.038	0.887	0.997	**
Flu_lag3	1.023	0.030	0.750	0.455	0.965	1.084	
Flu_lag4	1.020	0.030	0.660	0.510	0.962	1.081	
Flu_lag5	0.959	0.029	-1.400	0.163	0.904	1.017	
Flu_lag6	1.061	0.032	1.950	0.051	1.000	1.125	*
Flu_lag7	1.043	0.031	1.380	0.168	0.983	1.106	
Flu_lag8	1.030	0.031	0.980	0.328	0.971	1.092	
Flu_lag9	1.013	0.030	0.450	0.655	0.956	1.075	
Flu_lag10	1.005	0.030	0.150	0.880	0.947	1.065	
Flu_lag11	0.958	0.029	-1.440	0.151	0.903	1.016	
Flu_lag12	0.983	0.029	-0.580	0.559	0.928	1.041	
cos_1	1.647	0.105	7.820	0.000	1.453	1.866	***
cos_2	0.891	0.018	-5.580	0.000	0.856	0.928	***
cos_3	1.192	0.024	8.930	0.000	1.147	1.239	***
cos_4	1.087	0.021	4.260	0.000	1.046	1.130	***
sin_1	1.087	0.034	2.700	0.007	1.023	1.155	***
sin_2	0.944	0.019	-2.800	0.005	0.907	0.983	***
sin_3	1.216	0.025	9.590	0.000	1.168	1.265	***
sin_4	0.843	0.016	-9.090	0.000	0.812	0.874	***
Constant	4.093	0.857	6.730	0.000	2.715	6.171	***
lnalpha	-3.063	0.164	.b	.b	-3.385	-2.742	
Mean dependent var	7.538		SD deper	ndent var	4.081		
Pseudo r-squared			Number	of obs	1083		
Chi-square	613.270		Prob > cl	ni2	0.000		
Akaike crit. (AIC)	5557.175		Bayesian	crit. (BIC)	5831.487		

H&W: holiday and weekend

xi: nbreg dailycounts colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

						2010	<i>a</i> :
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval	S1g
NO ₂ _lag0	1.001	0.015	0.040	0.964	0.971	1.031	
NO ₂ _lag1	1.001	0.015	0.040	0.964	0.971	1.031	
NO ₂ _lag2	1.014	0.038	0.370	0.713	0.942	1.091	
NO ₂ _lag3	0.983	0.019	-0.870	0.383	0.947	1.021	
NO2_lag4	1.085	0.041	2.150	0.032	1.007	1.169	**
NO ₂ _lag5	0.983	0.019	-0.870	0.383	0.947	1.021	
NO ₂ _lag6	1.043	0.040	1.080	0.278	0.967	1.125	
NO ₂ _lag7	0.983	0.019	-0.870	0.383	0.947	1.021	
NO ₂ _lag8	1.033	0.039	0.860	0.391	0.959	1.111	
NO ₂ lag9	1.001	0.015	0.040	0.964	0.971	1.031	
NO_2 lag10	1.001	0.015	0.040	0.964	0.971	1.031	
NO_2 lag11	0.972	0.022	-1.280	0.199	0.931	1.015	
NO_2 lag12	0.972	0.022	-1.280	0.199	0.931	1.015	
NO_2 lag13	1.001	0.015	0.040	0.964	0.971	1.031	
NO_2 lag14	0.983	0.019	-0.870	0.383	0.947	1.021	
Temperature lag0	1.005	0.005	1.050	0.292	0.996	1.014	
Temperature lag1	0.995	0.006	-0.800	0.426	0.983	1.007	
Temperature lag2	1.009	0.006	1.410	0.159	0.996	1.022	
Temperature lag3	0.990	0.007	-1.450	0.147	0.978	1.003	
Temperature lag4	1.008	0.006	1.310	0.191	0.996	1.021	
Temperature_lag5	0.995	0.007	-0.800	0.426	0.982	1.008	
Temperature_lag6	1.000	0.006	0.010	0.990	0.988	1.013	
Temperature_lag7	1.001	0.007	0.160	0.877	0.988	1.014	
Temperature_lag8	1.003	0.006	0.390	0.693	0.990	1.015	
Temperature_lag9	1.007	0.006	1.180	0.237	0.995	1.020	
Temperature_lag10	0.996	0.005	-0.820	0.412	0.987	1.005	
Humidity_lag0	1.000	0.002	-0.080	0.940	0.997	1.003	
Humidity_lag1	0.999	0.002	-0.460	0.647	0.995	1.003	
Humidity_lag2	1.000	0.002	0.180	0.858	0.997	1.004	
Humidity_lag3	1.000	0.002	-0.240	0.810	0.996	1.003	
Humidity_lag4	1.001	0.002	0.710	0.480	0.998	1.005	
Humidity_lag5	1.000	0.002	-0.220	0.828	0.996	1.003	
Humidity_lag6	1.000	0.002	-0.120	0.901	0.996	1.004	
Humidity_lag7	0.999	0.002	-0.550	0.585	0.995	1.003	
Humidity_lag8	1.002	0.002	1.120	0.262	0.998	1.006	
Humidity_lag9	1.001	0.002	0.370	0.709	0.997	1.005	
Humidity_lag10	1.001	0.002	0.630	0.529	0.998	1.005	
Humidity_lag11	0.999	0.002	-0.380	0.704	0.996	1.003	
Humidity_lag12	1.000	0.002	0.000	0.997	0.996	1.004	
Humidity_lag13	1.000	0.001	0.010	0.989	0.997	1.003	

Table 3.7 Results of time-series three-year model of associations between daily respiratory ED visits among children under 17 ages and exposure to NO_2 in Edmonton between 2016 to 2018

0b.H&W	1.000						
1.H&W	1.077	0.033	2.420	0.016	1.014	1.144	**
Flu_lag0	0.987	0.029	-0.430	0.665	0.932	1.046	
Flu_lag1	0.993	0.030	-0.230	0.822	0.937	1.053	
Flu_lag2	0.939	0.028	-2.110	0.034	0.886	0.995	**
Flu_lag3	1.022	0.030	0.740	0.462	0.964	1.084	
Flu_lag4	1.020	0.030	0.660	0.509	0.962	1.081	
Flu_lag5	0.957	0.029	-1.460	0.145	0.902	1.015	
Flu_lag6	1.053	0.032	1.710	0.087	0.993	1.117	*
Flu_lag7	1.043	0.032	1.400	0.162	0.983	1.107	
Flu_lag8	1.026	0.031	0.840	0.400	0.967	1.088	
Flu_lag9	1.014	0.030	0.470	0.640	0.956	1.076	
Flu_lag10	0.997	0.030	-0.110	0.914	0.940	1.057	
Flu_lag11	0.960	0.029	-1.350	0.178	0.906	1.019	
Flu_lag12	0.984	0.029	-0.560	0.575	0.928	1.042	
cos_1	1.576	0.137	5.230	0.000	1.329	1.869	***
cos_2	0.886	0.018	-5.900	0.000	0.851	0.922	***
cos_3	1.193	0.023	8.940	0.000	1.148	1.240	***
cos_4	1.104	0.021	5.120	0.000	1.063	1.147	***
sin_1	1.087	0.036	2.550	0.011	1.020	1.159	**
sin_2	0.935	0.020	-3.140	0.002	0.897	0.975	***
sin_3	1.230	0.025	10.300	0.000	1.182	1.279	***
sin_4	0.842	0.016	-9.120	0.000	0.812	0.874	***
Constant	7.375	3.580	4.120	0.000	2.848	19.099	***
lnalpha	-3.056	0.163	.b	.b	-3.376	-2.736	
Mean dependent var	7.543		SD dep	endent var	4.081		
Pseudo r-squared			Numbe	er of obs	1082		
Chi-square	610.950		Prob >	chi2	0.000		
Akaike crit. (AIC)	5555.195		Bayesian crit. (BIC)		5834.442		

H&W: holiday and weekend

xi: nbreg dailycounts no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/8) irr

Table 3.8 Results of time-series three-year model of associations between daily respiratory ED visits
among children under 17 ages and exposure to O ₃ in Edmonton between 2016 to 2018

U	U						
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	1.005	0.026	0.180	0.855	0.954	1.058	
O ₃ _lag1	1.005	0.026	0.180	0.855	0.954	1.058	
O ₃ _lag2	1.028	0.039	0.730	0.466	0.955	1.107	
O ₃ _lag3	1.005	0.026	0.180	0.855	0.954	1.058	
O3_lag4	0.888	0.045	-2.330	0.020	0.804	0.981	**
O3_lag5	1.080	0.033	2.540	0.011	1.018	1.146	**

O ₃ _lag6	0.930	0.047	-1.440	0.149	0.843	1.026	
O ₃ _lag7	0.970	0.036	-0.820	0.410	0.901	1.044	
O ₃ _lag8	1.028	0.039	0.730	0.466	0.955	1.107	
O3_lag9	1.080	0.033	2.540	0.011	1.018	1.146	**
O_3 lag10	0.970	0.036	-0.820	0.410	0.901	1.044	
O ₃ lag11	1.080	0.033	2.540	0.011	1.018	1.146	**
Temperature_lag0	1.005	0.004	1.110	0.268	0.996	1.014	
Temperature_lag1	0.996	0.006	-0.630	0.528	0.984	1.008	
Temperature_lag2	1.007	0.006	1.050	0.294	0.994	1.019	
Temperature_lag3	0.992	0.006	-1.180	0.240	0.980	1.005	
Temperature_lag4	1.009	0.006	1.360	0.174	0.996	1.022	
Temperature_lag5	0.995	0.006	-0.820	0.410	0.982	1.007	
Temperature_lag6	0.999	0.006	-0.200	0.839	0.986	1.011	
Temperature_lag7	1.002	0.006	0.330	0.739	0.990	1.015	
Temperature_lag8	1.004	0.006	0.560	0.573	0.991	1.016	
Temperature_lag9	1.005	0.006	0.860	0.388	0.993	1.018	
Temperature_lag10	0.996	0.004	-0.900	0.366	0.987	1.005	
Humidity_lag0	1.000	0.002	0.130	0.894	0.997	1.003	
Humidity_lag1	0.999	0.002	-0.410	0.683	0.995	1.003	
Humidity_lag2	1.000	0.002	0.180	0.857	0.996	1.004	
Humidity_lag3	1.000	0.002	-0.140	0.889	0.996	1.004	
Humidity_lag4	1.000	0.002	-0.220	0.828	0.996	1.004	
Humidity_lag5	1.000	0.002	0.180	0.860	0.996	1.004	
Humidity_lag6	0.999	0.002	-0.690	0.493	0.995	1.003	
Humidity_lag7	0.999	0.002	-0.710	0.480	0.995	1.002	
Humidity_lag8	1.003	0.002	1.390	0.166	0.999	1.007	
Humidity_lag9	1.001	0.002	0.650	0.514	0.997	1.005	
Humidity_lag10	1.001	0.002	0.350	0.723	0.997	1.004	
Humidity_lag11	1.001	0.002	0.530	0.598	0.997	1.005	
Humidity_lag12	1.000	0.002	0.080	0.936	0.997	1.004	
Humidity_lag13	1.000	0.001	0.220	0.829	0.997	1.003	
0b.H&W	1.000						
1.H&W	1.087	0.031	2.880	0.004	1.027	1.150	***
Flu_lag0	0.978	0.029	-0.750	0.456	0.923	1.036	
Flu_lag1	0.998	0.030	-0.070	0.946	0.941	1.058	
Flu_lag2	0.934	0.028	-2.300	0.021	0.881	0.990	**
Flu_lag3	1.023	0.030	0.760	0.449	0.965	1.084	
Flu_lag4	1.025	0.031	0.820	0.413	0.967	1.086	
Flu_lag5	0.959	0.029	-1.380	0.167	0.905	1.018	
Flu_lag6	1.052	0.032	1.680	0.093	0.992	1.116	*
Flu_lag7	1.047	0.032	1.500	0.132	0.986	1.111	
Flu_lag8	1.026	0.031	0.880	0.381	0.968	1.088	
Flu_lag9	1.007	0.030	0.240	0.811	0.949	1.069	
Flu_lag10	1.010	0.030	0.330	0.744	0.952	1.071	

Flu_lag11	0.959	0.029	-1.390	0.163	0.905	1.017	
Flu_lag12	0.986	0.029	-0.480	0.628	0.930	1.044	
cos_1	1.632	0.134	5.970	0.000	1.390	1.917	***
cos_2	0.887	0.019	-5.670	0.000	0.851	0.925	***
cos_3	1.189	0.024	8.610	0.000	1.143	1.236	***
cos_4	1.099	0.022	4.760	0.000	1.057	1.142	***
sin_1	1.076	0.033	2.370	0.018	1.013	1.143	**
sin_2	0.934	0.020	-3.150	0.002	0.896	0.975	***
sin_3	1.234	0.027	9.660	0.000	1.183	1.288	***
sin_4	0.840	0.016	-9.250	0.000	0.809	0.872	***
Constant	6.516	1.796	6.800	0.000	3.796	11.185	***
lnalpha	-3.074	0.166	.b	.b	-3.400	-2.749	
Mean dependent var	7.538		SD depen	dent var	4.081		
Pseudo r-squared			Number o	of obs	1083		
Chi-square	615.16	3	Prob > ch	i2	0.000		
Akaike crit. (AIC)	5556.2	52	Bayesian	crit. (BIC)	5830.564		

H&W: holiday and weekend

asdoc xi: nbreg dailycounts o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.994	0.018	-0.330	0.741	0.960	1.029	
PM _{2.5} _lag1	0.967	0.030	-1.100	0.273	0.910	1.027	
PM _{2.5} _lag2	0.994	0.018	-0.330	0.741	0.960	1.029	
PM _{2.5} _lag3	1.003	0.021	0.150	0.881	0.963	1.045	
PM _{2.5} _lag4	0.981	0.020	-0.910	0.364	0.942	1.022	
PM _{2.5} _lag5	0.994	0.018	-0.330	0.741	0.960	1.029	
PM _{2.5} _lag6	0.981	0.020	-0.910	0.364	0.942	1.022	
PM _{2.5} _lag7	1.003	0.021	0.150	0.881	0.963	1.045	
Temperature_lag0	1.006	0.004	1.400	0.161	0.998	1.015	
Temperature_lag1	0.996	0.006	-0.700	0.486	0.984	1.008	
Temperature_lag2	1.006	0.007	0.990	0.321	0.994	1.019	
Temperature_lag3	0.994	0.007	-0.840	0.399	0.982	1.007	
Temperature_lag4	1.006	0.007	0.930	0.350	0.993	1.019	
Temperature_lag5	0.997	0.006	-0.550	0.582	0.984	1.009	
Temperature_lag6	0.999	0.006	-0.190	0.850	0.986	1.011	
Temperature_lag7	1.000	0.006	0.010	0.991	0.988	1.013	
Temperature_lag8	1.003	0.006	0.460	0.647	0.990	1.016	
Temperature_lag9	1.007	0.006	1.050	0.293	0.994	1.019	
Temperature_lag10	0.995	0.004	-1.200	0.229	0.986	1.003	

Table 3.9 Results of time-series three-year model of associations between daily respiratory ED visits among children under 17 ages and exposure to $PM_{2.5}$ in Edmonton between 2016 to 2018

Humidity_lag0	1.000	0.002	0.170	0.868	0.997	1.003	
Humidity_lag1	0.999	0.002	-0.270	0.786	0.996	1.003	
Humidity_lag2	1.000	0.002	0.010	0.989	0.996	1.004	
Humidity_lag3	1.000	0.002	-0.180	0.855	0.996	1.004	
Humidity_lag4	1.001	0.002	0.630	0.527	0.997	1.005	
Humidity_lag5	0.999	0.002	-0.300	0.762	0.996	1.003	
Humidity_lag6	1.000	0.002	-0.100	0.918	0.996	1.004	
Humidity_lag7	0.998	0.002	-0.760	0.446	0.995	1.002	
Humidity_lag8	1.002	0.002	1.140	0.252	0.998	1.006	
Humidity_lag9	1.000	0.002	0.250	0.799	0.997	1.004	
Humidity_lag10	1.001	0.002	0.530	0.599	0.997	1.005	
Humidity_lag11	1.000	0.002	-0.240	0.812	0.996	1.003	
Humidity_lag12	1.000	0.002	0.060	0.950	0.997	1.004	
Humidity_lag13	1.000	0.001	0.190	0.850	0.997	1.003	
0b.H&W	1.000						
1.H&W	1.079	0.031	2.670	0.008	1.020	1.141	***
Flu_lag0	0.984	0.029	-0.550	0.584	0.928	1.043	
Flu_lag1	0.992	0.030	-0.280	0.781	0.935	1.052	
Flu_lag2	0.937	0.028	-2.180	0.029	0.884	0.994	**
Flu_lag3	1.024	0.031	0.800	0.421	0.966	1.086	
Flu_lag4	1.015	0.030	0.500	0.614	0.957	1.076	
Flu_lag5	0.960	0.029	-1.370	0.171	0.905	1.018	
Flu_lag6	1.058	0.032	1.870	0.062	0.997	1.122	*
Flu_lag7	1.042	0.032	1.360	0.175	0.982	1.106	
Flu_lag8	1.029	0.031	0.960	0.336	0.971	1.091	
Flu_lag9	1.015	0.031	0.490	0.621	0.957	1.077	
Flu_lag10	1.004	0.030	0.140	0.892	0.947	1.065	
Flu_lag11	0.959	0.029	-1.390	0.166	0.905	1.017	
Flu_lag12	0.987	0.029	-0.440	0.662	0.932	1.046	
cos_1	1.583	0.098	7.440	0.000	1.403	1.787	***
cos_2	0.892	0.019	-5.470	0.000	0.856	0.929	***
cos_3	1.194	0.024	8.950	0.000	1.148	1.241	***
cos_4	1.085	0.022	4.050	0.000	1.043	1.129	***
sin_1	1.077	0.033	2.440	0.015	1.015	1.143	**
sin_2	0.945	0.020	-2.730	0.006	0.907	0.984	***
sin_3	1.215	0.025	9.450	0.000	1.167	1.265	***
sin_4	0.844	0.016	-8.960	0.000	0.813	0.876	***
Constant	6.831	1.169	11.230	0.000	4.884	9.553	***
lnalpha	-3.043	0.162	.b	.b	-3.360	-2.725	
Mean dependent var	7.538		SD depen	dent var	4.081		
Pseudo r-squared			Number o	f obs	1083		
Chi-square	605.790		Prob > ch	i2	0.000		
Akaike crit. (AIC)	5558.618	3	Bayesian	crit. (BIC)	5822.955		

H&W: holiday and weekend

xi: nbreg dailycounts pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

annong ennaren anaer r	, ages and	enpobule to		nemen eet	10 00 10 00 00	2010	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	0.994	0.016	-0.360	0.722	0.962	1.027	
SO ₂ _lag1	1.006	0.017	0.330	0.740	0.973	1.039	
SO ₂ _lag2	1.015	0.017	0.860	0.391	0.982	1.049	
SO ₂ _lag3	1.010	0.017	0.600	0.551	0.977	1.044	
SO ₂ _lag4	1.005	0.017	0.300	0.766	0.972	1.039	
SO ₂ _lag5	0.996	0.017	-0.230	0.821	0.964	1.029	
SO ₂ _lag6	1.011	0.017	0.670	0.503	0.978	1.045	
SO ₂ _lag7	1.012	0.017	0.730	0.466	0.980	1.046	
SO ₂ _lag8	1.014	0.016	0.870	0.382	0.983	1.047	
SO ₂ _lag9	1.018	0.017	1.090	0.277	0.986	1.051	
Temperature_lag0	1.002	0.005	0.380	0.702	0.992	1.012	
Temperature_lag1	0.996	0.007	-0.540	0.587	0.983	1.010	
Temperature_lag2	1.008	0.007	1.160	0.245	0.994	1.023	
Temperature_lag3	0.992	0.007	-1.130	0.260	0.978	1.006	
Temperature_lag4	1.001	0.007	0.090	0.929	0.987	1.015	
Temperature_lag5	0.999	0.007	-0.100	0.920	0.986	1.013	
Temperature_lag6	1.000	0.007	-0.070	0.947	0.986	1.014	
Temperature_lag7	1.001	0.007	0.130	0.893	0.987	1.015	
Temperature_lag8	1.002	0.007	0.260	0.799	0.988	1.016	
Temperature_lag9	1.010	0.007	1.530	0.125	0.997	1.024	
Temperature_lag10	0.995	0.005	-1.070	0.286	0.985	1.004	
Humidity_lag0	0.999	0.002	-0.480	0.629	0.995	1.003	
Humidity_lag1	0.999	0.002	-0.520	0.606	0.994	1.003	
Humidity_lag2	1.001	0.002	0.460	0.644	0.996	1.006	
Humidity_lag3	1.000	0.002	-0.130	0.900	0.995	1.004	
Humidity_lag4	1.001	0.002	0.430	0.664	0.996	1.006	
Humidity_lag5	0.997	0.002	-1.070	0.285	0.993	1.002	
Humidity_lag6	1.001	0.002	0.270	0.786	0.996	1.005	
Humidity_lag7	0.999	0.002	-0.490	0.626	0.994	1.004	
Humidity_lag8	1.002	0.002	0.940	0.349	0.997	1.007	
Humidity_lag9	1.000	0.002	-0.170	0.867	0.995	1.004	
Humidity_lag10	1.001	0.002	0.580	0.564	0.997	1.006	
Humidity_lag11	0.999	0.002	-0.240	0.809	0.995	1.004	
Humidity_lag12	1.000	0.002	0.140	0.889	0.996	1.005	
Humidity_lag13	0.999	0.002	-0.540	0.589	0.995	1.003	

Table 3.10 Results of time-series three-year model of associations between daily respiratory ED visits among children under 17 ages and exposure to SO_2 in Edmonton between 2016 to 2018

0b.H&W	1.000					•	
1.H&W	1.066	0.038	1.810	0.070	0.995	1.142	*
Flu_lag0	0.977	0.034	-0.660	0.507	0.913	1.046	
Flu_lag1	0.949	0.033	-1.510	0.130	0.886	1.016	
Flu_lag2	0.906	0.031	-2.870	0.004	0.847	0.969	***
Flu_lag3	1.040	0.036	1.120	0.265	0.971	1.114	
Flu_lag4	1.005	0.035	0.130	0.896	0.938	1.076	
Flu_lag5	0.956	0.034	-1.270	0.203	0.892	1.025	
Flu_lag6	1.050	0.038	1.370	0.171	0.979	1.127	
Flu_lag7	1.072	0.039	1.940	0.052	0.999	1.151	*
Flu_lag8	1.055	0.037	1.530	0.126	0.985	1.130	
Flu_lag9	1.061	0.038	1.680	0.093	0.990	1.138	*
Flu_lag10	1.038	0.036	1.060	0.289	0.969	1.111	
Flu_lag11	0.980	0.034	-0.570	0.569	0.916	1.049	
Flu_lag12	0.962	0.033	-1.130	0.257	0.899	1.029	
cos_1	1.596	0.107	6.960	0.000	1.399	1.820	***
cos_2	0.922	0.025	-3.050	0.002	0.875	0.971	***
cos_3	1.165	0.029	6.050	0.000	1.109	1.224	***
cos_4	1.090	0.027	3.470	0.001	1.038	1.145	***
sin_1	1.067	0.040	1.720	0.086	0.991	1.148	*
sin_2	0.901	0.025	-3.760	0.000	0.854	0.952	***
sin_3	1.178	0.031	6.280	0.000	1.119	1.239	***
sin_4	0.877	0.021	-5.430	0.000	0.837	0.920	***
Constant	13.856	5.517	6.600	0.000	6.349	30.238	***
lnalpha	-3.671	0.342	.b	.b	-4.342	-3.000	
Mean dependent var	7.344		SD depe	ndent var	3.975		
Pseudo r-squared	0.110		Number	of obs	674		
Chi-square	407.782		Prob > c	hi2	0.000		
Akaike crit. (AIC)	3411.074		Bayesia	n crit. (BIC)	3677.354		

H&W: holiday & weekend

xi: nbreg dailycounts so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

3.2.3 Results of time-series sex-stratified models

Tables 3.11 to 3.20 present the adjusted results of the sex-stratified models for the five air pollutants and selected lags over the study period. IRRs and 95% confidence intervals for daily respiratory ED visits by different sex are shown as a one unit increase in the natural log of air pollutants concentrations. In other words, expected daily respiratory ED visits among children

increased by [(IRR-1) * 100] % when air pollutant concentration increased (e-1) times after adjusting for other variables (e: Euler's number. The value is approximately 2.71828). For male children, strong evidence of a positive association between daily respiratory ED visits and 4-, 6-, and 8-day lag exposures to NO₂ was found. The estimated IRR was 1.071 (95%CI: 1.009-1.137), indicating a 7.1% significant increase in expected daily respiratory ED visits of male children for one unit increase of natural log of 4-day lag NO₂ concentration after adjusting for other variables. The results also show evidence of positive associations between daily respiratory ED visits and exposure to 5- and 11-day lags of O₃ concentration. The estimated IRR was 1.109 (95%CI: 1.017-1.210). No significant associations of exposure to CO, PM_{2.5}, and SO₂ were found for male children. For female children, there were no significant associations between daily respiratory ED visits and exposure to the five pollutants.

For female children, both AIC and BIC in sex-stratified models of CO, NO₂, O₃, and PM_{2.5} were larger than in the baseline models. Both AIC and BIC in SO₂ sex-stratified model were smaller than in the baseline model. Results of the female sex-stratified baseline model is presented in Appendix 2 Table A 2.2. For male children, AIC in CO and NO₂ sex-stratified models were smaller than in the baseline model, and BIC were larger than in the baseline model. Both AIC and BIC in O₃ and PM_{2.5} sex-stratified models were larger than in the baseline model. Both AIC and BIC in SO₂ sex-stratified models were smaller than in the baseline model were smaller than in the baseline model are presented in the baseline model. Results of the male sex-stratified baseline model were smaller than in the baseline model. Both AIC and BIC in SO₂ sex-stratified models were smaller than in the baseline model. Both AIC and BIC in SO₂ sex-stratified models were smaller than in the baseline model model were smaller than in the baseline model. Both AIC and BIC in SO₂ sex-stratified models were smaller than in the baseline model. Both AIC and BIC in SO₂ sex-stratified models were smaller than in the baseline model. Results of the male sex-stratified baseline model are presented in Appendix 2 Table A 2.3.

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.946	0.094	-0.570	0.572	0.778	1.148	
CO_lag1	0.984	0.081	-0.200	0.843	0.837	1.156	
CO_lag2	0.966	0.109	-0.310	0.758	0.775	1.204	
CO_lag3	0.984	0.081	-0.200	0.843	0.837	1.156	
CO_lag4	0.998	0.107	-0.010	0.988	0.809	1.232	
CO_lag5	1.013	0.113	0.110	0.909	0.814	1.261	
CO_lag6	1.105	0.124	0.880	0.376	0.886	1.377	
CO_lag7	0.929	0.103	-0.660	0.508	0.747	1.155	
CO_lag8	1.039	0.104	0.380	0.702	0.854	1.265	
Temperature_lag0	1.003	0.007	0.410	0.683	0.989	1.017	
Temperature_lag1	1.001	0.010	0.090	0.925	0.982	1.020	
Temperature_lag2	1.015	0.010	1.550	0.121	0.996	1.034	

Table 3.11 Results of time-series sex-stratified model of associations between daily respiratory ED visits among female children and exposure to CO in Edmonton between 2016 to 2018

Temperature_lag3	0.980	0.010	-2.070	0.039	0.961	0.999	**
Temperature_lag4	1.017	0.010	1.760	0.079	0.998	1.037	*
Temperature_lag5	0.981	0.010	-2.000	0.045	0.962	1.000	**
Temperature_lag6	1.002	0.010	0.250	0.801	0.983	1.022	
Temperature_lag7	1.011	0.010	1.140	0.255	0.992	1.031	
Temperature_lag8	1.002	0.010	0.210	0.833	0.983	1.021	
Temperature_lag9	0.997	0.009	-0.320	0.747	0.979	1.016	
Temperature_lag10	1.002	0.007	0.310	0.754	0.989	1.016	
Humidity_lag0	1.000	0.002	-0.200	0.842	0.995	1.004	
Humidity_lag1	1.003	0.003	1.070	0.285	0.997	1.009	
Humidity_lag2	1.000	0.003	0.040	0.966	0.994	1.006	
Humidity_lag3	1.000	0.003	-0.150	0.882	0.994	1.006	
Humidity_lag4	1.000	0.003	-0.010	0.993	0.994	1.006	
Humidity_lag5	0.996	0.003	-1.330	0.182	0.990	1.002	
Humidity_lag6	1.002	0.003	0.600	0.548	0.996	1.008	
Humidity_lag7	1.000	0.003	-0.150	0.880	0.994	1.006	
Humidity_lag8	1.002	0.003	0.660	0.507	0.996	1.008	
Humidity_lag9	1.002	0.003	0.500	0.618	0.996	1.008	
Humidity_lag10	1.000	0.003	-0.150	0.881	0.994	1.005	
Humidity_lag11	1.001	0.003	0.360	0.719	0.995	1.007	
Humidity_lag12	0.999	0.003	-0.290	0.769	0.994	1.005	
Humidity_lag13	1.001	0.002	0.520	0.601	0.997	1.006	
0b.H&W	1.000						
1.H&W	1.063	0.049	1.340	0.179	0.972	1.163	
Flu_lag0	0.941	0.043	-1.350	0.177	0.861	1.028	
Flu_lag1	1.016	0.047	0.350	0.725	0.929	1.112	
Flu_lag2	0.938	0.043	-1.400	0.163	0.858	1.026	
Flu_lag3	1.011	0.046	0.230	0.815	0.924	1.105	
Flu_lag4	1.031	0.047	0.660	0.510	0.942	1.127	
Flu_lag5	1.006	0.046	0.130	0.899	0.919	1.101	
Flu_lag6	1.073	0.050	1.520	0.127	0.980	1.175	
Flu_lag7	1.089	0.051	1.840	0.066	0.994	1.193	*
Flu_lag8	1.023	0.047	0.490	0.627	0.934	1.119	
Flu_lag9	0.976	0.045	-0.540	0.592	0.892	1.068	
Flu_lag10	0.991	0.045	-0.200	0.838	0.906	1.083	
Flu_lag11	0.980	0.044	-0.450	0.651	0.896	1.071	
Flu_lag12	0.935	0.042	-1.480	0.138	0.856	1.022	
cos_1	1.767	0.171	5.880	0.000	1.462	2.137	***
cos_2	0.908	0.030	-2.960	0.003	0.852	0.968	***
cos_3	1.277	0.040	7.840	0.000	1.202	1.358	***
cos_4	1.042	0.032	1.340	0.180	0.981	1.107	
sin_1	1.137	0.054	2.710	0.007	1.036	1.248	***

sin_2	0.938	0.030	-2.010	0.045	0.881	0.998	**
sin_3	1.191	0.038	5.490	0.000	1.119	1.268	***
sin_4	0.839	0.025	-5.950	0.000	0.792	0.889	***
Constant	1.713	0.547	1.680	0.092	0.916	3.204	*
lnalpha	-2.588	0.252	.b	.b	-3.083	-2.093	
Mean dependent var	2.820		SD deper	ndent var	2.144		
Pseudo r-squared			Number	Number of obs			
Chi-square	330.918		Prob > ch	Prob > chi2			
Akaike crit. (AIC)	4280.690)	Bayesian	crit. (BIC)	4564.977		

H&W: holiday and weekend

xi: nbreg female colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*,constraints(1/1) irr

among male children an	ia exposure		amonion d	etween 20	10 10 2018		
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.929	0.050	-1.370	0.172	0.835	1.033	
CO_lag1	0.895	0.072	-1.380	0.166	0.765	1.047	
CO_lag2	1.041	0.084	0.500	0.614	0.890	1.219	
CO_lag3	0.929	0.050	-1.370	0.172	0.835	1.033	
CO_lag4	0.929	0.037	-1.840	0.066	0.859	1.005	*
CO_lag5	0.929	0.037	-1.840	0.066	0.859	1.005	*
CO_lag6	0.950	0.076	-0.640	0.519	0.812	1.111	
CO_lag7	0.929	0.037	-1.840	0.066	0.859	1.005	*
CO_lag8	1.098	0.077	1.320	0.185	0.956	1.261	
Temperature_lag0	1.011	0.005	2.080	0.038	1.001	1.021	**
Temperature_lag1	0.989	0.007	-1.440	0.150	0.975	1.004	
Temperature_lag2	1.004	0.008	0.560	0.574	0.990	1.019	
Temperature_lag3	1.004	0.007	0.500	0.618	0.989	1.018	
Temperature_lag4	0.999	0.007	-0.080	0.936	0.985	1.014	
Temperature_lag5	1.006	0.007	0.780	0.433	0.991	1.020	
Temperature_lag6	0.998	0.007	-0.280	0.780	0.984	1.012	
Temperature_lag7	0.992	0.007	-1.020	0.306	0.978	1.007	
Temperature_lag8	1.001	0.007	0.160	0.875	0.987	1.016	
Temperature_lag9	1.013	0.007	1.820	0.068	0.999	1.027	*
Temperature_lag10	0.990	0.005	-2.020	0.043	0.980	1.000	**
Humidity_lag0	1.001	0.002	0.370	0.712	0.997	1.004	
Humidity_lag1	0.997	0.002	-1.490	0.136	0.992	1.001	
Humidity_lag2	1.000	0.002	0.060	0.954	0.996	1.005	
Humidity_lag3	1.000	0.002	0.130	0.895	0.996	1.005	
Humidity_lag4	1.002	0.002	0.690	0.492	0.997	1.006	

Table 3.12 Results of time-series sex-stratified model of associations between daily respiratory ED visits among male children and exposure to CO in Edmonton between 2016 to 2018

Humidity_lag5	1.002	0.002	0.700	0.482	0.997	1.006	
Humidity_lag6	0.999	0.002	-0.660	0.509	0.994	1.003	
Humidity_lag7	0.998	0.002	-0.760	0.449	0.994	1.003	
Humidity_lag8	1.001	0.002	0.560	0.578	0.997	1.006	
Humidity_lag9	1.000	0.002	0.110	0.910	0.996	1.005	
Humidity_lag10	1.002	0.002	0.910	0.361	0.998	1.006	
Humidity_lag11	0.998	0.002	-0.720	0.469	0.994	1.003	
Humidity_lag12	1.000	0.002	0.190	0.845	0.996	1.005	
Humidity_lag13	1.000	0.002	0.250	0.805	0.997	1.004	
0b.H&W	1.000						
1.H&W	1.082	0.036	2.360	0.018	1.013	1.155	**
Flu_lag0	1.014	0.035	0.420	0.677	0.949	1.085	
Flu_lag1	0.970	0.034	-0.890	0.374	0.906	1.038	
Flu_lag2	0.944	0.033	-1.660	0.096	0.882	1.010	*
Flu_lag3	1.031	0.035	0.890	0.372	0.964	1.103	
Flu_lag4	1.008	0.035	0.220	0.826	0.942	1.078	
Flu_lag5	0.932	0.032	-2.010	0.044	0.871	0.998	**
Flu_lag6	1.056	0.037	1.560	0.119	0.986	1.130	
Flu_lag7	1.011	0.035	0.320	0.747	0.944	1.083	
Flu_lag8	1.034	0.036	0.970	0.330	0.967	1.106	
Flu_lag9	1.042	0.036	1.190	0.233	0.974	1.115	
Flu_lag10	1.008	0.035	0.240	0.812	0.942	1.079	
Flu_lag11	0.943	0.033	-1.690	0.091	0.881	1.009	*
Flu_lag12	1.017	0.035	0.490	0.623	0.951	1.087	
cos_1	1.590	0.118	6.260	0.000	1.375	1.839	***
\cos_2	0.876	0.021	-5.590	0.000	0.836	0.918	***
cos_3	1.153	0.026	6.270	0.000	1.103	1.205	***
cos_4	1.108	0.025	4.540	0.000	1.060	1.158	***
sin_1	1.062	0.038	1.690	0.091	0.990	1.140	*
sin_2	0.952	0.023	-2.040	0.042	0.909	0.998	**
sin_3	1.226	0.029	8.700	0.000	1.171	1.284	***
sin_4	0.843	0.018	-7.840	0.000	0.808	0.880	***
Constant	2.293	0.554	3.440	0.001	1.429	3.680	***
lnalpha	-3.602	0.372	.b	.b	-4.331	-2.873	
Mean dependent var	4.718		SD depe	endent var	2.782		
Pseudo r-squared			Number	of obs	1083		
Chi-square	440.540		Prob > c	chi2	0.000		
Akaike crit. (AIC)	4859.192		Bayesia	n crit. (BIC)	5133.504		

H&W: holiday and weekend

xi: nbreg male colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*,constraints(1/3) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ _lag0	0.999	0.031	-0.020	0.984	0.940	1.062	
NO ₂ _lag1	0.982	0.028	-0.660	0.510	0.929	1.038	
NO ₂ _lag2	0.999	0.031	-0.020	0.984	0.940	1.062	
NO ₂ _lag3	1.024	0.036	0.670	0.501	0.955	1.098	
NO ₂ _lag4	1.043	0.065	0.690	0.492	0.924	1.178	
NO ₂ _lag5	1.107	0.067	1.680	0.094	0.983	1.247	*
NO ₂ _lag6	1.024	0.036	0.670	0.501	0.955	1.098	
NO ₂ _lag7	0.944	0.058	-0.940	0.348	0.836	1.065	
NO ₂ _lag8	0.982	0.028	-0.660	0.510	0.929	1.038	
NO ₂ _lag9	1.024	0.036	0.670	0.501	0.955	1.098	
NO ₂ _lag10	0.999	0.031	-0.020	0.984	0.940	1.062	
NO ₂ _lag11	0.920	0.052	-1.470	0.142	0.823	1.028	
NO ₂ _lag12	0.982	0.028	-0.660	0.510	0.929	1.038	
NO ₂ _lag13	0.999	0.031	-0.020	0.984	0.940	1.062	
NO ₂ _lag14	0.982	0.028	-0.660	0.510	0.929	1.038	
Temperature_lag0	1.002	0.007	0.250	0.806	0.989	1.015	
Temperature_lag1	1.002	0.009	0.270	0.788	0.985	1.021	
Temperature_lag2	1.014	0.010	1.400	0.161	0.995	1.033	
Temperature_lag3	0.978	0.010	-2.190	0.028	0.959	0.998	**
Temperature_lag4	1.017	0.010	1.640	0.102	0.997	1.037	
Temperature_lag5	0.981	0.010	-1.920	0.055	0.962	1.000	*
Temperature_lag6	1.006	0.010	0.590	0.553	0.986	1.026	
Temperature_lag7	1.012	0.010	1.270	0.204	0.993	1.032	
Temperature_lag8	1.001	0.010	0.130	0.898	0.982	1.020	
Temperature_lag9	0.997	0.009	-0.270	0.786	0.979	1.016	
Temperature_lag10	1.004	0.007	0.520	0.602	0.990	1.017	
Humidity_lag0	1.000	0.002	-0.120	0.907	0.995	1.005	
Humidity_lag1	1.003	0.003	1.110	0.266	0.997	1.009	
Humidity_lag2	0.999	0.003	-0.190	0.853	0.994	1.005	
Humidity_lag3	1.000	0.003	-0.110	0.912	0.994	1.006	
Humidity_lag4	1.000	0.003	0.100	0.924	0.994	1.006	
Humidity_lag5	0.997	0.003	-1.070	0.285	0.991	1.003	
Humidity_lag6	1.003	0.003	0.890	0.374	0.997	1.009	
Humidity_lag7	0.999	0.003	-0.280	0.783	0.993	1.005	
Humidity_lag8	1.002	0.003	0.670	0.504	0.996	1.008	
Humidity_lag9	1.002	0.003	0.570	0.570	0.996	1.008	
Humidity_lag10	1.000	0.003	-0.170	0.868	0.994	1.005	
Humidity_lag11	1.001	0.003	0.270	0.790	0.995	1.006	

Table 3.13 Results of time-series sex-stratified model of associations between daily respiratory ED visits among female children and exposure to NO_2 in Edmonton between 2016 to 2018

Humidity_lag12	0.999	0.003	-0.500	0.619	0.993	1.004	
Humidity_lag13	1.001	0.002	0.420	0.677	0.996	1.005	
0b.H&W	1.000				•		
1.H&W	1.038	0.050	0.770	0.440	0.944	1.141	
Flu_lag0	0.942	0.042	-1.320	0.186	0.863	1.029	
Flu_lag1	1.020	0.046	0.440	0.659	0.934	1.115	
Flu_lag2	0.935	0.042	-1.500	0.134	0.856	1.021	
Flu_lag3	1.013	0.046	0.280	0.780	0.927	1.107	
Flu_lag4	1.027	0.047	0.590	0.555	0.940	1.123	
Flu_lag5	1.001	0.046	0.010	0.990	0.915	1.094	
Flu_lag6	1.065	0.049	1.380	0.168	0.974	1.165	
Flu_lag7	1.089	0.050	1.860	0.063	0.995	1.192	*
Flu_lag8	1.016	0.047	0.340	0.736	0.928	1.111	
Flu_lag9	0.978	0.045	-0.490	0.624	0.894	1.069	
Flu_lag10	0.985	0.045	-0.320	0.747	0.901	1.077	
Flu_lag11	0.980	0.044	-0.440	0.662	0.897	1.071	
Flu_lag12	0.937	0.042	-1.460	0.145	0.858	1.023	
cos_1	1.847	0.237	4.780	0.000	1.436	2.375	***
cos_2	0.907	0.029	-3.000	0.003	0.852	0.967	***
cos_3	1.284	0.040	8.010	0.000	1.208	1.365	***
cos_4	1.049	0.032	1.600	0.110	0.989	1.114	
sin_1	1.172	0.058	3.200	0.001	1.064	1.292	***
sin_2	0.939	0.031	-1.910	0.056	0.880	1.002	*
sin_3	1.194	0.037	5.660	0.000	1.123	1.270	***
sin_4	0.838	0.025	-6.030	0.000	0.791	0.887	***
Constant	1.768	1.245	0.810	0.419	0.445	7.032	
lnalpha	-2.634	0.262	.b	.b	-3.147	-2.121	
Mean dependent var	2.821		SD depe	ndent var	2.145		
Pseudo r-squared	•		Number	of obs	1082		
Chi-square	341.225		Prob > c	hi2	0.000		
Akaike crit. (AIC)	4267.785	5	Bayesia	n crit. (BIC)	4547.033		

H&W: holiday and weekend

xi: nbreg female no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/8) irr

 Table 3.14 Results of time-series sex-stratified model of associations between daily respiratory ED visits among male children and exposure to NO2 in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ lag0	1.003	0.024	0.150	0.883	0.958	1.051	
NO ₂ lag1	0.932	0.041	-1.610	0.107	0.855	1.015	
NO ₂ lag2	1.035	0.035	1.010	0.313	0.968	1.105	

NO ₂ lag3	0.970	0.031	-0.960	0.337	0.912	1.032	
NO ₂ _lag4	1.071	0.033	2.240	0.025	1.009	1.137	**
NO ₂ _lag5	0.941	0.034	-1.690	0.090	0.876	1.010	*
NO2_lag6	1.071	0.033	2.240	0.025	1.009	1.137	**
NO ₂ lag7	0.941	0.034	-1.690	0.090	0.876	1.010	*
NO2_lag8	1.071	0.033	2.240	0.025	1.009	1.137	**
NO ₂ lag9	0.970	0.031	-0.960	0.337	0.912	1.032	
NO ₂ lag10	1.003	0.024	0.150	0.883	0.958	1.051	
NO ₂ lag11	1.003	0.024	0.150	0.883	0.958	1.051	
NO ₂ lag12	0.911	0.039	-2.160	0.031	0.838	0.991	**
NO ₂ lag13	1.035	0.035	1.010	0.313	0.968	1.105	
NO ₂ lag14	1.018	0.043	0.430	0.668	0.937	1.106	
Temperature_lag0	1.010	0.005	1.830	0.067	0.999	1.020	*
Temperature_lag1	0.990	0.007	-1.440	0.149	0.976	1.004	
Temperature_lag2	1.005	0.008	0.640	0.521	0.990	1.020	
Temperature_lag3	1.000	0.008	-0.050	0.956	0.985	1.015	
Temperature_lag4	1.002	0.008	0.250	0.804	0.987	1.017	
Temperature_lag5	1.002	0.007	0.320	0.752	0.988	1.017	
Temperature_lag6	1.000	0.007	-0.050	0.964	0.985	1.014	
Temperature_lag7	0.993	0.007	-1.000	0.316	0.978	1.007	
Temperature_lag8	1.003	0.007	0.460	0.648	0.989	1.018	
Temperature_lag9	1.013	0.007	1.780	0.075	0.999	1.027	*
Temperature_lag10	0.991	0.005	-1.670	0.096	0.981	1.002	*
Humidity_lag0	1.000	0.002	0.240	0.814	0.997	1.004	
Humidity_lag1	0.997	0.002	-1.550	0.121	0.992	1.001	
Humidity_lag2	1.000	0.002	0.020	0.982	0.996	1.005	
Humidity_lag3	1.000	0.002	0.000	0.999	0.996	1.004	
Humidity_lag4	1.002	0.002	0.800	0.426	0.997	1.006	
Humidity_lag5	1.002	0.002	0.740	0.461	0.997	1.006	
Humidity_lag6	0.998	0.002	-0.760	0.446	0.994	1.003	
Humidity_lag7	0.998	0.002	-0.680	0.495	0.994	1.003	
Humidity_lag8	1.002	0.002	0.880	0.378	0.998	1.006	
Humidity_lag9	1.000	0.002	0.220	0.830	0.996	1.005	
Humidity_lag10	1.002	0.002	0.900	0.366	0.998	1.006	
Humidity_lag11	0.999	0.002	-0.680	0.494	0.994	1.003	
Humidity_lag12	1.000	0.002	0.060	0.955	0.996	1.004	
Humidity_lag13	1.000	0.002	-0.010	0.994	0.997	1.003	
0b.H&W	1.000				•		
1.H&W	1.107	0.040	2.810	0.005	1.031	1.188	***
Flu_lag0	1.025	0.035	0.730	0.466	0.959	1.097	
Flu_lag1	0.971	0.034	-0.860	0.392	0.907	1.039	
Flu_lag2	0.947	0.033	-1.570	0.116	0.885	1.014	

Flu_lag3	1.025	0.035	0.700	0.484	0.957	1.096	
Flu_lag4	1.009	0.035	0.270	0.790	0.943	1.080	
Flu_lag5	0.925	0.032	-2.240	0.025	0.864	0.990	**
Flu_lag6	1.049	0.037	1.370	0.170	0.980	1.123	
Flu_lag7	1.013	0.036	0.380	0.705	0.946	1.085	
Flu_lag8	1.032	0.036	0.900	0.369	0.964	1.104	
Flu_lag9	1.038	0.036	1.090	0.278	0.970	1.111	
Flu_lag10	1.006	0.035	0.160	0.870	0.940	1.076	
Flu_lag11	0.946	0.033	-1.590	0.112	0.884	1.013	
Flu_lag12	1.016	0.035	0.470	0.635	0.951	1.087	
cos_1	1.556	0.152	4.510	0.000	1.284	1.885	***
cos_2	0.870	0.021	-5.900	0.000	0.830	0.911	***
cos_3	1.147	0.026	5.970	0.000	1.096	1.199	***
cos_4	1.129	0.025	5.430	0.000	1.081	1.180	***
sin_1	1.046	0.040	1.180	0.238	0.971	1.127	
sin_2	0.945	0.024	-2.260	0.024	0.900	0.993	**
sin_3	1.248	0.029	9.530	0.000	1.192	1.306	***
sin_4	0.843	0.018	-7.830	0.000	0.808	0.880	***
Constant	3.389	1.791	2.310	0.021	1.202	9.550	**
lnalpha	-3.553	0.356	.b	.b	-4.251	-2.854	
Mean dependent var	4.722		SD dep	endent var	2.781		
Pseudo r-squared			Number	r of obs	1082		
Chi-square	432.092		Prob >	chi2	0.000		
Akaike crit. (AIC)	4864.930)	Bayesia	n crit. (BIC)	5149.165		

H&W: holiday and weekend

xi: nbreg male no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/7) irr

among remaie cinture	en and exposur	e to O_3 in I		between 20	10 10 2018		
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	1.028	0.083	0.340	0.735	0.878	1.203	
O ₃ _lag1	1.024	0.088	0.280	0.782	0.865	1.212	
O ₃ _lag2	1.007	0.062	0.110	0.912	0.892	1.137	
O ₃ _lag3	1.013	0.079	0.170	0.867	0.869	1.182	
O ₃ _lag4	0.910	0.054	-1.590	0.111	0.809	1.022	
O ₃ _lag5	1.029	0.058	0.500	0.619	0.921	1.149	
O ₃ _lag6	0.901	0.072	-1.320	0.188	0.770	1.053	
O ₃ _lag7	1.007	0.062	0.110	0.912	0.892	1.137	
O ₃ _lag8	0.910	0.054	-1.590	0.111	0.809	1.022	

Table 3.15 Results of time-series sex-stratified model of associations between daily respiratory ED visits among female children and exposure to O₃ in Edmonton between 2016 to 2018

O ₃ _lag9	1.148	0.096	1.650	0.098	0.975	1.351	*
O ₃ _lag10	0.943	0.079	-0.710	0.480	0.801	1.110	
O ₃ lag11	1.029	0.058	0.500	0.619	0.921	1.149	
Temperature lag0	1.001	0.007	0.200	0.838	0.988	1.015	
Temperature_lag1	1.002	0.009	0.180	0.855	0.983	1.020	
Temperature_lag2	1.013	0.010	1.310	0.189	0.994	1.032	
Temperature_lag3	0.979	0.010	-2.150	0.031	0.960	0.998	**
Temperature_lag4	1.019	0.010	1.960	0.050	1.000	1.039	**
Temperature_lag5	0.981	0.010	-1.970	0.048	0.962	1.000	**
Temperature_lag6	1.002	0.010	0.210	0.831	0.983	1.021	
Temperature_lag7	1.009	0.010	0.960	0.335	0.990	1.029	
Temperature_lag8	1.007	0.010	0.680	0.500	0.988	1.026	
Temperature_lag9	0.994	0.009	-0.610	0.539	0.976	1.013	
Temperature_lag10	1.002	0.007	0.360	0.716	0.989	1.016	
Humidity_lag0	1.000	0.003	-0.050	0.959	0.994	1.005	
Humidity_lag1	1.003	0.003	1.070	0.285	0.997	1.010	
Humidity_lag2	1.000	0.003	-0.140	0.891	0.993	1.006	
Humidity_lag3	1.000	0.003	-0.010	0.991	0.994	1.006	
Humidity_lag4	0.999	0.003	-0.350	0.724	0.993	1.005	
Humidity_lag5	0.996	0.003	-1.150	0.249	0.990	1.003	
Humidity_lag6	1.000	0.003	-0.020	0.985	0.994	1.006	
Humidity_lag7	0.999	0.003	-0.170	0.867	0.993	1.006	
Humidity_lag8	1.001	0.003	0.470	0.639	0.995	1.008	
Humidity_lag9	1.003	0.003	0.940	0.348	0.997	1.009	
Humidity_lag10	0.999	0.003	-0.460	0.644	0.993	1.005	
Humidity_lag11	1.002	0.003	0.570	0.569	0.996	1.008	
Humidity_lag12	0.999	0.003	-0.200	0.841	0.994	1.005	
Humidity_lag13	1.001	0.002	0.320	0.748	0.996	1.005	
0b.H&W	1.000						
1.H&W	1.061	0.048	1.330	0.184	0.972	1.159	
Flu_lag0	0.934	0.042	-1.520	0.130	0.855	1.020	
Flu_lag1	1.023	0.046	0.510	0.613	0.936	1.119	
Flu_lag2	0.935	0.042	-1.490	0.136	0.855	1.022	
Flu_lag3	1.012	0.046	0.260	0.797	0.926	1.106	
Flu_lag4	1.032	0.047	0.690	0.490	0.944	1.128	
Flu_lag5	1.009	0.046	0.200	0.840	0.923	1.104	
Flu_lag6	1.064	0.049	1.360	0.173	0.973	1.165	
Flu_lag7	1.089	0.050	1.840	0.065	0.995	1.192	*
Flu_lag8	1.026	0.047	0.560	0.576	0.938	1.123	
Flu_lag9	0.970	0.045	-0.660	0.506	0.886	1.061	
Flu_lag10	0.997	0.046	-0.070	0.943	0.911	1.090	
Flu_lag11	0.984	0.044	-0.360	0.719	0.900	1.075	
Flu_lag12	0.938	0.042	-1.440	0.151	0.859	1.024	
cos_1	1.689	0.211	4.190	0.000	1.322	2.158	***

cos_2	0.903	0.030	-3.080	0.002	0.846	0.964	***
cos_3	1.274	0.040	7.640	0.000	1.198	1.356	***
cos_4	1.049	0.032	1.560	0.119	0.988	1.115	
sin_1	1.141	0.054	2.800	0.005	1.040	1.252	***
sin_2	0.942	0.032	-1.790	0.074	0.882	1.006	*
sin_3	1.186	0.040	5.020	0.000	1.110	1.268	***
sin_4	0.839	0.025	-5.970	0.000	0.792	0.888	***
Constant	1.561	0.664	1.050	0.295	0.679	3.591	
lnalpha	-2.613	0.257	.b	.b	-3.118	-2.109	
Mean dependent var	2.820		SD depe	endent var	2.144		
Pseudo r-squared			Number	of obs	1083		
Chi-square	337.238		Prob > c	chi2	0.000		
Akaike crit. (AIC)	4277.892	2	Bayesia	n crit. (BIC)	4567.167		

H&W: holiday and weekend

xi: nbreg female o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	1.002	0.035	0.060	0.952	0.935	1.074	
O ₃ _lag1	1.002	0.035	0.060	0.952	0.935	1.074	
O ₃ _lag2	1.052	0.048	1.110	0.265	0.962	1.150	
O ₃ _lag3	0.946	0.058	-0.910	0.362	0.839	1.066	
O ₃ _lag4	0.936	0.042	-1.470	0.142	0.858	1.022	
O3_lag5	1.109	0.049	2.350	0.019	1.017	1.210	**
O ₃ _lag6	0.936	0.042	-1.470	0.142	0.858	1.022	
O ₃ _lag7	0.964	0.059	-0.600	0.548	0.854	1.087	
O ₃ _lag8	1.052	0.048	1.110	0.265	0.962	1.150	
O ₃ _lag9	1.071	0.069	1.060	0.289	0.943	1.215	
O ₃ lag10	0.970	0.061	-0.490	0.625	0.857	1.097	
O ₃ lag11	1.109	0.049	2.350	0.019	1.017	1.210	**
Temperature_lag0	1.008	0.005	1.520	0.127	0.998	1.018	
Temperature_lag1	0.992	0.007	-1.100	0.272	0.978	1.006	
Temperature_lag2	1.002	0.007	0.270	0.787	0.987	1.017	
Temperature_lag3	1.002	0.007	0.290	0.770	0.988	1.017	
Temperature_lag4	1.002	0.007	0.280	0.781	0.988	1.017	
Temperature_lag5	1.004	0.007	0.480	0.628	0.989	1.018	
Temperature_lag6	0.997	0.007	-0.420	0.671	0.983	1.011	
Temperature_lag7	0.996	0.007	-0.540	0.589	0.982	1.011	
Temperature_lag8	1.003	0.007	0.430	0.668	0.989	1.018	

Table 3.16 Results of time-series sex-stratified model of associations between daily respiratory ED visits among male children and exposure to O_3 in Edmonton between 2016 to 2018

Temperature_lag9	1.012	0.007	1.600	0.110	0.997	1.026	
Temperature_lag10	0.992	0.005	-1.490	0.135	0.982	1.002	
Humidity_lag0	1.001	0.002	0.440	0.662	0.997	1.005	
Humidity_lag1	0.997	0.002	-1.460	0.144	0.992	1.001	
Humidity_lag2	1.001	0.002	0.310	0.759	0.996	1.005	
Humidity_lag3	0.999	0.002	-0.360	0.717	0.994	1.004	
Humidity_lag4	1.001	0.002	0.390	0.697	0.996	1.006	
Humidity_lag5	1.003	0.002	1.170	0.243	0.998	1.007	
Humidity_lag6	0.998	0.002	-1.050	0.293	0.993	1.002	
Humidity_lag7	0.998	0.002	-0.680	0.499	0.994	1.003	
Humidity_lag8	1.003	0.002	1.180	0.238	0.998	1.007	
Humidity_lag9	1.001	0.002	0.230	0.821	0.996	1.005	
lumidity_lag10	1.002	0.002	0.820	0.410	0.997	1.006	
Humidity_lag11	1.000	0.002	0.170	0.865	0.996	1.005	
lumidity_lag12	1.001	0.002	0.370	0.709	0.997	1.005	
Humidity_lag13	1.000	0.002	-0.020	0.981	0.997	1.003	
)b.H&W	1.000						
.H&W	1.104	0.037	2.960	0.003	1.034	1.179	***
lu_lag0	1.009	0.035	0.250	0.800	0.943	1.079	
Flu_lag1	0.984	0.034	-0.460	0.646	0.920	1.053	
Flu_lag2	0.931	0.032	-2.070	0.038	0.870	0.996	**
Flu_lag3	1.034	0.036	0.980	0.329	0.967	1.106	
Flu_lag4	1.015	0.035	0.440	0.659	0.949	1.086	
Flu_lag5	0.928	0.032	-2.140	0.033	0.867	0.994	**
'lu_lag6	1.045	0.036	1.250	0.212	0.975	1.119	
Flu_lag7	1.021	0.036	0.590	0.553	0.953	1.094	
Flu_lag8	1.026	0.035	0.730	0.466	0.958	1.097	
Flu_lag9	1.034	0.036	0.970	0.331	0.966	1.108	
Flu_lag10	1.015	0.035	0.440	0.658	0.949	1.087	
Flu_lag11	0.941	0.033	-1.740	0.082	0.880	1.008	*
Flu_lag12	1.016	0.035	0.450	0.651	0.950	1.086	
cos_1	1.604	0.153	4.970	0.000	1.331	1.933	***
cos_2	0.873	0.021	-5.560	0.000	0.832	0.916	***
cos_3	1.150	0.027	5.980	0.000	1.098	1.203	***
cos_4	1.123	0.026	5.060	0.000	1.074	1.175	***
sin_1	1.040	0.037	1.090	0.277	0.969	1.115	
sin 2	0.933	0.024	-2.750	0.006	0.888	0.980	***
sin_3	1.262	0.032	9.250	0.000	1.201	1.326	***
sin_4	0.839	0.018	-7.990	0.000	0.804	0.876	***
Constant	5.261	1.681	5.200	0.000	2.813	9.842	***
nalpha	-3.536	0.352	.b	.b	-4.227	-2.846	
lnalpha Mean dependent var	-3.536 4.718	0.352	.b SD depe	.b endent var	-4.227 2.782	-2.846	
Pseudo r-squared		Number of obs	1083				
--------------------	----------	----------------------	----------				
Chi-square	428.832	Prob > chi2	0.000				
Akaike crit. (AIC)	4872.837	Bayesian crit. (BIC)	5157.124				

H&W: holiday and weekend

xi: nbreg male o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

Table 3.17 Results of time-series sex-stratified model of associations between daily respiratory ED visits among female children and exposure to $PM_{2.5}$ in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.979	0.041	-0.510	0.610	0.901	1.063	_
PM _{2.5} _lag1	0.989	0.026	-0.410	0.684	0.939	1.042	
PM _{2.5} _lag2	0.989	0.026	-0.410	0.684	0.939	1.042	
PM _{2.5} _lag3	1.013	0.046	0.280	0.778	0.926	1.108	
PM _{2.5} _lag4	1.004	0.019	0.190	0.850	0.967	1.041	
PM _{2.5} _lag5	1.004	0.019	0.190	0.850	0.967	1.041	
PM _{2.5} _lag6	1.004	0.019	0.190	0.850	0.967	1.041	
PM _{2.5} _lag7	0.969	0.040	-0.770	0.443	0.894	1.050	
Temperature_lag0	1.003	0.007	0.410	0.680	0.989	1.016	
Temperature_lag1	1.001	0.010	0.130	0.894	0.983	1.020	
Temperature_lag2	1.014	0.010	1.410	0.159	0.995	1.033	
Temperature_lag3	0.979	0.010	-2.150	0.031	0.960	0.998	**
Temperature_lag4	1.018	0.010	1.820	0.068	0.999	1.038	*
Temperature_lag5	0.982	0.009	-1.890	0.058	0.964	1.001	*
Temperature_lag6	1.003	0.010	0.280	0.777	0.984	1.022	
Temperature_lag7	1.011	0.010	1.170	0.241	0.992	1.031	
Temperature_lag8	1.002	0.010	0.230	0.816	0.984	1.021	
Temperature_lag9	0.997	0.009	-0.330	0.740	0.979	1.015	
Temperature_lag1 0	1.001	0.007	0.200	0.843	0.988	1.015	
Humidity_lag0	1.000	0.003	-0.070	0.946	0.995	1.005	
Humidity_lag1	1.003	0.003	1.010	0.313	0.997	1.009	
Humidity_lag2	1.000	0.003	-0.040	0.965	0.994	1.006	
Humidity_lag3	0.999	0.003	-0.190	0.848	0.993	1.005	
Humidity_lag4	1.000	0.003	0.050	0.957	0.994	1.006	
Humidity_lag5	0.996	0.003	-1.280	0.200	0.990	1.002	
Humidity_lag6	1.002	0.003	0.660	0.507	0.996	1.008	
Humidity_lag7	1.000	0.003	-0.130	0.897	0.994	1.006	
Humidity_lag8	1.002	0.003	0.720	0.471	0.996	1.008	
Humidity_lag9	1.001	0.003	0.460	0.647	0.995	1.007	
Humidity_lag10	0.999	0.003	-0.190	0.848	0.994	1.005	

Humidity_lag11	1.001	0.003	0.340	0.733	0.995	1.007	
Humidity_lag12	0.999	0.003	-0.310	0.756	0.994	1.005	
Humidity_lag13	1.001	0.002	0.440	0.663	0.997	1.005	
0b.H&W	1.000						
1.H&W	1.055	0.047	1.180	0.236	0.966	1.152	
Flu_lag0	0.936	0.042	-1.450	0.146	0.857	1.023	
Flu_lag1	1.016	0.046	0.350	0.725	0.930	1.111	
Flu_lag2	0.934	0.042	-1.500	0.133	0.855	1.021	
Flu_lag3	1.012	0.046	0.270	0.790	0.926	1.106	
Flu_lag4	1.032	0.047	0.690	0.493	0.944	1.128	
Flu_lag5	1.008	0.046	0.180	0.860	0.922	1.103	
Flu_lag6	1.070	0.049	1.480	0.140	0.978	1.171	
Flu_lag7	1.092	0.050	1.910	0.057	0.998	1.196	*
Flu_lag8	1.020	0.047	0.440	0.662	0.932	1.117	
Flu_lag9	0.976	0.045	-0.530	0.595	0.892	1.068	
Flu_lag10	0.989	0.045	-0.230	0.815	0.905	1.082	
Flu_lag11	0.983	0.044	-0.380	0.702	0.900	1.074	
Flu_lag12	0.934	0.042	-1.510	0.131	0.856	1.020	
cos_1	1.766	0.165	6.090	0.000	1.470	2.120	***
cos_2	0.911	0.030	-2.820	0.005	0.854	0.972	***
cos_3	1.281	0.040	7.930	0.000	1.205	1.362	***
cos_4	1.036	0.033	1.130	0.259	0.974	1.102	
sin_1	1.140	0.053	2.830	0.005	1.041	1.249	***
sin_2	0.942	0.030	-1.850	0.065	0.885	1.004	*
sin_3	1.186	0.038	5.290	0.000	1.113	1.263	***
sin_4	0.839	0.025	-5.920	0.000	0.792	0.889	***
Constant	2.022	0.533	2.670	0.007	1.207	3.388	***
lnalpha	-2.587	0.252	.b	.b	-3.082	-2.093	
Mean dependent	2 820		SD depend	lent var	2 144		
var	2.020				2.177		
Pseudo r-squared	•		Number of	fobs	1083		
Chi-square	331.083		Prob > chi	2	0.000		
Akaike crit. (AIC)	4274.908		Bayesian c	crit. (BIC)	4544.232		

H&W: holiday and weekend

xi: nbreg female pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Table 3.18 Results of time-series sex-stratified model of associations between daily respiratory ED visits among male children and exposure to PM_{2.5} in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.999	0.024	-0.060	0.951	0.953	1.046	

PM _{2.5} _lag1	0.956	0.033	-1.310	0.190	0.893	1.023	
PM _{2.5} _lag2	0.993	0.025	-0.280	0.783	0.945	1.044	
PM _{2.5} _lag3	0.999	0.024	-0.060	0.951	0.953	1.046	
PM _{2.5} _lag4	0.967	0.033	-0.990	0.324	0.904	1.034	
PM _{2.5} lag5	0.993	0.025	-0.280	0.783	0.945	1.044	
$PM_{2.5}$ lag6	0.967	0.035	-0.940	0.348	0.901	1.038	
$PM_{2.5}$ lag7	1.022	0.034	0.650	0.517	0.958	1.090	
Temperature lag0	1.009	0.005	1.700	0.090	0.999	1.019	*
Temperature_lag1	0.992	0.007	-1.130	0.258	0.978	1.006	
Temperature_lag2	1.002	0.008	0.320	0.750	0.988	1.017	
Temperature_lag3	1.004	0.008	0.500	0.619	0.989	1.019	
Temperature_lag4	0.999	0.007	-0.110	0.911	0.985	1.014	
Temperature_lag5	1.006	0.008	0.790	0.430	0.991	1.021	
Temperature_lag6	0.996	0.007	-0.490	0.625	0.982	1.011	
Temperature_lag7	0.992	0.007	-1.020	0.306	0.978	1.007	
Temperature_lag8	1.004	0.007	0.470	0.638	0.989	1.018	
Temperature_lag9	1.013	0.007	1.750	0.080	0.999	1.027	*
Temperature_lag10	0.991	0.005	-1.800	0.071	0.981	1.001	*
Humidity_lag0	1.001	0.002	0.360	0.722	0.997	1.004	
Humidity_lag1	0.997	0.002	-1.190	0.236	0.993	1.002	
Humidity_lag2	1.000	0.002	0.000	0.998	0.995	1.005	
Humidity_lag3	1.000	0.002	-0.060	0.954	0.995	1.004	
Humidity_lag4	1.002	0.002	0.860	0.389	0.997	1.006	
Humidity_lag5	1.001	0.002	0.590	0.553	0.997	1.006	
Humidity_lag6	0.999	0.002	-0.620	0.538	0.994	1.003	
Humidity_lag7	0.998	0.002	-0.960	0.337	0.993	1.002	
Humidity_lag8	1.002	0.002	0.940	0.345	0.998	1.007	
Humidity_lag9	1.000	0.002	-0.010	0.989	0.996	1.004	
Humidity_lag10	1.002	0.002	0.950	0.341	0.998	1.006	
Humidity_lag11	0.999	0.002	-0.680	0.496	0.994	1.003	
Humidity_lag12	1.001	0.002	0.340	0.730	0.997	1.005	
Humidity_lag13	1.000	0.002	-0.090	0.926	0.997	1.003	
0b.H&W	1.000						
1.H&W	1.094	0.036	2.690	0.007	1.024	1.167	***
Flu_lag0	1.015	0.035	0.430	0.668	0.949	1.086	
Flu_lag1	0.977	0.034	-0.660	0.507	0.913	1.046	
Flu_lag2	0.938	0.032	-1.860	0.062	0.876	1.003	*
Flu_lag3	1.033	0.036	0.940	0.348	0.965	1.105	
Flu_lag4	1.003	0.035	0.100	0.923	0.938	1.074	
Flu_lag5	0.929	0.032	-2.110	0.035	0.868	0.995	**
Flu_lag6	1.049	0.037	1.380	0.168	0.980	1.123	
Flu_lag7	1.014	0.036	0.400	0.690	0.947	1.086	
Flu_lag8	1.034	0.036	0.960	0.338	0.966	1.106	

Flu_lag9	1.042	0.036	1.190	0.235	0.973	1.116	
Flu_lag10	1.011	0.035	0.300	0.763	0.944	1.082	
Flu_lag11	0.943	0.033	-1.680	0.094	0.881	1.010	*
Flu_lag12	1.020	0.035	0.580	0.563	0.954	1.091	
cos_1	1.492	0.107	5.570	0.000	1.296	1.718	***
cos_2	0.877	0.021	-5.470	0.000	0.836	0.919	***
cos_3	1.152	0.026	6.220	0.000	1.102	1.205	***
cos_4	1.109	0.026	4.430	0.000	1.059	1.160	***
sin_1	1.044	0.037	1.220	0.222	0.974	1.118	
sin_2	0.951	0.023	-2.100	0.036	0.907	0.997	**
sin_3	1.230	0.029	8.720	0.000	1.174	1.289	***
sin_4	0.845	0.019	-7.660	0.000	0.810	0.883	***
Constant	4.925	0.976	8.040	0.000	3.339	7.263	***
lnalpha	-3.507	0.343	.b	.b	-4.180	-2.835	
Mean dependent var		4.718	SD deper	ndent var		2.782	
Pseudo r-squared			Number of	of obs		1083	
Chi-square		426.535	Prob > ch	ni2	0.000		
Akaike crit. (AIC)		4870.447	Bayesian	crit. (BIC)	5	144.759	

H&W: holiday and weekend

xi: nbreg male pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/2) irr

uniong remaie emilarer	i una expose		II Lamonto	n oetween	2010 to 2010		
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	1.025	0.016	1.630	0.103	0.995	1.056	
SO ₂ _lag1	1.032	0.019	1.680	0.093	0.995	1.070	*
SO ₂ _lag2	1.028	0.020	1.430	0.153	0.990	1.068	
SO ₂ _lag3	1.025	0.016	1.630	0.103	0.995	1.056	
SO ₂ _lag4	1.032	0.019	1.680	0.093	0.995	1.070	*
SO ₂ _lag5	0.983	0.026	-0.670	0.505	0.933	1.035	
SO ₂ _lag6	1.025	0.016	1.630	0.103	0.995	1.056	
SO ₂ _lag7	1.021	0.027	0.800	0.424	0.970	1.075	
SO ₂ _lag8	1.028	0.020	1.430	0.153	0.990	1.068	
SO ₂ _lag9	1.041	0.027	1.540	0.124	0.989	1.095	
Temperature_lag0	1.000	0.008	-0.050	0.962	0.984	1.015	
Temperature_lag1	1.005	0.011	0.470	0.639	0.984	1.026	
Temperature_lag2	1.011	0.011	1.000	0.317	0.990	1.033	
Temperature_lag3	0.982	0.011	-1.590	0.112	0.961	1.004	
Temperature_lag4	1.012	0.011	1.110	0.266	0.991	1.034	
Temperature lag5	0.985	0.011	-1.430	0.154	0.964	1.006	

Table 3.19 Results of time-series sex-stratified model of associations between daily respiratory ED visits among female children and exposure to SO_2 in Edmonton between 2016 to 2018

Temperature_lag6	0.997	0.011	-0.280	0.783	0.976	1.019	
Temperature_lag7	1.015	0.011	1.390	0.166	0.994	1.037	
Temperature_lag8	1.003	0.011	0.260	0.794	0.982	1.024	
Temperature_lag9	0.997	0.010	-0.260	0.791	0.977	1.018	
Temperature_lag10	1.006	0.008	0.760	0.449	0.991	1.021	
Humidity_lag0	0.999	0.003	-0.370	0.708	0.993	1.005	
Humidity_lag1	1.003	0.004	0.710	0.476	0.995	1.010	
Humidity_lag2	1.002	0.004	0.560	0.578	0.995	1.009	
Humidity_lag3	1.000	0.004	-0.070	0.944	0.992	1.007	
Humidity_lag4	1.000	0.004	0.040	0.969	0.993	1.008	
Humidity_lag5	0.995	0.004	-1.270	0.203	0.988	1.003	
Humidity_lag6	1.003	0.004	0.840	0.398	0.996	1.011	
Humidity_lag7	0.997	0.004	-0.920	0.356	0.989	1.004	
Humidity_lag8	1.004	0.004	1.060	0.291	0.997	1.012	
Humidity_lag9	0.998	0.004	-0.440	0.658	0.991	1.006	
Humidity_lag10	1.000	0.004	0.020	0.981	0.993	1.007	
Humidity_lag11	1.000	0.004	0.120	0.901	0.993	1.008	
Humidity_lag12	0.999	0.004	-0.170	0.867	0.992	1.007	
Humidity_lag13	0.998	0.003	-0.630	0.528	0.992	1.004	
0b.H&W	1.000						
1.H&W	1.018	0.057	0.320	0.746	0.913	1.135	
Flu_lag0	0.918	0.049	-1.610	0.108	0.827	1.019	
Flu_lag1	0.969	0.052	-0.580	0.561	0.873	1.077	
Flu_lag2	0.917	0.049	-1.630	0.104	0.827	1.018	
Flu_lag3	0.994	0.053	-0.110	0.914	0.895	1.104	
Flu_lag4	1.036	0.056	0.650	0.516	0.932	1.151	
Flu_lag5	0.993	0.054	-0.130	0.899	0.893	1.105	
Flu_lag6	1.069	0.059	1.220	0.224	0.960	1.192	
Flu_lag7	1.114	0.061	1.950	0.051	0.999	1.241	*
Flu_lag8	1.116	0.060	2.020	0.043	1.003	1.241	**
Flu_lag9	1.015	0.055	0.270	0.785	0.912	1.129	
Flu_lag10	1.094	0.058	1.690	0.091	0.986	1.214	*
Flu_lag11	0.976	0.052	-0.450	0.650	0.880	1.083	
Flu_lag12	0.910	0.048	-1.790	0.074	0.821	1.009	*
cos_1	1.834	0.188	5.900	0.000	1.500	2.243	***
cos_2	0.931	0.040	-1.640	0.100	0.855	1.014	
cos_3	1.246	0.051	5.410	0.000	1.151	1.350	***
cos_4	0.996	0.039	-0.110	0.914	0.921	1.076	
sin_1	1.165	0.069	2.590	0.010	1.038	1.309	***
sin 2	0.830	0.036	-4.310	0.000	0.762	0.903	***
sin_3	1.094	0.046	2.140	0.033	1.007	1.188	**
sin_4	0.936	0.036	-1.730	0.084	0.868	1.009	*
Constant	16.251	10.314	4.390	0.000	4.684	56.381	***
lnalpha	-3.296	0.585	.b	.b	-4.443	-2.149	

Mean dependent var	2.782	SD dependent var	2.142
Pseudo r-squared		Number of obs	674
Chi-square	293.087	Prob > chi2	0.000
Akaike crit. (AIC)	2633.318	Bayesian crit. (BIC)	2881.546

H&W: holiday and weekend

xi: nbreg female so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	0.969	0.019	-1.630	0.103	0.933	1.006	
SO ₂ _lag1	0.993	0.009	-0.760	0.445	0.976	1.011	
SO ₂ _lag2	0.993	0.009	-0.760	0.445	0.976	1.011	
SO ₂ _lag3	0.993	0.009	-0.760	0.445	0.976	1.011	
SO ₂ _lag4	0.993	0.009	-0.760	0.445	0.976	1.011	
SO ₂ _lag5	1.004	0.010	0.430	0.669	0.984	1.025	
SO ₂ _lag6	1.019	0.013	1.450	0.147	0.993	1.046	
SO ₂ _lag7	1.004	0.010	0.430	0.669	0.984	1.025	
SO ₂ _lag8	1.019	0.013	1.450	0.147	0.993	1.046	
SO ₂ _lag9	1.004	0.010	0.430	0.669	0.984	1.025	
Temperature_lag0	1.004	0.006	0.610	0.539	0.992	1.016	
Temperature_lag1	0.990	0.008	-1.210	0.227	0.974	1.006	
Temperature_lag2	1.008	0.008	0.960	0.339	0.992	1.025	
Temperature_lag3	0.997	0.008	-0.380	0.705	0.981	1.013	
Temperature_lag4	0.994	0.008	-0.720	0.471	0.978	1.010	
Temperature_lag5	1.009	0.008	1.050	0.296	0.993	1.025	
Temperature_lag6	0.999	0.008	-0.060	0.949	0.983	1.016	
Temperature_lag7	0.992	0.008	-0.910	0.361	0.976	1.009	
Temperature_lag8	1.001	0.008	0.120	0.904	0.985	1.017	
Temperature_lag9	1.019	0.008	2.390	0.017	1.003	1.035	**
Temperature_lag10	0.989	0.006	-1.950	0.051	0.978	1.000	*
Humidity_lag0	0.999	0.002	-0.430	0.666	0.995	1.003	
Humidity_lag1	0.997	0.003	-1.230	0.217	0.991	1.002	
Humidity_lag2	1.000	0.003	0.050	0.961	0.995	1.006	
Humidity_lag3	1.000	0.003	-0.040	0.969	0.994	1.005	
Humidity_lag4	1.002	0.003	0.550	0.583	0.996	1.007	
Humidity_lag5	0.998	0.003	-0.560	0.577	0.993	1.004	
Humidity_lag6	0.999	0.003	-0.180	0.855	0.994	1.005	
Humidity_lag7	1.000	0.003	-0.080	0.933	0.994	1.005	
Humidity_lag8	1.001	0.003	0.470	0.640	0.996	1.007	

Table 3.20 Results of time-series sex-stratified model of associations between daily respiratory ED visits among male children and exposure to SO_2 in Edmonton between 2016 to 2018

Humidity_lag9	1.000	0.003	0.090	0.926	0.995	1.006	
Humidity_lag10	1.002	0.003	0.870	0.384	0.997	1.008	
Humidity_lag11	0.999	0.003	-0.480	0.633	0.993	1.004	
Humidity_lag12	1.001	0.003	0.410	0.685	0.996	1.006	
Humidity_lag13	0.999	0.002	-0.270	0.790	0.995	1.004	
0b.H&W	1.000						
1.H&W	1.095	0.045	2.220	0.027	1.011	1.186	**
Flu_lag0	1.018	0.041	0.430	0.665	0.940	1.102	
Flu_lag1	0.934	0.038	-1.670	0.095	0.862	1.012	*
Flu_lag2	0.897	0.036	-2.690	0.007	0.829	0.971	***
Flu_lag3	1.067	0.044	1.590	0.112	0.985	1.157	
Flu_lag4	0.984	0.040	-0.410	0.685	0.908	1.066	
Flu_lag5	0.932	0.039	-1.710	0.088	0.859	1.011	*
Flu_lag6	1.037	0.044	0.870	0.384	0.955	1.126	
Flu_lag7	1.053	0.045	1.220	0.222	0.969	1.145	
Flu_lag8	1.017	0.042	0.420	0.676	0.939	1.103	
Flu_lag9	1.096	0.046	2.200	0.028	1.010	1.189	**
Flu_lag10	1.003	0.041	0.070	0.944	0.926	1.086	
Flu_lag11	0.980	0.040	-0.510	0.611	0.905	1.061	
Flu_lag12	0.997	0.040	-0.070	0.945	0.922	1.079	
cos_1	1.474	0.117	4.890	0.000	1.262	1.722	***
cos_2	0.921	0.028	-2.670	0.008	0.867	0.978	***
cos_3	1.122	0.033	3.870	0.000	1.058	1.189	***
cos_4	1.144	0.034	4.590	0.000	1.080	1.212	***
sin_1	1.018	0.045	0.400	0.688	0.934	1.110	
sin_2	0.950	0.031	-1.540	0.123	0.891	1.014	
sin_3	1.221	0.037	6.550	0.000	1.150	1.296	***
sin_4	0.846	0.024	-5.890	0.000	0.800	0.894	***
Constant	4.638	2.152	3.310	0.001	1.869	11.514	***
lnalpha	-4.969	1.740	.b	.b	-8.379	-1.558	
Mean dependent var	4.562		SD dep	endent var	2.700		
Pseudo r-squared			Numbe	r of obs	674		
Chi-square	344.731	l	Prob >	Prob > chi2			
Akaike crit. (AIC)	2986.78	36	Bayesia	an crit. (BIC)	3225.987		

H&W: holiday and weekend

xi: nbreg male so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

3.2.4 Results of time-series age-stratified models

Tables 3.21 to 3.30 show the adjusted results of the time-series age-stratified model for the five air pollutants and selected lags over the study period. IRRs and 95% confidence intervals for daily respiratory ED visits by different sex are shown as a one unit increase in the natural log of air pollutants concentrations. In other words, expected daily respiratory ED visits among children increased by [(IRR-1) * 100] % when air pollutant concentration increased (e-1) times after adjusting for other variables (e: Euler's number. The value is approximately 2.71828). The participants were divided into two groups according to their age: 0-4 years old and 5-16 years old. IRRs and 95% confidence intervals for daily respiratory ED visits of different age groups are shown for a one unit increase in the natural log of air pollutants concentrations. For younger children (0-4 years old), the models show strong evidence of a significant increase in daily respiratory ED visits with increasing NO2 concentrations for the 4- and 8-day lags. The IRR was 1.068 (95%CI: 1.002-1.139), indicating a 6.8% increase in expected daily respiratory ED visits among younger children (0-4 years old) for one unit increase in natural log of NO₂ after adjusting for other variables. The results in this age group were also negatively associated with 4-day lag exposure of O₃, with the IRR of 0.89 (95%CI: 0.795-0.997). Exposure to CO, PM_{2.5}, and SO₂ was not significantly associated with daily respiratory ED visits among younger children.

For older children (5-16 years old), results show that daily respiratory ED visits were positively associated with 2-, 4-, 6-, and 10-day lag exposures to NO₂, with the same IRR of 1.074 (95%CI: 1.001-1.152). There were also significant positive associations between daily respiratory ED visits and 1 and 5-day lag exposures to O₃, with the same IRR of 1.152 (95%CI: 1.005-1.32). Meanwhile, daily respiratory ED visits among older children (5-16 years old) were positively associated 8- and 9-day lag exposures to SO₂, with the same IRR of 1.043 (95%CI: 1.005-1.082). Exposure to PM_{2.5} was not significantly associated with daily respiratory ED visits among older children.

For younger children (0-4 years old) age-stratified models, AIC in CO models were smaller than in the baseline model, and BIC were larger than in the baseline model. Both AIC and BIC in NO₂, O₃ and PM_{2.5} models were larger than in the baseline model. Both AIC and BIC in SO₂ models were smaller than in the baseline models. Results of the younger children (0-4 years old) agestratified baseline model is presented in Appendix 2 Table A 2.4.

For older children (5-16 years old) age-stratified models, both AIC and BIC in models of CO, NO₂,

O₃ and PM_{2.5} were larger than in the baseline model. Both AIC and BIC in SO₂ model were smaller than in the baseline models. Results of the older children (5-16 years old) age-stratified baseline model are presented in Appendix 2 Table A 2.5.

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.931	0.049	-1.360	0.173	0.841	1.032	
CO_lag1	0.955	0.047	-0.950	0.341	0.867	1.050	
CO_lag2	0.931	0.049	-1.360	0.173	0.841	1.032	
CO_lag3	0.989	0.078	-0.150	0.885	0.847	1.154	
CO_lag4	1.021	0.079	0.270	0.790	0.877	1.188	
CO_lag5	0.955	0.047	-0.950	0.341	0.867	1.050	
CO_lag6	1.009	0.079	0.120	0.905	0.866	1.176	
CO_lag7	0.955	0.047	-0.950	0.341	0.867	1.050	
CO_lag8	1.106	0.077	1.450	0.146	0.965	1.268	
Temperature_lag0	1.006	0.005	1.220	0.221	0.996	1.015	
Temperature_lag1	0.994	0.007	-0.980	0.328	0.981	1.007	
Temperature_lag2	1.007	0.007	1.010	0.314	0.993	1.021	
Temperature_lag3	0.990	0.007	-1.470	0.142	0.976	1.003	
Temperature_lag4	1.006	0.007	0.910	0.365	0.993	1.020	
Temperature_lag5	0.999	0.007	-0.110	0.911	0.986	1.013	
Temperature_lag6	0.996	0.007	-0.520	0.604	0.983	1.010	
Temperature_lag7	1.001	0.007	0.150	0.878	0.988	1.015	
Temperature_lag8	0.996	0.007	-0.570	0.565	0.983	1.009	
Temperature_lag9	1.010	0.007	1.570	0.116	0.997	1.024	
Temperature_lag10	0.994	0.005	-1.370	0.171	0.984	1.003	
Humidity_lag0	1.001	0.002	0.600	0.546	0.998	1.005	
Humidity_lag1	0.998	0.002	-0.930	0.353	0.994	1.002	
Humidity_lag2	1.002	0.002	1.020	0.309	0.998	1.007	
Humidity_lag3	0.998	0.002	-0.700	0.481	0.994	1.003	
Humidity_lag4	1.001	0.002	0.290	0.772	0.996	1.005	
Humidity_lag5	1.001	0.002	0.350	0.723	0.996	1.005	
Humidity_lag6	0.997	0.002	-1.480	0.140	0.992	1.001	
Humidity_lag7	1.000	0.002	0.150	0.885	0.996	1.005	
Humidity_lag8	1.002	0.002	0.870	0.387	0.998	1.006	
Humidity_lag9	0.999	0.002	-0.290	0.771	0.995	1.004	
Humidity_lag10	1.001	0.002	0.470	0.636	0.997	1.005	
Humidity_lag11	0.998	0.002	-0.770	0.439	0.994	1.003	
Humidity_lag12	1.001	0.002	0.320	0.751	0.997	1.005	
Humidity_lag13	1.001	0.002	0.630	0.532	0.998	1.004	
0b.H&W	1.000						

Table 3.21 Results of time-series age-stratified model of associations between daily respiratory ED visits among younger children (0-4 years old) and exposure to CO in Edmonton between 2016 to 2018

1.H&W	1.039	0.034	1.160	0.248	0.974	1.108	
Flu_lag0	0.994	0.032	-0.170	0.863	0.933	1.060	
Flu_lag1	0.958	0.032	-1.290	0.196	0.898	1.022	
Flu_lag2	0.919	0.030	-2.580	0.010	0.862	0.980	***
Flu_lag3	1.019	0.033	0.580	0.565	0.956	1.087	
Flu_lag4	1.021	0.033	0.650	0.517	0.958	1.089	
Flu_lag5	0.968	0.032	-0.970	0.330	0.908	1.033	
Flu_lag6	1.065	0.035	1.900	0.057	0.998	1.137	*
Flu_lag7	1.020	0.034	0.580	0.561	0.955	1.089	
Flu_lag8	1.028	0.034	0.850	0.396	0.964	1.097	
Flu_lag9	1.024	0.034	0.710	0.480	0.960	1.092	
Flu_lag10	1.030	0.034	0.900	0.370	0.966	1.098	
Flu_lag11	0.978	0.032	-0.670	0.502	0.918	1.043	
Flu_lag12	1.002	0.032	0.050	0.961	0.940	1.067	
cos_1	1.754	0.123	8.020	0.000	1.529	2.012	***
cos_2	0.930	0.022	-3.060	0.002	0.887	0.974	***
cos_3	1.175	0.027	7.040	0.000	1.124	1.230	***
cos_4	1.082	0.024	3.500	0.000	1.035	1.131	***
sin_1	1.112	0.039	3.080	0.002	1.039	1.191	***
sin_2	0.947	0.023	-2.270	0.023	0.904	0.993	**
sin_3	1.166	0.028	6.460	0.000	1.113	1.221	***
sin_4	0.856	0.019	-7.180	0.000	0.820	0.893	***
Constant	3.562	0.858	5.270	0.000	2.221	5.711	***
lnalpha	-3.307	0.259	.b	.b	-3.814	-2.799	
Mean dependent var	5.242		SD dep	endent var	3.374		
Pseudo r-squared			Number	r of obs	1083		
Chi-square	773.201		Prob >	chi2	0.000		
Akaike crit. (AIC)	4973.449	9	Bayesia	n crit. (BIC)	5247.761		

H&W: H&W and weekend

xi: nbreg younger colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Table 3.22 Results of tim	e-series age	e-stratifie	d model o	of associations	between	daily re	espiratory	ED	visits
among older children (5-2	6 years old)	and expo	sure to C	O in Edmonto	n between	n 2016	to 2018		

0							
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.910	0.105	-0.820	0.412	0.726	1.140	
CO_lag1	0.887	0.113	-0.950	0.344	0.691	1.137	
CO_lag2	1.255	0.160	1.780	0.075	0.977	1.612	*
CO_lag3	0.840	0.106	-1.380	0.167	0.655	1.076	
CO_lag4	0.922	0.111	-0.670	0.503	0.728	1.169	
CO_lag5	0.886	0.072	-1.500	0.133	0.756	1.038	
CO_lag6	1.018	0.123	0.150	0.880	0.804	1.289	

CO_lag7	1.071	0.128	0.580	0.564	0.848	1.353	
CO_lag8	0.886	0.072	-1.500	0.133	0.756	1.038	
Temperature_lag0	1.013	0.009	1.510	0.131	0.996	1.031	
Temperature_lag1	0.996	0.012	-0.340	0.731	0.972	1.020	
Temperature_lag2	1.012	0.013	0.970	0.330	0.988	1.037	
Temperature_lag3	1.008	0.013	0.620	0.532	0.983	1.033	
Temperature_lag4	1.006	0.012	0.520	0.601	0.982	1.031	
Temperature_lag5	0.987	0.012	-1.040	0.298	0.964	1.011	
Temperature_lag6	1.005	0.012	0.390	0.695	0.981	1.029	
Temperature_lag7	0.996	0.012	-0.300	0.765	0.973	1.020	
Temperature_lag8	1.024	0.012	1.940	0.053	1.000	1.048	*
Temperature_lag9	0.991	0.012	-0.740	0.458	0.969	1.014	
Temperature_lag10	0.999	0.008	-0.110	0.913	0.983	1.016	
Humidity_lag0	0.999	0.003	-0.500	0.616	0.993	1.004	
Humidity_lag1	1.001	0.003	0.390	0.693	0.995	1.008	
Humidity_lag2	0.997	0.003	-0.990	0.323	0.990	1.003	
Humidity_lag3	1.004	0.003	1.270	0.205	0.998	1.011	
Humidity_lag4	1.002	0.003	0.580	0.564	0.995	1.008	
Humidity_lag5	0.997	0.003	-1.020	0.306	0.990	1.003	
Humidity_lag6	1.004	0.003	1.360	0.174	0.998	1.011	
Humidity_lag7	0.996	0.003	-1.220	0.221	0.990	1.002	
Humidity_lag8	1.003	0.003	1.020	0.306	0.997	1.010	
Humidity_lag9	1.002	0.003	0.560	0.576	0.995	1.008	
Humidity_lag10	1.001	0.003	0.340	0.733	0.995	1.007	
Humidity_lag11	1.002	0.003	0.720	0.473	0.996	1.008	
Humidity_lag12	0.999	0.003	-0.310	0.757	0.993	1.005	
Humidity_lag13	1.000	0.002	-0.190	0.847	0.995	1.004	
0b.H&W	1.000						
1.H&W	1.177	0.058	3.300	0.001	1.068	1.297	***
Flu_lag0	0.965	0.052	-0.670	0.502	0.868	1.071	
Flu_lag1	1.096	0.059	1.700	0.089	0.986	1.219	*
Flu_lag2	1.024	0.055	0.440	0.663	0.921	1.138	
Flu_lag3	1.038	0.056	0.690	0.489	0.934	1.153	
Flu_lag4	0.992	0.053	-0.160	0.875	0.893	1.101	
Flu_lag5	0.941	0.051	-1.130	0.259	0.846	1.046	
Flu_lag6	1.052	0.057	0.940	0.346	0.947	1.169	
Flu_lag7	1.116	0.060	2.040	0.042	1.004	1.240	**
Flu_lag8	1.029	0.055	0.540	0.593	0.926	1.143	
Flu_lag9	0.980	0.053	-0.380	0.704	0.881	1.089	
Flu_lag10	0.928	0.051	-1.360	0.173	0.835	1.033	
Flu_lag11	0.897	0.049	-2.010	0.045	0.806	0.997	**
Flu_lag12	0.927	0.050	-1.420	0.155	0.834	1.029	

cos_1	1.480	0.173	3.360	0.001	1.177	1.861	***
cos_2	0.752	0.027	-7.890	0.000	0.700	0.807	***
cos_3	1.173	0.039	4.760	0.000	1.098	1.252	***
cos_4	1.076	0.036	2.200	0.028	1.008	1.149	**
sin_1	1.084	0.059	1.480	0.140	0.974	1.207	
sin_2	0.913	0.032	-2.630	0.009	0.852	0.977	***
sin_3	1.307	0.045	7.830	0.000	1.222	1.397	***
sin_4	0.830	0.026	-5.880	0.000	0.780	0.883	***
Constant	0.604	0.205	-1.490	0.136	0.311	1.173	
lnalpha	-2.710	0.317	.b	.b	-3.330	-2.089	
Mean dependent var	2.296		SD depe	ndent var	2.016		
Pseudo r-squared			Number	of obs	1083		
Chi-square	406.788		Prob > chi2		0.000		
Akaike crit. (AIC)	3960.92	6	Bayesiar	n crit. (BIC)	4245.213		

H&W: H&W and weekend

xi: nbreg older colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/1) irr

Table 3.23 Results of time-series age-stratified model of associations between daily respiratory ED visitsamong younger children (0-4 years old) and exposure to NO_2 in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ _lag0	0.985	0.030	-0.500	0.619	0.929	1.045	
NO ₂ _lag1	0.952	0.033	-1.400	0.162	0.889	1.020	
NO ₂ _lag2	0.976	0.046	-0.530	0.597	0.890	1.070	
NO ₂ _lag3	0.952	0.033	-1.400	0.162	0.889	1.020	
NO2_lag4	1.068	0.035	2.030	0.042	1.002	1.139	**
NO ₂ _lag5	0.983	0.020	-0.840	0.400	0.945	1.023	
NO ₂ _lag6	1.030	0.021	1.450	0.146	0.990	1.073	
NO ₂ _lag7	0.983	0.020	-0.840	0.400	0.945	1.023	
NO2_lag8	1.068	0.035	2.030	0.042	1.002	1.139	**
NO ₂ lag9	0.985	0.030	-0.500	0.619	0.929	1.045	
NO ₂ _lag10	0.983	0.020	-0.840	0.400	0.945	1.023	
NO ₂ lag11	0.983	0.020	-0.840	0.400	0.945	1.023	
NO ₂ _lag12	0.941	0.039	-1.470	0.142	0.867	1.021	
NO ₂ lag13	1.030	0.021	1.450	0.146	0.990	1.073	
NO ₂ lag14	1.030	0.021	1.450	0.146	0.990	1.073	
Temperature_lag0	1.006	0.005	1.150	0.250	0.996	1.015	
Temperature_lag1	0.994	0.007	-0.920	0.359	0.980	1.007	
Temperature_lag2	1.008	0.007	1.210	0.228	0.995	1.022	
Temperature_lag3	0.987	0.007	-1.850	0.064	0.974	1.001	*

Temperature_lag4	1.007	0.007	0.980	0.325	0.993	1.021	
Temperature_lag5	0.998	0.007	-0.330	0.738	0.984	1.011	
Temperature_lag6	0.997	0.007	-0.370	0.710	0.984	1.011	
Temperature_lag7	1.000	0.007	0.060	0.949	0.987	1.014	
Temperature_lag8	0.998	0.007	-0.320	0.746	0.984	1.011	
Temperature_lag9	1.011	0.007	1.690	0.091	0.998	1.025	*
Temperature_lag10	0.994	0.005	-1.340	0.180	0.984	1.003	
Humidity_lag0	1.001	0.002	0.490	0.627	0.997	1.004	
Humidity_lag1	0.998	0.002	-0.960	0.335	0.994	1.002	
Humidity_lag2	1.002	0.002	0.950	0.342	0.998	1.006	
Humidity_lag3	0.998	0.002	-0.750	0.454	0.994	1.003	
Humidity_lag4	1.001	0.002	0.250	0.799	0.996	1.005	
Humidity_lag5	1.001	0.002	0.420	0.674	0.997	1.005	
Humidity_lag6	0.997	0.002	-1.540	0.125	0.992	1.001	
Humidity_lag7	1.000	0.002	0.210	0.836	0.996	1.005	
Humidity_lag8	1.003	0.002	1.280	0.201	0.998	1.007	
Humidity_lag9	1.000	0.002	-0.130	0.894	0.995	1.004	
Humidity_lag10	1.001	0.002	0.410	0.680	0.997	1.005	
Humidity_lag11	0.998	0.002	-0.900	0.370	0.994	1.002	
Humidity_lag12	1.000	0.002	0.060	0.949	0.996	1.004	
Humidity_lag13	1.001	0.002	0.640	0.520	0.998	1.004	
0b.H&W	1.000						
1.H&W	1.068	0.038	1.840	0.066	0.996	1.145	*
Flu_lag0	1.002	0.032	0.070	0.945	0.941	1.068	
Flu_lag1	0.959	0.031	-1.270	0.204	0.900	1.023	
Flu_lag2	0.922	0.030	-2.500	0.012	0.865	0.982	**
Flu_lag3	1.014	0.033	0.420	0.674	0.951	1.081	
Flu_lag4	1.021	0.033	0.640	0.520	0.958	1.088	
Flu_lag5	0.965	0.032	-1.080	0.278	0.905	1.029	
Flu_lag6	1.058	0.035	1.720	0.086	0.992	1.129	*
Flu_lag7	1.019	0.034	0.560	0.573	0.955	1.087	
Flu_lag8	1.027	0.034	0.810	0.419	0.963	1.095	
Flu_lag9	1.023	0.034	0.690	0.491	0.959	1.091	
Flu_lag10	1.025	0.033	0.750	0.452	0.961	1.092	
Flu_lag11	0.983	0.032	-0.520	0.605	0.922	1.048	
Flu_lag12	1.002	0.032	0.060	0.955	0.941	1.067	
cos_1	1.794	0.167	6.280	0.000	1.495	2.153	***
cos_2	0.929	0.022	-3.130	0.002	0.887	0.973	***
cos_3	1.173	0.027	6.950	0.000	1.121	1.227	***
cos_4	1.090	0.024	3.920	0.000	1.044	1.139	***
sin_1	1.108	0.040	2.830	0.005	1.032	1.190	***
sin_2	0.947	0.023	-2.190	0.028	0.902	0.994	**
sin_3	1.175	0.027	6.910	0.000	1.123	1.230	***
sin_4	0.855	0.018	-7.230	0.000	0.820	0.892	***

Constant	3.447	1.782	2.390	0.017	1.251	9.496	**	
lnalpha	-3.339	0.266	.b	.b	-3.860	-2.818		
Mean dependent var		5.244	SD dep	ependent var 3.375				
Pseudo r-squared			Number	r of obs		1082		
Chi-square		783.485	Prob > chi2 0.000		0.000			
Akaike crit. (AIC)		4965.174	Bayesia	n crit. (BIC)				

H&W: holiday and weekend

xi: nbreg younger no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/8) irr

0	()	/ 1		-			
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ _lag0	1.026	0.071	0.370	0.709	0.896	1.175	
NO ₂ lag1	0.989	0.066	-0.160	0.870	0.867	1.128	
NO ₂ lag2	1.074	0.039	1.970	0.048	1.001	1.152	**
NO ₂ lag3	1.000	0.049	0.000	0.997	0.909	1.100	
NO2_lag4	1.074	0.039	1.970	0.048	1.001	1.152	**
NO ₂ lag5	1.006	0.069	0.090	0.929	0.879	1.152	
NO2_lag6	1.074	0.039	1.970	0.048	1.001	1.152	**
NO ₂ lag7	1.048	0.074	0.670	0.506	0.912	1.204	
NO ₂ lag8	0.987	0.051	-0.250	0.805	0.893	1.092	
NO ₂ _lag9	1.000	0.049	0.000	0.997	0.909	1.100	
NO ₂ lag10	1.074	0.039	1.970	0.048	1.001	1.152	**
NO ₂ lag11	0.889	0.060	-1.730	0.083	0.779	1.015	*
NO ₂ lag12	0.975	0.065	-0.380	0.703	0.855	1.112	
NO ₂ lag13	0.987	0.051	-0.250	0.805	0.893	1.092	
NO ₂ _lag14	0.939	0.060	-0.970	0.330	0.828	1.065	
Temperature_lag0	1.009	0.009	0.970	0.333	0.991	1.026	
Temperature_lag1	0.999	0.012	-0.100	0.920	0.975	1.023	
Temperature_lag2	1.013	0.013	1.060	0.288	0.989	1.039	
Temperature_lag3	1.001	0.012	0.060	0.952	0.977	1.025	
Temperature_lag4	1.009	0.013	0.730	0.465	0.985	1.034	
Temperature_lag5	0.984	0.012	-1.290	0.199	0.961	1.008	
Temperature_lag6	1.007	0.012	0.560	0.573	0.983	1.032	
Temperature_lag7	0.998	0.012	-0.160	0.876	0.974	1.022	
Temperature_lag8	1.024	0.013	1.960	0.050	1.000	1.049	**
Temperature_lag9	0.990	0.012	-0.830	0.406	0.967	1.014	
Temperature_lag10	1.006	0.009	0.680	0.494	0.989	1.024	
Humidity_lag0	0.998	0.003	-0.730	0.467	0.993	1.003	
Humidity_lag1	1.002	0.003	0.680	0.498	0.996	1.009	

Table 3.24 Results of time-series age-stratified model of associations between daily respiratory ED visits among older children (5-16 years old) and exposure to NO_2 in Edmonton between 2016 to 2018

Humidity_lag2	0.997	0.003	-0.940	0.346	0.990	1.003	
Humidity_lag3	1.003	0.003	0.950	0.343	0.997	1.010	
Humidity_lag4	1.003	0.003	0.880	0.379	0.996	1.009	
Humidity_lag5	0.997	0.003	-0.930	0.351	0.991	1.003	
Humidity_lag6	1.005	0.003	1.520	0.128	0.999	1.011	
Humidity_lag7	0.996	0.003	-1.110	0.265	0.990	1.003	
Humidity_lag8	1.003	0.003	1.020	0.308	0.997	1.010	
Humidity_lag9	1.002	0.003	0.590	0.558	0.996	1.008	
Humidity_lag10	1.002	0.003	0.610	0.544	0.996	1.008	
Humidity_lag11	1.002	0.003	0.710	0.480	0.996	1.008	
Humidity_lag12	0.999	0.003	-0.370	0.712	0.993	1.005	
Humidity_lag13	0.998	0.002	-0.730	0.466	0.993	1.003	
0b.H&W	1.000						
1.H&W	1.178	0.070	2.780	0.005	1.050	1.323	***
Flu_lag0	0.971	0.052	-0.540	0.586	0.874	1.079	
Flu_lag1	1.105	0.060	1.840	0.065	0.994	1.229	*
Flu_lag2	1.020	0.055	0.360	0.716	0.917	1.134	
Flu_lag3	1.034	0.056	0.610	0.541	0.930	1.149	
Flu_lag4	1.000	0.054	0.000	0.998	0.900	1.111	
Flu_lag5	0.926	0.051	-1.400	0.161	0.832	1.031	
Flu_lag6	1.038	0.056	0.690	0.488	0.934	1.154	
Flu_lag7	1.111	0.060	1.950	0.051	0.999	1.235	*
Flu_lag8	1.020	0.055	0.360	0.715	0.918	1.134	
Flu_lag9	0.979	0.053	-0.400	0.691	0.880	1.089	
Flu_lag10	0.923	0.050	-1.470	0.141	0.829	1.027	
Flu_lag11	0.895	0.049	-2.040	0.041	0.804	0.996	**
Flu_lag12	0.932	0.050	-1.310	0.189	0.838	1.035	
cos_1	1.367	0.205	2.080	0.037	1.019	1.835	**
cos_2	0.745	0.027	-8.100	0.000	0.694	0.800	***
cos_3	1.181	0.040	4.870	0.000	1.105	1.263	***
cos_4	1.104	0.037	2.960	0.003	1.034	1.179	***
sin_1	1.096	0.064	1.560	0.119	0.977	1.230	
sin_2	0.894	0.033	-3.060	0.002	0.832	0.960	***
sin_3	1.332	0.045	8.460	0.000	1.247	1.424	***
sin_4	0.830	0.026	-5.860	0.000	0.779	0.883	***
Constant	1.768	1.368	0.740	0.461	0.388	8.052	
lnalpha	-2.625	0.293	.b	.b	-3.199	-2.051	
Mean dependent var	2.299		SD de	pendent var	2.016		
Pseudo r-squared			Numb	er of obs	1082		
Chi-square	394.918	;	Prob >	> chi2	0.000		

H&W: holiday and weekend

xi: nbreg older no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	1.042	0.044	0.990	0.324	0.960	1.131	
O ₃ _lag1	0.954	0.041	-1.100	0.272	0.878	1.037	
O ₃ _lag2	1.057	0.036	1.610	0.107	0.988	1.130	
O ₃ _lag3	1.006	0.036	0.160	0.875	0.938	1.078	
O3_lag4	0.890	0.051	-2.020	0.044	0.795	0.997	**
O ₃ _lag5	1.057	0.036	1.610	0.107	0.988	1.130	
O ₃ _lag6	1.006	0.036	0.160	0.875	0.938	1.078	
O ₃ _lag7	0.954	0.041	-1.100	0.272	0.878	1.037	
O ₃ _lag8	1.042	0.044	0.990	0.324	0.960	1.131	
O ₃ _lag9	1.094	0.064	1.540	0.123	0.976	1.227	
O ₃ _lag10	1.006	0.036	0.160	0.875	0.938	1.078	
O ₃ _lag11	1.057	0.036	1.610	0.107	0.988	1.130	
Temperature_lag0	1.004	0.005	0.790	0.430	0.994	1.013	
Temperature_lag1	0.995	0.007	-0.760	0.446	0.982	1.008	
Temperature_lag2	1.006	0.007	0.870	0.383	0.993	1.020	
Temperature_lag3	0.989	0.007	-1.590	0.111	0.976	1.003	
Temperature_lag4	1.008	0.007	1.200	0.229	0.995	1.022	
Temperature_lag5	1.000	0.007	-0.010	0.993	0.987	1.013	
Temperature_lag6	0.995	0.007	-0.770	0.439	0.982	1.008	
Temperature_lag7	1.004	0.007	0.550	0.584	0.990	1.018	
Temperature_lag8	0.998	0.007	-0.280	0.778	0.985	1.012	
Temperature_lag9	1.010	0.007	1.450	0.148	0.997	1.023	
Temperature_lag10	0.994	0.005	-1.240	0.215	0.985	1.003	
Humidity_lag0	1.002	0.002	0.850	0.395	0.998	1.005	
Humidity_lag1	0.997	0.002	-1.090	0.274	0.993	1.002	
Humidity_lag2	1.003	0.002	1.180	0.238	0.998	1.007	
Humidity_lag3	0.999	0.002	-0.640	0.520	0.994	1.003	
Humidity_lag4	0.999	0.002	-0.340	0.735	0.995	1.004	
Humidity_lag5	1.002	0.002	0.720	0.471	0.997	1.006	
Humidity_lag6	0.997	0.002	-1.430	0.154	0.992	1.001	
Humidity_lag7	1.000	0.002	-0.040	0.967	0.995	1.004	
Humidity_lag8	1.003	0.002	1.460	0.145	0.999	1.008	
Humidity_lag9	1.000	0.002	0.130	0.897	0.996	1.005	
Humidity_lag10	1.001	0.002	0.490	0.626	0.997	1.005	
Humidity_lag11	1.000	0.002	-0.190	0.853	0.995	1.004	
Humidity_lag12	1.001	0.002	0.380	0.701	0.997	1.005	

Table 3.25 Results of time-series age-stratified model of associations between daily respiratory ED visitsamong younger children (0-4 years old) and exposure to O_3 in Edmonton between 2016 to 2018

Humidity_lag13	1.001	0.002	0.400	0.687	0.997	1.004	
0b.H&W	1.000						
1.H&W	1.046	0.034	1.380	0.168	0.981	1.115	
Flu_lag0	0.986	0.032	-0.440	0.664	0.926	1.050	
Flu_lag1	0.968	0.032	-1.010	0.312	0.908	1.031	
Flu_lag2	0.916	0.030	-2.710	0.007	0.859	0.976	***
Flu_lag3	1.017	0.033	0.520	0.606	0.954	1.084	
Flu_lag4	1.025	0.033	0.770	0.443	0.962	1.093	
Flu_lag5	0.970	0.032	-0.930	0.354	0.910	1.034	
Flu_lag6	1.051	0.035	1.520	0.130	0.985	1.122	
Flu_lag7	1.025	0.034	0.750	0.454	0.961	1.094	
Flu_lag8	1.025	0.033	0.760	0.448	0.962	1.093	
Flu_lag9	1.018	0.033	0.540	0.590	0.954	1.086	
Flu_lag10	1.033	0.034	1.000	0.315	0.969	1.102	
Flu_lag11	0.983	0.032	-0.540	0.587	0.922	1.047	
Flu_lag12	0.998	0.032	-0.070	0.943	0.937	1.063	
cos_1	1.859	0.167	6.900	0.000	1.559	2.217	***
\cos_2	0.932	0.023	-2.910	0.004	0.889	0.977	***
cos_3	1.178	0.027	7.030	0.000	1.125	1.233	***
cos_4	1.084	0.025	3.570	0.000	1.037	1.133	***
sin_1	1.104	0.038	2.900	0.004	1.033	1.180	***
sin_2	0.935	0.023	-2.710	0.007	0.890	0.981	***
sin_3	1.189	0.030	6.880	0.000	1.132	1.250	***
sin_4	0.852	0.018	-7.420	0.000	0.816	0.888	***
Constant	6.102	1.891	5.840	0.000	3.324	11.202	***
lnalpha	-3.344	0.267	.b	.b	-3.867	-2.820	
Mean dependent var	5.242		SD dep	endent var	3.374		
Pseudo r-squared			Numbe	r of obs	1083		
Chi-square	782.231		Prob >	chi2	0.000		
Akaike crit. (AIC)	4968.90	0	Bayesia	an crit. (BIC)	5243.212		

H&W: holiday and weekend

xi: nbreg younger o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

Table 3.26 Results of	of time-series ag	ge-stratified mod	el of associations	between da	ily respiratory	ED [·]	visits
among older children	n (5-16 years old	l) and exposure to	O ₃ in Edmontor	n between 20	16 to 2018		

0				2			
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ lag0	0.942	0.043	-1.310	0.189	0.862	1.030	
O3_lag1	1.152	0.080	2.030	0.042	1.005	1.320	**
O ₃ _lag2	0.942	0.043	-1.310	0.189	0.862	1.030	
O ₃ _lag3	0.942	0.043	-1.310	0.189	0.862	1.030	

O ₃ _lag4	0.871	0.079	-1.510	0.130	0.729	1.041	
O3_lag5	1.152	0.080	2.030	0.042	1.005	1.320	**
O ₃ _lag6	0.953	0.031	-1.460	0.145	0.893	1.017	
O ₃ _lag7	0.953	0.031	-1.460	0.145	0.893	1.017	
O ₃ _lag8	0.953	0.031	-1.460	0.145	0.893	1.017	
O ₃ _lag9	0.953	0.031	-1.460	0.145	0.893	1.017	
O ₃ _lag10	0.909	0.086	-1.010	0.314	0.755	1.094	
O ₃ _lag11	1.144	0.107	1.440	0.149	0.953	1.374	
Temperature_lag0	1.009	0.009	1.020	0.306	0.992	1.026	
Temperature_lag1	1.000	0.012	-0.010	0.995	0.977	1.023	
Temperature_lag2	1.012	0.012	0.950	0.341	0.988	1.036	
Temperature_lag3	1.001	0.012	0.060	0.950	0.977	1.025	
Temperature_lag4	1.010	0.012	0.790	0.431	0.986	1.034	
Temperature_lag5	0.985	0.012	-1.280	0.201	0.962	1.008	
Temperature_lag6	1.008	0.012	0.670	0.506	0.985	1.032	
Temperature_lag7	0.995	0.012	-0.450	0.650	0.971	1.018	
Temperature_lag8	1.023	0.012	1.900	0.058	0.999	1.048	*
Temperature_lag9	0.993	0.012	-0.610	0.542	0.970	1.016	
Temperature_lag10	1.000	0.009	0.030	0.972	0.984	1.017	
Humidity_lag0	0.998	0.003	-0.870	0.385	0.992	1.003	
Humidity_lag1	1.004	0.003	1.090	0.277	0.997	1.010	
Humidity_lag2	0.996	0.003	-1.130	0.258	0.990	1.003	
Humidity_lag3	1.001	0.003	0.440	0.663	0.995	1.008	
Humidity_lag4	1.001	0.003	0.160	0.872	0.994	1.007	
Humidity_lag5	0.998	0.003	-0.610	0.540	0.991	1.004	
Humidity_lag6	1.005	0.003	1.400	0.162	0.998	1.011	
Humidity_lag7	0.995	0.003	-1.510	0.131	0.989	1.001	
Humidity_lag8	1.002	0.003	0.740	0.457	0.996	1.009	
Humidity_lag9	1.001	0.003	0.410	0.682	0.995	1.008	
Humidity_lag10	1.000	0.003	-0.150	0.880	0.993	1.006	
Humidity_lag11	1.004	0.003	1.250	0.212	0.998	1.010	
Humidity_lag12	1.000	0.003	-0.050	0.959	0.994	1.006	
Humidity_lag13	0.999	0.002	-0.380	0.703	0.994	1.004	
0b.H&W	1.000						
1.H&W	1.189	0.057	3.590	0.000	1.082	1.307	***
Flu_lag0	0.962	0.051	-0.730	0.468	0.866	1.068	
Flu_lag1	1.102	0.059	1.810	0.070	0.992	1.225	*
Flu_lag2	1.012	0.054	0.220	0.824	0.911	1.125	
Flu_lag3	1.038	0.056	0.700	0.487	0.934	1.153	
Flu_lag4	1.000	0.053	0.000	0.997	0.901	1.111	
Flu_lag5	0.933	0.051	-1.280	0.199	0.839	1.037	
Flu_lag6	1.052	0.057	0.940	0.346	0.947	1.169	

Flu_lag7	1.122	0.061	2.130	0.033	1.009	1.247	**
Flu_lag8	1.035	0.056	0.630	0.528	0.931	1.150	
Flu_lag9	0.974	0.053	-0.490	0.624	0.875	1.083	
Flu_lag10	0.933	0.051	-1.270	0.205	0.839	1.038	
Flu_lag11	0.896	0.049	-2.030	0.042	0.805	0.996	**
Flu_lag12	0.937	0.050	-1.220	0.224	0.843	1.041	
cos_1	1.264	0.188	1.580	0.115	0.944	1.693	
cos_2	0.738	0.028	-8.110	0.000	0.686	0.795	***
cos_3	1.159	0.040	4.270	0.000	1.083	1.240	***
cos_4	1.106	0.038	2.960	0.003	1.035	1.182	***
sin_1	1.070	0.059	1.240	0.216	0.961	1.192	
sin_2	0.911	0.034	-2.530	0.011	0.847	0.979	**
sin_3	1.311	0.048	7.430	0.000	1.221	1.408	***
sin_4	0.830	0.027	-5.840	0.000	0.779	0.883	***
Constant	0.717	0.336	-0.710	0.477	0.286	1.796	
lnalpha	-2.645	0.299	.b	.b	-3.231	-2.059	
Mean dependent var	2.296		SD depe	ndent var	2.016		
Pseudo r-squared			Number	of obs	1083		
Chi-square	396.366		Prob > c	hi2	0.000		
Akaike crit. (AIC)	3961.867		Bayesia	n crit. (BIC)	4236.179		

H&W: holiday and weekend

xi: nbreg older o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*,constraints(1/6) irr

Table 3.27 Results of time-series age-stratified model of associations between daily respiratory ED visits among younger children (0-4 years old) and exposure to PM_{2.5} in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.985	0.013	-1.070	0.283	0.959	1.012	
PM _{2.5} _lag1	0.985	0.013	-1.070	0.283	0.959	1.012	
PM _{2.5} _lag2	0.989	0.033	-0.330	0.739	0.926	1.056	
PM _{2.5} _lag3	0.985	0.013	-1.070	0.283	0.959	1.012	
PM _{2.5} _lag4	1.006	0.034	0.190	0.852	0.941	1.076	
PM _{2.5} _lag5	0.983	0.036	-0.460	0.647	0.914	1.057	
PM _{2.5} _lag6	1.025	0.035	0.720	0.473	0.958	1.096	
PM _{2.5} _lag7	0.985	0.013	-1.070	0.283	0.959	1.012	
Temperature_lag0	1.005	0.005	1.040	0.300	0.996	1.015	
Temperature_lag1	0.993	0.007	-1.030	0.304	0.980	1.006	
Temperature_lag2	1.007	0.007	1.040	0.298	0.994	1.021	
Temperature_lag3	0.991	0.007	-1.350	0.178	0.977	1.004	
Temperature_lag4	1.006	0.007	0.850	0.396	0.992	1.020	
Temperature_lag5	0.999	0.007	-0.190	0.848	0.985	1.012	

Temperature_lag6	0.996	0.007	-0.580	0.560	0.983	1.010	
Temperature_lag7	1.003	0.007	0.470	0.638	0.990	1.017	
Temperature_lag8	0.996	0.007	-0.580	0.560	0.983	1.009	
Temperature_lag9	1.010	0.007	1.570	0.117	0.997	1.024	
Temperature_lag10	0.994	0.005	-1.330	0.183	0.985	1.003	
Humidity_lag0	1.001	0.002	0.630	0.527	0.998	1.005	
Humidity_lag1	0.998	0.002	-0.860	0.389	0.994	1.002	
Humidity_lag2	1.002	0.002	0.980	0.328	0.998	1.007	
Humidity_lag3	0.999	0.002	-0.590	0.557	0.994	1.003	
Humidity_lag4	1.000	0.002	0.170	0.866	0.996	1.005	
Humidity_lag5	1.001	0.002	0.350	0.730	0.996	1.005	
Humidity_lag6	0.997	0.002	-1.500	0.134	0.992	1.001	
Humidity_lag7	1.001	0.002	0.390	0.694	0.996	1.005	
Humidity_lag8	1.002	0.002	0.960	0.336	0.998	1.006	
Humidity_lag9	0.999	0.002	-0.440	0.663	0.995	1.003	
Humidity_lag10	1.001	0.002	0.540	0.588	0.997	1.005	
Humidity_lag11	0.998	0.002	-0.750	0.450	0.994	1.003	
Humidity_lag12	1.001	0.002	0.240	0.807	0.996	1.005	
Humidity_lag13	1.001	0.002	0.530	0.593	0.998	1.004	
0b.H&W	1.000						
1.H&W	1.046	0.034	1.380	0.169	0.981	1.115	
Flu_lag0	0.994	0.032	-0.170	0.863	0.933	1.060	
Flu_lag1	0.960	0.031	-1.260	0.208	0.900	1.023	
Flu_lag2	0.916	0.030	-2.690	0.007	0.860	0.977	***
Flu_lag3	1.019	0.033	0.590	0.556	0.956	1.087	
Flu_lag4	1.018	0.033	0.540	0.588	0.955	1.085	
Flu_lag5	0.968	0.032	-0.990	0.324	0.907	1.033	
Flu_lag6	1.063	0.035	1.840	0.065	0.996	1.134	*
Flu_lag7	1.023	0.034	0.680	0.498	0.958	1.092	
Flu_lag8	1.026	0.034	0.770	0.442	0.962	1.094	
Flu_lag9	1.028	0.034	0.830	0.409	0.963	1.096	
Flu_lag10	1.030	0.034	0.910	0.364	0.966	1.098	
Flu_lag11	0.978	0.032	-0.670	0.501	0.918	1.043	
Flu_lag12	1.001	0.032	0.020	0.981	0.939	1.066	
cos_1	1.722	0.116	8.090	0.000	1.510	1.964	***
cos_2	0.931	0.022	-2.980	0.003	0.888	0.976	***
cos_3	1.177	0.027	7.080	0.000	1.125	1.231	***
cos_4	1.081	0.025	3.390	0.001	1.034	1.131	***
sin_1	1.111	0.038	3.120	0.002	1.040	1.187	***
sin_2	0.948	0.023	-2.240	0.025	0.904	0.993	**
sin_3	1.167	0.028	6.430	0.000	1.113	1.223	***
sin_4	0.856	0.019	-7.120	0.000	0.820	0.894	***

Constant	4.924	0.939	8.360	0.000	3.388	7.156	***
lnalpha	-3.278	0.253	.b	.b	-3.774	-2.782	
Mean dependent var	5.242		SD deper	ndent var	3.374		
Pseudo r-squared			Number of	Number of obs			
Chi-square	766.64	6	Prob > ch	ni2	0.000		
Akaike crit. (AIC)	4975.2	05	Bayesian	crit. (BIC)	5244.530		

H&W: holiday and weekend

xi: nbreg younger pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.985	0.049	-0.300	0.761	0.894	1.085	
PM _{2.5} _lag1	0.952	0.053	-0.880	0.381	0.853	1.062	
PM _{2.5} _lag2	0.980	0.053	-0.380	0.703	0.882	1.089	
PM _{2.5} _lag3	1.043	0.041	1.060	0.287	0.965	1.127	
PM _{2.5} _lag4	0.929	0.052	-1.320	0.188	0.832	1.037	
PM _{2.5} _lag5	1.043	0.041	1.060	0.287	0.965	1.127	
PM _{2.5} _lag6	0.965	0.025	-1.380	0.167	0.918	1.015	
PM _{2.5} _lag7	0.965	0.025	-1.380	0.167	0.918	1.015	
Temperature_lag0	1.010	0.009	1.120	0.264	0.993	1.027	
Temperature_lag1	1.003	0.012	0.280	0.776	0.980	1.028	
Temperature_lag2	1.010	0.013	0.770	0.443	0.985	1.035	
Temperature_lag3	1.004	0.013	0.280	0.779	0.979	1.028	
Temperature_lag4	1.008	0.012	0.620	0.534	0.984	1.032	
Temperature_lag5	0.984	0.012	-1.330	0.185	0.960	1.008	
Temperature_lag6	1.011	0.012	0.920	0.357	0.987	1.036	
Temperature_lag7	0.993	0.012	-0.550	0.582	0.970	1.017	
Temperature_lag8	1.023	0.012	1.920	0.055	1.000	1.048	*
Temperature_lag9	0.993	0.012	-0.570	0.567	0.971	1.016	
Temperature_lag10	0.998	0.008	-0.190	0.852	0.982	1.015	
Humidity_lag0	0.999	0.003	-0.410	0.681	0.994	1.004	
Humidity_lag1	1.002	0.003	0.650	0.514	0.996	1.009	
Humidity_lag2	0.997	0.003	-1.000	0.316	0.990	1.003	
Humidity_lag3	1.002	0.003	0.710	0.478	0.996	1.009	
Humidity_lag4	1.003	0.003	0.980	0.329	0.997	1.010	
Humidity_lag5	0.996	0.003	-1.310	0.191	0.989	1.002	
Humidity_lag6	1.006	0.003	1.820	0.069	1.000	1.012	*
Humidity_lag7	0.995	0.003	-1.470	0.142	0.989	1.002	
Humidity_lag8	1.003	0.003	0.870	0.383	0.996	1.009	

Table 3.28 Results of time-series age-stratified model of associations between daily respiratory ED visits among older children (5-16 years old) and exposure to PM_{2.5} in Edmonton between 2016 to 2018

Humidity_lag9	1.002	0.003	0.740	0.457	0.996	1.009	
Humidity_lag10	1.001	0.003	0.270	0.788	0.995	1.007	
Humidity_lag11	1.002	0.003	0.750	0.456	0.996	1.008	
Humidity_lag12	1.000	0.003	-0.140	0.890	0.994	1.005	
Humidity_lag13	0.999	0.002	-0.520	0.605	0.994	1.003	
0b.H&W	1.000						
1.H&W	1.165	0.057	3.120	0.002	1.059	1.283	***
Flu_lag0	0.962	0.052	-0.730	0.467	0.866	1.068	
Flu_lag1	1.093	0.059	1.650	0.099	0.983	1.214	*
Flu_lag2	1.015	0.055	0.290	0.776	0.914	1.128	
Flu_lag3	1.040	0.056	0.720	0.469	0.936	1.155	
Flu_lag4	0.994	0.053	-0.120	0.905	0.894	1.104	
Flu_lag5	0.941	0.051	-1.130	0.260	0.846	1.046	
Flu_lag6	1.051	0.056	0.920	0.357	0.946	1.167	
Flu_lag7	1.109	0.060	1.920	0.055	0.998	1.232	*
Flu_lag8	1.033	0.056	0.610	0.541	0.930	1.148	
Flu_lag9	0.977	0.053	-0.440	0.663	0.878	1.086	
Flu_lag10	0.924	0.050	-1.450	0.147	0.830	1.028	
Flu_lag11	0.899	0.049	-1.960	0.050	0.808	1.000	*
Flu_lag12	0.936	0.050	-1.240	0.216	0.842	1.040	
cos_1	1.392	0.160	2.870	0.004	1.111	1.744	***
cos_2	0.756	0.028	-7.650	0.000	0.703	0.812	***
cos_3	1.173	0.039	4.750	0.000	1.098	1.252	***
cos_4	1.068	0.037	1.900	0.058	0.998	1.142	*
sin_1	1.061	0.057	1.090	0.277	0.954	1.179	
sin_2	0.916	0.032	-2.480	0.013	0.855	0.982	**
sin_3	1.303	0.045	7.630	0.000	1.217	1.394	***
sin_4	0.832	0.027	-5.770	0.000	0.781	0.886	***
Constant	1.441	0.435	1.210	0.226	0.798	2.603	
lnalpha	-2.665	0.306	.b	.b	-3.264	-2.066	
Mean dependent var		2.296	SD depe	endent var	2	.016	
Pseudo r-squared			Number	r of obs	1083		
Chi-square		396.405	Prob > c	chi2	0	.000	
Akaike crit. (AIC)		3963.684	Bayesia	n crit. (BIC)	42.	37.996	

H&W: holiday and weekend

xi: nbreg older pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/2) irr

Table 3.29 Results of time-s	series age-stratific	ed model of associations	between daily	respiratory El	D visits
among younger children (0-4	4 years old) and ex	posure to SO2 in Edmor	nton between 20	016 to 2018	

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ lag0	1.012	0.014	0.850	0.394	0.985	1.039	

SO2 lag1	0 998	0.019	-0 100	0.920	0.962	1 036	
SO_2_lag2	1.012	0.014	0.850	0.394	0.985	1.039	
SO ₂ lag3	1.024	0.020	1.230	0.218	0.986	1.063	
$SO_2 lag4$	1.003	0.011	0.270	0.784	0.982	1.024	
SO_2 lag5	1.007	0.010	0.670	0.501	0.987	1.027	
SO_2 lag6	1.003	0.011	0.270	0.784	0.982	1.024	
SO_2 lag7	1.007	0.010	0.670	0.501	0.987	1.027	
SO_2 lag8	1.003	0.011	0.270	0.784	0.982	1.024	
SO_2 lag9	1.007	0.010	0.670	0.501	0.987	1.027	
Temperature lag0	1.000	0.005	0.080	0.932	0.990	1.011	
Temperature lag1	0.995	0.007	-0.750	0.453	0.980	1.009	
Temperature_lag2	1.005	0.008	0.710	0.479	0.990	1.021	
Temperature_lag3	0.989	0.008	-1.480	0.138	0.974	1.004	
Temperature_lag4	0.999	0.008	-0.130	0.895	0.984	1.014	
Temperature_lag5	1.005	0.008	0.630	0.529	0.990	1.020	
Temperature_lag6	1.000	0.008	0.030	0.977	0.985	1.015	
Temperature_lag7	1.002	0.008	0.200	0.842	0.987	1.017	
Temperature_lag8	0.997	0.007	-0.450	0.654	0.982	1.011	
Temperature_lag9	1.012	0.007	1.680	0.093	0.998	1.026	*
Temperature_lag10	0.995	0.005	-0.960	0.336	0.985	1.005	
Humidity_lag0	1.000	0.002	-0.100	0.923	0.996	1.004	
Humidity_lag1	0.997	0.003	-1.070	0.286	0.992	1.002	
Humidity_lag2	1.003	0.003	1.180	0.239	0.998	1.008	
Humidity_lag3	0.998	0.003	-0.720	0.472	0.993	1.003	
Humidity_lag4	1.001	0.003	0.460	0.644	0.996	1.007	
Humidity_lag5	0.998	0.003	-0.800	0.421	0.993	1.003	
Humidity_lag6	0.997	0.003	-0.930	0.351	0.992	1.003	
Humidity_lag7	1.002	0.003	0.890	0.375	0.997	1.008	
Humidity_lag8	1.001	0.003	0.510	0.609	0.996	1.007	
Humidity_lag9	0.999	0.003	-0.540	0.591	0.993	1.004	
Humidity_lag10	1.002	0.003	0.630	0.528	0.996	1.007	
Humidity_lag11	0.998	0.003	-0.840	0.404	0.993	1.003	
Humidity_lag12	1.001	0.003	0.400	0.690	0.996	1.006	
Humidity_lag13	0.997	0.002	-1.250	0.211	0.993	1.001	
0b.H&W	1.000		•	•			
1.H&W	1.051	0.041	1.270	0.203	0.973	1.136	
Flu_lag0	1.020	0.038	0.520	0.600	0.948	1.098	
Flu_lag1	0.920	0.035	-2.210	0.027	0.855	0.991	**
Flu_lag2	0.873	0.032	-3.680	0.000	0.812	0.938	***
Flu_lag3	1.041	0.039	1.050	0.293	0.966	1.121	
Flu_lag4	0.994	0.038	-0.150	0.880	0.923	1.071	
Flu_lag5	0.950	0.036	-1.360	0.175	0.882	1.023	

Flu_lag6	1.045	0.040	1.120	0.261	0.968	1.127	
Flu_lag7	1.061	0.041	1.530	0.127	0.983	1.146	
Flu_lag8	1.049	0.040	1.270	0.202	0.974	1.130	
Flu_lag9	1.058	0.041	1.470	0.140	0.982	1.141	
Flu_lag10	1.084	0.041	2.160	0.031	1.007	1.166	**
Flu_lag11	1.008	0.038	0.220	0.828	0.937	1.085	
Flu_lag12	0.991	0.037	-0.260	0.798	0.922	1.065	
cos_1	1.807	0.132	8.070	0.000	1.565	2.086	***
cos_2	0.938	0.029	-2.030	0.042	0.882	0.998	**
cos_3	1.183	0.036	5.600	0.000	1.116	1.255	***
cos_4	1.089	0.031	2.990	0.003	1.030	1.152	***
sin_1	1.078	0.046	1.770	0.077	0.992	1.172	*
sin_2	0.925	0.030	-2.390	0.017	0.869	0.986	**
sin_3	1.104	0.034	3.190	0.001	1.039	1.173	***
sin_4	0.902	0.025	-3.670	0.000	0.853	0.953	***
Constant	11.720	5.286	5.460	0.000	4.843	28.366	***
lnalpha	-4.253	0.727	.b	.b	-5.677	-2.828	
Mean dependent var	5.326		SD depe	ndent var	3.571		
Pseudo r-squared			Number	of obs	674		
Chi-square	710.746		Prob > c	hi2	0.000		
Akaike crit. (AIC)	3067.21	2	Bayesiar	n crit. (BIC)	3310.927		

H&W: holiday and weekend

xi: nbreg younger so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

Table 3.30 Results of time-series age-stratified model of associations between daily respiratory ED visits among older children (5-16 years old) and exposure to SO₂ in Edmonton between 2016 to 2018

	(° 1°) °	ena) ana en			nemen etti te		
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	0.955	0.027	-1.610	0.107	0.903	1.010	
SO ₂ _lag1	1.023	0.016	1.390	0.166	0.991	1.055	
SO ₂ _lag2	1.017	0.021	0.810	0.417	0.977	1.059	
SO ₂ _lag3	0.986	0.020	-0.700	0.486	0.949	1.025	
SO ₂ _lag4	1.017	0.021	0.810	0.417	0.977	1.059	
SO ₂ _lag5	0.986	0.020	-0.700	0.486	0.949	1.025	
SO ₂ _lag6	1.023	0.016	1.390	0.166	0.991	1.055	
SO ₂ _lag7	1.023	0.016	1.390	0.166	0.991	1.055	
SO2_lag8	1.043	0.020	2.200	0.028	1.005	1.082	**
SO ₂ lag9	1.043	0.020	2.200	0.028	1.005	1.082	**
Temperature_lag0	1.007	0.011	0.650	0.518	0.986	1.029	
Temperature_lag1	1.004	0.015	0.260	0.797	0.975	1.033	
Temperature_lag2	1.020	0.015	1.290	0.197	0.990	1.050	

Temperature_lag3	1.001	0.015	0.040	0.967	0.971	1.031	
Temperature_lag4	1.007	0.015	0.510	0.612	0.979	1.037	
Temperature_lag5	0.982	0.014	-1.280	0.202	0.954	1.010	
Temperature_lag6	0.996	0.014	-0.280	0.777	0.968	1.025	
Temperature_lag7	1.002	0.014	0.110	0.916	0.974	1.030	
Temperature_lag8	1.019	0.014	1.310	0.189	0.991	1.047	
Temperature_lag9	1.003	0.014	0.220	0.822	0.976	1.031	
Temperature_lag10	0.996	0.010	-0.440	0.662	0.976	1.015	
Humidity_lag0	0.998	0.003	-0.700	0.486	0.991	1.004	
Humidity_lag1	1.002	0.004	0.550	0.580	0.994	1.011	
Humidity_lag2	0.998	0.004	-0.530	0.595	0.990	1.006	
Humidity_lag3	1.004	0.004	0.910	0.361	0.996	1.012	
Humidity_lag4	1.001	0.004	0.330	0.740	0.993	1.010	
Humidity_lag5	0.997	0.004	-0.770	0.439	0.988	1.005	
Humidity_lag6	1.006	0.004	1.510	0.131	0.998	1.015	
Humidity_lag7	0.991	0.004	-2.150	0.031	0.983	0.999	**
Humidity_lag8	1.005	0.004	1.280	0.202	0.997	1.014	
Humidity_lag9	1.002	0.004	0.490	0.621	0.994	1.011	
Humidity_lag10	1.001	0.004	0.130	0.900	0.992	1.009	
Humidity_lag11	1.003	0.004	0.870	0.383	0.996	1.011	
Humidity_lag12	1.000	0.004	-0.020	0.988	0.992	1.008	
Humidity_lag13	1.002	0.003	0.700	0.482	0.996	1.009	
0b.H&W	1.000						
1.H&W	1.101	0.069	1.520	0.128	0.973	1.245	
Flu_lag0	0.870	0.060	-2.030	0.042	0.761	0.995	**
Flu_lag1	1.048	0.072	0.680	0.499	0.916	1.199	
Flu_lag2	1.043	0.071	0.620	0.538	0.912	1.193	
Flu_lag3	1.066	0.073	0.940	0.347	0.933	1.219	
Flu_lag4	1.028	0.070	0.410	0.683	0.900	1.174	
Flu_lag5	0.958	0.066	-0.620	0.534	0.836	1.097	
Flu_lag6	1.056	0.073	0.780	0.434	0.922	1.209	
Flu_lag7	1.101	0.076	1.390	0.166	0.961	1.261	
Flu_lag8	1.072	0.073	1.010	0.311	0.937	1.226	
Flu_lag9	1.035	0.072	0.500	0.619	0.904	1.185	
Flu_lag10	0.908	0.062	-1.410	0.158	0.793	1.038	
Flu_lag11	0.884	0.060	-1.820	0.069	0.774	1.010	*
Flu_lag12	0.880	0.060	-1.870	0.061	0.771	1.006	*
cos_1	1.336	0.177	2.180	0.029	1.030	1.732	**
cos_2	0.802	0.038	-4.660	0.000	0.731	0.880	***
cos_3	1.067	0.047	1.480	0.140	0.979	1.163	
cos_4	1.049	0.047	1.070	0.286	0.961	1.146	
sin_1	1.108	0.076	1.490	0.137	0.968	1.269	
sin_2	0.842	0.041	-3.540	0.000	0.766	0.926	***
sin_3	1.339	0.060	6.530	0.000	1.227	1.461	***

sin_4	0.837	0.035	-4.240	0.000	0.770	0.908	***
Constant	1.997	1.424	0.970	0.332	0.493	8.081	
lnalpha	-3.163	0.619	.b	.b	-4.375	-1.950	
Mean dependent var	2.018		SD deper	ndent var	1.703		
Pseudo r-squared			Number	of obs	674		
Chi-square	169.489)	Prob > c	hi2	0.000		
Akaike crit. (AIC)	2379.03	0	Bayesiar	crit. (BIC)	2622.745		

H&W: holiday and weekend

xi: nbreg older so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos*

sin*,constraints(1/5) irr

3.2.5 Results of time-series wildfire and non-wildfire models

Tables 3.31 to 3.35 present the results of the wildfire season model and Tables 36 to 40 show the results of the non-wildfire season model for the five air pollutants and selected lags over the study period. IRRs and 95% confidence intervals for daily respiratory ED visits during wildfire seasons and non-wildfire seasons are shown for a one unit increase in the natural log of air pollutants concentrations. In other words, expected daily respiratory ED visits among children increased by [(IRR-1) * 100] % when air pollutant concentration increased (e-1) times after adjusting for other variables (e: Euler's number. The value is approximately 2.71828). During wildfire seasons, the daily respiratory ED visits among children were significantly, positively associated with 2- and 6day lag exposures to CO, with the same IRR of 1.196 (95%CI: 1.020-1.403). Also, significant evidence of positive associations between daily respiratory ED visits among children and 0-, 5-, 6-, and 10-day lag exposures to NO₂, with the same IRR of 1.080 (95%CI: 1.005-1.160) for 0, 5 and 10-day lag exposures, and 1.147 (95%CI: 1.024-1.285) for 6-day lag exposures. For O₃, 5and 11-day lag exposures were found to be positively associated with daily respiratory ED visits among children, with the same IRR of 1.120 (95%CI: 0.997-1.256). Meanwhile, 0-, 2-, and 6-day lag exposures of PM2.5 were positively associated with daily respiratory ED visits among children, with the same IRR of 1.056 (95%CI: 1.004-1.112). There was no significant association between daily respiratory ED visits among children and exposure to SO₂ in the wildfire season in Edmonton.

During non-wildfire seasons, 4- and 8-day lag exposures of NO₂, 1- and 5-day lag exposures of O₃, and 1- and 4-day lag exposures of SO₂ were found to be positively associated with daily respiratory visits among children, with IRR of 1.073 (95%CI: 1.001-1.15), 1.101 (95%CI: 1.01-

1.2), and 1.033 (95%CI: 1.003-1.064) for NO₂, O₃, and SO₂, respectively. Significant associations for exposure to CO and PM_{2.5} were not found in non-wildfire season models.

For wildfire season models, AIC in CO and NO₂ models were smaller than in the baseline model, and BIC were larger than in the baseline model. Both AIC and BIC in O₃ and PM_{2.5} models were larger than in the baseline model. Both AIC and BIC in SO₂ models were smaller than in the baseline models. Results of the wildfire season baseline model is presented in Appendix 2 Table A 2.6. For non-wildfire season models, both AIC and BIC in SO₂ models of CO, NO₂, O₃ and PM_{2.5} were larger than in the baseline model. Both AIC and BIC in SO₂ models were smaller than in the baseline models. Results of the non-wildfire season baseline model are presented in Appendix 2 Table A 2.7.

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.892	0.067	-1.530	0.125	0.770	1.032	
CO_lag1	1.053	0.075	0.730	0.467	0.916	1.212	
CO_lag2	1.196	0.097	2.200	0.028	1.020	1.403	**
CO_lag3	0.838	0.094	-1.570	0.115	0.673	1.044	
CO_lag4	0.892	0.067	-1.530	0.125	0.770	1.032	
CO_lag5	0.908	0.062	-1.400	0.161	0.794	1.039	
CO_lag6	1.196	0.097	2.200	0.028	1.020	1.403	**
CO_lag7	0.869	0.090	-1.360	0.174	0.709	1.064	
CO_lag8	1.053	0.075	0.730	0.467	0.916	1.212	
CO_lag9	0.908	0.062	-1.400	0.161	0.794	1.039	
Temperature_lag0	1.022	0.011	2.030	0.042	1.001	1.043	**
Temperature_lag1	0.986	0.014	-1.030	0.303	0.959	1.013	
Temperature_lag2	1.009	0.012	0.750	0.455	0.986	1.033	
Temperature_lag3	0.993	0.012	-0.590	0.557	0.970	1.017	
Temperature_lag4	1.011	0.012	0.940	0.345	0.988	1.035	
Temperature_lag5	0.985	0.011	-1.350	0.177	0.963	1.007	
Temperature_lag6	1.005	0.008	0.660	0.511	0.990	1.021	
Humidity_lag0	1.002	0.003	0.640	0.523	0.997	1.007	
Humidity_lag1	0.999	0.003	-0.430	0.665	0.994	1.004	
0b.H&W	1.000						
1.H&W	1.153	0.049	3.330	0.001	1.060	1.253	***
Flu_lag0	0.928	0.054	-1.280	0.200	0.828	1.040	
Flu_lag1	1.002	0.057	0.040	0.966	0.896	1.122	
Flu_lag2	0.998	0.058	-0.030	0.976	0.892	1.118	
Flu_lag3	0.894	0.052	-1.920	0.055	0.797	1.002	*

Table 3.31 Results of time-series wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to CO in Edmonton between 2016 to 2018

Flu_lag4	1.018	0.059	0.310	0.758	0.908	1.142	
Flu_lag5	0.897	0.053	-1.830	0.067	0.798	1.008	*
Flu_lag6	0.966	0.056	-0.600	0.550	0.862	1.082	
Flu_lag7	1.052	0.060	0.890	0.375	0.941	1.176	
Flu_lag8	0.989	0.057	-0.190	0.848	0.884	1.106	
Flu_lag9	0.925	0.054	-1.330	0.184	0.824	1.038	
Flu_lag10	0.986	0.057	-0.240	0.807	0.880	1.105	
Flu_lag11	1.016	0.057	0.280	0.783	0.909	1.135	
Flu_lag12	1.032	0.057	0.570	0.567	0.926	1.151	
Flu_lag13	1.016	0.057	0.280	0.783	0.909	1.135	
Flu_lag14	1.114	0.063	1.930	0.054	0.998	1.244	*
Flu_lag15	1.152	0.066	2.470	0.014	1.030	1.288	**
Flu_lag16	0.953	0.056	-0.830	0.405	0.849	1.068	
Flu_lag17	1.005	0.058	0.080	0.934	0.897	1.126	
cos_1	0.925	7.031	-0.010	0.992	0.000	2.715E+06	
\cos_2	0.982	4.713	0.000	0.997	0.000	1.197E+04	
cos_3	1.982	4.107	0.330	0.741	0.034	114.987	
cos_4	1.726	0.847	1.110	0.266	0.659	4.517	
sin_1	5.220	3.152	2.740	0.006	1.598	17.047	***
sin_2	7.762	6.055	2.630	0.009	1.682	35.810	***
sin_3	5.756	3.076	3.270	0.001	2.019	16.406	***
sin_4	1.566	0.302	2.330	0.020	1.073	2.284	**
Constant	2.584	11.352	0.220	0.829	0.000	1.418E+04	
lnalpha	-3.734	0.439	.b	.b	-4.594	-2.875	
Mean dependent var	6.501		SD deper	ndent var	4.208		
Pseudo r-squared			Number	of obs	549		
Chi-square	598.379		Prob > cl	ni2	0.000		
Akaike crit. (AIC)	2671.840)	Bayesian	crit. (BIC)	2861.396		

H&W: holiday and weekend

xi: nbreg count colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

Table 3.32 Results of t	ime-series	s wildfire n	nodel of ass	ociations be	etween daily res	spiratory ED	visits
among children under 1	7 ages an	d exposure	to NO ₂ in I	Edmonton b	between 2016 to	o 2018	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ lag0	1.080	0.040	2.100	0.036	1.005	1.160	**
NO ₂ _lag1	0.979	0.034	-0.620	0.535	0.915	1.047	
NO ₂ lag2	1.051	0.040	1.310	0.192	0.976	1.131	
NO ₂ lag3	1.039	0.047	0.850	0.397	0.951	1.135	
NO ₂ _lag4	0.979	0.034	-0.620	0.535	0.915	1.047	
NO ₂ lag5	1.080	0.040	2.100	0.036	1.005	1.160	**
NO2_lag6	1.147	0.067	2.360	0.018	1.024	1.285	**

NO ₂ lag7	0.920	0.055	-1.380	0.167	0.817	1.035	
NO ₂ lag8	1.039	0.047	0.850	0.397	0.951	1.135	
NO ₂ lag9	1.051	0.040	1.310	0.192	0.976	1.131	
NO2_lag10	1.080	0.040	2.100	0.036	1.005	1.160	**
NO ₂ lag11	0.948	0.054	-0.930	0.351	0.848	1.060	
NO ₂ lag12	0.940	0.053	-1.110	0.268	0.841	1.049	
NO ₂ lag13	0.979	0.034	-0.620	0.535	0.915	1.047	
Temperature_lag0	1.019	0.011	1.770	0.076	0.998	1.040	*
Temperature_lag1	0.994	0.014	-0.450	0.656	0.967	1.021	
Temperature_lag2	1.007	0.012	0.540	0.589	0.983	1.031	
Temperature_lag3	0.992	0.012	-0.670	0.502	0.968	1.016	
Temperature_lag4	1.012	0.012	1.010	0.314	0.989	1.036	
Temperature_lag5	0.975	0.011	-2.140	0.032	0.953	0.998	**
Temperature_lag6	1.014	0.008	1.740	0.083	0.998	1.031	*
Humidity_lag0	1.001	0.003	0.360	0.721	0.996	1.006	
Humidity_lag1	1.000	0.003	-0.010	0.992	0.995	1.005	
0b.H&W	1.000						
1.H&W	1.172	0.058	3.180	0.001	1.063	1.292	***
Flu_lag0	0.932	0.055	-1.190	0.233	0.831	1.046	
Flu_lag1	1.000	0.059	0.000	0.999	0.892	1.121	
Flu_lag2	0.981	0.057	-0.340	0.736	0.875	1.099	
Flu_lag3	0.898	0.052	-1.850	0.065	0.800	1.007	*
Flu_lag4	1.004	0.059	0.070	0.942	0.894	1.128	
Flu_lag5	0.890	0.053	-1.960	0.050	0.792	1.000	*
Flu_lag6	0.927	0.054	-1.290	0.197	0.827	1.040	
Flu_lag7	1.024	0.058	0.410	0.682	0.916	1.144	
Flu_lag8	0.975	0.056	-0.440	0.658	0.871	1.091	
Flu_lag9	0.942	0.055	-1.020	0.309	0.840	1.057	
Flu_lag10	0.964	0.056	-0.640	0.525	0.859	1.080	
Flu_lag11	0.987	0.056	-0.240	0.811	0.882	1.103	
Flu_lag12	1.026	0.057	0.460	0.643	0.920	1.145	
Flu_lag13	1.013	0.057	0.220	0.824	0.907	1.131	
Flu_lag14	1.082	0.061	1.400	0.162	0.969	1.208	
Flu_lag15	1.138	0.065	2.250	0.024	1.017	1.273	**
Flu_lag16	0.949	0.056	-0.900	0.370	0.846	1.064	
Flu_lag17	1.002	0.058	0.040	0.968	0.894	1.124	
cos_1	0.116	0.888	-0.280	0.779	0.000	3.979E+05	
cos_2	0.297	1.440	-0.250	0.802	0.000	3.981E+03	
cos_3	1.260	2.635	0.110	0.912	0.021	75.910	
cos_4	1.633	0.807	0.990	0.321	0.620	4.303	
sin_1	5.420	3.268	2.800	0.005	1.662	17.671	***
sin_2	7.854	6.128	2.640	0.008	1.702	36.246	***

sin_3	5.999	3.199	3.360	0.001	2.110	17.059	***
sin_4	1.584	0.304	2.390	0.017	1.087	2.307	**
Constant	4.528	19.979	0.340	0.732	0.001	2.579E+04	
lnalpha	-3.692	0.417	.b	.b	-4.509	-2.876	
Mean dependent var	6.501		SD depen	dent var	4.208		
Pseudo r-squared			Number o	of obs	549		
Chi-square	602.696		Prob > ch	i2	0.000		
Akaike crit. (AIC)	2671.64	3	Bayesian	crit. (BIC)	2869.815		

H&W: holiday and weekend

xi: nbreg count no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

among children under	r I'/ ages an	d exposure	to O_3 in Ed	monton bety	ween 2016 to 20	518	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	1.026	0.069	0.380	0.701	0.900	1.170	
O ₃ _lag1	0.936	0.059	-1.040	0.297	0.827	1.060	
O ₃ _lag2	0.994	0.054	-0.110	0.913	0.893	1.107	
O ₃ _lag3	1.026	0.069	0.380	0.701	0.900	1.170	
O ₃ _lag4	0.980	0.062	-0.320	0.752	0.866	1.109	
O ₃ _lag5	1.120	0.066	1.920	0.045	0.997	1.256	**
O ₃ _lag6	0.994	0.054	-0.110	0.913	0.893	1.107	
O ₃ _lag7	1.057	0.096	0.610	0.540	0.885	1.264	
O ₃ _lag8	0.994	0.054	-0.110	0.913	0.893	1.107	
O ₃ _lag9	0.980	0.062	-0.320	0.752	0.866	1.109	
O ₃ lag10	0.936	0.059	-1.040	0.297	0.827	1.060	
O ₃ lag11	1.120	0.066	1.920	0.045	0.997	1.256	**
Temperature_lag0	1.020	0.011	1.870	0.062	0.999	1.041	*
Temperature_lag1	0.992	0.014	-0.550	0.582	0.966	1.020	
Temperature_lag2	1.009	0.013	0.730	0.468	0.985	1.034	
Temperature_lag3	0.990	0.012	-0.780	0.435	0.967	1.015	
Temperature_lag4	1.011	0.012	0.880	0.378	0.987	1.036	
Temperature_lag5	0.978	0.012	-1.850	0.064	0.955	1.001	*
Temperature_lag6	1.008	0.009	0.850	0.393	0.990	1.025	
Humidity_lag0	1.002	0.003	0.700	0.484	0.997	1.007	
Humidity_lag1	0.999	0.003	-0.270	0.784	0.994	1.005	
0b.H&W	1.000						
1.H&W	1.157	0.049	3.460	0.001	1.065	1.256	***
Flu_lag0	0.924	0.055	-1.340	0.180	0.823	1.037	
Flu_lag1	0.992	0.058	-0.140	0.886	0.885	1.111	
Flu_lag2	0.956	0.056	-0.770	0.443	0.851	1.073	

Table 3.33 Results of time-series wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to O_3 in Edmonton between 2016 to 2018

Flu_lag3	0.910	0.054	-1.580	0.113	0.810	1.023	
Flu_lag4	1.017	0.061	0.280	0.779	0.905	1.143	
Flu_lag5	0.894	0.054	-1.850	0.065	0.794	1.007	*
Flu_lag6	0.938	0.056	-1.070	0.285	0.835	1.054	
Flu_lag7	1.039	0.060	0.650	0.513	0.927	1.163	
Flu_lag8	0.976	0.058	-0.410	0.681	0.869	1.096	
Flu_lag9	0.925	0.056	-1.300	0.194	0.822	1.041	
Flu_lag10	0.948	0.057	-0.890	0.376	0.843	1.067	
Flu_lag11	0.987	0.057	-0.230	0.817	0.880	1.106	
Flu_lag12	1.021	0.059	0.370	0.714	0.913	1.143	
Flu_lag13	1.006	0.058	0.100	0.919	0.898	1.127	
Flu_lag14	1.082	0.062	1.370	0.172	0.967	1.211	
Flu_lag15	1.129	0.066	2.070	0.039	1.006	1.268	**
Flu_lag16	0.942	0.056	-1.000	0.315	0.838	1.059	
Flu_lag17	0.998	0.059	-0.030	0.980	0.889	1.121	
cos_1	2.998	23.490	0.140	0.889	0.000	1.398E+07	
\cos_2	1.995	9.865	0.140	0.889	0.000	3.226E+04	
cos_3	2.672	5.701	0.460	0.645	0.041	175.006	
cos_4	1.869	0.942	1.240	0.215	0.696	5.021	
sin_1	6.734	4.190	3.060	0.002	1.989	22.800	***
sin_2	11.022	8.926	2.960	0.003	2.254	53.899	***
sin_3	7.553	4.204	3.630	0.000	2.537	22.485	***
sin_4	1.740	0.350	2.760	0.006	1.173	2.579	***
Constant	13.165	61.229	0.550	0.579	0.001	1.197E+05	
lnalpha	-3.533	0.370	.b	.b	-4.257	-2.808	
Mean dependent var	6.501		SD depend	lent var	4.208		
Pseudo r-squared			Number of	f obs	549		
Chi-square	569.605	5	Prob > chi	2	0.000		
Akaike crit. (AIC)	2684.13	36	Bayesian c	rit. (BIC)	2873.692		

H&W: holiday and weekend

xi: nbreg count o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

Table 3.34 Results of time-series wildfire model of associations between daily respiratory EI) visits
among children under 17 ages and exposure to PM _{2.5} in Edmonton between 2016 to 2018	

	11, 49, 60, 61						
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	1.056	0.027	2.110	0.035	1.004	1.112	**
PM _{2.5} _lag1	0.957	0.028	-1.480	0.138	0.904	1.014	
PM _{2.5} _lag2	1.056	0.027	2.110	0.035	1.004	1.112	**
PM _{2.5} _lag3	0.976	0.046	-0.510	0.607	0.889	1.071	
PM _{2.5} _lag4	0.919	0.044	-1.780	0.075	0.838	1.008	*

PM _{2.5} _lag5	1.007	0.045	0.150	0.883	0.922	1.098	
PM _{2.5} _lag6	1.056	0.027	2.110	0.035	1.004	1.112	**
PM _{2.5} _lag7	0.957	0.028	-1.480	0.138	0.904	1.014	
Temperature_lag0	1.013	0.011	1.180	0.238	0.992	1.034	
Temperature_lag1	0.995	0.014	-0.320	0.746	0.968	1.023	
Temperature_lag2	1.007	0.012	0.550	0.579	0.983	1.031	
Temperature_lag3	0.992	0.012	-0.680	0.498	0.968	1.016	
Temperature_lag4	1.016	0.012	1.300	0.192	0.992	1.041	
Temperature_lag5	0.983	0.012	-1.450	0.146	0.960	1.006	
Temperature_lag6	1.005	0.008	0.640	0.520	0.989	1.022	
Humidity_lag0	1.001	0.003	0.300	0.768	0.996	1.006	
Humidity_lag1	1.000	0.003	0.170	0.863	0.995	1.005	
0b.H&W	1.000						
1.H&W	1.163	0.049	3.550	0.000	1.070	1.263	***
Flu_lag0	0.922	0.054	-1.380	0.167	0.822	1.035	
Flu_lag1	0.993	0.058	-0.120	0.902	0.886	1.112	
Flu_lag2	0.976	0.056	-0.430	0.670	0.871	1.093	
Flu_lag3	0.901	0.053	-1.780	0.075	0.803	1.010	*
Flu_lag4	1.006	0.060	0.100	0.921	0.896	1.130	
Flu_lag5	0.901	0.054	-1.740	0.082	0.802	1.013	*
Flu_lag6	0.947	0.055	-0.930	0.354	0.845	1.062	
Flu_lag7	1.043	0.060	0.730	0.466	0.932	1.166	
Flu_lag8	0.988	0.057	-0.210	0.836	0.883	1.106	
Flu_lag9	0.930	0.055	-1.240	0.217	0.828	1.044	
Flu_lag10	0.968	0.057	-0.550	0.584	0.863	1.086	
Flu_lag11	1.011	0.058	0.190	0.850	0.904	1.131	
Flu_lag12	1.036	0.058	0.630	0.527	0.928	1.157	
Flu_lag13	1.005	0.057	0.080	0.933	0.899	1.124	
Flu_lag14	1.091	0.062	1.540	0.123	0.977	1.219	
Flu_lag15	1.151	0.066	2.430	0.015	1.027	1.288	**
Flu_lag16	0.956	0.056	-0.770	0.442	0.852	1.073	
Flu_lag17	0.993	0.058	-0.110	0.910	0.886	1.114	
cos_1	1.917	14.767	0.080	0.933	0.000	6.930E+06	
cos_2	1.570	7.641	0.090	0.926	0.000	2.182E+04	
cos_3	2.441	5.127	0.430	0.671	0.040	149.703	
cos_4	1.830	0.909	1.220	0.224	0.691	4.846	
sin_1	6.257	3.825	3.000	0.003	1.888	20.737	***
sin_2	9.696	7.656	2.880	0.004	2.063	45.576	***
sin_3	6.811	3.683	3.550	0.000	2.360	19.656	***
sin_4	1.663	0.323	2.620	0.009	1.136	2.435	***
Constant	6.153	27.397	0.410	0.683	0.001	3.793E+04	
lnalpha	-3.568	0.380	.b	.b	-4.314	-2.822	

Mean dependent var	6.501	SD dependent var	4.208
Pseudo r-squared		Number of obs	549
Chi-square	575.857	Prob > chi2	0.000
Akaike crit. (AIC)	2678.485	Bayesian crit. (BIC)	2863.733

H&W: holiday and weekend

xi: nbreg count pm25lag* temperaturelag* humiditylag* i.holidayweekedn flulag* cos* sin*, constraints(1/3) irr

Table 3.35 Results of time-series wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to SO₂ in Edmonton between 2016 to 2018

among children under	r 17 ages an	d exposure	to SO_2 in I	Edmonton b	etween 2016 to	2018	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	0.994	0.018	-0.350	0.727	0.959	1.030	
Temperature_lag0	1.026	0.012	2.280	0.022	1.004	1.049	**
Temperature_lag1	0.986	0.015	-0.930	0.353	0.957	1.016	
Temperature_lag2	1.006	0.014	0.470	0.637	0.980	1.034	
Temperature_lag3	0.991	0.013	-0.660	0.507	0.966	1.017	
Temperature_lag4	1.010	0.013	0.780	0.436	0.985	1.035	
Temperature_lag5	0.982	0.012	-1.480	0.140	0.959	1.006	
Temperature_lag6	1.010	0.008	1.170	0.242	0.993	1.027	
Humidity_lag0	1.003	0.003	0.930	0.353	0.997	1.008	
Humidity_lag1	0.999	0.003	-0.480	0.630	0.993	1.004	
0b.H&W	1.000		•				
1.H&W	1.153	0.051	3.190	0.001	1.056	1.258	***
Flu_lag0	0.949	0.061	-0.810	0.418	0.838	1.076	
Flu_lag1	0.999	0.064	-0.010	0.993	0.882	1.132	
Flu_lag2	0.971	0.061	-0.460	0.643	0.859	1.099	
Flu_lag3	0.900	0.056	-1.680	0.093	0.796	1.018	*
Flu_lag4	1.008	0.062	0.120	0.901	0.893	1.137	
Flu_lag5	0.898	0.058	-1.680	0.093	0.791	1.018	*
Flu_lag6	0.915	0.058	-1.390	0.163	0.808	1.037	
Flu_lag7	1.060	0.065	0.960	0.338	0.941	1.195	
Flu_lag8	0.981	0.060	-0.320	0.752	0.870	1.106	
Flu_lag9	0.941	0.059	-0.970	0.330	0.832	1.064	
Flu_lag10	0.957	0.061	-0.690	0.492	0.845	1.084	
Flu_lag11	0.984	0.060	-0.270	0.786	0.873	1.108	
Flu_lag12	1.032	0.063	0.510	0.612	0.915	1.164	
Flu_lag13	1.042	0.064	0.670	0.505	0.924	1.174	
Flu_lag14	1.084	0.066	1.330	0.184	0.962	1.220	
Flu_lag15	1.137	0.071	2.050	0.041	1.005	1.286	**
Flu_lag16	0.948	0.060	-0.840	0.402	0.838	1.074	
Flu_lag17	0.984	0.062	-0.250	0.802	0.870	1.114	

cos_1	1.824	14.958	0.070	0.942	0.000	1.738E+07	
cos_2	1.508	7.813	0.080	0.937	0.000	3.871E+04	
cos_3	2.396	5.357	0.390	0.696	0.030	191.701	
cos_4	1.849	0.978	1.160	0.245	0.656	5.212	
sin_1	5.748	3.690	2.720	0.006	1.633	20.231	***
sin_2	8.636	7.167	2.600	0.009	1.698	43.929	***
sin_3	6.348	3.602	3.260	0.001	2.088	19.301	***
sin_4	1.623	0.330	2.380	0.017	1.089	2.419	**
Constant	5.408	25.612	0.360	0.722	0.001	5.808E+04	
lnalpha	-3.354	0.337	.b	.b	-4.015	-2.693	
Mean dependent var	6.414		SD deper	ndent var	4.224		
Pseudo r-squared	0.129		Number	Number of obs			
Chi-square	357.466		Prob > c	Prob > chi2			
Akaike crit. (AIC)	2494.97	6	Bayesian	crit. (BIC)	2660.118		

H&W: holiday and weekend

xi: nbreg count so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

among children under	1 / ages and	exposure to		Union Delwo		10	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.880	0.068	-1.640	0.100	0.756	1.025	
CO_lag1	0.944	0.079	-0.690	0.492	0.800	1.113	
CO_lag2	1.004	0.085	0.050	0.959	0.852	1.185	
CO_lag3	1.072	0.085	0.870	0.383	0.917	1.253	
Temperature_lag0	1.004	0.005	0.780	0.437	0.994	1.013	
Temperature_lag1	0.995	0.006	-0.730	0.465	0.983	1.008	
Temperature_lag2	1.004	0.007	0.590	0.554	0.991	1.017	
Temperature_lag3	0.995	0.006	-0.810	0.417	0.983	1.007	
Temperature_lag4	1.005	0.006	0.870	0.384	0.993	1.018	
Temperature_lag5	1.000	0.006	-0.030	0.977	0.988	1.012	
Temperature_lag6	0.998	0.006	-0.360	0.717	0.986	1.010	
Temperature_lag7	0.998	0.006	-0.390	0.698	0.986	1.009	
Temperature_lag8	1.007	0.004	1.700	0.090	0.999	1.016	*
Humidity_lag0	1.000	0.002	-0.040	0.970	0.996	1.004	
Humidity_lag1	0.997	0.003	-1.000	0.319	0.992	1.003	
Humidity_lag2	1.001	0.003	0.250	0.805	0.995	1.006	
Humidity_lag3	0.999	0.002	-0.540	0.589	0.995	1.003	
0b.H&W	1.000						
1.H&W	1.037	0.037	1.010	0.312	0.967	1.112	
Flu_lag0	0.996	0.032	-0.130	0.900	0.936	1.060	

Table 3.36 Results of time-series non-wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to CO in Edmonton between 2016 to 2018

Flu_lag1	0.976	0.032	-0.750	0.452	0.916	1.040	
Flu_lag2	0.915	0.029	-2.780	0.006	0.859	0.974	***
Flu_lag3	1.063	0.034	1.900	0.057	0.998	1.133	*
Flu_lag4	0.995	0.032	-0.150	0.880	0.934	1.060	
Flu_lag5	0.971	0.031	-0.900	0.366	0.912	1.035	
Flu_lag6	1.091	0.036	2.650	0.008	1.023	1.164	***
Flu_lag7	1.028	0.034	0.820	0.414	0.963	1.097	
Flu_lag8	1.023	0.034	0.700	0.482	0.960	1.091	
Flu_lag9	1.035	0.034	1.060	0.291	0.971	1.103	
Flu_lag10	1.006	0.032	0.190	0.851	0.944	1.072	
Flu_lag11	0.951	0.031	-1.560	0.119	0.892	1.013	
Flu_lag12	0.963	0.031	-1.200	0.232	0.904	1.025	
cos_1	0.000	0.000	-2.310	0.021	0.000	0.090	**
cos_2	2.681E+0 4	1.156E+05	2.360	0.018	5.722	1.256E+08	**
cos_3	0.014	0.027	-2.290	0.022	0.000	0.540	**
cos_4	2.756	1.190	2.350	0.019	1.182	6.425	**
sin_1	0.591	0.360	-0.860	0.389	0.179	1.953	
sin_2	2.247	1.777	1.020	0.306	0.477	10.586	
sin_3	0.583	0.315	-1.000	0.317	0.202	1.678	
sin_4	1.177	0.221	0.870	0.387	0.814	1.702	
Constant	8.996E+0 4	3.565E+05	2.880	0.004	38.113	2.123E+08	***
lnalpha	-3.817	0.383	.b	.b	-4.568	-3.066	
Mean dependent var	8.602		SD deper	ndent var	3.653		
Pseudo r-squared	0.047		Number	of obs	535		
Chi-square	133.943		Prob > ch	ni2	0.000		
Akaike crit. (AIC)	2809.902	2	Bayesian	crit. (BIC)	2985.475		

H&W: holiday and weekend

xi: nbreg count colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

among children under	1 / ages and	exposure it	$0 \text{ INO}_2 \text{ III EC}$	infonton de	tween 2010 to 2	2018	
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ lag0	0.937	0.032	-1.930	0.054	0.877	1.001	*
NO ₂ _lag1	0.960	0.033	-1.200	0.231	0.897	1.027	
NO ₂ _lag2	1.011	0.048	0.230	0.817	0.921	1.110	
NO ₂ _lag3	0.937	0.032	-1.930	0.054	0.877	1.001	*
NO2_lag4	1.073	0.038	2.000	0.046	1.001	1.150	**
NO ₂ _lag5	1.020	0.048	0.420	0.678	0.929	1.119	
NO ₂ _lag6	0.960	0.033	-1.200	0.231	0.897	1.027	

Table 3.37 Results of time-series non-wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to NO₂ in Edmonton between 2016 to 2018

NO ₂ _lag7	0.991	0.033	-0.270	0.790	0.929	1.057	
NO2_lag8	1.073	0.038	2.000	0.046	1.001	1.150	**
NO ₂ lag9	0.920	0.042	-1.820	0.069	0.841	1.007	*
NO ₂ lag10	0.991	0.033	-0.270	0.790	0.929	1.057	
Temperature_lag0	1.004	0.005	0.830	0.405	0.995	1.013	
Temperature_lag1	0.994	0.007	-0.950	0.344	0.981	1.007	
Temperature_lag2	1.008	0.007	1.170	0.240	0.995	1.021	
Temperature_lag3	0.991	0.006	-1.360	0.175	0.979	1.004	
Temperature_lag4	1.005	0.006	0.800	0.423	0.993	1.018	
Temperature_lag5	1.002	0.006	0.350	0.727	0.990	1.015	
Temperature_lag6	0.998	0.006	-0.370	0.712	0.986	1.010	
Temperature_lag7	0.994	0.006	-0.940	0.346	0.982	1.006	
Temperature_lag8	1.010	0.005	2.300	0.021	1.002	1.019	**
Humidity_lag0	0.999	0.002	-0.270	0.791	0.995	1.004	
Humidity_lag1	0.997	0.003	-1.030	0.304	0.992	1.002	
Humidity_lag2	1.001	0.003	0.430	0.668	0.996	1.006	
Humidity_lag3	0.998	0.002	-0.910	0.361	0.994	1.002	
0b.H&W	1.000						
1.H&W	1.038	0.038	1.040	0.300	0.967	1.114	
Flu_lag0	0.994	0.032	-0.180	0.855	0.934	1.058	
Flu_lag1	0.976	0.031	-0.760	0.447	0.916	1.039	
Flu_lag2	0.924	0.029	-2.470	0.013	0.868	0.984	**
Flu_lag3	1.052	0.034	1.570	0.116	0.987	1.121	
Flu_lag4	0.997	0.032	-0.080	0.934	0.936	1.062	
Flu_lag5	0.971	0.031	-0.910	0.365	0.912	1.034	
Flu_lag6	1.088	0.036	2.590	0.010	1.021	1.160	***
Flu_lag7	1.020	0.034	0.590	0.553	0.956	1.089	
Flu_lag8	1.037	0.034	1.120	0.261	0.973	1.106	
Flu_lag9	1.035	0.034	1.050	0.294	0.971	1.103	
Flu_lag10	1.001	0.032	0.020	0.981	0.940	1.066	
Flu_lag11	0.953	0.031	-1.480	0.139	0.895	1.016	
Flu_lag12	0.969	0.031	-0.980	0.328	0.911	1.032	
cos_1	0.000	0.000	-2.020	0.043	0.000	0.648	**
cos_2	9.277E+0 3	4.062E+0 4	2.090	0.037	1.738	4.951E+07	**
cos_3	0.023	0.043	-2.020	0.044	0.001	0.900	**
cos_4	2.472	1.084	2.060	0.039	1.046	5.838	**
sin_1	0.544	0.333	-0.990	0.320	0.164	1.804	
sin_2	2.526	2.005	1.170	0.243	0.533	11.969	
sin_3	0.541	0.292	-1.140	0.255	0.187	1.559	
sin_4	1.210	0.228	1.010	0.311	0.837	1.751	
Constant	2.248E+U 4	9.292E+0 4	2.420	0.015	6.810	7.419E+07	**
lnalpha	-3.894	0.408	.b	.b	-4.692	-3.095	
--------------------	----------	-------	------------------	------	----------	--------	
Mean dependent var	8.602		SD dependent	var	3.653		
Pseudo r-squared			Number of obs		535		
Chi-square	160.847		Prob > chi2		0.000		
Akaike crit. (AIC)	2808.654		Bayesian crit. (BIC)	2997.074		

H&W: holiday and weekend

xi: nbreg count no2lag* temperaturelag* humiditylag* i.holidayweekend lnflulag* cos* sin*, constraints(1/4) irr

Variable IRR [95% Conf St.Err. t-value p-value Interval] Sig O₃lag0 1.015 0.055 0.280 0.776 0.914 1.129 ** O₃lag1 1.101 0.048 2.180 0.029 1.010 1.200 O₃ lag2 1.039 0.063 0.630 0.529 0.923 1.169 0.993 0.908 O_3 lag3 0.061 -0.1200.881 1.120 0.908 0.051 -1.720 0.086 0.814 1.014 * O₃lag4 O₃lag5 ** 1.101 0.048 2.180 0.029 1.010 1.200 0.949 0.052 O₃ lag6 -0.9400.345 0.852 1.058 O₃ lag7 0.987 0.058 -0.230 0.819 0.880 1.107 1.062 0.057 0.262 0.956 1.178 O₃lag8 1.120 Temperature lag0 1.003 0.005 0.740 0.458 0.994 1.013 0.996 0.006 Temperature lag1 -0.580 0.561 0.984 1.009 0.483 0.992 Temperature lag2 1.005 0.006 0.700 1.017 Temperature lag3 0.992 0.006 -1.190 0.236 0.980 1.005 0.006 0.997 Temperature lag4 1.010 1.540 0.123 1.022 0.006 0.704 Temperature lag5 0.998 -0.380 0.985 1.010 0.998 0.006 -0.370 0.985 1.010 Temperature lag6 0.710 Temperature lag7 0.999 0.006 -0.1700.863 0.987 1.011 * Temperature lag8 1.007 0.004 1.670 0.096 0.999 1.016 0.002 0.000 0.999 0.996 1.005 Humidity lag0 1.000 Humidity lag1 0.999 0.003 -0.220 0.825 0.994 1.005 Humidity lag2 1.001 0.003 0.200 0.844 0.995 1.006 Humidity lag3 0.999 0.002 -0.4400.657 0.994 1.004 0b.H&W 1.000 1.H&W 1.043 0.037 1.180 0.238 0.972 1.119 Flu lag0 0.994 0.032 -0.200 0.839 0.933 1.058 0.979 0.031 0.507 0.919 Flu lag1 -0.660 1.043 Flu_lag2 0.910 0.029 -2.930 0.003 0.855 0.969 *** * Flu_lag3 1.059 0.034 1.760 0.079 0.993 1.129

Table 3.38 Results of time-series non-wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to O_3 in Edmonton between 2016 to 2018

Flu_lag4	1.005	0.032	0.170	0.868	0.944	1.071	
Flu_lag5	0.960	0.031	-1.250	0.211	0.901	1.023	
Flu_lag6	1.085	0.036	2.460	0.014	1.017	1.157	**
Flu_lag7	1.035	0.035	1.040	0.299	0.970	1.105	
Flu_lag8	1.023	0.033	0.690	0.492	0.959	1.090	
Flu_lag9	1.029	0.034	0.890	0.372	0.966	1.097	
Flu_lag10	1.015	0.033	0.460	0.648	0.953	1.081	
Flu_lag11	0.951	0.031	-1.550	0.121	0.893	1.013	
Flu_lag12	0.961	0.031	-1.250	0.212	0.903	1.023	
cos_1	0.000	0.000	-2.310	0.021	0.000	0.089	**
cos_2	2.860E+0 4	1.239E+0 5	2.370	0.018	5.872	1.393E+08	**
cos_3	0.014	0.027	-2.280	0.022	0.000	0.549	**
cos_4	2.728	1.190	2.300	0.021	1.160	6.413	**
sin_1	0.587	0.355	-0.880	0.379	0.179	1.924	
sin_2	2.193	1.714	1.000	0.315	0.474	10.150	
sin_3	0.594	0.317	-0.980	0.329	0.209	1.689	
sin_4	1.176	0.219	0.870	0.383	0.817	1.694	
Constant	1.596E+0 5	6.296E+0 5	3.040	0.002	70.157	3.633E+08	***
lnalpha	-3.903	0.413	.b	.b	-4.711	-3.094	
Mean dependent var	8.602		SD depe	ndent var	3.653		
Pseudo r-squared			Number	of obs	535		
Chi-square	160.635		Prob > c	Prob > chi2			
Akaike crit. (AIC)	2811.82	.3	Bayesia	n crit. (BIC)	3004.525		

H&W: holiday and weekend

xi: nbreg count o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.933	0.034	-1.900	0.057	0.868	1.002	*
PM _{2.5} _lag1	1.002	0.042	0.040	0.966	0.923	1.088	
PM _{2.5} _lag2	0.959	0.040	-0.980	0.326	0.883	1.042	
PM _{2.5} _lag3	1.072	0.041	1.810	0.070	0.994	1.156	*
Temperature_lag0	1.003	0.005	0.550	0.583	0.993	1.012	
Temperature_lag1	0.996	0.007	-0.610	0.545	0.983	1.009	
Temperature_lag2	1.003	0.007	0.410	0.685	0.990	1.016	
Temperature_lag3	0.994	0.006	-0.900	0.371	0.982	1.007	
Temperature_lag4	1.007	0.006	1.170	0.241	0.995	1.020	
Temperature_lag5	0.999	0.006	-0.110	0.915	0.987	1.011	

Table 3.39 Results of time-series non-wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to $PM_{2.5}$ in Edmonton between 2016 to 2018

Temperature_lag6	0.998	0.006	-0.400	0.687	0.986	1.010	
Temperature_lag7	0.997	0.006	-0.440	0.658	0.986	1.009	
Temperature_lag8	1.008	0.004	1.890	0.059	1.000	1.017	*
Humidity_lag0	1.001	0.002	0.520	0.601	0.997	1.006	
Humidity_lag1	0.998	0.003	-0.860	0.391	0.992	1.003	
Humidity_lag2	1.001	0.003	0.390	0.694	0.996	1.007	
Humidity_lag3	0.998	0.002	-1.040	0.300	0.993	1.002	
0b.H&W	1.000						
1.H&W	1.037	0.037	1.040	0.301	0.968	1.112	
Flu_lag0	0.993	0.032	-0.210	0.831	0.933	1.057	
Flu_lag1	0.975	0.031	-0.770	0.439	0.916	1.039	
Flu_lag2	0.916	0.029	-2.750	0.006	0.860	0.975	***
Flu_lag3	1.059	0.034	1.770	0.077	0.994	1.128	*
Flu_lag4	0.999	0.032	-0.040	0.972	0.938	1.064	
Flu_lag5	0.967	0.031	-1.030	0.304	0.908	1.031	
Flu_lag6	1.094	0.036	2.730	0.006	1.026	1.166	***
Flu_lag7	1.032	0.034	0.940	0.346	0.967	1.101	
Flu_lag8	1.029	0.034	0.880	0.379	0.965	1.097	
Flu_lag9	1.036	0.034	1.100	0.273	0.972	1.105	
Flu_lag10	1.003	0.032	0.090	0.929	0.941	1.068	
Flu_lag11	0.949	0.031	-1.620	0.106	0.891	1.011	
Flu_lag12	0.959	0.031	-1.300	0.193	0.901	1.021	
cos_1	0.000	0.000	-2.300	0.021	0.000	0.097	**
cos_2	2.578E+04	1.113E+05	2.350	0.019	5.453	1.219E+08	**
cos_3	0.015	0.027	-2.290	0.022	0.000	0.546	**
cos_4	2.770	1.196	2.360	0.018	1.188	6.458	**
sin_1	0.586	0.362	-0.870	0.387	0.175	1.966	
sin_2	2.267	1.817	1.020	0.307	0.471	10.908	
sin_3	0.580	0.317	-1.000	0.319	0.198	1.693	
sin_4	1.180	0.225	0.870	0.386	0.812	1.715	
Constant	1.028E+05	4.064E+05	2.920	0.003	44.577	2.373E+08	***
lnalpha	-3.838	0.389	.b	.b	-4.601	-3.075	
Mean dependent var	8.602		SD depe	ndent var	3.653		
Pseudo r-squared	0.048		Number	of obs	535.000		
Chi-square	136.192		Prob > c	hi2	0.000		
Akaike crit. (AIC)	2807.652		Bayesia	n crit. (BIC)	2983.225		

H&W: holiday and weekend

xi: nbreg count pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Variable		St Err	t-value	n-value	[95% Conf	Intervall	Sig
SQ lag0	0.083	0.015	1 140	0.254	0.055	1 012	big
SO_2 lag	0.983	0.015	-1.140	0.234	1 003	1.012	**
SO_2 _lag1	1.035	0.010	2.170	0.050	0.007	1.004	*
SO_2_lag2	0.007	0.013	0.220	0.065	0.997	1.050	
SO_2 lag3	0.997	0.010	-0.330	0.740	0.977	1.010	**
SO ₂ _lag4	1.033	0.016	2.170	0.030	1.003	1.004	4.4.
SO_2_lag5	0.983	0.015	-1.140	0.254	0.955	1.012	
SO ₂ _lag6	0.997	0.010	-0.330	0.740	0.977	1.016	
SO ₂ _lag7	0.997	0.010	-0.330	0.740	0.977	1.016	
SO ₂ _lag8	1.013	0.020	0.640	0.520	0.974	1.054	
SO ₂ lag9	0.997	0.010	-0.330	0.740	0.977	1.016	
SO ₂ lag10	1.026	0.015	1.740	0.083	0.997	1.056	*
Temperature_lag0	1.002	0.005	0.460	0.642	0.992	1.012	
Temperature_lag1	0.991	0.007	-1.280	0.199	0.978	1.005	
Temperature_lag2	1.010	0.007	1.410	0.159	0.996	1.023	
Temperature_lag3	0.988	0.007	-1.750	0.080	0.975	1.001	*
Temperature_lag4	1.002	0.007	0.280	0.777	0.989	1.015	
Temperature_lag5	1.006	0.007	0.910	0.364	0.993	1.019	
Temperature_lag6	1.000	0.006	0.050	0.959	0.988	1.013	
Temperature_lag7	0.996	0.006	-0.690	0.493	0.983	1.008	
Temperature_lag8	1.008	0.005	1.800	0.072	0.999	1.018	*
Humidity_lag0	0.997	0.002	-1.230	0.220	0.993	1.002	
Humidity_lag1	1.000	0.003	0.150	0.883	0.995	1.006	
Humidity_lag2	1.001	0.003	0.420	0.673	0.996	1.007	
Humidity_lag3	0.999	0.002	-0.380	0.703	0.995	1.004	
0b.H&W	1.000	•					
1.H&W	1.071	0.043	1.720	0.086	0.990	1.159	*
Flu_lag0	0.986	0.034	-0.410	0.680	0.921	1.055	
Flu_lag1	0.939	0.032	-1.830	0.068	0.878	1.005	*
Flu_lag2	0.920	0.032	-2.410	0.016	0.860	0.985	**
Flu_lag3	1.076	0.038	2.080	0.038	1.004	1.153	**
Flu_lag4	1.016	0.035	0.460	0.642	0.949	1.088	
Flu_lag5	0.993	0.035	-0.200	0.839	0.926	1.064	
Flu_lag6	1.066	0.038	1.800	0.071	0.994	1.144	*
Flu_lag7	1.097	0.040	2.560	0.010	1.022	1.178	**
Flu_lag8	1.037	0.037	1.030	0.302	0.968	1.112	
Flu_lag9	1.065	0.038	1.750	0.081	0.992	1.142	*
Flu_lag10	1.019	0.036	0.530	0.593	0.950	1.093	
Flu_lag11	0.982	0.035	-0.520	0.600	0.916	1.052	
Flu_lag12	0.908	0.032	-2.750	0.006	0.847	0.973	***
cos_1	0.000	0.000	-3.500	0.000	0.000	0.000	***

Table 3.40 Results of time-series non-wildfire model of associations between daily respiratory ED visits among children under 17 ages and exposure to SO_2 in Edmonton between 2016 to 2018

cos_2	6.925E+08	3.928E+09	3.590	0.000	1.028E+04	4.666E+13	***
cos_3	0.000	0.000	-3.630	0.000	0.000	0.018	***
cos_4	8.374	4.562	3.900	0.000	2.879	24.360	***
sin_1	0.815	0.732	-0.230	0.819	0.140	4.734	
sin_2	1.362	1.590	0.260	0.791	0.138	13.421	
sin_3	0.775	0.608	-0.320	0.746	0.167	3.606	
sin_4	1.122	0.297	0.430	0.665	0.667	1.885	
Constant	1.728E+09	9.075E+09	4.050	0.000	5.839E+04	5.111E+13	***
lnalpha	-6.209	4.218	.b	.b	-14.476	2.057	
Mean dependent var	8.846		SD deper	ndent var	3.686		
Pseudo r-squared			Number	of obs	371.000		
Chi-square	169.496		Prob > cl	Prob > chi2			
Akaike crit. (AIC)	1937.720		Bayesian	crit. (BIC)	2102.201		

H&W: holiday and weekend

xi: nbreg count so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/6) irr

3.2.6 Results of time-series yearly models

Tables 3.41 to 3.45, tables 3.46 to 3.50, and tables 3.51 to 3.55 present the adjusted results of timeseries models for the years 2016, 2017, and 2018, respectively. IRRs and 95% confidence intervals for daily respiratory ED visits among children were shown for a one unit increase in the natural log of air pollutants concentrations. In other words, expected daily respiratory ED visits among children increased by [(IRR-1) * 100] % when air pollutant concentration increased (e-1) times after adjusting for other variables (e: Euler's number. The value is approximately 2.71828).

In 2016, evidence of the positive associations between daily respiratory ED visits among children and 6-, 8-, and 13-day lag exposures to NO₂ was found, with the same estimated IRR of 1.09 (95%CI: 1.013-1.174). Seven-day lag exposure to NO₂ was found to be negatively associated with daily respiratory ED visits among children, with an IRR of 0.792 (95%CI: 0.697-0.901). The model shows strong evidence of significant increases in daily respiratory ED visits among children with increasing O₃ concentrations for 5-day lag exposure (IRR of 1.198, 95%CI: 1.018-1.409). Meanwhile, 6-day lag exposure to O₃ was found to be negatively associated with daily respiratory ED visits among children, with an estimated IRR of 0.844 (95%CI: 0.727-0.978). There was no significant association between daily respiratory ED visits among children and exposures to CO, PM_{2.5} and SO₂ in 2016 models. For 2016 yearly models, AIC in CO and O₃ models were smaller than in the baseline model, and BIC were larger than in the baseline model. Both AIC and BIC in PM_{2.5} models were larger than in the baseline model. Both AIC and BIC in NO₂ and SO₂ models were smaller than in the baseline models. Results of the 2016 yearly baseline model is presented in Appendix 2 Table A 2.8.

In 2017, 2- and 4-day lag exposures to NO₂ were positively associated with daily respiratory ED visits among children, and the same IRR for the two lags was 1.119 (95%CI: 1.011-1.239). Meanwhile, daily respiratory ED visits among children were negatively associated with 4-day lag exposure to O_3 , with an estimated IRR of 0.800 (95%CI: 0.681-0.94). Evidence of significant associations between daily respiratory ED visits and exposure to CO, PM_{2.5}, and SO₂ in 2017 models were not found.

For 2017 yearly models, both AIC and BIC in models of CO, NO₂, and PM_{2.5} were larger than in the baseline model. AIC in O₃ models were smaller than in the baseline model, and BIC were larger than in the baseline model. Both AIC and BIC in SO₂ model were smaller than in the baseline models. Results of the 2017 yearly baseline model is presented in Appendix 2 Table A 2.9.

In 2018, results show strong evidence of positive associations between daily respiratory ED visits among children and 4- and 9-day lag exposures to SO₂, with the same IRR of 1.051 (95%CI: 1.009-1.096). There was no evidence of associations between daily respiratory ED visits and exposures to CO, NO₂, O₃, and PM_{2.5} in 2018 models.

For 2018 yearly models, both AIC and BIC in models of CO, NO₂, O₃, and PM_{2.5} were larger than in the baseline model. Both AIC and BIC in SO₂ model were smaller than in the baseline models. Results of the 2018 yearly baseline model are presented in Appendix 2 Table A 2.10.

VariableIRRSt.Err.t-valuep-value[95% ConfInterval]CO_lag00.9550.043-1.0200.3070.8751.043CO_lag10.9290.104-0.6600.5100.7461.157CO_lag21.0440.1180.3800.7070.8351.304CO_lag30.9550.043-1.0200.3070.8751.043CO_lag40.9550.043-1.0200.3070.8751.043CO_lag50.9550.043-1.0200.3070.8751.043	
CO_lag00.9550.043-1.0200.3070.8751.043CO_lag10.9290.104-0.6600.5100.7461.157CO_lag21.0440.1180.3800.7070.8351.304CO_lag30.9550.043-1.0200.3070.8751.043CO_lag40.9550.043-1.0200.3070.8751.043CO_lag50.9550.043-1.0200.3070.8751.043	Sig
CO_lag10.9290.104-0.6600.5100.7461.157CO_lag21.0440.1180.3800.7070.8351.304CO_lag30.9550.043-1.0200.3070.8751.043CO_lag40.9550.043-1.0200.3070.8751.043CO_lag50.9550.043-1.0200.3070.8751.043	
CO_lag21.0440.1180.3800.7070.8351.304CO_lag30.9550.043-1.0200.3070.8751.043CO_lag40.9550.043-1.0200.3070.8751.043CO_lag50.9550.043-1.0200.3070.8751.043	
CO_lag30.9550.043-1.0200.3070.8751.043CO_lag40.9550.043-1.0200.3070.8751.043CO_lag50.9550.043-1.0200.3070.8751.043	
CO_lag4 0.955 0.043 -1.020 0.307 0.875 1.043 CO_lag5 0.955 0.043 -1.020 0.307 0.875 1.043 CO_lag5 0.955 0.043 -1.020 0.307 0.875 1.043	
CO_lag5 0.955 0.043 -1.020 0.307 0.875 1.043 CO_lag5 0.955 0.020 1.020 0.307 0.875 1.043	
CO_lag6 1.153 0.098 1.670 0.095 0.975 1.363	*

Table 3.41 Results of time-series yearly model of associations between daily respiratory ED visits amongchildren under 17 ages and exposure to CO in Edmonton in 2016

CO_lag7	0.838	0.100	-1.480	0.139	0.663	1.059	
CO_lag8	1.153	0.098	1.670	0.095	0.975	1.363	*
CO_lag9	1.047	0.114	0.420	0.676	0.845	1.297	
CO_lag10	0.990	0.063	-0.160	0.875	0.873	1.122	
CO_lag11	0.990	0.063	-0.160	0.875	0.873	1.122	
CO_lag12	0.887	0.102	-1.040	0.297	0.707	1.111	
CO_lag13	1.084	0.126	0.690	0.490	0.862	1.362	
Temperature_lag0	1.023	0.008	2.760	0.006	1.007	1.040	***
Temperature_lag1	0.985	0.011	-1.420	0.156	0.964	1.006	
Temperature_lag2	1.027	0.011	2.570	0.010	1.006	1.048	**
Temperature_lag3	0.985	0.010	-1.430	0.152	0.965	1.005	
Temperature_lag4	1.006	0.010	0.600	0.546	0.986	1.027	
Temperature_lag5	1.008	0.010	0.800	0.425	0.989	1.028	
Temperature_lag6	1.006	0.010	0.610	0.542	0.986	1.026	
Temperature_lag7	1.008	0.010	0.790	0.432	0.989	1.027	
Temperature_lag8	0.990	0.007	-1.390	0.166	0.976	1.004	
Humidity_lag0	1.000	0.003	0.040	0.972	0.995	1.006	
Humidity_lag1	0.997	0.003	-1.080	0.278	0.992	1.002	
0b.H&W	1.000						
1.H&W	1.048	0.050	1.000	0.318	0.955	1.150	
Flu_lag0	0.894	0.048	-2.110	0.035	0.805	0.992	**
Flu_lag1	0.922	0.048	-1.560	0.119	0.833	1.021	
Flu_lag2	1.000	0.052	0.010	0.994	0.904	1.107	
Flu_lag3	1.023	0.053	0.440	0.662	0.925	1.131	
Flu_lag4	1.000	0.051	0.010	0.996	0.905	1.105	
Flu_lag5	0.980	0.049	-0.410	0.682	0.887	1.081	
Flu_lag6	1.069	0.054	1.330	0.184	0.969	1.180	
Flu_lag7	0.966	0.050	-0.670	0.502	0.873	1.069	
cos_1	2.859	0.503	5.970	0.000	2.025	4.035	***
cos_2	0.965	0.057	-0.610	0.544	0.860	1.083	
cos_3	1.237	0.046	5.680	0.000	1.150	1.332	***
cos_4	1.158	0.040	4.200	0.000	1.081	1.240	***
sin_1	1.099	0.118	0.890	0.376	0.892	1.356	
sin_2	1.008	0.048	0.180	0.858	0.919	1.106	
sin_3	1.224	0.047	5.310	0.000	1.136	1.318	***
sin_4	0.736	0.024	-9.390	0.000	0.690	0.784	***
Constant	6.404	3.512	3.390	0.001	2.186	18.759	***
lnalpha	-4.582	1.011	.b	.b	-6.565	-2.600	
Mean dependent var	7.555		SD depe	ndent var	4.301		
Pseudo r-squared			Number	of obs	353		
Chi-square	390.411		Prob > c	hi2	0.000		
Akaike crit. (AIC)	1775.46	9	Bayesia	n crit. (BIC)	1926.261		

H&W: holiday and weekend

xi: nbreg count colag* temperature lag* humidity lag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ _lag0	1.035	0.063	0.570	0.569	0.918	1.167	
NO ₂ _lag1	0.962	0.045	-0.830	0.407	0.878	1.054	
NO ₂ _lag2	0.996	0.041	-0.100	0.919	0.919	1.079	
NO ₂ lag3	1.016	0.044	0.360	0.718	0.933	1.106	
NO ₂ _lag4	0.929	0.042	-1.620	0.105	0.850	1.015	
NO ₂ _lag5	1.016	0.044	0.360	0.718	0.933	1.106	
NO2_lag6	1.090	0.041	2.290	0.022	1.013	1.174	**
NO2_lag7	0.792	0.052	-3.560	0.000	0.697	0.901	***
NO2_lag8	1.090	0.041	2.290	0.022	1.013	1.174	**
NO ₂ lag9	0.996	0.041	-0.100	0.919	0.919	1.079	
NO ₂ lag10	0.962	0.045	-0.830	0.407	0.878	1.054	
NO ₂ lag11	0.945	0.058	-0.920	0.360	0.838	1.066	
NO ₂ lag12	0.911	0.057	-1.510	0.131	0.806	1.028	
NO ₂ lag13	1.090	0.041	2.290	0.022	1.013	1.174	**
NO ₂ lag14	0.929	0.042	-1.620	0.105	0.850	1.015	
Temperature_lag0	1.027	0.008	3.320	0.001	1.011	1.044	***
Temperature_lag1	0.982	0.010	-1.690	0.090	0.962	1.003	*
Temperature_lag2	1.031	0.010	3.020	0.002	1.011	1.051	***
Temperature_lag3	0.984	0.010	-1.580	0.115	0.965	1.004	
Temperature_lag4	1.009	0.010	0.910	0.362	0.989	1.030	
Temperature_lag5	1.000	0.010	-0.020	0.982	0.981	1.019	
Temperature_lag6	1.016	0.010	1.580	0.114	0.996	1.036	
Temperature_lag7	1.007	0.009	0.700	0.481	0.988	1.025	
Temperature_lag8	0.991	0.007	-1.290	0.196	0.978	1.005	
Humidity_lag0	1.002	0.003	0.870	0.383	0.997	1.008	
Humidity_lag1	0.997	0.003	-1.240	0.214	0.992	1.002	
0b.H&W	1.000						
1.H&W	1.044	0.054	0.820	0.412	0.942	1.156	
Flu_lag0	0.889	0.045	-2.320	0.020	0.805	0.982	**
Flu_lag1	0.903	0.045	-2.060	0.040	0.819	0.995	**
Flu_lag2	0.986	0.050	-0.270	0.786	0.894	1.089	
Flu_lag3	0.998	0.049	-0.040	0.971	0.906	1.100	
Flu_lag4	0.982	0.048	-0.360	0.716	0.892	1.081	
Flu_lag5	0.958	0.047	-0.870	0.383	0.869	1.055	

Table 3.42 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to NO_2 in Edmonton in 2016

Flu_lag6	1.038	0.050	0.770	0.441	0.944	1.142	
Flu_lag7	0.946	0.047	-1.130	0.257	0.858	1.042	
cos_1	4.037	0.833	6.760	0.000	2.694	6.048	***
cos_2	1.007	0.043	0.170	0.865	0.926	1.096	
cos_3	1.250	0.044	6.330	0.000	1.167	1.339	***
cos_4	1.172	0.038	4.920	0.000	1.100	1.249	***
sin_1	1.194	0.078	2.720	0.007	1.051	1.357	***
sin_2	1.091	0.052	1.840	0.066	0.994	1.197	*
sin_3	1.268	0.046	6.570	0.000	1.181	1.360	***
sin_4	0.747	0.023	-9.470	0.000	0.703	0.793	***
Constant	1.811	1.738	0.620	0.536	0.276	11.882	
lnalpha	-6.787	8.413	.b	.b	-23.276	9.702	
Mean dependent var	7.568		SD dep	endent var	4.300		
Pseudo r-squared			Numbe	Number of obs			
Chi-square	436.604		Prob >	Prob > chi2			
Akaike crit. (AIC)	1750.400		Bayesi	an crit. (BIC)	1901.082		

H&W: holiday and weekend

xi: nbreg count no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/5) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	0.995	0.080	-0.060	0.952	0.849	1.166	
O ₃ _lag1	1.067	0.057	1.210	0.226	0.961	1.185	
O ₃ _lag2	1.026	0.040	0.650	0.516	0.950	1.107	
O ₃ _lag3	0.907	0.068	-1.310	0.191	0.784	1.050	
O ₃ _lag4	0.869	0.071	-1.730	0.084	0.741	1.019	*
O3_lag5	1.198	0.099	2.180	0.029	1.018	1.409	**
O3_lag6	0.844	0.064	-2.250	0.024	0.727	0.978	**
O ₃ _lag7	1.026	0.040	0.650	0.516	0.950	1.107	
O ₃ _lag8	1.026	0.040	0.650	0.516	0.950	1.107	
O ₃ _lag9	1.067	0.057	1.210	0.226	0.961	1.185	
Temperature_lag0	1.015	0.008	1.850	0.064	0.999	1.030	*
Temperature_lag1	0.993	0.010	-0.650	0.514	0.973	1.014	
Temperature_lag2	1.014	0.010	1.430	0.152	0.995	1.034	
Temperature_lag3	0.990	0.010	-0.990	0.320	0.970	1.010	
Temperature_lag4	1.017	0.011	1.650	0.100	0.997	1.038	*
Temperature_lag5	1.000	0.010	0.000	0.997	0.980	1.021	
Temperature_lag6	1.008	0.010	0.750	0.455	0.988	1.028	
Temperature_lag7	1.009	0.010	0.930	0.350	0.990	1.028	
Temperature_lag8	0.990	0.007	-1.480	0.139	0.976	1.003	

Table 3.43 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to O_3 in Edmonton in 2016

Humidity_lag0	1.000	0.003	-0.080	0.936	0.994	1.006	
Humidity_lag1	0.997	0.003	-1.070	0.287	0.991	1.003	
0b.H&W	1.000						
1.H&W	1.031	0.046	0.690	0.493	0.944	1.126	
Flu_lag0	0.910	0.048	-1.800	0.071	0.821	1.008	*
Flu_lag1	0.967	0.049	-0.650	0.513	0.875	1.069	
Flu_lag2	1.010	0.051	0.190	0.847	0.914	1.116	
Flu_lag3	1.052	0.052	1.030	0.305	0.955	1.159	
Flu_lag4	1.059	0.052	1.170	0.244	0.962	1.166	
Flu_lag5	0.984	0.049	-0.330	0.744	0.892	1.085	
Flu_lag6	1.089	0.054	1.720	0.085	0.988	1.201	*
Flu_lag7	0.982	0.050	-0.350	0.725	0.889	1.085	
cos_1	2.422	0.377	5.690	0.000	1.786	3.286	***
cos_2	0.917	0.035	-2.270	0.023	0.851	0.988	**
cos_3	1.234	0.044	5.970	0.000	1.152	1.323	***
cos_4	1.145	0.040	3.890	0.000	1.069	1.225	***
sin_1	1.016	0.057	0.290	0.772	0.910	1.136	
sin_2	0.979	0.038	-0.550	0.582	0.907	1.057	
sin_3	1.179	0.039	4.950	0.000	1.105	1.259	***
sin_4	0.725	0.023	-10.190	0.000	0.682	0.771	***
Constant	6.508	3.490	3.490	0.000	2.275	18.618	***
lnalpha	-4.599	1.020	.b	.b	-6.598	-2.600	
Mean dependent var	7.538		SD depende	ent var	4.284		
Pseudo r-squared			Number of	obs	357		
Chi-square	392.109		Prob > chi2		0.000		
Akaike crit. (AIC)	1789.575		Bayesian cr	rit. (BIC)	1933.051		

H&W: holiday and weekend

xi: nbreg count o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Table 3.44 Results of time-series yearly model of associations between daily respiratory ED vi	isits among
children under 17 ages and exposure to PM _{2.5} in Edmonton in 2016	

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.987	0.023	-0.570	0.568	0.942	1.033	
PM _{2.5} _lag1	0.987	0.023	-0.570	0.568	0.942	1.033	
PM _{2.5} _lag2	0.943	0.036	-1.560	0.119	0.876	1.015	
PM _{2.5} _lag3	1.016	0.034	0.470	0.638	0.952	1.084	
PM _{2.5} _lag4	0.987	0.023	-0.570	0.568	0.942	1.033	
PM _{2.5} _lag5	1.016	0.034	0.470	0.638	0.952	1.084	
PM _{2.5} _lag6	0.943	0.036	-1.560	0.119	0.876	1.015	
Temperature_lag0	1.017	0.008	2.060	0.039	1.001	1.033	**

Temperature_lag1	0.994	0.011	-0.590	0.554	0.973	1.015	
Temperature_lag2	1.020	0.010	2.000	0.046	1.000	1.040	**
Temperature_lag3	0.985	0.010	-1.530	0.126	0.966	1.004	
Temperature_lag4	1.011	0.010	1.070	0.286	0.991	1.031	
Temperature_lag5	1.007	0.010	0.720	0.469	0.988	1.028	
Temperature_lag6	1.004	0.010	0.410	0.684	0.984	1.024	
Temperature_lag7	1.007	0.010	0.710	0.475	0.988	1.026	
Temperature_lag8	0.990	0.007	-1.380	0.169	0.977	1.004	
Humidity_lag0	1.000	0.003	0.070	0.946	0.995	1.006	
Humidity_lag1	0.997	0.003	-0.920	0.357	0.992	1.003	
0b.H&W	1.000			•			
1.H&W	1.016	0.047	0.350	0.730	0.929	1.111	
Flu_lag0	0.918	0.048	-1.630	0.103	0.828	1.017	
Flu_lag1	0.967	0.049	-0.660	0.508	0.876	1.068	
Flu_lag2	1.024	0.052	0.460	0.647	0.926	1.131	
Flu_lag3	1.063	0.053	1.220	0.222	0.964	1.171	
Flu_lag4	1.046	0.052	0.900	0.369	0.949	1.152	
Flu_lag5	1.004	0.050	0.080	0.933	0.910	1.108	
Flu_lag6	1.071	0.054	1.380	0.168	0.971	1.182	
Flu_lag7	0.977	0.050	-0.450	0.652	0.884	1.080	
cos_1	2.409	0.312	6.800	0.000	1.869	3.104	***
cos_2	0.923	0.037	-2.010	0.044	0.855	0.998	**
cos_3	1.224	0.043	5.760	0.000	1.143	1.312	***
cos_4	1.115	0.038	3.180	0.001	1.043	1.193	***
sin_1	1.019	0.057	0.330	0.738	0.913	1.137	
sin_2	0.965	0.038	-0.910	0.364	0.894	1.042	
sin_3	1.176	0.039	4.880	0.000	1.102	1.255	***
sin_4	0.736	0.024	-9.490	0.000	0.691	0.784	***
Constant	8.420	1.776	10.100	0.000	5.569	12.730	***
lnalpha	-4.193	0.717	.b	.b	-5.597	-2.788	
Mean dependent var	7.525		SD depen	dent var	4.284		
Pseudo r-squared	•		Number o	of obs	358		
Chi-square	363.326		Prob > ch	i2	0.000		
Akaike crit. (AIC)	1800.467		Bayesian	crit. (BIC)	1928.524		

H&W: holiday and weekend

xi: nbreg count pm25lag* temperature lag* humidity lag* i.holidayweekend flulag* cos* sin*, constraints (1/4) irr

Table 3.45 Results of time-series yearly model of associations between daily respiratory ED visits among children under 17 ages and exposure to SO₂ in Edmonton in 2016

Variable IRR St.Err. t-value p-value [95% Conf Interval] Sig
--

SO ₂ _lag0	1.017	0.020	0.860	0.390	0.979	1.057	
SO ₂ lag1	0.990	0.017	-0.600	0.546	0.958	1.023	
SO_2_lag2	0.977	0.021	-1.080	0.282	0.936	1.019	
SO_2 lag3	0.990	0.017	-0.600	0.546	0.958	1.023	
SO_2 lag4	0.965	0.028	-1.250	0.212	0.912	1.021	
SO_2 lag5	0.981	0.029	-0.650	0.517	0.926	1.040	
SO_2 lag6	0 977	0.021	-1 080	0.282	0.936	1 019	
$SO_2 \log 7$	0.990	0.017	-0.600	0.546	0.958	1.023	
$SO_2 \log^7$	1 0/10	0.030	1.680	0.003	0.990	1 1 1 0	*
SO_2_{1ag0}	1.049	0.030	0.860	0.095	0.992	1.110	
50_2 lag9	1.017	0.020	0.800	0.390	0.979	1.037	
Temperature_lag0	1.012	0.009	1.320	0.180	0.994	1.031	
Temperature_lag1	0.993	0.012	-0.580	0.362	0.971	1.010	**
Temperature_lag2	1.025	0.011	2.200	0.027	1.003	1.048	
Temperature_lag5	0.989	0.011	-0.990	0.324	0.900	1.011	
Temperature_lag4	1.011	0.012	0.900	0.338	0.989	1.034	
Temperature_lag5	1.010	0.011	0.890	0.373	0.988	1.035	
Temperature_lago	1.001	0.012	0.090	0.929	0.978	1.024	
Temperature_lag/	0.085	0.011	1.150	0.231	0.991	1.035	*
Temperature_tago	0.985	0.008	-1./00	0.079	0.970	1.002	·
Humidity_lag0	0.998	0.003	-0.310	0.012	0.991	1.005	
Ob U & W	1.000	0.004	-0.320	0.749	0.992	1.000	
1 Ц <i>в</i> .W	0.006	0.056	0.070	0.042	0.801	1 112	
Flu log0	0.990	0.050	-0.070	0.542	0.854	1.115	
Flu_lag1	0.971	0.004	-0.440	0.039	0.854	1.105	
Flu_lag1	1.083	0.000	-1.230	0.217	0.012	1.046	
Flu lag3	1.005	0.000	1.200	0.131	0.938	1.225	
Flu lag4	1.090	0.007	1.510	0.151	0.975	1.230	*
Flu lag5	0.972	0.059	-0.460	0.646	0.263	1.242	
Flu lag6	1.066	0.057	1.010	0.312	0.005	1.090	
Flu lag7	0.979	0.063	-0.330	0.740	0.942	1 1 1 1 0	
$\cos 1$	2.371	0.009	5 1 1 0	0.000	1 703	3 300	***
\cos_1	0.933	0.047	-1.360	0.175	0.845	1.031	
\cos_2	1.195	0.059	3.590	0.000	1.084	1.316	***
\cos_{-9}	1.151	0.055	2.940	0.003	1.048	1.264	***
sin 1	0.964	0.065	-0.540	0.589	0.845	1.100	
$\sin^2 2$	1.000	0.063	-0.010	0.996	0.884	1.130	
\sin^{-3}	1.197	0.055	3.930	0.000	1.094	1.310	***
sin 4	0.703	0.030	-8.360	0.000	0.647	0.763	***
Constant	4.268	2.961	2.090	0.036	1.096	16.626	**
lnalpha	-14.829	498.021	.b	.b	-990.933	961.274	
Mean dependent var	7.528		SD depe	endent var	4.239		
Pseudo r-squared			Number	of obs	216		

Chi-square	267.156	Prob > chi2	0.000
Akaike crit. (AIC)	1101.262	Bayesian crit. (BIC)	1222.772

H&W: holiday and weekend

xi: nbreg count so2lag* temperature lag* humidity lag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

Table 3.46 Results of time-series yearly model of associations between daily respiratory ED	visits among
children under 17 ages and exposure to CO in Edmonton in 2017	

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	1.051	0.078	0.670	0.501	0.909	1.215	
CO_lag1	0.984	0.077	-0.210	0.836	0.844	1.147	
CO_lag2	1.175	0.102	1.850	0.064	0.990	1.394	*
CO_lag3	0.974	0.114	-0.230	0.820	0.774	1.224	
CO_lag4	1.175	0.102	1.850	0.064	0.990	1.394	*
CO_lag5	0.984	0.077	-0.210	0.836	0.844	1.147	
CO_lag6	0.888	0.095	-1.100	0.271	0.720	1.097	
CO_lag7	1.051	0.078	0.670	0.501	0.909	1.215	
Temperature_lag0	1.000	0.009	-0.030	0.978	0.982	1.018	
Temperature_lag1	1.008	0.012	0.620	0.535	0.984	1.032	
Temperature_lag2	0.988	0.011	-1.100	0.270	0.968	1.009	
Temperature_lag3	1.005	0.007	0.700	0.485	0.991	1.019	
Humidity_lag0	1.002	0.003	0.660	0.509	0.996	1.008	
Humidity_lag1	1.000	0.003	-0.010	0.995	0.994	1.006	
0b.H&W	1.000						
1.H&W	1.084	0.053	1.640	0.100	0.985	1.194	
Flu_lag0	0.993	0.056	-0.130	0.899	0.890	1.108	
Flu_lag1	0.993	0.055	-0.130	0.897	0.891	1.107	
Flu_lag2	1.031	0.056	0.570	0.570	0.927	1.147	
Flu_lag3	1.006	0.054	0.110	0.914	0.905	1.118	
Flu_lag4	1.020	0.055	0.370	0.709	0.919	1.133	
Flu_lag5	0.867	0.048	-2.600	0.009	0.778	0.965	***
Flu_lag6	1.008	0.055	0.150	0.880	0.906	1.122	
Flu_lag7	1.048	0.058	0.850	0.393	0.941	1.167	
Flu_lag8	1.007	0.057	0.120	0.905	0.902	1.124	
Flu_lag9	1.012	0.056	0.210	0.834	0.908	1.128	
Flu_lag10	1.099	0.061	1.700	0.090	0.985	1.226	*
Flu_lag11	1.014	0.056	0.240	0.807	0.909	1.130	
Flu_lag12	1.056	0.059	0.970	0.330	0.947	1.177	
cos_1	1.261	0.141	2.080	0.038	1.013	1.569	**
cos_2	0.930	0.046	-1.470	0.141	0.845	1.024	
cos_3	1.118	0.058	2.160	0.031	1.010	1.237	**
cos 4	1.157	0.043	3.890	0.000	1.075	1.246	***

sin_1	0.940	0.040	-1.450	0.147	0.865	1.022	
sin_2	0.928	0.034	-2.040	0.042	0.864	0.997	**
sin_3	1.291	0.046	7.200	0.000	1.204	1.384	***
sin_4	0.869	0.028	-4.360	0.000	0.816	0.925	***
Constant	8.139	3.603	4.740	0.000	3.418	19.384	***
lnalpha	-3.522	0.411	.b	.b	-4.327	-2.717	
Mean dependent var	7.397		SD depe	ndent var	3.897		
Pseudo r-squared			Number	of obs	353		
Chi-square	207.005		Prob > c	hi2	0.000		
Akaike crit. (AIC)	1805.730		Bayesiar	n crit. (BIC)	1941.057		

H&W: holiday and weekend

xi: nbreg count colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*,constraints(1/3) irr

Table 3.47 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to NO_2 in Edmonton in 2017

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ lag0	1.052	0.049	1.090	0.274	0.961	1.152	
NO ₂ lag1	0.896	0.058	-1.700	0.090	0.789	1.017	*
NO ₂ lag2	1.119	0.058	2.180	0.029	1.011	1.239	**
NO ₂ lag3	0.952	0.066	-0.710	0.481	0.831	1.091	
NO2_lag4	1.119	0.058	2.180	0.029	1.011	1.239	**
NO_2_lag5	1.052	0.049	1.090	0.274	0.961	1.152	
NO ₂ _lag6	0.940	0.061	-0.960	0.339	0.828	1.067	
NO ₂ lag7	1.022	0.067	0.330	0.739	0.899	1.162	
Temperature_lag0	1.005	0.009	0.530	0.597	0.987	1.024	
Temperature_lag1	1.003	0.013	0.260	0.797	0.979	1.028	
Temperature_lag2	0.991	0.011	-0.850	0.395	0.970	1.012	
Temperature_lag3	1.002	0.007	0.320	0.746	0.988	1.017	
Humidity_lag0	1.003	0.003	0.920	0.355	0.997	1.009	
Humidity_lag1	1.000	0.003	-0.030	0.972	0.994	1.006	
0b.H&W	1.000						
1.H&W	1.083	0.057	1.500	0.132	0.976	1.201	
Flu_lag0	0.991	0.055	-0.160	0.872	0.888	1.106	
Flu_lag1	0.988	0.054	-0.220	0.828	0.887	1.101	
Flu_lag2	1.040	0.056	0.720	0.469	0.935	1.157	
Flu_lag3	1.006	0.054	0.120	0.906	0.906	1.118	
Flu_lag4	1.024	0.055	0.440	0.659	0.922	1.138	
Flu_lag5	0.871	0.048	-2.510	0.012	0.782	0.970	**
Flu_lag6	1.027	0.056	0.490	0.627	0.923	1.143	
Flu_lag7	1.050	0.057	0.900	0.370	0.944	1.169	

Flu_lag8	0.997	0.056	-0.050	0.959	0.893	1.113	
Flu_lag9	1.015	0.056	0.270	0.787	0.911	1.131	
Flu_lag10	1.083	0.060	1.440	0.150	0.972	1.208	
Flu_lag11	1.017	0.056	0.300	0.766	0.912	1.133	
Flu_lag12	1.059	0.058	1.040	0.300	0.950	1.180	
cos_1	1.215	0.198	1.200	0.232	0.883	1.672	
cos_2	0.927	0.047	-1.490	0.135	0.840	1.024	
cos_3	1.125	0.056	2.360	0.018	1.020	1.240	**
cos_4	1.146	0.040	3.870	0.000	1.070	1.228	***
sin_1	0.941	0.041	-1.390	0.163	0.864	1.025	
sin_2	0.942	0.031	-1.830	0.067	0.883	1.004	*
sin_3	1.281	0.043	7.400	0.000	1.199	1.367	***
sin_4	0.871	0.028	-4.320	0.000	0.817	0.927	***
Constant	9.620	7.801	2.790	0.005	1.963	47.140	***
lnalpha	-3.575	0.430	.b	.b	-4.417	-2.733	
Mean dependent var	7.397		SD dep	endent var	3.897		
Pseudo r-squared			Number	r of obs	353		
Chi-square	212.023		Prob >	chi2	0.000		
Akaike crit. (AIC)	1804.661	l	Bayesia	n crit. (BIC)	1943.854		

H&W: holiday and weekend

xi: nbreg count no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/2) irr

				1	5050/ C C	T / 17	<u>c</u> .
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval	Sıg
O ₃ _lag0	0.852	0.081	-1.690	0.091	0.708	1.026	*
O ₃ _lag1	0.919	0.051	-1.520	0.127	0.824	1.024	
O ₃ _lag2	0.943	0.088	-0.630	0.526	0.786	1.131	
O ₃ _lag3	0.919	0.051	-1.520	0.127	0.824	1.024	
O3_lag4	0.800	0.066	-2.710	0.007	0.681	0.940	***
O ₃ _lag5	0.887	0.073	-1.450	0.146	0.755	1.043	
O ₃ _lag6	0.966	0.046	-0.720	0.470	0.881	1.060	
O ₃ _lag7	1.032	0.086	0.380	0.706	0.877	1.215	
O ₃ _lag8	0.921	0.075	-1.010	0.315	0.785	1.081	
O ₃ _lag9	0.966	0.046	-0.720	0.470	0.881	1.060	
O ₃ lag10	0.990	0.078	-0.130	0.896	0.848	1.156	
O ₃ lag11	1.076	0.062	1.270	0.203	0.961	1.204	
O ₃ lag12	0.966	0.046	-0.720	0.470	0.881	1.060	
O ₃ lag13	0.892	0.072	-1.410	0.159	0.761	1.046	
O ₃ lag14	0.919	0.051	-1.520	0.127	0.824	1.024	

Table 3.48 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to O_3 in Edmonton in 2017

O ₃ lag15	1.076	0.062	1.270	0.203	0.961	1.204	
Temperature_lag0	0.989	0.009	-1.220	0.221	0.972	1.006	
Temperature_lag1	1.013	0.013	1.040	0.296	0.989	1.038	
Temperature_lag2	0.987	0.011	-1.200	0.230	0.965	1.009	
Temperature_lag3	1.010	0.007	1.350	0.178	0.995	1.025	
Humidity_lag0	0.999	0.003	-0.310	0.759	0.993	1.005	
Humidity_lag1	0.997	0.003	-0.880	0.376	0.991	1.003	
0b.H&W	1.000						
1.H&W	1.122	0.054	2.400	0.016	1.021	1.232	**
Flu_lag0	1.019	0.058	0.340	0.737	0.912	1.138	
Flu_lag1	1.019	0.055	0.340	0.730	0.916	1.133	
Flu_lag2	1.053	0.058	0.940	0.347	0.946	1.172	
Flu_lag3	1.023	0.056	0.410	0.682	0.918	1.140	
Flu_lag4	1.034	0.055	0.620	0.533	0.931	1.147	
Flu_lag5	0.876	0.047	-2.450	0.014	0.788	0.974	**
Flu_lag6	1.002	0.053	0.040	0.970	0.904	1.111	
Flu_lag7	1.048	0.056	0.880	0.381	0.944	1.163	
Flu_lag8	1.028	0.056	0.510	0.609	0.924	1.145	
Flu_lag9	1.055	0.058	0.970	0.332	0.947	1.175	
Flu_lag10	1.108	0.061	1.870	0.062	0.995	1.234	*
Flu_lag11	1.028	0.056	0.510	0.610	0.924	1.145	
Flu_lag12	1.073	0.057	1.320	0.186	0.967	1.190	
cos_1	0.897	0.121	-0.810	0.419	0.688	1.168	
cos_2	0.886	0.048	-2.250	0.025	0.797	0.985	**
cos_3	1.084	0.059	1.490	0.136	0.975	1.205	
cos_4	1.127	0.039	3.460	0.001	1.053	1.205	***
sin_1	0.997	0.037	-0.080	0.934	0.928	1.071	
sin_2	0.976	0.032	-0.750	0.451	0.916	1.040	
sin_3	1.228	0.040	6.290	0.000	1.152	1.310	***
sin_4	0.843	0.028	-5.190	0.000	0.790	0.899	***
Constant	0.270	0.225	-1.570	0.116	0.053	1.379	
lnalpha	-4.226	0.771	.b	.b	-5.737	-2.716	
Mean dependent var	7.371		SD depe	ndent var	3.898		
Pseudo r-squared			Number	of obs	350		
Chi-square	257.016		Prob > c	hi2	0.000		
Akaike crit. (AIC)	1776.74	5	Bayesia	n crit. (BIC)	1934.920		

H&W: holiday and weekend

xi: nbreg count o3lag* temperaturelag* humiditylag* i.holiday flulag* cos* sin*, constraints(1/5) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.994	0.026	-0.230	0.816	0.945	1.045	
$PM_{2.5}$ lag1	0.994	0.026	-0.230	0.816	0.945	1.045	
$PM_{2.5}$ lag2	1.049	0.040	1.260	0.206	0.974	1.130	
$PM_{2.5}$ lag3	0.943	0.048	-1.160	0.248	0.853	1.042	
PM _{2.5} _lag4	1.049	0.040	1.260	0.206	0.974	1.130	
PM _{2.5} _lag5	0.946	0.042	-1.250	0.212	0.867	1.032	
PM _{2.5} _lag6	0.990	0.025	-0.400	0.689	0.943	1.039	
PM _{2.5} _lag7	0.990	0.025	-0.400	0.689	0.943	1.039	
Temperature_lag0	1.003	0.009	0.340	0.735	0.985	1.022	
Temperature_lag1	1.005	0.013	0.370	0.710	0.980	1.030	
Temperature_lag2	0.991	0.011	-0.820	0.411	0.970	1.012	
Temperature_lag3	1.004	0.007	0.560	0.574	0.990	1.018	
Humidity_lag0	1.002	0.003	0.820	0.414	0.997	1.009	
Humidity_lag1	1.000	0.003	0.020	0.983	0.994	1.006	
0b.H&W	1.000						
1.H&W	1.093	0.053	1.850	0.064	0.995	1.201	*
Flu_lag0	0.973	0.055	-0.490	0.625	0.871	1.087	
Flu_lag1	0.979	0.054	-0.390	0.700	0.878	1.091	
Flu_lag2	1.023	0.055	0.430	0.670	0.920	1.138	
Flu_lag3	1.007	0.054	0.120	0.904	0.905	1.119	
Flu_lag4	1.011	0.054	0.210	0.837	0.910	1.124	
Flu_lag5	0.863	0.048	-2.650	0.008	0.774	0.962	***
Flu_lag6	1.001	0.055	0.010	0.992	0.899	1.114	
Flu_lag7	1.052	0.058	0.920	0.359	0.944	1.172	
Flu_lag8	0.989	0.056	-0.200	0.839	0.886	1.104	
Flu_lag9	1.018	0.057	0.320	0.748	0.913	1.135	
Flu_lag10	1.084	0.061	1.450	0.148	0.972	1.210	
Flu_lag11	1.009	0.056	0.160	0.877	0.904	1.125	
Flu_lag12	1.061	0.059	1.060	0.289	0.951	1.182	
cos_1	1.373	0.118	3.700	0.000	1.160	1.623	***
cos_2	0.949	0.048	-1.040	0.300	0.860	1.048	
cos_3	1.139	0.057	2.600	0.009	1.033	1.256	***
cos_4	1.132	0.042	3.330	0.001	1.052	1.219	***
sin_1	0.961	0.036	-1.050	0.294	0.893	1.035	
sin_2	0.953	0.035	-1.320	0.187	0.887	1.024	
sin_3	1.262	0.044	6.670	0.000	1.178	1.351	***
sin_4	0.873	0.028	-4.210	0.000	0.819	0.930	***
Constant	6.191	1.590	7.100	0.000	3.742	10.243	***
lnalpha	-3.474	0.395	.b	.b	-4.248	-2.699	

Table 3.49 Results of time-series yearly model of associations between daily respiratory ED visits among children under 17 ages and exposure to PM_{2.5} in Edmonton in 2017

Mean dependent var	7.397	SD dependent var	3.897
Pseudo r-squared	•	Number of obs	353
Chi-square	203.098	Prob > chi2	0.000
Akaike crit. (AIC)	1807.985	Bayesian crit. (BIC)	1943.312

H&W: holiday and weekend

xi: nbreg count pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Table 3.50 Results of time-series yearly model of associations between daily respiratory ED visits among children under 17 ages and exposure to SO₂ in Edmonton in 2017

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	0.975	0.020	-1.210	0.226	0.936	1.016	
Temperature_lag0	1.006	0.010	0.610	0.540	0.987	1.025	
Temperature_lag1	1.007	0.013	0.540	0.592	0.982	1.033	
Temperature_lag2	0.985	0.011	-1.420	0.156	0.964	1.006	
Temperature_lag3	1.005	0.007	0.680	0.497	0.991	1.020	
Humidity_lag0	1.003	0.003	0.870	0.387	0.997	1.009	
Humidity_lag1	1.000	0.003	-0.050	0.960	0.994	1.006	
0b.H&W	1.000						
1.H&W	1.095	0.054	1.820	0.069	0.993	1.207	*
Flu_lag0	0.982	0.058	-0.310	0.758	0.875	1.102	
Flu_lag1	0.971	0.056	-0.500	0.618	0.867	1.089	
Flu_lag2	1.024	0.059	0.420	0.674	0.916	1.146	
Flu_lag3	1.023	0.058	0.400	0.689	0.916	1.142	
Flu_lag4	1.024	0.057	0.430	0.667	0.919	1.141	
Flu_lag5	0.861	0.049	-2.620	0.009	0.769	0.963	***
Flu_lag6	0.999	0.057	-0.010	0.993	0.893	1.119	
Flu_lag7	1.043	0.060	0.740	0.460	0.932	1.167	
Flu_lag8	1.006	0.058	0.100	0.921	0.898	1.126	
Flu_lag9	1.011	0.058	0.200	0.844	0.904	1.132	
Flu_lag10	1.065	0.062	1.090	0.277	0.951	1.193	
Flu_lag11	1.018	0.058	0.310	0.756	0.910	1.138	
Flu_lag12	1.049	0.061	0.830	0.407	0.937	1.175	
cos_1	1.369	0.120	3.570	0.000	1.152	1.626	***
cos_2	0.956	0.048	-0.890	0.374	0.867	1.055	
cos_3	1.135	0.058	2.470	0.014	1.026	1.255	**
cos_4	1.140	0.041	3.630	0.000	1.062	1.224	***
sin_1	0.969	0.038	-0.790	0.427	0.897	1.047	
sin_2	0.947	0.033	-1.570	0.116	0.886	1.014	
sin_3	1.263	0.044	6.720	0.000	1.180	1.351	***
sin_4	0.876	0.029	-3.960	0.000	0.821	0.935	***

Constant	4.562	1.305	5.310	0.000	2.604	7.992	***
lnalpha	-3.370	0.377	.b	.b	-4.109	-2.632	
Mean dependent var	7.287		SD depe	endent var	3.865		
Pseudo r-squared	0.084	Number of obs			334		
Chi-square	151.340		Prob > c	chi2	0.000		
Akaike crit. (AIC)	1705.344		Bayesian (BIC)	n crit.	1823.489		

H&W: holiday and weekend

xi: nbreg count so2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*,irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
CO_lag0	0.858	0.100	-1.310	0.190	0.682	1.079	
CO_lag1	0.943	0.074	-0.750	0.451	0.809	1.099	
CO_lag2	1.114	0.068	1.770	0.076	0.989	1.255	*
CO_lag3	0.984	0.117	-0.130	0.896	0.779	1.244	
CO_lag4	0.899	0.112	-0.850	0.396	0.704	1.149	
CO_lag5	0.832	0.098	-1.550	0.120	0.660	1.049	
CO_lag6	1.114	0.068	1.770	0.076	0.989	1.255	*
CO_lag7	1.114	0.068	1.770	0.076	0.989	1.255	*
CO_lag8	0.943	0.074	-0.750	0.451	0.809	1.099	
Temperature_lag0	1.016	0.008	1.900	0.057	1.000	1.032	*
Temperature_lag1	0.978	0.010	-2.170	0.030	0.959	0.998	**
Temperature_lag2	1.011	0.011	1.000	0.316	0.990	1.032	
Temperature_lag3	0.994	0.011	-0.550	0.580	0.973	1.015	
Temperature_lag4	1.013	0.011	1.240	0.214	0.992	1.034	
Temperature_lag5	0.990	0.010	-1.020	0.308	0.970	1.010	
Temperature_lag6	1.002	0.010	0.180	0.857	0.982	1.022	
Temperature_lag7	0.995	0.010	-0.530	0.599	0.976	1.014	
Temperature_lag8	1.013	0.010	1.360	0.173	0.994	1.032	
Temperature_lag9	1.002	0.009	0.260	0.796	0.985	1.020	
Temperature_lag10	1.002	0.007	0.260	0.792	0.989	1.015	
Humidity_lag0	1.001	0.003	0.500	0.618	0.996	1.006	
Humidity_lag1	1.001	0.003	0.420	0.672	0.995	1.007	
Humidity_lag2	1.001	0.003	0.460	0.643	0.996	1.007	
Humidity_lag3	1.000	0.003	0.150	0.884	0.995	1.006	
Humidity_lag4	1.003	0.003	0.910	0.363	0.997	1.009	
Humidity_lag5	0.997	0.003	-1.260	0.208	0.992	1.002	
0b.H&W	1.000	•	•				
1.H&W	1.145	0.055	2.800	0.005	1.042	1.259	***
Flu_lag0	1.031	0.053	0.590	0.553	0.932	1.140	

Table 3.51 Results of time-series yearly models of associations between daily respiratory ED visits among children under 17 ages and exposure to CO in Edmonton in 2018

Flu_lag1	1.008	0.052	0.150	0.880	0.911	1.115	
Flu_lag2	0.864	0.044	-2.860	0.004	0.782	0.955	***
Flu_lag3	1.042	0.054	0.790	0.428	0.942	1.152	
Flu_lag4	0.989	0.051	-0.210	0.831	0.893	1.095	
Flu_lag5	1.004	0.051	0.080	0.937	0.908	1.110	
Flu_lag6	1.103	0.059	1.840	0.066	0.994	1.224	*
Flu_lag7	1.095	0.057	1.740	0.083	0.988	1.214	*
Flu_lag8	1.003	0.054	0.060	0.951	0.903	1.114	
Flu_lag9	1.005	0.055	0.100	0.922	0.903	1.119	
Flu_lag10	0.968	0.053	-0.590	0.555	0.871	1.077	
Flu_lag11	0.975	0.053	-0.470	0.638	0.876	1.085	
Flu_lag12	0.993	0.053	-0.130	0.896	0.894	1.103	
Flu_lag13	1.000	0.054	0.000	0.999	0.900	1.111	
Flu_lag14	0.964	0.051	-0.690	0.487	0.868	1.070	
Flu_lag15	0.984	0.053	-0.310	0.760	0.886	1.093	
cos_1	1.667	0.445	1.920	0.055	0.988	2.813	*
cos_2	0.800	0.065	-2.730	0.006	0.682	0.939	***
cos_3	1.192	0.049	4.270	0.000	1.100	1.293	***
cos_4	1.001	0.051	0.010	0.990	0.905	1.107	
sin_1	1.269	0.088	3.450	0.001	1.108	1.454	***
sin_2	0.907	0.047	-1.900	0.057	0.820	1.003	*
sin_3	1.193	0.088	2.400	0.017	1.033	1.377	**
sin_4	0.901	0.046	-2.030	0.042	0.814	0.996	**
Constant	3.356	1.236	3.290	0.001	1.631	6.908	***
lnalpha	-4.266	0.814	.b	.b	-5.861	-2.670	
Mean dependent var	7.314		SD dep	endent var	3.736		
Pseudo r-squared	•		Number	r of obs	350.000		
Chi-square	234.11	5	Prob > o	chi2	0.000		
Akaike crit. (AIC)	1796.3	81	Bayesia	n crit. (BIC)	1989.278		

H&W: holiday and weekend

xi: nbreg count colag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/3) irr

Table 3.52 Results of time-set	ries yearly model of as	sociations between da	aily respiratory EI	O visits among
children under 17 ages and ex	posure to NO ₂ in Edmo	onton in 2018		

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂ _lag0	0.954	0.047	-0.970	0.333	0.867	1.050	
NO ₂ _lag1	0.947	0.037	-1.400	0.161	0.876	1.022	
NO ₂ _lag2	0.947	0.037	-1.400	0.161	0.876	1.022	
NO ₂ _lag3	0.959	0.067	-0.600	0.550	0.836	1.100	
NO ₂ _lag4	1.003	0.039	0.070	0.946	0.928	1.083	
NO ₂ _lag5	0.920	0.040	-1.890	0.059	0.844	1.003	*

NO ₂ _lag6	1.057	0.071	0.830	0.408	0.927	1.206	
NO ₂ _lag7	0.916	0.043	-1.860	0.063	0.835	1.005	*
NO ₂ _lag8	0.927	0.061	-1.140	0.253	0.814	1.056	
NO ₂ lag9	0.954	0.047	-0.970	0.333	0.867	1.050	
NO_2 lag10	1.003	0.039	0.070	0.946	0.928	1.083	
NO_2 lag11	0.947	0.037	-1.400	0.161	0.876	1.022	
NO_2 lag12	0.916	0.043	-1.860	0.063	0.835	1.005	*
NO_2 lag13	0.920	0.040	-1.890	0.059	0.844	1.003	*
NO_2 lag14	1.003	0.039	0.070	0.946	0.928	1.083	
Temperature lag0	1.014	0.008	1.720	0.085	0.998	1.031	*
Temperature lag	0.985	0.010	-1.450	0.146	0.965	1.005	
Temperature lag2	1.015	0.011	1.340	0.179	0.993	1.036	
Temperature lag3	0.990	0.011	-0.980	0.329	0.969	1.011	
Temperature lag4	1.010	0.011	0.990	0.323	0.990	1.032	
Temperature lag5	0.986	0.011	-1.310	0.190	0.966	1.007	
Temperature_lag6	1.010	0.010	0.940	0.345	0.990	1.031	
Temperature_lag7	0.998	0.010	-0.210	0.837	0.978	1.018	
Temperature_lag8	1.012	0.010	1.260	0.207	0.993	1.032	
Temperature_lag9	1.000	0.009	0.040	0.971	0.983	1.018	
Temperature_lag10	1.003	0.007	0.480	0.632	0.990	1.017	
Humidity_lag0	1.001	0.003	0.280	0.778	0.996	1.006	
Humidity_lag1	1.002	0.003	0.720	0.469	0.996	1.008	
Humidity_lag2	1.001	0.003	0.280	0.780	0.995	1.007	
Humidity_lag3	0.999	0.003	-0.170	0.864	0.994	1.005	
Humidity_lag4	1.002	0.003	0.820	0.412	0.997	1.008	
Humidity_lag5	0.997	0.003	-0.960	0.335	0.992	1.003	
0b.H&W	1.000						
1.H&W	1.140	0.056	2.660	0.008	1.035	1.256	***
Flu_lag0	1.034	0.052	0.660	0.509	0.937	1.141	
Flu_lag1	1.020	0.052	0.400	0.689	0.924	1.127	
Flu_lag2	0.868	0.044	-2.820	0.005	0.787	0.958	***
Flu_lag3	1.040	0.053	0.770	0.443	0.941	1.148	
Flu_lag4	0.990	0.051	-0.200	0.841	0.895	1.094	
Flu_lag5	0.993	0.051	-0.140	0.891	0.899	1.097	
Flu_lag6	1.089	0.058	1.620	0.106	0.982	1.208	
Flu_lag7	1.069	0.056	1.290	0.199	0.965	1.185	
Flu_lag8	0.993	0.053	-0.140	0.890	0.894	1.102	
Flu_lag9	0.996	0.054	-0.070	0.941	0.896	1.108	
Flu_lag10	0.967	0.052	-0.620	0.535	0.870	1.075	
Flu_lag11	0.959	0.052	-0.780	0.437	0.862	1.066	
Flu_lag12	0.976	0.052	-0.460	0.645	0.878	1.084	
Flu_lag13	0.980	0.053	-0.370	0.708	0.882	1.089	
Flu_lag14	0.942	0.050	-1.120	0.264	0.849	1.046	

Flu_lag15	0.958	0.051	-0.810	0.418	0.864	1.063	
cos_1	2.991	0.996	3.290	0.001	1.558	5.744	***
cos_2	0.806	0.063	-2.760	0.006	0.691	0.939	***
cos_3	1.184	0.043	4.700	0.000	1.104	1.271	***
cos_4	1.044	0.044	1.030	0.304	0.961	1.135	
sin_1	1.521	0.139	4.590	0.000	1.272	1.820	***
sin_2	0.926	0.047	-1.500	0.133	0.839	1.024	
sin_3	1.143	0.075	2.040	0.042	1.005	1.301	**
sin_4	0.870	0.043	-2.820	0.005	0.790	0.959	***
Constant	0.282	0.285	-1.250	0.210	0.039	2.037	
lnalpha	-4.329	0.855	.b	.b	-6.004	-2.654	
Mean dependent var	7.314		SD dep	endent var	3.736		
Pseudo r-squared			Number	r of obs	350		
Chi-square	241.283		Prob > chi2		0.000		
Akaike crit. (AIC)	1796.107	,	Bayesia	Bayesian crit. (BIC)			

H&W: holiday and weekend

xi: nbreg count no2lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/7) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
O ₃ _lag0	0.955	0.083	-0.530	0.595	0.805	1.132	
O ₃ _lag1	0.908	0.084	-1.030	0.301	0.757	1.090	
O ₃ _lag2	0.968	0.092	-0.340	0.735	0.804	1.166	
O ₃ _lag3	0.951	0.090	-0.530	0.596	0.790	1.145	
O ₃ _lag4	0.922	0.087	-0.860	0.388	0.767	1.109	
O ₃ _lag5	0.989	0.095	-0.120	0.906	0.820	1.193	
O ₃ _lag6	0.949	0.082	-0.610	0.543	0.801	1.124	
O ₃ _lag7	0.996	0.061	-0.070	0.941	0.884	1.122	
O ₃ _lag8	0.930	0.078	-0.870	0.385	0.789	1.096	
O ₃ _lag9	0.908	0.080	-1.100	0.273	0.763	1.080	
O ₃ lag10	1.015	0.086	0.180	0.856	0.860	1.199	
O ₃ lag11	0.996	0.061	-0.070	0.941	0.884	1.122	
Temperature_lag0	1.013	0.008	1.660	0.097	0.998	1.030	*
Temperature_lag1	0.983	0.010	-1.690	0.091	0.963	1.003	*
Temperature_lag2	1.012	0.011	1.150	0.248	0.992	1.033	
Temperature_lag3	0.992	0.011	-0.740	0.462	0.971	1.013	
Temperature_lag4	1.011	0.011	1.000	0.316	0.990	1.032	
Temperature_lag5	0.991	0.010	-0.890	0.371	0.970	1.011	
Temperature_lag6	1.008	0.010	0.760	0.449	0.988	1.028	

Table 3.53 Results of time-series yearly model of associations between daily respiratory ED visits among children under 17 ages and exposure to O_3 in Edmonton in 2018

Temperature_lag7	0.994	0.010	-0.580	0.564	0.974	1.014	
Temperature_lag8	1.009	0.010	0.940	0.345	0.990	1.029	
Temperature_lag9	1.004	0.009	0.450	0.650	0.986	1.023	
Temperature_lag10	1.000	0.007	0.040	0.971	0.987	1.014	
Humidity_lag0	1.001	0.003	0.210	0.835	0.995	1.006	
Humidity_lag1	1.002	0.003	0.560	0.576	0.996	1.008	
Humidity_lag2	1.000	0.003	0.130	0.899	0.994	1.007	
Humidity_lag3	0.999	0.003	-0.430	0.668	0.992	1.005	
Humidity_lag4	1.002	0.003	0.740	0.461	0.996	1.009	
Humidity_lag5	0.997	0.003	-1.180	0.239	0.991	1.002	
0b.H&W	1.000						
1.H&W	1.157	0.055	3.050	0.002	1.054	1.271	***
Flu_lag0	1.019	0.053	0.350	0.723	0.920	1.127	
Flu_lag1	1.004	0.052	0.080	0.937	0.907	1.111	
Flu_lag2	0.849	0.044	-3.170	0.001	0.768	0.939	***
Flu_lag3	1.023	0.053	0.430	0.667	0.924	1.132	
Flu_lag4	0.983	0.052	-0.320	0.751	0.887	1.090	
Flu_lag5	1.002	0.052	0.040	0.966	0.905	1.110	
Flu_lag6	1.096	0.059	1.700	0.089	0.986	1.218	*
Flu_lag7	1.079	0.057	1.430	0.152	0.973	1.196	
Flu_lag8	0.991	0.054	-0.170	0.866	0.891	1.102	
Flu_lag9	0.999	0.055	-0.010	0.989	0.897	1.113	
Flu_lag10	0.963	0.053	-0.690	0.492	0.865	1.072	
Flu_lag11	0.964	0.052	-0.670	0.504	0.867	1.073	
Flu_lag12	0.993	0.053	-0.140	0.888	0.894	1.102	
Flu_lag13	0.999	0.053	-0.020	0.986	0.900	1.109	
Flu_lag14	0.957	0.051	-0.830	0.408	0.862	1.062	
Flu_lag15	0.974	0.052	-0.490	0.625	0.877	1.082	
cos_1	1.539	0.373	1.780	0.075	0.958	2.474	*
cos_2	0.782	0.062	-3.110	0.002	0.670	0.913	***
cos_3	1.129	0.044	3.080	0.002	1.045	1.219	***
cos_4	1.045	0.045	1.020	0.309	0.960	1.138	
sin_1	1.535	0.162	4.070	0.000	1.249	1.886	***
sin_2	0.879	0.044	-2.570	0.010	0.796	0.970	**
sin_3	1.184	0.074	2.700	0.007	1.047	1.339	***
sin_4	0.908	0.042	-2.080	0.037	0.829	0.994	**
Constant	0.996	0.634	-0.010	0.995	0.286	3.469	
Inalpha	-4.220	0.774	.b	.b	-5.737	-2.702	
Mean dependent var	7.314		SD dep	endent var	3.736		
Pseudo r-squared			Numbe	r of obs	350		
Chi-square	233.304		Prob >	chi2	0.000		
Akaike crit (AIC)	1805 972		Bayesia	an crit (BIC)	2018 158		

H&W: holiday and weekend

xi: nbreg count o3lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/1) irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5} _lag0	0.976	0.022	-1.090	0.274	0.935	1.019	
PM _{2.5} _lag1	0.987	0.036	-0.370	0.714	0.919	1.059	
PM _{2.5} _lag2	0.976	0.022	-1.090	0.274	0.935	1.019	
PM _{2.5} _lag3	1.025	0.053	0.480	0.634	0.926	1.135	
$PM_{2.5}$ lag4	0.942	0.051	-1.120	0.263	0.848	1.046	
$PM_{2.5}$ lag5	1.013	0.050	0.270	0.790	0.919	1.117	
PM_{25} lag6	0.976	0.022	-1.090	0.274	0.935	1.019	
PM_{25} lag7	0.976	0.022	-1.090	0.274	0.935	1.019	
PM _{2.5} lag8	0.987	0.036	-0.370	0.714	0.919	1.059	
PM _{2.5} lag9	1.036	0.047	0 790	0 429	0 948	1 133	
Temperature lag0	1.030	0.008	1 560	0.118	0.997	1.029	
Temperature lag	0.984	0.010	-1.550	0.120	0.965	1.004	
Temperature lag2	1.010	0.010	0.950	0.340	0.990	1.031	
Temperature lag3	0.993	0.011	-0.620	0.533	0.972	1.015	
Temperature lag4	1.011	0.011	1.000	0.319	0.990	1.032	
Temperature_lag5	0.991	0.010	-0.900	0.368	0.971	1.011	
Temperature_lag6	1.007	0.010	0.650	0.513	0.987	1.027	
Temperature_lag7	0.996	0.010	-0.380	0.705	0.977	1.016	
Temperature_lag8	1.010	0.010	1.000	0.319	0.991	1.029	
Temperature_lag9	1.002	0.009	0.250	0.800	0.985	1.020	
Temperature_lag10	1.002	0.007	0.350	0.724	0.989	1.016	
Humidity_lag0	1.002	0.003	0.770	0.442	0.997	1.007	
Humidity_lag1	1.002	0.003	0.580	0.562	0.996	1.008	
Humidity_lag2	1.001	0.003	0.480	0.628	0.996	1.007	
Humidity_lag3	0.999	0.003	-0.270	0.787	0.993	1.005	
Humidity_lag4	1.004	0.003	1.330	0.184	0.998	1.010	
Humidity_lag5	0.997	0.003	-1.010	0.312	0.992	1.003	
0b.H&W	1.000						
1.H&W	1.135	0.055	2.620	0.009	1.032	1.248	***
Flu_lag0	1.025	0.053	0.470	0.635	0.926	1.135	
Flu_lag1	1.015	0.053	0.280	0.779	0.916	1.123	
Flu_lag2	0.853	0.044	-3.110	0.002	0.771	0.943	***
Flu_lag3	1.029	0.054	0.550	0.581	0.929	1.141	
Flu_lag4	0.976	0.052	-0.460	0.642	0.879	1.083	
Flu_lag5	0.996	0.052	-0.070	0.942	0.899	1.104	
Flu_lag6	1.089	0.059	1.580	0.114	0.980	1.211	
Flu_lag7	1.070	0.057	1.260	0.207	0.963	1.188	

Table 3.54 Results of time-series yearly model of associations between daily respiratory ED visits among children under 17 ages and exposure to PM_{2.5} in Edmonton in 2018

Flu_lag8	0.992	0.054	-0.140	0.886	0.891	1.104	
Flu_lag9	0.999	0.056	-0.020	0.987	0.895	1.115	
Flu_lag10	0.958	0.053	-0.780	0.436	0.860	1.067	
Flu_lag11	0.962	0.053	-0.690	0.487	0.864	1.072	
Flu_lag12	0.984	0.054	-0.300	0.762	0.884	1.094	
Flu_lag13	0.995	0.054	-0.090	0.931	0.895	1.107	
Flu_lag14	0.954	0.051	-0.880	0.379	0.860	1.059	
Flu_lag15	0.970	0.052	-0.560	0.572	0.873	1.078	
cos_1	1.860	0.501	2.310	0.021	1.098	3.152	**
cos_2	0.823	0.069	-2.330	0.020	0.698	0.970	**
cos_3	1.201	0.048	4.630	0.000	1.112	1.298	***
cos_4	0.998	0.048	-0.050	0.963	0.907	1.097	
sin_1	1.354	0.108	3.780	0.000	1.157	1.584	***
sin_2	0.886	0.044	-2.450	0.014	0.804	0.976	**
sin_3	1.173	0.083	2.260	0.024	1.021	1.347	**
sin_4	0.892	0.044	-2.310	0.021	0.810	0.983	**
Constant	5.729	1.784	5.610	0.000	3.112	10.546	***
lnalpha	-4.087	0.690	.b	.b	-5.439	-2.735	
Mean dependent var	7.314		SD deper	ndent var	3.736		
Pseudo r-squared			Number	of obs	350		
Chi-square	227.718		Prob > chi2		0.000		
Akaike crit. (AIC)	1800.10	8	Bayesian	Bayesian crit. (BIC)			

H&W: holiday and weekend

xi: nbreg count pm25lag* temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, constraints(1/4) irr

Table 3.55 Results of time-series yearly model of associations between daily respiratory ED visits among
children under 17 ages and exposure to SO_2 in Edmonton in 2018

U							
Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂ _lag0	1.012	0.017	0.680	0.497	0.979	1.045	
SO ₂ _lag1	1.012	0.017	0.680	0.497	0.979	1.045	
SO ₂ _lag2	0.993	0.023	-0.300	0.765	0.950	1.039	
SO ₂ _lag3	0.987	0.031	-0.410	0.681	0.927	1.050	
SO ₂ lag4	1.051	0.022	2.360	0.018	1.009	1.096	**
SO_2_{lag5}	0.993	0.023	-0.300	0.765	0.950	1.039	
SO ₂ _lag6	1.012	0.017	0.680	0.497	0.979	1.045	
SO ₂ _lag7	0.970	0.028	-1.080	0.281	0.917	1.025	
SO ₂ lag8	0.968	0.028	-1.140	0.254	0.916	1.024	
SO ₂ lag9	1.051	0.022	2.360	0.018	1.009	1.096	**
Temperature_lag0	1.006	0.010	0.650	0.518	0.988	1.025	
Temperature_lag1	0.991	0.012	-0.760	0.446	0.967	1.015	
Temperature_lag2	1.013	0.013	1.010	0.312	0.988	1.039	

Temperature_lag3 Temperature_lag4	0.989 1.001	0.013 0.014	-0.790 0.080	0.431 0.938	0.964 0.974	1.016 1.029		
Temperature lag5	0.994	0.014	-0.470	0.641	0.967	1.021		
Temperature lag6	1.007	0.013	0.490	0.626	0.980	1.033		
Temperature lag7	1.001	0.013	0.060	0.950	0.976	1.026		
Temperature lag8	1 011	0.011	1 020	0.305	0.990	1.034		
Temperature lag9	1.005	0.010	0.460	0.643	0.985	1.026		
Temperature lag10	1.000	0.008	-0.050	0.961	0.984	1.016		
Humidity lag0	0.999	0.003	-0.220	0.901	0.993	1.010		
Humidity lag1	1.002	0.004	0.590	0.554	0.995	1.000		
Humidity_lag?	1.002	0.004	-0.080	0.933	0.993	1.007		
Humidity_lag3	0.997	0.004	-0.730	0.955	0.990	1.007		
Humidity_lag4	1 004	0.004	1 100	0.407	0.997	1.005		
Humidity_lag5	0.998	0.004	-0.680	0.270	0.991	1.011		
Ob H&W	1 000	0.005	-0.000	0.777	0.771	1.004		
1 H&W	1.000	0.064	1 570	0.116	0.977	1 230		
Flu lag0	1.090	0.004	0.060	0.110	0.883	1.230		
Flu_lag1	1.004	0.000	0.000	0.950	0.885	1.171		
Flu_lag2	0.865	0.007	2 160	0.049	0.300	0.087	**	
Flu_lag2	1 1 1 9	0.038	-2.100	0.031	0.739	1.274	*	
Flu_lag4	0.081	0.075	0.280	0.097	0.980	1.274		
Flu_lag5	1.002	0.008	-0.280	0.779	0.837	1.125		
Flu_lag5	1.002	0.007	1.440	0.977	0.873	1.142		
Flu_lago	1.10/	0.078	1.440	0.130	0.964	1.272		
Flu_lag?	1.000	0.072	1.200	0.208	0.934	1.239		
Flu_lago	1.075	0.074	0.240	0.290	0.940	1.230		
Flu_lag9	1.023	0.075	0.340	0.752	0.892	1.1//		
Flu_lag10	1.019	0.069	0.280	0.779	0.893	1.104		
Flu_lag11	1.012	0.070	0.180	0.860	0.885	1.158		
Flu_lag12	0.941	0.005	-0.910	0.301	0.823	1.075		
Flu_lag13	1.015	0.070	0.220	0.825	0.887	1.162		
Flu_lag14	0.956	0.062	-0./00	0.486	0.841	1.080		
Flu_lag15	0.981	0.000	-0.290	0.775	0.839	1.120		
cos_1	1.015	0.624	1.240	0.215	0.757	5.445 1.012	*	
\cos_2	0.761	0.111	-1.8/0	0.061	0.572	1.013	***	
cos_3	1.199	0.067	3.270	0.001	1.076	1.338	ጥጥጥ	
\cos_4	0.983	0.068	-0.250	0.802	0.858	1.125	**	
sin_l	1.284	0.163	1.960	0.050	1.000	1.64/	~ ~ * *	
sin_2	0.862	0.062	-2.060	0.040	0.749	0.993	**	
sin_3	1.253	0.130	2.180	0.029	1.023	1.535	**	
sin_4	0.936	0.063	-0.990	0.323	0.821	1.067		
Constant	7.814	6.390	2.510	0.012	1.574	38.806	**	
Inalpha	-17.271	301.531	.b	.b	-608.260	573.719		
Mean dependent var		7.1	01 SD depe	endent var		3.551		
Pseudo r-squared		. Number of obs				228		

Chi-square	182.324	Prob > chi2	0.000
Akaike crit. (AIC)	1153.395	Bayesian crit. (BIC)	1324.862

H&W: holiday and weekend

xi: nbreg count so2lag* temperaturelag* humiditylag* i.holiday flulag* cos* sin*, constraints(1/4) irr

3.2.7 Measures of model fit

Residual plots are commonly used to measure if seasonality and long-term trends are controlled well in time-series analysis⁴. Figure 3.4 shows the residual plots of the three-year models for five air pollutants. Figures 3.5 and 3.6 present residual plots of sex-stratified models for the five air pollutants. Figures 3.7 and 3.8 show residual plots of age-stratified models for the five air pollutants. Figures 3.9 and 3.10 show the residual plots of wildfire season models and non-wildfire season models for the five air pollutants. Figures 3.9 and 3.10 show the residual plots of wildfire season models and non-wildfire season models for the five air pollutants. Figures 3.11, 3.12 and 3.13 present the residual plots of yearly models for the five air pollutants. The residuals of three-year models, sex-stratified male models, and age-stratified models were roughly randomly distributed, indicating that data fit the models well and that seasonality and long-term trends were controlled well using periodic functions (Fourier terms) over the three-year period. In contrast, sex-stratified female models, wildfire season models, non-wildfire season models, and yearly models had some patterns in the plots, so data did not fit those models as well, indicating residual confounding from seasonality and long-term trends in those models.

Figure 3.4 Residual plots of three-year models for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.5 Residual plots of sex-stratified female models for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.6 Residual plots of sex-stratified male models for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.7 Residual plots of age-stratified models of 0 to 4 ages for CO (A), NO₂ (B), O₃ (C), $PM_{2.5}$ (D), and SO₂ (E)

Figure 3.8 Residual plots of age-stratified models of 5-16 ages for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.9 Residual plots of wildfire season models for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.10 Residual plots of non-wildfire models for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.11 Residual plots of yearly models of 2016 for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.12 Residual plots of yearly models of 2017 for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

Figure 3.13 Residual plots of yearly models of 2018 for CO (A), NO₂ (B), O₃ (C), PM_{2.5} (D), and SO₂ (E)

3.2.8 Summary of time-series results

Table 3.56 presents a summary of all significant results from time-series analysis. Overall, NO₂ and O₃ showed more significant results than the other three air pollutants. With a greater number of significant results and larger magnitudes of association, male children were observed to be affected more by air pollution than female children, and older children (5-16 ages) more than younger children (0-4 ages). Meanwhile, stronger associations were found during wildfire seasons compared to non-wildfire seasons. Among the three years, the strongest associations were in the year 2016.

	Pollutant	Lag	IRR	P-value	95% CI
	NO ₂ (ppm)	4-day lag	1.085	0.032	1.007-1.169
	O ₃ (ppm)	4-day lag	0.88	0.02	0.804-0.981
Three-year model		5-day lag	1.08	0.011	1.018-1.146
		9-day lag	1.08	0.011	1.018-1.146
		11-day lag	1.08	0.011	1.018-1.146
	NO ₂ (ppm)	4-day lag	1.071	0.025	1.009-1.137
C		6-day lag	1.071	0.025	1.009-1.137
(male)		8-day lag	1.071	0.025	1.009-1.137
(marc)	O ₃ (ppm)	5-day lag	1.109	0.019	1.017-1.21
		11-day lag	1.109	0.019	1.017-1.21
	NO ₂ (ppm)	4-day lag	1.068	0.042	1.002-1.139
model (0-4 ages)		8-day lag	1.068	0.042	1.002-1.139
(* + -8)	O ₃ (ppm)	4-day lag	0.89	0.044	0.795-0.997
	NO ₂ (ppm)	2-day lag	1.074	0.048	1.001-1.152
		4-day lag	1.074	0.048	1.001-1.152
		6-day lag	1.074	0.048	1.001-1.152
Age-stratified		10-day lag	1.074	0.048	1.001-1.152
model (5-16 ages)	O ₃ (ppm)	1-day lag	1.152	0.042	1.005-1.32
		5-day lag	1.152	0.042	1.005-1.32
	SO ₂ (ppm)	8-day lag	1.043	0.028	1.005-1.082
		9-day lag	1.043	0.028	1.005-1.082
	CO (ppm)	2-day lag	1.196	0.028	1.02-1.403
		6-day lag	1.196	0.028	1.02-1.403
	NO ₂ (ppm)	0-day lag	1.08	0.036	1.005-1.16
Wildfire model		5-day lag	1.08	0.036	1.005-1.16
		6-day lag	1.147	0.018	1.024-1.285
		10-day lag	1.08	0.036	1.005-1.16
	O ₃ (ppm)	5-day lag	1.12	0.045	0.997-1.256

 Table 3.56 Summary of significant results from time-series analysis

		11-day lag	1.12	0.045	0.997-1.256
	$PM_{2.5}(\mu g/m^3)$	0-day lag	1.056	0.035	1.004-1.112
		2-day lag	1.056	0.035	1.004-1.112
		6-day lag	1.056	0.035	1.004-1.112
	NO ₂ (ppm)	4-day lag	1.073	0.046	1.001-1.15
Non-wildfire model		8-day lag	1.073	0.046	1.001-1.15
	O ₃ (ppm)	1-day lag	1.101	0.029	1.01-1.2
		5-day lag	1.101	0.029	1.01-1.2
	SO ₂ (ppm)	1-day lag	1.033	0.03	1.003-1.064
		4-day lag	1.033	0.03	1.003-1.064
	NO ₂ (ppm)	6-day lag	1.09	0.022	1.013-1.174
		7-day lag	0.792	< 0.001	0.697-0.901
Yearly model		8-day lag	1.09	0.022	1.013-1.174
(2016)		13-day lag	1.09	0.022	1.013-1.174
	O ₃ (ppm)	5-day lag	1.198	0.029	1.018-1.409
		6-day lag	0.844	0.024	0.727-0.978
Vaanki madal	NO ₂ (ppm)	2-day lag	1.119	0.029	1.011-1.239
(2017)		4-day lag	1.119	0.029	1.011-1.239
(2017)	O ₃ (ppm)	4-day lag	0.8	0.007	0.681-0.94
Vear model (2018)	SO ₂ (ppm)	4-day lag	1.051	0.018	1.009-1.096
1 cui model (2010)		9-day lag	1.051	0.018	1.009-1.096

3.3 Results of multivariable logistic regression and multiple linear regression

3.3.1 Results of multivariable logistic regression

Tables 3.57 to 3.60 present the results of the multivariable logistic regression modelling that investigated the association between hospital admission (yes/no) for respiratory diseases among children and air pollutant concentrations. The estimated odds ratios and 95% confidence intervals for inpatient hospital admission are shown for a 1 ppm increase in NO₂, O₃, and SO₂ concentrations, and 1 μ g/m³ increase in PM_{2.5} concentrations. Evidence of significant associations between inpatient hospital admission and air pollutant exposure was not found. Inpatient hospital admission was marginally associated with PM_{2.5} (p-value 0.056).

Table 3.57 Results of multivariable logistic regression of the associations between pediatric hospitaladmissions for respiratory diseases and exposure to NO_2 in Edmonton between 2016 to 2018

Variable	Odds Ratio	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
NO ₂	1.025	0.020	1.250	0.212	0.986	1.065	

1.CTAS	129.037	128.690	4.870	0.000	18.273	911.228	***
2.CTAS	20.783	14.900	4.230	0.000	5.099	84.715	***
3.CTAS	4.187	3.030	1.980	0.048	1.014	17.294	***
4b.CTAS	1.000						
1b.Age	1.000						
2.Age	0.640	0.109	-2.610	0.009	0.457	0.894	***
3.Age	0.394	0.122	-3.000	0.003	0.214	0.724	***
4.Age	0.406	0.216	-1.690	0.090	0.143	1.153	*
1b.SES	1.000						
2.SES	1.173	0.229	0.820	0.412	0.801	1.719	
3.SES	1.305	0.255	1.360	0.173	0.890	1.912	
4.SES	1.305	0.293	1.180	0.236	0.840	2.028	
5.SES	1.359	0.298	1.400	0.162	0.885	2.087	
Constant	1.331	0.995	0.380	0.702	0.308	5.759	
Mean depe	ndent var	0.141	S	D dependent	var	0.348	
Pseudo r-sc	luared	0.122	Number of obs			2546	
Chi-square		251.343	Prob > chi2			0.000	
Akaike crit	. (AIC)	1840.387	Bayesian crit. (BIC)			1910.494	

Table 3.58 Results of multivariable logistic regression of the associations between pediatric hospital admissions for respiratory diseases and exposure to O₃ in Edmonton between 2016 to 2018

Variable	Odds Ratio	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
1b.O ₃	1.000						
2. O ₃	1.021	0.202	0.110	0.915	0.693	1.504	
3. O ₃	0.775	0.119	-1.650	0.098	0.573	1.049	*
4. O ₃	0.794	0.183	-1.000	0.317	0.506	1.247	
1b.Age	1.000						
2.Age	0.621	0.106	-2.790	0.005	0.445	0.868	***
3.Age	0.421	0.126	-2.880	0.004	0.233	0.758	***
4.Age	0.399	0.212	-1.730	0.084	0.141	1.132	*
0b.Sex	1.000						
1.Sex	1.334	0.160	2.400	0.016	1.055	1.688	**
1b.SES	1.000						
2.SES	1.130	0.215	0.640	0.522	0.778	1.642	
3.SES	1.276	0.251	1.240	0.216	0.867	1.878	
4.SES	1.262	0.293	1.010	0.315	0.801	1.989	
5.SES	1.263	0.287	1.030	0.305	0.809	1.973	
1.CTAS	150.601	150.472	5.020	0.000	21.250	1067.329	***
2.CTAS	21.424	15.358	4.270	0.000	5.257	87.316	***
3.CTAS	4.555	3.293	2.100	0.036	1.105	18.783	***
4b.CTAS	1.000						
Constant	2.132	1.524	1.060	0.289	0.525	8.653	

Mean dependent var	0.138	SD dependent var	0.345
Pseudo r-squared	0.120	Number of obs	2694
Chi-square	260.030	Prob > chi2	0.000
Akaike crit. (AIC)	1933.097	Bayesian crit. (BIC)	2021.579

xi: logistic admit i.o3 i.age i.sex i.ses i.ctas

Table 3.59 Results of mu	ltivariable logistic re	gression of the as	sociations between	pediatric hospital
admissions for respiratory	v diseases and exposi	ure to PM2.5 in Edu	monton between 20)16 to 2018

Variable	Odds Ratio	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5}	1.045	0.024	1.910	0.056	0.999	1.093	*
1b.Age	1.000						
2.Age	0.706	0.071	-3.470	0.001	0.580	0.859	***
3.Age	0.523	0.086	-3.930	0.000	0.378	0.722	***
4.Age	0.463	0.145	-2.460	0.014	0.251	0.854	**
0b.Sex	1.000						
1.Sex	1.285	0.091	3.560	0.000	1.119	1.475	***
1b.SES	1.000						
2.SES	1.319	0.145	2.530	0.012	1.064	1.635	**
3.SES	1.390	0.155	2.950	0.003	1.117	1.730	***
4.SES	1.223	0.161	1.530	0.127	0.945	1.584	
5.SES	1.486	0.181	3.240	0.001	1.169	1.887	***
1.CTAS	296.737	180.434	9.360	0.000	90.114	977.131	***
2.CTAS	33.919	17.116	6.980	0.000	12.616	91.198	***
3.CTAS	6.713	3.407	3.750	0.000	2.483	18.152	***
4b.CTAS	1.000						
Constant	1.478	0.581	0.990	0.321	0.684	3.193	
Mean depender var	nt 0.136		SD dependent var		0.343		
Pseudo r-squar	ed 0.125		Number of obs		7997		
Chi-square	Chi-square 796.985 Prob > chi2		chi2	0.000			
Akaike crit. (A	Akaike crit. (AIC) 5586.605		Bayesi	an crit. (BIC)	5677.433		

*** p<.01, ** p<.05, * p<.1

xi: logistic admit pm25 i.age i.sex i.ses i.ctas

Table 3.60	Results of mul	tivariable logist	tic regression	of the asso	ociations b	etween pe	ediatric l	nospital
admissions	for respiratory	diseases and ex	posure to SO	2 in Edmor	nton betwe	en 2016 t	o 2018	

Variable	Odds Ratio	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂	0.800	0.437	-0.410	0.683	0.275	2.332	
1b.Age	1.000						
2.Age	0.648	0.111	-2.530	0.011	0.463	0.906	**
3.Age	0.423	0.127	-2.870	0.004	0.234	0.762	***
------------------------	---------	----------	--------	----------------	----------	---------	-----
4.Age	0.386	0.205	-1.790	0.073	0.136	1.094	*
0b.Sex	1.000						
1.Sex	1.323	0.161	2.300	0.022	1.042	1.680	**
1b.SES	1.000						
2.SES	1.215	0.240	0.990	0.324	0.825	1.790	
3.SES	1.451	0.280	1.930	0.054	0.994	2.119	*
4.SES	1.398	0.329	1.420	0.155	0.881	2.218	
5.SES	1.495	0.331	1.810	0.070	0.968	2.308	*
1.CTAS	124.850	126.127	4.780	0.000	17.238	904.271	***
2.CTAS	21.155	15.172	4.260	0.000	5.187	86.276	**
3.CTAS	4.335	3.137	2.030	0.043	1.050	17.903	**
4b.CTAS	1.000						
Constant	1.532	1.143	0.570	0.567	0.355	6.609	
Mean depende	ent var	0.139	SD dep	oendent var	0.346		
Pseudo r-squared 0.119		0.119	Numbe	er of obs	2579		
Chi-square 248.051		Prob >	chi2	0.000			
Akaike crit. (A	AIC)	1859.258	Bayesi	an crit. (BIC)	1935.375		

*** p<.01, ** p<.05, * p<.1

xi: logistic admit so2 i.age i.sex i.ses i.ctas

3.3.2 Results of multiple linear regression

Tables 3.61 to 3.64 show the results of the multiple linear regression modelling that explored the association between square root of length of stay (LOS) of patients in the ED and air pollution exposure. O₃ was transformed into the categorical variable due to its nonlinearity. Strong evidence of an association between square root of LOS with NO₂ and PM_{2.5} was found, with coefficients of 0.092 (p-value: 0.002, 95%CI: 0.034, 0.150) and 0.138 (p-value: <0.001, 95%CI: 0.072, 0.203), respectively, indicating that the square root of LOS increased by 0.092 and 0.138 units, respectively, per 1 ppm increase in the concentration of NO₂ and per 1 μ g/m³ increase in the concentration of PM_{2.5} after adjusting for other variables.

For LOS, LOS increased by (3.698 + 0.017*C) minutes per 1 ppm increase in the concentration of NO₂ after adjusting for other variables. C represents the value of NO₂ concentration. For example, the NO₂ concentration was 0.02 ppm. In this situation, LOS increased by approximately 3.698 minutes with 1 ppm increase of NO₂ concentration after adjusting for other variables. Meanwhile, LOS increased by (4.567 + 0.038*C) minutes per 1 µg/m³ increase in the concentration of PM_{2.5}

after adjusting for other variables. C represents the value of PM_{2.5} concentration. For example, PM_{2.5} concentration was 10 μ g/m³. In this situation, LOS increased by approximately 4.947 minutes with 1 μ g/m³ increase of PM_{2.5} concentration after adjusting for other variables.

There were no significant associations between LOS with O₃ and SO₂.

Table 3.61 Results of multiple linear regression of associations between LOS and exposure to NO_2 among children under 17 ages in Edmonton between 2016 to 2018

Variable	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig		
NO ₂	0.092	0.030	3.110	0.002	0.034	0.150	***		
1.CTAS	8.685	1.459	5.950	0.000	5.823	11.546			
2.CTAS	2.934	0.380	7.730	0.000	2.189	3.678	***		
3.CTAS	1.636	0.378	4.330	0.000	0.894	2.377	***		
4b.CTAS	0.000						***		
Rate	11.470	5.430	2.110	0.035	0.823	22.117	**		
1b.SES	0.000								
2.SES	0.054	0.271	0.200	0.841	-0.476	0.585			
3.SES	0.251	0.280	0.900	0.370	-0.298	0.800			
4.SES	0.449	0.323	1.390	0.164	-0.184	1.083			
5.SES	0.152	0.318	0.480	0.633	-0.471	0.774			
Constant	20.051	1.489	13.470	0.000	17.131	22.971	***		
Mean dependen var	ıt	15.3	02 SD dep	pendent var		4.576			
R-squared		0.0	51 Numbe	er of obs		2546			
F-test		15.0	44 Prob >	F		0.000			
Akaike crit. (AIC)		14856.3	58 Bayesi	an crit. (BIC)		14914.781			

*** p<.01, ** p<.05, * p<.1

xi: regress sqrtlos no2 i.ctas rate i.ses

Variable	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
1b.O ₃	0.000						
2.O ₃	-0.235	0.306	-0.770	0.443	-0.835	0.365	
3.O ₃	-0.410	0.230	-1.780	0.075	-0.861	0.042	*
4.O ₃	-0.118	0.335	-0.350	0.726	-0.775	0.540	
1b.SES	0.000						
2.SES	0.250	0.260	0.960	0.336	-0.260	0.761	
3.SES	0.482	0.277	1.740	0.082	-0.062	1.026	*
4.SES	0.635	0.330	1.930	0.054	-0.012	1.282	*
5.SES	0.398	0.326	1.220	0.222	-0.241	1.036	
1.CTAS	8.852	1.457	6.080	0.000	5.995	11.709	

Table 3.62 Results of multiple linear regression of associations between LOS and exposure to O_3 among children under 17 ages in Edmonton between 2016 to 2018

2.CTAS	3.005	0.370	8.130	0.000	2.280	3.730	***
3.CTAS	1.704	0.368	4.630	0.000	0.982	2.426	***
4b.CTAS	0.000						***
Rate	12.461	5.267	2.370	0.018	2.133	22.788	**
Constant	21.362	1.449	14.740	0.000	18.521	24.203	***
Mean dependent var	15.265	SD dependent var			4.573		
R-squared	0.049		Number	r of obs	2694		
F-test	12.697	Prob > F			0.000		
Akaike crit. (AIC)	15721.722		Bayesian crit. (BIC)				

*** p<.01, ** p<.05, * p<.1

xi: regress sqrtlos i.o3 i.ses i.ctas rate

Variable	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
PM _{2.5}	0.138	0.033	4.140	0.000	0.072	0.203	***
1b.Age	0.000						
2.Age	0.409	0.130	3.150	0.002	0.155	0.663	***
3.Age	-0.395	0.176	-2.240	0.025	-0.739	-0.050	**
4.Age	-0.305	0.324	-0.940	0.346	-0.941	0.330	
1b.SES	0.000						
2.SES	0.186	0.147	1.260	0.207	-0.103	0.475	
3.SES	0.224	0.153	1.460	0.144	-0.076	0.524	
4.SES	0.065	0.181	0.360	0.720	-0.290	0.420	
5.SES	0.225	0.172	1.300	0.192	-0.113	0.563	
1.CTAS	4.848	0.697	6.960	0.000	3.482	6.213	
2.CTAS	2.811	0.215	13.100	0.000	2.391	3.232	***
3.CTAS	1.478	0.211	7.020	0.000	1.066	1.891	***
4b.CTAS	0.000						***
Rate	9.495	3.117	3.050	0.002	3.385	15.606	***
Constant	16.478	0.735	22.420	0.000	15.038	17.919	***
Mean dependent var	15.232	232		endent var	4.513		
R-squared	0.043		Numbe	r of obs	7997		
F-test	29.662		Prob >	F	0.000		
Akaike crit. (AIC)	46472.993		Bayesia	an crit. (BIC)	46563.821		

Table 3.63 Results of multiple linear regression of associations between LOS and exposure to $PM_{2.5}$ among children under 17 ages in Edmonton between 2016 to 2018

*** p<.01, ** p<.05, * p<.1

xi: regress sqrtlos pm25 i.age i.ses i.ctas rate

Table 3.64 Results	of multiple linear re	egression of associations	between LOS and ex	posure to SO2 among
children under 17 a	ges in Edmonton be	etween 2016 to 2018		

Variable	Coef.	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
SO ₂	-0.064	0.781	-0.080	0.934	-1.596	1.468	
0b.Sex	0.000						

1.Sex	0.143	0.182	0.780	0.433	-0.214	0.500	
1b.SES	0.000						
2.SES	0.190	0.270	0.700	0.482	-0.339	0.719	
3.SES	0.545	0.272	2.010	0.045	0.012	1.077	**
4.SES	0.641	0.334	1.920	0.055	-0.014	1.296	*
5.SES	0.532	0.315	1.690	0.091	-0.084	1.149	*
1.CTAS	8.695	1.539	5.650	0.000	5.677	11.714	
2.CTAS	2.947	0.382	7.710	0.000	2.198	3.696	***
3.CTAS	1.673	0.381	4.400	0.000	0.927	2.419	***
4b.CTAS	0.000						***
Rate	14.102	5.409	2.610	0.009	3.496	24.708	***
Constant	20.896	1.545	13.520	0.000	17.867	23.926	***
Mean dependent var	15.282		SD dep	endent var	4.578		
R-squared	0.046		Number of obs				
F-test	12.271		Prob >	F	0.000		
Akaike crit. (AIC)	15065.61	5	Bayesia	n crit. (BIC)	15130.022		

*** p<.01, ** p<.05, * p<.1

xi: regress sqrtlos so2 i.sex i.ses i.ctas rate

3.3.3 Measures of model fit

Plots of jackknife residuals are commonly used for the model fit of linear regression⁵. Figure 3.13 shows the plots of the jackknife residuals of the multiple linear regression models for NO₂, O₃, PM_{2.5}, and SO₂. For all the plots, the residuals were not completely randomly distributed. The pattern may be caused by the variable CTAS score because residuals were randomly distributed without CTAS score in the models. However, CTAS score was an essential predictor of LOS, so it was included.

Model fit of logistic regression models was assessed using Hosmer–Lemeshow test goodness-offit test. Table 3.65 presents the goodness-of-fit test results for multivariable logistic regression models of NO₂, O₃, PM_{2.5}, and SO₂. Large p-values indicate that all four models fit reasonably well to the data. Though more robust goodness-of-fit tests are needed.

Figure 3.14 Plots of jackknife residuals of multiple linear regression models for (A) NO₂, (B) O_3 , (C) $PM_{2.5}$ and (D) SO_2

Table 3.65 Results of Hosmer and Lemeshow's goodness-of-fit test for multivariable logistic reg	gression
models	

Pollutant	Goodness-of-Fit Test
NO ₂	Prob > chi2 = 0.5847
O ₃	Prob > chi2 = 0.5922
PM _{2.5}	Prob > chi2 = 0.9784
SO ₂	Prob > chi2 = 0.5599

References

- 1. Ambinet Air Pollution. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators Air Quality.; 2018. www.canada.ca/en/environment-climatechange/services/environmental-indicators/air-
- 3. Torres-reyna O. Time Series (Princeton).
- Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. *Int J Epidemiol*. 2013;42(4):1187-1195. doi:10.1093/ije/dyt092
- Guo X, Song L, Fang Y, Zhu L. Model checking for general linear regression with nonignorable missing response. *Comput Stat Data Anal*. 2019;138:1-12. doi:10.1016/j.csda.2019.03.009

Chapter 4: Discussion

Objectives of this study were to investigate trends in associations between air pollution (CO, NO₂, O₃, PM_{2.5}, and SO₂) levels and respiratory (wheeze, asthma, bronchiolitis) ED visits, hospital admissions, and length of stay (LOS) in ED in Edmonton among children under 17 years of age between 2016-2018. The impacts of wildfire-related air pollution on children's respiratory health were also explored.

Strong evidence of positive associations between daily respiratory ED visits among children in Edmonton and exposures to air pollutants including NO₂ and O₃ was found. Clear differences by sex, age, wildfire seasons, and non-wildfire seasons were observed. Male children were found to be more affected by air pollution than female children, and older children (5-16 years old) were more affected than younger children (0-4 years old). Further, the strongest associations between air pollutant exposures and respiratory ED visits were found in the year 2016, out of the three years. Stronger associations were also observed in the wildfire season compared to the non-wildfire season during the study period. Results showed that hospital admissions were not associated with air pollution exposure, and LOS were significantly positively associated with exposure to NO₂ and PM_{2.5}.

Inverse relationships between same day lag exposure of O₃ and NO₂ seemed to be common. Fourday lag exposure of O₃ with negative results and NO₂ with positive results appeared concurrently in the time-series three-year models, time-series age-stratified models (0-4 ages), and time-series yearly models (2017). Six-day lag exposure of O₃ with negative results and NO₂ with positive results were observed in time-series yearly model (2016). For NO₂, 4-, 6-, and 8-day lags exposure were most common in time-series models. For O₃, 4-, 5-, and 11-day lags exposure were the most common. Significant results of CO and PM_{2.5} were only found in time-series wildfire season models.

4.1 Associations between daily respiratory ED visits among children and exposure to air pollution (CO, NO₂, O₃, PM_{2.5}, and SO₂) among children under 17 years old in Edmonton between 2016 to 2018

In this study, strong evidence of significant positive associations between daily respiratory ED visits among all children and 4-day lag exposure to NO₂ and 5-, 9- and 11-day lags exposure to O₃

was found in three-year models. Also, a significant negative association for 4-day lag exposure to O_3 was found. O_3 is a "secondary pollutant" generated from the key precursor NO_2^1 . The daily mean concentration of NO_2 and O_3 had opposite trends, as shown in figure 2 in the results chapter. Therefore, the possible reason for the negative association of 4-day lag exposure to O_3 may be due to the positive association of 4-day lag exposure to NO_2 .

This study also examined the difference between different sex and age groups. Associations between daily respiratory ED visits and ambient air pollutant concentrations were stronger among male children than female children and stronger among older children (5-16 years of age) than younger children (0-4 years of age). This phenomenon may be because male children and older children spend more time outdoors, and have greater exposure to ambient air pollution than female and younger children²⁻⁴.

The findings of this study were in agreement with the results of two previous studies conducted in Edmonton. Both studies observed significant associations between daily respiratory ED visits among children and exposures to NO₂ and O₃^{5,6}, as found in this study. The first study using timeseries regression observed that 2-day lag exposure to NO₂ and 0-day lag exposure to O₃ had positive associations among children younger than 10 years old⁵. Meanwhile, the study found that exposures to air pollution had stronger impacts on male children than female children⁵, which also supported findings in our study. The second one was a case-crossover study. The results showed significant associations observed between daily respiratory ED visits among children under 14 and exposure to NO₂ and O₃ using a 5-day average⁶. Exposure to SO₂ did not have a significant association⁶, as also found in the current study.

However, there are some differences between findings from our study and these two Edmonton studies. The two Edmonton studies found significant positive associations between ED visits and exposure to CO and PM_{2.5}, which our study did not. The significant lags were also inconsistent. Additionally, the case-crossover Edmonton study found stronger associations among younger children (2-4 ages) than older children (5-14 ages), contrary to findings of our study. Possible reasons may be due to the different numbers of lags examined, different study periods, different concentrations of air pollutants, and the busyness of ED. In the time-series Edmonton-based study, the period examined was 1992 to 2002. The data on ambient air pollution were supplied by

Environment Canada, which is also from the NAPS program, as used in our study. The mean of daily mean concentration of CO and NO₂ in this previous Edmonton-based study were 0.7000 and 0.0220 ppm⁵, respectively, much higher than results in the current study of 0.2427 and 0.0124 ppm as a result of air quality improvements over time. We only observed significant results for NO₂, unlike results of the prior study, which showed that both CO and NO₂ were significantly associated with daily respiratory ED visits among children in Edmonton. The mean concentration of PM_{2.5} in the previous study was 8.5 μ g/m³⁵, slightly lower than the result in the current study of 8.884 μ g/m³. Similarly, the mean concentration of SO₂ in previous study was 0.0003 ppm⁵, lower than the results in the current study of 0.0006 ppm. PM_{2.5} and SO₂ measured in the earlier study were lower than in this study, but we did not observe significant results, unlike the prior study. For O₃, the previous Edmonton-based study calculated the mean of the daily average concentration (0.0019 ppm)⁵. The current study calculated mean of 8-hour daily maximum concentration (0.0308 ppm).

Besides studies in Edmonton, the observed effects of pollutants (NO₂ and O_3) on children's respiratory ED visits were also consistent with several previous studies conducted in other cities in Canada and other countries. In Windsor, Canada, Lavigne et al. found significant positive associations between daily respiratory ED visits among children (2-14 years of age) and exposures to O₃⁷. Another study conducted in Turin, Italy also found exposure to NO₂ was significantly positively associated with respiratory ED visits among children under 18 ages, and significant negative associations of O₃ were found for the same time lags, as in this study⁸. Two time-series studies in China (Ningbo and Shijiazhuang) reported that exposures to NO2 were associated with increased daily ED visits for respiratory reasons among children, which were stronger among older children (5-14 years of age) than younger children (0-4 years of age)^{2,4}, supporting findings from the current study. Moreover, the results of a multi-city study in the United States (Atlanta, Dallas, and St. Louis) showed significant positive associations between daily respiratory ED visits among children and pollutant concentrations with the strongest associations observed for NO₂ and O₃, similar to this study³. Associations in this study were also found to be generally stronger among male children than female children. A study conducted in Adelaide, Australia also found significant associations between daily respiratory ED visits among children and exposure to NO₂, as well as stronger associations among male children than female children⁹.

4.2 Impacts of wildfires on daily respiratory ED visits among children under 17 years old in Edmonton between 2016 to 2018

To our best knowledge, this is the first study that estimated the impacts of wildfire-related air pollution on daily respiratory ED visits among children in Alberta. Wildfire smoke was the largest contributor to PM_{2.5}, according to the 2015 Alberta Air Zones Report¹⁰. Elevated PM_{2.5}, CO, NO₂, and O₃ levels are usually observed when wildfires occur, as they are by-products of combustion^{10,11}. Six-day lag exposures to PM_{2.5} were also positively associated with daily respiratory ED visits among children. More significant results were found with different air pollutants during wildfire seasons compared to non-wildfire seasons. Also, the magnitude of the associations was larger in wildfire season (IRR of 1.08 and 1.147 for NO₂ and IRR of 1.12 for O₃), compared to the non-wildfire season (IRR of 1.073 for NO₂ and IRR of 1.101 for O₃). Therefore, children's respiratory health appeared to be more affected by air pollution during the wildfire seasons than during the non-wildfire seasons.

To further explore the finding that impacts on children's respiratory health in the wildfire season were caused by wildfires-related air pollution, we examined the associations between daily respiratory ED visits among children and exposure to air pollution levels each year. The strongest associations were in 2016 among the three years. The total number of wildfires in Alberta was the greatest in 2016, out of the three years. In 2016, there were 1376 wildfires, more than 2017 (1244) and 2018 (1288)¹². Moreover, in 2016, the most devastating wildfire in Alberta history, the Fort McMurray wildfire, occurred¹³. Thus, the greatest number of wildfires and the strongest wildfirerelated pollution levels observed in 2016, correlated with the strongest associations (measured in time-series yearly models). Additionally, CO, NO₂, O₃, and PM_{2.5} all had significant results in time-series wildfire season models, but only NO2 and O3 had significant results in time-series three-year models. Effects are likely diluted in three-year models. Meanwhile, both CO and PM2.5 showed peaks during the 2018 wildfire season, as shown in figure 3.2. These two aspects can also be evidence of health impacts of wildfire-related air pollution. However, the air pollutants concentrations of each year were not consistent with the association levels from time-series yearly models. The explanation could be the effect of mixtures or interactions not tested in this study. The Air Quality Health Index (AQHI) in Edmonton was also examined in this study. However, the number of days with higher AQHI (\geq 7) in 2016, 2017, and 2018 were 8, 12, and 15¹⁴, which

was not consistent with evidence from this study. A possible reason could be that the AQHI is based on mortality data in the general population.

In conclusion, stronger associations were observed in the wildfire seasons compared to the nonwildfire seasons during the study period. Also, there was consistency between the strongest associations, the greatest number of wildfire activities, and the strongest wildfire-related pollution levels in 2016. These two aspects together could indicate that wildfires, in addition to baseline air pollution, indeed had impacts on children's respiratory health. Wildfire smoke can be inhaled into bronchioles and alveoli, where it causes local irritation, inflammation and damage, resulting in respiratory problems in humans¹⁵. Children's respiratory and lung functions are not fully developed, so they are more susceptible to the effects of wildfires pollution and suffer from respiratory diseases¹⁶.

This study finding agrees with previous studies. A study conducted in Vancouver, Canada, found a significant increase in respiratory emergency department visits and asthma hospitalizations within the first 3 days of exposure to wildfire smoke, particularly in children younger than 5 years old¹⁷. Three other studies conducted in the United States (San Diego, Washington, and Albuquerque) demonstrated an increase in pediatric respiratory visits during wildfires¹⁸. In Valencia, Spain, Vicedo-Cabrera et al. also found that exposure to wildfire smoke was associated with increased respiratory symptoms in children, particularly those susceptible individuals with asthma or rhinitis¹⁹. Another study conducted in Sydney, Australia, concluded that wildfire events were associated with an immediate increase in presentations for respiratory conditions, especially children under 15 years of age²⁰. Compared with studies listed above, one strength of this study was its comparison with non-wildfire periods in the same population.

4.3 Associations between air pollution exposure and hospital admissions and LOS due to respiratory diseases for in Edmonton among children under 17 years old between 2016 to 2018

The findings in this study suggested that air pollution exposures were not significantly associated with hospital admissions for respiratory reasons among children were consistent with previous studies both in Canada and other countries. A study conducted in Windsor and Hamilton, Canada, found that hospital admissions due to respiratory symptoms among children were not significantly associated with exposure to O₃²¹. Another study in Ottawa, Canada, found that hospitalizations due to respiratory diseases among children were not significantly associated with exposure to PM_{2.5} over the whole year period²². Tramuto et al. found that in another Italian city, Palermo, there was no significant association between pediatric hospital admissions for respiratory reasons and exposure to NO₂ and SO₂ using the same statistical methods as in this study²³. A study conducted in Sao Paulo, Brazil, also indicates that respiratory hospital admissions among children were not associated with SO₂ concentrations²⁴. However, there are other studies that found significant associations between hospital admissions for respiratory reasons among children and exposure to NO₂, O₃, PM_{2.5}, and SO₂^{9,25–28}. Two possible reasons could explain the different results. First, study designs being used were different. Ecological study design was used in this study, different from crossover study design in other studies. Second, the covariates and confounders in this study were limited by the availability of data.

LOS in this study was found to be positively associated with NO₂ and PM_{2.5} concentrations among children. However, few previous studies have examined the associations between air pollution and LOS. LOS could be affected by many other factors and its utility in indicating the severity of conditions is likely limited. For example, very sickest patients are often transferred to the ICU immediately, so their LOS are short, contrary to longer LOS, which may represent other varying degrees of severity. Meanwhile, the results of this multiple linear regression were less robust due to the patterns in residual plots.

4.4 Limitations

There are some limitations to this study. First, ICD-10 diagnosis codes were used to represent diagnoses in this study, so respiratory disease misclassification could occur due to code errors (Existing studies report that, across most states, the prevalence of misclassification ranges from 11% to 30% depending on the method used²⁹). Second, seasonality and long-term trends were not completely controlled for using periodic functions (Fourier terms) in sex-stratified female models, wildfire season models, non-wildfire seasons models, and yearly models, which may have led to confounded results. Third, the choice of model constraints may be imprecise as they were

determined by scatter plots. Also, land-use regression data for CO was not available, preventing the examination of the association of hospital admissions and LOS with exposure to CO. Meanwhile, land-use regression data was only available until 2015 for NO₂, so only 2016 ED visit data were used in analysis, possibly leading to less accurate results. What is more, the residuals of multiple linear regression still have some patterns, so the results were not completely robust. Additionally, unknown comorbidities could be a missing confounder in multivariate logistic regression. Also, indoor air pollution is an essential consideration for children's respiratory health, but data for this exposure was not available. Furthermore, hospital visits used in this study could also represent the same child on multiple occasions. Besides, many other air pollutants which may also impact children's respiratory health were not measured in this study. Finally, measures of exposure in this study were based on the average in the population, so it should be interpreted carefully as a grouped result, rather than individual-level results.

References

- Xiao Q, Liu Y, Mulholland JA, et al. Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: a case-crossover study. *Environ Heal A Glob* Access Sci Source. 2016;15(1):1-8. doi:10.1186/s12940-016-0196-y
- Zheng P wen, Wang J bing, Zhang Z yu, et al. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis. *Environ Sci Pollut Res.* 2017;24(23):18860-18869. doi:10.1007/s11356-017-9279-8
- Alhanti BA, Chang HH, Winquist A, Mulholland JA, Darrow LA, Sarnat SE. Ambient air pollution and emergency department visits for asthma: A multi-city assessment of effect modification by age. *J Expo Sci Environ Epidemiol*. 2016;26(2):180-188. doi:10.1038/jes.2015.57
- Song J, Lu M, Zheng L, et al. Acute effects of ambient air pollution on outpatient children with respiratory diseases in Shijiazhuang, China. *BMC Pulm Med*. 2018;18(1):1-10. doi:10.1186/s12890-018-0716-3
- Szyszkowicz M. Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada. *Int J Occup Med Environ Health*. 2008;21(1):25-30. doi:10.2478/v10001-008-0002-3
- Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada. *Environ Heal A Glob Access Sci Source*. 2007;6:1-15. doi:10.1186/1476-069X-6-40
- Lavigne E, Villeneuve PJ, Cakmak S. Air pollution and emergency department visits for asthma in Windsor, Canada. *Can J Public Heal*. 2012;103(1):4-8. doi:10.1007/bf03404060
- Bono R, Romanazzi V, Bellisario V, et al. Air pollution, aeroallergens and admissions to pediatric emergency room for respiratory reasons in Turin, northwestern Italy. *BMC Public Health.* 2016;16(1):1-12. doi:10.1186/s12889-016-3376-3
- 9. Chen K, Glonek G, Hansen A, et al. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: time-series and case–crossover

analyses. Clin Exp Allergy. 2016;46(11):1416-1430. doi:10.1111/cea.12795

- Alberta Environment and Parks. *Alberta: Air Zones Report 2015-2017.*; 2015. http://esrd.alberta.ca/air/management-frameworks/canadian-ambient-air-quality-standardsfor-particulate-matter-and-ozone/documents/AlbertaAirZonesReport-2011-13-Sep2015.pdf
- Urbanski S. Wildland fire emissions, carbon, and climate: Emission factors. *For Ecol Manage*. 2014;317:51-60. doi:10.1016/j.foreco.2013.05.045
- Alberta government. Historical Wildfire Database: Alberta wildfire records. Alberta wildfire. Published 2020. https://wildfire.alberta.ca/resources/historical-data/historicalwildfire-database.aspx
- Petoukhov V, Petri S, Kornhuber K, Thonicke K, Coumou D, Schellnhuber HJ. Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics. *Sci Rep.* 2018;8(1):1-10. doi:10.1038/s41598-018-30812-z
- Edmonton Historical Air Quality Health Index. Published 2021.
 https://edmonton.weatherstats.ca/metrics/count_health_index_4.html
- 15. Henry S, Ospina MB, Dennett L, Hicks A. Assessing the risk of respiratory-related healthcare visits associated with wildfire smoke exposure in children 0–18 years old: A systematic review. *Int J Environ Res Public Health*. 2021;18(16). doi:10.3390/ijerph18168799
- Smoke WF, Health H. EPA Public Access. Published online 2019:1-26. doi:10.1016/j.scitotenv.2017.12.086.Wildland
- Henderson SB, Brauer M, MacNab YC, Kennedy SM. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. *Environ Health Perspect*. 2011;119(9):1266-1271. doi:10.1289/ehp.1002288
- Leibel S, Nguyen M, Brick W, et al. Increase in pediatric respiratory visits associated with Santa ana wind–driven wildfire smoke and PM2.5 levels in San Diego County. *Ann Am Thorac Soc.* 2020;17(3):313-320. doi:10.1513/AnnalsATS.201902-1500C
- Vicedo-Cabrera AM, Esplugues A, Iñíguez C, Estarlich M, Ballester F. Health effects of the 2012 Valencia (Spain) wildfires on children in a cohort study. *Environ Geochem Health*. 2016;38(3):703-712. doi:10.1007/s10653-015-9753-5

- Johnston FH, Purdie S, Jalaludin B, Martin KL, Henderson SB, Morgan GG. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996-2007: A case-crossover analysis. *Environ Heal A Glob Access Sci Source*. 2014;13(1). doi:10.1186/1476-069X-13-105
- 21. Rodriguez-Villamizar LA, Magico A, Osornio-Vargas A, Rowe BH. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. *Can Respir J.* 2015;22(5):282-292. doi:10.1155/2015/263427
- 22. Lin M, Chen Y, Burnett RT, Villeneuve PJ, Krewski D. The influence of ambient coarse particulate matter on asthma hospitalization in children: Case-crossover and time-series analyses. *Environ Health Perspect*. 2002;110(6):575-581. doi:10.1289/ehp.02110575
- Tramuto F, Cusimano R, Cerame G, et al. Urban air pollution and emergency room admissions for respiratory symptoms: A case-crossover study in Palermo, Italy. *Environ Heal A Glob Access Sci Source*. 2011;10(1):31. doi:10.1186/1476-069X-10-31
- Gouveia N, Fletcher T. Respiratory diseases in children and outdoor air pollution in Sao Paulo, Brazil: A time series analysis. *Occup Environ Med.* 2000;57(7):477-483.
- 25. Luong LTM, Dang TN, Thanh Huong NT, et al. Particulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young children. *Environ Pollut*. 2020;257:113424. doi:10.1016/j.envpol.2019.113424
- Zhang Y, Ni H, Bai L, et al. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. *Environ Res.* 2019;169(November 2018):510-516.
- Ma Y, Yang S, Zhou J, Yu Z, Zhou J. Effect of ambient air pollution on emergency room admissions for respiratory diseases in Beijing, China. *Atmos Environ*. 2018;191(August):320-327. doi:10.1016/j.atmosenv.2018.08.027
- Cesar ACG, Nascimento LFC, De Carvalho JA. Association between exposure to particulate matter and hospital admissions for respiratory disease in children. *Rev Saude Publica*. 2013;47(6):1209-1212. doi:10.1590/S0034-8910.2013047004713
- Carré F. (In)dependent Contractor Misclassification. *Econ Policy Inst.* 2015;403:1-22. https://www.epi.org/publication/independent-contractor-misclassification/

Conclusions

This study suggests that exposures to air pollutants, most notably NO₂ and O₃, may contribute to the increase of daily respiratory ED visits among children under 17 years old in Edmonton from 2016 to 2018. Also, the results indicate that male children were more affected by air pollution than female children, and older children (5-16 years old) were more affected by air pollution than younger children (0-4 years old). Moreover, evidence of the impacts of wildfires on children's respiratory health in Edmonton was found. Significant positive associations between LOS and exposure to NO₂ and PM_{2.5} were observed, but there was no significant association between exposure to air pollution and hospital admissions for respiratory conditions among children. Results of time-series three-year models, sex-stratified male models, and age-stratified models (both 0-4 ages and 5-16 ages) are robust because residuals of these models appear completely randomly distributed. Results of multivariable logistic regression also appear robust due the insignificant p-value associated with the goodness-of-fit test.

Further studies are needed to investigate the associations in various areas and populations, taking into consideration the spatial and temporal variability of air pollution. To protect children's health in Edmonton and in Canada, it is recommended that further health risk assessments be conducted to reduce children's exposure to air pollution. Meanwhile, further studies are needed to address knowledge gaps regarding the health impacts of wildfires. More accurate and direct methods to measure wildfire-related air pollution exposure should be explored. The causes of increasing wildfires, such as climate change, should also be further studied. In summary, preventive measures should be explored to reduce wildfire hazards and maintain population health, especially susceptible groups like children.

Bibliography

- Ambient air pollution: Health impacts. World Health Organization. http://www.who.int/airpollution/ambient/health-impacts/en/
- Rodriguez-Villamizar LA, Magico A, Osornio-Vargas A, Rowe BH. The effects of outdoor air pollution on the respiratory health of Canadian children: A systematic review of epidemiological studies. *Can Respir J*. 2015;22(5):282-292. doi:10.1155/2015/263427
- Brunekreef B, Holgate ST. Air pollution and health. *Lancet*. 2002;360(9341):1233-1242. doi:10.1016/S0140-6736(02)11274-8
- Boogaard H, Walker K, Cohen AJ. Air pollution: The emergence of a major global health risk factor. *Int Health*. 2019;11(6):417-421. doi:10.1093/inthealth/ihz078
- Piyush Jain, Dante Castellanos-Acuna, Sean C. P. Coogan JTA& MDF. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. *Nat Clim Chang*. 2021;109(2):1877-1897. doi:https://doi.org/10.1038/s41558-021-01224-1
- Environment Canada. Air Pollutant Emissions Inventory.; 2015. http://www.ec.gc.ca/inrpnpri/donnees-

data/ap/index.cfm?do=ap_result&process=true§or=&lang=en&year=2013&substance =nox&location=CA&submit=Submit

Environment A. Alberta Air Emissions Trends and Projections. Published online 2008.

- Canada NR. Indicator: Forest fires | Natural Resources Canada. *Nat Resour Canada*. Published online 2018. https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/state-canadasforests-report/how-does-disturbance-shape-canad/indicator-forestfires/16392%0Ahttps://www.nrcan.gc.ca/forests/report/disturbance/16392
- Alberta government. Historical Wildfire Database: Alberta wildfire records. Alberta wildfire. Published 2020. https://wildfire.alberta.ca/resources/historical-data/historical-wildfiredatabase.aspx
- Petoukhov V, Petri S, Kornhuber K, Thonicke K, Coumou D, Schellnhuber HJ. Alberta wildfire 2016: Apt contribution from anomalous planetary wave dynamics. *Sci Rep.* 2018;8(1):1-10. doi:10.1038/s41598-018-30812-z
- Matz CJ, Egyed M, Xi G, et al. Health impact analysis of PM2.5 from wildfire smoke in Canada (2013–2015, 2017–2018). *Sci Total Environ*. 2020;725:138506.

doi:10.1016/j.scitotenv.2020.138506

- Iskin EP, Wohl E. Wildfire and the patterns of floodplain large wood on the Merced River, Yosemite National Park, California, USA. *Geomorphology*. 2021;389:107805. doi:10.1016/j.geomorph.2021.107805
- Alberta Environment and Parks. *Alberta: Air Zones Report 2015-2017.*; 2015. http://esrd.alberta.ca/air/management-frameworks/canadian-ambient-air-quality-standardsfor-particulate-matter-and-ozone/documents/AlbertaAirZonesReport-2011-13-Sep2015.pdf
- Urbanski S. Wildland fire emissions, carbon, and climate: Emission factors. *For Ecol Manage*. 2014;317:51-60. doi:10.1016/j.foreco.2013.05.045

Airshed A capital. Ambient Air Quality Annual Report 2018 Table of Contents.; 2018.

- Environment and Climate Change Canada. *Canadian Environmental Sustainability Indicators Air Quality*.; 2018. www.canada.ca/en/environment-climatechange/services/environmental-indicators/air-
- Ambinet Air Pollution. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
- Canadian Medical Association. *No Breathing Room -- National Illness Costs of Air Pollution*. Vol 42.; 2008. doi:10.1017/CBO9781107415324.004
- Crouse DL, Peters PA, van Donkelaar A, et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: A canadian national-level cohort study. *Environ Health Perspect*. 2012;120(5):708-714. doi:10.1289/ehp.1104049
- Crouse DL, Peters PA, Villeneuve PJ, et al. Within- and between-city contrasts in nitrogen dioxide and mortality in 10 Canadian cities; A subset of the Canadian Census Health and Environment Cohort (CanCHEC). *J Expo Sci Environ Epidemiol*. 2015;25(5):482-489. doi:10.1038/jes.2014.89
- Villeneuve PJ, Burnett RT, Shi Y, et al. A time-series study of air pollution, socioeconomic status, and mortality in Vancouver, Canada. *J Expo Anal Environ Epidemiol*. 2003;13(6):427-435. doi:10.1038/sj.jea.7500292
- Goldberg MS, Burnett RT, Brook J, Bailar JC, Valois MF, Vincent R. Associations between daily cause-specific mortality and concentrations of ground-level ozone in Montreal,

Quebec. Am J Epidemiol. 2001;154(9):817-826. doi:10.1093/aje/154.9.817

- Requia WJ, Adams MD, Koutrakis P. Association of PM2.5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. *Sci Total Environ*. 2017;584-585:1077-1083. doi:10.1016/j.scitotenv.2017.01.166
- Wang X, Kindzierski W, Kaul P, Sun Q. Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: A three-step procedure case-crossover study. *PLoS One*. 2015;10(7):1-16. doi:10.1371/journal.pone.0132769
- Bernatsky S, Smargiassi A, Barnabe C, et al. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. *Environ Res.* 2016;146:85-91. doi:10.1016/j.envres.2015.12.021
- Brook RD, Kousha T. Air Pollution and Emergency Department Visits for Hypertension in Edmonton and Calgary, Canada: A Case-Crossover Study. *Am J Hypertens*. 2015;28(9):1121-1126. doi:10.1093/ajh/hpu302
- Szyszkowicz M. Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada. *Int J Occup Med Environ Health*. 2008;21(1):25-30. doi:10.2478/v10001-008-0002-3
- Rodriguez-Villamizar LA, Rosychuk RJ, Osornio-Vargas A, Villeneuve PJ, Rowe BH.
 Proximity to two main sources of industrial outdoor air pollution and emergency department visits for childhood asthma in Edmonton, Canada. *Can J Public Heal*. 2017;108(5-6):e523-e529. doi:10.17269/cjph.108.6136
- Chen L, Villeneuve PJ, Rowe BH, Liu L, Stieb DM. The Air Quality Health Index as a predictor of emergency department visits for ischemic stroke in Edmonton, Canada. *J Expo Sci Environ Epidemiol.* 2014;24(4):358-364. doi:10.1038/jes.2013.82
- Villeneuve PJ, Chen L, Stieb D, Rowe BH. Associations between outdoor air pollution and emergency department visits for stroke in Edmonton, Canada. *Eur J Epidemiol*. 2006;21(9):689-700. doi:10.1007/s10654-006-9050-9
- Zemek R, Szyszkowicz M, Rowe BH. Air pollution and emergency department visits for otitis media: A case-crossover study in edmonton, Canada. *Environ Health Perspect*. 2010;118(11):1631-1636. doi:10.1289/ehp.0901675
- Szyszkowicz M. Air pollution and emergency department visits for depression in Edmonton,

Canada. Int J Occup Med Environ Health. 2007;20(3):241-245. doi:10.2478/v10001-007-0024-2

- Szyszkowicz M, Thomson EM, Colman I, Rowe BH. Ambient air pollution exposure and emergency department visits for substance abuse. *PLoS One*. 2018;13(6):1-13. doi:10.1371/journal.pone.0199826
- Lavigne É, Bélair MA, Do MT, et al. Maternal exposure to ambient air pollution and risk of early childhood cancers: A population-based study in Ontario, Canada. *Environ Int.* 2017;100(2):139-147. doi:10.1016/j.envint.2017.01.004
- Klepac P, Locatelli I, Korošec S, Künzli N, Kukec A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. *Environ Res.* 2018;167(April):144-159. doi:10.1016/j.envres.2018.07.008
- Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: A case-crossover study in northern Alberta, Canada. *Environ Heal A Glob Access Sci Source*. 2007;6:1-15. doi:10.1186/1476-069X-6-40

Population statistics _ Alberta.

- Stieb DM, Judek S, van Donkelaar A, et al. Estimated public health impacts of changes in concentrations of fine particle air pollution in Canada, 2000 to 2011. *Can J Public Heal*. 2015;106(6):e362-e368. doi:10.17269/CJPH.106.4983
- Carvalho H. Air pollution-related deaths in Europe-time for action. *J Glob Health*. 2019;9(2):2-5. doi:10.7189/jogh.09.020308
- Nielsen CC, Amrhein CG, Shah PS, Stieb DM, Osornio-Vargas AR. Space-time hot spots of critically ill small for gestational age newborns and industrial air pollutants in major metropolitan areas of Canada. *Environ Res.* 2020;186(April):109472. doi:10.1016/j.envres.2020.109472
- Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. *Paediatr Respir Rev.* 2017;21:38-46. doi:10.1016/j.prrv.2016.08.008
- Myhre O, Låg M, Villanger GD, et al. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. *Toxicol Appl Pharmacol.* 2018;354(March):196-214. doi:10.1016/j.taap.2018.03.015

- Zheng T, Zhang J, Sommer K, et al. Effects of Environmental Exposures on Fetal and Childhood Growth Trajectories. *Ann Glob Heal*. 2016;82(1):41-99. doi:10.1016/j.aogh.2016.01.008
- Sram RJ, Veleminsky M, Stejskalovà J. The impact of air pollution to central nervous system in children and adults. *Neuroendocrinol Lett.* 2017;38(6):389-396.
- Calderón-Garcidueñas L, Leray E, Heydarpour P, Torres-Jardón R, Reis J. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond. *Rev Neurol (Paris)*. 2016;172(1):69-80. doi:10.1016/j.neurol.2015.10.008
- Calderón-Garcidueñas L, Kulesza RJ, Doty RL, D'Angiulli A, Torres-Jardón R. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact. *Environ Res.* 2015;137:157-169. doi:10.1016/j.envres.2014.12.012
- Rosas-Salazar C, Hartert T V. Prenatal exposures and the development of childhood wheezing illnesses. *Curr Opin Allergy Clin Immunol*. 2017;17(2):110-115. doi:10.1097/ACI.00000000000342
- Kihal-Talantikite W, Marchetta GP, Deguen S. Infant mortality related to NO2 and PM exposure: Systematic review and meta-analysis. *Int J Environ Res Public Health*. 2020;17(8):1-24. doi:10.3390/ijerph17082623
- Vrijheid M, Casas M, Gascon M, Valvi D, Nieuwenhuijsen M. Environmental pollutants and child health-A review of recent concerns. *Int J Hyg Environ Health*. 2016;219(4-5):331-342. doi:10.1016/j.ijheh.2016.05.001
- da Costa e Oliveira JR, Base LH, de Abreu LC, Filho CF, Ferreira C, Morawska L. Ultrafine particles and children's health: Literature review. *Paediatr Respir Rev.* 2019;32:73-81. doi:10.1016/j.prrv.2019.06.003
- Nhung NTT, Amini H, Schindler C, et al. Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. *Environ Pollut*. 2017;230:1000-1008. doi:10.1016/j.envpol.2017.07.063
- Balbus JM, Malina C. Identifying vulnerable subpopulations for climate change health effects in the United States. *J Occup Environ Med.* 2009;51(1):33-37. doi:10.1097/JOM.0b013e318193e12e

- Matz CJ, Stieb DM, Davis K, et al. Effects of age, season, gender and urban-rural status on timeactivity: Canadian human activity pattern survey 2 (CHAPS 2). *Int J Environ Res Public Health*. 2014;11(2):2108-2124. doi:10.3390/ijerph110202108
- O'Connor GT, Neas L, Vaughn B, et al. Acute respiratory health effects of air pollution on children with asthma in US inner cities. *J Allergy Clin Immunol*. 2008;121(5):1133-1140. doi:10.1016/j.jaci.2008.02.020
- Castillejos M, Gold DR, Damokosh AI, et al. Acute effects of ozone on the pulmonary function of exercising schoolchildren from Mexico City. *Am J Respir Crit Care Med.* 1995;152(5 I):1501-1507. doi:10.1164/ajrccm.152.5.7582284
- Houdouin V, Dubus JC. What is the impact of outdoor pollution on children's asthma? Arch Pediatr. 2019;26(8):487-491. doi:10.1016/j.arcped.2019.10.007
- Hehua Z, Qing C, Shanyan G, Qijun W, Yuhong Z. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review. *Environ Res.* 2017;159(36):519-530. doi:10.1016/j.envres.2017.08.038
- Buteau S, Doucet M, Tétreault LF, et al. A population-based birth cohort study of the association between childhood-onset asthma and exposure to industrial air pollutant emissions. *Environ Int.* 2018;121(August):23-30. doi:10.1016/j.envint.2018.08.040
- Zou QY, Shen Y, Ke X, Hong SL, Kang HY. Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. *Int J Pediatr Otorhinolaryngol.* 2018;112(June):82-90. doi:10.1016/j.ijporl.2018.06.039
- Burbank AJ, Peden DB. Assessing the impact of air pollution on childhood asthma morbidity: How, when, and what to do. *Curr Opin Allergy Clin Immunol*. 2018;18(2):124-131. doi:10.1097/ACI.00000000000422
- Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel metaanalysis. *PLoS One*. 2017;12(3):1-15. doi:10.1371/journal.pone.0174050
- Khreis H, Nieuwenhuijsen MJ. Traffic-related air pollution and childhood asthma: Recent advances and remaining gaps in the exposure assessment methods. *Int J Environ Res Public Health*. 2017;14(3):1-20. doi:10.3390/ijerph14030312
- Pollock J, Shi L, Gimbel RW. Outdoor Environment and Pediatric Asthma: An Update on the Evidence from North America. *Can Respir J*. 2017;2017. doi:10.1155/2017/8921917

- Luong LMT, Sly PD, Thai PK, Phung D. Impact of ambient air pollution and wheeze-associated disorders in children in Southeast Asia: A systematic review and meta-analysis. *Rev Environ Health.* 2019;34(2):125-139. doi:10.1515/reveh-2018-0079
- Tétreault LF, Doucet M, Gamache P, et al. Childhood exposure to ambient air pollutants and the onset of asthma: An administrative cohort study in Québec. *Environ Health Perspect*. 2016;124(8):1276-1282. doi:10.1289/ehp.1509838
- Bowatte G, Lodge C, Lowe AJ, et al. The influence of childhood traffic-related air pollution exposure on asthma, allergy and sensitization: A systematic review and a meta-analysis of birth cohort studies. *Allergy Eur J Allergy Clin Immunol*. 2015;70(3):245-256. doi:10.1111/all.12561
- Bowatte G, Tham R, Perret JL, et al. Air pollution and otitis media in children: A systematic review of literature. *Int J Environ Res Public Health*. 2018;15(2):1-20. doi:10.3390/ijerph15020257
- Ahn K. The role of air pollutants in atopic dermatitis. *J Allergy Clin Immunol*. 2014;134(5):993-999. doi:10.1016/j.jaci.2014.09.023
- Boothe VL, Boehmer TK, Wendel AM, Yip FY. Residential traffic exposure and childhood leukemia: A systematic review and meta-analysis. *Am J Prev Med.* 2014;46(4):413-422. doi:10.1016/j.amepre.2013.11.004
- Filippini T, Heck JE, Malagoli C, Giovane C Del, Vinceti M. A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Heal - Part C Environ Carcinog Ecotoxicol Rev. 2015;33(1):36-66. doi:10.1080/10590501.2015.1002999
- Gleason JA, Fagliano JA. Associations of daily pediatric asthma emergency department visits with air pollution in Newark, NJ: Utilizing time-series and case-crossover study designs. J Asthma. 2015;52(8):815-822. doi:10.3109/02770903.2015.1033726
- Zhang Y, Ni H, Bai L, et al. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. *Environ Res.* 2019;169(November 2018):510-516. doi:10.1016/j.envres.2018.11.043
- Watts N, Adger WN, Agnolucci P. Health and climate change: Policy responses to protect public health. *Environnement, Risques et Sante*. 2015;14(6):466-468. doi:10.1016/S0140-6736(15)60854-6
- Alhanti BA, Chang HH, Winquist A, Mulholland JA, Darrow LA, Sarnat SE. Ambient air

pollution and emergency department visits for asthma: A multi-city assessment of effect modification by age. *J Expo Sci Environ Epidemiol*. 2016;26(2):180-188. doi:10.1038/jes.2015.57

- Lavigne E, Villeneuve PJ, Cakmak S. Air pollution and emergency department visits for asthma in Windsor, Canada. *Can J Public Heal*. 2012;103(1):4-8. doi:10.1007/bf03404060
- Jalaludin B, Khalaj B, Sheppeard V, Morgan G. Air pollution and ED visits for asthma in Australian children: A case-crossover analysis. *Int Arch Occup Environ Health*. 2008;81(8):967-974. doi:10.1007/s00420-007-0290-0
- Chen K, Glonek G, Hansen A, et al. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: time-series and case–crossover analyses. *Clin Exp Allergy*. 2016;46(11):1416-1430. doi:10.1111/cea.12795
- Samoli E, Nastos PT, Paliatsos AG, Katsouyanni K, Priftis KN. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. *Environ Res.* 2011;111(3):418-424. doi:10.1016/j.envres.2011.01.014
- Zheng P wen, Wang J bing, Zhang Z yu, et al. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis. *Environ Sci Pollut Res.* 2017;24(23):18860-18869. doi:10.1007/s11356-017-9279-8
- Ma Y, Yue L, Liu J, et al. Association of air pollution with outpatient visits for respiratory diseases of children in an ex-heavily polluted Northwestern city, China. *BMC Public Health*. 2020;20(1):1-15. doi:10.1186/s12889-020-08933-w
- Tramuto F, Cusimano R, Cerame G, et al. Urban air pollution and emergency room admissions for respiratory symptoms: A case-crossover study in Palermo, Italy. *Environ Heal A Glob Access Sci Source*. 2011;10(1):31. doi:10.1186/1476-069X-10-31
- Mazenq J, Dubus JC, Gaudart J, et al. Air pollution and children's asthma-related emergency hospital visits in southeastern France. *Eur J Pediatr*. 2017;176(6):705-711. doi:10.1007/s00431-017-2900-5
- Network GA. *The Global Asthma Report 2018*.; 2018. http://globalasthmareport.org/burden/burden.php
- Rosychuk RJ, Youngson E, Rowe BH. Presentations to Alberta Emergency Departments for Asthma: A Time Series Analysis. *Acad Emerg Med.* 2015;22(8):942-949. doi:10.1111/acem.12725

- Semenza JC, Wilson DJ, Parra J, et al. Public perception and behavior change in relationship to hot weather and air pollution. *Environ Res.* 2008;107(3):401-411. doi:10.1016/j.envres.2008.03.005
- Wen XJ, Balluz L, Mokdad A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, BRFSS, 2005. *J Community Health*. 2009;34(1):40-46. doi:10.1007/s10900-008-9126-4
- Edmonton Government. 2019 Edmonton Municipal Census Results. Published 2019. https://www.edmonton.ca/city_government/facts_figures/municipal-census-results
- Perspectives S. Canada in Changing CLimate: Sector Perspectives on Impcats and Adaptation.; 2014.

http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/earthsciences/pdf/assess/2014/pdf/Ful 1-Report_Eng.pdf

- Grigg J. Air pollution and children's respiratory health gaps in the global evidence. *Clin Exp Allergy*. 2011;41(8):1072-1075. doi:10.1111/j.1365-2222.2011.03790.x
- Canada. National Air Pollution Surveillance (NAPS) Program Open Government Portal. Published online 2019. https://open.canada.ca/data/en/dataset/1b36a356-defd-4813-acea-47bc3abd859b
- Mo Y, Booker D, Zhao S, et al. The application of land use regression model to investigate spatiotemporal variations of PM2.5 in Guangzhou, China: Implications for the public health benefits of PM2.5 reduction. *Sci Total Environ*. 2021;778:146305. doi:10.1016/j.scitotenv.2021.146305
- Hystad P, Setton E, Cervantes A, et al. Creating national air pollution models for population exposure assessment in Canada. *Environ Health Perspect*. 2011;119(8):1123-1129. doi:10.1289/ehp.1002976
- Canadian Ministry of Health and Long-Term Care. Prehospital Canadian Triage Acuity Scale: Prehospital CTAS Paramedic Guide. 2016;2:1-98. http://www.lhsc.on.ca/About_Us/Base_Hospital_Program/Medical_Directives/Prehospital CTASParamedicGuide_December312016_Version2.0.pdf
- Chan E, Serrano J, Chen L, Stieb DM, Jerrett M, Osornio-Vargas A. Development of a Canadian socioeconomic status index for the study of health outcomes related to environmental pollution Biostatistics and methods. *BMC Public Health*. 2015;15(1):1-8.

doi:10.1186/s12889-015-1992-y

Wildfire Status. Alberta wildfire. https://wildfire.alberta.ca/wildfire-status/default.aspx

- Ltd NU. *The 4 Seasons : Edmonton's Historical Weather Records*. University of Alberta Library; 1969.
- Bernal JL, Cummins S, Gasparrini A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. *Int J Epidemiol*. 2017;46(1):348-355. doi:10.1093/ije/dyw098
- Bhaskaran K, Gasparrini A, Hajat S, Smeeth L, Armstrong B. Time series regression studies in environmental epidemiology. *Int J Epidemiol*. 2013;42(4):1187-1195. doi:10.1093/ije/dyt092
- Guo Y, Gasparrini A, Li S, et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. *PLoS Med.* 2018;15(7):1-17. doi:10.1371/journal.pmed.1002629
- Cheng CY, Cheng SY, Chen CC, Pan HY, Wu KH, Cheng FJ. Ambient air pollution is associated with pediatric pneumonia: A time-stratified case-crossover study in an urban area. *Environ Heal A Glob Access Sci Source*. 2019;18(1):1-9. doi:10.1186/s12940-019-0520-4
- Darrow LA, Klein M, Dana Flanders W, Mulholland JA, Tolbert PE, Strickland MJ. Air pollution and acute respiratory infections among children 0-4 years of age: An 18-year time-series study. *Am J Epidemiol*. 2014;180(10):968-977. doi:10.1093/aje/kwu234
- Ignotti E, Hacon S de S, Junger WL, et al. Air pollution and hospital admissions for respiratory diseases in the subequatorial amazon: A time series approach. *Cad Saude Publica*. 2010;26(4):747-761. doi:10.1590/s0102-311x2010000400017
- Zheng XY, Ding H, Jiang LN, et al. Association between Air pollutants and asthma emergency room visits and hospital admissions in time series studies: A systematic review and meta-Analysis. *PLoS One*. 2015;10(9). doi:10.1371/journal.pone.0138146
- Díaz J, Arroyo V, Ortiz C, Carmona R, Linares C. Effect of environmental factors on low weight in non-premature births: A time series analysis. *PLoS One*. 2016;11(10):1-14. doi:10.1371/journal.pone.0164741
- Gestro M, Condemi V, Bardi L, Fantino C, Solimene U. Meteorological factors, air pollutants, and emergency department visits for otitis media: a time series study. *Int J Biometeorol*.

2017;61(10):1749-1764. doi:10.1007/s00484-017-1356-7

Weber EJ, Silverman RA, Callaham ML, et al. A prospective multicenter study of factors associated with hospital admission among adults with acute asthma. *Am J Med*. 2002;113(5):371-378. doi:10.1016/S0002-9343(02)01242-1

Torres-reyna O. Time Series (Princeton).

- Rodopoulou S, Chalbot MC, Samoli E, DuBois DW, San Filippo BD, Kavouras IG. Air pollution and hospital emergency room and admissions for cardiovascular and respiratory diseases in Doña Ana County, New Mexico. *Environ Res.* 2014;129:39-46. doi:10.1016/j.envres.2013.12.006
- Guo X, Song L, Fang Y, Zhu L. Model checking for general linear regression with nonignorable missing response. *Comput Stat Data Anal.* 2019;138:1-12. doi:10.1016/j.csda.2019.03.009
- Xiao Q, Liu Y, Mulholland JA, et al. Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: a case-crossover study. *Environ Heal A Glob Access Sci Source*. 2016;15(1):1-8. doi:10.1186/s12940-016-0196-y
- Song J, Lu M, Zheng L, et al. Acute effects of ambient air pollution on outpatient children with respiratory diseases in Shijiazhuang, China. *BMC Pulm Med.* 2018;18(1):1-10. doi:10.1186/s12890-018-0716-3
- Bono R, Romanazzi V, Bellisario V, et al. Air pollution, aeroallergens and admissions to pediatric emergency room for respiratory reasons in Turin, northwestern Italy. BMC Public Health. 2016;16(1):1-12. doi:10.1186/s12889-016-3376-3
- Edmonton Historical Air Quality Health Index. Published 2021. https://edmonton.weatherstats.ca/metrics/count health index 4.html
- Henry S, Ospina MB, Dennett L, Hicks A. Assessing the risk of respiratory-related healthcare visits associated with wildfire smoke exposure in children 0–18 years old: A systematic review. *Int J Environ Res Public Health*. 2021;18(16). doi:10.3390/ijerph18168799
- Smoke WF, Health H. EPA Public Access. Published online 2019:1-26. doi:10.1016/j.scitotenv.2017.12.086.Wildland
- Henderson SB, Brauer M, MacNab YC, Kennedy SM. Three measures of forest fire smoke exposure and their associations with respiratory and cardiovascular health outcomes in a population-based cohort. *Environ Health Perspect*. 2011;119(9):1266-1271. doi:10.1289/ehp.1002288

- Leibel S, Nguyen M, Brick W, et al. Increase in pediatric respiratory visits associated with Santa ana wind–driven wildfire smoke and PM2.5 levels in San Diego County. Ann Am Thorac Soc. 2020;17(3):313-320. doi:10.1513/AnnalsATS.201902-150OC
- Vicedo-Cabrera AM, Esplugues A, Iñíguez C, Estarlich M, Ballester F. Health effects of the 2012 Valencia (Spain) wildfires on children in a cohort study. *Environ Geochem Health*. 2016;38(3):703-712. doi:10.1007/s10653-015-9753-5
- Johnston FH, Purdie S, Jalaludin B, Martin KL, Henderson SB, Morgan GG. Air pollution events from forest fires and emergency department attendances in Sydney, Australia 1996-2007: A case-crossover analysis. *Environ Heal A Glob Access Sci Source*. 2014;13(1). doi:10.1186/1476-069X-13-105
- Lin M, Chen Y, Burnett RT, Villeneuve PJ, Krewski D. The influence of ambient coarse particulate matter on asthma hospitalization in children: Case-crossover and time-series analyses. *Environ Health Perspect*. 2002;110(6):575-581. doi:10.1289/ehp.02110575
- Gouveia N, Fletcher T. Respiratory diseases in children and outdoor air pollution in Sao Paulo, Brazil: A time series analysis. *Occup Environ Med.* 2000;57(7):477-483. doi:10.1136/oem.57.7.477
- Luong LTM, Dang TN, Thanh Huong NT, et al. Particulate air pollution in Ho Chi Minh city and risk of hospital admission for acute lower respiratory infection (ALRI) among young children. *Environ Pollut*. 2020;257:113424. doi:10.1016/j.envpol.2019.113424
- Ma Y, Yang S, Zhou J, Yu Z, Zhou J. Effect of ambient air pollution on emergency room admissions for respiratory diseases in Beijing, China. *Atmos Environ*. 2018;191(August):320-327. doi:10.1016/j.atmosenv.2018.08.027
- Cesar ACG, Nascimento LFC, De Carvalho JA. Association between exposure to particulate matter and hospital admissions for respiratory disease in children. *Rev Saude Publica*. 2013;47(6):1209-1212. doi:10.1590/S0034-8910.2013047004713

Carré F. (In)dependent Contractor Misclassification. *Econ Policy Inst.* 2015;403:1-22. https://www.epi.org/publication/independent-contractor-misclassification/

Appendices

	1	D L	C	1	1 4	C		•	•
Annondiv	••	ROGUITC	nt	190	coloction	Λt	time	COPIOC	ragraggian
	1.	INCOULO	υı	142	SUICCHUI	υı	umu	-201102	10210331011
11									-

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-183.986				.082445	.34225	.343996	.346862
1	96.2419	560.46	1	0.000	.049182	174361	170868	165137
2	98.1801	3.8764	1	0.049	.049096	176096	170858	16226
3	115.348	34.336	1	0.000	.047649	20601	199025	187561
4	121.578	12.459	1	0.000	.047191	215685	206954	192625
5	127.173	11.189	1	0.001	.046791	224186	213708	196514
6	135.693	17.041	1	0.000	.046145	2381	225876	205815
7	144.753	18.121	1	0.000	.045462	253013	239042	216116*
8	147.137	4.7664*	1	0.029	.045345*	255572*	239855*	214063
9	147.879	1.4854	1	0.223	.045367	255096	237633	208975
10	147.893	.02832	1	0.866	.04545	253272	234063	202539
11	147.906	.02623	1	0.871	.045533	251446	230491	196101
12	148.72	1.6275	1	0.202	.045549	251101	2284	191144
13	149.201	.9623	1	0.327	.045592	250141	225694	185572
14	149.241	.07953	1	0.778	.045673	248365	222171	179184
15	149.609	.73526	1	0.391	.045727	247195	219255	173402

Table A1. Results of lag selection of the time-series three-year model for CO

Table A2. Results of lag selection of the time-series three-year model for NO2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-928.224				.326709	1.71919	1.72094	1.7238
1	-566.321	723.81	1	0.000	.167562	1.05147	1.05497	1.0607
2	-564.809	3.0242	1	0.082	.167403	1.05053	1.05576	1.06436
3	-540.493	48.633	1	0.000	.160335	1.00739	1.01437	1.02584
4	-529.715	21.556	1	0.000	.15746	.989296	.998027	1.01236
5	-514.727	29.975	1	0.000	.153438	.963417	.973894	.991089

6	-479.205	71.043	1	0.000	.143944	.899547	.911771	.931832
7	-465.859	26.693	1	0.000	.140693	.876705	.890675	.913601
8	-460.777	10.163	1	0.001	.139635	.869153	.88487	.910662*
9	-460.697	.16151	1	0.688	.139873	.870854	.888317	.916975
10	-460.663	.06619	1	0.797	.140123	.872643	.891852	.923376
11	-460.147	1.0329	1	0.309	.140249	.873537	.894493	.928882
12	-458.116	4.0613	1	0.044	.139981	.871631	.894332	.931587
13	-450.487	15.259	1	0.000	.138275	.859365	.883813	.923934
14	-447.712	5.5506*	1	0.018	.137822*	.856081*	.882275*	.925262
15	-447.704	.01514	1	0.902	.138075	.857917	.885857	.93171

Table A3. Results of lag selection of the time-series three-year model for O₃

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-658.829				.198473	1.22077	1.22252	1.22539
1	-245.96	825.74	1	0.000	.092632	.45876	.462253	.467985
2	-238.378	15.164	1	0.000	.091511	.446583	.451822	.460419
3	-224.422	27.912	1	0.000	.089344	.422612	.429597	.44106
4	-220.698	7.4474	1	0.006	.088895	.417573	.426304	.440633
5	-215.656	10.085	1	0.001	.088232	.410094	.420571	.437766
6	-204.027	23.257	1	0.000	.086514	.390429	.402653	.422714
7	-198.829	10.396	1	0.001	.085845	.382663	.396633	.419559
8	-194.12	9.4189	1	0.002	.085258	.3758	.391516	.417308*
9	-191.991	4.2569	1	0.039	.08508	.373712	.391175	.419833
10	-189.564	4.8548	1	0.028	.084856	.371071	.39028	.421804
11	-185.577	7.9747*	1	0.005	.084388*	.365544*	.386499*	.420889
12	-184.743	1.668	1	0.197	.084414	.365851	.388553	.425808
13	-184.278	.92982	1	0.335	.084497	.366841	.391289	.43141
14	-183.358	1.8402	1	0.175	.08451	.366989	.393183	.43617
15	-183.191	.33246	1	0.564	.08464	.368532	.396472	.442325

Table A4. Results of lag selection of the time-series three-year model for $PM_{2.5}$

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1053.3				.411778	1.95061	1.95235	1.95522
1	-791.452	523.7	1	0.000	.254137	1.468	1.47149	1.47722
2	-791.406	.0912	1	0.763	.254586	1.46976	1.475	1.4836
3	-781.664	19.484	1	0.000	.250502	1.45359	1.46057	1.47204
4	-780.348	2.6312	1	0.105	.250355	1.453	1.46173	1.47606
5	-777.667	5.3634	1	0.021	.249578	1.44989	1.46037	1.47756
6	-770.127	15.079	1	0.000	.246576	1.43779	1.45002	1.47008
7	-765.083	10.089*	1	0.001	.244738*	1.43031*	1.44428*	1.46721*
8	-764.506	1.1535	1	0.283	.24493	1.43109	1.44681	1.4726
9	-764.496	.01992	1	0.888	.245379	1.43292	1.45039	1.47905
10	-764.437	.11686	1	0.732	.245807	1.43467	1.45388	1.4854
11	-764.302	.27101	1	0.603	.2462	1.43627	1.45722	1.49161
12	-764.262	.07917	1	0.778	.246638	1.43804	1.46074	1.498
13	-764.154	.21613	1	0.642	.247046	1.43969	1.46414	1.50426
14	-764.003	.30254	1	0.582	.247434	1.44126	1.46746	1.51044
15	-763.936	.13436	1	0.714	.247861	1.44299	1.47093	1.51678
1	1							

Table A5. Results of lag selection of the time-series three-year model for SO₂

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-778.324				1.17295	2.9974	3.0006	3.00558
1	-770.407	15.833	1	0.000	1.14216	2.9708	2.97721*	2.98716*
2	-770.247	.3195	1	0.572	1.14586	2.97403	2.98364	2.99857
3	-769.336	1.8229	1	0.177	1.14625	2.97437	2.98719	3.00709
4	-769.312	.0478	1	0.827	1.15056	2.97812	2.99415	3.01903
5	-766.103	6.4186	1	0.011	1.14082	2.96963	2.98885	3.01871
6	-766.103	.00053	1	0.982	1.14522	2.97347	2.9959	3.03073
7	-765.613	.97838	1	0.323	1.14747	2.97544	3.00107	3.04088
8	-764.371	2.484	1	0.115	1.14641	2.97451	3.00335	3.04813
9	-758.152	12.439*	1	0.000	1.12362*	2.95443*	2.98648	3.03623
10	-758.107	.08972	1	0.765	1.12776	2.9581	2.99335	3.04809

11	-757.891	.43135	1	0.511	1.13117	2.96112	2.99958	3.05929
12	-757.809	.16489	1	0.685	1.13517	2.96465	3.00631	3.071
13	-757.468	.68235	1	0.409	1.13805	2.96718	3.01205	3.08171
14	-757.098	.73884	1	0.390	1.14082	2.96961	3.01768	3.09232
15	-756.779	.63837	1	0.424	1.14382	2.97223	3.0235	3.10311

Table A6. Results of lag selection of the time-series three-year model for temperature

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-4157.93				128.601	7.69459	7.69634	7.69921
1	-2857.29	2601.3	1	0.000	11.6139	5.29008	5.29357	5.2993
2	-2848.51	17.555	1	0.000	11.4479	5.27569	5.28093	5.28952
3	-2817.34	62.336	1	0.000	10.8265	5.21987	5.22686	5.23832*
4	-2817.33	.02019	1	0.887	10.8463	5.2217	5.23043	5.24476
5	-2815.48	3.7046	1	0.054	10.8292	5.22013	5.2306	5.2478
6	-2814.99	.96814	1	0.325	10.8396	5.22108	5.2333	5.25337
7	-2814.66	.66723	1	0.414	10.8529	5.22231	5.23628	5.25921
8	-2806	17.322	1	0.000	10.7002	5.20814	5.22386	5.24965
9	-2804.94	2.1102	1	0.146	10.6991	5.20804	5.2255	5.25416
10	-2802.07	5.7522	1	0.016	10.662*	5.20457*	5.22378*	5.2553
11	-2801.95	.24342	1	0.622	10.6794	5.20619	5.22715	5.26154
12	-2801.91	.07952	1	0.778	10.6984	5.20797	5.23067	5.26793
13	-2801.37	1.0815	1	0.298	10.7075	5.20882	5.23327	5.27339
14	-2799.28	4.1772*	1	0.041	10.6859	5.2068	5.233	5.27599
15	-2797.47	3.611	1	0.057	10.67	5.20531	5.23325	5.27911

Table A7. Results of lag selection of the time-series three-year model for humidity

100	TT	TD	df	n	FDF	AIC	HOIC	SBIC
lag	LL	LK	ul	р	TIL	AIC	nqie	SDIC
0	-4390.63				197.798	8.12512	8.12687	8.12973
1	-3943.45	894.35	1	0.000	86.6398	7.29964	7.30313	7.30886*
2	-3943.32	.25698	1	0.612	86.7796	7.30125	7.30649	7.31508

3	-3939.1	8.4406	1	0.004	86.2641	7.29529	7.30228*	7.31374
4	-3938.38	1.4466	1	0.229	86.3083	7.2958	7.30453	7.31886
5	-3937.75	1.2708	1	0.260	86.3665	7.29648	7.30695	7.32415
6	-3936.74	2.0047	1	0.157	86.3661	7.29647	7.3087	7.32876
7	-3936.52	.456	1	0.499	86.4896	7.2979	7.31187	7.3348
8	-3935.31	2.4029	1	0.121	86.4574	7.29753	7.31324	7.33904
9	-3933.55	3.5342	1	0.060	86.3348	7.29611	7.31357	7.34223
10	-3932.81	1.4644	1	0.226	86.3776	7.2966	7.31581	7.34734
11	-3932.8	.02419	1	0.876	86.5356	7.29843	7.31939	7.35378
12	-3932.24	1.1242	1	0.289	86.6058	7.29924	7.32194	7.3592
13	-3929.1	6.2777*	1	0.012	86.2638*	7.29529*	7.31973	7.35985
14	-3928.97	.25352	1	0.615	86.4033	7.2969	7.32309	7.36608
15	-3928.97	.00096	1	0.975	86.5632	7.29875	7.32669	7.37254

Table A8. Results of lag selection of the time-series three-year model for flu

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-65.668				.441476	2.02024	2.03335	2.05342
1	-62.6257	6.0846	1	0.014	.414989*	1.95836*	1.98458*	2.02471*
2	-62.4125	.42652	1	0.514	.425021	1.9822	2.02153	2.08173
3	-61.4773	1.8703	1	0.171	.425893	1.98416	2.0366	2.11687
4	-61.2623	.43004	1	0.512	.436207	2.00795	2.0735	2.17383
5	-60.472	1.5806	1	0.209	.439082	2.0143	2.09296	2.21336
6	-60.4344	.07528	1	0.784	.452209	2.04347	2.13523	2.2757
7	-60.4343	.00016	1	0.990	.466306	2.07377	2.17864	2.33918
8	-60.4236	.02148	1	0.883	.480743	2.10374	2.22173	2.40233
9	-59.594	1.6592	1	0.198	.483542	2.10891	2.24	2.44067
10	-59.3314	.52509	1	0.469	.494859	2.13125	2.27546	2.4962
11	-59.0613	.54024	1	0.462	.506406	2.15337	2.31069	2.55149
12	-58.6546	.81336	1	0.367	.516175	2.17135	2.34178	2.60265
13	-56.9897	3.3298	1	0.068	.506549	2.1512	2.33474	2.61568
14	-56.9886	.00212	1	0.963	.522921	2.18147	2.37812	2.67912

15	-54.5133	4.9508*	1	0.026	.500943	2.13677	2.34652	2.66759

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-97.3045		.086485	.390097	.393384	.398475		
1	77.0131	348.64	1	0.000	.043476	297671	291098	280915
2	79.6936	5.3609	1	0.021	.043187	30434	29448	279205
3	86.6412	13.895	1	0.000	.04218	327941	314795	294429
4	89.155	5.0277	1	0.025	.041927	333949	317516	292058
5	95.7562	13.202	1	0.000	.041005	356175	336457	305907
6	102.626	13.739	1	0.000	.040061	379467	356462	32082
7	106.471	7.6916	1	0.006	.039612	39076	364468*	323735*
8	106.776	.60962	1	0.435	.039721	388001	358423	312598
9	109.898	6.2432*	1	0.012	.039388*	39642*	363556	312639
10	110.053	.30987	1	0.578	.03952	393067	356916	300907
11	110.102	.09913	1	0.753	.03967	389295	349858	288757
12	110.104	.00268	1	0.959	.039827	385332	342608	276416
13	110.11	.01355	1	0.907	.039985	381391	33538	264097
14	110.307	.39407	1	0.530	.040113	378204	328908	252532
15	110.395	.17541	1	0.675	.040258	374584	322001	240534

Table A9. Results of lag selection of time-series wildfire model for CO

Table A10. Results of lag selection of time-series wildfire model for NO_2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-250.644		.15893	.998588	1.00187	1.00697		
1	-191.465	118.36	1	0.000	.126166	.767719	.774292	.784476
2	-188.895	5.1404	1	0.023	.125382	.761489	.771348	.786623
3	-188.806	.17921	1	0.672	.125836	.765101	.778247	.798614
4	-188.8	.01162	1	0.914	.126334	.769046	.785479	.810937
5	-187.585	2.4294	1	0.119	.126226	.768194	.787913	.818463
6	-176.493	22.183	1	0.000	.121271	.728149	.751154	.786795
7	-170.899	11.19	1	0.001	.11908	.709915	.736206*	.77694*

8	-170.594	.60864	1	0.435	.119409	.712676	.742254	.788079
9	-168.717	3.7542	1	0.053	.118995	.709195	.74206	.792976
10	-168.027	1.3797	1	0.240	.119141	.710426	.746577	.802585
11	-167.443	1.1688	1	0.280	.119338	.712075	.751512	.812612
12	-167.281	.32281	1	0.570	.119736	.715403	.758126	.824318
13	-162.976	8.6109*	1	0.003	.118176*	.702286*	.748296	.81958
14	-162.289	1.3741	1	0.241	.118324	.703528	.752824	.8292
15	-162.101	.37666	1	0.539	.118706	.706749	.759332	.840799

Table A11. Results of lag selection of time-series wildfire model for O_3

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-185.324		.122641	.739381	.742668	.747759		
1	-33.9612	302.73	1	0.000	.067531	.142703	.149276	.159459*
2	-33.8853	.15176	1	0.697	.067779	.14637	.15623	.171505
3	-27.9456	11.88	1	0.001	.066463	.126768	.139914	.160281
4	-27.2746	1.342	1	0.247	.06655	.128074	.144506	.169964
5	-26.6665	1.2162	1	0.270	.066654	.129629	.149347	.179898
6	-24.1436	5.0458	1	0.025	.066252	.123586	.146591	.182232
7	-22.0462	4.1947	1	0.041	.065964	.119231	.145523	.186256
8	-21.9595	.1734	1	0.677	.066204	.122855	.152433	.198258
9	-20.5626	2.7938	1	0.095	.0661	.12128	.154145	.205062
10	-18.6076	3.91	1	0.048	.06585	.117491	.153642	.20965
11	-7.00722	23.201*	1	0.000	.063137*	.075425*	.114863*	.175963
12	-6.98258	.04929	1	0.824	.063382	.079296	.12202	.188212
13	-6.65363	.6579	1	0.417	.063552	.081959	.127969	.199253
14	-6.62761	.05203	1	0.820	.063798	.085824	.135121	.211496
15	-6.62472	.00578	1	0.939	.064051	.089781	.142364	.223831
1	1							

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-533.199		.487708	2.11984	2.12313	2.12822		
----	----------	---------	---------	---------	----------	----------	----------	----------
1	-379.787	306.82	1	0.000	.266375	1.51503	1.5216	1.53178
2	-379.252	1.0691	1	0.301	.266868	1.51687	1.52673	1.54201
3	-375.819	6.8678	1	0.009	.264303	1.50722	1.52036	1.54073
4	-375.287	1.0627	1	0.303	.264795	1.50908	1.52551	1.55097
5	-371.245	8.0841	1	0.004	.261618	1.497	1.51672	1.54727
6	-364.505	13.481	1	0.000	.255726	1.47423	1.49723	1.53287
7	-359.968	9.0746	1	0.003	.252162*	1.46019*	1.48648*	1.52721*
8	-359.936	.06296	1	0.802	.253133	1.46403	1.49361	1.53944
9	-359.887	.09835	1	0.754	.25409	1.46781	1.50067	1.55159
10	-359.335	1.1048	1	0.293	.254542	1.46958	1.50573	1.56174
11	-359.222	.22451	1	0.636	.255441	1.4731	1.51254	1.57364
12	-357.138	4.1677*	1	0.041	.254345	1.4688	1.51153	1.57772
13	-356.894	.48874	1	0.484	.25511	1.4718	1.51781	1.5891
14	-356.795	.1982	1	0.656	.256024	1.47538	1.52467	1.60105
15	-356.691	.20768	1	0.649	.256937	1.47893	1.53152	1.61298

Table A13. Results of lag selection of time-series wildfire model for SO_2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-303.036		1.36718*	3.15063*	3.15747*	3.16753*		
1	-302.082	1.9064	1	0.167	1.36785	3.15111	3.16481	3.18492
2	-302.076	.01321	1	0.908	1.382	3.16141	3.18195	3.21212
3	-301.005	2.1422	1	0.143	1.38099	3.16067	3.18805	3.22829
4	-300.204	1.6018	1	0.206	1.38385	3.16273	3.19696	3.24726
5	-299.071	2.2652	1	0.132	1.38196	3.16136	3.20244	3.26279
6	-297.715	2.7115	1	0.100	1.37689	3.15767	3.2056	3.27601
7	-297.614	.20235	1	0.653	1.3898	3.16699	3.22176	3.30223
8	-297.585	.05871	1	0.809	1.40388	3.17705	3.23866	3.32919
9	-296.839	1.4916	1	0.222	1.40761	3.17968	3.24814	3.34873
10	-296.245	1.1891	1	0.276	1.41358	3.18388	3.25919	3.36984
11	-296.245	4.4e-06	1	0.998	1.42836	3.19424	3.2764	3.39711

12 -29	6.065	35861	1	0.549	1.44062	3.20275	3.29175	3.42252
13 -29	5.959 .	21316	1	0.644	1.4541	3.21201	3.30785	3.44868
14 -29	5.944 .	02857	1	0.866	1.46911	3.22222	3.32491	3.4758
15 -29	5.941 .	00634	1	0.937	1.48447	3.23255	3.34209	3.50303

 Table A14. Results of lag selection of time-series wildfire model for temperature

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1542.85		26.8034	6.1264	6.12969	6.13478		
1	-1188.92	707.86	1	0.000	6.60624	4.72589	4.73246	4.74265
2	-1175.82	26.215	1	0.000	6.29635	4.67785	4.68771	4.70298
3	-1160.23	31.167	1	0.000	5.94231	4.61998	4.63312*	4.65349*
4	-1159.76	.94069	1	0.332	5.95482	4.62208	4.63851	4.66397
5	-1158.33	2.8765	1	0.090	5.94447	4.62034	4.64006	4.67061
6	-1156.01	4.6375*	1	0.031	5.91345*	4.6151*	4.63811	4.67375
7	-1155.36	1.2916	1	0.256	5.92177	4.61651	4.6428	4.68354
8	-1155.26	.20891	1	0.648	5.94286	4.62006	4.64964	4.69547
9	-1153.36	3.7874	1	0.052	5.92183	4.61652	4.64938	4.7003
10	-1152.85	1.0171	1	0.313	5.9334	4.61847	4.65462	4.71063
11	-1152.8	.11433	1	0.735	5.95565	4.62221	4.66165	4.72275
12	-1152.71	.17051	1	0.680	5.97733	4.62584	4.66856	4.73475
13	-1152.34	.74644	1	0.388	5.99223	4.62833	4.67434	4.74562
14	-1151.77	1.1323	1	0.287	6.00257	4.63005	4.67934	4.75572
15	-1151.74	.07007	1	0.791	6.02563	4.63388	4.68646	4.76793
1								

Table	A15.	Re	sults	of l	ag	sele	ction	of	time	-series	wil	dfire	model	for	hum	iditv
					<u>_</u>											/

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-2081.97		227.669	8.26577	8.26906	8.27415		
1	-1881.73	400.48	1	0.000	103.261*	7.47514*	7.48171*	7.49189*
2	-1881.72	.02417	1	0.876	103.666	7.47906	7.48891	7.50419
3	-1880.36	2.7323	1	0.098	103.516	7.4776	7.49075	7.51111
4	-1880.3	.10252	1	0.749	103.906	7.48137	7.4978	7.52326
1	1							

5	-1879.53	1.552	1	0.213	103.999	7.48226	7.50197	7.53252
6	-1879.51	.04019	1	0.841	104.404	7.48614	7.50915	7.54479
7	-1878.99	1.0442	1	0.307	104.602	7.48804	7.51433	7.55507
8	-1878.32	1.3313	1	0.249	104.741	7.48937	7.51895	7.56477
9	-1875.94	4.7673*	1	0.029	104.168	7.48388	7.51674	7.56766
10	-1875.73	.40837	1	0.523	104.498	7.48704	7.52319	7.57919
11	-1874.84	1.7818	1	0.182	104.543	7.48747	7.52691	7.58801
12	-1874.26	1.1606	1	0.281	104.718	7.48913	7.53186	7.59805
13	-1872.93	2.6684	1	0.102	104.579	7.48781	7.53382	7.6051
14	-1872.37	1.1127	1	0.291	104.764	7.48957	7.53886	7.61524
15	-1872.1	.53493	1	0.465	105.069	7.49247	7.54506	7.62652

Table A16. Results of lag selection of time-series non-wildfire model for CO

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-13.4943		.062141	.059525	.062903	.068125		
1	37.073	101.13	1	0.000	.050696	144037	13728*	126837*
2	37.4438	.74158	1	0.389	.050827	141453	131318	115653
3	39.6166	4.3455*	1	0.037	.050583*	146269*	132755	111869
4	40.1318	1.0305	1	0.310	.050683	144279	127386	101278
5	40.161	.05823	1	0.809	.050886	140291	120021	088691
6	40.3748	.42765	1	0.513	.051051	137063	113414	076862
7	41.7413	2.7331	1	0.098	.050974	138568	11154	069767
8	42.6726	1.8626	1	0.172	.050988	138286	10788	060885
9	43.0765	.80771	1	0.369	.051113	135838	102053	049836
10	43.3093	.46553	1	0.495	.051275	132687	095524	038085
11	43.5133	.40802	1	0.523	.051443	129418	088876	026216
12	43.6821	.33763	1	0.561	.051619	126004	082084	014203
13	43.6833	.00249	1	0.960	.051831	121903	074604	001501
14	43.835	.3034	1	0.582	.052012	118419	067742	.010583
15	44.081	.49192	1	0.483	.052174	115322	061267	.02228
1	1							

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-286.585		.190743	1.18105	1.18443	1.18965		
1	-228.129	116.91	1	0.000	.150651	.945087	.951844	.962287*
2	-226.787	2.6827	1	0.101	.15044	.943685	.95382	.969485
3	-223.229	7.1176	1	0.008	.148867	.933177	.94669	.967577
4	-222.649	1.16	1	0.281	.149124	.934902	.951794	.977902
5	-221.162	2.9723	1	0.085	.148827	.932905	.953176	.984506
6	-217.308	7.709	1	0.005	.147093	.921182	.944832*	.981383
7	-215.824	2.9672	1	0.085	.146801	.919196	.946224	.987997
8	-214.25	3.1484	1	0.076	.146455	.916838	.947244	.994239
9	-213.794	.91143	1	0.340	.146783	.919073	.952858	1.00507
10	-210.774	6.0409*	1	0.014	.145571*	.910776*	.947939	1.00538
11	-210.774	.00074	1	0.978	.14617	.914881	.955423	1.01808
12	-210.57	.40616	1	0.524	.146649	.918154	.962074	1.02996
13	-209.651	1.8393	1	0.175	.146698	.918484	.965782	1.03889
14	-209.13	1.0415	1	0.307	.146988	.920452	.971129	1.04945
15	-209.005	.24947	1	0.617	.147518	.924047	.978102	1.06165

Table A17. Results of lag selection of time-series non-wildfire model for NO_2

Table A18. Results of lag selection of time-series non-wildfire model for O₃

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-304.197		.20505	1.25337	1.25675	1.26197		
1	-177.53	253.33	1	0.000	.122385	.73729	.744047	.75449*
2	-174.774	5.5122	1	0.019	.121505	.730078	.740213	.755878
3	-171.734	6.0802	1	0.014	.120491	.7217	.735214	.7561
4	-171.076	1.3152	1	0.251	.120661	.723106	.739998	.766107
5	-168.842	4.4677	1	0.035	.120051	.718039	.73831	.76964
6	-163.281	11.124	1	0.001	.117823	.699304	.722953	.759505
7	-161.881	2.7983	1	0.094	.11763	.697665	.724693	.766466
8	-158.721	6.3211*	1	0.012	.116591*	.688792*	.719198*	.766193
9	-158.372	.6982	1	0.403	.116904	.691465	.72525	.777467

10	-157.881	.98072	1	0.322	.117149	.693558	.730721	.78816
11	-157.879	.00493	1	0.944	.11763	.697655	.738196	.800856
12	-157.447	.86293	1	0.353	.117905	.69999	.74391	.811791
13	-157.035	.82421	1	0.364	.118191	.702404	.749702	.822806
14	-156.449	1.1736	1	0.279	.118392	.704101	.754778	.833103
15	-156.139	.61908	1	0.431	.118728	.706937	.760992	.844539

Table A19. Results of lag selection of time-series non-wildfire model for $PM_{2.5}$

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-428.686		.341895	1.76463	1.768	1.77323		
1	-344.016	169.34	1	0.000	.242472	1.42101	1.42777*	1.43821*
2	-343.986	.05973	1	0.807	.24344	1.42499	1.43513	1.45079
3	-340.556	6.8594*	1	0.009	.241023*	1.41501*	1.42853	1.44942
4	-340.08	.95265	1	0.329	.241542	1.41717	1.43406	1.46017
5	-340.063	.03312	1	0.856	.24252	1.4212	1.44148	1.47281
6	-339.7	.72705	1	0.394	.243155	1.42382	1.44747	1.48402
7	-339.55	.29898	1	0.585	.244006	1.42731	1.45434	1.49611
8	-338.192	2.7162	1	0.099	.243648	1.42584	1.45625	1.50324
9	-337.793	.7983	1	0.372	.24425	1.42831	1.46209	1.51431
10	-337.505	.57617	1	0.448	.244966	1.43123	1.46839	1.52583
11	-336.293	2.4237	1	0.120	.244753	1.43036	1.4709	1.53356
12	-336.168	.24981	1	0.617	.245635	1.43396	1.47788	1.54576
13	-335.908	.51947	1	0.471	.246384	1.437	1.48429	1.5574
14	-335.879	.0585	1	0.809	.247369	1.44098	1.49166	1.56998
15	-335.589	.58093	1	0.446	.248092	1.4439	1.49795	1.5815
1	1							

Table 1420. Results of fug selection of this selies non-whathe model for SO
--

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-416.922		1.05582	2.89219	2.89728	2.90488		
1	-409.978	13.888	1	0.000	1.01327	2.85106	2.86123	2.87643*
2	-409.919	.11834	1	0.731	1.01989	2.85757	2.87282	2.89563

3	-404.997	9.8445	1	0.002	.992578	2.83043	2.85076*	2.88117
4	-404.111	1.7713	1	0.183	.993365	2.83122	2.85663	2.89465
5	-402.939	2.3429	1	0.126	.99219	2.83003	2.86053	2.90615
6	-402.476	.92737	1	0.336	.995883	2.83374	2.86933	2.92255
7	-402.355	.24167	1	0.623	1.00197	2.83983	2.88049	2.94132
8	-401.772	1.166	1	0.280	1.00487	2.84271	2.88846	2.95689
9	-397.975	7.5928*	1	0.006	.985614	2.82336	2.87419	2.95023
10	-396.726	2.4992	1	0.114	.983923*	2.82163*	2.87755	2.96118
11	-396.425	.60227	1	0.438	.988704	2.82647	2.88747	2.97871
12	-395.998	.85405	1	0.355	.992645	2.83043	2.89652	2.99536
13	-395.877	.24088	1	0.624	.99872	2.83652	2.90769	3.01413
14	-395.693	.36841	1	0.544	1.00439	2.84217	2.91842	3.03247
15	-394.901	1.5851	1	0.208	1.00586	2.8436	2.92494	3.04659

Table A21. Results of lag selection of time-series non-wildfire model for temperature

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1715.78		67.5281	7.05042	7.0538	7.05902		
1	-1367.66	696.23	1	0.000	16.2327	5.6249	5.63166	5.64211
2	-1361.93	11.468	1	0.001	15.9202	5.60546	5.6156	5.63126
3	-1356.52	10.819	1	0.001	15.6345	5.58736	5.60087*	5.62176*
4	-1355.26	2.5152	1	0.113	15.6179	5.5863	5.60319	5.6293
5	-1355.25	.01853	1	0.892	15.6816	5.59037	5.61064	5.64197
6	-1354.92	.66489	1	0.415	15.7247	5.59311	5.61676	5.65331
7	-1354.88	.08343	1	0.773	15.7867	5.59704	5.62407	5.66584
8	-1350.06	9.6318*	1	0.002	15.5413*	5.58137*	5.61178	5.65877
9	-1350.06	.00148	1	0.969	15.6052	5.58548	5.61926	5.67148
10	-1349.57	.98383	1	0.321	15.6378	5.58756	5.62473	5.68216
11	-1349.57	.00315	1	0.955	15.7021	5.59166	5.6322	5.69486
12	-1349.37	.39619	1	0.529	15.754	5.59496	5.63888	5.70676
13	-1349.37	.00349	1	0.953	15.8187	5.59906	5.64635	5.71946
14	-1348.86	1.0278	1	0.311	15.8504	5.60105	5.65173	5.73005
	1							

15	-1347.6	2.5179	1	0.113	15.8336	5.59999	5.65404	5.73759

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1879.91		132.503	7.72449	7.72786	7.73309		
1	-1714.88	330.06*	1	0.000	67.5573	7.05085	7.05761*	7.06805*
2	-1713.4	2.9756	1	0.085	67.4221	7.04885	7.05899	7.07465
3	-1712.01	2.7698	1	0.096	67.3157*	7.04727*	7.06078	7.08167
4	-1711.95	.12607	1	0.723	67.5752	7.05112	7.06801	7.09412
5	-1711.88	.13467	1	0.714	67.8346	7.05495	7.07522	7.10655
6	-1711.01	1.7477	1	0.186	67.8698	7.05547	7.07912	7.11567
7	-1710.69	.62786	1	0.428	68.0613	7.05828	7.08531	7.12708
8	-1710.57	.24451	1	0.621	68.3072	7.06189	7.09229	7.13929
9	-1710.34	.46233	1	0.497	68.5233	7.06505	7.09883	7.15105
10	-1710.33	.01449	1	0.904	68.8034	7.06912	7.10629	7.16372
11	-1708.8	3.0555	1	0.080	68.6546	7.06696	7.1075	7.17016
12	-1708.49	.62179	1	0.430	68.8494	7.06979	7.11371	7.18159
13	-1708.19	.60125	1	0.438	69.0476	7.07266	7.11996	7.19306
14	-1707.81	.77224	1	0.380	69.2222	7.07518	7.12586	7.20418
15	-1707.1	1.4118	1	0.235	69.3061	7.07639	7.13044	7.21399
1								

 Table A22. Results of lag selection of time-series non-wildfire model for humidity

Table A23. Results of lag selection of time-series non-wildfire model for flu

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-67.3631		.464745	2.07161	2.08472	2.10479		
1	-64.8667	4.9928	1	0.025	.444149*	2.02626*	2.05248*	2.09262*
2	-64.7586	.21618	1	0.642	.456338	2.05329	2.09262	2.15282
3	-64.5588	.39963	1	0.527	.467578	2.07754	2.12998	2.21025
4	-64.1126	.89251	1	0.345	.475558	2.09432	2.15987	2.2602
5	-64.0034	.21839	1	0.640	.488674	2.12131	2.19997	2.32037
6	-64.0033	.00023	1	0.988	.503857	2.15161	2.24338	2.38385
7	-64.0019	.00274	1	0.958	.519544	2.18188	2.28675	2.44729
8	-63.952	.09976	1	0.752	.534993	2.21067	2.32865	2.50926

9	-62.6779	2.5483	1	0.110	.530908	2.20236	2.33346	2.53413
10	-62.3769	.60199	1	0.438	.542701	2.22354	2.36775	2.58848
11	-62.0117	.73036	1	0.393	.553768	2.24278	2.40009	2.6409
12	-61.474	1.0753	1	0.300	.562215	2.25679	2.42721	2.68808
13	-59.3129	4.3223*	1	0.038	.543495	2.2216	2.40514	2.68607
14	-59.2814	.06302	1	0.802	.560544	2.25095	2.4476	2.7486
15	-57.8436	2.8756	1	0.090	.554136	2.23768	2.44744	2.76851

Table A24. Results of lag selection of time-series yearly model of 2016 for CO

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-22.814		.067085	.13608	.140468	.147103		
1	27.0833	99.795	1	0.000	.050731	143333	134558	121288
2	27.1062	.04585	1	0.830	.051015	13775	124587	104682
3	31.191	8.1696	1	0.004	.050124	155377	137828	111287
4	36.1027	9.8233	1	0.002	.049016	17773	155793	122616*
5	36.1096	.01393	1	0.906	.049295	172055	145731	105919
6	39.9746	7.7299	1	0.005	.048495	188426	157714	111267
7	42.439	4.9288*	1	0.026	.048091*	196794*	161695*	108613
8	42.4903	.10264	1	0.749	.048352	191373	151887	092169
9	42.5501	.11948	1	0.730	.048613	186	142126	075774
10	43.0626	1.0251	1	0.311	.048749	183215	134953	061966
11	43.8761	1.6271	1	0.202	.048801	182149	1295	049877
12	43.9322	.11214	1	0.738	.049066	176755	119719	033461
13	43.9334	.00234	1	0.961	.049347	171048	109624	016731
14	44.5626	1.2585	1	0.262	.049452	168929	103118	003589
15	44.5851	.045	1	0.832	.04973	163344	093145	.013019

Table A25. Results of lag selection of time-series yearly model of 2016 for NO₂

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-275.08		.283575	1.5776	1.58199	1.58862		
1	-181.36	187.44	1	0.000	.166942	1.04777	1.05654	1.06982

2	-180.955	.80967	1	0.368	.167511	1.05117	1.06433	1.08424
3	-173.931	14.049	1	0.000	.161843	1.01675	1.0343	1.06084
4	-169.177	9.5081	1	0.002	.158408	.995294	1.01723	1.05041
5	-164.031	10.292	1	0.001	.1547	.971604	.997928	1.03774
6	-151.118	25.824	1	0.000	.14452	.903534	.934246	.980693
7	-145.734	10.769	1	0.001	.140944*	.878479*	.913579*	.966661*
8	-144.763	1.9427	1	0.163	.140968	.878643	.91813	.977847
9	-144.751	.02267	1	0.880	.141767	.884293	.928167	.994519
10	-144.618	.26728	1	0.605	.142472	.889243	.937505	1.01049
11	-143.923	1.389	1	0.239	.142721	.890989	.943638	1.02326
12	-143.913	.02039	1	0.886	.143532	.896645	.953681	1.03994
13	-141.772	4.2816*	1	0.039	.1426	.890126	.95155	1.04444
14	-141.172	1.1997	1	0.273	.142928	.892413	.958224	1.05775
15	-141.049	.24654	1	0.620	.143648	.897422	.967621	1.07379

Table A26. Results of lag selection of time-series yearly model of 2016 for O3

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-135.047		.127395	.777413	.7818	.788435		
1	-58.8058	152.48	1	0.000	.082876	.347462	.356236	.369507
2	-56.8653	3.8809	1	0.049	.082431	.342087	.35525	.375155
3	-52.2412	9.2483	1	0.002	.080742	.321378	.338928	.365469*
4	-51.3438	1.7947	1	0.180	.080789	.321965	.343902	.377078
5	-49.8635	2.9605	1	0.085	.080568	.31922	.345545	.385356
6	-44.7775	10.172	1	0.001	.078709	.295872	.326583*	.37303
7	-44.0357	1.4836	1	0.223	.078825	.297347	.332446	.385528
8	-44.0307	.01006	1	0.920	.079275	.303033	.342519	.402237
9	-43.7616	.53815	1	0.463	.079607	.307209	.351083	.417436
10	-43.5169	.48941	1	0.484	.079952	.311525	.359787	.432775
11	-41.1855	4.6628	1	0.031	.079346	.303917	.356566	.436189
12	-38.4398	5.4914	1	0.019	.078559	.293942	.350978	.437237
13	-38.4239	.03179	1	0.858	.079003	.299565	.360989	.453883
	1							

14	-35.6706	5.5067*	1	0.019	.078216	.289546	.355357	.454886
15	-34.3788	2.5836	1	0.108	.078087*	.287879*	.358077	.464241

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-339.034		.408679	1.94305	1.94744	1.95407		
1	-274.186	129.7	1	0.000	.283747	1.5782	1.58698	1.60025*
2	-273.249	1.8736	1	0.171	.28385	1.57857	1.59173	1.61163
3	-270.283	5.9316	1	0.015	.280679	1.56733	1.58488*	1.61142
4	-268.933	2.7002	1	0.100	.280118	1.56533	1.58727	1.62045
5	-268.93	.00592	1	0.939	.281719	1.57103	1.59735	1.63717
6	-267.118	3.6251	1	0.057	.280415	1.56639	1.5971	1.64355
7	-264.852	4.5304*	1	0.033	.278396*	1.55916*	1.59426	1.64734
8	-264.851	.00272	1	0.958	.27999	1.56486	1.60435	1.66407
9	-264.74	.22191	1	0.638	.281417	1.56994	1.61382	1.68017
10	-264.462	.55695	1	0.455	.282581	1.57407	1.62233	1.69532
11	-263.778	1.3669	1	0.242	.283094	1.57588	1.62852	1.70815
12	-263.546	.46396	1	0.496	.284342	1.58026	1.6373	1.72356
13	-262.947	1.1976	1	0.274	.284997	1.58256	1.64398	1.73687
14	-262.944	.00651	1	0.936	.286627	1.58825	1.65406	1.75359
15	-262.901	.08703	1	0.768	.288201	1.59372	1.66392	1.77008

Table A27. Results of lag selection of time-series yearly model of 2016 PM_{2.5}

Table A28. Results of lag selection of time-series yearly model of 2016 SO2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-258.472		1.41316*	3.1837*	3.19141*	3.20268*		
1	-258.402	.13945	1	0.709	1.42938	3.19512	3.21053	3.23308
2	-258.321	.1622	1	0.687	1.44559	3.20639	3.22951	3.26333
3	-257.684	1.2743	1	0.259	1.45205	3.21084	3.24167	3.28676
4	-257.683	.00093	1	0.976	1.46998	3.22311	3.26164	3.31801
5	-256.952	1.4628	1	0.226	1.47486	3.2264	3.27264	3.34029
6	-256.637	.62936	1	0.428	1.48734	3.23481	3.28875	3.36767

7	-256.618	.03829	1	0.845	1.50539	3.24685	3.30849	3.39869
8	-254.935	3.3671	1	0.067	1.49286	3.23846	3.30781	3.40928
9	-253.047	3.776	1	0.052	1.47675	3.22757	3.30462	3.41737
10	-252.912	.26889	1	0.604	1.49259	3.23819	3.32295	3.44697
11	-252.766	.29277	1	0.588	1.5084	3.24866	3.34113	3.47642
12	-252.562	.4073	1	0.523	1.52332	3.25843	3.35861	3.50517
13	-252.53	.06332	1	0.801	1.54166	3.27031	3.37819	3.53603
14	-252.526	.0097	1	0.922	1.56075	3.28252	3.39811	3.56722
15	-252.518	.01476	1	0.903	1.58005	3.2947	3.41799	3.59838

Table A29. Results of lag selection of time-series yearly model of 2016 temperature

lag	LL	LR	df	р	FPE	AIC	ĤQIC	SBIC
0	-1347.75		130.226	7.70715	7.71154	7.71817		
1	-903.244	889.01	1	0.000	10.3289	5.17282	5.1816	5.19487
2	-898.124	10.241	1	0.001	10.0885	5.14928	5.16244	5.18235
3	-889.282	17.683	1	0.000	9.64648*	5.10447*	5.12202*	5.14856*
4	-889.264	.03649	1	0.849	9.70076	5.11008	5.13202	5.16519
5	-888.567	1.3932	1	0.238	9.71761	5.11181	5.13814	5.17795
6	-888.483	.169	1	0.681	9.7686	5.11704	5.14776	5.1942
7	-888.437	.09083	1	0.763	9.82205	5.1225	5.1576	5.21068
8	-887.768	1.3398	1	0.247	9.84063	5.12439	5.16387	5.22359
9	-887.332	.87022	1	0.351	9.87249	5.12761	5.17149	5.23784
10	-884.317	6.0302*	1	0.014	9.75951	5.1161	5.16436	5.23735
11	-883.701	1.2331	1	0.267	9.78098	5.11829	5.17094	5.25056
12	-883.65	.10123	1	0.750	9.83426	5.12371	5.18075	5.26701
13	-883.114	1.0718	1	0.301	9.86046	5.12637	5.18779	5.28068
14	-881.873	2.482	1	0.115	9.84698	5.12499	5.1908	5.29033
15	-880.837	2.0724	1	0.150	9.84506	5.12478	5.19498	5.30115

Table A30.	Results	of lag	selection	of time	-series	yearly	model	of 2016	humidity
------------	---------	--------	-----------	---------	---------	--------	-------	---------	----------

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC	

0	-1381.94		158.327	7.90254	7.90693	7.91356		
1	-1276.61	210.67*	1	0.000	87.2212*	7.30632*	7.3151*	7.32837*
2	-1276.6	.02167	1	0.883	87.7156	7.31198	7.32514	7.34504
3	-1276.01	1.1783	1	0.278	87.9218	7.31432	7.33187	7.35841
4	-1275.81	.39341	1	0.531	88.3264	7.31891	7.34085	7.37403
5	-1275.79	.03195	1	0.858	88.8246	7.32454	7.35086	7.39067
6	-1275.64	.31145	1	0.577	89.2544	7.32936	7.36007	7.40652
7	-1275.49	.29589	1	0.586	89.6902	7.33423	7.36933	7.42241
8	-1275.13	.71234	1	0.399	90.0211	7.33791	7.3774	7.43711
9	-1273.56	3.1415	1	0.076	89.7284	7.33465	7.37852	7.44487
10	-1273.16	.80224	1	0.370	90.0364	7.33807	7.38633	7.45932
11	-1272.04	2.2383	1	0.135	89.9757	7.33739	7.39004	7.46966
12	-1270.56	2.9669	1	0.085	89.7281	7.33463	7.39166	7.47792
13	-1270.38	.36451	1	0.546	90.1492	7.3393	7.40072	7.49362
14	-1270.37	.00602	1	0.938	90.6651	7.345	7.41081	7.51034
15	-1270.2	.35401	1	0.552	91.0935	7.3497	7.4199	7.52606

 Table A31. Results of lag selection of time-series yearly model of 2016 for flu

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-10.6976		.411524	1.9496	1.93464	1.99001		
1	-10.5728	.24966	1	0.617	.47746*	2.09546*	2.06554	2.17628
2	-10.1323	.88088	1	0.348	.528175	2.18872	2.14384	2.30995
3	-9.97592	.31286	1	0.576	.617499	2.32932	2.26948	2.49096
4	-9.72042	.51099	1	0.475	.718562	2.4534	2.3786	2.65545
5	-9.11424	1.2124	1	0.271	.802339	2.51904	2.42928	2.76149
6	-8.96651	.29546	1	0.587	.991578	2.66109	2.55636	2.94395
7	-8.91097	.11107	1	0.739	1.29269	2.8185	2.69881	3.14177
8	-8.69822	.4255	1	0.514	1.74672	2.9497	2.81506	3.31338
9	-5.34867	6.6991	1	0.010	1.57061	2.55811	2.4085	2.9622
10	-5.32033	.05668	1	0.812	3.26853	2.72006	2.55549	3.16455
11	400.587	811.81*	1	0.000	•	-64.7645	-64.9441	-64.2796

12	400.587	0	1		-64.7645	-64.9441	-64.2796
13	400.587	0	1		-64.7645	-64.9441	-64.2796
14	400.587	0	1		-64.7645	-64.9441	-64.2796
15	400.587	0	1		-64.7645	-64.9441*	-64.2796*

Table A32. Results of lag selection of time-series yearly model of 2017 for CO

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-79.5497		.092774	.460284	.464672	.471307		
1	21.8834	202.87	1	0.000	.052261	113619	104844	091574
2	23.431	3.0953	1	0.079	.052098	116749	103586	083681
3	28.5069	10.152	1	0.001	.050899	140039	12249	095949
4	28.9706	.92737	1	0.336	.051055	136975	115038	081861
5	36.3375	14.734	1	0.000	.049231	173357	147033	107221
6	38.1719	3.6687	1	0.055	.048997	178125	147413	100966
7	42.8148	9.286	1	0.002	.047988	198942	163843	110761
8	46.0805	6.5314*	1	0.011	.047371*	211889*	172402*	112685*
9	46.6914	1.2217	1	0.269	.047476	209665	165791	099438
10	46.6953	.00792	1	0.929	.047747	203973	155712	082724
11	46.7507	.11078	1	0.739	.048006	198576	145927	066304
12	46.9716	.44179	1	0.506	.048221	194124	137087	050829
13	48.1416	2.34	1	0.126	.048174	195095	133671	040777
14	48.1964	.10952	1	0.741	.048436	189693	123882	024353
15	48.3386	.28459	1	0.594	.048674	184792	114594	00843

|--|

_			U			5 5			
	lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
	0	-303.567		.333705	1.74038	1.74477	1.7514		
	1	-182.68	241.77	1	0.000	.168207	1.05531	1.06409	1.07736
	2	-180.836	3.6889	1	0.055	.167397	1.05049	1.06365	1.08356
	3	-174.826	12.02	1	0.001	.162673	1.02186	1.03941	1.06595
	4	-169.964	9.7238	1	0.002	.159122	.999793	1.02173	1.05491

5	-165.89	8.1473	1	0.004	.156352	.98223	1.00855	1.04837
6	-158.341	15.098	1	0.000	.150609	.944806	.975517	1.02196
7	-155.936	4.8097	1	0.028	.149405	.936778	.971877	1.02496
8	-151.4	9.0729	1	0.003	.146417	.91657	.956056*	1.01577*
9	-151.206	.38768	1	0.534	.147094	.921176	.96505	1.0314
10	-151.155	.10103	1	0.751	.147895	.926602	.974863	1.04785
11	-151.154	.00318	1	0.955	.148742	.932307	.984956	1.06458
12	-149.978	2.3516	1	0.125	.148594	.931302	.988339	1.0746
13	-146.011	7.9329*	1	0.005	.146097	.914351	.975775	1.06867
14	-144.904	2.2153	1	0.137	.146009*	.913736*	.979547	1.07908
15	-144.762	.28355	1	0.594	.146728	.91864	.988839	1.095

Table A34. Results of lag selection of time-series yearly model of 2017 for O_3

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-243.8		.23716	1.39886	1.40324	1.40988		
1	-84.0685	319.46	1	0.000	.095746	.49182	.500595	.513866
2	-81.3753	5.3865	1	0.020	.094824	.482145	.495307	.515213
3	-79.1593	4.4319	1	0.035	.094168	.475196	.492746	.519287
4	-73.5114	11.296	1	0.001	.091699	.448636	.470573	.50375
5	-72.8184	1.3858	1	0.239	.091861	.450391	.476716	.516527
6	-70.5866	4.4637	1	0.035	.091216	.443352	.474064	.520511
7	-63.9221	13.329	1	0.000	.088311	.410983	.446083	.499165*
8	-61.6476	4.549*	1	0.033	.087671	.4037	.443187*	.502904
9	-60.2198	2.8556	1	0.091	.087457	.401256	.44513	.511483
10	-58.4344	3.5707	1	0.059	.087066	.396768	.44503	.518018
11	-56.7319	3.4051	1	0.065	.086718*	.392754*	.445403	.525026
12	-56.7145	.03489	1	0.852	.087207	.398368	.455405	.541663
13	-55.6669	2.0951	1	0.148	.087184	.398096	.45952	.552414
14	-55.2955	.74267	1	0.389	.087498	.401689	.4675	.567029
15	-54.6004	1.3902	1	0.238	.087652	.403431	.47363	.579794

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-373.797		.498485	2.1417	2.14608	2.15272		
1	-270.905	205.78	1	0.000	.278477	1.55946	1.56823	1.5815
2	-268.011	5.7893	1	0.016	.275479	1.54863	1.56179	1.5817
3	-265.021	5.9786	1	0.014	.272365	1.53727	1.55481	1.58136*
4	-264.519	1.0039	1	0.316	.273142	1.54011	1.56205	1.59522
5	-261.313	6.413	1	0.011	.26972	1.5275	1.55383	1.59364
6	-258.385	5.8561*	1	0.016	.266765	1.51649	1.5472*	1.59364
7	-257.59	1.5889	1	0.207	.267079	1.51766	1.55276	1.60584
8	-256.406	2.3682	1	0.124	.266799	1.51661	1.55609	1.61581
9	-254.566	3.6809	1	0.055	.265522*	1.51181*	1.55568	1.62203
10	-254.176	.77999	1	0.377	.266451	1.51529	1.56355	1.63654
11	-253.574	1.2031	1	0.273	.26706	1.51757	1.57022	1.64984
12	-252.999	1.1511	1	0.283	.26771	1.51999	1.57703	1.66329
13	-252.41	1.1782	1	0.278	.268342	1.52234	1.58377	1.67666
14	-252.109	.60092	1	0.438	.269419	1.52634	1.59215	1.69168
15	-252.1	.01809	1	0.893	.270952	1.532	1.6022	1.70836

Table A35. Results of lag selection of time-series yearly model of 2017 for $PM_{2.5}$

Table A36. Results of lag selection of time-series yearly model of 2017 for SO_2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-279.653		1.1411	2.96987	2.97682	2.98702		
1	-271.293	16.718	1	0.000	1.05561	2.89199	2.90589*	2.9263*
2	-271.282	.02356	1	0.878	1.06671	2.90245	2.9233	2.95391
3	-269.766	3.0312	1	0.082	1.06091	2.897	2.92479	2.9656
4	-269.128	1.2759	1	0.259	1.06499	2.90083	2.93557	2.98659
5	-267.041	4.1741	1	0.041	1.05282	2.88932	2.93102	2.99224
6	-266.433	1.2168	1	0.270	1.0572	2.89347	2.94211	3.01353
7	-266.173	.51929	1	0.471	1.06553	2.9013	2.95689	3.03852
8	-261.869	8.6086	1	0.003	1.02894	2.86634	2.92888	3.02071
1								

9	-260.837	2.0633	1	0.151	1.02863*	2.866*	2.93549	3.03752
10	-260.411	.85224	1	0.356	1.03493	2.87207	2.94851	3.06075
11	-260.278	.26571	1	0.606	1.04451	2.88125	2.96464	3.08708
12	-260.198	.16057	1	0.689	1.05477	2.89098	2.98132	3.11396
13	-259.629	1.1382	1	0.286	1.05965	2.89554	2.99283	3.13567
14	-257.56	4.1373*	1	0.042	1.0478	2.88423	2.98847	3.14152
15	-257.18	.76056	1	0.383	1.05477	2.89079	3.00197	3.16523

 Table A37. Results of lag selection of time-series yearly model of 2017 temperature

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1348.58		130.843	7.71188	7.71626	7.7229		
1	-923.573	850.01	1	0.000	11.6012	5.28899	5.29776	5.31103
2	-923.358	.42909	1	0.512	11.6534	5.29347	5.30664	5.32654
3	-908.107	30.503	1	0.000	10.742	5.21204	5.22959	5.25613*
4	-907.257	1.6993	1	0.192	10.7512	5.2129	5.23483	5.26801
5	-903.355	7.8029	1	0.005	10.5745	5.19632	5.22264*	5.26245
6	-903.329	.05203	1	0.820	10.6335	5.20188	5.23259	5.27904
7	-903.231	.19631	1	0.658	10.6885	5.20704	5.24214	5.29522
8	-899.737	6.9877	1	0.008	10.5373	5.19279	5.23227	5.29199
9	-899.553	.36924	1	0.543	10.5865	5.19744	5.24132	5.30767
10	-897.441	4.2233	1	0.040	10.5196*	5.19109*	5.23935	5.31234
11	-897.404	.07498	1	0.784	10.5776	5.19659	5.24924	5.32886
12	-896.781	1.2452	1	0.264	10.6006	5.19875	5.25579	5.34204
13	-896.781	1.7e-06	1	0.999	10.6614	5.20446	5.26589	5.35878
14	-893.985	5.593*	1	0.018	10.5526	5.1942	5.26001	5.35954
15	-893.595	.77809	1	0.378	10.5896	5.19769	5.26789	5.37405

Table A3	8. Results	of lag sele	ction of tin	me-series	yearly model	of 2017 :	for humidity
		4 /					-1

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1432.82		211.741	8.19324	8.19763	8.20426		
1	-1288.91	287.82	1	0.000	93.5722	7.37661	7.38539*	7.39866*

2	-1288 91	00273	1	0.958	94 1077	7 38232	7 39548	7 41 538
-	1200.91	.00275	-	0.950	2 11077	,	1.55510	,
3	-1285.77	6.2728*	1	0.012	92.9659	7.37011	7.38766	7.4142
4	-1283.89	3.7604	1	0.052	92.4996	7.36508	7.38702	7.42019
5	-1282.88	2.0188	1	0.155	92.4947*	7.36503*	7.39135	7.43116
6	-1282.81	.13254	1	0.716	92.9898	7.37036	7.40107	7.44752
7	-1282.2	1.2218	1	0.269	93.197	7.37258	7.40768	7.46077
8	-1282.02	.35652	1	0.550	93.636	7.37728	7.41677	7.47648
9	-1281.88	.29366	1	0.588	94.094	7.38216	7.42603	7.49238
10	-1281.18	1.3882	1	0.239	94.2591	7.3839	7.43217	7.50515
11	-1281.18	.00193	1	0.965	94.7993	7.38961	7.44226	7.52188
12	-1281.18	5.3e-06	1	0.998	95.3433	7.39533	7.45236	7.53862
13	-1280.06	2.2377	1	0.135	95.2793	7.39465	7.45607	7.54896
14	-1279.96	.21009	1	0.647	95.7688	7.39976	7.46557	7.5651
15	-1279.9	.11077	1	0.739	96.2882	7.40516	7.47536	7.58152

Table A39. Results of lag selection of time-series yearly model of 2017 for flu

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-13.8243		.48681	2.11775	2.11353	2.1634		
1	-12.131	3.3864	1	0.066	.441671*	2.01872*	2.01027	2.11001
2	-10.8903	2.4814	1	0.115	.428786	1.98433	1.97166	2.12127
3	-10.3668	1.0471	1	0.306	.463421	2.0524	2.0355	2.23499
4	-10.0833	.56701	1	0.451	.521945	2.15476	2.13363	2.38299
5	-9.91754	.33149	1	0.565	.60363	2.27393	2.24858	2.54782
6	-9.43058	.97392	1	0.324	.675678	2.34723	2.31765	2.66676
7	-8.69587	1.4694	1	0.225	.743544	2.38512	2.35132	2.7503
8	-8.69513	.00148	1	0.969	.932711	2.52788	2.48985	2.9387
9	-6.82364	3.743	1	0.053	.931172	2.40338	2.36112	2.85985
10	-5.99775	1.6518	1	0.199	1.14936	2.42825	2.38177	2.93037
11	1.69162	15.379	1	0.000	.597747	1.47263	1.42192	2.02039
12	23.2009	43.019	1	0.000	.057472	-1.45728	-1.51221	863868
13	435.173	823.94	1	0.000	•	-60.1675	-60.2267	-59.5285
	1							

14	444.677	19.009*	1	0.000		-61.5253	-61.5845	-60.8863
15	444.677	0	1			-61.5253	-61.5845*	-60.8863*
Table	e A40. Resu	lts of lag s	selection o	f time-serie	es yearly m	nodel of 2018	8 for CO	
lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-65.7702		.085656	.380457	.384835	.391456		
1	60.4936	252.53	1	0.000	.041954	333297	324541	311298
2	60.9821	.97701	1	0.323	.042077	330382	317249	297384
3	67.4404	12.917	1	0.000	.040788	361484	343973	317486*
4	68.7191	2.5574	1	0.110	.040724	363072	341184	308075
5	72.3902	7.3422	1	0.007	.040109	378292	352026*	312296
6	73.9887	3.197	1	0.074	.039972	381702	351058	304707
7	75.875	3.7726	1	0.052	.039771	386752	351731	298757
8	76.0655	.381	1	0.537	.039955	38214	342741	283145
9	76.918	1.705	1	0.192	.039989	381299	337522	271305
10	77.4159	.99585	1	0.318	.040103	378438	330284	257445
11	77.808	.78404	1	0.376	.040243	374974	322442	242981
12	80.67	5.7241	1	0.017	.039818	385584	328674	242592
13	83.1697	4.9994*	1	0.025	.03948*	394129*	332842	240138
14	83.1828	.02608	1	0.872	.039703	388506	32284	223515
15	83.715	1.0644	1	0.302	.039809	38584	315797	20985

Table A41. Results of lag selection of time-series yearly model of 2018 for NO₂

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-307.5		.339582	1.75784	1.76221	1.76884		
1	-181.88	251.24	1	0.000	.166939	1.04775	1.0565	1.06975
2	-181.874	.01164	1	0.914	.167887	1.05341	1.06655	1.08641
3	-172.685	18.378	1	0.000	.160233	1.00675	1.02426	1.05075
4	-171.258	2.8532	1	0.091	.159844	1.00432	1.02621	1.05932
5	-165.33	11.856	1	0.001	.155418	.976239	1.00251	1.04224
6	-151.591	27.477	1	0.000	.144537	.903654	.934298	.98065
7	-146.159	10.865	1	0.001	.140933	.878399	.91342*	.966394*

8	-145.663	.99113	1	0.319	.141339	.881273	.920672	.980267
9	-145.652	.0228	1	0.880	.142138	.886906	.930683	.9969
10	-145.24	.82468	1	0.364	.142616	.890254	.938409	1.01125
11	-144.422	1.6356	1	0.201	.142765	.891293	.943825	1.02329
12	-142.04	4.7641*	1	0.029	.141646	.883418	.940328	1.02641
13	-140.249	3.5811	1	0.058	.14101	.878913	.940201	1.0329
14	-139.042	2.4146	1	0.120	.140845*	.877732*	.943397	1.04272
15	-138.914	.25661	1	0.612	.141548	.882699	.952742	1.05869

Table	e A42.	Results of lag	selection	of time-series year	rly model of	2018 for O ₃
			1.0			

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-240.549		.231881	1.37635	1.38072	1.38734		
1	-85.8931	309.31	1	0.000	.096611	.500816	.509571	.522814
2	-83.6573	4.4717	1	0.034	.095933	.493774	.506907	.526772
3	-78.7712	9.7723	1	0.002	.093832	.471631	.489141	.515628*
4	-78.7254	.09159	1	0.762	.094344	.477068	.498956	.532065
5	-74.8608	7.7292	1	0.005	.092817	.460745	.487011	.526741
6	-70.6922	8.3371	1	0.004	.091156	.442691	.473334	.519686
7	-70.6117	.16094	1	0.688	.091635	.44793	.482952	.535925
8	-67.3348	6.5539	1	0.010	.090454	.434956	.474355	.533951
9	-65.3441	3.9814*	1	0.046	.089946*	.429311*	.473088*	.539305
10	-64.4324	1.8233	1	0.177	.089991	.429814	.477969	.550808
11	-64.1019	.66115	1	0.416	.090336	.433629	.486161	.565621
12	-64.0984	.00681	1	0.934	.090851	.439307	.496217	.582299
13	-64.0955	.00597	1	0.938	.091369	.444988	.506276	.59898
14	-63.5595	1.0718	1	0.301	.091612	.447633	.513298	.612624
15	-63.5496	.01995	1	0.888	.092131	.453274	.523317	.629264

Table A43. Results of lag selection of time-series yearly model of 2018 PM _{2.5}	
---	--

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-293.761		.31401	1.67955	1.68393	1.69055		

1	-211.926	163.67	1	0.000	.198111	1.21895	1.2277*	1.24095*
2	-211.278	1.2961	1	0.255	.198509	1.22095	1.23409	1.25395
3	-209.731	3.0926	1	0.079	.197892	1.21784	1.23535	1.26184
4	-209.446	.5709	1	0.450	.1987	1.22191	1.2438	1.27691
5	-208.825	1.2417	1	0.265	.19913	1.22407	1.25034	1.29007
6	-205.021	7.6075*	1	0.006	.195974*	1.2081*	1.23874	1.28509
7	-204.719	.60498	1	0.437	.196755	1.21207	1.24709	1.30007
8	-204.695	.04666	1	0.829	.197854	1.21764	1.25704	1.31663
9	-203.915	1.5614	1	0.211	.198102	1.21889	1.26266	1.32888
10	-203.771	.28702	1	0.592	.199072	1.22377	1.27192	1.34476
11	-203.522	.49914	1	0.480	.199926	1.22804	1.28058	1.36004
12	-202.99	1.0635	1	0.302	.200462	1.23071	1.28762	1.3737
13	-202.924	.13253	1	0.716	.201533	1.23603	1.29732	1.39002
14	-202.878	.09157	1	0.762	.202634	1.24147	1.30713	1.40646
15	-202.578	.59882	1	0.439	.203446	1.24546	1.3155	1.42145

Table A44. Results of lag selection of time-series yearly model of 2018 SO_2

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-214.081		1.03032	2.86775	2.8759	2.88782		
1	-211.185	5.7918	1	0.016	1.0046	2.84247	2.85878*	2.88261*
2	-211.178	.01529	1	0.902	1.01799	2.8557	2.88016	2.91591
3	-210.821	.71286	1	0.398	1.02677	2.86428	2.8969	2.94457
4	-210.685	.27139	1	0.602	1.03868	2.87581	2.91658	2.97616
5	-209.797	1.7777	1	0.182	1.04024	2.87729	2.92621	2.99771
6	-207.832	3.9299	1	0.047	1.02697	2.86442	2.9215	3.00492
7	-207.805	.0533	1	0.817	1.04042	2.8774	2.94263	3.03797
8	-203.872	7.8666	1	0.005	1.00056	2.83829	2.91168	3.01893
9	-201.844	4.0549*	1	0.044	.986996*	2.82459*	2.90613	3.0253
10	-201.217	1.2544	1	0.263	.99198	2.82956	2.91926	3.05034
11	-201.145	.14493	1	0.703	1.0044	2.84193	2.93978	3.08278
12	-201.087	.11419	1	0.735	1.0172	2.8545	2.9605	3.11542

13	-201.017	.14134	1	0.707	1.03	2.86689	2.98105	3.14788
14	-200.615	.80437	1	0.370	1.03837	2.87486	2.99717	3.17593
15	-200.489	.25111	1	0.616	1.0507	2.88652	3.01699	3.20766

Table A45. Results of lag selection of time-series yearly model of 2018 for temperature

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1312.46		104.194	7.48413	7.48851	7.49513		
1	-899.761	825.41	1	0.000	9.97778	5.13824	5.14699	5.16024
2	-895.172	9.1777	1	0.002	9.77581	5.11779	5.13092	5.15079
3	-878.402	33.539	1	0.000	8.93572	5.02793	5.04544*	5.07193*
4	-878.376	.05238	1	0.819	8.98545	5.03348	5.05537	5.08848
5	-875.764	5.2242	1	0.022	8.9033	5.0243	5.05056	5.09029
6	-875.289	.95026	1	0.330	8.92998	5.02729	5.05793	5.10428
7	-873.678	3.222	1	0.073	8.89897	5.0238	5.05883	5.1118
8	-870.429	6.4967*	1	0.011	8.78572*	5.01099*	5.05039	5.10999
9	-870.284	.29139	1	0.589	8.82863	5.01586	5.05964	5.12586
10	-869.752	1.0631	1	0.303	8.85227	5.01853	5.06669	5.13952
11	-869.14	1.2239	1	0.269	8.87192	5.02074	5.07327	5.15273
12	-868.026	2.2279	1	0.136	8.86623	5.02009	5.077	5.16308
13	-866.281	3.4903	1	0.062	8.82874	5.01585	5.07713	5.16984
14	-864.628	3.3068	1	0.069	8.79601	5.01212	5.07779	5.17711
15	-864.179	.89677	1	0.344	8.8238	5.01527	5.08531	5.19126

Table A46. Resu	lts of la	g selection of	f time-series	yearly model	l of 2018 fo	r humidity
		• /				

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-1455.92		235.961	8.30154	8.30592	8.31254		
1	-1274.97	361.9	1	0.000	84.6318*	7.27619*	7.28494*	7.29819*
2	-1274.3	1.34	1	0.247	84.7911	7.27807	7.2912	7.31107
3	-1273.7	1.2073	1	0.272	84.9828	7.28033	7.29784	7.32432
4	-1273.57	.26153	1	0.609	85.4049	7.28528	7.30717	7.34028
5	-1273.36	.42095	1	0.516	85.7901	7.28978	7.31604	7.35577

6	-1270.18	6.3552	1	0.012	84.7323	7.27737	7.30801	7.35436	-
7	-1270.09	.17254	1	0.678	85.1749	7.28258	7.3176	7.37057	
8	-1269.78	.61577	1	0.433	85.5117	7.28652	7.32592	7.38551	
9	-1269.72	.13725	1	0.711	85.9671	7.29183	7.3356	7.40182	
10	-1268.24	2.9596	1	0.085	85.7328	7.28909	7.33725	7.41009	
11	-1267.28	1.9015	1	0.168	85.7574	7.28937	7.34191	7.42137	
12	-1267.28	.00375	1	0.951	86.2471	7.29506	7.35197	7.43805	
13	-1264.95	4.6707*	1	0.031	85.5941	7.28745	7.34874	7.44144	
14	-1263.85	2.1965	1	0.138	85.547	7.28689	7.35256	7.45188	
15	-1263.82	.06544	1	0.798	86.0208	7.2924	7.36245	7.46839	

Table A47. Results of lag selection of time-series yearly model of 2018 for flu

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-35.2966		.416493*	1.96198*	1.97733*	2.00552*		
1	-34.8273	.93868	1	0.333	.428652	1.99066	2.02136	2.07774
2	-34.2573	1.1398	1	0.286	.438845	2.01391	2.05996	2.14453
3	-33.7492	1.0162	1	0.313	.450891	2.0405	2.1019	2.21465
4	-33.3242	.85011	1	0.357	.465503	2.07158	2.14832	2.28927
5	-32.7673	1.1137	1	0.291	.477373	2.09553	2.18763	2.35676
6	-32.7641	.00637	1	0.936	.50467	2.14941	2.25686	2.45418
7	-32.0586	1.4112	1	0.235	.513957	2.16533	2.28812	2.51363
8	-31.9641	.18899	1	0.664	.541369	2.21427	2.35242	2.60612
9	-31.8913	.14551	1	0.703	.571373	2.26439	2.41789	2.69978
10	-29.948	3.8867*	1	0.049	.545549	2.2134	2.38225	2.69233
11	-29.907	.08199	1	0.775	.577909	2.26524	2.44943	2.7877
12	-29.9068	.00026	1	0.987	.614269	2.31929	2.51883	2.88529
13	-29.7237	.36629	1	0.545	.647356	2.36344	2.57833	2.97298
14	-28.4318	2.5837	1	0.108	.643509	2.34767	2.57791	3.00074
15	-28.394	.07578	1	0.783	.685711	2.39967	2.64526	3.09629
1								

Appendix 2: Results of time-series models without air pollutants

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.005	0.004	1.140	0.256	0.996	1.014	
Temperature_lag1	0.995	0.006	-0.780	0.438	0.983	1.007	
Temperature_lag2	1.008	0.006	1.180	0.238	0.995	1.020	
Temperature_lag3	0.994	0.006	-0.920	0.357	0.982	1.007	
Temperature_lag4	1.006	0.006	0.910	0.363	0.993	1.019	
Temperature_lag5	0.996	0.006	-0.580	0.560	0.984	1.009	
Temperature_lag6	0.999	0.006	-0.140	0.885	0.987	1.012	
Temperature_lag7	1.001	0.006	0.140	0.887	0.988	1.014	
Temperature_lag8	1.002	0.006	0.390	0.696	0.990	1.015	
Temperature_lag9	1.007	0.006	1.060	0.287	0.994	1.019	
Temperature_lag10	0.995	0.004	-1.090	0.277	0.987	1.004	
Humidity_lag0	1.000	0.002	-0.070	0.945	0.997	1.003	
Humidity_lag1	0.999	0.002	-0.430	0.669	0.995	1.003	
Humidity_lag2	1.000	0.002	0.160	0.872	0.997	1.004	
Humidity_lag3	1.000	0.002	-0.200	0.844	0.996	1.003	
Humidity_lag4	1.001	0.002	0.490	0.625	0.997	1.005	
Humidity_lag5	0.999	0.002	-0.290	0.771	0.996	1.003	
Humidity_lag6	1.000	0.002	-0.110	0.910	0.996	1.004	
Humidity_lag7	0.999	0.002	-0.630	0.531	0.995	1.003	
Humidity_lag8	1.002	0.002	1.110	0.269	0.998	1.006	
Humidity_lag9	1.000	0.002	0.220	0.822	0.997	1.004	
Humidity_lag10	1.001	0.002	0.570	0.571	0.997	1.005	
Humidity_lag11	1.000	0.002	-0.250	0.806	0.996	1.003	
Humidity_lag12	1.000	0.002	0.100	0.919	0.997	1.004	
Humidity_lag13	1.000	0.001	0.280	0.782	0.998	1.003	
0b.H&W	1.000	•				•	
1.H&W	1.082	0.031	2.770	0.006	1.023	1.144	***
Flu_lag0	0.984	0.029	-0.560	0.579	0.928	1.043	
Flu_lag1	0.992	0.030	-0.250	0.799	0.936	1.052	
Flu_lag2	0.938	0.028	-2.150	0.031	0.885	0.994	**
Flu_lag3	1.024	0.031	0.800	0.425	0.966	1.086	
Flu_lag4	1.018	0.030	0.590	0.556	0.960	1.079	
Flu_lag5	0.961	0.029	-1.310	0.192	0.906	1.020	
Flu_lag6	1.058	0.032	1.870	0.061	0.997	1.123	*
Flu_lag7	1.043	0.032	1.390	0.166	0.983	1.107	
Flu_lag8	1.028	0.031	0.930	0.354	0.969	1.091	
Flu_lag9	1.015	0.031	0.490	0.625	0.957	1.077	

Table A2.1 Results of time-series three-year model without air pollutants among children under 17 agesin Edmonton between 2016 to 2018

Flu_lag10	1.003	0.030	0.100	0.923	0.945	1.064	
Flu_lag11	0.958	0.029	-1.420	0.156	0.904	1.016	
Flu_lag12	0.987	0.029	-0.450	0.653	0.931	1.046	
cos_1	1.585	0.098	7.430	0.000	1.403	1.789	***
cos_2	0.884	0.018	-5.950	0.000	0.849	0.921	***
cos_3	1.188	0.023	8.740	0.000	1.143	1.235	***
cos_4	1.101	0.021	4.950	0.000	1.060	1.143	***
sin_1	1.072	0.033	2.300	0.021	1.010	1.138	**
sin_2	0.937	0.019	-3.170	0.002	0.900	0.975	***
sin_3	1.229	0.025	10.200	0.000	1.181	1.278	***
sin_4	0.841	0.016	-9.130	0.000	0.810	0.873	***
Constant	5.963	0.965	11.030	0.000	4.342	8.189	***
lnalpha	-3.014	0.158	.b	.b	-3.325	-2.704	
Mean dependent var	7.5	538		SD depen	dent var 4.0	81	
Pseudo r-squared	0.0)87		Numbe	er of obs 108	33	
Chi-square	51	518.972		Pro	b > chi2 = 0.0	00	
Akaike crit. (AIC)	55	56.978		Bayesian cr	it. (BIC) 580)1.365	

*** p<.01, ** p<.05, * p<.1 H&W: holiday and weekend xi: nbreg dailycounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

2016 to 2018	
Table A2.2 Results of time-series sex-stratified model among female children under 17 ages in Edmonton between	1

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.002	0.007	0.260	0.791	0.989	1.015	
Temperature_lag1	1.001	0.009	0.140	0.889	0.983	1.020	
Temperature_lag2	1.014	0.010	1.460	0.144	0.995	1.033	
Temperature_lag3	0.980	0.010	-2.060	0.039	0.961	0.999	**
Temperature_lag4	1.018	0.010	1.820	0.069	0.999	1.037	*
Temperature_lag5	0.982	0.009	-1.840	0.066	0.964	1.001	*
Temperature_lag6	1.002	0.010	0.180	0.859	0.983	1.021	
Temperature_lag7	1.011	0.010	1.130	0.258	0.992	1.030	
Temperature_lag8	1.003	0.010	0.300	0.764	0.984	1.022	
Temperature_lag9	0.997	0.009	-0.370	0.709	0.978	1.015	
Temperature_lag10	1.002	0.007	0.300	0.762	0.989	1.015	
Humidity_lag0	0.999	0.002	-0.290	0.775	0.994	1.004	
Humidity_lag1	1.003	0.003	1.080	0.280	0.997	1.009	
Humidity_lag2	1.000	0.003	-0.020	0.987	0.994	1.006	
Humidity_lag3	1.000	0.003	-0.110	0.916	0.994	1.006	
Humidity_lag4	1.000	0.003	0.030	0.973	0.994	1.006	
Humidity_lag5	0.996	0.003	-1.280	0.201	0.990	1.002	
Humidity_lag6	1.002	0.003	0.600	0.547	0.996	1.008	

Humidity_lag7	0.999	0.003	-0.250	0.804	0.993	1.005	
Humidity_lag8	1.003	0.003	0.840	0.403	0.997	1.008	
Humidity_lag9	1.001	0.003	0.440	0.663	0.995	1.007	
Humidity_lag10	0.999	0.003	-0.190	0.853	0.994	1.005	
Humidity_lag11	1.001	0.003	0.380	0.707	0.995	1.007	
Humidity_lag12	0.999	0.003	-0.280	0.783	0.994	1.005	
Humidity_lag13	1.001	0.002	0.430	0.665	0.997	1.005	
0b.H&W	1.000						
1.H&W	1.063	0.047	1.390	0.165	0.975	1.159	
Flu_lag0	0.939	0.042	-1.400	0.162	0.860	1.026	
Flu_lag1	1.020	0.046	0.440	0.663	0.933	1.115	
Flu_lag2	0.936	0.042	-1.470	0.142	0.856	1.023	
Flu_lag3	1.012	0.046	0.270	0.786	0.926	1.106	
Flu_lag4	1.030	0.047	0.660	0.511	0.943	1.126	
Flu_lag5	1.007	0.046	0.150	0.883	0.920	1.101	
Flu_lag6	1.067	0.049	1.420	0.157	0.975	1.168	
Flu_lag7	1.092	0.050	1.900	0.057	0.997	1.195	*
Flu_lag8	1.021	0.047	0.460	0.649	0.933	1.118	
Flu_lag9	0.976	0.045	-0.530	0.597	0.892	1.068	
Flu_lag10	0.991	0.045	-0.210	0.837	0.906	1.083	
Flu_lag11	0.982	0.044	-0.400	0.689	0.899	1.073	
Flu_lag12	0.935	0.042	-1.500	0.133	0.856	1.021	
cos_1	1.766	0.165	6.080	0.000	1.471	2.122	***
cos_2	0.906	0.029	-3.040	0.002	0.850	0.966	***
cos_3	1.278	0.040	7.880	0.000	1.202	1.358	***
cos_4	1.045	0.031	1.480	0.139	0.986	1.109	
sin_1	1.137	0.053	2.770	0.006	1.038	1.245	***
sin_2	0.937	0.030	-2.050	0.040	0.881	0.997	**
sin_3	1.194	0.037	5.650	0.000	1.123	1.270	***
sin_4	0.838	0.025	-6.010	0.000	0.791	0.887	***
Constant	1.855	0.460	2.490	0.013	1.141	3.017	**
lnalpha	-2.567	0.248	.b	.b	-3.053	-2.082	
Mean dependent var	2.820		SD dep	endent var	2.144		
Pseudo r-squared	0.070		Numbe	r of obs	1083		
Chi-square	314.21	3	Prob > chi2		0.000		
Akaike crit. (AIC)	4266.5	96	Bayesia	an crit. (BIC)	4510.983		

*** p<.01, ** p<.05, * p<.1

H&W: holiday and weekend

xi: nbreg femalecounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Table A2.3 Results of time-series sex-stratified model among male children under 17 ages in Edmonton between 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.007	0.005	1.440	0.149	0.997	1.018	
Temperature_lag1	0.991	0.007	-1.270	0.204	0.977	1.005	
Temperature_lag2	1.004	0.007	0.540	0.590	0.990	1.019	
Temperature_lag3	1.003	0.007	0.350	0.726	0.988	1.017	
Temperature_lag4	0.999	0.007	-0.140	0.891	0.985	1.014	
Temperature_lag5	1.005	0.007	0.730	0.463	0.991	1.020	
Temperature_lag6	0.997	0.007	-0.360	0.718	0.983	1.012	
Temperature_lag7	0.994	0.007	-0.820	0.412	0.980	1.008	
Temperature_lag8	1.003	0.007	0.350	0.729	0.988	1.017	
Temperature_lag9	1.013	0.007	1.790	0.073	0.999	1.027	*
Temperature_lag10	0.991	0.005	-1.720	0.085	0.981	1.001	*
Humidity_lag0	1.000	0.002	0.170	0.867	0.997	1.004	
Humidity_lag1	0.997	0.002	-1.430	0.153	0.992	1.001	
Humidity_lag2	1.000	0.002	0.150	0.883	0.996	1.005	
Humidity_lag3	1.000	0.002	-0.120	0.906	0.995	1.004	
Humidity_lag4	1.002	0.002	0.680	0.497	0.997	1.006	
Humidity_lag5	1.001	0.002	0.660	0.508	0.997	1.006	
Humidity_lag6	0.999	0.002	-0.630	0.529	0.994	1.003	
Humidity_lag7	0.998	0.002	-0.700	0.481	0.994	1.003	
Humidity_lag8	1.002	0.002	0.820	0.410	0.997	1.006	
Humidity_lag9	1.000	0.002	-0.040	0.964	0.996	1.004	
Humidity_lag10	1.002	0.002	0.990	0.320	0.998	1.006	
Humidity_lag11	0.999	0.002	-0.700	0.487	0.994	1.003	
Humidity_lag12	1.001	0.002	0.380	0.702	0.997	1.005	
Humidity_lag13	1.000	0.002	0.010	0.994	0.997	1.003	
0b.H&W	1.000						
1.H&W	1.095	0.036	2.750	0.006	1.026	1.168	***
Flu_lag0	1.014	0.035	0.390	0.694	0.947	1.085	
Flu_lag1	0.977	0.034	-0.680	0.495	0.912	1.045	
Flu_lag2	0.938	0.032	-1.850	0.064	0.876	1.004	*
Flu_lag3	1.033	0.036	0.950	0.344	0.966	1.106	
Flu_lag4	1.008	0.035	0.230	0.817	0.942	1.079	
Flu_lag5	0.932	0.033	-2.000	0.045	0.871	0.999	**
Flu_lag6	1.051	0.037	1.430	0.152	0.982	1.126	
Flu_lag7	1.015	0.036	0.430	0.667	0.948	1.088	
Flu_lag8	1.031	0.036	0.890	0.371	0.964	1.104	
Flu_lag9	1.042	0.036	1.170	0.241	0.973	1.116	
Flu_lag10	1.008	0.035	0.230	0.822	0.941	1.079	
Flu_lag11	0.942	0.033	-1.720	0.086	0.880	1.009	*
Flu_lag12	1.019	0.035	0.550	0.583	0.953	1.090	
cos_1	1.493	0.108	5.550	0.000	1.296	1.720	***

cos_2	0.867	0.021	-5.990	0.000	0.827	0.908	***
cos_3	1.146	0.026	5.970	0.000	1.096	1.198	***
cos_4	1.129	0.025	5.420	0.000	1.080	1.179	***
sin_1	1.038	0.036	1.070	0.284	0.969	1.112	
sin_2	0.940	0.023	-2.560	0.010	0.897	0.986	**
sin_3	1.248	0.029	9.490	0.000	1.192	1.306	***
sin_4	0.842	0.018	-7.860	0.000	0.806	0.879	***
Constant	4.120	0.772	7.560	0.000	2.854	5.948	***
lnalpha	-3.431	0.321	.b	.b	-4.061	-2.801	
Mean dependent var	4.718		SD dep	endent var	2.782		
Pseudo r-squared	0.074		Number of obs		1083		
Chi-square	382.689	1	Prob > chi2		0.000		
Akaike crit. (AIC)	4867.75	2	Bayesia	n crit. (BIC)	5112.139		

*** p<.01, ** p<.05, * p<.1

H&W: holiday and weekend

xi: nbreg malecounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

 Table A2.4 Results of time-series age-stratified model among younger children (0-4 ages) in Edmonton between

 2016 to 2018

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.004	0.005	0.840	0.401	0.995	1.013	
Temperature_lag1	0.993	0.007	-1.020	0.310	0.980	1.006	
Temperature_lag2	1.006	0.007	0.950	0.344	0.993	1.020	
Temperature_lag3	0.991	0.007	-1.280	0.202	0.978	1.005	
Temperature_lag4	1.006	0.007	0.810	0.418	0.992	1.019	
Temperature_lag5	1.000	0.007	-0.070	0.946	0.986	1.013	
Temperature_lag6	0.996	0.007	-0.540	0.590	0.983	1.010	
Temperature_lag7	1.002	0.007	0.360	0.722	0.989	1.016	
Temperature_lag8	0.997	0.007	-0.500	0.619	0.983	1.010	
Temperature_lag9	1.010	0.007	1.520	0.129	0.997	1.023	
Temperature_lag10	0.994	0.005	-1.260	0.208	0.985	1.003	
Humidity_lag0	1.001	0.002	0.420	0.675	0.997	1.004	
Humidity_lag1	0.998	0.002	-0.930	0.353	0.994	1.002	
Humidity_lag2	1.002	0.002	1.000	0.319	0.998	1.007	
Humidity_lag3	0.999	0.002	-0.630	0.529	0.994	1.003	
Humidity_lag4	1.001	0.002	0.230	0.820	0.996	1.005	
Humidity_lag5	1.001	0.002	0.320	0.750	0.996	1.005	
Humidity_lag6	0.997	0.002	-1.380	0.167	0.993	1.001	
Humidity_lag7	1.000	0.002	0.210	0.832	0.996	1.005	
Humidity_lag8	1.002	0.002	1.020	0.307	0.998	1.007	
Humidity_lag9	0.999	0.002	-0.430	0.664	0.995	1.003	
Humidity_lag10	1.001	0.002	0.540	0.591	0.997	1.005	

Humidity_lag11	0.998	0.002	-0.750	0.455	0.994	1.003	
Humidity_lag12	1.001	0.002	0.280	0.778	0.996	1.005	
Humidity_lag13	1.001	0.002	0.570	0.570	0.998	1.004	
0b.H&W	1.000		•		•		
1.H&W	1.046	0.034	1.380	0.167	0.982	1.114	
Flu_lag0	0.994	0.032	-0.190	0.846	0.932	1.059	
Flu_lag1	0.961	0.031	-1.210	0.227	0.901	1.025	
Flu_lag2	0.917	0.030	-2.660	0.008	0.860	0.978	***
Flu_lag3	1.022	0.033	0.660	0.510	0.958	1.089	
Flu_lag4	1.019	0.033	0.580	0.565	0.956	1.087	
Flu_lag5	0.968	0.032	-0.980	0.330	0.908	1.033	
Flu_lag6	1.063	0.035	1.840	0.066	0.996	1.134	*
Flu_lag7	1.022	0.034	0.640	0.524	0.957	1.091	
Flu_lag8	1.026	0.034	0.780	0.434	0.962	1.094	
Flu_lag9	1.026	0.034	0.780	0.434	0.962	1.095	
Flu_lag10	1.030	0.034	0.900	0.368	0.966	1.098	
Flu_lag11	0.977	0.032	-0.700	0.484	0.917	1.042	
Flu_lag12	1.001	0.032	0.040	0.972	0.940	1.067	
cos_1	1.725	0.116	8.100	0.000	1.512	1.968	***
cos_2	0.925	0.022	-3.270	0.001	0.883	0.969	***
cos_3	1.174	0.027	6.980	0.000	1.122	1.228	***
cos_4	1.091	0.024	3.960	0.000	1.045	1.139	***
sin_1	1.107	0.037	3.030	0.002	1.037	1.183	***
sin_2	0.943	0.022	-2.480	0.013	0.900	0.988	**
sin_3	1.175	0.028	6.890	0.000	1.122	1.231	***
sin_4	0.853	0.019	-7.290	0.000	0.818	0.891	***
Constant	4.528	0.823	8.310	0.000	3.170	6.466	***
lnalpha	-3.252	0.247	.b	.b	-3.737	-2.767	
Mean dependent var		5.2	42 SD dep	endent var		3.374	
Pseudo r-squared		0.1	15 Numbe	er of obs	1083		
Chi-square		630.675 Prob > chi2			0.000		
Akaike crit. (AIC)		4968.1	59 Bayesi	4	5212.546		

*** p<.01, ** p<.05, * p<.1 H&W: holiday and weekend xi: nbreg youngercounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Table A2.5 Results of time-series age-stratified model among older children (5-16 ages) in Edmonton between	2016
to 2018	

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.009	0.009	1.020	0.306	0.992	1.026	
Temperature_lag1	1.001	0.012	0.070	0.947	0.978	1.024	
Temperature_lag2	1.013	0.012	1.040	0.298	0.989	1.037	

Temperature_lag3	1.003	0.012	0.220	0.822	0.979	1.027	
Temperature_lag4	1.007	0.012	0.550	0.581	0.983	1.031	
Temperature_lag5	0.987	0.012	-1.120	0.261	0.963	1.010	
Temperature_lag6	1.008	0.012	0.680	0.499	0.985	1.032	
Temperature_lag7	0.995	0.012	-0.450	0.649	0.971	1.018	
Temperature_lag8	1.023	0.012	1.890	0.059	0.999	1.047	*
Temperature_lag9	0.994	0.012	-0.520	0.603	0.971	1.017	
Temperature_lag10	1.000	0.008	-0.050	0.957	0.983	1.016	
Humidity_lag0	0.998	0.003	-0.660	0.511	0.993	1.004	
Humidity_lag1	1.002	0.003	0.590	0.558	0.996	1.008	
Humidity_lag2	0.997	0.003	-0.860	0.390	0.991	1.004	
Humidity_lag3	1.003	0.003	0.800	0.427	0.996	1.009	
Humidity_lag4	1.002	0.003	0.720	0.469	0.996	1.009	
Humidity_lag5	0.997	0.003	-1.020	0.309	0.990	1.003	
Humidity_lag6	1.005	0.003	1.580	0.114	0.999	1.011	
Humidity_lag7	0.996	0.003	-1.390	0.166	0.989	1.002	
Humidity_lag8	1.003	0.003	0.970	0.330	0.997	1.010	
Humidity_lag9	1.002	0.003	0.740	0.459	0.996	1.009	
Humidity_lag10	1.001	0.003	0.320	0.750	0.995	1.007	
Humidity_lag11	1.002	0.003	0.730	0.466	0.996	1.008	
Humidity_lag12	1.000	0.003	-0.080	0.936	0.994	1.006	
Humidity_lag13	0.999	0.002	-0.450	0.651	0.994	1.004	
0b.H&W	1.000						
1.H&W	1.176	0.056	3.390	0.001	1.071	1.291	***
Flu_lag0	0.965	0.052	-0.660	0.511	0.869	1.073	
Flu_lag1	1.099	0.059	1.750	0.081	0.989	1.222	*
Flu_lag2	1.016	0.055	0.300	0.768	0.914	1.129	
Flu_lag3	1.038	0.056	0.690	0.489	0.934	1.153	
Flu_lag4	0.995	0.054	-0.080	0.932	0.896	1.106	
Flu_lag5	0.940	0.051	-1.130	0.258	0.845	1.046	
Flu_lag6	1.047	0.057	0.860	0.391	0.942	1.164	
Flu_lag7	1.113	0.060	1.980	0.048	1.001	1.237	**
Flu_lag8	1.031	0.056	0.570	0.570	0.928	1.146	
Flu_lag9	0.979	0.053	-0.400	0.692	0.879	1.089	
Flu_lag10	0.923	0.051	-1.460	0.144	0.829	1.028	
Flu_lag11	0.897	0.049	-1.980	0.047	0.807	0.999	**
Flu_lag12	0.934	0.050	-1.270	0.206	0.841	1.038	
cos_1	1.390	0.161	2.850	0.004	1.108	1.744	***
cos_2	0.745	0.027	-8.090	0.000	0.694	0.800	***
cos_3	1.167	0.039	4.570	0.000	1.092	1.246	***
cos_4	1.096	0.036	2.750	0.006	1.027	1.169	***
sin_1	1.057	0.057	1.030	0.302	0.951	1.176	

sin_2	0.900	0.031	-3.020	0.003	0.841	0.964	***
sin_3	1.329	0.045	8.380	0.000	1.244	1.421	***
sin_4	0.830	0.027	-5.840	0.000	0.779	0.883	***
Constant	1.076	0.300	0.260	0.794	0.622	1.860	
lnalpha	-2.570	0.282	.b	.b	-3.122	-2.018	
Mean dependent var	2.296	.296		SD dependent var			
Pseudo r-squared	0.076	Number of ot		r of obs	1083		
Chi-square	319.696	5	Prob > o	Prob > chi2			
Akaike crit. (AIC)	3960.46	3960.462		Bayesian crit. (BIC)			

*** p<.01, ** p<.05, * p<.1 H&W: holiday and weekend xi: nbreg oldercounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Table A2.6 Results of time-series v	vildfire season model	l among children under	: 17 ages in Edmonton	between 2016
to 2018				

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.019	0.011	1.810	0.070	0.998	1.040	*
Temperature_lag1	0.991	0.014	-0.680	0.498	0.964	1.018	
Temperature_lag2	1.009	0.012	0.770	0.443	0.986	1.034	
Temperature_lag3	0.991	0.012	-0.750	0.452	0.968	1.015	
Temperature_lag4	1.010	0.012	0.810	0.417	0.986	1.034	
Temperature_lag5	0.983	0.011	-1.500	0.135	0.961	1.005	
Temperature_lag6	1.008	0.008	1.010	0.311	0.993	1.024	
Humidity_lag0	1.001	0.003	0.550	0.581	0.996	1.006	
Humidity_lag1	0.999	0.003	-0.250	0.805	0.994	1.004	
0b.H&W	1.000						
1.H&W	1.154	0.048	3.420	0.001	1.063	1.253	***
Flu_lag0	0.924	0.054	-1.350	0.178	0.823	1.037	
Flu_lag1	0.996	0.058	-0.070	0.943	0.889	1.116	
Flu_lag2	0.973	0.057	-0.470	0.640	0.868	1.091	
Flu_lag3	0.910	0.054	-1.600	0.110	0.811	1.022	
Flu_lag4	1.020	0.060	0.340	0.734	0.909	1.146	
Flu_lag5	0.894	0.054	-1.870	0.062	0.795	1.006	*
Flu_lag6	0.942	0.055	-1.010	0.312	0.840	1.057	
Flu_lag7	1.047	0.060	0.800	0.422	0.936	1.171	
Flu_lag8	0.983	0.057	-0.300	0.763	0.877	1.101	
Flu_lag9	0.929	0.055	-1.240	0.214	0.827	1.043	
Flu_lag10	0.969	0.057	-0.540	0.588	0.863	1.087	
Flu_lag11	1.002	0.058	0.040	0.969	0.896	1.122	
Flu_lag12	1.029	0.058	0.510	0.611	0.921	1.150	
Flu_lag13	1.018	0.058	0.320	0.753	0.910	1.139	
Flu_lag14	1.089	0.062	1.490	0.136	0.974	1.217	

Flu_lag15	1.141	0.066	2.270	0.023	1.018	1.278	**
Flu_lag16	0.953	0.056	-0.810	0.418	0.849	1.071	
Flu_lag17	1.006	0.059	0.110	0.915	0.897	1.129	
cos_1	1.065	8.243	0.010	0.994	0.000	4.133E+06	
cos_2	1.080	5.280	0.020	0.988	0.000	1.571E+04	
cos_3	2.079	4.387	0.350	0.729	0.033	130.109	
cos_4	1.778	0.889	1.150	0.249	0.668	4.735	
sin_1	5.831	3.573	2.880	0.004	1.755	19.378	***
sin_2	8.930	7.074	2.760	0.006	1.890	42.186	***
sin_3	6.492	3.516	3.450	0.001	2.246	18.767	***
sin_4	1.644	0.320	2.550	0.011	1.122	2.408	**
Constant	4.282	19.137	0.330	0.745	0.001	2.728E+04	
lnalpha	-3.480	0.355	.b	.b	-4.176	-2.785	
Mean dependent var	6.50)1	SD de	pendent var	4.208		
Pseudo r-squared	0.13	30	Numb	Number of obs			
Chi-square	388	.950	Prob >	· chi2	0.000		
Akaike crit. (AIC)	267	7.026	Bayes	Bayesian crit. (BIC)			

xi: nbreg wildfirecounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.001	0.004	0.150	0.879	0.992	1.009	
Temperature_lag1	0.997	0.006	-0.560	0.575	0.984	1.009	
Temperature_lag2	1.005	0.006	0.820	0.410	0.993	1.018	
Temperature_lag3	0.995	0.006	-0.810	0.418	0.983	1.007	
Temperature_lag4	1.006	0.006	0.890	0.374	0.993	1.018	
Temperature_lag5	1.000	0.006	-0.010	0.988	0.988	1.012	
Temperature_lag6	0.998	0.006	-0.260	0.797	0.987	1.010	
Temperature_lag7	0.997	0.006	-0.520	0.602	0.985	1.009	
Temperature_lag8	1.008	0.004	1.850	0.064	1.000	1.016	*
Humidity_lag0	0.999	0.002	-0.300	0.766	0.995	1.004	
Humidity_lag1	0.998	0.003	-0.820	0.409	0.993	1.003	
Humidity_lag2	1.001	0.003	0.240	0.810	0.996	1.006	
Humidity_lag3	0.999	0.002	-0.520	0.600	0.995	1.003	
0b.H&W	1.000						
1.H&W	1.052	0.037	1.450	0.147	0.982	1.128	
Flu_lag0	0.995	0.032	-0.160	0.870	0.934	1.059	
Flu_lag1	0.979	0.032	-0.660	0.510	0.919	1.043	
Flu_lag2	0.917	0.029	-2.720	0.007	0.861	0.976	***

Table A2.7 Results of time-series non-wildfire season model among children under 17 ages in Edmonton between 2016 to 2018

Flu_lag3	1.061	0.034	1.840	0.066	0.996	1.131	*
Flu_lag4	0.995	0.032	-0.170	0.867	0.934	1.060	
Flu_lag5	0.968	0.031	-0.990	0.321	0.909	1.032	
Flu_lag6	1.088	0.036	2.550	0.011	1.020	1.160	**
Flu_lag7	1.028	0.034	0.820	0.415	0.963	1.097	
Flu_lag8	1.030	0.034	0.910	0.363	0.966	1.099	
Flu_lag9	1.038	0.034	1.140	0.255	0.973	1.107	
Flu_lag10	1.005	0.033	0.160	0.875	0.943	1.071	
Flu_lag11	0.946	0.031	-1.700	0.090	0.888	1.009	*
Flu_lag12	0.964	0.031	-1.140	0.254	0.905	1.027	
cos_1	0.000	0.000	-2.370	0.018	0.000	0.059	**
cos_2	3.566E+04	1.544E+05	2.420	0.015	7.352	1.730E+08	**
cos_3	0.013	0.024	-2.350	0.019	0.000	0.488	**
cos_4	2.833	1.228	2.400	0.016	1.211	6.625	**
sin_1	0.619	0.375	-0.790	0.428	0.188	2.031	
sin_2	2.095	1.643	0.940	0.346	0.450	9.748	
sin_3	0.615	0.329	-0.910	0.363	0.216	1.754	
sin_4	1.152	0.215	0.760	0.447	0.800	1.660	
Constant	1.398E+05	5.540E+05	2.990	0.003	59.223	3.301E+08	***
lnalpha	-3.754	0.364	.b	.b	-4.467	-3.041	
Mean dependent var	8.60	2	SD de	pendent var	3.653		
Pseudo r-squared	0.04	5	Numb	er of obs	535		
Chi-square	128.	672	Prob >	> chi2	0.000		
Akaike crit. (AIC)	2807	7.172	Bayes	ian crit. (BIC)	2965.616	5	

xi: nbreg non-wildfirecounts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Table A2.8 Results of time-series	yearly model among children under	17 ages in Edmonton in 2016

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.017	0.008	2.150	0.031	1.001	1.032	**
Temperature_lag1	0.991	0.010	-0.900	0.367	0.971	1.011	
Temperature_lag2	1.021	0.010	2.060	0.039	1.001	1.041	**
Temperature_lag3	0.986	0.010	-1.410	0.158	0.967	1.005	
Temperature_lag4	1.011	0.010	1.030	0.301	0.991	1.031	
Temperature_lag5	1.007	0.010	0.650	0.516	0.987	1.027	
Temperature_lag6	1.005	0.010	0.450	0.655	0.985	1.025	
Temperature_lag7	1.008	0.010	0.790	0.431	0.989	1.027	
Temperature_lag8	0.991	0.007	-1.300	0.195	0.977	1.005	
Humidity_lag0	1.000	0.003	-0.090	0.930	0.994	1.005	
Humidity_lag1	0.997	0.003	-1.080	0.280	0.992	1.002	
0b.H&W	1.000						
1.H&W	1.028	0.046	0.610	0.540	0.941	1.123	

Flu_lag0	0.923	0.049	-1.510	0.130	0.832	1.024	
Flu_lag1	0.973	0.049	-0.550	0.584	0.881	1.074	
Flu_lag2	1.029	0.053	0.560	0.573	0.931	1.138	
Flu_lag3	1.069	0.053	1.330	0.182	0.969	1.178	
Flu_lag4	1.050	0.052	0.980	0.327	0.952	1.158	
Flu_lag5	1.009	0.051	0.170	0.862	0.914	1.113	
Flu_lag6	1.076	0.054	1.460	0.145	0.975	1.186	
Flu_lag7	0.974	0.050	-0.510	0.608	0.881	1.077	
cos_1	2.330	0.299	6.580	0.000	1.811	2.998	***
cos_2	0.905	0.034	-2.640	0.008	0.840	0.975	***
cos_3	1.225	0.043	5.730	0.000	1.143	1.313	***
cos_4	1.134	0.038	3.790	0.000	1.063	1.210	***
sin_1	0.987	0.053	-0.240	0.814	0.889	1.096	
sin_2	0.967	0.038	-0.860	0.389	0.895	1.044	
sin_3	1.168	0.039	4.680	0.000	1.095	1.247	***
sin_4	0.725	0.023	-10.290	0.000	0.682	0.771	***
Constant	7.008	1.284	10.630	0.000	4.894	10.036	***
lnalpha	-4.073	0.646	.b	.b	-5.340	-2.806	
Mean dependent var	7.525		SD dep	pendent var	4.284		
Pseudo r-squared	0.131		Numbe	er of obs	358		
Chi-square	261.473		Prob >	chi2	0.000		
Akaike crit. (AIC)	1798.450		Bayesi	an crit. (BIC)	1914.866		

xi: nbreg 2016counts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Table A2.9 Results of time-series	yearly model amo	ng children under 1	17 ages in Edmontor	n in 2017
		0		

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.000	0.009	0.000	0.999	0.983	1.017	
Temperature_lag1	1.010	0.012	0.800	0.423	0.986	1.034	
Temperature_lag2	0.988	0.010	-1.160	0.245	0.968	1.008	
Temperature_lag3	1.005	0.007	0.670	0.503	0.991	1.019	
Humidity_lag0	1.002	0.003	0.760	0.449	0.996	1.008	
Humidity_lag1	1.000	0.003	0.090	0.926	0.995	1.006	
0b.H&W	1.000						
1.H&W	1.102	0.053	2.040	0.041	1.004	1.210	**
Flu_lag0	0.980	0.055	-0.360	0.720	0.878	1.094	
Flu_lag1	0.978	0.054	-0.400	0.686	0.878	1.089	
Flu_lag2	1.021	0.055	0.380	0.702	0.918	1.135	
Flu_lag3	1.002	0.054	0.030	0.976	0.901	1.113	
Flu_lag4	1.017	0.055	0.310	0.755	0.915	1.130	
Flu_lag5	0.863	0.048	-2.660	0.008	0.774	0.962	***
Flu_lag6	1.011	0.055	0.190	0.848	0.908	1.125	

Flu_lag7	1.047	0.058	0.830	0.405	0.940	1.167	
Flu_lag8	1.000	0.056	-0.010	0.994	0.896	1.116	
Flu_lag9	1.016	0.056	0.290	0.774	0.911	1.133	
Flu_lag10	1.082	0.060	1.410	0.158	0.970	1.207	
Flu_lag11	1.005	0.056	0.080	0.935	0.901	1.120	
Flu_lag12	1.056	0.059	0.980	0.325	0.947	1.177	
cos_1	1.366	0.117	3.640	0.000	1.155	1.616	***
cos_2	0.944	0.046	-1.180	0.236	0.858	1.039	
cos_3	1.137	0.057	2.570	0.010	1.031	1.254	**
cos_4	1.142	0.040	3.840	0.000	1.067	1.223	***
sin_1	0.959	0.036	-1.100	0.271	0.891	1.033	
sin_2	0.943	0.031	-1.770	0.077	0.884	1.006	*
sin_3	1.272	0.042	7.230	0.000	1.192	1.357	***
sin_4	0.876	0.028	-4.130	0.000	0.822	0.933	***
Constant	5.623	1.284	7.560	0.000	3.594	8.796	***
lnalpha	-3.432	0.382	.b	.b	-4.181	-2.682	
Mean dependent var	7.397		SD dependent var		3.897		
Pseudo r-squared	0.086		Number of obs		353		
Chi-square	163.845	Prob > chi2		i2	0.000		
Akaike crit. (AIC)	1801.230		Bayesian crit. (BIC)		1917.224		

xi: nbreg 2017counts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr

Variable	IRR	St.Err.	t-value	p-value	[95% Conf	Interval]	Sig
Temperature_lag0	1.012	0.008	1.450	0.148	0.996	1.027	
Temperature_lag1	0.982	0.010	-1.770	0.076	0.963	1.002	*
Temperature_lag2	1.010	0.010	0.990	0.321	0.990	1.031	
Temperature_lag3	0.993	0.011	-0.670	0.505	0.972	1.014	
Temperature_lag4	1.009	0.011	0.880	0.377	0.989	1.030	
Temperature_lag5	0.990	0.010	-0.920	0.357	0.970	1.011	
Temperature_lag6	1.007	0.010	0.650	0.514	0.987	1.027	
Temperature_lag7	0.995	0.010	-0.540	0.592	0.975	1.014	
Temperature_lag8	1.011	0.010	1.100	0.272	0.992	1.030	
Temperature_lag9	1.003	0.009	0.350	0.724	0.985	1.021	
Temperature_lag10	1.002	0.007	0.280	0.778	0.989	1.015	
Humidity_lag0	1.001	0.003	0.560	0.576	0.996	1.007	
Humidity_lag1	1.002	0.003	0.670	0.504	0.996	1.008	
Humidity_lag2	1.001	0.003	0.240	0.813	0.995	1.007	
Humidity_lag3	1.000	0.003	-0.140	0.885	0.994	1.005	
Humidity_lag4	1.003	0.003	1.050	0.293	0.997	1.009	

Table A2.10 Results of time-series yearly model among children under 17 ages in Edmonton in 2018

Humidity_lag5	0.997	0.003	-1.040	0.297	0.992	1.002	
0b.H&W	1.000						
1.H&W	1.147	0.055	2.840	0.004	1.043	1.260	***
Flu_lag0	1.042	0.054	0.800	0.423	0.942	1.153	
Flu_lag1	1.024	0.053	0.450	0.652	0.925	1.133	
Flu_lag2	0.864	0.044	-2.860	0.004	0.782	0.955	***
Flu_lag3	1.047	0.054	0.890	0.372	0.947	1.158	
Flu_lag4	1.001	0.052	0.010	0.991	0.903	1.108	
Flu_lag5	1.020	0.052	0.390	0.693	0.923	1.128	
Flu_lag6	1.114	0.059	2.040	0.041	1.004	1.236	**
Flu_lag7	1.094	0.057	1.720	0.085	0.988	1.212	*
Flu_lag8	1.015	0.054	0.290	0.775	0.914	1.128	
Flu_lag9	1.018	0.056	0.340	0.737	0.915	1.134	
Flu_lag10	0.974	0.053	-0.480	0.633	0.876	1.084	
Flu_lag11	0.979	0.053	-0.400	0.692	0.880	1.089	
Flu_lag12	1.006	0.054	0.110	0.910	0.906	1.117	
Flu_lag13	1.011	0.054	0.210	0.833	0.911	1.123	
Flu_lag14	0.962	0.051	-0.740	0.460	0.867	1.067	
Flu_lag15	0.972	0.052	-0.530	0.593	0.875	1.079	
cos_1	1.472	0.338	1.680	0.093	0.938	2.308	*
cos_2	0.783	0.062	-3.100	0.002	0.670	0.914	***
cos_3	1.175	0.043	4.400	0.000	1.094	1.263	***
cos_4	1.036	0.044	0.820	0.414	0.952	1.127	
sin_1	1.269	0.086	3.500	0.000	1.111	1.450	***
sin_2	0.888	0.044	-2.380	0.017	0.805	0.979	**
sin_3	1.256	0.073	3.940	0.000	1.121	1.407	***
sin_4	0.916	0.043	-1.880	0.060	0.835	1.004	*
Constant	4.431	1.227	5.380	0.000	2.575	7.625	***
lnalpha	-3.942	0.607	.b	.b	-5.131	-2.753	
Mean dependent var	7.314		SD dependent var		3.736		
Pseudo r-squared	0.103		Number of obs		350		
Chi-square	196.348		Prob > cl	Prob > chi2			
Akaike crit. (AIC)	1792.998		Bayesian	Bayesian crit. (BIC)			

*** p<.01, ** p<.05, * p<.1 H&W: holiday and weekend xi: nbreg 2018counts temperaturelag* humiditylag* i.holidayweekend flulag* cos* sin*, irr