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Abstract

Full dimensional potential energy surfaces (PESs) have been constructed using the

neural network exponential fitting approach (NN-expnn). High level ab initio energies

have been fit to a sum-of-products form (SOP) and the quality of the PESs have been

verified by computing vibrational frequencies using the Multi-Configuration Time

Dependent Hartree (MCTDH) method. Ground and excited states of CS2, HFCO

and HONO have been explored using this NN-expnn technique.

The ground state PES and dipole moment surfaces (DMS) for CS2 have been

determined at the CASPT2/C:cc-pVTZ, S:aug-cc-pV(T+d)Z level of theory and fit to

a SOP form using the NN-expnn method. A generic interface between the NN-expnn

PES fitting and the Heidelberg MCTDH software package is demonstrated. The PES

has also been fit using the potfit procedure in MCTDH. For fits to the low-energy

regions of the potential, the neural network method requires fewer parameters than

potfit to achieve high accuracy - global fits are comparable between the two methods.

Using these PESs, the vibrational energies have been computed for the four most

abundant CS2 isotopomers, compared to previous experimental and theoretical data,

and shown to accurately reproduce the low-lying vibrational energies within a few

wavenumbers.

A local 6D PES for the HFCO molecule was fit in a SOP form using neural

network exponential fitting function and validated in MCTDH calculation. The ab

initio data were computed at the CCSD(T)-F12/cc-pVTZ-F12 level of theory. The
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fit PES has a RMSE of 10 cm−1 as compared to the ab initio data up to 10000 cm−1

above the zero point energy. The computed vibrational modes, which cover most of

the experimentally measured infrared data, are more accurate that those from the

previous MP2-based PES. With this PES, intermolecular vibrational redistribution

(IVR) in HFCO and DFCO, the effect of IVR on unimolecular dissociation, and

control of IVR using optimal control theory can be studied.

A CCSD(T)-F12/cc-pVTZ-F12 computed 6D PES for HONO in the cis-trans

region has been fit with the neural network exponential fitting function. The final

PES is in SOP form and can directly be used in MCTDH to study spectroscopy and

dynamics. The PES is compared with alternate PESs based on CCSD(T)/cc-pVTZ,

cc-pVQZ, cc-pV5Z and complete basis set (CBS) extrapolated ab initio data. The

vibrational states determined up to 4000 cm−1 for cis- and trans-HONO exhibit very

good accuracy when compared to experiment (RMSE of 7.5 cm−1 for cis-HONO and

8.5 cm−1 for trans-HONO). The general NN-expnn fitting method can be applied to

other similar 6D molecular systems and has great potential for application to larger

systems (9D, etc.) in the future.

A global 6D PES was constructed for HFCO using CCSD(T)-F12/cc-pVTZ-F12

ab initio energies. The SOP form of the final analytical surface was used to compute

vibrational frequencies using MCTDH. The equilibrium to HF + CO dissociation

part of the potential was very accurate, about 10 cm−1 RMSE, compared to recent

experiment and theory. The cis-trans-HOCF and HFCO to trans-HOCF regions were

also accurate with RMSE of 20 cm−1 compared to the ab initio data.

A 6D PES for the HFCO S1 electronic state was determined based on EOM-

CCSD/aug-cc-pVTZ energies. The fundamental vibrational frequencies as computed

using MCTDH were in very good agreement with the experimental results. RMSE of

45 cm−1 of the fundamental modes was obtained. The vertical excitation energies were
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also computed at CASSCF, CASPT2, CASPT2-F12, MRCI and MRCI-F12 levels of

theory with different active space, (CAS(8,7), CAS(12,9), and full CAS(18,13)). With

this newly constructed PES along with the previous S0 surface (both in SOP form),

it is possible to study theoretically stimulated emission pumping (SEP) spectra for

the HFCO molecule using MCTDH.

Overall, a MATLAB interface (for constructing PESs by directly fitting of ab

initio data into SOP form) to the MCTDH software package has been successfully

implemented and tested on a diversity of problems. In the future, the present PES

fitting method may serve as an alternative to the conventional potfit approach for

adopting PESs for use in MCTDH.
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D2 Fitting Parameters for bond angles and dihedral angle of HFCO global

PES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
D3 RMSE vs NN for HFCO global PES . . . . . . . . . . . . . . . . . . . 167

xiv



D4 Grid lengths and parameters of the primitive basis set employed for
each degree of freedom of HFCO. HO is the harmonic oscillator (Her-
mite) DVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D5 Grid lengths and parameters of the primitive basis set employed for
each degree of freedom of trans-HOCF. HO is the harmonic oscillator
(Hermite) DVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D6 Grid lengths and parameters of the primitive basis set employed for
each degree of freedom of cis-HOCF. HO is the harmonic oscillator
(Hermite) DVR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

D7 Selected vibrational energies (in cm−1) for states up to 2600 cm−1 for
cis- and trans-HOCF from the global PES compared with CCSD(T)/aug-
cc-pVTZ anharmonic frequencies (using VPT2 method). Vibrational
states assignment is based upon comparing with corresponding VPT2
assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E1 RMSE vs NN for HFCO on the S1 PES . . . . . . . . . . . . . . . . . 175
E2 One dimensional fitting parameters to Morse functional form for R1

CH ,
R2

CF and R3
CO physical coordinates . . . . . . . . . . . . . . . . . . 175

E3 One dimensional fitting parameters to the fourth order Polynomial
functional form for θ1

HCO, θ2
FCO and fifth order for φ physical coordi-

nates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
E4 Optimized geometries of HFCO ground and excited states minimum

and intermediates conformers at various methods and active space.
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Chapter 1

Introduction

1.1 Motivation

The goals of this thesis are to generate and test high quality, multidimensional poten-

tial energy surfaces (PESs) that will be computationally effective for spectroscopic and

quantum dynamics applications for moderate to large sized molecules (i.e., containing

from 3 to, perhaps, 10 atoms). Among many other competitive mathematical PES

fitting approaches [e.g., permutation invariant polynomial neural network (PIP-NN),

PIP interpolated moving least squares (PIP-IMLS)], the neural network exponential

fitting (NN-expnn) method, developed by Carrington and Manzhos1,2 is selected. In

the NN-expnn approach, the PES is fit to a sum-of-products (SOP) form which can

be directly utilized in the multiconfigurational time-dependent Hartree (MCTDH)

method3 to study spectroscopy and dynamics. None of the other above mentioned

methods generate a SOP form for the final PES. Thus, refitting to the SOP form

before use in MCTDH is required for computational efficiency.

MCTDH has been shown3–7 to be an efficient and accurate method to study spec-

troscopy and full dimensional quantum dynamics in a diversity of molecular systems.

However, in MCTDH, the sum-of-products form of the wave function and the Hamil-

tonian operator are required to obtain computational efficiency. In general, the kinetic

energy operator (KEO) is always or can be, written in the SOP form. Therefore, the

challenge becomes expressing the potential in the requisite SOP form.

The motivation behind using the NN-expnn fitting method comes from the fact
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that the traditional potfit method in MCTDH for fitting a PES is impossible to im-

plement beyond a six-dimensional (6D) PES, i.e., beyond four atoms. The limitation

arises because the potfit algorithm requires, and must store, the energy data on a

grid. As an example, for a nine-dimensional (9D) system, i.e., 5 atoms, if 10 grid

points are taken along each dimension, the total number of data points required is

109. Computing a large number of data points, especially using any sort of high-level

ab initio approach, is not tractable. Even if one could compute the data, its storage

would be prohibitive. The computational cost of the underlying ab initio points is

why many (most) MCTDH computations for isolated molecules are based on PESs

refit using the potfit algorithm from a previous analytical surface. On the other hand,

the NN-expnn fitting procedure is general and does not require data on a grid but

rather randomly selected data can produce a high quality PES.1,2,8 Therefore, one

of the motivations of this thesis work is to implement the NN-expnn method as a

general replacement for potfit in MCTDH such that full dimensional quantum dy-

namics of 6D, and larger, systems can be studied. At the same time, this thesis

aims to present the most accurate PES of a system available from the underlying

ab initio electronic structure. The accuracy of a PES is reflected in the quality of

computational results for spectroscopy (e.g., vibrational state energies) and quantum

dynamics (e.g., reaction rates). For ground electronic states, the ab initio electronic

structure computations are carried out primarily with the explicitly correlated coupled

cluster singles, doubles, and perturbative triples excitation (CCSD(T)-F12) method.

For one system, the multireference complete active space second order perturbation

theory (CASPT2) was utilized. The equation of motion coupled cluster singles and

doubles (EOM-CCSD) method was used as a basis for the excited electronic state

PES.

In this thesis, the overall computational approach is termed as NN-expnn-MCTDH,

where (i) ab initio electronic structure computations are carried out to determine elec-

tronic energies for a variety of molecular geometries, (ii) the energy data is fit directly

using the NN-expnn approach and the fitting parameters converted into an MCTDH

operator file, and (iii) vibrational states are computed using block improved relax-
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ation9 in MCTDH to validate the PES quality. The utility of this specific potential

energy surface fitting approach is exemplified through applications to several specific

molecules: CS2, HFCO and HONO. The motivation for examining these specific sys-

tems is touched upon in the Thesis Overview (Section 1.5) and expanded upon in the

corresponding research chapters.

In the following sections, a brief overview of the three computational components

that form the basis of the present work are provided: (i) the ab initio computational

methods used for determining ground and excited electronic states, (ii) the potential

energy surface fitting procedures, and (iii) the approaches used for the determination

of the vibrational frequencies. While a basic general introduction is given to most of

the topics in each of the above components, one major topic will be the primary focus

in each of these sections; further theoretical, mathematical and computational details

are available from the primary references and are not presented here. In the ab initio

methods section, the theoretical details of the explicitly correlated coupled cluster

with singles doubles and perturbative triples, CCSD(T)-F12, method will be empha-

sised (see Section 1.2.1.4). In the PES fitting procedures, neural network fitting,

including that with exponential neurons to obtain a sum-of-products form suitable

for use in MCTDH, will be discussed (see Section 1.3.2.1). Finally, for determin-

ing vibrational states, the approaches available in the Heidelberg MCTDH software

package are discussed.

1.2 Electronic Structure Computations

The Schrödinger equation is the basic building block of quantum chemistry:

Ĥ(r̂, R̂)Ψ(r̂, R̂) = EΨ(r̂, R̂) (1.1)

where the Hamiltonian operator Ĥ(r̂, R̂) and wavefunction Ψ(r̂, R̂) depend explicitly

on the coordinates of all the electrons (r̂) and nuclei (R̂) in the system (molecule).
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The (non-relativistic) Hamiltonian operator in atomic units is given by

Ĥ(r̂, R̂) =− 1

2

∑
A

1

MA

∇2
A −

1

2

∑
i

∇2
i −

∑
i,A

ZA
|ri −RA|

+
∑
i<j

1

|rj − ri|
+
∑
A<B

ZAZB
|RB −RA|

(1.2)

where the terms represent the kinetic energy of the nuclei (of mass MA/me), ki-

netic energy of the electrons, electron-nuclei attractions, electron-electron repulsion,

and nuclear-nuclear repulsion. While, in principle, any property can be determined

from the wavefunction Ψ, Eq. (1.1) is rarely solved directly for molecular applica-

tions but rather the Born-Oppenheimer approximation is invoked. Within the Born-

Oppenheimer approximation, the electronic and the nuclear motion of a molecule

are treated as separable. One utilizes the fact that electrons are much less massive

compared to the nuclei, and hence move much faster. Therefore, the nuclear motion

is negligible with respect to the electronic motion, and one can solve the electronic

Schrödinger equation for fixed positions of the nuclei. From this, one obtains the

electronic energy for a given set of nuclear coordinates. Mapping out this energy as

a function of nuclear coordinates, V(
−→
R ), leads to the concept of the potential en-

ergy surface (PES). The PES can then be used to construct the nuclear Schrödinger

equation, where the Hamiltonian operator is

Ĥ = −1

2

∑
A

∇2
A

MA

+ V (
−→
R ). (1.3)

The solution of this equation is discussed further in Sec. 1.4. Thus, the wave function

of a molecule can be presented as a product of an electronic and nuclear part, i.e.,

Ψmolecule(~ri, ~Rj) = Ψelectronic(~r; ~R)Ψnuclear(~R). (1.4)

Several methods for computing the electronic energies are presented below.

1.2.1 Ground Electronic State

1.2.1.1 Hartree-Fock Self-Consistent Field (HF-SCF)

The most basic electronic structure computation is a HF-SCF10,11 determination of

the electronic wave function. Restricted HF (RHF) computations are based on a
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single determinant. where the (N-electron) electronic wavefunction is written as,

Ψ(q1, q2, ...qN) =
1√
N !

∣∣∣∣∣∣∣∣∣
Φ1(q1) Φ2(q1) · · · ΦN(q1)
Φ1(q2) Φ2(q2) · · · ΦN(q2)

...
...

...
...

Φ1(qN) Φ2(qN) · · · ΦN(qN)

∣∣∣∣∣∣∣∣∣ . (1.5)

In Eq. (1.5), each Φi(qi) is a spin orbital that depends on both the spatial (r i) and spin

(α or β) coordinates. If one assume that each orbital can be written as a linear com-

bination of one electron atomic basis functions, the standard Hartree-Fock-Roothan

equations can be derived. In general, the HF-SCF procedure neglects electron cor-

relation (save for that accounted for through the proper anti-symmetrization of the

wavefunction). To deal with the accurate description of the correlation energy, a va-

riety of post-HF methods have been developed; however HF-SCF is required for the

initial guess wave function.

1.2.1.2 Møller-Plesset perturbation theory (MP2)

Møller-Plesset (MP) perturbation12 theory utilizes Rayleigh-Schrödinger perturba-

tion theory to incorporate effects of electron correlation and, hence, can lead to ex-

pansion to different orders, i.e., MPn. The zeroth-order wavefunction is that from

a HF-SCF computation and the perturbation is the correlation potential. However,

the MP method is not variational, and, therefore, the calculated energy may be lower

than the true ground state energy. Although various orders of MP perturbation the-

ory are available, e.g. second order (MP2), third order (MP3), fourth order (MP4),

MP2 is widely used for computational efficiency since higher order MPn methods may

be divergent. The MP2 method is useful due to the availability of analytic energy

gradients and Hessians, which allow for efficient geometry optimizations and compu-

tation of harmonic vibrational frequencies. In this thesis, the MP2 method13,14 was

used to optimize geometries prior to the use of much more computationally expensive

coupled cluster theory methods (including explicitly correlated versions).
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1.2.1.3 CCSD, CCSD(T)

CCSD(T)14 is considered as the “gold standard method of quantum chemistry.” The

coupled cluster wave function is expressed using an exponential ansatz,

|Ψ〉 = eT̂ |Φ0〉 (1.6)

where Φ0 is the initial Slater determinant constructed from (usually) HF molecular

orbitals and T̂ is the cluster operator. The cluster operator, is written as

T̂ = T̂1 + T̂2 + T̂3 + ... (1.7)

where T̂1 is the cluster of all single excitations, T̂2 is the cluster of all double ex-

citations, etc. The exponential operator eT̂ can be expressed, by a Taylor series

expression, as

eT̂ = 1 + T̂ +
T̂ 2

2!
+ ...

= 1 + T̂1 + T̂2 +
T̂ 2

1

2
+ T̂1T̂2 +

T̂ 2
2

2
+ ...

(1.8)

The CCSD(T) method includes all single and double excitations (i.e., T̂ = T̂1 + T̂2)

and the triple excitations are included perturbatively. The CC methods provide some

of the most accurate results for ground state properties using ab initio electronic

structure theory. However, their high computational cost usually limits applications

to small molecules, such as those considered in this thesis. A modification of the CC

methods, using explicitly correlated techniques (designated by F12),15,16 came with

improved treatment of electronic correlation and faster convergence to the complete

basis set limit. In the following section, the CCSD(T)-F12 method will be described

briefly.

1.2.1.4 Explicitly Correlated Methods

For closed shell CCSD-F12, the wave function ansatz is

ΨCCSD = eT̂1+T̂2ΨHF , (1.9)
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where the T̂1 and T̂2 are the cluster operators:

T̂1 = tiaÊai, (1.10)

and

T̂2 = T̂ ijabÊbj + τ ijαβÊαiÊβj. (1.11)

Here i and j ... refer to the occupied orbitals, a and b to the external (virtual)

orbitals and α and β to a complete orbital basis set. tia and T ijab are the conventional

single and double amplitudes from coupled cluster theory. In the F12 variant, τ ijαβ is

an additional term which is approximated as

τ ijαβ =
〈
αβ
∣∣∣Q̂12F̂12

∣∣∣ kl〉T ijkl , (1.12)

where the projector,

Q̂12 = 1− |rs〉 〈rs| − |mx〉 〈mx| − |xm〉 〈xm| . (1.13)

The r and s denote the full molecular orbital (MO) basis and x the complementary

auxiliary (CA) orbital basis. When α and β belong to the orbital basis, or if at least

one of them corresponds to an occupied orbital, τ ijα,β = 0. The correlation factor F̂12

is a simple Slater function, i.e.,

F (r12) = e−βr12 . (1.14)

In the present CCSD-F12 implementation, a simple product of Gaussian functions

is used to replace the Slater function. The triples correction to CCSD-F12 can be

obtained perturbatively; there is no F12 triples corrections. By default two different

energies are computed, CCSD(T)-F12A and CCSD(T)-F12B; the interested reader is

referred to the original papers15,16 for the difference. Practically speaking, the F12A

(F12B) approach slightly overestimates (underestimates) the correlation energy and

there is strong basis set dependence to the energies. The recommendations are that

the F12A method be used for cc-pVDZ-F12 and cc-pVTZ-F12 basis sets and F12B

should be utilized for cc-pVQZ-F12 and cc-pV5Z-F12 basis sets.
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1.2.2 Excited Electronic State Computations

The excited electronic states geometries, vibrational energies and vertical excitation

energies were computed using several different ab initio electronic structure meth-

ods. EOM-CCSD, complete active space self-consistent field (CASSCF), internally-

contracted multi-reference configuration interaction, (MRCI), CASPT2, MRCI-F12

and CASPT2-F12 methods were used to compute vertical excitation energies. Geom-

etry optimizations and harmonic vibrational frequency computations were carried out

for those methods where analytic gradients (Hessians) were available, i.e., CASSCF

and CASPT2, or where numerical approaches were computationally tractable, i.e.,

EOM-CCSD and MRCI. In this section, an extremely brief introduction to these

methods is provided along with references to the original papers where further theo-

retical and computational details can be found.

1.2.2.1 EOM-CCSD

The EOM-CCSD method17 is used to compute the excitation energies using the

equation-of-motion (EOM) procedure; in Molpro,18,19 EOM-CCSD is limited to com-

puting energies for singlet excited states. The accuracy of EOM-CCSD depends on

the relative contribution of the single excitations to the singlet excited state. The

more single excitations dominate, the better is the expected accuracy in the EOM-

CCSD excitation energy. In this thesis, I have utilized the EOM-CCSD method to

generate ab initio data to fit an S1 PES for the HFCO molecule.

1.2.2.2 CASSCF

In the (CASSCF) method,20–24 the occupied orbital space is split into inactive core

and active valence orbitals. Within the active valence space, electrons are allowed

to distribute in all possible ways, i.e., full configuration interaction within a subset

of all orbitals. The inactive core orbitals are doubly occupied in all configurations.

The accuracy of a CASSCF calculation compared with an observed value depends

on the choice of the active space. CASSCF results can also be significantly improved

by using them as a basis for methods including dynamical electron correlation, i.e.,

8



MRCI and CASPT2 approaches.

1.2.2.3 MRCI

In the multi reference configuration interaction (MRCI) method (implemented in

Molpro25–29 and numerous prior/competing implementations30–35), a configuration

interaction computation is performed from the configuration state functions (CSFs)

generated from a CASSCF computations. Although very accurate, the MRCI ap-

proach is very computationally costly, and thus generally restricted to very small

molecular systems.

1.2.2.4 CASPT2

In CASPT2 method,36–40 the orbital space is split into closed, active and external

shells based on their occupancies in the reference wavefunction. The closed-shell or-

bitals are doubly occupied inactive orbitals in all reference configurations. The active

orbital space is allowed to perform all kinds of excitations within it. The external

or secondary orbital space contains unoccupied virtual orbitals. In the CASPT2

method, second order perturbation theory is used to incorporate dynamical correla-

tion, thus describing excited states more accurately than CASSCF. It requires large

computational resources.

1.2.2.5 CASPT2-F12 and MRCI-F12

Second order multireference perturbation theory with explicit correlation, CASPT2-

F1241 and explicitly correlated multireference configuration interaction, MRCI-F1242–44

are used to improve the convergence in the correlation energies with the basis set size.

1.2.3 Dunning-style Basis Sets and Complete Basis Set Ex-
trapolation

In this thesis work, I have used only correlation consistent basis sets derived by

Dunning and co-workers.45 They found that Hartree-Fock optimized basis sets are

not ideal for use in computations incorporating electron correlation computations.
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Thus, the correlation consistent basis sets were optimized using correlated (CISD)

wave functions. The basis sets are designated as cc-pVXZ, where X=D, T, Q, 5, 6,

7. The prefix “aug” is added to those basis sets that have diffuse functions added for

every angular momentum present in the basis, e.g., aug-cc-pVDZ45,46 has diffuse s,

p, and d for the C atom. The cc-pVTZ-F1247–49 basis set was used for the explicitly

correlated computations in this thesis work. The Dunning basis sets are designed such

that they converge smoothly to the complete basis set (CBS) limit. The Dunning-

style basis sets have been adapted for use with explicitly correlated computations;

that is, with an increasing number of basis functions, the electronic energy decreases,

and (eventually, for an “infinite” number of basis functions) reaches the CBS limit.

The convergence of ab initio energies to the CBS limit is very slow when post-HF

computations are performed. Therefore, instead of using a infinite number of basis

functions, the CBS limit can be determined by extrapolating the correlation energy

from a few carefully selected basis sets. In this thesis, the CBS extrapolation50–52

is done using the CCSD(T)/aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z computed

energies. The total CBS extrapolated energy is

Etot
CBS = ESCF

CBS + Ecorr
CBS, (1.15)

where the SCF correlation energy, ESCF
CBS , is assumed same as the CCSD(T)/aug-cc-

pV5Z SCF energy, ESCF
AV 5Z . From the aug-cc-pVTZ to aug-cc-pV5Z basis sets, the

SCF energy change is insignificant compared to the correlation energy change for

CCSD(T) computations. The correlation energy is

Ecorr = Etot − ESCF , (1.16)

where E corr is the correlation energy, E tot is the total energy, and ESCF is the SCF

energy. There are two types of extrapolation methods used to reach the CBS limit:

two and three point extrapolation:

V (x) = VCBS + Ae−Bx (1.17)

and

V (x) = VCBS + Ax−3 (1.18)
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Equation (1.17) is for three point extrapolation where V CBS, A and B are the un-

known parameters to be solved. The x is the same as Lmax (or lmax), the highest orbital

angular momentum in the basis. Therefore, the value of x equals 2 for aug-cc-pVDZ,

3 for aug-cc-pVTZ, 4 for aug-cc-pVQZ, and 5 for aug-cc-pV5Z. Not surprisingly, a

minimum of three different basis sets are required to use the three point extrapolation

method. Equation (1.18) is a two point extrapolation method where x is the same

as defined for equation (1.17). However, the two point extrapolation requires only

two different basis sets to solve the CBS energy, VCBS and A, but to get consistent

results, at least one extra basis set is generally required.

1.3 Potential Energy Surface Fitting

In chemical physics, the potential energy surface (PES) is one of the most basic fea-

tures to represent a quantum chemical system. Almost all the properties of a quantum

chemical system directly or indirectly depend upon the PES. From a known PES, one

can extract various properties of a system using available computer simulation meth-

ods. The PES is defined as the functional form (analytical form) of the potential

energy of a system constructed upon the atomic positions (geometry/internal coor-

dinate) as the parameters. As an example, the Morse oscillator53 has the form

V (r) = D0[1− e−α(r−r0)]2, (1.19)

where D0 is the dissociation energy, α is the pre-exponential factor, r0 is the equi-

librium distance and the r is the distance coordinate. The independent variables or

the coordinates should represent all the degrees of freedom present in a system. As

the number of degrees of freedom depends on the molecular size (atom number), the

PES of a system could range from very simple (in the case of small molecules) to

very complex (systems that contain large numbers of atoms). Ideally, any suitable

coordinates, e.g., internal, polyspherical, cartesian or polar, should be able to be used

to represent the PES. The PES is necessary to solve the nuclear Schrödinger equa-

tion, see Eq. (1.3). It is not mandatory to have a PES, e.g., the potential energy

can be known at discrete points (DVR approach54,55), but a PES makes it possible
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to use a variety of dynamics methods. One of the disadvantages of the DVR method

is that the PES information is stored for a particular set of points. Thus, if the

representation is changed in any way, the electronic Schrödinger equation must be

solved again. Alternatively, within the ab initio MD method,56 the potential energy

is computed “on the fly” at required geometries. However, this method is computa-

tionally costly. Thus computationally efficient methods, and hence less accurate than

high level wave-function based methods, must be employed, e.g., DFT. If the poten-

tial energies computed during the electronic structure calculations are represented in

the form of an analytical function, the computational cost of potential evaluations

in the dynamics simulation can be overcome. A PES is constructed through fitting

or interpolating potential energies at many different nuclear configurations. The po-

tential energy of a given nuclear configuration is obtained by solving the electronic

Schrödinger equation. Constructing a PES is challenging for high dimensional sys-

tems. With increasing dimensionality, the number of energy computations required

to generate a suitable data set for fitting is very high and fitting an analytical form

to the high dimensional data is even harder. When considering PES fitting meth-

ods, almost all can be categorized into two different types: physically intuitive and

generalized mathematical. The physically intuitive approaches are based on utilizing

predefined physically motivated fitting functions57–60 for the interatomic distances

and angles. If the functional form is chosen appropriately, the PES representation is

compact with few fitting parameters and generally can be very accurate. The main

drawbacks are that physically motivated PES are usually local (i.e., represent specific

regions of the PES which may then be connected with switching functions), restricted

to the specific system of interest (although there can be similar PES representations

for analogous systems), and cannot be transferred or utilized for general problems.

The generalized mathematical methods, on the other hand, are not predefined but

entirely depend on the efficiency and the flexibility of the functional form. Exam-

ples are spline methods,,61,62 interpolating moving least squares (IMLS),63,64 modified

Sheppard interpolation (MSI) using Taylor expansion,65,66 genetic algorithms,67 and

Gaussian approximation methods.68 If fit carefully, the final PES can be highly ac-
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curate and computationally efficient. On the other hand, special care must be taken

for fits to non-physically motivated functional form. The permutationally invariant

polynomial method (PIP) by Bowman and co-workers69–72 works well for small to

moderate sized molecules, especially those with a large numbers of symmetry equiv-

alent nuclei. To enforce permutation invariance, one must use interatomic redundant

coordinates. One advantage of the PIP-approach is that it can be transferred directly

between different problems without changing the general form of the PES, i.e., in

principle these are “black box” methods. Guo and co-workers developed a neural

network (NN) based method which exhibits permutational invariance73 symmetry

(PIP-NN).74–76 This recently developed method takes advantage of the black box

efficiency of neural networks for the PES fitting.

NN based methods are an example of a mathematical PES fitting method. It is a

black box method; once the network is constructed, it can automatically be optimized

to give the desired output. The neural network exponential fitting method (NN-

expnn) is one of the very recently developed PES fitting methods in the generalized

mathematical category.1 In the following section, the NN based methods with an

emphasis on NN-expnn, will be discussed. Being a black box method, a NN does not

require any predefined form. It is a general method and portable to other science

areas. NN based methods can be used to fit input with target into a multivariable

functional form. In general NN based methods are highly accurate in the high input

density region and very weak in extrapolation; beyond the boundary of the data

incorporated into the fit, it could give less accurate, or even entirely erroneous, results.

NN based PES fitting methods2,77–84 are equally accurate for small as well as moderate

sized molecules. If the exponential transfer function is used in the NN method, the

PES would be a sum-of-products form (SOP). The SOP is one of the special focus in

this thesis, as SOP accelerates quantum dynamics simulation4,85,86 in MCTDH. This

thesis will demonstrate how selective numbers of points could give a highly accurate

PES using the NN-expnn method. As the thesis is aimed primarily at constructing

efficient PESs for quantum dynamics simulations, it is very important to describe

what an effective PES should be.
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The ideal PES has several important characteristics:

(1)Accuracy. The PES must be sufficiently accurate to determine the desired

properties, i.e., of sufficient accuracy to compare with or interpret, experimental

measurements, or to make predictions for new experiments that can be subsequently

validated. The accuracy of the PES is impacted by the choice of method utilized to

obtain the energies for fitting. The accuracy is also reflected in the fitting error, which

is usually measured by the root mean square error (RMSE); the larger the RMSE,

the less accurate the PES.

(2) Scope of systematic improvement. It should be possible to improve the ac-

curacy of the PES, or make it more general, systematically when required. This

improvement could be obtained by adding additional ab initio data or by incorporat-

ing additional functional parameters.

(3) General applicability. A PES should be very general and applicable equally to

all different types of interaction present in a system.

(5) Sufficiently High Dimensionality. The PES must describe all the degrees of

freedom in a system.

(6) Self sustainability. In this context, self sustainability refers to the lack of a

need for manual control when performing the fitting, e.g., NN-based PES fitting is

an automatic “black box” method requiring little (to no) human choice in the fitting

process.

(7) Easily transferable. The potential should be general and easily transferable to

other similar systems.

(8) Easy and quick evaluation. One should be able to compute the potential

energy easily and quickly. A simple functional form and a small number of fitting

parameters make this possible.

(9) Easy and quick construction. Constructing the PES should be easy and fast.

Some high dimensional PES are impossible to construct because they need grid like

data, e.g., one cannot go beyond 6D fitting with potfit.87,88

(10) Ready computation of gradients and Hessians. The gradient and the Hessian

should be easily accessed. These are required, for example, in many classical dynamics
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integration schemes.

(11) Experimental data refinable. It is nice to have a PES that one can refine to

experimental data, e.g. to provide accurate comparison to experimentally measured

vibrational frequencies.

Now, in the following sections, the general features of NN, feed forward NN, fitting

functions, training algorithm (mainly Levenberg Marquardt algorithm, LM), and post

processing will be discussed.

1.3.1 Artificial Neural Network

An artificial neural network (ANN) is an information processing prototype which is

inspired by the function of neurons in biological nervous systems. Its most close

relevance will be with the way brain processes information. Like a nervous system,

the ANN is constructed by a significant number of interconnected fitting functions

(neurons) with the goal of solving targeted problems. The ANN learns something

like people learn, i.e., by encountering real world (training data) and storing informa-

tion. An ANN could be designed for specific problem solving, like pattern recognition

(in our case, finding the shape of the PES), through a learning process. While the

biological NN learns the environment through adjustment in the synaptic connec-

tions between two neurons, the ANN does so by connecting one layer after another

by weight and bias parameters. Kohonen89 stated “Artificial neural networks are

massively parallel interconnected networks of simple (usually adaptive) elements and

their hierarchical organizations, which are intended to interact with the objects of the

real world in the same way as biological nervous systems do.” A NN is highly capable

of deriving meaning (recognize) from complicated (very complex) data. A NN can

extract patterns (detect trends) that are too complex to be noticed by humans or

by other computer techniques. Once trained properly with a given set of input data,

a NN becomes an information expert within the data set boundary and sometimes

extended outside the boundary (extrapolation sometime becomes accurate with the

selection of transfer functions). Adaptive learning, self-organization, real-time oper-

ation, etc., are other advantages one can get using Neural Networks. Presently, NNs
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are widely used in chemistry and physics in forms such as data analysis tools.90–92

NN techniques are used in NMR and mass spectrometry,93,94 kinetics studies, protein

structure predictions,95,96 quantitative structure and reactivity (QSAR) models,97–99

clinical chemistry,100 polymer science,101 nuclear spin prediction,102 atomic energy

levels detection,103,104 nucleic acid sequence analysis,105 Schrödinger equation solv-

ing,54,106–109 enzyme kinetics, and constructing potential energy surfaces110 and many

more. Specific examples of NNs application in fitting PESs include, correlated energy

of diatomic molecules and heavy atoms,111 CBS converged energies, bond energy, en-

thalpy and heat of formation estimation.112 These again demonstrate the ability of

NNs to tackle complex data analysis.

1.3.1.1 Feed-forward neural network

A feed forward neural network is named after the fact that it only allows information

to flow in one direction; the forward direction, from the input to the output. Only

feed-forward NNs have been successfully applied to construct PESs so far. In this

thesis, I used feed-forward NNs. In a feed forward neural network, a number of

nodes (or neurons) are organized in a desired number of layers. Three main layers

in a NN include: the input layer which consists of the input matrix elements or the

coordinates; the hidden layers where input signals are transformed into functional

forms using transfer functions; and the output layer where the output is processed.

Overall, the NN results in an analytical functional form of the input coordinates

G = {Gi}. The hidden layers serve the key purpose of fitting, i.e., provide the

functional form of the input coordinates using transfer functions. There may be

one or more hidden layers depending on the type of NN. Nodes or the neurons are

connected to the adjacent layers (either to the input coordinates or to the next layer’s

neurons) by “weight” parameters. These weight parameters are the fitting parameters

when training is performed. Each neuron is also provided with a “bias” parameter to

give more flexibility to the fitted surface. A typical single layer feed forward neural

network is presented in Figure 1.1. The input layer is connected to the first hidden
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layer’s neurons by weights. It can be seen that throughout the network, weights and

biases are connected in the forward direction; from input to the hidden layer to the

output layer. The weight parameters are presented by the symbol aklij which connects

the i th node in the k th layer to the j th node of the l th layer. In the feed forward neural

network, only connections between two adjacent layers are possible, so, l = k +1.

Usually the input layer is designated as the 0th layer. A bias parameter bki is added

to each node. Weights and biases are real valued parameters.

The scheme of computation is as follows: First, the input coordinates are supplied

in the first layer. Nodes in the input layer represent each degree of freedom. Next,

the hidden layers sum up all the weighted value (x lm) of the input nodes ({G i}) along

with the bias (blm),

xlm = blm +

Ni∑
i=1

Gia
l−1,l
im (1.20)

This is nothing but the linear combination of degrees of freedom considering weights

as coefficients. Here m is the number of nodes in lth hidden layer and Ni is the number

of nodes in (l − 1)th node. In the following step, a non-linear transformation of the

output xlm is performed in the first hidden layer. This procedure is how the functional

form of the analytical PES arises which provides the numerical output value of the

node. The transfer function is called an activation function or neuron.

ylm = f lm(xlm) (1.21)

A general expression of any specific node in the lth hidden layer is given as,

ylm = f lm(xlm) = f lm(blm +

Nl−1∑
i=1

yl−1
i al−1,l

im ). (1.22)

Here, N l is the number of nodes in the l th layer. In this way, all the nodal outputs

are collected and passed out to the next layer until the final output is reached. The

final output has the functional form,

E = f l1(xl1)

= f l1{bl1 +

Nk∑
k=1

a
(l−1),l
k1 .f

(l−1)
k (...f 2

k [b2
k +

N2∑
j=1

a12
jk.f

1
j (b1

j +

N1∑
i=1

a01
ij .Gi)])}.

(1.23)
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Figure 1.1: Neural Network Architecture: A ‘m’ dimensional single layer feed-
forward neural network connecting the energy and ‘n’ coordinates C1 to Cm by transfer
functions through their weights and biases
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So, the final PES is the sum of the activation functions or neurons. The feed forward

NN used in this thesis work (see Figure 1.1) is a single hidden layer consisting of

exponential transfer functions. The output layer is a single node with a purelinear

transfer function. Here the input weights are termed as “IW”. The weights of the

hidden layer nodes towards the linear transformation are termed as “LW”.

1.3.2 Transfer Functions and Exponential Neurons

Nodes are the basic building blocks of a NN. Inside each node exists the fitting

functions called neurons, as they build the connection between coordinates and the

functional value. The default activation function in a MATLAB Neural network is

the sigmoidal function which has the form,

σ(x) =
1

1 + e−x
(1.24)

The sigmoidal neuron is often used and it has very general scientific application. The

sigmoidal neuron output ranges between 0 to 1 and exhibits asymptotic behaviour

beyond -4 to +4 of the input range. So, sigmoidal functions are localized functions

which is good for parameterizing the initial weight matrix. Hyperbolic tangent and

error functions are also used as transfer function in PES fitting. The latter two

functions have very similar shape like sigmoidal function (see Figure 1.2).

σ(x) = tanh(x) =
sinh(x)

cosh(x)
=

(e2x − 1)

(e2x + 1)
(1.25)

σ(x) = erf(x) =
2√
π

∫ x

0

e−t
2

dt (1.26)

The activation function could be in many different forms, such as linear,

σ(x) = x (1.27)

or as a Gaussian activation function,

σ(x) = e−αx
2

. (1.28)

The linear transfer function is used in almost every network, during transferring

output data from the last hidden layer. The pure linear neuron uplifts (or downgrades)
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Figure 1.2: Different types of transfer functions (neurons); linear (red), exponen-
tial (green), gaussian (blue), hyperbolic tangent (purple), error function (cyan) and
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the entire data set to the real target by adjusting any constant bias. There are other

activation functions, like cosine function,113 etc., but none of these neurons give the

final form as sum-of-products function. The sum-of-products form is my goal in this

project because the analytical PES will be used in MCTDH which needs SOP form

of the PES for faster computation of nuclear dynamics. Carrington and Manzhos

found that an exponential neuron1 can generate sum-of-products form of the final

PES. They build the exponential fitting function,

σ(x) = ex. (1.29)

This exponential function is nonlinear, monotonic, smooth and most importantly,

the PES is a sum-of-products form of coordinates xi. Flexibility in the exponential

neuron is shown in Figure 1.3. The final PES is a large number of terms summed

over the total number of neurons in the form,

h(x) = c1f(c2x+ c3) + c4 (1.30)

where c1 and c2 are the weights and c3 and c4 are the bias parameter. By adjusting

these parameters, the transfer function can be shifted up and down or left and right,

slopes are changed and they are rescaled. All these are shown in Figure 1.3 with

the exponential transfer function. Very recently, Zhang and co-workers114 generated

sum-of-products form using an error function as the activation function. This form

was based on a different types of NN fitting, where a product neuron is used instead

of the traditional sum; the product approach is less efficient and more restrictive.

1.3.2.1 Sum-of-products form using Neural Network

The sum-of-products form is the main focus of my research. Thus here I discus how

SOP is obtained using exponential neurons. The functional form of a typical single

layer Neural Network is,

V (x) = c+
N∑
i=1

LWi F (σ)

= c+
N∑
i=1

LWi F (
D∑
j=1

(IWijxj + bi))

(1.31)
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where IW ij is the weight of input coordinate xj to the ith node of the hidden layer. bi

is the bias of the node. LW i is the weight of i th neuron to the linear transformation

node or the output layer with the final bias of c. Now, replacing F (σ) with exp(x),

we obtain

V (x) = c+
N∑
i=1

LWie
(
∑D
j=1(IWijxj+bi))

= c+
N∑
i=1

LWi e
bi

D∏
j=1

eIWij xj

=
N∑
i=1

c̃i

D∏
j=1

eIWij xj

(1.32)

Equation (1.32) is a sum over all the neurons and product over all the coordinates.

1.3.2.2 Training Neural Network

Once the neural network architecture is established with suitable transfer functions,

the optimization of parameters is done to get the best fitted PES. The fitting is named

as training in NN. Depending on the size of the NN, the fitting parameters vary and

so does the training effort. A typical feed forward NN used in this thesis has a total

number of parameters,

Np =

Mh+1∑
k=1

(Nk−1Nk +Nk) (1.33)

where Np is the total number parameters (weights and biases) in a Mh hidden layer

neural network. Nk is the number of nodes in kth layer. For the input layer, the

number of nodes (N0) is same as the number of input coordinates. The output

layer (Mh + 1) is just a single node. As an example, a single layered 30 neurons fit

PES of the CS2 molecules has 151 fitting parameters. In constructing the input for

MCTDH, it further reduced to 121 for the fact that LW and b are collapsed to a single

parameter (LW.eb). In the training process, the weight and bias parameters are first

randomly (some other initialization methods are also used) initialized. An efficient

optimization algorithm is then used to minimize the error between the fitted output
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to the target. Among many available optimization methods, the back propagation

algorithm, the Kalman filter115 and the Levenberg Marquardt (LM)116,117 algorithm

are mostly used. It has been reported77 that LM is the most efficient algorithm

to minimize large number of weight parameters. Throughout this thesis, the LM

algorithm is used.

1.3.2.3 Scaling of Data Sets

The scaling of data is done before the fitting is initiated. All the data sets, i.e.,

coordinates and energies, are scaled between -1 to 1 such that the lowest value is

set to -1 and highest possible value to +1. All the remaining data are arranged

accordingly in the space. Before fitting, all data (coordinates and energies) were

scaled to lie between [-1, 1] by

Xscaled =
X − xmin
xmax − xmin

(1.34)

where the maximum and minimum of a particular coordinate are xmax and xmin. X is

the data before scaling which after scaling appears as Xscaled. The scaled data gives

smooth convergence and a gradually decreasing RMSE for the fit. After the fitting

is done, rescaling back to the original scale is particularly important. The rescaling

procedure is as following,

Xrescale =
X + 1

2
(1.35)

here, xmin is -1 and xmax is +1.

1.3.2.4 Input Coordinates and Symmetry Functions

The symmetry is important for those systems with permutational invariant symmetry

(one that gives the energy same with the exchange of two identical atoms). In con-

structing PESs, one could tackle the symmetry by two different ways: (i) by including

in the training set symmetric coordinates and the corresponding equal energies (sym-

metric copies of points) and (ii) by using some PIP symmetry operation to the input

layer. Even though we used the first method for the CS2 molecule, the final PES is
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not entirely symmetric as during the training, two symmetric coordinates were con-

nected to the hidden layer by two different random weights, and those weights were

optimized using random steps in the LM algorithm. Although the PIP-NN method by

Guo and co-workers gives a symmetric potential, the final PES is not in the particular

SOP required for MCTDH. The symmetry might not be an issue for the vibrational

states and nuclear dynamics study but in some other areas, it may be an issue if the

exact symmetry plays key role.

1.3.2.5 Quality Control of a Fit: RMSE and MSD

Direction of the fitting process is monitored by calculating several quantities. The

root mean squared error (RMSE) is the most important quantity to monitor, where

RMSE =

√√√√ 1

N

N∑
i=1

(Ei,ref − Ei,NN)2. (1.36)

Sometimes, the mean absolute error (MAE) or mean absolute deviation (MAD) is

used to analyse error,

MAE =
1

N

N∑
i=1

|Ei,ref − Ei,NN | . (1.37)

Numerically, the RMSE is larger than the MAE because of the squared term present

in the equation. During the fitting process, the RMSEs of the training and the

validation sets are calculated. The training set is the data used to determine the

parameters of the fit (train the network). The validation set consists of independent

data against which the network is tested during the course of the training. If the

RMSE increases beyond a specific threshold, the fitting is terminated and restarted.

Hence the validation set ensures there is not overfitting of the data. If the error for

the training set is lower than a desired value, the fitting process completes and stop.

The fit is then checked by determining the RMSE for a test set of data. For further

analysis, we post process the data set by computing the RMSEs in different energy

ranges. As expected, the RMSE in the lower energy region would be lower than in

the higher energy region.
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1.4 Vibrational State Computations

1.4.1 VPT2

The vibrational second-order perturbation theory (VPT2) approach118–120 is useful for

computing anharmonic vibrational frequencies of fundamental modes along with over-

tones and combination bands. VPT2 has been implemented in several ab initio soft-

ware packages (e.g. Gaussian09,121 GAMESS-US,122,123 Molpro18,19 and CFOUR;124

the implementation in CFOUR is used throughout this thesis). In a VPT2 com-

putation, the zeroth order vibrational wave functions are obtained via the harmonic

approximation, i.e., the zeroth order Hamiltonian is that for the harmonic oscillator

(normal mode), ĤHO. The anharmonicity is included as a perturbation, i.e., the total

Hamiltonian is

ĤV PT2 = ĤHO + Ĥanharm. (1.38)

The anharmonic perturbation includes both cubic and quartic force constants and

corresponding normal mode displacements (qi). The anharmonic vibrational wave-

functions and energies are obtained by second order perturbation theory using all

non-resonant harmonic energy terms followed by a variational treatment of the rel-

evant resonant interactions. The second order perturbation theory is applied to the

PES approximated by a Taylor expansion in the normal coordinates, qi, that includes

the quartic, and all cubic, and semidiagonal quartic force constants.

V (q1, q2, ..., qN) ∼=
1

2

∑
i

wiq
2
i +

1

6

∑
ijk

fijkqiqjqk +
1

24

∑
ijk

fijkkqiqjqkqk (1.39)

In Eq. (1.39), fijk and flmno are obtained by numerical differentiation of the (usually)

analytic Hessian at geometries slightly displaced from the equilibrium.

In addition to providing data for overtones and combination bands, VPT2 provides

improved vibrational energies relative to the experimental measurements compare to

the harmonic results. As it is a perturbative approach, it can not (in general) compute

vibrational frequencies for highly excited states.

26



1.4.2 MCTDH Theory

The Multiconfiguration Time-Dependent Hartree method (MCTDH)3–7 is a very effi-

cient algorithm to solve the time-dependent Schrödinger equation for distinguishable

particles. The efficiency of the MCTDH method arises from writing functions of large

numbers of degrees of freedom as the sum-of-products of low degrees of freedom. The

multidimensional wavefunction is written as sum-of-products form of low dimensional

functions, often called single particle functions (SPFs):

Ψ(q1, ..., qf , t) = Ψ({q}1, ..., {q}p, t)

=

n1∑
j1

...

np∑
jp

Aj1,....,jp(t)

p∏
k=1

Φ
(k)
jk

({q}k, t)

=
∑
J

AJΦJ , .

(1.40)

The number of degrees of freedom is denoted by f. The p denotes the number of

MCTDH particles, sometimes called a combined mode. As an example, there will

be nk combined modes for the k th particles. In this equation, the SPFs, φ({q}, t),

could be one or multiple dimensional functions. The coordinate {q} is collective

one,{q} = {qk, ..., ql}. The expansion coefficients are designated as AJ = Aj1,...,jf . ΦJ

are Hartree products of SPFs. These SPFs are represented as a linear combination

of time-dependent primitive basis functions χ:

Φ
(k)
jk

({q}k, t) =

Nk∑
ik=1

c
(k)
ikjk

(t)χ
(k)
ik

({q}k). (1.41)

For the SPFs, the discrete variable representation (DVR) is commonly used. The

MCTDH equations of motion are derived by applying the Dirac-Frenkel variation

principle to the wavefunction ansatz :

iȦ =
∑
L

〈ΦJ |H|ΦL〉 (1.42)

iΦ(k) = (1− P (k))(ρ(k))−1 〈H〉(k) Φ(k) (1.43)
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where a vector notation, Φ(k) = (Φ
(k)
1 , ...,Φ

(k)
nk )T , is used. The MCTDH equations

conserve the norm and, for time independent Hamiltonians, the total energy. MCTDH

contains time dependent Hartree (TDH) and the standard method (i.e., propagating

the wave packet on the primitive basis) as limiting cases. One can simplify MCTDH

to TDH when all nk = 1. Increasing the nk recovers the number of primitive basis

functions until the standard method is used. For fast convergence, MCTDH uses

variationally optimized SPFs. As the mean field calculation at every time step is

required to solve the MCTDH equations of motion, a fast algorithm must be used. A

quick solution to this is to build high dimensional objects as sum-of-products of low

dimensional objects. Thus the Hamiltonian is built in product form as

Ĥ =
s∑
r=1

Cr

p∑
k=1

ĥ(k)
r , (1.44)

where the operator ĥ
(k)
r operates on the kth particle only and where the Cr are num-

bers. Within this approach, the matrix elements of the Hamiltonian can be expressed

by a sum-of-products of monomode integrals,〈
ΦJ

∣∣∣Ĥ∣∣∣ΦL

〉
=

s∑
r=1

cr

p∏
k=1

〈
φjk

∣∣∣ĥ(k)
r

∣∣∣φlk〉 (1.45)

The mean fields, 〈H〉(k), are evaluated in the similar way.

1.4.3 Eigenstates by Relaxation and Improved Relaxation

The ground and all other vibrational states are obtained by improved relaxation7,125

as well as block improved relaxation. In MCTDH, the ground state wavefunction is

obtained by propagating an initial wavefunction in negative imaginary time followed

by normalization.

Ψ(t) = e−HtΨ(0)
∥∥e−HtΨ(0)

∥∥−1
(1.46)

The initial wavefunction is expanded with the eigenfunctions of the Hamiltonian Ĥ.

As time approaches infinity, the Ψ(t) converges to the ground state, Ψ(0). This

ground state can serve later as an initial state for subsequent propagation with a

different Hamiltonian.
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While relaxation is a useful approach for obtaining a few eigenstates (one state at

a time), it fails when the density of states is high. A better method for computing

an eigenstate uses improved relaxation.7,125 Improved relaxation is a combination of

diagonalization of the Hamiltonian and the principle of relaxation. Improved relax-

ation is carried out through the following steps: (i) Define the initial state which

should have reasonable overlap with the desired eigenstate. (ii) Diagonalization of

the Hamiltonian in the initial basis is performed next. (iii) The mean fields H(κ) are

built and the SPFs are relaxed over a suitable time interval. (iv) The Hamiltonian

matrix κ is then rebuilt in the new configurations (Hartree products) and diagonal-

ized. (v) The entire process is repeated iteratively until the convergence is reached.

For computing the ground state, the lowest energy is taken where as for any excited

state, the eigenvector of the Hamiltonian is taken which has greatest overlap with the

initial state. Block improved relaxation is very efficient for computing eigenstates in

a small energy window.9 Energy energy states in the high energy region of the PES

are often computed using the block improved relaxation method.

1.4.4 Potential Representation (potfit)

1.4.4.1 The potfit algorithm

The potfit algorithm87,88 is a default procedure in MCTDH to build a multidimen-

sional potential energy surface into a sum-of-products form. The potfit algorithm

only operates on a product grid. In the fitting procedure, no polynomial or spline

functions are used. The potfit algorithm assumes that the values of a PES are given

in product grid, i.e.,

V [q
(1)
i1
, ..., q

(p)
ip

] ≡ Vi1...ip , (1.47)

where q
(κ)
ik

denotes grid points of the κth 1D grid with 1 6 iκ 6 Nκ. The Nκ is the

number of grid points for the κth particle and p denotes the number of particles or

the number of degrees of freedom. The variable {q} may be one or a multidimensional
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coordinate. Now, the potential density matrix ρ(κ) is defined as,

ρ(κ)
nm ≡

N1∑
i1=1

...

Nκ−1∑
iκ−1=1

Nκ+1∑
iκ+1=1

...

Np∑
ip=1

Vi1...tκ−1niκ+1...ipVi1...tκ−1miκ+1...ip .

(1.48)

The orthonormal eigenvectors of ρ
(κ)
nm are called natural potentials (ν

(κ)
ij ). The nat-

ural potentials are 1D functions defined on the set of grid points {q(κ)
i } such that

ν
(κ)
j ({q}(κ)

i )=ν
(κ)
ij . Corresponding eigenvalues of these natural potentials are termed

as natural weights (λ
(κ)
j ). Natural weights are considered to be in decreasing or-

der, λ
(κ)
j >Λ

(κ)
j+1. With selected set of expansion orders {mk}, the potfit potential is

approximated as,

V ({q}(l)
i1
, ..., {q}(p)

ip
)

≈ V app({q}(1)
i1
, ..., {q}(p)

ip
)

=

m1∑
j1=1

...

mp∑
jp=1

Cj1...jpν
(1)
j1

({q}(1)
i1

)...ν
(p)
jp

({q}(p)
ip

),

(1.49)

where the expansion coefficients Cj1,...jp are the overlap between the potential and the

natural potentials.

1.4.5 The Kinetic Energy Operator

The kinetic energy operator (KEO) plays an important role in MCTDH efficiency. In

general (i) a sum-of-products form and (ii) a compact KEO leads to faster convergence

in MCTDH.

1.4.5.1 Coordinate Systems

A suitable coordinate system for the molecule of interest is crucial as the choice

must minimize the correlation between degrees of freedom. Inappropriate coordi-

nate system selection leads to complex and artificial correlation which slows down

convergence. The polyspherical coordinate system has been used successfully in
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MCTDH computations for many small molecular systems including HFCO126–128 and

HONO129–131 considered in this thesis. In the polyspherical coordinate system, the

KEO is represented in terms of spherical coordinates (r, θ and φ). It is an exact

representation of the KEO of an N-atom system. It has the following characteristic:

(i) Gives compact and exact expression of the KEO. (ii) If desired, includes rota-

tional and Coriolis coupling. (iii) Spectral basis sets are easily achieved. (iv) General

expression of the KEO is available in two different forms. (v) Flexible to use differ-

ent underlying vectors such as, Jacobi, Radau, valence, satellite or combinations of

these. (vi) It is always separable, i.e., it can be written as a sum-of-products form

of monomodal operators. In this thesis, for the HFCO and the HONO molecule, the

polyspherical coordinate system was used.

1.5 Thesis Overview

The thesis presents critical tests of the neural network with exponential neurons

approach to fitting PESs to the sum-of-products form. Importantly, the research

develops and utilizes an interface to generate the prerequisite8 MCTDH operator

files needed for further quantum dynamics studies. The PESs developed are based

on high-level ab initio data; hence, prior to developing the full dimentional PESs,

the important stationary points (minima and TSs) are located and characterized.

The thesis demonstrates the versatility of the NN-expnn approach and applies it to

a number of molecules.

In Chapter 2, the 3D potential energy and dipole moment surfaces of the CS2

molecule have been fit to sum-of-products form using the NN-expnn approach; to

test the accuracy of the fit, vibrational energies for various isotopomers have been

computed using the Lanczos algorithm as implemented in MCTDH and compared to

experiment. The CS2 PES represent the first direct fit of ab initio data using the

NN-expnn approach. Importantly the study utilized a newly developed interface to

generate requisite MCTDH operator files. In future, the PES can be used to study

coherent anti-stokes Raman scattering (CARS) using OCT-MCTDH, and, hence de-
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velop understanding of the corresponding experiments. While a variety of fitting

algorithms can be applied for 3D PESs, the initial study reported in Chapter 2 set

the stage for studying larger systems with more complicated PESs.

In Chapter 3, a 6D PES for HFCO encompassing the equilibrium and transition

state (to HF + CO) geometries is fit to CCSD(T)-F12/cc-pVTZ-F12 ab initio data

using the NN-expnn approach and interfaced to MCTDH. The high quality (near

spectroscopic accuracy) of the PES is determined through computation of vibrational

energy levels and their comparisons to experimental data. The development of a new

HFCO PES was motivated by recent computational work by Gatti and co-workers

investigating IVR in HFCO (DFCO) both with and without driving by an external

field.126–128 Optimal control of these processes was not pursued as the underlying PES

was not sufficiently accurate. The new accurate PES of HFCO can be used as a basis

for examining the optimal control of dynamics.

In Chapter 4, the NN-expnn method for PES fitting is applied to HONO, a

molecule of great experimental and theoretical interest due to the low energy cis-trans

isomerization barrier (4000 cm−1) and the asymmetric double well PES (for trans and

cis isomers). The PES fitting, and subsequent quantum dynamics, are challenging.

Previous work on the cis-trans isomerization by the Gatti group129–131 was based on a

PES fit to CCSD(T)/cc-pVQZ(-g functions) ab initio data. In Chapter 4, new PESs

for HONO are developed using the NN-expnn approach based on two different sets

of ab initio data: (i) CCSD(T)-F12/cc-pVTZ-F12 and (ii) CCSD(T) with complete

basis set (CBS) extrapolation. The PESs are tested by determining vibrational state

energies and comparing with experimental measurements and previous computational

results.

A global S0 PES of HFCO (encompassing the equilibrium, cis-HOCF, trans-

HOCF, and transition states between them) had yet to be developed. The previous

PES132 was restricted to the equilibrium and unimolecular dissociation regions by a

cut-off energy of 24000 cm−1. Due to lack of a global HFCO surface, the intrigu-

ing competition between unimolecular dissociation and conversion to trans-HOCF

could not be explored.126 In Chapter 5, the local HFCO PES developed and tested
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in Chapter 3 is extended to a global PES.

In their work examining control of IVR in HFCO,128 Gatti and co-workers sug-

gested using excitation/de-excitation via the electronic excited S1 PES. The excited

state has been explored experimentally using Stimulated Emission pumping (SEP).133

In Chapter 6, vertical excitation energies to the low-lying S1 and T1 states are de-

termined using a variety of electronic structure theory methods, i.e., EOM-CCSD,

CASSCF, CASPT2 and MRCI. The stationary points, and corresponding harmonic

frequencies, are computed using the same methods. By comparing with available

experimental data, a cost effective and sufficiently accurate method (EOM-CCSD) is

identified and then used to generate ab initio data for fitting an S1 PES. The excited

state PES is fit using the NN-expnn method and vibrational frequencies are computed

using block improved relaxation in MCTDH.

The final chapter (Chapter 7) summarizes the most important conclusions that

can be drawn from the research presented in the Thesis. In addition, the more

general conclusions that can be made from the specific research projects are discussed.

Potential future directions are provided.
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Chapter 2

Ab Initio Potential Energy and
Dipole Moment Surfaces for CS2:
Determination of Molecular
Vibrational Energies

*

2.1 Introduction

The use of femtosecond pulse shaping in a non-resonant coherent anti-Stokes Ra-

man scattering (CARS) process to selectively excite or suppress molecular vibrational

modes of CS2 in the gas and liquid phases was recently reported by Scaria and co-

workers.134 The Stokes pulse was optimized using phase-only shaping and a learning

algorithm in a feedback controlled closed loop approach. As they point out, this ap-

proach has several open questions: the mechanism for the mode control, the effects of

the changes in the phase and amplitude of the spectral components of the excitation

pulses, and the role of the intermolecular processes in the control of the molecular

modes. In order to understand these experiments, one requires (i) accurate potential

energy and dipole moment surfaces and (ii) a method for simulating the CARS process

and its control. Here the ab initio determination of the ground state potential energy

surface (PES) and the corresponding dipole moment surface for CS2 are reported.

*A version of this chapter was published in the J. Phys. Chem. A, 2013, 117, 6925.
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Importantly, how these surfaces can be fit to a sum-of-products form to facilitate

their future use in optimal control theory multiconfiguration time-dependent Hartree

(OCT-MCTDH) simulations6,135,136 of the control of CARS processes, are discussed.

The ground state structure and corresponding vibrational spectrum of CS2 has

been the subject of much experimental137–145 and theoretical138,146–154 scrutiny. Em-

pirical PESs have been determined by fitting to accurately reproduce the measured

vibrational spectra.138,146–149 The most recent of these fitted PESs146,147 has been used

to determine highly excited vibrational states up to 20000 cm−1. A global PES has

also been determined using the many-body single value surfaces of Murrell and Guo149

refined by non-linear least squares fitting to the observed vibrational frequencies up

to 10000 cm−1.148 A PES valid for vibrational energies up to 5000 cm−1 has also been

derived by fitting to experimental rotation-vibration data.138 The molecular constants

of CS2 have been determined by a general rovibrational analysis including all data

known up to 1985.141 Our main future goal is the study of coherent control processes

and to do so, a global dipole moment surface is also required in addition to the global

PES. Therefore, new ab initio electronic structure calculations at the complete active

space with second order perturbation theory (CASPT2) level have been carried out to

determine the global potential energy and dipole moment surfaces. Once the ab initio

data has been determined, the surfaces must be fit to an analytical form to ease their

use in dynamics calculations. Since the PES will eventually be used for the study of

the control of quantum dynamics with the optimal control theory multi- configuration

time-dependent Hartree (OCT-MCTDH) approach,6,135,136 the PES will be fit to a

sum-of-products form as required for the efficient use of the MCTDH ansatz.3–5 In the

present work, the fitting will be accomplished using artificial neural networks (NNs)

with exponential neurons1,2 and these results will be compared to those from pot-

fit,87,88 as implemented in the MCTDH software package.3 Further details regarding

the use of NNs for fitting PESs are provided in recent reviews.83,84,155

The chapter is organized in the following manner. First, the computational meth-

ods used for determining the ab initio potential energy and dipole moment surfaces

for CS2, the fitting of the surfaces, and the calculation of the vibrational eigenenergies
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Table 2.1: Comparison of Equilibrium Bond Lengths (Å) for CS2

Method Reference rCS
CASPT2/C:cc-pVTZ, S:aug-cc-pV(T+d)Z This work 1.563

Full CCSD/6-311++G(d,p) Ref.152 1.557
Full CCSD(T)/aug-cc-pv(T+d)Z Ref.156 1.5557

Full CCSD(T)/cc-pCVQZ Ref.150 1.5533
Full MP2/6-31+G(d) Ref.151 1.561

Full MP2/aug-cc-pVTZ Ref.151 1.557
B3LYP/6-31+G(d) Ref.151 1.563

B3LYP/aug-cc-pVTZ Ref.151 1.557
BLYP/aug-cc-pVTZ Ref.151 1.571

Experiment Ref.138 1.5549 ± 0.004
Experimenta Ref.137 1.55448 ± 0.00020

aValue represents the best combined experiment/theory estimate.

are discussed. In the Results and Discussion section, the fits to the PES and dipole

moment surfaces are analyzed. The vibrational energies obtained for four isotopomers

of CS2 are presented and compared to previous theoretical and experimental results.

I then present final remarks on the NN fitting of PESs to sum-of-products forms for

use in MCTDH and discuss briefly the future application of the CS2 surfaces in the

optimal control of CARS processes.

2.2 Computational Methods

2.2.1 Ab Initio Methods

To determine the potential energy and dipole moment surfaces, complete-active-

space self-consistent-field (CASSCF)23,24 computations were first performed. For the

CASSCF calculations, a (12,10) active space, i.e., twelve electrons in ten orbitals, was

utilized. The active space consisted of 6 doubly occupied orbitals [two A′ (σ), two A′′

(π) and two non-bonding] and 4 unoccupied orbitals [two A′ (σ∗) and two A′′ (π∗)].

Tests showed that this active space is a good compromise between accuracy and the

cost of the calculation when compared with an active space that considers all the va-

lence electrons, i.e., sixteen electrons in twelve orbitals. To improve the convergence
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Table 2.2: Comparison of Theoretically Determined Harmonic Frequencies (cm−1)
for CS2 at the Equilibrium Geometry with Experimental Fundamental Frequencies.

Method Reference ν1 ν2 ν3

CASPT2/C:cc-pVTZ, S:aug-cc-pV(T+d)Z This work 659 393 1549
Full CCSD(T)/aug-cc-pv(T+d)Z Ref.156 674 400 1560

MCSCF/6-31G(d) Ref.153 727 429 1572
CIS-MP2/6-311+G(d) Ref.154 684 371 1637
Full MP2/6-31+G(d) Ref.151 685 390 1635
B3LYP/6-31+G(d) Ref.151 673 404 1551

B3LYP/aug-cc-pVTZ Ref.151 674 403 1551
BLYP/aug-cc-pVTZ Ref.151 645 384 1501

Experimenta Ref.157 672.848 398.099 1558.787
a These values represent the harmonic parameters determined from a fit to the experimental
data.

of the wavefunction (especially at geometries far from equilibrium), state-averaged

CASSCF was used and included the first two states for each of the two symmetries of

the Cs point group. While other numbers of states for state-averaging could be uti-

lized, the choice of four states provided a reasonable description for the ground state in

both the Franck-Condon region and asymptotically. The CASSCF orbitals and wave-

function were used as reference for CASPT238 computations - computations that were

well-behaved based upon the aforementioned four-state state-averaged CASSCF re-

sults. The basis sets for the carbon atom and for the sulphur atoms were cc-pVTZ45,46

and aug-cc-pV(T+d)Z,158 respectively. The basis set for sulphur allows for a better

description of the electronic density in this polarizable atom. All electronic structure

computations were carried out with the Molpro software package.18 The ground state

equilibrium geometry was determined using the CASPT2 analytic gradients available

in Molpro.159 For the linear equilibrium structure, the CASPT2 optimized geometry

gave an rCS bond length of 1.563 Å (2.954 au), which is within 0.01 Å of the best

theoretical and experimental determinations,137,150,156 see Table 2.1. The (numerical)

harmonic frequencies determined at the CASPT2 level are also in good agreement

with previous calculations on CS2, see Table 2.2. The modes labeled ν1, ν2, and ν3

correspond to the symmetric stretch, cis-bend, and asymmetric stretch, respectively.

To build the ab initio potential energy and dipole moment surfaces for CS2, we
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have used valence coordinates: the two C-S bond lengths (r1 and r2) and the S-C-S

bond angle (θ). The bond lengths were varied from 1.263 to 2.463 Å in steps of

0.100 Å. The bond angle spanned a range from 110◦ to 180◦ in 5◦ steps. This choice

results in a three-dimensional (r1 × r2 × θ) grid of 13 × 13 × 15 = 2535 points of

which 1365 are symmetry unique. Note that the current PES does not include the

high-energy cyclic-CS2 isomer.151,160,161 In terms of the Cartesian components of the

dipole moment vector, the molecule is chosen to lie in the yz-plane, where the y-axis

is chosen to bisect the bond angle θ and the linear molecule is chosen to lie along to

the z-axis.

2.2.2 Fitting the Potential Energy and Dipole Surfaces

To use the PES efficiently in the MCTDH software package, it needs to be fit to a

product form. In the present work, two options are considered: (i) using potfit87,88

as implemented in the MCTDH software package3 and (ii) using a NN fit with a

sum-of-products form using exponential neurons.1 Since the vibrational eigenergies

are determined exactly, i.e., without invoking the MCTDH ansatz, fitting to product

form is not strictly required. However, doing so allows easy integration with MCTDH

and a test of the NN sum-of-products PES fitting to MCTDH operator file interface

we have developed. Also, for future work using the OCT-MCTDH approach,6,135,136

the MCTDH ansatz will have to be invoked as the current implementation does not

allow the use of exact wavefunctions.

When using potfit, the error at the 2535 grid points was essentially zero (as ex-

pected when including the complete expansion). It is important to emphasize that

potfit is not a fit per se, as it operates on the grid points only and does not fit the

potential to continuous functions. As discussed by Manzhos and Carrington,1 the

error is then only reflected in the points included in generating the natural potentials

and not the root mean-square error (RMSE) at random test points on the potential.

In order to use potfit with the DVR used for determining the vibrational energies,

see the following section, we must spline fit the natural potentials which can result

in errors in the potential. However, as shown in the results, the potfit potential leads
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to accurate vibrational eigenvalues and, hence, must be an accurate reflection of the

true potential.

A NN consists of a set of non-linear functions (neurons) organized into layers.

Often the neurons used are sigmoid functions. However, we choose to use a single layer

with exponential neurons so that the potential is written as a sum of N products,1

i.e.,

V NN(x1, x2, ...xD) =
N∑
q=1

c̃q

D∏
p=1

ewqpxp . (2.1)

The parameters c̃q (coefficients) and wqp (weights) are optimized using the Levenberg-

Marquardt (LM) algorithm to obtain a good fit.81 Manzhos et al. tested a number

of methods for determining the parameters77 and concluded that LM “converged

most quickly and produced the best fit.” With a single-layer NN fit, the important

parameter is the number of neurons (N) used. For the NN fits, which do not require

data on a uniform grid, we choose an energy cut-off (Ecut) for the data points to

include in the fit. The data set is also reduced to include only the symmetry unique

points. From this set of symmetry- and energy-selected data, 80% of the points

were selected at random (the training set) and used to fit the parameters of the NN,

10% of the points were used for ensuring that the training data was not overfit (the

validation set), and 10% were used to test the quality of the fit at grid points not used

for training (test set). For each symmetry-unique data point in the initial training

set, an additional point involving the exchange of the two sulfur atoms was added to

create the final training set. Usually we iterated several times (10-50) with different

random training, validation, and test sets in order to minimize the RMSE on the test

set. Further details regarding the use of NNs for fitting PESs are provided in recent

reviews.83,84,155 In addition to fitting the PES using NNs, the y- and z-components

of the dipole moment (µy and µz, respectively) are also fit to sum-of-products form

using NNs. The selection of the points for training, validation, and testing followed a

similar procedure as for the PES regarding the inclusion of symmetry-related points;

no energy cut-off was utilized and the training, validation, and test sets came from

the entire 1365 symmetry unique points.
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2.2.3 Determining Eigenenergies

To determine the vibrational eigenenergies, a kinetic energy operator is needed. In

valence coordinates, the kinetic energy operator is given by162

T̂ =
p2

1

2µCS1

+
p2

2

2µCS2

+
j2

2µCS1r
2
1

+
j2

2µCS2r
2
2

+
p1p2 cos θ

mC

− p1pθ
mCr2

− p2pθ
mCr1

− cos θj2 + j2 cos θ

2mCr1r2

(2.2)

where

pk = −i ∂
∂rk

, k = 1, 2, (2.3)

pθ = −i ∂
∂θ

sin θ, (2.4)

and

j2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
. (2.5)

The reduced mass is 1
µCSi

= 1
mC

+ 1
mSi

where mC and mSi represent the masses

of carbon (12C = 12.0 amu or 13C = 13.003354 amu) and sulfur isotope i (32S =

31.97207070 amu, 33S = 32.97145843 amu, or 34S = 33.96786665 amu), respectively.

The kinetic energy operator can be readily implemented in the Heidelberg MCTDH

software package3 using the built-in operators. For each degree of freedom (r1, r2

and θ) we have used 100 primitive basis functions; sine DVR for the bond lengths

and (restricted) Legendre DVR for the bond angle. A restricted Legendre DVR

(Leg/R), restricts the angular motion to a smaller interval than 0 to π. Using Leg/R,

one may speed-up the wave-packet propagation as relatively smaller number of grid

points (compare to the FBR/DVR) are used. The grids used were 2.4 ≤ ri ≤ 4.05

a.u. and 110◦ ≤ θ ≤ 180◦. In the present work, the vibrational eigenstates have

been calculated exactly using the Lanczos algorithm163–165 available in the MCTDH

software3,166 with 11000 Lanczos iterations. For the relatively small problem under

consideration, there was no need to optimize carefully the number of basis functions

or number of Lanczos iterations - the present choices were sufficient to converge the

reported eigenvalues to � 0.01 cm−1.
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Table 2.3: Root Mean Square Errors (RMSEs) Over the Training and Test Sets for
PESs with Different Energy Cut-offs (Ecut) that are Fit to Product Form Using NNs.

Ecut/cm−1 # Neurons Ntrain RMSEtrain/cm−1 Ntest RMSEtest/cm−1

20,000 30 303 1.0 38 1.6
30,000 30 624 3.0 76 7.5
50,000 30 1516 40.3 190 53.9

2.3 Results and Discussion

2.3.1 Neural Network Fits of the Potential Energy and Dipole
Surfaces

To fit the potential energy surface using NN, three different values of Ecut were con-

sidered: 20000 cm−1, 30000 cm−1, and 50000 cm−1. The RMSE at the training and

test points for CS2 PES fits with an exponential NN as a function of the number of

nodes is illustrated in Figure 2.1. As can be clearly seen, the test point RMSE for

the fits up to 20000 and 30000 cm−1 reaches ≤ 10 cm−1 for greater than 15 neurons.

The RMSE for the fit to 50,000 cm−1 is significantly larger and a larger number of

neurons is required. It should be noted that a potfit with ≈ 200 terms, i.e., approxi-

mately the number of parameters in a NN fit with 50 neurons, exhibits a RMSE for

the fit of of only 45 cm−1 - a value comparable to the NN fit up to 50,000 cm−1. For

determining the vibrational eigenenergies, the PES fits with 30 neurons were utilized

for all energy cut-offs. The RMSEs for these fits and the total number of ab initio

data points included in the training and test sets are given in Table 2.3. For the fit

up to 50000 cm−1 with 30 neurons, the overall RMSE for the training set is 40.3 cm−1

while the RMSE of training (test) points with energies between 0 and 10000 cm−1 is

16.1 (17.0) cm−1 and for 10000 to 20000 cm−1 it is 11.9 (11.3) cm−1. Thus, the fit is

significantly better at low energies. Plots of the NN fit PES (Ecut = 50000 cm−1 and

N = 30) for the linear configuration with r1 and r2 varied are given in Figure 2.2 and

Figure 2.3 for different contour spacings, i.e., 0.1 eV and 0.01 eV, respectively. The

corresponding plot for r2 = req = 1.563 Å with r1 and θ varied is given in Figure 2.4,

respectively. From these plots, it is clear that the fitted PES is smooth and contains
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no “holes,” i.e., regions with large (artificially) low energies.
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Figure 2.1: The RMSE at the training (dashed lines, open symbols) and test (solid
lines, filled symbols) points for CS2 PES fits with an exponential NN as a function of
the number of neurons for different value of Ecut: 20000 cm−1 (red, circles), 30000
cm−1 (blue, triangles), and 50000 cm−1 (black,squares).

Both components of the dipole moment, i.e., µy and µz, have been fit using NN

in sum-of-products form with 50 neurons using all of the 1365 symmetry unique data

points (where 80% are used for fitting, 10% for validation, and 10% for testing). The

RMSE over the training (test) set for the µy- and µz-components are 0.00886 a.u.

(0.00916 a.u.) and 0.03126 a.u. (0.03151 a.u), respectively. Increasing the number of

neurons in the NN does not significantly improve the fitting, e.g., for 75 neurons, the

RMSEs for the training (test) sets are 0.00696 a.u. (0.00954 a.u.) and 0.03076 a.u.

(0.03350 a.u.) for the µy- and µz-components, respectively. Figure 2.5 and Figure 2.6

present plots of the µy and µz dipole moments for r2 = req = 1.563 Å and r1 and θ

varied. As can be seen, the NN fit leads to a smooth dipole moment surface in both

cases.
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Figure 2.2: 2D PES as a function of r1 and r2 with fixed θ = 180◦ for CS2 using the
CASPT2/C:cc-pVTZ, S:aug-cc-pV(T+d)Z method and fit with an exponential NN up
to 50000 cm−1 with 30 neurons. The minimum contour is 0.1 eV (806 cm−1) and
each contour represent an increase of 0.3 eV (2417 cm−1).

2.3.2 The Vibrational Energies

The PESs discussed above have been used to compute the low-lying vibrational states

of 12C32S2. We were interested to see if, and how, the energy cut-offs used in the

NN fitting impacted the determination of the energies of the low-lying vibrational

states. Also, we wished to compare the energies using the NN fit to those obtained

on the potfit PES. While the goal of the present work is not the reproduction of the

experimentally measured vibrational transition frequencies (these can be obtained

accurately using the empirical PES146), the vibrational energies determined in the

current work will be compared to experimental measurements.140–142,157

The vibrational states determined on the three NN PESs and on the potfit PES

are given in Table 2.5. As can be seen, there is good agreement between the NN and

potfit vibrational energies (typically differences of less than 10 cm−1). Importantly,

there is also good agreement between our results on the ab initio PES and those of
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Figure 2.3: 2D PES as a function of r1 and r2 with fixed θ = 180◦ for CS2 using the
CASPT2/C:cc-pVTZ, S:aug-cc-pV(T+d)Z method and fit with an exponential NN up
to 50000 cm−1 with 30 neurons. The minimum contour is 0.01 eV (80.6 cm−1) and
each contour represent an increase of 0.03 eV (241.7 cm−1).

Zhou and co-workers,146 which were based on an empirical PES designed to reproduce

the experimentally observed results. The fit by Zhou et al.146 has an RMSE of 0.20

cm−1 for the 86 vibrational levels included in the fitting up to 6000 cm−1. A similar

fit to the experimental data of Zuniga et al.148 has an RMSE of 0.344 cm−1 for the

49 levels included in the fit. The purely ab initio results reported here (for ENN50)

have an RMSE over the 20 levels up to 3100 cm−1 of 23.1 cm−1 (Mean absolute error

= 20.5 cm−1). The agreement is quite good, and the discrepancies with experiment

primarily reflect the limitations of the underlying electronic structure theory rather

than the PES fitting. For example, if we examine the RMS difference between the

ab initio data points and the empirical potential,146 it is 57.2 cm−1 for energies up

to 5000 cm−1 (42 data points), 125.9 cm−1 for energies up to 10000 cm−1 (115 data

points), and 339.2 cm−1 for energies up to 20000 cm−1 (379 data points). However, the

current potential (with the highest energy cut-off) represents a global fit up to 50,000
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Figure2.4:2DPESasafunctionofr1andθwithfixedr2=2.954a.u.(1.563Å)
forCS2usingtheCASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Zmethodandfitwithan
exponentialNNupto50000cm−1with30neurons.Theminimumcontouris0.1eV
(806cm−1)andeachcontourrepresentanincreaseof0.3eV(2417cm−1).

cm−1ratherthanoveralimitedenergyrangelikethepreviousempiricalpotentials.

TofurthertestthePES,vibrationalenergiesweredeterminedforseveraliso-

topomersofCS2including
32S12C34S,32S12C33S,and13C32S2.Theenergiesfortran-

sitionstothelowest-lying(J=0)vibrationalstates(1,0,0),(0,2,0),and(0,0,1)are

giveninTable2.4. Notsurprisingly,thereisgoodagreementbetweenthepresent

computationsandthepreviouslyreportedresults143–146(differences<11cm−1,with

shiftsreproducedto<1cm−1).

2.4 Summary

Inthepresentwork,newglobalPESanddipolemomentssurfacesforCS2basedupon

CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Zabinitiocomputationsarereported.The

abinitiodataisfittosum-of-productsformusingtheneuralnetworkmethodwith

exponentialneurons. Thequalityofthefitsdependsupontheenergycut-offsand
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Figure2.5:2DµydipolemomentsurfaceforCS2withr2=2.954a.u.(1.563Å)
usingtheCASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Zmethodandfitwithanexponen-
tialNNupto50000cm−1with50neurons.Theminimumcontouris0.0a.u.and
eachcontourrepresentanincreaseof0.01a.u.

thenumberofneurons,butoverallexcellentfitstobothtraining(includedinthe

fit)andtest(externaltothefit)datasetscanbeachievedwithamodestnumberof

neurons(fittingparameters).Thesum-of-productsformusedpermitsreadyuseby

theMCTDHsoftwarepackage.3Whileotherneuralnetworkfitstosum-of-products

formhavebeenreported,1,2thepresentworkpresentsoneofthefirst,andonly,NN

fitsdirectlytoabinitiodata-manyNNfitsarerefitsofanalyticalPESs. Clearly,

theNNapproachpresentsanattractivealternativetopotfitforfittingtriatomicPES

anddipolemomentsurfaces. Additionaltestsontetra-atomic,andlarger,systems

wherethefitsaredirectlytoabinitiodataarecurrentlyunderway.Importantly,we

haveaccurateglobalpotentialenergyanddipolemomentsurfacesforCS2thatshould

permitfutureOCT-MCTDHstudies.
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Figure2.6:2DµzdipolemomentsurfaceforCS2withr2=2.954a.u.(1.563Å)
usingtheCASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Zmethodandfitwithanexponen-
tialNNupto50000cm−1with50neurons.Theminimumcontouris-1.4a.u.(at
r1≈4.4au)andeachcontourrepresentsanincreaseof0.10a.u.Negativeandpos-
itivevaluesareshownassolidanddottedlinesrespectively. Asexpectedthedipole
momentiszerowhenr1=2.954a.u.(1.563Å).

47



Table 2.4: Low-lying Vibrational Eigenvalues for Minor CS2 Isotopes, and Cor-
responding Isotopic Shifts (∆E), as Determined on the NN PES (Fit Up to 50,000
cm−1) as Compared to Previous Theoretical and Experimental Results.a

(v1,v2,v3) ENN50 ∆ENN50 Ecalc
b ∆Ecalc Eobs

32S12C34S [8% isotopic abundance]
(1,0,0) 637.51 -9.30 648.66 -9.39 648.37c

(0,2,0) 796.7 -2.16 799.63 -2.27 —
(0,0,1) 1529.43 -3.46 1532.00 -4.75 1531.89d

32S12C33S [1.4% isotopic abundance]
(1,0,0) 642.04 -4.77 653.24 -4.81 —
(0,2,0) 797.74 -1.12 800.73 -1.17 —
(0,0,1) 1531.10 -1.79 1533.67 -1.78 1533.57d

13C32S2 [1% isotopic abundance]
(1,0,0) 646.30 -0.51 657.29 -0.76 657.24e

(0,2,0) 773.7 -25.16 776.58 -25.32 776.55e

(0,0,1) 1482.97 -49.92 1485.44 -50.01 1485.33e

a Energies in cm−1. v1: C-S symmetric stretching, v2: cis-bending, v3: asymmetric
stretching; bRef. 146; c Ref. 143; d Ref. 144; e Ref. 145.
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Table 2.5: The Zero-point Energy and Twenty Lowest-lying Vibrational (l = 0)
Eigenvalues for 12C32S2 (89% Isotopic Abundance) as Determined on the potfit and
NN PESs as Compared to Previous Theoretical and Experimental Results.a

(v1,v2,v3) ENN20 ENN30 ENN50 Epotfit Ecalc
b Eobs

c

(0,0,0) 1499.45 1499.58 1516.07 1511.63 — —
(1,0,0) 646.69 646.63 646.81 650.11 658.05 658.00
(0,2,0) 792.01 792.74 798.86 790.96 801.90 801.30
(2,0,0) 1291.16 1291.05 1291.45 1296.37 1313.82 1313.70
(1,2,0) 1426.50 1427.14 1432.83 1428.30 1447.21 1447.40
(0,0,1) 1533.74 1533.75 1532.89 1546.33 1535.45 1535.35
(0,4,0) 1598.72 1599.66 1606.61 1596.44 1619.82 1619.78
(3,0,0) 1933.31 1933.17 1933.85 1938.97 1967.22 1966.97
(2,2,0) 2059.07 2059.61 2064.83 2062.41 2090.67 2094.00
(1,0,1) 2172.67 2172.60 2171.85 2178.98 2185.60 2185.47
(1,4,0) 2223.74 2224.56 2230.80 2224.01 2255.45 2254.70
(0,2,1) 2312.98 2313.62 2318.42 2324.68 2324.57 2324.55
(0,6,0) 2416.78 2417.75 2423.68 2414.23 2450.09 2450.05
(4,0,0) 2573.06 2572.90 2573.90 2578.07 2618.11 2616.00
(3,2,0) 2689.74 2690.19 2694.88 2693.53 2732.32 2727.00
(2,0,1) 2809.30 2809.16 2808.59 2809.65 2833.41 2833.19
(2,4,0) 2847.18 2847.89 2853.42 2848.84 2889.62 2889.70
(1,2,1) 2939.59 2940.10 2944.4 2945.68 2961.91 2961.76
(0,0,2) 3033.62 3034.48 3039.63 3032.96 3057.84 3057.63
(1,6,0) 3054.20 3054.18 3052.41 3065.64 3077.42 3077.40
(0,4,1) 3107.12 3107.88 3113.35 3116.34 3129.96 3129.98
RMSEd 26.5 26.1 23.1 24.0 1.5 —

a Note that all vibrational energies are relative to the ZPE (0,0,0). The NN PESs
NN20, NN30 and NN50 are for fits up to 20000 cm−1, 30000 cm−1 and 50000 cm−1,
respectively. Energies are given in cm−1. v1: C-S symmetric stretching, v2: cis-
bending, v3: asymmetric stretching.
b Ref. 146. Based on an empirical potential designed to reproduce experimentally
observed results.
c From Refs. 140–142,157
d As compared to the experimental measurements. Note that not all levels presented
here were included in the fit of Zhou et al. 146
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Chapter 3

Vibrational Energies for HFCO
using a Neural Network Sum of
Exponentials Potential Energy
Surface

3.1 Introduction

Laser control of quantum dynamics for medium to large size molecules, i.e., containing

greater than 3 atoms, is an interesting and challenging task. Laser control involves

shaping a laser pulse to manipulate chemical processes on the molecular scale.167–170

For example, laser control can direct a reaction to proceed in a particular direction

to give a desired product, product ratio or, in the case of vibrational excitation, to

produce a desired quantum (superposition) state. After pioneering research demon-

strating control principles for small molecules (2-3 atoms),171,172 efforts have been

made to apply laser control to photochemical processes in much larger molecules

(≥4 atoms).173–176 However, both theory and experiment are difficult for large sys-

tems with a significant number of vibrational degrees of freedom. The present work

is motivated by simulations using the multi-configuration time dependent Hartree

(MCTDH) approach of laser-driven (control of) intramolecular vibrational redistri-

bution (IVR) in the HONO and HFCO molecules;128,130,177 molecules of moderate but

still challenging size for quantum dynamics simulations. In particular, the goal of the
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present work is to develop and test a new potential energy surface (PES) for HFCO,

as the previous simulations were limited by the accuracy of the one available.132

The structure, spectroscopy and dynamics of HFCO have undergone extensive ex-

perimental133,178–186 and theoretical132,187–202 scrutiny. Moore and co-workers133,178–180

studied the vibrational states of HFCO/DFCO on the ground and first few excited

electronic states. Using the stimulated emission pumping technique, they investi-

gated highly excited vibrational states of HFCO and DFCO, near and even above the

dissociation limit. These experiments drew the attention of other researchers to inves-

tigate the role of particular states on IVR. To understand the findings of Moore and

co-worker, Yamamato and Kato (YK) fit a six dimensional ground electronic state po-

tential energy surface (PES) for HFCO based on 4140 MP2/cc-pVTZ level of theory

computed energies.132 The cc-pVTZ basis sets were truncated by removing f-functions

from O, C, F and d-functions from H. The analytical surface was fit up to 24500 cm−1

above the minimum and the RMSE was 525 cm−1. Even with this (relatively, and

by modern standards) poor quality of the PES, they were able to study successfully

power spectra, intramolecular dynamics, dissociation products energy distributions,

dissociation rates of CH stretching and out-of-plane bending modes.132,197,198 The YK

potential has been used by Viel and co-workers196 to compute vibrational states of

HFCO and DFCO; in the same study, they also utilized the alternate Wei and Wyatt

(WW) PES for HFCO.200 In addition to Viel’s work, other groups have used the YK

PES to examine the vibrational states of HFCO and DFCO.199,201,203,204 Using the

YK PES, Gatti and co-workers investigated IVR and IVR driven (and, hence, pos-

sibly controlled) by an external field in HFCO and DFCO.126,128 They investigated

IVR after excitation above the dissociation limit of C=O or C-F stretching modes.

In principle, coupling of these modes with the out-of-plane bending mode, which is

close to the dissociation reaction coordinate, could facilitate the dissociation. It was

determined that DFCO dissociates but HFCO does not. However, the optimal control

of these processes was not pursued as the YK PES underlying the dynamics was not

sufficiently accurate.

The present focus is on constructing a new highly accurate PES for the HFCO
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molecule that can be used for studying quantum dynamics including IVR and optimal

control of IVR. Fitting the 6D PES to the sum-of-products form desired for future

MCTDH dynamics simulations is challenging. For example, using the conventional

potfit approach87,88 requires a large number of data points for the fit as they must be

sampled on a uniform grid. As a simple example, if 10 points are sampled per degree

of freedom, one million data points are needed for a 6D system; an insurmountable

task if using a high-level ab initio determination of the data. The sampling issue could

be addressed using the recently developed extension to multi-grid potfit.205 Here we

will use the neural network fitting with exponential neurons approach1,77,78 to develop

a PES in sum-of-prdocuts form. In our recent work,8 see Chapter 2, we developed

and tested a direct interface between the PES-fitting and MCTDH. This method gives

sum-of-products form which can directly be used in MCTDH to study dynamics. In

that work, we demonstrated the utility of the method for CS2, i.e., only 3D. Here we

extend the approach to a 6D PES.

The chapter is organized as follows. First, the computational methods are dis-

cussed including the ab initio electronic structure techniques, the Neural Network

with exponential neurons PES fitting procedure, and the methods used to determine

the vibrational energies in MCTDH. In the Results and Discussion section, the im-

portant stationary points on the PES are characterized. The quality of the new PES

fit is analyzed in terms of RMSE. The vibrational frequencies of fundamental and

combination modes of HFCO and DFCO, as determined on the new PES, are de-

termined and compared ot previous computational and experimental results. The

chapter concludes by summarizing the results, discussing the potential use of the new

PES in future dynamics studies, and, more generally, the applicability of the fitting

method in future for other similar and larger systems.

52



3.2 Computational Methods

3.2.1 Ab initio Methods/Electronic Structure Computations

The majority of the ab initio electronic structure computations were performed using

the explicitly correlated coupled cluster method with single, double and perturbative

triple excitations [CCSD(T)-F12].15,16,206 For the CCSD(T)-F12 computations, the cc-

pVTZ-F12 basis set was used for all atoms.47 The ground state equilibrium geometry

of HFCO as well as the geometries of the cis- and trans-isomers (denoted as cis-

HOCF and trans-HOCF) were determined at the CCSD(T)-F12/cc-pVTZ-F12 level

of theory using numerical gradients. The transition states were also determined at the

same level of theory, where the initial Hessian for the search was determined at the

MP2/aug-cc-pVTZ level of theory. All stationary points were verified by computing

harmonic vibrational frequencies via numerical Hessians. By default, both F12A and

F12B energies15,206 were obtained in a single point calculation; the F12A energies

are reported in this work. All CCSD(T)-F12 electronic structure computations were

carried out with MOLPRO.18,19 The default convergence criteria in MOLPRO were

used in geometry optimizations and single point energy calculations.

Infrared frequencies and intensities of the fundamental modes were also deter-

mined within the harmonic limit and accounting for anharmonicity at the MP2/aug-

cc-pVTZ207–209 and CCSD(T)/aug-cc-pVTZ levels of theory210–212 using CFOUR.124

The required geometry optimizations and electronic structure computations used the

default convergence criteria in CFOUR. The harmonic frequencies and corresponding

intensities were computed using analytic Hessians. The anharmonic vibrational fre-

quencies and the intensities of the fundamental modes were determined at the VPT2

(second-order) level of perturbation theory118–120 as implemented in CFOUR.124

3.2.2 Fitting the Potential Energy Surface

A body fixed polyspherical coordinate system was used for the HFCO molecule, see

Figure 3.1. The C-H, C-F and C=O bond distances are designated as RCH = R1,

RCF = R2 and RCO = R3 respectively, while θBFHCO, θBFFCO and φBF are the H-C-O,
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Table 3.1: Grid lengths and parameters of the primitive basis set employed for each
degree of freedom. HO is the harmonic oscillator (Hermite) DVR.

Mode Combinations (R1, cosθ1) (R2, cosθ2) (R3, φ)

Primitive basis HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR

# of basis functions 10 13 14 14 10 40

Grid length (a.u.) [1.41,3.35] [-0.99,0.135] [2.06,3.62] [-0.91,-0.055] [1.75,2.93] [1.48,4.82]

Number of SPFs 10 14 10

F-C-O bond angles and the dihedral angle between them, respectively. Grids along

physical coordinates were carefully chosen to restrict the PES to be confined to the

equilibrium HFCO geometry and the transition state to dissociation into HF + CO.

The range chosen for each coordinate is given in Table 3.1; the numerical details for

the MCTDH computations, discussed later, are also provided.

O

H

C

F

RCH=R1

RCF=R2

RCO=R3

θHCO=θ1
BF

θFCO=θ2
BF

ϕBF

Z

X

Y

Figure 3.1: Valence Body-Fixed Polyspherical Coordinate System used for the HFCO
Molecule. R2 lies in the xz Plane

The neural network (NN) toolbox in MATLAB was used to fit the six-dimensional

(6D) PES of the HFCO molecule into a sum-of-products form. The sum-of-products
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form is required for efficient quantum dynamics simulations using the MCTDH3–7

approach. In general, neural networks use sigmoidal fitting functions but in the

current work, an exponential fitting function is utilized as proposed by Manzhos and

Carrington1 to obtain a sum-of-products form for the final PES, i.e.,

V NN(x1, x2, ...xD) =
N∑
q=1

(ebqCq)
D∏
p=1

ewqpxp + Vshift =
N∑
q=1

c̃q

D∏
p=1

ewqpxp + Vshift. (3.1)

Here VNN is the neural network fitted PES as a function of the number of neurons

(N) and the x1 to xD degrees of freedom. The fitting parameters consist of weights,

wqp, biases, bq, which are incorporated into the constant c̃q, and a final constant shift

parameter, Vshift. The final form is a sum over all the neurons and a product over all

the dimensions.

To generate data for PES fitting, one-dimensional (1D) and two-dimensional (2D)

grids were generated along the physical coordinates centred at both the equilibrium

geometry and the transition state to the dissociation channel HF+CO. In addition

to the 1D and 2D grid data, geometries were selected randomly from the 6D grid,

where the ranges for the 6 degrees of freedom are defined in Table 3.1. However, the

random grid points were restricted using an energy filter,2,77,81 i.e.,

Ecut − V 0
total

Ecut
> fi (3.2)

where Ecut is a chosen cut-off energy and fi is a random number between 0 to 1. The

total energy, V0
total, that was filtered was determined by summing over all the 1D

potentials from the equilibrium geometry. These 1D potentials were fit to Morse (R1,

R2 and R3) and polynomial (cosθ1, cosθ2 and φ) functional forms, see Table B5 and

Table B6 in Appendix B and the accompanying discussion. As the energy from the

sum over 1D potentials will always be greater than the exact (anharmonic) energy

at any geometry, the filter puts more data in the lower energy region of the PES.

Therefore, the full data set for the PES-fitting consists of the random energy-filtered

data plus 1D and 2D grid data.

The data set was split into training, testing and validation sets. The training set

contains 80% of the total data data, including the random energy-filtered geometries
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plus the 1D and 2D grid data at the equilibrium and transition state to dissociation

geometries. The training set was used to fit the PES. A validation set of 10% of

the data was used to guide the fit to avoid over-fitting of the training set. A test

set of 10% of the data was used to examine the quality of the fit at the end of

the fitting procedure.The Levenberg-Marquardt algorithm was used to determine the

fitting parameters, see Eq. (3.1). Before fitting, all data (coordinates and energies)

were scaled to lie between [-1, 1] by

Xscaled =
X − xmin
xmax − xmin

(3.3)

where the maximum and minimum of a particular coordinate (or the energy) are xmax

and xmin. X is the data before scaling which after scaling appears as Xscaled. The

scaled data lead to smooth convergence and a gradually decreasing RMSE for the fit.

A one-stage fitting procedure in a loop over 10-20 iterations has been applied in this

work to further reduce the RMSE.

3.2.3 Eigenenergy Calculation

Block improved relaxation9 as implemented in the Heidelberg multiconfiguration

time-dependent Hartree (MCTDH) package3 was used to compute the vibrational

state energies. For efficiency in MCTDH, the wavefunction, kinetic energy operator

(KEO) and the potential energy operator must all be in sum-of-products form. In

the present work, we have employed the KEO used previously in the study of in-

tramolecular vibrational energy redistribution (IVR) of highly excited HFCO.126–128

Primitive grids for each degree of freedom utilize harmonic oscillator (HO) basis func-

tions. The grid sizes and the number of primitive basis functions are given in Table

4.1. Combination modes have been used in the single particle functions (SPFs). The

number of SPFs and the mode combinations are also given in Table 3.1. Improved

relaxation7,125 was used to obtain wavefunctions and assign the vibrational states.
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3.3 Results and Discussion

3.3.1 Equilibrium Geometry

3.3.1.1 Stationary points; Structure; Energies

The optimized equilibrium and transition state geometries along with the correspond-

ing relative energies at the CCSD(T)-F12/cc-pVTZ-F12 level of theory are given in

Table 3.2. The results for the equilibrium and transition state geometries are in

Table 3.2: Structural Parameters (bond lengths in Å; angles in degrees) and Relative
Energies (in cm−1) of HFCO Isomers and Corresponding Transition States at the
CCSD(T)-F12/cc-pVTZ-F12 Level of Theory.

Structure R1
(CH) R2

(CF ) R3
(CO) θ1

HCO θ2
FCO φa Energyb

Equilibrium 1.091 1.341 1.179 127.8 122.7 180 0
Cis-isomer 1.883 1.341 1.295 28.9 106.8 0 15180

Trans-isomer 1.828 1.317 1.308 30.4 104.5 180 14809
TStrans↔cis 1.930 1.320 1.332 27.3 106.5 90.3 21013
TSeq↔trans 1.246 1.320 1.260 59.2 115.4 180 26416
Tdissociation 1.136 1.854 1.132 170.6 121.6 0 16993

a Dihedral angle between HCO and FCO planes.
bRelative energy, including harmonic ZPE, with respect to the equilibrium geometry
in cm−1 unit. The zero point corrected energy (E0) is the sum of the total energy (
Etot) and the zero point energy (EZPE), i.e., E0 = Etot + EZPE.

good agreement with previous computations191,202 and, where available, experimen-

tal measurements185,186,213 (see Table B1 and Table B2, Appendix B). The bond

lengths are within 0.01 Å and the bond angles within 0.5 degrees of the previous cal-

culations and within the experimental error bars for the experimental determinations

(for equilibrium structure only). The transition state for unimolecular dissociation

of HFCO to HF and CO is determined to lie 16993 cm−1 (48.55 kcal/mol) above

the equilibrium with the zero-point energy correction and this agrees well with the

experimental value of 43-49 kcal/mol.133,183 Trans-HOCF is 14809 cm−1 above the

equilibrium energy and 371 cm−1 (1.06 kcal/mol) more stable than cis-HOCF. The

cis- and trans- isomers are separated by a transition state with a relative energy
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(compared to the trans-isomer) of 6204 cm−1. The barrier height for the equilibrium

geometry to trans-HOCF conversion was found to be 26416 cm−1. This relatively

high barrier isolates the cis-trans conversion process from unimolecular dissociation.

A cut-off energy of 20000 cm−1 and a carefully chosen grid (in Table 3.1) restricts the

potential to be in the region consisting of only equilibrium HFCO and the transition

state to unimolecular dissociation.

3.3.1.2 Harmonic and Anharmonic Frequencies

While the full-dimensional PES is needed for future dynamics studies, it is interest-

ing to compare fundamental vibrational frequencies for HFCO obtained through har-

monic and anharmonic computations. Frequencies obtained from MP2/aug-cc-pVTZ,

CCSD/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ computations were compared with

previous experimental measurements181 along with results from a CCSD(T)-F12/cc-

pVTZ-F12 harmonic calculation. The harmonic and anharmonic frequencies for the

fundamental modes of HFCO are given in Table 3.3 and Table 3.4, respectively. Pre-

vious CCSD(T)/cc-pVTZ results by Vazquez and Stanton187 are also reported. The

root means square errors (RMSE) compared to the experimental data are provided.

The RMSE for the harmonic fundamental modes determined using MP2/aug-cc-

pVTZ, CCSD/aug-cc-pVTZ, CCSD(T)/aug-cc-pVTZ and CCSD(T)-F12/cc-pVTZ-

F12 were 74 cm−1, 82 cm−1, 60 cm−1 and 62 cm−1, respectively. For the anhar-

monic computations, the RMSEs for the fundamental modes were greatly reduced

to 16.5 cm−1, 26 cm−1 and 8 cm−1 for MP2/aug-cc-pVTZ, CCSD/aug-cc-pVTZ and

CCSD(T)/aug-cc-pVTZ, respectively. The ability to determine CCSD(T)-F12 an-

harmonic frequencies via VPT2 is only accessible numerically, i.e., using finite dif-

ferences to obtain numerical gradients, Hessians, and higher order derivatives, and,

hence, are not computed. Previous theoretically determined frequencies by Stanton

and co-workers187 using the CCSD(T)/cc-pVTZ(Frozen Core) method have a RMSE

66 cm−1 for the harmonic frequencies but for anharmonic calculation, the RMSE

was 12 cm−1. As expected, improved treatment of electron correlation from MP2

to CCSD(T) to CCSD(T)-F12 improves the harmonic frequencies as does increasing
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the size of the basis (cc-pVTZ to aug-cc-pVTZ). Interestingly, the CCSD(T)/aug-cc-

pVTZ and CCSD(T)-F12/cc-pVTZ-F12 harmonic frequencies are of comparable ac-

curacy. Not surprisingly, similar observations were made for DFCO; the harmonic and

anharmonic frequencies for the fundamental modes are given in Appendix B: Tables

B3 and B4. While the harmonic and anharmonic modes are useful for spectroscopy,

a full-dimensional PES is important for studying high-lying vibrational modes and

for quantum dynamics simulations.

3.3.2 NN fit of the PES

The PES fitting was initiated by dividing the total data set, see Section 3.2.2, of ab

initio energies as determined at the CCSD(T)-F12/cc-pVTZ-F12 level of theory, into

training, testing, and validation sets. PES fits were generated using two different

cut-off energies, see Eq. (3.2), of 20000 cm−1 and 30000 cm−1. The sum over 1D

potentials, V 0
total, needed for the energy filtering, was based on 1D potentials fit to

CCSD(T)-F12/cc-pVTZ data around the equilibrium geometry. The following forms

were utilized: a 9th order polynomial for φ, a 5th order polynomial for cosθ1 and

cosθ2, and Morse potentials for R1, R2 and R3. The fitting parameters are given in

Appendix B: Tables B5 and B6. In the training set for the PES with a 30000 cm−1

cut-off energy, 8000 random data, 440 1D data, 1500 2D data at equilibrium and 800

2D data at the transition state were used. The test set was 1000 random data and

the validation set contained 999 random data. The PES with a 20000 cm−1 cut-off

energy was fit to a training set of 7000 random, 400 1D and 1300 2D data points at

equilibrium and 750 2D data points at the dissociation transition state.

The RMSE versus the number of neurons used in the fit is shown in Figure 3.2.

The numerical results associated with this figure are given in Appendix B: Table B7.

Not surprisingly, the RMSE decreases as the number of neurons (fitting parameters)

increases; however, the RMSE plateaus and does not approach zero due to the use

of the validation set. From 55 to 70 neurons, the RMSE decreases very slowly and

essentially converges to 20 cm−1 after 75 neurons for the 20000 cm−1 cut-off potential

energy surface and to 35 cm−1 for the 30000 cm−1 PES. While the training set RMSE
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Table 3.4: Theoretical Anharmonic and Experimental Fundamental Frequencies (in
cm−1) of HFCO

Present Results Previous Results
Mode MP2a CCSDa CCSD(T)a CCSD(T)b Obs.c Intensityd

ν5 FCO bending 652.3 673.5 656.1 665.5 662.5 17.8
ν6 out of plane bending 1016.5 1034.4 1012.9 1019.0 1011.0 0.5

ν3 CF stretching 1046.1 1096.1 1060.7 1088.3 1064.8 132.7
ν4 HCO bending 1342.8 1362.7 1337.4 1355.0 1342.5 1.1
ν3 CO stretching 1814.7 1875.3 1825.2 1841.5 1836.9 191.1
ν1 CH stretching 3006.5 3005.7 2969.8 2973.1 2981.0 17.5

RMSE 16.5 26 8 12 - -

aaug-cc-pVTZ basis set.
bcc-pVTZ basis set from Ref. 187.
cexperimental results from Ref. 181.
dExperimental intensities (in km/mol) from Ref. 182.

for the PES with a 20000 cm−1 (30000 cm−1) cut-off using 75 neurons was 20 cm−1

(35 cm−1), the test set RMSE for energies between 0 to 10000 cm−1 was 10 cm−1

(12.5 cm−1) and 25 cm−1 (26.3 cm−1) for points between 10000-20000 cm−1. This

demonstrates the quality of the PES in the lower energy region. A RMSE of 20

cm−1 should be sufficient for future quantum dynamics studies of HFCO. The RMSE

could be reduced further by removing the validation set but this could lead to over-

fitting and subsequent “holes” in the PES. A further minor decrease in the RMSE

was found by going to large numbers of neurons (more than 100 NN) but this large

number of fitting parameters make dynamics calculation very slow in MCTDH. An

optimal number of 75 NN was selected for both the 20000 cm−1 and 30000 cm−1 cut-

off potentials for calculating vibrational states using MCTDH. The MCTDH operator

files, i..e, the fitting parameters, for the two PES are provided in Appendix B.

In comparing this current PES with previous fits, the Yamamato and Kato132

(YK) PES has a RMSE of 1.5 kcal/mol (525 cm−1) which is more than twenty five

times larger than that of the present fit (20 cm−1). Another PES by Wei and Wy-

att200 (WW) has a RMSE larger than the YK PES. These two PESs were used

previously in both vibrational state computations196,199,201 and quantum dynamics

simulations.126–128
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Figure 3.2: RMSE versus Number of Neurons for the PES with a 20000 cm−1 (Solid)
and 30000 cm−1 (Dashed) cut-off Energies. Training Set (Squares with Black) and
TestSet (Circles with Red)
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3.3.3 Vibrational Energies

The quality of the PES is validated by computing and comparing fundamental, over-

tone and combination band vibrational energy levels with previous computational

results196,199,201 and experimental measurements.196 The vibrational frequencies were

computed using block improved relaxation9 in the MCTDH software package3 and

the NN fit PES with the 20000 cm−1 cut-off energy. The energies were converged to

0.1 cm−1 for the first 150 states and were all assigned. The vibrational states were as-

signed using improved relaxation with initial guess method. State assignments were

also verified by plotting the wavefunction probability density followed by counting

number of nodes along specified modes. The vibrational energies determined based

on this NN fit PES of CCSD(T)-F12/cc-pVTZ-F12 ab initio data are given in Table

3.5. The CCSD(T)-F12/NN results agree much better with experiment196 than the

previously available computations based on the YK or WW PESs. The RMSE of

the states below 5000 cm−1 was 2.5 cm−1 which is much better than previous full

dimensional calculation by Viel et al.196 on the YK132 and WW200 PESs. Their cal-

culations on the YK and WW PESs gave 28 cm−1 and 92 cm−1 RMSE, respectively.

Most of the states were found to agree with those assigned by Viel et al.196 albeit with

energies much closer to the experimental measurements. However, new assignments

were made for some states. The experimental peak at 4302.9 cm−1 was assigned pre-

viously as 002010 but, in the present work, it is assigned as the 100020 state with

an energy of 4302.0 cm−1. Interestingly, we found the 002010 state matches with the

experimental peak at 4307.5 cm−1; a peak assigned previously as the 100100 state

which has an energy of 4291 cm−1 according to the present work. Another experi-

mental peak at 4493.9 cm−1 was found to be the 001200 state while it was previously

assigned as the 010102 state; the current results determine this 010102 state to have

an energy of 4415 cm−1 which is far from experiment. The assignment of the 001200

state can be seen in Figure 3.3. From this plot, it is clear that there are two nodes

along the HCO bending mode and a single node along the C=O stretching mode.

An experimental peak at 4705.2 cm−1 is assigned by this work as 001031 while the
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Table 3.5: Selected Vibrational Energies (in cm−1) for States up to 5000 cm−1

for HFCO from the Present PES Compared with Experimental Measurements and
Previous Computations.

Assignment Exptb This work Ref. 196 WW Ref. 200 YK Ref. 201 YKa

(n1n2n3n4n5n6)

000010 662.6 664.1 626.4 659.4 658.1
000001 1011.2 1012.8 968.8 1020.5 1019.2
010000 1064.9 1067.8 1017.8 1051.5 1049.5
000020 1324.1 1327.5 1255.1 1317.7 1314.8
000100 1342.3 1338.2 1371.1 1372.2 1370.3
010010 1719.3 1725.1 1639.5 1704.6 1699.0
001000 1836.8 1835.6 1770.5 1827.9 1821.3
020000 2115.6 2114.9 2029.2 2090.8 2085.3
010100 2412.0 2399.0 2376.1 2418.3 2412.9
001010 2494.2 2494.9 2393.4 2484.0 2474.4
001001 2841.0 2841.0 2727.5 2843.5 2833.3
011000 2895.0 2898.4 2787.1 2876.1 2863.9
100000 2981.2 2976.0 2974.4 3039.2 3003.2
001020 3150.6 3153.8 3016.2 3139.4 3126.2
002000 3652.8 3650.9 3526.7 3648.1 3623.7
001002 3838.1 3839.8 3686.9 3855.1 -
100020 4302.9 4301.6 4138.3 4304.3 -
002010 4307.5 4307.1 4335.9 4403.1 -
001200 4493.9 4495.7 4323.5 4458.8 -
002001 4653.1 4649.1 4474.4 4662.6 -
012000 4705.2 4710.9 4546.4 4698.9 -
001031 4817.6 4815.5 4649.9 4865.7 -
002020 4955.0 4959.0 4758.0 4960.4 -

RMSE 2.5 92 28 12

a Vibrational assignments taken from Ref. 201 or present work.
b Experimental values from private communication as mentioned in Ref. 196.
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previous work assigned it as the 001003 state. The 001003 state has a energy of 4832

cm−1 which is far from experiment.
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Figure 3.3: Probability density plot of 001200 state. The state has experimental
energy of 4493.9 cm−1 energy while caculated value is 4495.7 cm−1. The contour plot
was made at equilibrium geometry of other modes.

During the state assignment, we found some states that were very close in energy

with other states. The assignment of these states was made from (approximate)

probabilities of the transitions, especially for combination modes. From the measured

and calculated values for the intensities of the fundamentals,128,181,182 see Table 3.4,

states containing modes (ν2 and ν3) would be higher priority than weak modes in the

case of a transition to a combination mode. For example, the experimental peak at

4705.2 cm−1 is in-between the computationally determined 4700.4 cm−1 and 4711.0
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Table 3.6: Computed Fundamental Vibrational Energies (in cm−1) of DFCO on the
Present PES Compared with Experimental Measurements and Previous Computations.

Fundamental Mode YK-MCTDH204 Expt.214 YK-Davidson203 This work

ν1 CD stretch 2276.0 2261.7 2275.4 2258.2
ν2 CF stretch 1066.0 1073.2 1066.2 1074.3
ν3 CO stretch 1783.0 1796.8 1783.7 1795.3
ν4 DCO bend 980.0 967.9 979.8 966.0
ν5 FCO bend 652.0 657.5 653.0 658.7

ν6 Out-of-plane bend 863.0 857.4 857.9a 859.2
RMSE 10.5 - 9.7 2.0

a Based on reported 2ν6 value reported divided by 2.

cm−1 energy levels. The state with the energy of 4711.0 cm−1 was assigned to be the

012000 state, and the one at 4700.4 cm−1 was assigned to be the 110010 state. Here

we assigned 012000 to be the experimental state of energy 4705.2 cm−1 as 012000

is a two mode combination state but the 110010 state involves three modes. Also,

the 012000 state involves one quanta of excitation along the C-F stretching and 2

quanta of excitation along the C=O stretching which is much more probable as can

be seen from the experimental intensities that the ν2 and ν3 modes are the most

intense modes.

Additional tests of the PES in terms of vibrational state energies were carried out

for DFCO. The fundamentals and other energy levels match well with experimental

results. The fundamental frequencies determined along with previous computations

and experimental measurements are provided in Table 3.6; other vibrational levels are

given in Appendix B: Table B8. The previous MCTDH results based on a potfit of

the YK PES have a RMSE 10 cm−1 for the fundamental frequencies while the results

based on the present PES give a RMSE of only 2.0 cm−1, reflecting the high quality

of the NN PES.

3.4 Conclusion

We presented a new full dimensional (6D) potential energy surface for HFCO in a

limited region describing the equilibrium geometry up to (and beyond) the transition
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state to unimolecular dissociation. The present work is the first direct fit of CCSD(T)-

F12/cc-pVTZ-F12 ab initio data into a 6D PES using the neural network fitting

procedure with exponential neurons. Previous 6D PESs generated using this approach

have been re-fits of available analytical PESs. The NN sum-of-products form PES can

be, and, in the present work, has been, used in MCTDH. Comparatively few randomly

selected data points along with 1D and 2D grid data make this method more efficient

that potfit. The quality of the fit depends upon the cut-off energy and the number of

neurons; due to the presence of the validation set to prevent over-fitting, the RMSE of

the fit eventually stops improving with an increased number of neurons. The present

PES has a much smaller RMSE relative to the ab initio data (20 cm−1) compared

to the previous fit132 (525 cm−1) and is based on a much higher-level of electronic

structure theory (CCSD(T)-F12/cc-pVTZ-F12 vs MP2/pVTZ). The vibrational state

energies determined (up to 5000 cm−1) based on the PES have a RMSE of only 2.5

cm−1 when compared to the experiment. The method can be applied to fit other 6D

systems and, in principle, for large systems (although data sampling may become an

issue). Further investigation for other molecules is underway. With the improvement

in accuracy and its computational efficiency for use in MCTDH, the NN fit PES may

overcome the weaknesses of the previous MP2/potfit PES for computations such as

the (optimal) control of IVR in HFCO.128
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Chapter 4

Fitting a 6D Asymmetric
Double-Well Potential Energy
Surface with Neural Network
Exponential Fitting Functions:
Application to HONO

4.1 Introduction

Nitrous acid, HONO, plays an important role in atmospheric chemistry, astrochem-

istry, and geochemistry.215–222 HONO is formed in the atmosphere from water vapour,

NO and NO2 oxides, and it can be decomposed into OH and NO via photolysis. Hence

HONO plays an important role in OH chemistry and that for the nitrogen oxides

which are involved as catalysts for tropospheric ozone production.223,224 While recent

research focuses on the atmospheric impact of HONO, e.g., the investigation of the

gas phase sources of the HONO in the troposphere,225 HONO is also of fundamental

theoretical and experimental interest, and in particular, its spectroscopy, structure,

and dynamics in the electronic ground and first few excited states. Many important

photofragmentation reactions and the UV-VIS absorption spectrum involving the first

singlet excited state have been studied experimentally226–230 and theoretically.231–235

However, in this chapter, we are solely interested in the ground electronic state.

Besides its photophysical and photochemical importance, HONO is one of the
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smallest molecules to exhibit trans-to-cis isomerization in its ground electronic state.

The structures (bond lengths and bond angles) and dipole moments have been mea-

sured for both cis- and trans-HONO.236–240 Vibrational frequencies of fundamental

modes as well as overtones and several combination modes for both isomers have

been determined experimentally.237,238,241 The relative stability of the trans- and cis-

isomers has been of interest, and it has been determined that trans-HONO is more

stable than cis-HONO.242 The trans↔cis barrier height has been examined both the-

oretically and experimentally and shown to be between 3050 to 4340 cm−1.242 Many

of the experiments exploring the isomerization and spectroscopy have been carried

out in cold matrices.243–254 The cis-trans isomerization process was first observed

by monitoring the OH stretching mode243 in an N2 matrix. Khriachtchev et al.254

showed that exciting the first overtone of the OH or N=O stretching mode accelerates

the trans-cis isomerization process in a Kr matrix. From the matrix assisted experi-

ments, it was concluded that the cis-to-trans conversion is faster than the trans-to-cis

process; a conversion that exhibit strong mode specificity. Interestingly, in the gas

phase, neither the cis nor trans OH stretching mode can induce the isomerization

process.131 To date, no experimental evidence exists to support the 1,3 H exchange

between the two oxygen atoms. On the other hand, for the HNO2 tautomer experi-

mental fundamental mode frequencies255 are available but no specific examination of

the HONO-HNO2 rearrangement has been made. The spectroscopy and intramolecu-

lar dynamics of HONO can be investigated theoretically to understand these various

experimental measurements.

The starting point of many theoretical studies is an evaluation of the underlying

PES. The S0 PES has been examined previously by a variety of different methods with

a focus on specific aspects of the spectroscopy or dynamics. A 6D PES based on inter-

polating DFT energies was constructed to study vibrational spectra by Luckhaus.256

Anharmonic vibrational frequencies were calculated using the VSCF method based

on an MP2/6-311++G(2d,2p) computed PES.254 A recent analytical PES of HONO

was constucted using MP4/6-31++G(d,p) computed ab initio energies and the inter-

polating moving least-squares (IMLS) approach by Pham and Guo257 to investigate
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the reaction rate of cis-trans isomerization. A very recent article studied anharmonic

vibrational frequencies of cis-HONO and DONO in a variational calculation based

upon ab initio electronic structure at the MP2/aug-cc-pVTZ level of theory.258

Most relevant for the present study, a six dimensional PES of HONO encom-

passing the cis- and trans-isomers was fit to the sum-of-products form based on the

638 CCSD(T)/cc-pVQZ(-g) ab initio points.131 The analytical surface was used to

compute vibrational states up to 3650 cm−1 in a full dimensional calculation us-

ing MCTDH.3 In a series of papers, Gatti and co-workers129,130,177 explored the in-

tramolecular dynamics of HONO with and without an external laser field in the cis-

trans region using this PES (and a DFT-based dipole moment surface, when needed).

These simulations are targeted to the available experiments259–261 studying laser con-

trol of torsional motion of molecules. However, questions remain as to whether the

PES of Richter et al. is sufficiently accurate for quantum control studies. Several as-

pects could be considered regarding the previous PES: (i) Truncated basis sets were

used, (i.e., cc-pVQZ removing the g-functions). As the basis was designed including

the g-functions, it is not entirely clear what effect the truncation might have. (ii) The

use of diffuse functions in the basis (aug-) could be examined. (iii) The PES obtained

is based upon only 638 (judiciously chosen) data points. Therefore, in the present

work, we aim to determine, and test, a new PES for HONO.

If the analytical PES is in a sum-of-products form, it greatly reduces the com-

putational cost when using MCTDH to study the quantum dynamics. One possible

approach to obtain the sum-of-products form is to use potfit .87,88 However potfit re-

quires data on a grid and beyond 6D, is impossible; the limit on dimensionality can

be circumvented using multi-grid potfit .262 An alternative method for obtaining sum-

of-products form was developed by Manzhos and Carrington using a 1-layer neural

network with exponential neurons;1,2 what is referred to here as NN-expnn. While

Manzhos and Carrington focused on refitting existing analytical PESs, we have ex-

tended the NN-expnn method to directly fit ab initio data and provide an MCTDH

operator file for the PES,8 see Chapters 2 and 3.

In this chapter, we discuss the construction of a highly accurate NN-expnn fit
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PES for the S0 state of HONO in the restricted region consisting of cis-HONO, trans-

HONO and the transition state of cis-trans conversion. Two different ab initio elec-

tronic structure approaches are used to determine the data upon which the fit is

based: (i) Explicitly correlated coupled cluster single double and perturbative triple

excitation, CCSD(T)-F12, with the cc-pVTZ-F12 basis set or (ii) CCSD(T) compu-

tations extrapolated to the complete basis set limit. This chapter reveals new aspects

of the accurate PES as well as conveys the potential of using NN-expnn for other

molecules.

The chapter is organized as follows: Section 4.2 presents the computational meth-

ods utilized in this work, including the ab initio electronic structure techniques (Sec.

4.2.1), the Neural Network PES fitting with exponential neurons approach (Sec.

4.2.2), the method implemented in MCTDH for determining the vibrational states

(Sec. 4.2.3). In Section 4.3, the results of the ab initio computations (including

stationary point geometries and relative energies), the PES fits and the vibrational

frequencies including state assignments are discussed. A summary and possible future

directions are presented briefly in Section 4.4.

4.2 Computational Methods

4.2.1 Ab initio Electronic Structure Techniques

The explicitly correlated coupled cluster method with single, double and perturbative

triple excitations,15,16 CCSD(T)-F12, was used with the cc-pVTZ-F12 basis set47 in

the majority of the ab initio electronic structure computations. The lowest energy

equilibrium geometry for the S0 state of HONO (the trans-isomer) was determined

at the CCSD(T)-F12/cc-pVTZ-F12 level of theory using numerical gradients. All

other stationary points, i.e., intermediates and transition states, on the S0 surface

were determined at the same level of theory. For geometry optimization of the tran-

sition states, the initial Hessian was determined at the MP213,14/aug-cc-pVTZ45,46

level of theory. The harmonic vibrational frequencies were computed using numerical

Hessians to verify the nature of the stationary points (minima or transition states).
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The CCSD(T)-F12 method provides two energies, F12A and F12B (see Ref. [16 and

15] for details); the F12A energy is utilized for the PES fitting, see Section 4.2.2,

and all relative energies refer to F12A values. The CCSD(T)-F12 computations were

carried out using the Molpro electronic structure package.18 Geometry optimizations

and single point energy calculations were performed using the default convergence

criteria.

As an alternative to and as a point of comparison for the CCSD(T)-F12/cc-pVTZ-

F12 PES, ab initio data were also determined through extrapolation to the complete

basis set (CBS) limit. The basis set extrapolation50–52 was performed using the

CCSD(T)/aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z computed energies. These

basis sets will sometimes be abbreviated as AVTZ, AVQZ, and AV5Z, respectively.

The correlation energy, Ecorr, is

Ecorr = Etot − ESCF , (4.1)

where Etot is the total energy and ESCF is the SCF energy. The total energy at the

complete basis set limit is then

Etot
CBS = ESCF

CBS + Ecorr
CBS, (4.2)

where Ecorr
CBS is the extrapolated correlation energy and the complete basis set SCF

energy, ESCF
CBS, is taken to be the CCSD(T)/aug-cc-pV5Z SCF energy, ESCF

AV 5Z . From

aug-cc-pVQZ to aug-cc-pV5Z, the SCF energy change is not significant compared to

the correlation energy change, e.g., at the trans-isomer equilibrium geometry ESCF
AV 5Z

- ESCF
AV QZ = 0.0031 au, while the total energy change, Etot

AV 5Z - Etot
AV QZ = 0.01692

au. Three-point and two-point extrapolation to the complete basis set limit were

performed using the following equations:

E(x) = ECBS + A e−Bx (4.3)

and

E(x) = ECBS + A x−3. (4.4)

Equation (4.3) is for three-point extrapolation where ECBS is the complete basis set

limit energy while A and B are the (other) unknown parameters to be determined.
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The value of x is equal to Lmax (or lmax), i.e., the highest orbital angular momentum

in the basis. The value of x equals 3, 4, and 5 for the aug-cc-pVTZ, aug-cc-pVQZ

and aug-cc-pV5Z basis sets, respectively. A minimum of three different basis sets

are required to use the three point extrapolation method as in Eq.(4.3); the use of

the aug-cc-pVDZ basis set in the extrapolation is discouraged and, hence, we do not

use it here. Equation (4.4) is used for two point extrapolation where x is same as in

Equation (4.3). The Molpro software package18,19 was used for the CCSD(T)/aug-

cc-pVXZ (X=T, Q, Z) ab initio electronic structure computations described above.

To compare with the CCSD(T)-F12/cc-pVTZ-F12 harmonic frequencies as well as

those computed using MCTDH with the full-dimensional PES, the anharmonic (and,

hence, corresponding harmonic) fundamental infrared frequencies as well as intensities

for the cis-HONO and the trans-HONO isomers were computed at the MP2/aug-cc-

pVTZ and CCSD(T)14/aug-cc-pVTZ levels of theory using the CFOUR software

package.124 The harmonic frequencies were computed using analytical gradients and

the anharmonic frequencies were determined using second-order perturbation theory

(VPT2)118–120 in CFOUR.

4.2.2 Neural Network Fitting of the Potential Energy Sur-
face

For fitting the PES, the HONO molecule is represented in a valence (or internal)

polyspherical coordinate system as shown in Fig. 4.1. The N=O, O-N and O-H

bond distances are assigned as R1, R2, and R3, respectively. The O=N-O, H-O-N

and dihedral angles are designated as θ1, θ2 and φ . The PES was restricted to the

region of the S0 surface which contains the cis-HONO and trans HONO isomers as

well as the corresponding transition state. The restriction was accomplished using

an energy cut-off (7500 cm−1) and suitably chosen grid lengths along the six physical

coordinates. The coordinate ranges are given in Table 4.1; the table also contains

information related to the MCTDH computations, see Sec.4.2.3. The PES fitting

utilized the Neural Network toolbox (nftool) implemented in MATLAB. Rather than

using the default sigmoidal functions available in MATLAB, an exponential fitting
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Figure 4.1: The HONO molecule in the valence polyspherical coordinate system.

Table 4.1: Grid lengths used for the physical coordinates for the HONO PES. Also
provided are the type and number of primitive basis functions and single particle func-
tions (SPFs) used in the MCTDH computations (see Sec.4.2.3).

Coordinates RN=O
1 cos θHON

2 cos θONO
1 RON

2 ROH
3 φ

Grid Length
[min , max] [1.9,2.6] [-0.65,0.25] [-0.65,-0.1] [2.1,3.25] 1,3,2.45] [0,3.14]

Primitive Basis 13 18 16 16 18 32
Basis Function Types HO HO HO HO HO sin/cosa

SPF 16b 16c 5 11

a sin DVR for A′ and cos DVR for A′′ state computations.
b For the (RN=O

1 , cos θHON
2 ) combined mode.

c For the (RON
2 , cos θONO

1 ) combined mode.
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function (referred to as an exponential neuron)1,263 was utilized to generate a sum-of-

products form for the analytical potential energy surface. The sum-of-products form

is particularly important for computational efficiency in studying quantum dynamics

using the MCTDH approach.3–7 The sum-of-products form is

V NN(x1, x2, ...xD) =
N∑
q=1

(ebqCq)
D∏
p=1

ewqpxp + Vshift =
N∑
q=1

c̃q

D∏
p=1

ewqpxp + Vshift. (4.5)

Here VNN is the neural network fitted PES as a function of the number of neurons

(N ) and the x1 to xD degrees of freedom; we will refer to potentials fit to this form as

NN-expnn PESs. The fitting parameters consist of a constant shift (Vshift), weights

(wqp) and biases (bq); the biases are incorporated into the constant c̃q. The final form

is a sum over all the neurons and a product over all dimensions.

To generate data for the PES fitting, one-dimensional (1D) and two-dimensional

(2D) grids were utilized along the physical coordinates from both the equilibrium

geometries (cis- and trans-) and from the transition state for cis-trans isomerization.

In addition to the 1D and 2D grid data, geometries were selected randomly from the

6D grid. However, they were restricted using an energy filter,2,77,81 i.e.,

Ecut − V 0
tot(xi)

Ecut
> fi (4.6)

where Ecut is a chosen cut-off energy and fi is a random number between 0 to 1. The

total (approximate) energy V 0
tot(xi), that was filtered was determined by summing

over the 1D potentials from the trans-HONO equilibrium geometry. Note that if the

final ab initio energy exceeded the cut-off energy, it was discarded from the data set

used for fitting.

To obtain the sum over 1D energies, V 0
tot(xi), the potentials for the bond distances

(R1, R2, and R3) were fit to Morse functional form:

V (ri) = A0[1− e−A1(ri−A2)]2. (4.7)

The bond angles (in their cosine form) were fit to a 4th order polynomial, i.e.,

V (cos θi) = A0 + A1 cos(θi) + A2(cos θi)
2 + A3(cos θi)

3 + A4(cos θi)
4. (4.8)
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Figure 4.2: Distribution of energy points with and without the energy filter, see
Eq.(4.6). The distribution is taken over 20000 points generated from the sum over
1D analytical surface, V 0

tot(xi), for energies up to 7500 cm−1, where N(ε) gives the
number of points found within a 250 cm−1 energy window.

The dihedral angle was fit to cos(nx) form:

V (φ) = A0 + A1 cos(φ) + A2 cos(2φ) + A3 cos(3φ) + A4 cos(4φ). (4.9)

The fitting parameters are presented in Tables C4 and C5 in Appendix C. As the

energy from the sum-over 1D cut potential will always be greater than the anhar-

monic energy at any geometry, the filter puts more data in the lower energy region

of the PES. Using the energy filter, the selected random data are distributed more

strongly/densely around the lower energy region, see Fig.4.2. Therefore, the total

data set for the PES fitting consists of random energy-filtered data plus 1D and 2D

grid data.

The random data set was split into training, testing and validation sets. The

training set contains 80% of the random data plus the 1D and 2D grid data at the

equilibrium (cis- and trans-) and the cis ↔ trans transition state geometries. The
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training set was used to fit the PES. A test set of 10% of the random data was used to

test the quality of the fit at the end of the fitting procedure. A validation set of 10%

of the random data was used to guide the fit to avoid over-fitting of the training set.

The Levenberg-Marquardt algorithm was used to determine the fitting parameters,

see Eq.(4.5). Before the fitting is initiated, all data (coordinates and energies) were

scaled to lie between [-1, 1] by

Xscaled =
X − xmin
xmax − xmin

(4.10)

where the maximum and minimum of a particular coordinate (or energy) are xmax

and xmin. X is the data before scaling which after scaling appears as Xscaled. The

scaled data leads to smooth convergence and a gradually decreasing RMSE for the fit

as the number of neurons is increased. A one-stage fitting procedure in a loop over

10-25 iterations has been applied in this work to further reduce the RMSE.

4.2.3 Eigenenergy Determination

Block improved relaxation9 as implemented in the Heidelberg Multiconfiguration

time-dependent Hartree (MCTDH) package264 was used to compute the vibrational

state energies. Block improved relaxation enables accurate computation of the vibra-

tional states in a designated energy window. For efficiency in MCTDH, the wavefunc-

tion, kinetic energy operator (KEO), and the potential energy operator must all be

in sum-of-products form. The NN-expnn fitted PES for HONO is designed to be in

a sum-of-products form. In the present work, we have used the KEO from previous

theoretical studies of HONO by Gatti and co-workers.129,130,177 As the molecule is

represented in a polyspherical coordinate system, the final form of the KEO is a sum-

of-products for single mode operators. Primitive grids for the bond angles and bond

distances use harmonic oscillator (HO) basis functions. The out-of-plane bending

mode was presented as sin or cos DVR. The cos DVR is for computing A′′ states and

the sin DVR is for computing A′ states. The grid sizes and the number of primitive

basis functions are given in Table 4.1. Combination modes have been used for the

single particle functions (SPFs) grid. As ONO bending and ON stretching modes are
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strongly coupled to each other, these two modes were used as two mode combina-

tion in the SPF basis. Also, HON bending and N=O stretching modes were used as

combination modes in the SPF. The number of SPFs and the mode combinations are

also provided in Table 4.1. Improved relaxation7,125,265,266 was used to obtain wave

functions and assign the vibrational states.

4.3 Results and Discussion

4.3.1 Stationary Points, Structure and Relative Energies

The CCSD(T)-F12/cc-pVTZ-F12 optimized geometries (for minima and transition

states) and the corresponding relative energies (as compared to the energy of the

trans-HONO global minimum) are given in Table 4.2 and 4.3, respectively. The

structures include cis-HONO, trans-HONO, and the cis↔trans transition state. The

geometries of the HNO2 tautomer as well as the transition states for 1,3 and 1,2 H-

atom migration are given in Table C1 in Appendix C. The harmonic frequencies used

to determine the ZPE corrections for each species are given in Table 4.4. Anharmonic

fundamental frequencies can also be used to determine the ZPE (see Table C2) of a

stationary point, but the ZPE of the transition states are harder to determine, thus

anharmonic ZPE corrections to the transition states are rarely performed. The results

for the geometries are in excellent agreement (bond lengths within 0.01 Å and bond

angles within 0.1◦) with the experimental241,267 and the previous theoretical calcula-

tions,131,256,268 including for the transition state. The ground state minimum energy

structure of the HONO molecule is the trans-HONO conformer. The relative energies

and structures of all the intermediates and transition states on the S0 surface are

shown schematically in Figure 4.3. The cis-/trans-HONO energy difference has been

considered in several previous studies (experiment239,242,243,252 and theory256,269–273).

At the CCSD(T)-F12/cc-pVTZ-F12 level of theory (including ZPE), the cis-HONO

minimum is just 122 cm−1 above the trans-HONO minimum. The cis-trans energy

difference using different computational methods is plotted in Figure 4.4; the corre-

sponding numerical data is given in Table 4.5. The ZPE corrected cis-trans energy
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Table 4.2: CCSD(T)-F12/cc-pVTZ-F12 (F12) and CCSD(T)/aug-cc-pVXZ (X=Q,
5) optimized geometries including bond distances (Å) and angles (degrees), of trans-
HONO, cis-HONO and the transition state (TS#

cis↔trans). Also provided are experi-
mental and previous theoretical results.

Isomers Methods R1
N=O R2

ON R3
OH θ1

ONO θ2
HON φ

Expt.267 1.169 1.428 0.957 110.70 102.10 180.00

trans- F12 1.170 1.419 0.966 110.69 102.27 180.00
HONO AVQZ 1.171 1.423 0.966 110.68 102.22 180.00

AV5Z 1.171 1.420 0.966 110.69 102.27 180.00
Ref [131]a 1.170 1.426 0.964 110.70 101.90 180.00
Ref [256]b 1.166 1.433 0.969 111.20 102.90 180.00
Ref [268]c 1.173 1.453 0.966 110.50 101.40 180.00

Expt.241 1.185 1.390 0.978 113.60 104.00 0.00

cis- F12 1.183 1.385 0.976 113.24 104.83 0.00
HONO AVQZ 1.184 1.387 0.976 113.26 104.80 0.00

AV5Z 1.183 1.385 0.975 113.24 104.83 0.00
Ref [131]a 1.183 1.390 0.974 113.20 104.40 0.00
Ref [268]c 1.187 1.414 0.974 113.00 104.30 0.00

TS#
cis↔trans F12 1.161 1.492 0.967 111.19 103.44 86.90

AVTZ 1.165 1.507 0.970 111.11 103.08 86.71
AVQZ 1.162 1.496 0.967 111.20 103.39 86.85

Ref [131]a 1.164 1.506 0.962 110.50 100.70 86.40

a CCSD(T)/cc-pVQZ; b CCSD(T)/TZP; c CCSD(T)/TZ2P; a B3LYP/6-311++G**
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Table 4.3: Relative energies (in cm−1) without (∆E) and with (∆EZPE) zero-point
energy corrections of HONO isomers on the S0 PES at the CCSD(T)-F12/cc-pVTZ-
F12 level of theory compared with previous calculations. Energies reported relative to
the lowest energy trans-HONO isomer.

Intermediates ∆E (cm−1) ∆ZPE ∆EZPE Previous
trans-HONO 0 0 0 0

cis-HONO 124.0 -2.0 122.0 130.0a

H-NO2 2769.3 379.8 3149.1 2783.2b

TS#
cis↔trans 4070.4 -455.8 3614.6 4105.0c

TS#
trans↔H−NO2

20656.5 -1174.9 19481.6 19290.3b

TS#
1,3−Hshift 10778.3 -919.4 9859.9 9896.5b

OH+NOe 18211.6 -1611.2 16600.2 16772.0d

a Experimental results from Ref. 242; b B3LYP/6-311G(3df, 3pd) results from Ref.
272; c CCSD(T)/aug-cc-pVQZ (-g functions) results from Ref. 131; d DROPS mea-
sured results from Ref. 274; e Open shell optimized RCCSD(T)-F12206/cc-pVTZ-F12

difference using the CCSD(T)-F12/cc-pVTZ-F12 level of theory is near the complete

basis set (CBS) limit as one can observe from the the CCSD(T)/aug-cc-pVXZ (X=T,

Q, and 5) energy differences; the CBS limit (including ZPE) has not been determined

since the geometries are subtly different for different basis sets.

Table 4.4: Harmonic vibrational frequencies and zero point energies (ZPE) (both in
cm−1) for the trans-HONO, cis-HONO, HNO2, TS ct (transition state of cis-trans
isomerization), TS 12(transition state of trans-HONO tautomerization to H-NO2)
and TS 13 (transition state of 1,3-H migration of Hydrogen). All results determined
at the CCSD(T)-F12/cc-pVTZ-F12 level of theory.

Frequencies trans cis HNO2 TS ct TS 12 TS 13 OH+NO
577.0 649.0 788.0 593.0(i) 2125.5(i) 1962.3(i)
636.0 679.0 1040.3 555.7 465.2 1019.3
836.0 899.0 1385.5 788.4 692.0 1238.4

1320.0 1350.0 1511.5 1121.2 1293.4 1283.2
1732.0 1677.0 1649.4 1730.7 1584.2 1366.2 1916.7
3780.0 3623.0 3265.8 3773.3 2496.3 2135.2 3741.9

ZPE 4440.5 4438.5 4820.3 3984.7 3265.6 3521.1 2829.3

The global PES is complicated with several closely spaced (in terms of relative

energies) intermediates. The cis and trans isomers are separated by a transition state
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Table 4.5: The energy difference (in cm−1) between trans-HONO and cis-HONO
without ZPE correction (∆E) and with ZPE correction (∆EZPE) as determined using
various levels of theory.

Method ∆E(cm−1) ∆EZPE(cm−1)
MP2 /aug-cc-pVTZ 179.5 198.9

CCSD(T)/aug-cc-pVTZ 167.9 171.4
CCSD(T)/aug-cc-pVQZ 136.0 137.7
CCSD(T)/aug-cc-pV5Z 122.4 127.7

CCSD(T)-F12A/cc-pVTZ-F12 122.0 120.0
CCSD(T)-F12B/cc-pVTZ-F12 124.0 122.0
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Figure 4.3: Schematic of the stationary points on the S0 PES of HONO. Relative
energies including ZPE (as compared to trans-HONO) computed at the CCSD(T)-
F12/cc-pVTZ-F12 level of theory are also provided.
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Figure 4.4: Cis-trans energy difference including ZPE (∆Ecis↔trans) using different
computational methods.

with an energy of 3615 cm−1 (relative to the trans- minimum). The CCSD(T)-F12/cc-

pVTZ-F12 value is comparable to the previous theoretical256,269–273 and experimen-

tal239,242,243,253 estimation of the barrier, i.e., values between 3050 - 4100 cm−1. The

transition state for 1,3 H-atom migration which also connects the cis- and trans- iso-

mers, has a relative energy (including ZPE) of 9860 cm−1, which is high relative to

the cis-trans region, including the transition state, of the PES. The HNO2 tautomer

has an energy (including ZPE) of 3149 cm−1 above the minimum energy trans isomer.

However, accessing the HNO2 tautomer is energetically unfavourable as the energy

barrier is the highest on the PES (19482 cm−1). The experimental dissociation bar-

rier was reported to be 16772 cm−1, as determined in a double-resonance overtone

photofragmentation spectroscopy (DROPS) experiment by Rizzo and co-workers.274

In this chapter, the dissociation barrier is calculated to be 16660 cm−1 above the

trans- minimum. Based on the relative energetics and geometries of the stationary

points on the global PES, the cis-trans isomerization process can be captured in a

more localized PES by restricting the cut-off energy to 7500 cm−1 and the bond
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lengths and bond angles to the grids discussed (see Table 4.1) such that it avoids the

1,3 H-atom migration transition state and the equilibrium HNO2 tautomer.

4.3.2 Harmonic and Anharmonic Frequencies

To provide comparisons for the MCTDH determined vibrational frequencies, see

Section 4.2.3, the harmonic frequencies have been determined using several meth-

ods/basis set combinations: MP2/aug-cc-pVTZ, CCSD(T)/aug-cc-pVXZ (X=T, Q,

5), and CCSD(T)-F12/cc-pVTZ-F12. The fundamental frequencies of trans-HONO

are given in Table 4.6 and for cis-HONO in Table 4.7; the experimental measurements

are provided for comparison. For the trans-HONO isomer, the RMSD with respect

to the experiment is 72 cm−1 using MP2 whereas it is 73.0, 85.0 and 86.6 cm−1 for

CCSD(T) with the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, respec-

tively. Perhaps, surprisingly, the agreement between the fundamental harmonic fre-

quencies and experiment gets worse when increasing the size of the basis. The RMSE

for the CCSD(T)-F12/cc-pVTZ-F12 computed harmonic frequencies of trans-HONO

was 86.6 cm−1. Similar trends were found for the cis-HONO isomer. The RMSEs were

74.0, 78.0, 88.0, 91.0 and 89.0 cm−1 for the MP2, CCSD(T)/aug-cc-pVXZ (X=T, Q,

5) and CCSD(T)-F12/cc-pVTZ-F12 methods, respectively.

The anharmonic fundamental frequencies at the MP2/aug-cc-pVTZ and CCSD(T)/aug-

cc-pVTZ levels of theory are presented in Table 4.8 (for trans-HONO) and in Table 4.9

(for cis-HONO). As expected the anharmonic frequencies exhibit significantly better

agreement with the experiment than the harmonic results. For the CCSD(T)/aug-

cc-pVTZ computed anharmonic frequencies, the RMSE of trans-HONO is 8.6 cm−1

and for the cis-HONO isomer, the RMSE is 9.0 cm−1.

4.3.3 Neural Network PES Fitting

The PES fitting has employed two different approaches for generating the energy

data: (i) energy from the previous131 analytical potential energy surface and (ii)

high level ab initio data. The use of the analytical PES permitted the exploration

of the parameters defining the data sampling that could impact the quality of the
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Table 4.6: Harmonic frequencies (in cm−1) of the fundamental modes for trans-
HONO. The intensities (in km/mol) are provided when determined.

CCSD(T)
Mode MP2/AVTZa AVTZa AVQZ AV5Z 5 F12b Expt.c

OH 3754.8 (90.4) 3760.0 (72.9) 3779.3 3782 3780.0 3590.7
N=O 1659.9 (108.6) 1715.4 (133.2) 1728.3 1729.6 1732.0 1699.8
HON 1283.4 (174.5) 1306.1 (170.1) 1315.7 1317.0 1320.0 1263.1
O-N 805.3 (159.4) 815.9 (145.6) 830.0 833.7 836.0 790.1

ONO 602.5 (196.0) 617.4 (121.8) 630.4 634.0 636.0 595.6
Torsion 586.5 (99.3) 565.1 (97.2) 575.7 576.0 577.0 543.8
RMSE 71.9 72.6 84.6 86.4 86.5 -

a Harmonic frequencies and intensities from CFOUR software124

b CCSD(T)-F12/cc-pVTZ-F12 level of theory
c(Torsion, ONO bend) from Ref. 275; (ON streching, HON bend) from Ref. 276;
N=O stretching from Ref. 237; and OH stretching from Ref. 277

Table 4.7: Harmonic vibrational frequencies (in cm−1) of the fundamental modes of
cis-HONO. The intensities (in km/mol) are provided when determined.

CCSD(T)
Mode MP2/AVTZa AVTZa AVQZ AV5Z F12b Expt.c

OH 3591.2 (37.6) 3608.4 (29.3) 3622.7 3625.6 3623.0 3426.2
N=O 1610.7 (141.7) 1658.3 (166.5) 1670.4 1674.0 1677.0 1640.5
HON 1320.2 (7.0) 1337.4 (9.6) 1348.0 1351.2 1350.0 1302.0
O-N 884.2 (359.4) 876.4 (298.5) 895.0 898.3 899.0 851.0

ONO 634.0 (36.3) 631.9 (26.2) 645.4 648.7 649.0 609.0
Torsion 693.7 (97.7) 667.5 (97.3) 681.4 685.0 679.0 638.5
RMSE 74.0 78.1 88.3 90.6 89.4 -

a Harmonic frequencies and intensities from CFOUR software;124 b CCSD(T)-F12/cc-
pVTZ-F12 level of theory; c From Ref. 241
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Table 4.8: Anharmonic frequencies (in cm−1) and in parenthesis corresponding in-
tensities (in km/mol) of trans-HONO.

Mode MP2/AVTZ CCSD(T)/AVTZ Experimente

OH 3575.0 (76.7) 3576.0 (59.2) 3590.7
N=O 1633.1 (109.8) 1690.0 (141.8) 1699.8
HON 1233.4 (163.4) 1259.0 (159.5) 1263.1
O-N 756.2 (121.3) 785.8 (127.9) 790.1
ONO 565.7 (231.2) 596.0 (131.4) 595.6

Torsion 551.2 (96.5) 534.0 (94.3) 543.8
RMSE 35.8 8.6 -

e(Torsion, ONO bend) from Ref. 275; (ON streching, HON bend) from Ref. 276;
N=O stretching from Ref. 237; and OH stretching from Ref. 277

Table 4.9: Anharmonic frequencies (in cm−1) and in parenthesis corresponding in-
tensities (in km/mol) of cis-HONO.

Mode MP2a MP2/AVTZ CCSD(T)/AVTZ Experimentc

OH 3422.3(64) 3408.5(30.2) 3421.4 (21.9) 3426.2
N=O 1599.1(197) 1587.5(136.9) 1629.2 (158.9) 1640.5
HON 1336.3(12) 1249.5(1.4) 1288.7 (0b) (1302)d1315.2
O-N 881.6(347) 840.8(336.4) 844.5 (280.2) 851.0
ONO 622.9(27) 598.5(60.3) 604.8 (35.9) 609.0

Torsion 836.5(121) 651.7(95.2) 628.2 (94.3) 638.5
RMSE 84.9 32.2 9.0 -

aVariational computations based on MP2/aug-cc-pVTZ ab initio data from Ref. 258
b Very low intensity.
c(Torsion, ONO bend) from Ref. 275; (OH stretching, N=O stretching) from Ref.
238; HON bending in a Kr matrix from Ref. 254; and ON stretching from Ref. 276
dExtremely low intensity; represents a best estimate for the gas phase result based
on the measured value of 1315.2 cm−1 in a Kr matrix experiment from Ref. 254
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fit. In refitting the available analytical PES,131 several different cut-off energies were

considered, i.e., 5000, 6000, 7500 and 10000 cm−1, as well as different data training

set combinations (including the 1D, 2D, and 3D grids as well as the selection of

random data with, e.g., different numbers of data points from the cis, trans and TS

regions). The details and the corresponding RMSEs (selected samples of) of these fits

are given in Appendix C in Tables C11 and C12. Typically, the best RMSE that can

be obtained is 15 cm−1. However, if the validation set is removed (possibly leading

to overfitting), the RMSE can be reduced to 2 cm−1. From the tests refitting the

analytical PES, it is clear that the NN-expnn method is capable of accurate fitting

of an asymmetric double well PES with a low energy barrier. We can also adopt the

data sampling guidelines developed for use when computing high level ab initio data

for fitting a new HONO PES.

For the direct fitting of the ab initio data, a cut-off energy of 7500 cm−1 was se-

lected based on the information learned from refitting the analytical PES, the analysis

of the stationary points on the ab initio PES, and with the aim to restrict the PES

to the cis-trans region consisting of only cis-HONO, trans-HONO and the transition

state of the cis-trans isomerization process, TScis↔trans. In the NN fitting process, the

training, test and validation sets were built by dividing the entire data set. Among

the random data (of 10000 points), 8000 were chosen in the training set. The test

and validation sets were 1000 random data each. In addition to the random data, in

the training set, selected grids of 1D and 2D data at the cis, trans and the transition

state geometries were included. A total of 1591 1D and 2D cuts were included in the

training set. The information about the 1D and 2D grids is provided in Appendix

C: Tables C6 to C8. As discussed in Section 4.2.2, the use of scaled data leads to a

smooth decrease in the RMSE as the numbers of neurons increases. Without scaling,

the quality of the fit does not systematically improve beyond 50 NN. The effect of

scaling the data on the RMSE of the fit as the number of neurons is increased is

plotted in Figure C1. The RMSE with increasing the number of neurons (fitting pa-

rameters) is shown in Figure C2 and the corresponding numerical data is provided in

Table C9. As expected, the RMSE decreases as the number of neurons is increased;
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however beyond 70 neurons, the RMSE does not change significantly. The lack of

improvement for an increased number of neurons is due to the presence of the valida-

tion set to prevent overfitting. We choose the PES fit with 80 neurons for use in the

MCTDH calculations of the vibrational state frequencies. The RMSE is 15.0 cm−1

for the PES with 80 NN. Although the overall RMSE is 15 cm−1, examining the lower

energy region of the PES reveals that up to 3000 cm−1, the RMSE is 4.5 cm−1, while

up to 6000 cm−1 (as in the Table C10), the RMSE is 6.5 cm−1. The MCTDH oper-

ator files for the 80 NN single stage fit PES with a 7500 cm−1 cut-off energy (based

upon CCSD(T)-F12/cc-pVTZ-F12 or CBS extrapolated ab initio data) are provided

in Appendix C. The quality of the NN-expnn fitted PES can also be verified by

analyzing 1D or 2D cuts of the PES. As an example, the 2D cut for the HON and

out-plane-bending modes (with all other parameters set at their equilibrium values)

is illustrated in Figure 4.5.

4.3.4 Vibrational States from MCTDH

Once a PES has been obtained in sum-of-products form, it can be utilized for subse-

quent computations of vibrational state energies, and, if desired, wavefunctions using

MCTDH. The resulting vibrational energies, as determined using different PESs, are

discussed in the following sections.

4.3.4.1 Refit of the analytical PES

As a first test, the low-lying vibrational states have been determined using the NN-

expnn refits of the previous analytical PES,131 with different cut-off energies. The

computed energies for the fundamental modes, along with the previous computations

of Richter et al.131 are shown in Tables C11 and C12 for trans- and cis-HONO,

respectively. For the trans-HONO isomer, the computed energies are within 1 cm−1

of those determined on the Richter et al. PES (an exception is the N=O stretch mode

with a deviation of 8.0 cm−1). For the cis-HONO isomer, the agreement is better as

most are within 1 cm−1 of those determined on the Richter et al. PES (the N=O

stretch mode deviates by 4.5 cm−1).
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Figure 4.5: HONO S0 surface 2D contour plot of φ vs cosθHON2 with all other geomet-
rical parameters fixed at the trans-HONO equilibrium geometry. Contours represent
0.001 au or 220 cm−1 intervals.
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The refitting of the previous analytical PES and the good agreement with the

corresponding vibrational energies provides confidence that the NN-expnn-MCTDH

procedure is efficient for fitting the asymmetric double-well HONO PES and for deter-

mining accurate vibrational energies. Hence, the decision to determine new accurate

HONO PESs based upon high level CCSD(T)-F12/cc-pVTZ-F12 and CCSD(T)/CBS

ab initio data.

4.3.4.2 New HONO PESs

In this section, we focus on the fundamental vibrational modes for the trans- and

cis-HONO isomers determined based on the NN-expnn fits (with 80 neurons) to the

CCSD(T)-F12/cc-pVTZ-F12 and CCSD(T)/CBS ab initio data. The vibrational

states determined based upon the CCSD(T)-F12/cc-pVTZ-F12 and the CBS extrap-

olated NN-expnn fit PESs are compared with the experimental results237,238,254,275–277

and previous theoretical results,131 see Tables 4.10 and 4.11. The absolute differ-

ences as compared to the experiment range from 0.3-17.4 on the CCSD(T)-F12 PES

(0.3-12.9 on the CCSD(T)/CBS PES) and the RMSE is 9.7 cm−1 (7.0 for CBS PES)

for the trans-HONO isomer. Interestingly, despite improvement in the underlying ab

initio electronic structure (from CCSD(T)/cc-pVQZ (-g functions)) the RMSE of 9.7

cm−1 is comparable to the previous results of Gatti and co-workers131 (RMSE of 8

cm−1). More precisely, in this work, the out-of-plane bending mode is more accurate

(off by 0.3 cm−1 and 1.1 cm−1 for the CCSD(T)-F12/cc-pVTZ-F12 and the CBS

extrapolated NN-expnn fit PESs, respectively) than the theoretical result by Gatti

and co-workers131 (off by 6.0 cm−1 from the experiment). The OH stretching, N=O

stretching and HON bending modes are also accurately computed (differences less

than 5 cm−1) and comparable to those determined in the previous theoretical work.

The ONO bending and O-N stretching modes are the two modes which differ from

experiment by more than 15 cm−1 (more than 10 cm−1 for the CBS PES). These two

modes are highly coupled, and even in the previous work,131 these modes deviated

most significantly from the experiment. Overall, the CBS extrapolated results for

trans-HONO are more accurate than those from CCSD(T)-F12 for the N=O and ON
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stretching plus HON and ONO bending modes.

For cis-HONO, the CCSD(T)-F12/cc-pVTZ-F12-MCTDH results are quite accu-

rate when compared to the experimental measurements (RMSE of 2.9 cm−1). The

CBS extrapolated results are also very accurate with a RMSE of 3.9 cm−1. The max-

imum deviation is found for the HON bending mode; 19 cm−1 for the CCSD(T)-F12

PES and 16 cm−1 for the CBS PES as compared to the experimental measurement241

of of 1302.0 cm−1. However, it should be emphasized that this value was an es-

timate278 as the experimentally measured gas phase spectral peak was too low in

intensity to assign. This large difference for the HON bending mode is also reflected

in the work by Gatti and co-workers131 (10 cm−1 difference). A more recent experi-

ment in a Kr matrix254 reports the HON bending frequency to be 1315.2 cm−1 which

we include in the comparison. Except for the HON bending mode, the agreement

with the other five modes is excellent. The OH stretch, N=O stretch and ONO bend-

ing modes are almost exact (differences less than 1 cm−1) when compared with the

experiment. The out of plane bending mode and O-N stretching mode have differ-

ences below 3 cm−1. Overall, the current results show better agreement with the

experiment than the previous MCTDH results.131 The largest deviation for the CBS

result is for the ONO bending mode, differing 8.6 cm−1 from the experiment. Overall

the accuracy of the cis-HONO frequencies is better than for trans-HONO.

Additional data for selected overtones and combination modes, including their as-

signment and frequencies (based on the CCSD(T)/CBS 80 NN PES fit) are provided

in Appendix C: Tables C15 and C16 for the trans-HONO and cis-HONO isomers,

respectively. These computed values are compared with the previously observed val-

ues.237,238,275,279–281 Gatti and co-workers131 also computed overtones and combination

modes frequencies of cis- and trans-HONO isomers up to 3650.0 cm−1. Our (and their)

assigned first overtones of N=O stretching mode (2ν2) are in good agreement with

the observed values:237,238 for trans-HONO, a computed value of 3374.5 cm −1 (3367.4

cm−1) as compared to the observation at 3372.1 cm−1, and for cis-HONO 3264.7 cm−1

(3253.6 cm−1) for the computation relative to the measurement of 3257.9 cm−1. Over-

tones of N=O and OH modes are important to consider because these are the modes
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Table 4.10: The fundamental vibrational energies for trans-HONO as determined
on potential energy surfaces based on different levels of ab initio theory. (See main
text for discussion of PESs). Differences from the experimental measurements, see
Table 4.8, are provided in bold.

Mode CCSD(T) CCSD(T)-F12 CBS Previous131

AVTZ AVQZ AV5Z VTZ-F12 MCTDH
OH stretch 3577.4 3592.9 3595.1 3593.5 3586.4 3590.2

-13.3 2.2 4.4 2.8 -4.3 -0.5
N=O stretch 1688.0 1701.6 1704.9 1705.7 1700.1 1698.3

-11.8 1.8 5.1 5.9 0.3 -1.5
H-O-N bend 1258.7 1267.4 1268.8 1269.3 1266.6 1267.4

-4.6 4.3 5.7 5.5 2.8 3.6
O-N stretch 788.3 799.8 802.8 804.1 800.1 796.5

-1.8 9.7 10.7 14.0 10.0 6.4
O-N-O bend 596.8 608.6 612.3 613.0 608.5 600.9

1.2 13 16.7 17.4 12.9 5.3
Torsion 530.7 539.4 543.9 543.5 542.7 537.8

-13.1 -4.4 0.1 -0.3 -1.1 -6.0

Table 4.11: The fundamental vibrational energies for cis-HONO as determined on
potential energy surfaces based on different levels of ab initio theory. (See main text
for discussion of PESs). Differences from the experimental measurements, see Table
4.9, are given in bold.

Mode CCSD(T) F12 CBS Previous131

AVTZ AVQZ AV5Z VTZ-F12 MCTDH
OH stretch 3417.6 3428.8 3431.0 3426.1 3426.0 3435.8

-8.6 2.6 4.8 -0.1 -0.2 9.6
N=O stretch 1628.9 1643.0 1645.8 1639.8 1640.7 1636.8

-11.6 2.5 5.3 -0.7 0.2 -3.7
H-O-N bend 1306.6 1322.2 1321.9 1321.1 1318.4 1312.0

O-N stretch 847.6 865.0 865.6 854.2 861.2 850.1
-3.4 14.0 14.6 3.2 10.2 -0.9

O-N-O bend 605.2 616.9 620.3 609.8 617.6 617.0
-3.8 7.9 11.3 0.8 8.6 8.0

Torsion 627.4 633.9 637.5 636.0 636.5 631.8
-11.3 -4.6 -1.0 -2.5 -2.0 -6.7

91



involves in the isomerization. For the combination of N=O and N-O stretching modes,

(1ν2,1ν3), the computed frequency 2515.9 cm−1 (2476.7 cm−1) can be compared to

the experimentally observed value of 2492.9 cm−1. The computed frequencies and

state assignments obtained in this work of the overtones and combination modes are

in excellent agreement with the previously determined results.

4.4 Conclusions

In this chapter, the stationary points (minima and transition states) on the global

HONO PES have been located and characterized based on CCSD(T)-F12/cc-pVTZ-

F12 computations. We have demonstrated the capability of the NN-expnn method to

fit a potential energy surface localized around the cis- and trans-isomers for the HONO

molecule. The CCSD(T)-F12/cc-pVTZ-F12 and CCSD(T)/CBS levels of theory have

been used to generate the ab initio data for the energies. Vibrational states up to 4000

cm−1 have been determined for both the cis- and trans-HONO isomers; the RMSE

with respect to the experiment is less than 10 cm−1. Based on the vibrational energies,

the PES appears to be only (perhaps, surprisingly) as accurate as the PES (based on

CCSD(T)/cc-pVQZ(-g functions)) reported by Richter et al.131 For trans-HONO, the

NO stretch and ONO bend differ from experiment by 15 cm−1 which we speculate to

arise from (possible) multireference character which MRCI computations can reveal.

From the present work, and as shown previously1,8 the NN-expnn method for fitting

is a viable alternative to potfit for use in MCTDH. Additional work is underway

to test its applicability towards fitting a global surface (one that contains multiple

intermediates), see Chapter 5.
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Chapter 5

Neural Network Exponential
Fitting of a 6D Multiple-Well
Potential Energy Surface:
Application to HFCO

5.1 Introduction

As discussed in Chapter 3, the dynamics of HFCO and, the possible control in this

small, prototype molecule, are of theoretical, and potentially, experimental interest.

Therefore, in addition to the dynamics in the HFCO equilibrium and HF + CO

dissociative regions, the cis-trans isomerization of HOCF could play a significant and

intriguing role in the spectroscopy and controlled quantum dynamics of HFCO. While

investigating intramolecular vibrational energy redistribution (IVR) of HFCO on its

ground electronic (S0) potential energy surface, Gatti and co-workers126,128 found

that exciting CH, CO or HCO vibrational modes does not facilitate the dissociation.

Therefore, as speculated previously,126 it may be possible to form trans-HOCF at

the same rate as the dissociation products. The possible competition between these

two processes is interesting because the barrier for HFCO to trans-HOCF conversion

(∼26000 cm−1) is significantly higher than the activation barrier of dissociation to HF

+ CO (∼17000 cm−1). The HFCO dynamics can be compared to the analogous H2CO

molecule. H2CO isomerizes to trans-HOCH at a faster rate than dissociation to H2 +
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CO duo to the lower activation barrier of isomerization (29938 cm−1) than dissociation

(30260 cm−1).282 Therefore, the unusual photochemistry of HFCO requires a detailed

theoretical investigation. The lack of a global PES for HFCO limited the previous

IVR studies126–128 as the analytical PES (constructed by Yamamoto and Kato132

and, hereafter referred to as the YK-PES) did not contain the cis- and trans-HOCF

isomers. The cut-off energy for the YK132 PES was 24000 cm−1 but the barrier

height of HFCO to trans-HOCF conversion is 26000 cm−1. To obtain new insight

into the IVR dynamics and to investigate the competition between dissociation and

isomerization, an accurate global PES of HFCO is desired.

In this Chapter, we develop an accurate global PES which could be used to study

the wave packet dynamics in HFCO using MCTDH (or, alternative, quantum or

classical dynamics approaches). Similar future directions were proposed in a series of

papers on IVR dynamics of HFCO by Gatti and co-workers.126–128 A global PES is de-

veloped using the NN-expnn method, see Sec.5.2, based on CCSD(T)-F12/cc-pVTZ-

F12 ab initio data. The accuracy of the PES is tested by determining vibrational

states around the 3 minimum energy structures, and comparing to available experi-

mental measurements (only measured for the HFCO global minimum) and previous

theoretical results.202

Besides developing a PES for examining the spectroscopy and future dynamics, we

investigate the utility of the NN-expnn method for fitting a multiple-well PES. The

HFCO global PES contains three minima and three transition states. If successful,

the present NN-expnn fitting demonstrates its use for multiple-well PESs. Hence, a

wide range of PESs involving isomerization could be developed using NN-expnn for

future quantum dynamics simulations.

The work in this chapter is organized as follows. The ab initio computational

methods, NN-expnn PES fitting techniques for the global surface of HFCO, and the

vibrational state computations using MCTDH are discussed in Section 5.2. Section

5.3 presents the results of the optimized geometries, energies, harmonic frequencies

of the intermediates, PES fitting and the MCTDH determined frequencies of cis-

HOCF, trans-HOCF and equilibrium-HFCO on the S0 global PES. The conclusions
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and future scope of this work are presented in Section 5.4.

5.2 Computational Methods

5.2.1 Ab initio Electronic Structure Techniques

The CCSD(T)-F1215,16/cc-pVTZ-F1247–49 level of theory was used for the ab initio

computations including both geometry optimizations (minima and transition states)

as well as for generating the data for PES fitting. Corresponding MP213,14/aug-cc-

pVTZ45 and CCSD(T)14/aug-cc-pVTZ computations for the stationary points have

also been carried out for comparison. More importantly, anharmonic vibrational

frequencies have been determined at these levels of theory using VPT2.118–120 The

CCSD(T)-F12 electronic structure computations were carried out with the Molpro

package.18,19 The MP2 and CCSD(T) computations, including for anharmonic vibra-

tional frequencies, were carried out with CFOUR.124

5.2.2 PES Fitting

A body fixed polyspherical coordinate system is used to represent HFCO, see Figure

3.1. 1D cuts, 2D grids, and random data sets centred at each minimum (HFCO,

trans-HOCF and cis-HOCF) and transition state geometry (TScis↔trans, TSeq↔trans

and TSeq↔diss) were computed with a cut-off energy, Ecut of 40000 cm−1 (relative to

the equilibrium minimum). The fits of 1D cuts for cis-HOCF, trans-HOCF, HFCO

and the transition states are given in Appendix D in Tables D1 and D2. The 1D

and 2D cuts consist of 1500 data points at each stationary point geometry, i.e., 9000

points in all. An additional 1000 random data points at every minimum and TS were

included in the training set, i.e., 6000 random data. Therefore, the entire training

set is 15000 points. The test and validation sets each contain 600 random data; 100

random data centred at each stationary point and transition state. The overall 40000

cm−1 cut-off energy (relative to the HFCO equilibrium minimum) will include all six

stationary points: cis-HOCF, trans-HOCF, TScis↔trans, HFCO (the global minimum

≡ equilibrium), TSeq↔trans and TSeq↔diss. The PES was fit to a sum-of-products form
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using NN-expnn. The details of the fitting procedure are described in Section 3.2.2.

5.2.3 MCTDH Computations

The quality of the PES was analyzed by computing vibrational energies using block

improved relaxation9 as implemented in the MCTDH software package.3 The kinetic

energy operator in body-fixed polyspherical coordinates has been described previ-

ously, see Sec.3.2.2.

5.3 Results and Discussion

5.3.1 Energies, Geometries and Fundamental Frequencies

The geometries and relative energies of the stationary points have been discussed

previously in Section 3.3.1.1, see Table 3.2. To remind the reader, a schematic of the

important stationary points (along with their relative energies compared to the HFCO

minimum) is given in Figure 5.1. Hence, only the frequencies of the cis- and trans-

HOCF isomers are discussed and compared to previous computations.202 Currently,

no experimental measurements of the fundamental frequencies of trans- or cis-HOCF

are available. The fundamental harmonic frequencies of the trans- and cis-HOCF

isomers as computed in the present work are given in Tables 5.1 and 5.2, respectively.

While the present harmonic frequencies have been determined at a much higher level

of theory than the previously reported CISD/DZ+P results,202 the goals are to fit a

global PES and determine vibrational energies beyond the fundamental frequencies.

5.3.2 The Global PES

The global PES was fit using the NN-expnn approach, see Section 3.2.2 for further

details, based on the ab initio data sampled as discussed in Section 5.2.2. The RMSE

of the fit utilizing different numbers of neurons is given in Table D3 in Appendix D.

The best RMSE obtained is ∼ 150 cm−1 for 100 neurons; increasing the number of

neurons further does not decrease the RMSE due to the presence of the validation

set. On the other hand, the RMSE is reduced to 80 cm−1 for an overfit PES with 80
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Figure 5.1: Schematic of the stationary points on the global S0 PES of HFCO. En-
ergies relative to the HFCO minimum structure are provided; energies as determined
at the CCSD(T)-F12/cc-pVTZ-F12 level of theory with ZPE are provided. The values
in parenthesis represent the CISD/DZ+P results from Ref. 202.

Table 5.1: Harmonic vibrational frequencies (in cm−1) of trans-HOCF compared
with previous theoretical results. IR intensities (km/mol) are given in parentheses,
when available.

Mode MP2a CCSD(T)a CCSD(T)-F12b Ref [202]c

ν5 FCO bending 659.0 (3.0) 654.2 (2.8) 660.0 678
ν6 out of plane bending 751.0 (87.1) 736.7 (87.1) 743.0 763

ν2 CF stretching 1072.0 (273.6) 1071.2 (255.9) 1079.0 1128
ν4 HCO bending 1284.4 (145.9) 1271.2 (159.7) 1281.0 1343
ν3 CO stretching 1355.3 (170.1) 1360.8 (157.2) 1368.6 1441
ν1 CH stretching 3792.9 (165.3) 3795.9 (135.2) 3811.0 3987

aaug-cc-pVTZ basis set; bcc-pVTZ-F12 basis set; cCISD/DZ+P
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Table 5.2: Harmonic vibrational frequencies (in cm−1) of cis-HOCF compared with
previous theoretical results. IR intensities (km/mol) are given in parentheses, when
available.

Mode MP2a CCSD(T)a CCSD(T)-F12b Ref [202]c

ν5 FCO bending 643.5 (25.4) 639.0 (23.5) 644.5 665
ν6 out of plane bending 786.5 (116.3) 769.6 (113.1) 775.8 802

ν2 CF stretching 987.7 (123.6) 990.1 (121.4) 997.9 1056
ν4 HCO bending 1291.1 (332.5) 1290.2 (343.9) 1297.9 1366
ν3 CO stretching 1373.0 (41.3) 1362.9 (15.8) 1372.1 1430
ν1 CH stretching 3587.6 (38.3) 3588.1 (26.6) 3602.4 3812

aaug-cc-pVTZ basis set; bcc-pVTZ-F12 basis set; cCISD/DZ+P

neurons, where all the data is included in the training set. Without the validation

set, the fitting procedure does not terminate (as happens with the validation set) to

prevent overfitting. Thus, the RMSE could be reduced further to 65 cm−1, if the

iteration number is increased to 50000 for a single fit; however, one risks overfitting

the data using this procedure and hence a validation set is always used. After NN-

expnn fitting, the shape of the PES was analyzed by plotting 2D contour and 1D plots

for the energy versus physical coordinates. All figures, and the subsequent MCTDH

computations, are for the NN-expnn PES, determined including a validation set, with

100 neurons. These were compared to the ab initio data (see Figure 5.2). Clearly, the

NN-expnn PES is accurate (as based on the RMSE) and appears smooth. Therefore,

the NN-expnn fitted PES should be of suitable quality for use in quantum dynamics

studies.

5.3.3 Vibrational States/Energies from MCTDH

To examine the accuracy of the global PES, the vibrational frequencies have been

determined (for localized portions of the PES) at equilibrium HFCO as well as the

trans- and cis- isomers, using MCTDH block-improved relaxation.9 The numerical

details regarding grid lengths, basis functions, number of primitives, number of single

particle functions, and mode combinations for the MCTDH computations are pro-

vided in Appendix D, Tables D4, D5 and D6 for HFCO, cis- and trans-HOCF isomers,
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Figure 5.2: Contour plots of the PES for trans-HOCF (a) φ vs. r1, (b) r3 vs. r2,
and (c) cos θHCO1 vs. cos θFCO2 from the NN-expnn (80 neurons) fitted surface (blue
lines) and the ab initio energies (black lines, almost indistinguishable from the blue
lines).

respectively. These computations test the accuracy of the PES where comparison to

experimental measurements are available. Moreover, by examing vibrational states

around the minima, the presence of any “holes” in the surface should be detected.

Usually if the MCTDH computation is smooth and converges to a desired state or

states, the surface is then suitable for other quantum dynamics (or classical dynamics)

simulations. Based on the global PES, the vibrational energies for states localized

around equilibrium-HFCO were computed and compared with the previous experi-

mental179,196 and theoretical196,201 results, including those from the local NN-expnn

PES discussed in Chapter 3, see Table 5.3. All the fundamentals, overtones, and

combination modes up to 5000 cm−1 were computed and assigned. The RMSE as

compared to experiment is 10.2 cm−1 which is, not surprisingly, poorer compared to

the value from the previous local PES fit only around the equilibrium HFCO geome-

try (RMSE of 2.5 cm−1). Considering the global PES is fit to a cut-off energy of 40000

cm−1, compared to 20000 cm−1 for the local PES, the decreased accuracy is accept-

able. However, the RMSE on the present global PES is superior to computations196

on the YK PES132 and the WW PES.200

The vibrational states of both trans- and cis-HOCF isomers have also been com-

puted. The results for the fundamental modes are given in Tables 5.4 and 5.5 for
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Table 5.3: Selected vibrational energies (in cm−1) for states up to 5000 cm−1 for
HFCO from the global PES compared with experimental measurements and previous
computations, including the ”local” PES discussed in Chapter 3.

Assignment This work Exptb Local Viel-WW196,200 Viel-YK132,196 JCTC-YK201a

(n1n2n3n4n5n6)
000010 663.8 662.6 664.1 626.4 659.4 658.1
000001 1005.4 1011.2 1012.8 968.8 1020.5 1019.2
010000 1075.2 1064.9 1067.8 1017.8 1051.5 1049.5
000020 1326.6 1324.1 1327.5 1255.1 1317.7 1314.8
000100 1345.9 1342.3 1338.2 1371.1 1372.2 1370.3
010010 1731.7 1719.3 1725.1 1639.5 1704.6 1699.0
001000 1841.5 1836.8 1835.6 1770.5 1827.9 1821.3
020000 2128.4 2115.6 2114.9 2029.2 2090.8 2085.3
010100 2412.7 2412.0 2399.0 2376.1 2418.3 2412.9
001010 2499.4 2494.2 2494.9 2393.4 2484.0 2474.4
001001 2840.7 2841.0 2841.0 2727.5 2843.5 2833.3
011000 2909.6 2895.0 2898.4 2787.1 2876.1 2863.9
100000 2977.2 2981.2 2976.0 2974.4 3039.2 3003.2
001020 3172.2 3150.6 3153.8 3016.2 3139.4 3126.2
002000 3665.8 3652.8 3650.9 3526.7 3648.1 3623.7
001002 3839.1 3838.1 3839.8 3686.9 3855.1 -
100020 4311.7 4302.9 4301.6 4138.3 4304.3 -
002010 4316.5 4307.5 4307.1 4335.9 4403.1 -
001200 4510.7 4493.9 4495.7 4323.5 4458.8 -
002001 4653.8 4653.1 4649.1 4474.4 4662.6 -
012000 4722.5 4705.2 4710.9 4546.4 4698.9 -
001031 4812.4 4817.6 4815.5 4649.9 4865.7 -
002020 4965.7 4955.0 4959.0 4758.0 4960.4 -
RMSE 10.0 - 2.5 92.0 28.0 12.0

a Vibrational assignments taken from Ref. 201
b Experimental values from private communication as mentioned in Ref. 196
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trans- and cis-HOCF isomers, respectively. All vibrational states up to 2600 cm−1

(total of 30 states) above the ZPE are provided in Table D7 in Appendix D. For com-

parison purposes, and to provide values for the intensities which are valuable since

the dipole moment cannot (readily) be determined using CCSD(T)-F12, vibrational

energies (and corresponding IR intensities) for the fundamental modes as determined

through VPT2 computations, see Section 5.2.1, are provided in Tables 5.4 and 5.5.

In general, there is a good correspondence between the fundamental frequencies for

both the cis- and trans-isomers as determined using VPT2 and the CCSD(T)/aug-

cc-pVTZ level of theory and the MCTDH computations (RMSDs of 17.8 and 11.5

respectively). Interestingly and fortutously, the MCTDH computed fundamental fre-

quencies of the MP2/aug-cc-pVTZ computed anharmonic frequencies (using VPT2

method) of trans- and cis-HOCF show better agreement than the CCSD(T)/aug-cc-

pVTZ results; RMSDs were 4.4 and 10.7 cm−1 for cis- and trans-HOCF isomers. The

present computations represent the best available vibrational energies for cis- and

trans-HOCF, and, these should prove useful for future identification of these species.

The accuracy of the global PES in the local minima regions suggests that the

NN-expnn method is capable of fitting a multiple well PES with the same efficiency

as a single well PES. Thus the NN-expnn approach is a general, widely applicable

method and the SOP form it produces will be extremely useful when using MCTDH

for quantum dynamics computations.

5.4 Conclusion

In this chapter, the NN-expnn fitting procedure is shown to be capable of fitting

a global 6D potential energy surface containing multiple wells for HFCO. With a

sufficient number of fitting parameters (called neurons), in principle one can fit a

complicated PES. The sampling of the ab initio data plays an important role in the

quality of the fitting. Not surprisingly, the more complex the PES is, the more data

are required; however, for the present approach, the data can be selected randomly

(or, for example, by sampling with classical molecular dynamics) as data on a uniform
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Table 5.4: Fundamental vibrational frequencies (in cm−1) of trans-HOCF as deter-
mined on the global PES with MCTDH compared with ab initio anharmonic vibrational
frequencies. Anharmonic IR intensities (km/mol) are given in parentheses.

Mode MP2a CCSD(T)a MCTDHb

ν5 FCO bending 650.7 (3.0) 645.8 (2.7) 651.4
ν6 out of plane bending 722.8 (88.4) 707.5 (87.9) 742.9

ν2 CF stretching 1043.3 (275.6) 1043.4 (157.6) 1043.1
ν4 HCO bending 1243.1 (141.8) 1231.1 (153.3) 1251.5
ν3 CO stretching 1321.0 (178.4) 1323.7 (165.2) 1321.5
ν1 CH stretching 3610.5 (153.1) 3610.5 (120.3) 3625.0

RMSDc 10.7 17.8 -

aaug-cc-pVTZ basis set; bBased on the NN-expnn PES with 100 neurons fit to
CCSD(T)-F12/cc-pVTZ-F12 ab initio data; cRMSD with respect to the CCSD(T)-
F12/cc-pVTZ-F12/MCTDH computed frequencies.

Table 5.5: Fundamental vibrational frequencies (in cm−1) of cis-HOCF as deter-
mined on the global PES with MCTDH compared with ab initio anharmonic vibra-
tional frequencies. Anharmonic IR intensities (km/mol) are given in parentheses.

Mode MP2a CCSD(T)a MCTDHb

ν5 FCO bending 633.4 (24.4) 628.9 (22.3) 632.1
ν6 out of plane bending 759.4 (113.5) 741.4 (109.7) 764.2

ν2 CF stretching 955.6 (118.2) 959.2 (116.3) 957.0
ν4 HCO bending 1261.8 (38.1) 1254.6 (276.4) 1265.3
ν3 CO stretching 1336.2 (56.4) 1321.6 (24.8) 1335.6
ν1 CH stretching 3390.2 (29.9) 3384.6 (17.9) 3381.5

RMSDc 4.3 11.9 -

aaug-cc-pVTZ basis set; bBased on the NN-expnn PES with 80 neurons fit to
CCSD(T)-F12/cc-pVTZ-F12 ab initio data; cRMSD with respect to the CCSD(T)-
F12/cc-pVTZ-F12/MCTDH computed frequencies.
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grid is not required. Overall, the global PES developed in this work is suitable for use

in further quantum, or classical, dynamics simulations, for example, the cis-trans iso-

merization, the equilibrium to trans-HOCF isomerization and, perhaps, unimolecular

dissociation dynamics as well as the competition between them.
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Chapter 6

The S1 Excited State Potential
Energy Surface of HFCO: A
NN-expnn fit and vibrational
energies

6.1 Introduction

HFCO is one of the series of substituted formaldehyde systems that contains the C=O

chromophore. High level theoretical investigations will help to understand the excited

state properties more clearly. Determining the ab initio data and then fitting a full six

dimensional (6D) excited state potential energy surface is a challenging task. While

there have been significant algorithmic improvements for fitting multidimensional

PESs, computing the requisite numbers of ab initio data at a high enough level

of theory for fitting is computationally costly. One must make a judicious choice

of ab initio method; black-box single reference methods, such as EOM-CCSD or

even TD-DFT, can be utilized or multireference techniques, such as CASPT2 or

MRCI, can be used although then the underlying active space must be carefully

considered. Whatever choice is made, there must be a compromise between accuracy

and computational efficiency, especially when computing the many points required for

fitting a multidimensional PES. Although the excited state potential energy surface

is difficult to generate, once generated, it can be applied, when combined with a
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corresponding transition dipole moment surface, to simulate and interpret various

spectroscopic and dynamics experiments, including absorption, photodissociation, cis-

trans isomerization, intramolecular vibrational energy redistribution, and stimulated

emission pumping measurements.

HFCO has very interesting photochemistry.133,283–285 The S1 and T1 excited states

play major roles in its photochemistry. HFCO can undergo photodissociation from ex-

cited vibrational states of the ground electronic S0 surface,133,183 from the first excited

S1 singlet state, it may dissociate directly or relax to highly excited vibrational states

of the ground S0 state, which then lead to the dissociated products. Alternatively,

once excited, HFCO may undergo intersystem crossing from S1 to T1 and from T1,

it may dissociate. To-date, the experiments have focused on examining the different

reaction channels. Klimek and Berry,283 studied dissociation of HFCO after excita-

tion at 165 nm (60606 cm−1), and showed that it produces HF infrared laser emission.

Although HF was the main product (≈ 7 %), fluorine atoms were also produced in the

photodissociation. Moore and co-workers133 used a range of excitation wavelengths

from 193 to 248 nm (40322 cm−1 to 51813 cm−1) to probe mode specificity in the

rate HFCO unimolecular dissociation to HF + CO. Several previous investigations

focused on the T1 surface where photo excitation is initiated by S0 to S1 pumping

followed by intersystem crossing to the T1 surface or internal conversion back to the

S0 surface. The S1-S0 conical intersections194 and S1-T1 crossing are particularly

interesting for the photophysics of HFCO. Previous CASSCF(8,7)/cc-pVTZ compu-

tations by Wei-Hai et al.194 focused on the S1 and the T1 surfaces. CASSCF(8,7) is

a relatively modest active space compare to the full valence active space for HFCO

of CASSCF(18,13). Here we investigate the choice of active space on the vertical

excitation energies to S1 and T1, the excited state optimized geometries, and the cor-

responding harmonic frequencies using CASSCF, CASPT2, and MRCI computations.

An EOM-CCSD investigation of the excited state structures and energies is carried

out and then this methodology is utilized as a basis for PES fitting. Our goal is to

compare these results with the S1 excited state fundamental frequencies measured by

Moore and co-workers.284 They measured the fluorescence excitation spectra of jet-
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cooled HFCO and DFCO from the S1 electronic state for frequencies between 37500

and 40250 cm−1.

Besides the spectroscopy and excited state dynamics, the geometrical structures

and energetics of the HFCO excited states are also of interest. Experimental evidence

shows that S0 to S1 or S0 to T1 excitation leads to an increase in C=O bond length.286

On the S1 and T1 excited states, the equilibrium geometry changes from planar to

pyramidal.188 The excited S1 and T1 states each exhibit a double well PES with a low

energy inversion barrier which leads to tunnelling splitting. The need for a S1 PES was

suggested in the work examining the control of IVR and, potentially, isomerization

by Gatti and co-workers.128 With a S1 surface, the IVR dynamics of HFCO involving

initial excitation to the S1 surface can be investigated using MCTDH. Similarly, the

control of selective HFCO to trans-HOCF or the dissociation to HF + CO can be

explored.

The goal of this work is to determine the equilibrium and transition state struc-

tures and fundamental frequencies of the S1 and T1 electronic states. The double well

depth and vertical excitation energies will be investigated and, most importantly, a

6D PES for the S1 excited electronic state will be developed. To-date, a full PES for

the excited S1 state of the HFCO molecule has not been constructed. In terms of

investigating the spectroscopy and dynamics, there is a large gap in correlating the

theory with the experimental results. A S1 PES will bridge this gap.

The scheme of this chapter is as follows: In Section 6.2.1, the ab initio compu-

tational methods used to determine the optimized structures (minima and transition

state), corresponding relative energies, vertical excitation energies and harmonic fre-

quencies are presented. In Section 6.2.2, the EOM-CCSD/aug-cc-pVTZ level of the-

ory is selected for generating the ab initio energy data and the potential energy sur-

face fitting of the S1 surface using the NN-expnn technique, is discussed. In Sec.6.2.3,

the MCTDH approach for determining the vibrational frequencies is presented. The

results of the excited state geometry optimizations, vertical excitation energy cal-

culations, relative energies, harmonic frequency computation, PES fitting and the

MCTDH determined frequencies of the S1 surface are analysed in Section 6.3. Fi-
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nally, the conclusions of this chapter are presented in Section 6.4.

6.2 Computational Methods

6.2.1 Vertical Excitation Energy, Optimized Excited State
Geometry and corresponding Harmonic Frequencies

The ground state geometry is taken to be the CCSD(T)-F12/cc-pVTZ-F12 opti-

mized structure, see Table 3.2 and corresponding discussion in Section 3.3.1.1. The

vertical excitation energies for the S0 to S1 and S0 to T1 transitions were computed

with the complete active space self-consistent field (CASSCF),23,24 complete active

space second-order perturbation theory (CASPT2)38–40 and multireference configu-

ration interaction method (MRCI)25–29 methods. The HFCO equilibrium geometry

has Cs symmetry, but, in general, the geometries sampled on the PES do not have

this symmetry; therefore, the vertical excitation energies were considered both with

and without symmetry. Different active spaces were tested for the CASSCF, and

subsequent CASPT2 and MRCI computations, since an accurate and efficient ap-

proach would be required for generating the ab initio points for the PES fitting.

In addition to the standard CASPT2 and MRCI methods, the explicitly correlated

MRCI-F1242–44 and CASPT2-F1241 computations were also performed. As there were

some difficulties with the smoothness of the CASSCF results away from the equilib-

rium geometry (see discussion in Section 6.3), an equation-of-motion coupled cluster

with singles and doubles (EOM-CCSD)17 calculation of the vertical excitation energy

was also performed. For all computations, the augmented correlation consistent polar

triple zeta valence basis set,45,46 aug-cc-pVTZ, was used. For the CASPT2-F12 and

MRCI-F12 computations, the cc-pVTZ-F12 basis set47 was utilized.

The optimized geometries of S0, S1 and T1 surfaces were determined with the

CASSCF method. In the geometry optimization, the smallest active space (8,7) (i.e.,

8 electrons in 7 orbitals) to the full valence active space (18,13) (i.e., 18 electrons in

13 orbitals) was used. Including all the valence electrons in the active space is compu-

tationally costly, thus, previous CASSCF geometry optimizations for HFCO used the
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smaller (8,7) active space.194 Subsequent, CASPT2 and MRCI geometry optimiza-

tions based on the different active spaces were also performed. The CASPT2 opti-

mizations used the analytic gradients159 while the MRCI optimizations were carried

out numerically. CASPT2 and MRCI geometry optimizations were computationally

too expensive to perform for the full valence active space, i.e., (18,13). Therefore,

reduced active spaces, e.g., (8,7) or (12,9), were used.

On the other hand, EOM-CCSD is computationally cost effective and a more

“black box” technique as compared to the multireference methods where one must

worry about the choice of active space. EOM-CCSD calculations are performed for

the S1 state to compare with other methods; geometry optimizations use numerical

gradients. The T1 state was optimized using the RCCSD method.287 For all methods,

both the minimum energy structure and the inversion barrier (transition state between

the symmetry equivalent minima) were determined, see discussion in Section 6.3.

The fundamental harmonic frequencies were computed after the geometry opti-

mization to confirm the nature of the stationary points, i.e., as a minimum with no

imaginary frequencies or as a transition state with a single imaginary frequency. The

Molpro software package18,19 was used to perform all the ab initio calculations. In all

computations, default convergence criteria were utilized.

6.2.2 NN-expn Fitting of the PES

The neural network exponential fitting method (NN-expnn), see Section 3.2.2, was

used in the PES fitting of the S1 surface using data computed at the EOM-CCSD/aug-

cc-pVTZ level of theory. The HFCO molecule was presented in a body fixed poly-

spherical coordinate system (Figure 3.1) where C-H, C=O and C-F bond distances

were designated as R1, R2 and R3, the bond angles HCO and FCO were designated

as θ1 and θ2 and the dihedral angle between HCO and FCO was termed as φ. 1D,

2D, 3D and selected random energy data were computed at the EOM-CCSD/aug-

cc-pVTZ level of theory for the S1 surface. The 1D, 2D and 3D cuts were generated

at the minimum and the transition state geometries. The fitting procedure is almost

exactly the same as described in Chapter 3(except for the inclusion of 3D grid data
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in the training set in this work) .

6.2.3 Vibrational State Computations using MCTDH

Vibrational states frequencies were computed using the block improved relaxation

method9 as implemented in the MCTDH software package.3 The fundamental mode

assignment was done by using improved relaxation7,125,265,266 with analysis of the

resulting vibrational wavefunction. Since in improved relaxation, the initial overlap

depends on how close the guess wavefunction is to the desired state, using a 1D cut

along a physical coordinate is sometimes a poor guess for a highly coupled mode.

Therefore, some specific states were difficult to converge using improved relaxation;

hence, they could not be assigned by examining the final wavefunction. These states

were assigned through the process of elimination, where all the other possible nearby

modes were assigned and the remaining mode assigned using chemical intuition, eg,

using the approximate harmonic frequency computations.

6.3 Results and Discussion

6.3.1 Vertical Excitation Energies

The S0-S1 and S0-T1 vertical excitation energies as determined using various com-

putational methods are given in Table 6.1. It has been found that CASPT2 and

CASPT2-F12 vertical excitation energies are almost 2000 cm−1 less than other meth-

ods. Because there is a change in the geometry following the excitation to S1 or

to T1, the adiabatic transition energy, i.e., from the S0 minimum to S1 or T1 mini-

mum, lower than the corresponding vertical excitation energy. While the adiabatic

S0-S1 transition energy is approximately 37000 cm−1, the vertical excitation energy is

around 48500 cm−1. For the S0-T1 transition, the adiabatic transition energy is about

32000 cm−1 while the corresponding vertical excitation energy is ∼ 45000 cm−1. The

adiabatic S0-S1 transition energy computed in this work agrees well with the exper-

imental measurement by Moore and co-workers284 of 37500 to 40250 cm−1. Most of

the previous experiments investigate the role of the T1 surface in the dissociation to
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HCO + F and FCO + H, a process which requires more energy of the initial pump

laser as compared to that required to access the S1 or S2 state.

Table 6.1: Comparison between S0-S1 and S0-T1 vertical excitation energies (in
cm−1) using different electronic structure methods and the aug-cc-pVTZ basis set;
cc-pVTZ-F12 basis for -F12 computations. All computations are carried out at the
CCSD(T)-F12/cc-pVTZ-F12 optimized geometry, see Section 3.

Method S0-S1 S0-T1

EOM-CCSD 48679.5 -
CASSCFa 48233.8 45338.7
MRCIa 48532.7 45671.6
MRCI-F12a 48609.1 45800.7
CASPT2a 46502.4 43570.8
CASPT2-F12a 46647.6 43784.6

aBased on the (18,13) active space.

6.3.2 Optimized Geometries and Relative Energies

The results of geometry optimization for the excited electronic states are presented

in Tables 6.2 and 6.3 for the S1 and T1 states, respectively. Optimized geometries

of the S0 minimum (in various excited state ab initio calculation methods) and the

transition state to dissociation (HFCO to HCO+F and FCO+H on the excited S1 and

T1 PESs) are provided in Appendix E: Table E4. The geometries of the minimum

energy structures on S1 and T1 excited states were found to be pyramidal while the

ground state (S0) equilibrium structure is planar, see Section 3.3.1.1. Both the S1

and T1 states have a double well PES (shown schematically in Figure 6.1) along the

out-of-plane bending mode. The EOM-CCSD/aug-cc-pVTZ geometry of the S1 state

is in very good agreement with the experimental observation.284,288 The bond lengths

are within 0.01 Å and, the bond angles agree to within 1◦; however, the dihedral an-

gle differs by 10◦ compared to the experimental measurement.284 While differing from

experiment, the dihedral angle of 133.4◦ as determined at the EOM-CCSD/aug-cc-

pVTZ level of theory is in good agreement with previous computational results,190,194

and the present high level CASPT2 and MRCI values of ∼ 130◦. Interestingly, the
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Figure 6.1: Schematic of the S1 double well PESs for S1 and T1 along the torsion
mode.
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C=O bond at the S1 equilibrium is elongated by 0.185 Å compared to its value at

the S0 minimum. Therefore, the C=O bond gains single bond character in the S1

state. The optimized geometry on the T1 state is similar to that of the S1 minimum,

i.e., a pyramidal geometry, a dihedral angle of approximately 128◦, and an increase

in the C=O bond length of 0.16 Å. A previous theoretical work194 stated that the

T1 state originated from the n→π∗ electron transition of the C=O moiety. In that

work, the S1 state was found to have mainly 1nπ∗ character along with some 1ππ∗

character mixed in. The inversion transition state between the two equivalent minima

is, perhaps not surprisingly, planar on both the S1 and T1 PESs. The barrier height

for the S1 inversion is 1799.9 cm−1 at the EOM-CCSD/aug-cc-pVTZ level of theory

which is in reasonable agreement with the experimental value of 2580 cm−1.284 The

CASPT2(18,12) and MRCI(18,12) barrier heights of ∼ 2350 cm−1 are in excellent

agreement with the experimental measurement. For the T1 inversion, the barrier

height was 2923.1 cm−1 at the MRCI (8,7)/aug-cc-pVTZ level of theory. No compar-

ison is made with experiment as T1 inversion barrier has yet to be reported.

6.3.3 Harmonic Frequency Calculation

The harmonic vibrational frequencies on the S1 and the T1 PESs as determined using

different computational methods are given in Table 6.6. Corresponding experimental

vibrational frequencies have been measured284 for the S1 state, see Table 6.7, to which

the present theoretical results can be compared. The RMSE of the fundamental

frequencies were 95.7 cm−1 for CASPT2(18,12)/aug-cc-pVTZ, 95.5 cm−1 for MRCI,

and 101.4 cm−1 for EOM-CCSD. Previous computations examined the S1 state using

CASSCF(8,7)/cc-pVTZ, which in this work with the aug-cc-pVTZ basis, leads to an

RMSE of 153.4 cm−1. A full active space calculation, CASSCF(18,13), leads to a

very modest improvement to 151.3 cm−1 RMSE.
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Table 6.2: Optimized stationary point geometries of HFCO on the S1 surface using
various computational methods and, if applicable, active spaces. Bond distances are
in Å and bond angles are in degrees. All present computations use the aug-cc-pVTZ
basis set. Previous experimental and theoretical results are also provided.

Method CH CF CO HCO FCO φ
HFCO (S1) The first excited singlet

CASSCF (18,13) 1.077 1.341 1.348 113.56 109.09 128.96
CASSCF (18,12) 1.075 1.342 1.388 114.08 109.04 129.34
CASSCF (12,9) 1.075 1.339 1.391 114.08 108.82 129.32
CASSCF (8,7) 1.079 1.315 1.383 113.91 109.96 129.76

CASPT2 (18,12) 1.0859 1.349 1.362 115.17 108.75 129.90
CASPT2 (12,9) 1.085 1.343 1.364 115.30 108.68 130.37
CASPT2 (8,7) 1.089 1.340 1.360 115.00 109.56 130.18
MRCI (18,12) 1.081 1.341 1.368 114.61 108.98 129.66
MRCI (12,9) 1.081 1.337 1.370 114.44 109.32 129.66
MRCI (8,7) 1.080 1.338 1.369 114.69 109.03 129.96
Ref [194]a 1.088 1.322 1.393 113.80 109.40 130.10
Ref [194]b 1.079 1.313 1.391 113.90 109.40 130.10
Ref [190]c 1.098 1.346 1.346 116.10 109.82 133.70d

Expt.284 1.097 1.346 1.344 116.10 109.74 144.00e

Expt.288 1.100 1.340 1.360 129.00 110.00 145.00-150.00f

EOM-CCSD 1.088 1.339 1.334 116.89 109.79 133.40
HFCO (TSS1) The inversion transition state on the S1 surface

CASSCF (18,13) 1.060 1.335 1.390 124.30 112.93 180.00
CASSCF (18,12) 1.060 1.334 1.390 124.16 113.05 180.00
CASSCF (12,9) 1.060 1.337 1.388 124.43 113.14 180.00
CASSCF (8,7) 1.062 1.308 1.386 124.01 113.73 180.00

CASPT2 (18,12) 1.067 1.337 1.366 124.94 112.64 180.00
CASPT2 (12,9) 1.070 1.331 1.368 124.54 113.08 180.00
CASPT2 (8,7) 1.071 1.327 1.370 125.08 112.06 180.00
MRCI (18,12) 1.064 1.331 1.371 124.51 112.87 180.00
MRCI (12,9) 1.064 1.328 1.372 124.51 112.78 180.00
MRCI (8,7) 1.065 1.316 1.374 124.62 112.55 180.00
EOM-CCSD 1.073 1.330 1.339 125.01 112.91 180.00

a CASSCF(8,7)/cc-pVDZ from 194; b CASSCF(8,7)/cc-pVDZ from 194; c EOM-
CCSD/DZP from 190; d Original article reports 46.3 degrees; e Original article
reports 36.0 degrees; f Original article reports 30.00 to 35.00 degrees.
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Table 6.3: Optimized stationary point geometries of HFCO on the T1 surface using
various computational methods and, if applicable, active spaces. Bond distances are
in Å and bond angles are in degrees. All present computations use the aug-cc-pVTZ
basis set. Previous theoretical results are also provided.

Method CH CF CO HCO FCO φ
HFCO (T1) First excited triplet state minimum

CASSCF (18,13) 1.080 1.348 1.341 112.66 111.03 128.97
CASSCF (18,12) 1.078 1.344 1.365 111.97 111.41 129.03
CASSCF (12,9) 1.079 1.346 1.364 111.95 111.60 128.66
CASSCF (8,7) 1.080 1.317 1.371 111.24 111.36 129.05

CASPT2 (18,12) 1.091 1.354 1.344 110.92 111.74 127.91
CASPT2 (12,10) 1.092 1.344 1.341 111.09 111.78 128.63
CASPT2 (8,7) 1.090 1.343 1.350 111.68 111.30 128.92
MRCI (18,12) 1.085 1.346 1.349 111.47 111.54 128.51
MRCI (12,9) 1.085 1.343 1.349 111.32 111.79 128.45
MRCI (8,7) 1.086 1.331 1.353 111.23 111.57 128.86

RCCSD 1.092 1.340 1.347 111.75 111.33 128.76
Ref [194]a 1.087 1.363 1.365 112.30 110.60 128.00
Ref [194]b 1.078 1.349 1.364 112.60 110.70 129.00
Ref [194]c 1.090 1.340 1.348 111.70 111.40 129.10
Ref [285]d 1.096 1.344 1.349 111.19 111.64 128.18

HFCO (TST1) The inversion transition state on the T1 surface
CASSCF (18,13) 1.062 1.336 1.367 123.39 113.66 180.00
CASSCF (18,12) 1.082 1.309 1.369 122.62 113.97 180.00
CASSCF (12,9) 1.061 1.336 1.367 123.38 114.02 180.00
CASSCF (8,7) 1.060 1.308 1.376 123.32 113.37 180.00

CASPT2 (18,12) 1.070 1.339 1.350 123.15 113.80 180.00
CASPT2 (12,10) 1.069 1.334 1.352 123.53 113.29 180.00
CASPT2 (8,7) 1.070 1.330 1.354 123.26 113.68 180.00

MRCI (8,7) 1.065 1.319 1.355 123.27 113.58 180.00
RCCSD 1.071 1.328 1.351 123.30 113.58 180.00

a CASSCF(8,7)/cc-pVDZ from 194; b CASSCF(8,7)/cc-pVTZ from 194; c UMP2/cc-
pVTZ from 194; d MP4SDQ/6-311G(d,p) from 285.
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Table 6.4: Relative energy and inversion barrier height (both in cm−1) of HFCO
on the S1 excited state potential energy surface as determined using different compu-
tational methods and, if applicable, active spaces. All present computations use the
aug-cc-pVTZ basis set. Previous experimental and theoretical results are also provided.

Methods Relative energya Inversion barrierb

Expt.284 37500 - 40250 2583.0
Expt.288 37498.0 -

Ref [188]c 37491.7 -
Ref [194]d 39924.6 -

CASSCF(18,13) 36229.0 3144.0
CASSCF(18,12) 39354.6 2931.4
CASSCF(12,9) 39715.2 3140.1
CASSCF(8,7) 39209.2 3001.2

CASPT2(18,12) 36136.4 2354.3
CASPT2(12,9) 36591.4 2450.8
CASPT2(8,7) 36115.3 2386.0
MRCI(18,12) 37405.8 2633.8
MRCI(12,9) 38225.8 2577.7
MRCI(8,7) 39051.7 2766.1

EOM-CCSD 39777.8e 1799.9

a Relative energy with respect to the ground state (S0) equilibrium structure; b

Relative to the S1 minimum energy; c EOM-CCSD/cc-pVTZ from 188; d CASSCF
(8,7)/cc-pVTZ from 194; eRelative to the CCSD(T)-F12/cc-pVTZ-F12 optimized S0

minimum structure.
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Table 6.5: Relative energy and inversion barrier height (both in cm−1) of HFCO on
the T1 excited state potential energy surface. as determined using different compu-
tational methods and, if applicable, active spaces. All present computations use the
aug-cc-pVTZ basis set. Previous computational results are also provided.

Methods Relative energya Inversion barrierb

Ref [188]c 35421.0 -
Ref [194]d 37916.5 -
Ref [285]e 34210.0 -

CASSCF(18,13) 31596.9 4962.5
CASSCF(18,12) 35292.2 3185.3
CASSCF(12,9) 36962.7 3262.4
CASSCF(8,7) 38660.6 3560.9

CASPT2(18,13) 36120.0 -
CASPT2(18,12) 33887.9 2778.5
CASPT2(12,9) 34915.4 2760.7
CASPT2(8,7) 33397.0 3081.1
MRCI(18,12) 34782.3
MRCI(12,9) 35633.3
MRCI(8,7) 35841.7 2898.3

RCCSD 2842.3

a Relative energy with respect to the ground state (S0) equilibrium structure; b

Relative to the T1 minimum energy; c EOM-CCSD/cc-pVTZ from 188; d CASSCF
(8,7)/cc-pVTZ from 194; e MP4SDQ/6-311G(d,p) from 285.
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Table 6.6: Fundamental harmonic frequencies (in cm−1) for the HFCO ground (S0)
and excited (S1 and T1) states minima and transition state structures using various
computational methods and, if applicable, active spaces. For all computations, the
aug-cc-pVTZ basis set was used.

Method CH str CF str CO str HCO bend FCO bend φ bend
HFCO (S1) The first excited singlet

CAS(18,13) 3261.7 1123.6 1165.2 1389.1 475.5 1040.0
CAS(18,12) 3297.2 1110.3 1147.8 1379.9 472.4 1044.8
CAS(12,9) 3303.4 1113.2 1162.2 1393.6 476.0 1055.9
CAS(8,7) 3220.5 1122.0 1272.5 1394.2 502.5 1049.2
CASPT2(18,12) 3160.5 1116.0 1135.2 1297.7 444.4 974.0
CASPT2(12,9) 3168.2 1129.2 1133.3 1312.1 448.5 976.2
CASPT2(8,7) 3124.1 1130.7 1143.0 1292.8 458.2 980.7
MRCI(8,7) 3225.1 1138.3 1162.5 1349.3 476.3 1017.3
EOM-CCSD 3129.5 1149.9 1215.1 1376.7 461.7 953.5
HFCO (TSS1) The inversion transition state on the S1 surface

CAS(18,13) 457.6 1065.5 1193.7 1380.5 3462.6 1071.9 (i)
CAS(18,12) 456.9 1066.3 1180.4 1369.5 3483.6 1044.4 (i)
CAS(12,9) 466.8 1068.3 1172.8 1377.6 3479.2 1049.3 (i)
CAS(8,7) 488.4 1066.6 1291.4 1425.5 3434.0 1070.6 (i)
CASPT2(18,12) 436.1 1087.8 1163.6 1314.2 3359.3 931.5 (i)
CASPT2(12,9) 446.9 1083.7 1171.0 1316.2 3354.2 930.8 (i)
CASPT2(8,7) 477.0 1084.0 1205.5 1333.2 3348.5 937.8 (i)
MRCI(8,7) 484.9 1099.4 1246.3 1384.4 3416.1 1005.9 (i)
EOM-CCSD 452.9 1161.1 1183.9 1396.3 3311.2 888.9 (i)
HFCO (T1) First excited triplet state minimum

CAS(18,12) 3257.6 1123.4 1154.9 1382.7 464.6 1007.1
CAS(12,9) 3248.9 1120.3 1151.7 1391.2 470.4 1003.8
CAS(8,7) 3229.1 1158.5 1253.1 1421.5 487.5 1024.7
CASPT2(18,12) 3090.6 1092.5 1144.4 1310.0 424.4 921.7
CASPT2(12,9) 3067.2 1108.5 1277.9 1545.3 287.8 943.7
CASPT2(8,7) 3077.1 1114.5 1147.1 1323.9 433.2 934.1
MRCI(12,9) 3160.9 1125.2 1159.6 1348.3 455.2 960.7
MRCI(8,7) 3152.8 1145.2 1197.0 1364.5 459.1 970.4

RCCSD 3074.8 1142.8 1175.5 1352.6 457.9 978.9
HFCO (TST1) The inversion transition state on the T1 surface

Continued on next page
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Table 6.6 – Continued from previous page
Method CH str CF str CO str HCO bend FCO bend φ bend

CAS(18,12) 465.2 1106.9 1189.4 1394.2 3479.8 1096.7 (i)
CAS(12,9) 473.6 1104.5 1182.7 1402.8 3476.2 1106.2 (i)
CAS(8,7) 496.3 1122.2 1285.4 1452.5 3489.6 1206.7 (i)
CASPT2(18,12) 436.1 1087.9 1163.7 1314.2 3359.3 931.5 (i)
CASPT2(12,9) 446.9 1083.7 1171.0 1316.2 3354.2 930.8 (i)
CASPT2(8,7) 476.9 1084.0 1205.5 1333.2 3348.5 937.8 (i)
RCCSD 461.3 1125.6 1195.1 1385.0 3340.2 993.5 (i)

6.3.4 The S1 Excited State PES

Due to difficulties with the “smoothness” of the PESs for CASSCF computations (a

problem persisting for several choices of active space), the EOM-CCSD/aug-cc-pVTZ

level of theory was chosen to generate the ab initio data for determining a PES for

the S1 state. The parameter ranges used to define the S1 PES are given in Table

6.8. As discussed for the previous NN-expnn PESs, an energy cut-off (generated from

analytical 1D potentials) is utilized to filter out high energy points from the PES

fit. The 1D potential parameters for the analytical fits are provided in Appendix

E: Tables E2 and E3 for radial and angular coordinates, respectively. A total of

180 1D, 4500 2D, 375 3D and 8000 random points were selected for the fitting. The

test and the validation sets each consist of 1000 random data. The cut-off energy

was selected to be 10000 cm−1 to cover the two torsional isomers and the transition

state between them. As expected, the RMSE decreases with an increasing number

of neurons (fitting parameter), see Table E1 in Appendix E. The fit with 80 neurons

has a RMSE of 3.0 cm−1 and is selected for computing vibrational frequencies using

MCTDH. Apart from the RMSE, 2D contour plots were generated to check the fitting

quality with respect to the ab initio energies. From Figure 6.2, it can be seen that

the shape of the fit PES shows excellent agreement with the ab initio data; as might

be expected from the RMSE. A further more precise analysis of the PES quality is

done in the next section by computing vibrational energies of the fundamental modes
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Figure 6.2: Two dimensional (2D) contour plots of the NN-expnn fit S1 PES of the
HFCO molecule based on EOM-CCSD/aug-cc-pVTZ ab initio data; see main text for
details.. (a) φ vs. r1, (b) r2 vs. r3, and (c) θHCO1 vs. θFCO2 keeping other coordinates
fixed at S1 equilibrium values. The contour intervals are 0.002 au or 439 cm−1 for all
the plots.

using MCTDH.

6.3.5 Vibrational State Computations using MCTDH

6.3.5.1 EOM-CCSD S1 surface

The vibrational energies of the fundamental modes as determined using block im-

proved relaxation in MCTDH are given in Table 6.7 on the EOM-CCSD PES. The

primitive grids, basis functions, single particle functions, and mode combinations used

for the MCTDH computations are provided in Table 6.8. The RMSE of the fundamen-

tal modes is 42.6 cm−1 with respect to the experimental measurement.284 The modes

have been assigned based on the proximity to the harmonic frequencies. The FCO

bending mode exhibits the best agreement (off by 4.5 cm−1) while the HCO bending

mode has the poorest (by 65.9 cm−1). Additional mode combinations and overtones

are also provided for the first 30 vibrational states, see Table E5 in Appendix E.

Overall, the frequencies determined on the PES provide very good agreement with

the experimental measurements, thus, reinforcing the overall accuracy of the surface.
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Table 6.7: MCTDH computed fundamental vibrational frequencies for the minimum
energy structure on the S1 PES fit to ab initio data at the EOM-CCSD/aug-cc-pVTZ
level of theory.

Method CH str CF str CO str HCO bend FCO bend φ bend

Expt.284 2935.0 1109.8 1106.0 1279.3 450.1 919.0
Expt.288 1112.0 1286.0 450.0 924.0
Expt.289,290 2935.0 (1107.0) 1111.0 (1185.0) 451.0 (570.0)
Ref [190]a 3147.3 1149.1 1217.6 1384.7 462.3 996.5
EOM/MCTDH 2983.0 1125.7 1157.4 1345.2 454.6 876.9

a EOM-CCSD/DZP from 190.

Table 6.8: Grid lengths and parameters of the primitive basis set employed for each
degree of freedom. HO is the harmonic oscillator (Hermite) DVR.

Modes R1 cosθ1 R2 cosθ2 R3 φ
Primitive basis HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR

Number of basis functions 10 13 14 14 10 40
Grid length (a.u.) [1.41,3.35] [-0.99,0.135] [2.06,3.62] [-0.91,-0.055] [1.75,2.93] [1.48,4.82]

Mode combinations ( R1, cosθ1 ) ( R2, cosθ2 ) ( R3,φ1 )
Number of SPF 10 14 10

6.4 Conclusion

Vertical excitation energies, optimized geometries of stationary points, and vibrational

frequencies have been determined for the S1 and the T1 surfaces of HFCO using

CASSCF, CASPT2, MRCI, and EOM-CCSD theoretical methods. The effect of the

choice of active space (if applicable) on these properties was also demonstrated in

this work. The capability of the NN-expnn method for fitting an excited state 6D

PES is successfully demonstrated. We were able to generate the first 6D S1 surface of

HFCO based on ab initio energies at the EOM-CCSD/aug-cc-pVTZ level of theory.

Further improvement in the PES quality could be accomplished using multireference

MRCI or CASPT2 methods. Also, the development of a transition dipole moment

surface between S0 to S1 would be required for future dynamics studies. Attempts are

ongoing to construct MRCI and CASPT2 based 6D PESs but it is computationally

costly and, hence, time consuming.
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Chapter 7

Conclusions

7.1 Summary of Thesis Research

The goals of this thesis work were (i) to develop new full dimensional PESs based on

high-level ab initio data, (ii) to fi the PESs to sum-of-products form using the neural

network with exponential neurons technique, and (iii) to test the quality of the PESs

by computing vibrational energies using methods available in MCTDH. The PESs

were developed and tested for three different molecules: CS2, HFCO, and HONO.

The important conclusions from each specific study are summarized below.

In Chapter 2, new global PES and dipole moments surfaces for CS2 based upon

CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z ab initio computations are reported. Using

the neural network method with exponential neurons1,2 the ab initio data is fit to

sum-of-products form permitting ready use by the MCTDH software package.3 The

quality of the fits depends upon the energy cut-offs and the number of neurons, but

overall excellent fits to both training (included in the fit) and test (external to the

fit) data sets can be achieved with a modest number of neurons (fitting parameters).

The present work in Chapter 2 represents one of the first NN fits directly to ab initio

data - many NN fits are refits of analytical PESs. Importantly, the accurate global

potential energy and dipole moment surfaces developed for CS2 should permit future

OCT-MCTDH studies.

In Chapter 3, a six dimensional (6D) PES was developed for HFCO based upon

CCSD(T)-F12/cc-pVTZ-F12 ab initio computations. In exploring the PES, station-
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ary points (equilibrium-HFCO, cis-HOCF, trans-HOCF, and the corresponding tran-

sition states) were determined at the same level of theory. A PES encompassing the

equilibrium and transition state to dissociation (to HF + CO) was fit using the NN-

expnn method. Comparatively few randomly selected points along with 1D and 2D

cut points make this more efficient than potfit. As usual, the fitting quality depends

on the number of neurons, cut-off energy and scaling of data. The new PES is far

superior to the best PES previously available:132 (i) currently based on CCSD(T)-

F12/cc-pVTZ-F12 compared to MP2/cc-pVTZ (truncated) and (ii) a RMSE of only

25 cm−1 up to the 30000 cm−1 cut-off energy versus RMSE of 525 cm−1. The frequen-

cies determined for the fundamental vibrational modes on the new PES are within 2

cm−1 of the experimental values181 - a factor of five improvement over those deter-

mined using the previous HFCO PES. Similarly, the vibrational state frequencies (up

to 5000 cm−1 were much closer to the experimental measurements. A few high-energy

states were provided new assignments. This PES may overcome the weaknesses of

the previous PES permitting accurate calculations such as examining IVR and its

control.

Following the success for HFCO presented in Chapter 3, a PES for a more com-

plicated 6D system, HONO, was fit using the same approach and then used as a basis

for computing the vibrational states (Chapter 4). In this Chapter, the capability of

the NN-expnn method to fit a PES containing an asymmetric double well has been

demonstrated. The CCSD(T)-F12/cc-pVTZ-F12 and CCSD(T)/CBS levels of the-

ory have been used to generate ab initio energy data which are then used to fit two

new PES. Vibrational energies for the fundamental modes have been determined to

have RMSEs of 2.9 (3.9) cm−1 and 9.7 (7.2) cm−1 for the cis- and the trans-isomers.

Surprisingly, the PESs do not deliver a significant accuracy as compared to the most

recent CCSD(T)/cc-pVQZ (-g functions) based PES.131 However, the CBS limit PES

represent the most accurate one available for the HONO ground electronic surface in

the cis-trans region.

In Chapter 5, the local HFCO PES developed in Chapter 3 is extended from

just the equilibrium plus transition state to dissociation region to encompass the
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cis-HOCF, trans-HOCF isomers and the corresponding transition states between all

minima. The PES fit demonstrates that the neural network exponential fitting proce-

dure can be utilized for a 6D full PES containing multiple wells with proper number of

fitting parameters (called neurons). The ab initio data sampling plays an important

role in the quality of the fit; however, the present high quality fit (150 cm−1 RMSE) is

to only 10000 data points. The trans-HOCF fundamental mode vibrational frequen-

cies were computed using block improved relaxation in MCTDH. These represent the

best available vibrational energies for these species and should hopefully facilitate

their spectroscopic detection. The new global HFCO PES will enable the study of

cis-trans isomerization , equilibrium to trans isomerization, unimolecular dissociation

dynamics and the competition between these processes.

The applicability of the NN expnn-MCTDH approach for excited state PESs has

been successfully demonstrated in Chapter 6. Vertical excitation energies, optimized

geometries and vibrational frequencies have been computed for the S1 and the T1

surfaces of the HFCO molecule using various computational approaches (CASSCF,

CASPT2, MRCI and EOM-CCSD).The first 6D S1 PES of HFCO (based on EOM-

CCSD/aug-cc-pVTZ level of theory) has been generated. The fundamental frequen-

cies as computed using block improved relaxation and the PES are improved relative

to the harmonic frequencies. The excited state PES could be improved by using mul-

tireference methods like MRCI or CASPT2, but it’s computationally costly and time

consuming.

In brief, the main summary of achievements in this thesis are as the follows.

1. Successfully utilized sum-of-products representation of a PES using neural net-

work fitting scheme with an exponential fitting function.

2. Interfaced the fitting method with MCTDH to generate the requisite operator

files.

3. Applied the fitting method directly to newly computed high-level ab initio data

(rather than refitting existing analytical PESs).
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4. Successfully fit a diversity of PESs: a single well PES (Chapters 2 and 3), an

asymmetric double well PES (Chapter 4), a PES containing multiple minima

and the barriers between them (Chapter 5), and a symmetric double well, ex-

cited state PES (Chapter 6).

5. Used the PES to determine vibrational energies using approaches available in

MCTDH.

7.2 Future Directions

There are a number of research directions that can be followed related to the specific

molecules studied in this thesis as well as directions related to other molecules and/or

the general PES fitting procedure.

7.2.1 Quantum Dynamics for HFCO

IVR is important because it provides all of the dynamical information about the re-

laxation of energy from one vibrational mode to anther or others. With the new PES,

IVR without an external field can be studied for both HFCO and DFCO and com-

pared and contrasted to previous results based upon the MP2 PES.132 The intriguing

differences observed between HFCO and DFCO can be verified. Of more interest is

to examine IVR after excitation with an external laser field. After excitation, the

pulse is switched off and the energy redistribution is examined as a function of time.

The important step for HFCO is to investigate if control of IVR by modifying the

excitation laser field is possible. This can be done by using optimal control theory.

With an excited state PES for HFCO, we can compute experimentally measured

spectra, like those from Stimulated Emission pumping (SEP) experiments.133 The

use of excitation to S1 for laser control of competition between unimolecular disso-

ciation and cis-trans isomerization has been suggested126,128 and the present, or new

improved, excited state PES could be used for dynamics studies.
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7.2.2 Studying IVR Dynamics in cis-trans HONO

With the new PES at CBS limit, IVR dynamics of HONO molecule can be studied.

This includes studying the effect of IVR on cis-HONO to trans-HONO conversion.

Control over cis-trans isomerization process by applying external laser pulse may also

be studied.

7.2.3 PES Fitting for Higher Dimensional Systems

Before computing new ab initio data, it will be worthwhile to try the present NN-

expnn approach to refit two challenging PESs: H3O−2 and H5O+
2 . There is considerable

interest in fitting higher dimensional PESs, e.g., 12D, 15D, 18D . . for molecules

containing 5, 6, 7 . . . atoms.

The structure of a hydroxide ion (OH−) in water is a fundamental question in

chemical physics. OH- solvation and transport share equivalent chemical and bio-

logical importance as proton solvation and transport do. Experimental291 and the-

oretical292,293 studies suggest that the most stable structure of solvated hydroxide is

H3O−2 . To better interpret the experiments, a full dimensional PES was constructed

and fundamental modes studied by Bowman and co-workers. This analytical PES

was refitted using a newly developed Multigrid potfit 262,294and quantum dynamics

using MCTDH were performed. Now, with the motivation of applying the NN-expnn

method for large systems, this H3O−2 9D analytical surface can be refit and MCTDH

dynamics can be performed. This project will clearly test the advantages and dis-

advantages of NN-expnn in large systems. If the refitting becomes accurate enough

for quantum dynamics, steps must be taken to optimize the computational effort by

direct fitting of selective number of random data. If NN-expnn succeeds for this com-

plicated, very anharmonic system, the next plan will be a 15D system and we have a

classic system waiting: the protonated water dimer (H5O+
2 ).

The present lack of symmetry is one of the main issues for the NN-expnn approach

for high dimensional potential energy surface fitting; although many intriguing prob-

lems lack symmetry. Although it is less important that we get exact permutation
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invariance symmetry in the types of quantum dynamics most commonly studied,

there are various way one can get permutation invariance symmetry. In the future,

one can include symmetry and make this approach more general applicable to other

field, like classical or semiclassical molecular dynamics (MD), where exact symmetry

plays crucial role in determining certain properties. The following possibilities can be

pursued.

1. Using symmetric input: This approach was utilized in the CS2 PES fitting

(Chapter 2). Ideally, although it is not guaranteed, if the initial input layer is

symmetrized, the final PES would be permutationally symmetric.

2. Symmetric weight : This approach is thought to gain control over the black box

NN toolbox, but if possible, by initializing a symmetric weight matrix, one can

achieve symmetry.

3. Symmetric optimization: Even if we start with symmetric input and symmet-

ric initial weight matrix, during the optimization procedure, which is done by

randomly selected step ( ∆xi), the symmetry would break even by slight differ-

ences.

4. Symmetry after fitting : This could be done by taking the average of the differ-

ence between symmetrize points. This represents post processing procedure to

the fit.

5. PIP-NN : The recently developed PIP-NN approach by Guo and co-workers74–76

, can exert permutational symmetry by using permutation invariant polynomials

as the fitting basis. Applied to many 6D and 9D systems but it can not be

directly used in MCTDH as this is not a sum-of-products form (SOP) which is

required for efficient computations in MCTDH.

6. Product Neurons : This is also a very recent development where a product

neuron is considered (sum-of-products) instead of the natural neural network

structure.114 This method needs to be explored thoroughly. Ideally, using this
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method any type of activation function, not just exponential neurons, can be

utilized to obtain sum-of-products.
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Appendix A

Appendix to Chapter 2

A.1 20000 cm−1 cut 30 NN fit PES operator file

for CS2
OP DEFINE-SECTION
TITLE
CS2 vibrational Hamiltonian (J=0), 3 modes, valence coordinates
END-TITLE
END-OP DEFINE-SECTION

PARAMETER-SECTION
carbon mass = 12.0,AMU
sulphur mass = 31.97207070,AMU #mass of S isotope 32
atomA mass = sulphur mass # mass of atom A in molecule A-C-B
atomB mass = sulphur mass # mass of atom B in molecule A-C-B
atomC mass = carbon mass # mass of atom C in molecule A-C-B
AC mass = atomA mass+atomC mass # mass of diatom A-C
BC mass = atomB mass+atomC mass # mass of diatom B-C
mass r1 = atomA mass*atomC mass/AC mass # reduced mass for mode r 1
mass r2 = atomB mass*atomC mass/BC mass # reduced mass for mode r 2
r0 = 1.29567405785
w0u0 = -0.327952912896661 , w0u1 = -0.175441733424893 , w0u2 = -0.730257421294945 , r1 = 0.0549666567879
, w1u0 = 0.304215449059582 , w1u1 = -0.872439548775528 , w1u2 = -0.119552958255330 , r2 = 0.673477940254
, w2u0 = -0.217291512437171 , w2u1 = -0.420639442155251 , w2u2 = -0.812409909595710 , r3 = 0.118682259632
, w3u0 = 0.106262384159525 , w3u1 = -0.262479393081829 , w3u2 = -0.053516186547833 , r4 = -0.548783847961
, w4u0 = -1.014535697184358 , w4u1 = -0.095112547812548 , w4u2 = -1.210651851051992 , r5 = 0.717483678682
, w5u0 = -0.105114009089433 , w5u1 = 0.008985208382246 , w5u2 = -1.029429987114359 , r6 = 25.5855779365 ,
w6u0 = -0.445222999271730 , w6u1 = -0.576731414555088 , w6u2 = -0.460640522111992 , r7 = 1.43336209458 ,
w7u0 = -0.952283525133364 , w7u1 = -0.770812382035826 , w7u2 = -0.114196579361813 , r8 = -14.86011284 , w8u0
= -0.166570817573439 , w8u1 = -0.625043950070455 , w8u2 = -0.106895306435865 , r9 = 98.82563418 , w9u0 =
-2.223038559943193 , w9u1 = -0.000633559139698 , w9u2 = 0.025521912104364 , r10 = -3.51536585744 , w10u0 =
-0.719302377318887 , w10u1 = -0.123190588884681 , w10u2 = 0.253549933340931 , r11 = 1.36673589343 , w11u0 =
0.235151298217273 , w11u1 = -0.205248098675018 , w11u2 = -0.233217476656203 , r12 = 97.3909184894 , w12u0 =
-0.003118579239875 , w12u1 = -2.196360271285245 , w12u2 = 0.033916019893438 , r13 = -5.45284952368 , w13u0 =
0.751267028797243 , w13u1 = -0.752752411391287 , w13u2 = -2.081160311943358 , r14 = 0.882803094206 , w14u0 =
1.020309321200067 , w14u1 = -0.661256258107061 , w14u2 = -1.360757721021164 , r15 = 0.213802424947 , w15u0 =
0.037507621964053 , w15u1 = -0.998750889057260 , w15u2 = -0.404236669941202 , r16 = -0.261235348293 , w16u0 =
-0.361179392439589 , w16u1 = 0.523977168477960 , w16u2 = -0.132505877927043 , r17 = -4.6282762067 , w17u0 =
-0.453208942050653 , w17u1 = 0.558516249938531 , w17u2 = -2.167760944350079 , r18 = 0.312294677962 , w18u0 =
-0.498849740626020 , w18u1 = -0.781952311121204 , w18u2 = -0.177180118487842 , r19 = 0.963227708137 , w19u0
= -0.452092118062645 , w19u1 = -0.528031745669198 , w19u2 = 0.653690953876505 , r20 = 0.351923103002 , w20u0
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= -0.211885526880373 , w20u1 = -0.555562225984790 , w20u2 = -0.665675088460327 , r21 = 2.96746904986 , w21u0
= -0.246233992183106 , w21u1 = 0.197603854729111 , w21u2 = -0.103545628855087 , r22 = 7.4133048386 , w22u0 =
-0.622739144347201 , w22u1 = -0.604210668744344 , w22u2 = -0.336806758709181 , r23 = -5.38036835509 , w23u0 =
-0.405145786862715 , w23u1 = 0.118424886412600 , w23u2 = -0.320423175987198 , r24 = -0.19849288983 , w24u0 =
-0.888838664449894 , w24u1 = -1.063562298440717 , w24u2 = -0.380204103114571 , r25 = -0.498759956771 , w25u0
= -0.025488617801323 , w25u1 = -1.231751972663265 , w25u2 = 0.640844936319456 , r26 = -0.602307153513 , w26u0
= 0.837344713534070 , w26u1 = -0.576477716540267 , w26u2 = -0.793949210791733 , r27 = 0.905603924045 , w27u0
= -0.288496644111838 , w27u1 = 0.648437026516376 , w27u2 = -1.342828241214197 , r28 = 165.400074001 , w28u0 =
-0.337132324980444 , w28u1 = -0.411891218835125 , w28u2 = -2.535211279333682 , r29 = -0.502473529596 , w29u0
= 0.107969234506929 , w29u1 = 0.275815257854231 , w29u2 = -0.795231168133907 , c = -0.757324657839792
end-parameter-section
LABELS-SECTION
# General form of the labels are given in order to save space.
# qiuj = exp[wiuj, 0.0]
# Where i goes from 0 to 29 and j goes from 0 to 2.
# So, there will be 30x3 = 90 labels term in this operator file.
end-labels-section

HAMILTONIAN-SECTION
———————————————–
modes | r1 | r2 | theta
———————————————–
1.0 | 1 | KE | 1 # kinetic energy
1.0 | KE | 1 | 1
0.5/mass r1 | 1 | qˆ-2 | jˆ2
0.5/mass r2 | qˆ-2 | 1 | jˆ2
-1.0/atomC mass | dq | dq | cos
1.0/atomC mass | dq | qˆ-1 | dth1
1.0/atomC mass | qˆ-1 | dq | dth1
-0.5/atomC mass | qˆ-1 | qˆ-1 | cos*jˆ2
-0.5/atomC mass | qˆ-1 | qˆ-1 | jˆ2*cos
—————————————————————–
c | 1 | 1 | 1
# The following lines would have the following genral form
ri | qiu0 | qiu1 | qiu2
# So, total 30 lines will be there; i goes from 0 to 29
———————————————————
end-hamiltonian-section
end-operator

A.2 30000 cm−1 cut 30 NN fit PES operator file

for CS2
OP DEFINE-SECTION
TITLE
CS2 vibrational Hamiltonian (J=0), 3 modes, valence coordinates
END-TITLE
END-OP DEFINE-SECTION

PARAMETER-SECTION
carbon mass = 12.0,AMU
sulphur mass = 31.97207070,AMU #mass of S isotope 32
atomA mass = sulphur mass # mass of atom A in molecule A-C-B
atomB mass = sulphur mass # mass of atom B in molecule A-C-B
atomC mass = carbon mass # mass of atom C in molecule A-C-B
AC mass = atomA mass+atomC mass # mass of diatom A-C
BC mass = atomB mass+atomC mass # mass of diatom B-C
mass r1 = atomA mass*atomC mass/AC mass # reduced mass for mode r 1
mass r2 = atomB mass*atomC mass/BC mass # reduced mass for mode r 2
r0 = 16.8727225723
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w0u0 = 0.263140369037430 , w0u1 = 0.599952135851169 , w0u2 = -3.945267875858313 , r1 = 2.60806149972 , w1u0
= -1.507236156822487 , w1u1 = -0.169269751497554 , w1u2 = 0.672303545495449 , r2 = -291.005926518 , w2u0
= -1.378292421059135 , w2u1 = -0.181363884492541 , w2u2 = -1.606401197908763 , r3 = -1.40060079079 , w3u0
= -0.935730150806799 , w3u1 = 0.432890827309715 , w3u2 = 0.164391443926151 , r4 = -1.48146892944 , w4u0 =
0.182567536921395 , w4u1 = -0.872004257294149 , w4u2 = 0.123707222170108 , r5 = -213.066717604 , w5u0 = -
0.214242046260980 , w5u1 = -1.999972383754222 , w5u2 = -1.307333839889177 , r6 = 0.028179363993 , w6u0 =
-0.602187951767044 , w6u1 = -0.584353051621127 , w6u2 = -0.449892184802155 , r7 = -1.10435549627 , w7u0 =
-0.108073768270261 , w7u1 = 0.191698851035442 , w7u2 = 0.311447886221166 , r8 = -0.346750767256 , w8u0 =
-0.979120507007944 , w8u1 = -0.099026607633129 , w8u2 = 1.233613172639767 , r9 = -2.88144898539 , w9u0 =
0.211164494488806 , w9u1 = 0.608158824928671 , w9u2 = -2.463361658394999 , r10 = -0.89802914654 , w10u0 =
0.138840760637955 , w10u1 = -1.075419316281596 , w10u2 = 0.125249430566725 , r11 = 0.823603900561 , w11u0 =
0.112254467591375 , w11u1 = 0.567607943439074 , w11u2 = -1.570882634854479 , r12 = 0.391655512539 , w12u0 =
-1.899881611970750 , w12u1 = 1.272468738373617 , w12u2 = -1.643534080407167 , r13 = -19.8357871038 , w13u0 =
-0.460389732196558 , w13u1 = -0.446528180243459 , w13u2 = 0.034547371656902 , r14 = -1.00221425597 , w14u0 =
-0.323892787045409 , w14u1 = 0.130534277562755 , w14u2 = 0.760451237289668 , r15 = 1.32755490385 , w15u0 =
-0.738159098771926 , w15u1 = -0.175761133518781 , w15u2 = -0.337341060699669 , r16 = 0.444714200591 , w16u0
= -1.008482447748633 , w16u1 = 0.537694216501576 , w16u2 = 0.296023464885022 , r17 = -1.5176006972 , w17u0 =
-0.193481767983006 , w17u1 = 0.125050496952595 , w17u2 = -1.166282632115810 , r18 = 1.25750650261 , w18u0 =
-0.601270365231147 , w18u1 = 0.049771409083551 , w18u2 = -0.319270270749412 , r19 = 448.734464614 , w19u0 =
-0.867114612841849 , w19u1 = -0.522427174336340 , w19u2 = -1.629921006149796 , r20 = 1.34495349989 , w20u0 =
-0.672938653078943 , w20u1 = -0.486774047661074 , w20u2 = -0.253156419768459 , r21 = 0.306783290136 , w21u0
= 0.354732612715661 , w21u1 = -1.426408560542743 , w21u2 = 0.443925378683336 , r22 = -304.451762011 , w22u0
= 0.359663841177716 , w22u1 = 0.625568902259166 , w22u2 = -6.606436410990621 , r23 = 121.764163623 , w23u0
= -2.285500853045862 , w23u1 = 0.023829938883183 , w23u2 = -0.088441956896209 , r24 = 0.162521771066 , w24u0
= -0.688226123388612 , w24u1 = -0.193951434578293 , w24u2 = -0.298662813114304 , r25 = 133.386274603 , w25u0
= 0.014085948724475 , w25u1 = -2.320888639788417 , w25u2 = -0.069083774734274 , r26 = 17.2511594055 , w26u0
= -0.431425514239506 , w26u1 = -0.799217045412624 , w26u2 = 0.090181980172482 , r27 = 1.7957466214 , w27u0 =
-0.227930755587869 , w27u1 = 0.165018522130335 , w27u2 = 0.564661940876118 , r28 = 0.31215806998 , w28u0 =
-0.709306541255109 , w28u1 = -0.040023174397826 , w28u2 = 1.202349535821289 , r29 = 1.65272515513 , w29u0 =
-0.739787117067775 , w29u1 = -0.152901926973949 , w29u2 = -0.253868363878868 , c = 1.220684930195138
end-parameter-section

LABELS-SECTION
# General form of the labels are given in order to save space.
# qiuj = exp[wiuj, 0.0]
# Where i goes from 0 to 29 and j goes from 0 to 2.
# So, there will be 30x3 = 90 labels term in this operator file.
end-labels-section

HAMILTONIAN-SECTION
———————————————–
modes | r1 | r2 | theta
———————————————–
1.0 | 1 | KE | 1 # kinetic energy
1.0 | KE | 1 | 1
0.5/mass r1 | 1 | qˆ-2 | jˆ2
0.5/mass r2 | qˆ-2 | 1 | jˆ2
-1.0/atomC mass | dq | dq | cos
1.0/atomC mass | dq | qˆ-1 | dth1
1.0/atomC mass | qˆ-1 | dq | dth1
-0.5/atomC mass | qˆ-1 | qˆ-1 | cos*jˆ2
-0.5/atomC mass | qˆ-1 | qˆ-1 | jˆ2*cos
————————————————————–
c | 1 | 1 | 1
# The following lines would have the following genral form
ri | qiu0 | qiu1 | qiu2
# So, total 30 lines will be there; i goes from 0 to 29
———————————————————
end-hamiltonian-section
end-operator
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A.3 50000 cm−1 cut 30 NN fit PES operator file

for CS2

OP DEFINE-SECTION

TITLE

CS2 vibrational Hamiltonian (J=0), 3 modes, valence coordinates

END-TITLE

END-OP DEFINE-SECTION

PARAMETER-SECTION

carbon mass = 12.0,AMU

sulphur mass = 31.97207070,AMU #mass of S isotope 32

atomA mass = sulphur mass # mass of atom A in molecule A-C-B

atomB mass = sulphur mass # mass of atom B in molecule A-C-B

atomC mass = carbon mass # mass of atom C in molecule A-C-B

AC mass = atomA mass+atomC mass # mass of diatom A-C

BC mass = atomB mass+atomC mass # mass of diatom B-C

mass r1 = atomA mass*atomC mass/AC mass # reduced mass for mode r 1

mass r2 = atomB mass*atomC mass/BC mass # reduced mass for mode r 2

r0 = -7.1319203778

w0u0 = -0.099809343353529 , w0u1 = -1.094154209296849 , w0u2 = -0.650828971003954 , r1 = -1.69390635501 ,

w1u0 = 0.324158287055998 , w1u1 = -0.733113069591260 , w1u2 = -0.622811261367949 , r2 = -0.0239336449602

, w2u0 = -0.328123810173451 , w2u1 = -0.411839647633562 , w2u2 = -0.245410838076090 , r3 = 1.47235766595 ,

w3u0 = 0.062616552868763 , w3u1 = -0.258099328465247 , w3u2 = 0.235048002984682 , r4 = -0.0533910208811 ,

w4u0 = -1.027154578475860 , w4u1 = 0.261617852984466 , w4u2 = -0.747867299992593 , r5 = 67.1748090843 , w5u0

= -2.334409898376570 , w5u1 = 0.162184751785010 , w5u2 = 0.032482951295569 , r6 = 0.871645259717 , w6u0 =

-0.108682510260418 , w6u1 = 0.081242170086103 , w6u2 = -0.299859641597994 , r7 = 0.589746103021 , w7u0 =

-0.839061619729243 , w7u1 = -0.740582086583470 , w7u2 = -0.639250646964926 , r8 = 0.43028242578 , w8u0 =

-0.677043650714482 , w8u1 = -1.038258662654963 , w8u2 = 0.270289854591321 , r9 = -1.28368513436 , w9u0 =

-2.394245305776177 , w9u1 = 0.445682003260440 , w9u2 = 0.596917223938968 , r10 = -0.343626807709 , w10u0 =

-0.682062085805540 , w10u1 = 0.789878059438881 , w10u2 = -0.971144981824822 , r11 = -0.262276655431 , w11u0 =

0.139147364451021 , w11u1 = -0.034081319212657 , w11u2 = 0.115833841285072 , r12 = 0.00105795904679 , w12u0

= -0.988219689948803 , w12u1 = -0.889111453506282 , w12u2 = -0.849326196914439 , r13 = 38.1229294783 , w13u0

= -1.858216668558270 , w13u1 = -0.349330753361932 , w13u2 = 0.038142503349225 , r14 = -1.19452133252 , w14u0

= -1.100778112575936 , w14u1 = 0.145567030369686 , w14u2 = 0.438073646365512 , r15 = -120.926849215 , w15u0 =

0.489735034057426 , w15u1 = -2.002506560980035 , w15u2 = -2.422877404457820 , r16 = 1.71687502535 , w16u0 =

0.588763004709793 , w16u1 = -1.654113119458458 , w16u2 = -0.964663399685054 , r17 = 2.73520812954 , w17u0 =

-0.838403751715716 , w17u1 = 0.675437957364109 , w17u2 = -1.700503072816013 , r18 = 7.68356112037 , w18u0 =

0.474057335464516 , w18u1 = -0.607461138655543 , w18u2 = -2.457723860556857 , r19 = -69.7965863517 , w19u0 =

-1.923032101870550 , w19u1 = 0.450077353787281 , w19u2 = -1.845278068907596 , r20 = -16.4768350692 , w20u0 =

-0.446689869973532 , w20u1 = -0.201350533176355 , w20u2 = -0.463809774230689 , r21 = 0.216429185521 , w21u0 =

-0.259292870339033 , w21u1 = -1.014176882688411 , w21u2 = -0.131921602275702 , r22 = 116.897387911 , w22u0 =

-0.003136718944345 , w22u1 = -2.265263434645185 , w22u2 = -0.016550216096211 , r23 = 0.0810721965561 , w23u0
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= -0.627726693359049 , w23u1 = -0.479487463050294 , w23u2 = -0.125279815860544 , r24 = 121.911503659 , w24u0

= -0.581857527220109 , w24u1 = -0.493692006255399 , w24u2 = -1.215844509456250 , r25 = -2.24964023104 , w25u0

= 0.407348516112647 , w25u1 = 0.238930931522123 , w25u2 = -3.319982775925897 , r26 = -2.57815599511 , w26u0

= -0.018142218904387 , w26u1 = -0.534431165867142 , w26u2 = 0.454964862260570 , r27 = 0.631045343638 , w27u0

= -0.084988938434242 , w27u1 = -0.652415603132010 , w27u2 = 0.753368229857784 , r28 = 0.164314213612 , w28u0

= -1.622139824084987 , w28u1 = 0.266596752745178 , w28u2 = 1.010609604535488 , r29 = 0.0298603363281 , w29u0

= -0.749689190978513 , w29u1 = 0.886355982333791 , w29u2 = -0.420639340422583 , c = 0.272084269200190

end-parameter-section

LABELS-SECTION

# General form of the labels are given in order to save space.

# qiuj = exp[wiuj, 0.0]

# Where i goes from 0 to 29 and j goes from 0 to 2.

# So, there will be 30x3 = 90 labels term in this operator file.

end-labels-section

HAMILTONIAN-SECTION

———————————————–

modes | r1 | r2 | theta

———————————————–

1.0 | 1 | KE | 1 # kinetic energy

1.0 | KE | 1 | 1

0.5/mass r1 | 1 | qˆ-2 | jˆ2

0.5/mass r2 | qˆ-2 | 1 | jˆ2

-1.0/atomC mass | dq | dq | cos

1.0/atomC mass | dq | qˆ-1 | dth1

1.0/atomC mass | qˆ-1 | dq | dth1

-0.5/atomC mass | qˆ-1 | qˆ-1 | cos*jˆ2

-0.5/atomC mass | qˆ-1 | qˆ-1 | jˆ2*cos

————————————————————-

————————————————————-

c | 1 | 1 | 1

# The following lines would have the following genral form

ri | qiu0 | qiu1 | qiu2

# So, total 30 lines will be there; i goes from 0 to 29

—————————————————-

end-hamiltonian-section

end-operator
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Appendix B

Appendix to Chapter 3

B.1 Fit to 1D Potential Energy Curves

To determine the total energy for use in the energy filter, Eq. (2) in the main text,
a simple sum over 1D potential energies is computed, i.e.,

V 0
total(R1, R2, R3, θ1, θ2, φ) =

6∑
i=1

V 0
i (xi) (B.1)

where V 0
i (xi) is a fit to the 1D potential energy along coordinate xi. For the distance

coordinates (R1, R2 and R3), the 1D potentials were fit to Morse oscillator forms. The
Morse oscillator is defined in terms of the dissociation energy (a0), predissociation
factor (a1) and equilibrium coordinate (a2) as,

V 0
i (x) = a0(1− e−a1(x−a2))2. (B.2)

The corresponding fitting parameters are defined in Table B5. For the angular co-
ordinates (cosθ1, cosθ2 and φ), the 1D potentials were fit to nth order polynomial
functional forms defined as

V 0
i (x) =

n∑
q=0

(anx
n). (B.3)

For (cos θ1, cos θ2), the fits were to fourth-order polynomials, while for φ a fifth-order
polynomial was used, see Table B6 for the fitting parameters.
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Table B2: Structural Parameters (bond lengths in Å; angles in degrees) and relative
energies (in cm−1) of HFCO transition states at the CCSD(T)-F12/cc-pVTZ-F12
level of theory as compared to previous computational results.

R1
OH/CH R2

CF R3
CO θ1

HOC θ2
FCO φ Energy

TStrans↔cis
This work 0.964 1.320 1.332 113.4 106.5 90.3 21013

CCSD/DZ+Pa 0.969 1.331 1.349 112.3 105.9 90.3 21000
MP2/6-31G*b 0.974 1.333 1.343 114.0 105.9 90.9 22300

MP2/6-311G**c 0.964 1.319 1.334 110.8 106.5 89.6 21900
TSeq↔trans

This work 1.246 1.320 1.260 59.2 115.4 180 26416
CCSD/DZ+Pa 1.235 1.330 1.269 59.7 115.6 180.0 26900
MP2/6-31G*b 1.260 1.336 1.279 57.6 114.3 180.0 26400

MP2/6-311G**c 1.240 1.325 1.269 58.0 115.1 180.0 26200
Tdissociation

This work 1.136 1.857 1.132 170.6 121.6 0 16993
CCSD/DZ+Pa 1.138 1.828 1.147 171.6 122.0 0.0 16400
MP2/6-31G*b 1.146 1.803 1.156 170.4 121.6 0.0 16400

MP2/6-311G**c 1.135 1.808 1.144 188.6 122.0 0 15100
MP2/cc-pVTZd 1.126 1.843 1.140 48.8 122.2 0.0 16700

a Ref. 202 Relative Energy at CCSD/DZ+P with ZPE at CISD/DZ+P; b Ref. 191
Relative energy at MP4(SDTQ)/6-311G**//MP2/6-31G* with ZPE; c Ref. 193
Relative energy at MP4(SDTQ)/6-311++G**//MP2/6-311G* with ZPE. d Ref. 132
f functions removed from F,C, and O, d functions from H;

Table B3: Theoretical Harmonic and Experimentally Measured Fundamental Fre-
quencies (in cm−1) of DFCO.

Present Results Previous Results
Mode MP2a CCSDa CCSD(T)a CCSD(T)-F12b CCSD(T)c Exptd

ν5 FCO bending 654.9 674.7 658.3 664.5 667.3 657.0
ν6 out of plane bending 875.2 891.0 868.3 871.9 878.9 857.4

ν2 CF stretching 1077.6 1126.1 1092.6 1099.9 1120.9 1073.2
ν4 DCO bending 989.1 1002.5 984.0 987.2 994.7 967.9
ν3 CO stretching 1803.8 1860.3 1814.6 1826.4 1830.7 1796.8
ν1 CD stretching 2358.2 2355.3 2332.2 2334.1 2333.2 2261.8

RMSE 41.1 55.1 31.7 35.2 40.7

aaug-cc-pVTZ basis set; bcc-pVTZ-F12 basis set; ccc-pVTZ basis set from195

d Experimental frequencies from;182 numbers are within 0.3 cm−1 of measurements from181
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Table B4: Theoretical Anharmonic and Experimental Fundamental Frequencies (in
cm−1) of DFCO.

Present Results Previous Results
Mode MP2a CCSDa CCSD(T)a CCSD(T)b Obsc Intensityd

ν5 FCO bending 647.3 667.9 650.9 660.2 657.0 17.3
ν6 out of plane bending 861.8 877.7 857.7 864.9 857.4 0.4

ν3 CF stretching 1052.3 1102.4 1068.2 1097.6 1073.2 156.4
ν4 DCO bending 970.0 984.2 965.0 975.8 967.9 35.8
ν3 CO stretching 1781.1 1834.4 1786.7 1795.1 1796.8 155.5
ν1 CD stretching 2286.2 2283.4 2256.8 2258.8 2261.8 35.1

RMSE 15.3 24.3 5.7 11.1

aaug-cc-pVTZ basis set; bcc-pVTZ basis set from.195
c Experimental frequencies from;182 numbers are within 0.3 cm−1 of measurements from181

dExperimental intensities (in km/mol) from.182

Table B5: One dimensional fitting parameters (in atomic units) to Morse functional
form for RCH

1 , RCF
2 and RCO

3 physical coordinates.

Physical Coordinates Fitting Parameters
a0 a1 a2

RCH
1 0.177588 0.996014 2.06649

RCF
2 0.161448 1.07919 2.54408

RCO
3 0.335531 1.19789 2.22995

Table B6: One dimensional fitting parameters (in atomic units) to the fourth or-
der polynomial functional form for cos θHCO1 and cos θFCO2 as well as the fifth order
polynomial for φ.

Coordinates Fitting Parameters
a0 a1 a2 a3 a4 a5

cos θHCO1 0.0548669 0.139251 0.20238 0.52025 0.495075 —
cos θFCO2 0.0974611 0.376063 0.499038 0.48174 0.399969 —

φ 0.814096 -0.843866 0.341579 -0.0659754 0.00524958 7.05362×10−8
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Table B7: RMSE (in cm−1) versus Number of Neurons (NN) for the PES with
20000 cm−1 and 30000 cm−1 cut-off Energies.

NN RMSE
30000 cm−1 20000 cm−1

train test train test
25 134 132 86 80
30 80 93 67 65
35 65 82 59 53
40 58 70 48 46
45 56 64 43 39
50 53 60 28 32
55 43 56 26 29
60 39 46 24 27
65 44 50 21 25
70 33 45 22 25
75 32 40 24 25
80 31 43 21 22
85 41 45 23 25
90 33 41 24 24
95 36 42 21 23
100 35 39 20 22
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Table B8: Selected Vibrational Energies (in cm−1) for States up to 5000 cm−1

for DFCO from the Present PES Compared with Experimental Measurements and
Previous Computations.

Assignmentb Expta This work New Assignment
(ν1ν2ν3ν4ν5ν6) (ν1ν2ν3ν4ν5ν6)

000010c 657.5 658.8
000001c 857.4 859.2
000100c 967.9 966.0
010000c 1073.2 1074.3
000110c 1624.5 1625.4
000002c 1705.8 1706.8
001000c 1796.8 1795.3
010001c 1928.4 1928.8 000200
000200c 1930.6 1931.2 010001
010100c 2028.8 2028.8 020000
020000c 2137.8 2133.9 010100
100000c 2261.7 2258.2
001002 3508.0 3505.8
002000 3579.4 3576.7
101000 4045.5 4040.1
002010 4229.2 4227.5
001003 4343.5 4344.3
002001 4446.6 4446.4
002100 4542.0 4538.7
001031 4616.6 4622.2
002020 4876.8 4878.6
101001 4898.1 4894.6
002011 5095.8 5097.0

RMSE 2.5

a Experimental measurements and Vibrational assignments taken from214

b Vibrational states assignment from214

c Assignment and observed energies from181
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B.2 20000 cm−1 cut 80 NN fit PES operator file

for HFCO

OP DEFINE-SECTION

title

HFCO in polyspherical coordinates (valence coordinates)

end-title

end-op define-section

PARAMETER-SECTION

a11 = -0.996014

a12 = 2.06649

a21 = -1.07919

a22 = 2.54408

a31 = -1.19789

a32 = 2.22995

mh = 1.0, H-mass

mc = 12.00,AMU

mo = 15.9949146221,AMU

mf = 18.99840320,AMU

M11 = 1.0/mh+1.0/mc

M22 = 1.0/mf+1.0/mc

M33 = 1.0/mo+1.0/mc

Mu = 1.0/mc

R1eq = 2.06320d0

R2eq = 2.5340d0

R3eq = 2.228740d0

U1eq = 0.7894590d0

U2eq = 0.8414164680d0

E1eq = -0.61380310d0

E2eq = -0.54038720d0

coef1 = M11/2.0/R1eq/R1eq/U1eq/U1eq

coef2 = M33*E1eq*E1eq/2.0/R3eq/R3eq/U1eq/U1eq

coef3 = Mu*E1eq/R3eq/R1eq/U1eq/U1eq

coef4 = M22/2.0/R2eq/R2eq/U2eq/U2eq

coef5 = M33*E2eq*E2eq/2.0/R3eq/R3eq/U2eq/U2eq

coef6 = Mu*E2eq/R3eq/R2eq/U2eq/U2eq

coeff1 = coef6-coef1-coef2+coef3-coef4-coef5

coef7 = Mu*E2eq/R3eq/R1eq/U1eq/U2eq

coef8 = Mu*E1eq/R3eq/R2eq/U1eq/U2eq

coef9 = Mu/U1eq/U2eq/R1eq/R2eq

coef10 = M33*E1eq*E2eq/U1eq/U2eq/R3eq/R3eq

coeff2 = coef10+coef9-coef8-coef7
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coeff3 = Mu/R3eq/R1eq

coeff4 = -1.0*Mu/R3eq/R1eq

coef11 = -1.0*M11/2.0/R1eq/R1eq

coef12 = -1.0*M33/2.0/R3eq/R3eq

coeff5 = coef11+coef12

coeff6 = Mu/R3eq/R2eq

coeff7 = -1.0*Mu/R3eq/R2eq

coef13 = -1.0*M22/2.0/R2eq/R2eq

coef14 = -1.0*M33/2.0/R3eq/R3eq

coeff8 = coef13+coef14

coef17 = -1.0*Mu*E1eq/R3eq/R1eq

coef16 = Mu*U1eq/R1eq/R2eq

coef15 = -1.0*Mu*E1eq/R1eq/R2eq

r0 = 128.124489369 , w0u0 = 0.040137487661079 , w0u1 = -2.710443139819253 , w0u2 = -0.124199393551891 , w0u3

= -0.020092703629714 , w0u4 = -0.263935236226315 , w0u5 = -0.000749269916428 , r1 = 0.0121762825833 , w1u0 =

-0.036461006026643 , w1u1 = -1.141023515997769 , w1u2 = -0.334449677539109 , w1u3 = -2.227033994298276 , w1u4

= -2.058802651882234 , w1u5 = 1.086738646630416 , r2 = -0.00706861628274 , w2u0 = -0.140057097716009 , w2u1 =

-0.934399651333664 , w2u2 = -0.326057709003596 , w2u3 = -8.699058955772657 , w2u4 = -1.504986635451121 , w2u5

= 0.463591994741920 , r3 = -0.166146774925 , w3u0 = 0.087879945905202 , w3u1 = -1.483220511371120 , w3u2 =

-0.673177358133877 , w3u3 = -1.078538238677334 , w3u4 = -4.899817853148572 , w3u5 = -0.247092422908423 , r4 =

-1.83923028522 , w4u0 = -0.159238786058514 , w4u1 = -0.896612471308449 , w4u2 = -0.441831910826347 , w4u3 =

-5.244669062576353 , w4u4 = -1.834794185268330 , w4u5 = -0.579219393101293 , r5 = -0.0241405828049 , w5u0 =

-0.741107400572856 , w5u1 = -0.190509952413128 , w5u2 = -0.541172076494760 , w5u3 = -1.881479155232513 , w5u4

= -4.446816665784924 , w5u5 = -0.218003741079337 , r6 = -0.000121045762459 , w6u0 = -0.171162547088383 , w6u1

= -0.917317376339388 , w6u2 = -0.304793909348580 , w6u3 = -11.824682012318728 , w6u4 = -1.675892498586720 ,

w6u5 = 0.162582969993692 , r7 = -0.000128369655274 , w7u0 = 0.416163100302564 , w7u1 = 0.419177728311576 ,

w7u2 = 1.373109953970858 , w7u3 = 0.742935216443815 , w7u4 = 0.387356785424296 , w7u5 = 0.268449817546541 ,

r8 = 6.21426816308 , w8u0 = -0.472020093455583 , w8u1 = -0.739533858702212 , w8u2 = -1.327328327967696 , w8u3

= -1.301418765007524 , w8u4 = -0.382319152745606 , w8u5 = 0.000579126648857 , r9 = 0.455341169598 , w9u0 =

-0.167593781633230 , w9u1 = -1.068309151871655 , w9u2 = -0.487889350718625 , w9u3 = -3.349378689862172 , w9u4

= -3.003216456416223 , w9u5 = -0.322880457966888 , r10 = -0.00703043725673 , w10u0 = 0.242551413236576 , w10u1

= -0.533966908692903 , w10u2 = 0.894602043916614 , w10u3 = 0.238292759905640 , w10u4 = 0.583222250767733 ,

w10u5 = -0.293764447398971 , r11 = 0.00309759716838 , w11u0 = 1.006882898046506 , w11u1 = -0.278382440973430 ,

w11u2 = 0.586323768923906 , w11u3 = 0.203215235910327 , w11u4 = 2.264837133512882 , w11u5 = -0.479965483267225

, r12 = -0.665014409411 , w12u0 = -0.568294455330479 , w12u1 = 0.422996497113824 , w12u2 = -1.196643320868624 ,

w12u3 = -0.639442291754536 , w12u4 = -0.127312893508765 , w12u5 = -0.095141869112225 , r13 = -0.290884343075 ,

w13u0 = 0.061274991466938 , w13u1 = -0.215027949834770 , w13u2 = -0.139128151785414 , w13u3 = -0.645354793204209

, w13u4 = -1.957051786680891 , w13u5 = -1.062331822982396 , r14 = 6.06196979775d-11 , w14u0 = -0.349820362574212

, w14u1 = -1.220187849277006 , w14u2 = -0.213942002608440 , w14u3 = -24.372145402702664 , w14u4 = -1.802536957866496

, w14u5 = 0.048817607599183 , r15 = -2.43918433698 , w15u0 = -0.132515251085822 , w15u1 = -0.175382967617338 ,

w15u2 = -0.409489138374416 , w15u3 = -0.234092237809939 , w15u4 = -0.372054189216452 , w15u5 = 0.011177015019942

, r16 = 2.03678672153 , w16u0 = -0.239325508295263 , w16u1 = -1.333895712022472 , w16u2 = -0.295176183029563 ,
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w16u3 = -2.868821616951403 , w16u4 = 1.476109672624921 , w16u5 = -0.116922835334863 , r17 = 0.133558872174 ,

w17u0 = -1.419620703871924 , w17u1 = 0.073980170805745 , w17u2 = 1.135394481818336 , w17u3 = 1.503555426944914

, w17u4 = 1.094321997884999 , w17u5 = -0.227655645967066 , r18 = 0.832888497006 , w18u0 = -0.413750995949658 ,

w18u1 = 0.921064744936459 , w18u2 = -2.479449754507122 , w18u3 = 0.101034957536337 , w18u4 = 0.975607174909722

, w18u5 = -0.064187710407504 , r19 = -0.00138226410509 , w19u0 = 0.022951747267462 , w19u1 = -0.608909827158913

, w19u2 = 0.077381774975621 , w19u3 = -0.385275996173070 , w19u4 = -2.571048312563065 , w19u5 = 1.167076039633680

, r20 = 0.162236202537 , w20u0 = 0.351569766037937 , w20u1 = -0.949042734340001 , w20u2 = 0.230540358361312 ,

w20u3 = 1.445478591607887 , w20u4 = -1.083383467616098 , w20u5 = -0.231136217789788 , r21 = -0.000270372496648

, w21u0 = 0.045276374742870 , w21u1 = -0.144077058248869 , w21u2 = -0.029696683501672 , w21u3 = -1.003118087326872

, w21u4 = -2.809594770329543 , w21u5 = 0.789565732410928 , r22 = -0.0153565175834 , w22u0 = 1.085706713352327 ,

w22u1 = -0.849445812129460 , w22u2 = -0.185122825080090 , w22u3 = -1.117618669473678 , w22u4 = -0.404643779084908

, w22u5 = -0.223196407469101 , r23 = 0.0831952014701 , w23u0 = 0.130614546488455 , w23u1 = 0.088200859437831 ,

w23u2 = 0.479883926629004 , w23u3 = 0.427578640287066 , w23u4 = 0.343806572140389 , w23u5 = 0.137733691501758

, r24 = -0.116671693152 , w24u0 = -0.334270377023386 , w24u1 = -0.616729669904437 , w24u2 = 0.749678069584090

, w24u3 = 0.772122579645578 , w24u4 = 0.487178585050946 , w24u5 = 0.757328001245972 , r25 = -31.8921653822 ,

w25u0 = -0.280336767427334 , w25u1 = -0.693884029288189 , w25u2 = 0.232194060537284 , w25u3 = 0.546033989387671

, w25u4 = 1.092290826013112 , w25u5 = -1.186501662080819 , r26 = 57.5054185738 , w26u0 = -0.064548447851620 ,

w26u1 = -1.060676991070500 , w26u2 = -0.486968075271273 , w26u3 = -4.308512126585911 , w26u4 = -1.848970738745815

, w26u5 = -1.209313903280875 , r27 = 0.148796960974 , w27u0 = -0.167336857520276 , w27u1 = -1.088457026950845 ,

w27u2 = -0.307397621308966 , w27u3 = -3.261877876216148 , w27u4 = -0.252907107188928 , w27u5 = 0.365508103275515

, r28 = -23.1353066059 , w28u0 = -0.115559632582877 , w28u1 = -0.933222295256185 , w28u2 = -0.506947699360696

, w28u3 = -5.243632621701725 , w28u4 = -1.620590420453323 , w28u5 = -1.525583574289916 , r29 = -11.3038603285 ,

w29u0 = -0.048683607242393 , w29u1 = -0.011458331651524 , w29u2 = -2.142147705004065 , w29u3 = -0.058270928019742

, w29u4 = 1.566534956638677 , w29u5 = -0.000569168914977 , r30 = 40.3607154387 , w30u0 = 0.085547926215999 ,

w30u1 = -0.574268559761161 , w30u2 = -2.397800696587281 , w30u3 = 0.787181056437170 , w30u4 = 1.004271704570243

, w30u5 = 0.022635745872854 , r31 = -0.10606449936 , w31u0 = 0.174608871588821 , w31u1 = -1.391501310314134 ,

w31u2 = -0.389481009177431 , w31u3 = -2.080825458073008 , w31u4 = -1.865969254256331 , w31u5 = 0.663498764642381

, r32 = 0.00588679450283 , w32u0 = -0.136859539716804 , w32u1 = -0.959208118073847 , w32u2 = -0.340782856496467

, w32u3 = -7.209010239289474 , w32u4 = -1.443806748053547 , w32u5 = 0.783441292909957 , r33 = 0.0034227725253 ,

w33u0 = 0.065662738510238 , w33u1 = -0.496989837299533 , w33u2 = 0.116428807746808 , w33u3 = -0.254573559976547

, w33u4 = -2.382454499584801 , w33u5 = 0.945791524094266 , r34 = -0.00306981954185 , w34u0 = -0.135474683919151

, w34u1 = -0.970956773441354 , w34u2 = -0.345387792553429 , w34u3 = -6.241157534122088 , w34u4 = -1.412809577333738

, w34u5 = 0.983456148150946 , r35 = -0.00758438070043 , w35u0 = -1.411576709037776 , w35u1 = 0.800293516086842

, w35u2 = 1.018019329249022 , w35u3 = 1.039510638104015 , w35u4 = 0.956064922001953 , w35u5 = -0.106656946358191

, r36 = -0.00702610999641 , w36u0 = 0.567705070291683 , w36u1 = -0.297276707091091 , w36u2 = 0.433970295875723

, w36u3 = 0.064202663981899 , w36u4 = 1.631866273507123 , w36u5 = -0.000492574697931 , r37 = 0.339849038205 ,

w37u0 = 0.610407777768204 , w37u1 = -1.472099820870112 , w37u2 = -0.482043069132616 , w37u3 = -1.260147305078096

, w37u4 = -1.221383568627253 , w37u5 = 0.173103555321636 , r38 = 12.7088266854 , w38u0 = -2.737440177062244 ,

w38u1 = 0.025861393665317 , w38u2 = 0.011719385200365 , w38u3 = -0.031732522880556 , w38u4 = -0.016456845018650

, w38u5 = 0.008304389416102 , r39 = -0.0183303579969 , w39u0 = 0.116393178521291 , w39u1 = -0.586650225647108 ,

w39u2 = 0.625668723870644 , w39u3 = 0.484638741527310 , w39u4 = -1.685443694091671 , w39u5 = 0.104332917499096

, r40 = 7.77759433329 , w40u0 = -0.142965733041113 , w40u1 = -0.880127750754475 , w40u2 = -0.542462494766485 ,
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w40u3 = -6.027295673386512 , w40u4 = -1.551208043642279 , w40u5 = -1.690737807147391 , r41 = -0.00226747426829

, w41u0 = -0.083859678032972 , w41u1 = -0.043650085502563 , w41u2 = 1.126033346971153 , w41u3 = -1.181518392734956

, w41u4 = -0.279601327571284 , w41u5 = -0.114931948927245 , r42 = -30.9023338944 , w42u0 = 0.127807931965331 ,

w42u1 = -2.070250422380765 , w42u2 = -0.228709329613492 , w42u3 = 0.097262352748193 , w42u4 = -0.487658813801283

, w42u5 = -0.018595995921280 , r43 = 0.891007847593 , w43u0 = -0.164770896846949 , w43u1 = -1.198120353049647 ,

w43u2 = -0.118657945737884 , w43u3 = -1.646443646338320 , w43u4 = 2.672979934135940 , w43u5 = 0.115623469699655

, r44 = 0.0195558287965 , w44u0 = -0.646385880691343 , w44u1 = 0.315305701617019 , w44u2 = -0.647491809260882 ,

w44u3 = -1.861321716740193 , w44u4 = -2.619015487590776 , w44u5 = -0.122069179225815 , r45 = -0.108548531671 ,

w45u0 = -0.126222485566917 , w45u1 = -0.921153762624014 , w45u2 = -0.370761705855669 , w45u3 = -7.265258958225432

, w45u4 = -1.577530818980395 , w45u5 = -0.341210645185910 , r46 = -5.18167931166 , w46u0 = -0.190329797052586 ,

w46u1 = -1.244066704231240 , w46u2 = -0.288553234923585 , w46u3 = -2.127182742300470 , w46u4 = 1.613194296682079

, w46u5 = 0.020458649981538 , r47 = 40.2589141386 , w47u0 = -0.364310093186241 , w47u1 = -0.689195417171440 ,

w47u2 = 0.417802522752694 , w47u3 = 0.655338981135459 , w47u4 = 0.818987934069982 , w47u5 = -1.201779111417280

, r48 = 0.00157644621871 , w48u0 = 0.108809562276208 , w48u1 = 0.309530846700291 , w48u2 = 0.454343424517953 ,

w48u3 = -0.663016803412630 , w48u4 = -1.287587287538993 , w48u5 = -0.055786520740306 , r49 = -0.0746607844791 ,

w49u0 = -0.587716946640231 , w49u1 = -0.883548293423336 , w49u2 = -0.643331979873909 , w49u3 = -2.921870040561912

, w49u4 = -1.816406625137438 , w49u5 = 0.459537122999923 , r50 = 0.0329840165428 , w50u0 = -0.310529689421199 ,

w50u1 = 0.529919819441376 , w50u2 = 0.332296962128098 , w50u3 = 0.895143929786300 , w50u4 = 1.330738371098162

, w50u5 = -0.495064746567159 , r51 = 0.0780623843555 , w51u0 = -0.283034410065500 , w51u1 = -0.105591925054730 ,

w51u2 = 0.225365098973117 , w51u3 = -1.741562660091419 , w51u4 = 0.142899568397821 , w51u5 = -0.658811727574754

, r52 = 2.2185356864 , w52u0 = -0.359691427249907 , w52u1 = -0.221814206318625 , w52u2 = -1.095607246023340

, w52u3 = 1.170283410149247 , w52u4 = -1.155767945833338 , w52u5 = -0.064195263092470 , r53 = -5.0473713757 ,

w53u0 = -0.563618762326593 , w53u1 = -0.540430609983167 , w53u2 = 0.799050758528616 , w53u3 = 0.862035692328084

, w53u4 = 0.648152703410060 , w53u5 = -0.745445107284330 , r54 = 0.207559916706 , w54u0 = -0.396750410893950 ,

w54u1 = -0.747001565337061 , w54u2 = 0.520047785137651 , w54u3 = 0.751978021945188 , w54u4 = -0.131398403335742

, w54u5 = 0.536453848935075 , r55 = 1.30738677914 , w55u0 = -0.138001266099466 , w55u1 = -0.920412428193479 ,

w55u2 = -0.414287831179455 , w55u3 = -5.922573474871533 , w55u4 = -1.711368275623303 , w55u5 = -0.511952156145028

, r56 = 0.147900654962 , w56u0 = -0.225317381042958 , w56u1 = -1.011889639430318 , w56u2 = -0.352676107512078

, w56u3 = -0.892655460604594 , w56u4 = -4.247572618067967 , w56u5 = -0.109941690728107 , r57 = 0.025642201965 ,

w57u0 = -0.341885135992243 , w57u1 = -0.637538493684470 , w57u2 = 0.738271197610248 , w57u3 = 0.760064052564946

, w57u4 = 0.539544642131843 , w57u5 = 1.002301919871780 , r58 = -0.560452056726 , w58u0 = -0.725477787253703 ,

w58u1 = -0.776982637910761 , w58u2 = 0.422956766367916 , w58u3 = 0.743169041713238 , w58u4 = -0.675546980694602

, w58u5 = 0.152043706621137 , r59 = -39.3140137859 , w59u0 = -0.045176511014172 , w59u1 = -1.109589495582303 ,

w59u2 = -0.486428590784518 , w59u3 = -4.186595858521640 , w59u4 = -1.917848300466221 , w59u5 = -1.108610060082485

, r60 = 128.316144274 , w60u0 = -0.022370801707895 , w60u1 = 0.009355870942746 , w60u2 = -3.181407032066770 ,

w60u3 = -0.054030535041023 , w60u4 = 0.058845319635126 , w60u5 = -0.001864685173006 , r61 = -0.0157717438974 ,

w61u0 = 0.157252844828024 , w61u1 = 0.502890596700117 , w61u2 = -0.035444438155443 , w61u3 = 0.789051047017819

, w61u4 = 0.921352848473982 , w61u5 = 0.095944459206918 , r62 = 0.0219175860388 , w62u0 = 0.106145419990129 ,

w62u1 = 0.143128744480006 , w62u2 = 0.219737478730973 , w62u3 = -1.024403928603240 , w62u4 = -0.393595075634468

, w62u5 = -0.029306660401594 , r63 = -0.000129936047167 , w63u0 = 0.411087694424877 , w63u1 = 0.750975625859717

, w63u2 = 0.490423107112534 , w63u3 = -1.075949880626333 , w63u4 = -1.454319341412126 , w63u5 = -0.304086053797731

, r64 = 0.054055199626 , w64u0 = -0.398776241538590 , w64u1 = -0.766475447257657 , w64u2 = 1.238352531428769
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, w64u3 = 0.897169371432877 , w64u4 = 0.812910445879861 , w64u5 = 0.264302617098690 , r65 = 4.37776110397d-

07 , w65u0 = -0.236882708877369 , w65u1 = -0.948556551246431 , w65u2 = -0.270960362139405 , w65u3 = -

1.704341779421827 , w65u4 = -14.865785742695991 , w65u5 = -0.047138689476918 , r66 = -0.229051279259 , w66u0

= 0.523855552396917 , w66u1 = 0.050983321502104 , w66u2 = -1.291952238577565 , w66u3 = 1.171929216058235 ,

w66u4 = -0.548845968862213 , w66u5 = -0.202806637735949 , r67 = 23.5368293675 , w67u0 = -0.028518726510973 ,

w67u1 = -1.065816124759037 , w67u2 = -0.927843674693096 , w67u3 = -0.363794250379981 , w67u4 = 2.667150463392842

, w67u5 = -0.033576288026181 , r68 = 0.00434652373603 , w68u0 = -0.145057036997823 , w68u1 = -0.920094275546127

, w68u2 = -0.318031312894424 , w68u3 = -9.579300240546406 , w68u4 = -1.559649253101392 , w68u5 = 0.295190319078633

, r69 = 1.19097666288 , w69u0 = -0.722956503861648 , w69u1 = -0.853986967857790 , w69u2 = 0.882040116416631

, w69u3 = 0.707690145630797 , w69u4 = -0.104312248850064 , w69u5 = -0.519757907426640 , r70 = -0.093783686581 ,

w70u0 = 0.496150959075417 , w70u1 = -0.574665828924528 , w70u2 = 0.709012397790081 , w70u3 = 1.122266356014727

, w70u4 = -0.045288696765434 , w70u5 = -0.784931097291497 , r71 = 0.233976888306 , w71u0 = 0.165876617215462 ,

w71u1 = -0.129198814914938 , w71u2 = 0.158803393360553 , w71u3 = 0.021325661380996 , w71u4 = -1.088172125699977

, w71u5 = -0.526218491213498 , r72 = -0.207733971517 , w72u0 = -0.208653494495407 , w72u1 = -0.824479416895008 ,

w72u2 = -0.649144816556909 , w72u3 = -7.949485349062294 , w72u4 = -1.503897098316076 , w72u5 = -2.007655018056385

, r73 = -2.33343704158d-08 , w73u0 = 0.054590900785109 , w73u1 = 0.198595428254369 , w73u2 = -0.267401286208350

, w73u3 = -10.727225727133208 , w73u4 = -3.878382223995197 , w73u5 = 0.253624478641044 , r74 = -0.00244304602301

, w74u0 = 0.806736737697331 , w74u1 = -0.454387984065477 , w74u2 = -0.362227922535493 , w74u3 = 0.462115718474676

, w74u4 = -0.171588856123621 , w74u5 = 0.674384285818280 , c = 0.01214406321949218

end-parameter-section

LABELS-SECTION

rq1 = exp1[a11,a12]

rq2 = exp1[a21,a22]

rq3 = exp1[a31,a32]

qs1 = qs[1.0]

# General form of the labels are given in order to save space.

# qiuj = exp[wiuj, 0.0]

# Where i goes from 0 to 79 and j goes from 0 to 5.

# So, there will be 80x6 = 480 labels term in this operator file.

end-labels-section

HAMILTONIAN-SECTION

———————————————————————

modes | rch | rcf | rco | ohco | ofco | phi

———————————————————————

-M11/2.d0 | dq2̂ | 1 | 1 | 1 | 1 | 1

-M22/2.d0 | 1 | dq2̂ | 1 | 1 | 1 | 1

-M33/2.d0 | 1 | 1 | dq2̂ | 1 | 1 | 1

-1.0d0/mc | dq | dq | 1 | qs1 | qs1 | cos

-1.0d0/mc | dq | dq | 1 | q | q | 1

-1.0d0/mc | dq | 1 | dq | q | 1 | 1

-1.0d0/mc | 1 | dq | dq | 1 | q | 1

-1.0d0/mc | q̂-1 | q̂-1 | 1 | qs1 | qs1 | cos
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-1.0d0/mc | q̂-1 | q̂-1 | 1 | q | q | 1

-1.0d0/mc | q̂-1 | 1 | q̂-1 | q | 1 | 1

-1.0d0/mc | 1 | q̂-1 | q̂-1 | 1 | q | 1

-0.5d0/mc | dq | 1 | q̂-1 | qs12̂*dq | 1 | 1

-0.5d0/mc | dq | 1 | q̂-1 | dq*qs12̂ | 1 | 1

0.5d0/mc | dq | q̂-1 | 1 | qs1 | qs1*q*dq | cos

0.5d0/mc | dq | q̂-1 | 1 | qs1 | dq*qs1*q | cos

-0.5d0/mc | dq | q̂-1 | 1 | q | qs12̂*dq | 1

-0.5d0/mc | dq | q̂-1 | 1 | q | dq*qs12̂ | 1

-0.5d0/mc | dq | 1 | q̂-1 | qs1 | qs1*dq | cos

-0.5d0/mc | dq | 1 | q̂-1 | qs1 | dq*qs1 | cos

-0.5d0/mc | 1 | dq | q̂-1 | 1 | qs12̂*dq | 1

-0.5d0/mc | 1 | dq | q̂-1 | 1 | dq*qs12̂ | 1

0.5d0/mc | q̂-1 | dq | 1 | qs1*q*dq | qs1 | cos

0.5d0/mc | q̂-1 | dq | 1 | dq*qs1*q | qs1 | cos

-0.5d0/mc | q̂-1 | dq | 1 | qs12̂*dq | q | 1

-0.5d0/mc | q̂-1 | dq | 1 | dq*qs12̂ | q | 1

-0.5d0/mc | 1 | dq | q̂-1 | qs1*dq | qs1 | cos

-0.5d0/mc | 1 | dq | q̂-1 | dq*qs1 | qs1 | cos

-0.5d0/mc | q̂-1 | 1 | dq | qs12̂*dq | 1 | 1

-0.5d0/mc | q̂-1 | 1 | dq | dq*qs12̂ | 1 | 1

-0.5d0/mc | 1 | q̂-1 | dq | 1 | qs12̂*dq | 1

-0.5d0/mc | 1 | q̂-1 | dq | 1 | dq*qs12̂ | 1

0.5d0/mc | dq | q̂-1 | 1 | qs1 | qs1̂-1 | sin*dq

0.5d0/mc | dq | q̂-1 | 1 | qs1 | qs1̂-1 | dq*sin

-0.5d0/mc | dq | 1 | q̂-1 | qs1 | q*qs1̂-1 | dq*sin

-0.5d0/mc | dq | 1 | q̂-1 | qs1 | q*qs1̂-1 | sin*dq

0.5d0/mc | q̂-1 | dq | 1 | qs1̂-1 | qs1 | sin*dq

0.5d0/mc | q̂-1 | dq | 1 | qs1̂-1 | qs1 | dq*sin

-0.5d0/mc | 1 | dq | q̂-1 | q*qs1̂-1 | qs1 | sin*dq

-0.5d0/mc | 1 | dq | q̂-1 | q*qs1̂-1 | qs1 | dq*sin

-M11/2.d0 | q̂-2 | 1 | 1 | dq*qs12̂*dq | 1 | 1

1.0d0/mc | q̂-1 | 1 | q̂-1 | dq*q*qs12̂*dq | 1 | 1

-M33/2.d0 | 1 | 1 | q̂-2 | dq*qs12̂*dq | 1 | 1

-M22/2.d0 | 1 | q̂-2 | 1 | 1 | dq*qs12̂*dq | 1

1.0d0/mc | 1 | q̂-1 | q̂-1 | 1 | dq*q*qs12̂*dq | 1

-M33/2.d0 | 1 | 1 | q̂-2 | 1 | dq*qs12̂*dq | 1

-0.5d0/mc | q̂-1 | q̂-1 | 1 | dq*qs1*q | qs1*q*dq | cos

-0.5d0/mc | q̂-1 | q̂-1 | 1 | qs1*q*dq | dq*qs1*q | cos

-0.5d0/mc | q̂-1 | q̂-1 | 1 | dq*qs12̂ | qs12̂*dq | 1

-0.5d0/mc | q̂-1 | q̂-1 | 1 | qs12̂*dq | dq*qs12̂ | 1

0.5d0/mc | q̂-1 | 1 | q̂-1 | dq*qs1*q | qs1*dq | cos
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0.5d0/mc | q̂-1 | 1 | q̂-1 | q*qs1*dq | dq*qs1 | cos

0.5d0/mc | 1 | q̂-1 | q̂-1 | dq*qs1 | qs1*q*dq | cos

0.5d0/mc | 1 | q̂-1 | q̂-1 | qs1*dq | dq*qs1*q | cos

-M33/2.d0 | 1 | 1 | q̂-2 | dq*qs1 | qs1*dq | cos

-M33/2.d0 | 1 | 1 | q̂-2 | qs1*dq | dq*qs1 | cos

-0.5d0/mc | q̂-1 | q̂-1 | 1 | dq*qs1*q | qs1̂-1 | sin*dq

-0.5d0/mc | q̂-1 | q̂-1 | 1 | q*qs1*dq | qs1̂-1 | dq*sin

0.5d0/mc | q̂-1 | 1 | q̂-1 | dq*qs1*q | q*qs1̂-1 | sin*dq

0.5d0/mc | q̂-1 | 1 | q̂-1 | qs1*q*dq | q*qs1̂-1 | dq*sin

0.5d0/mc | 1 | q̂-1 | q̂-1 | dq*qs1 | qs1̂-1 | sin*dq

0.5d0/mc | 1 | q̂-1 | q̂-1 | qs1*dq | qs1̂-1 | dq*sin

-M33/2.d0 | 1 | 1 | q̂-2 | dq*qs1 | q*qs1̂-1 | sin*dq

-M33/2.d0 | 1 | 1 | q̂-2 | qs1*dq | q*qs1̂-1 | dq*sin

-0.5d0/mc | q̂-1 | q̂-1 | 1 | qs1̂-1 | dq*qs1*q | sin*dq

-0.5d0/mc | q̂-1 | q̂-1 | 1 | qs1̂-1 | qs1*q*dq | dq*sin

0.5d0/mc | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | dq*qs1*q | sin*dq

0.5d0/mc | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1*q*dq | dq*sin

0.5d0/mc | q̂-1 | 1 | q̂-1 | qs1̂-1 | dq*qs1 | sin*dq

0.5d0/mc | q̂-1 | 1 | q̂-1 | qs1̂-1 | qs1*dq | dq*sin

-M33/2.d0 | 1 | 1 | q̂-2 | q*qs1̂-1 | dq*qs1 | sin*dq

-M33/2.d0 | 1 | 1 | q̂-2 | q*qs1̂-1 | qs1*dq | dq*sin

-M11/2.d0 | q̂-2 | 1 | 1 | qs1̂-2 | 1 | dq2̂

1.0d0/mc | q̂-1 | q̂-1 | 1 | qs1̂-1 | qs1̂-1 | dq*cos*dq

-1.0d0/mc | q̂-1 | 1 | q̂-1 | qs1̂-1 | q*qs1̂-1 | dq*cos*dq

1.0d0/mc | q̂-1 | 1 | q̂-1 | q*qs1̂-2 | 1 | dq2̂

-M22/2.d0 | 1 | q̂-2 | 1 | 1 | qs1̂-2 | dq2̂

-1.0d0/mc | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1̂-1 | dq*cos*dq

1.0d0/mc | 1 | q̂-1 | q̂-1 | 1 | q*qs1̂-2 | dq2̂

-M33/2.d0 | 1 | 1 | q̂-2 | q2̂*qs1̂-2 | 1 | dq2̂

-M33/2.d0 | 1 | 1 | q̂-2 | 1 | q2̂*qs1̂-2 | dq2̂

M33 | 1 | 1 | q̂-2 | q*qs1̂-1 | q*qs1̂-1 | dq*cos*dq

———————————————————————-

c | 1 | 1 | 1 | 1 | 1 | 1

# The following lines would have the following genral form

ri | qiu0 | qiu1 | qiu2 | qiu3 | qiu4 | qiu5

# So, total 80 lines will be there; i goes from 0 to 79

——————————————————————————-

end-hamiltonian-section

HAMILTONIAN-SECTION r1i

usediag

—————————–

modes | rch
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—————————–

-M11/2.0 | dq2̂

0.177588 | rq12̂

—————————–

end-hamiltonian-section

HAMILTONIAN-SECTION r2i

usediag

—————————–

modes | rcf

—————————–

-M22/2.0 | dq2̂

0.161448 | rq22̂

—————————–

end-hamiltonian-section

HAMILTONIAN-SECTION r3i

usediag

—————————–

modes | rco

—————————–

-M33/2.0 | dq2̂

0.335531 | rq32̂

—————————–

end-hamiltonian-section

HAMILTONIAN-SECTION theta1

usediag

—————————–

modes | ohco

—————————–

coeff3 | dq*q*qs12̂*dq

coeff4 | q

coeff5 | dq*qs12̂*dq

0.0548669 | 1

0.139251 | q

0.20238 | q2̂

0.52025 | q3̂

0.495075 | q4̂

—————————–

end-hamiltonian-section

HAMILTONIAN-SECTION theta2

usediag

—————————–

modes | ofco
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—————————–

coef17 | 1

coef16 | qs1

coef15 | q

coeff6 | dq*q*qs12̂*dq

coeff7 | q

coeff8 | dq*qs12̂*dq

0.0974611 | 1

0.376063 | q

0.499038 | q2̂

0.48174 | q3̂

0.399969 | q4̂

—————————–

end-hamiltonian-section

HAMILTONIAN-SECTION phii

usediag

—————————–

modes | phi

—————————-

coeff1 | dq2̂

coeff2 | dq*cos*dq

0.814096 | 1

-0.843866 | q

0.341579 | q2̂

-0.0659754 | q3̂

0.00524958 | q4̂

7.05362d-08 | q5̂

—————————-

end-hamiltonian-section

end-operator
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Appendix C

Appendix to Chapter 4

C.1 CCSD(T)-F12/VTZ-F12 along Normal Mode

results

CCSD(T)-F12/VTZ-F12 results along normal mode are performed to check if normal
mode cuts (1D and 2D) gives any new results. So, we choose normal mode eigen
vector from the ab initio frequency calculation output and take 1D and 2D cuts by
propagating the eigen vector along each normal mode. The random data sets were the
same. The results will be presented in a separate table along with physical coordinate,
potfit-MCTDH and experiments for cis and trans HONO.

C.2 CBS extrapolation

In this work, the equilibrium geometry for the CBS calculation was taken to be the
CCSD(T)-F12/cc-pVTZ-F12 computed equilibrium geometry. 1D and 2D cuts of the
CCSD(T)-F12 equilibrium geometry and the random data set were also same for all
of them. Three different combinations for the 2 points extrapolation (34, 35 and 45,
results in Table C13 and C14) were computed. The 3 points extrapolation results are
presented in the main chapter (see Chapter 4).
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Table C1: CCSD(T)-F12/cc-pVTZ-F12 (F12) optimized geometries including bond
distances (Å) and angles (degrees), of H-NO2, TS#

trans↔H−NO2
and TS#

HONO↔1,3HONO.
Also provided are experimental and previous theoretical results.

Methods R1
N=O R2

O−N R3
O−H θ1

O−N−O θ2
H−O−N φ

H-NO2

Ref [240]a 1.225 1.225 1.917 128.20 28.97 180.00
Ref [272]b 1.231 1.231 1.936 128.70 29.29 180.00

F12c 1.217 1.217 1.911 128.00 29.09 180.00

TS#
trans↔H−NO2

CCSD(T)d 1.194 1.325 1.304 53.32 123.34 180.00
Ref [272]b 1.188 1.317 1.300 53.80 123.50 180.00

F12c 1.189 1.319 1.301 53.57 123.23 180.00

TS#
HONO↔1,3HONO

CCSD(T)d 1.268 1.268 1.298 104.86 76.84 0.00
Ref [272]b 1.260 1.260 1.304 105.30 77.40 0.00
Ref [131]e 1.265 1.265 1.298 105.10 76.90 0.00

F12c 1.262 1.262 1.299 105.06 76.99 0.00

a CCSD(T)/TZ2P; b B3LYP/6-311G(3df,3pd); c CCSD(T)-F12/cc-pVTZ-F12 in this
work; d CCSD(T)/aug-cc-pVTZ in this work; e CCSD(T)/aug-cc-pVQZ(-g functions).
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Table C2: Anharmonic vibrational frequencies, zero point energies (ZPE) (both in
cm−1), relative energies (in cm−1) without (∆E) and with (∆EZPE) zero-point energy
corrections for the trans-HONO and cis-HONO as determined at the CCSD(T)/aug-
cc-pVTZ level of theory. Energies reported relative to the lowest energy trans-HONO
isomer.

Mode trans-HONO cis-HONO

OH 3576.0 3421.4
N=O 1690.0 1629.2
HON 1259.0 1288.7
O-N 785.8 844.5

ONO 596.0 604.8
Torsion 534.0 628.2

ZPE 4220.4 4208.4
∆E 0.0 124.0

∆ZPE 0.0 -12.0
∆EZPE 0.0 112.0

Table C3: Grid lengths used for the Physical Coordinates for the HONO PES.
Also provided are the type and number of primitive basis functions and single particle
functions (SPFs) used in the MCTDH computations.

Coordinates RN=O
1 cos θHON2 cos θONO1 RON2 ROH3 φ

Grid Length
[min , max] [1.9,2.6] [-0.65,0.25] [-0.65,-0.1] [2.1,3.25] 1,3,2.45] [0,3.14]

Primitive Basis 13 18 16 16 18 32
Basis Function Types HO HO HO HO HO sin/cosa

SPF 16 16 5 11

a sin DVR for A′ and cos DVR for A′′ state computations.

Table C4: Fitting Parametersof bond lengths (in au) for trans-HONO

Fitting Parameter A0 A1 A2

trans-HONO
N=O 0.234724 1.3613 2.2109
ON 0.071236 1.21988 2.68149
OH 0.1772 1.2145 1.8254

cis-HONO
N=O 0.22438 1.3443 2.2355
ON 0.07585 1.27968 2.6172
OH 0.156615 1.24114 1.84378
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Table C5: Fitting parameters for bond angles and dihedral angle of cis- and trans-
HONO isomers.

Fitting Parameter A0 A1 A2 A3 A4

trans-HONO
cos θONO

1 0.0454297 0.289274 0.57919 0.445615 0.265011
cos θHON

2 0.00483919 0.0470909 0.123341 0.0478834 0.0299907
φ 0.0103183 0.00118698 -0.0096204 -0.000340861 -0.000142621

cis-HONO
cos θONO

1 0.0675922 0.398938 0.786201 0.662467 0.357884
cos θHON

2 0.0081536 0.062814 0.145385 0.0737161 0.045309
φ 0.0111641 -0.000004713 -0.0104423 -0.00032032 0.000195262

Table C6: trans-HONO 2D grid. Bond lengths are in a.u. and bond angles are in
degrees.

Coordinates Grid points
RN=O

1 [1.99,2.05,2.1,2.15,2.21,2.246,2.28,2.32,2.4,2.5]
RO−N

2 [2.33,2.45,2.53,2.61,2.681,2.765,2.845,2.96,3.14,3.32]
RO−H

3 [1.56,1.67,1.72,1.77,1.825,1.874,1.91,1.99,2.09,2.24]
ΘONO

1 [98,101,104,107,109,110.69,112.5,114.8,119,123,130]
ΘHON

2 [80,89,94,97,100,102.26,104.5,108,112,117,125]
Torsion (Φ) [90,120,140,155,165,170,174,177,179,180]

Table C7: cis-HONO 2D grid. Bond lengths are in a.u. and bond angles are in
degrees.

Coordinates Grid points
RN=O

1 [1.99,2.05,2.1,2.15,2.2515,2.246,2.28,2.32,2.4,2.5]
RO−N

2 [2.33,2.45,2.53,2.61,2.62194,2.765,2.845,2.96,3.14,3.32]
RO−H

3 [1.56,1.67,1.72,1.77,1.85268,1.874,1.91,1.99,2.09,2.24]
ΘONO

1 [98,101,104,107,109,113.3026,112.5,114.8,119,123,130]
ΘHON

2 [80,89,94,98,101,104.6118,106,108,112,117,125]
Torsion (φ) [70,60,45,35,25,15,9,6,3,0]
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Table C8: TS ct-HONO 2D grid. Bond lengths are in a.u. and bond angles are in
degrees.

Coordinates Grid points
RN=O

1 [1.99,2.06,2.12,2.16,2.194,2.23,2.29,2.34,2.45,2.57]
RO−N

2 [2.35,2.5,2.6,2.71,2.819,2.93,3.06,3.19,3.47,3.9]
RO−H

3 [1.57,1.65,1.73,1.76,1.827,1.875,1.94,2.0,2.13,2.3]
ΘONO

1 [99,102,105,107.5,109.5,111.19,113,115,119,122,125]
ΘHON

2 [81,88,93,97.5,101,103.439,106,109,112.5,119,127]
Torsion (φ) [37,54,65,74,82,86.91,90.5,97,106,117,137]

Table C9: RMSE vs NN of HONO

Number of RMSE (in cm−1)
Neurons (NN) Testset Trainset Validation set
20 115.0 118.0 129.0
30 66.0 59.6 64.9
40 41.3 36.5 42.0
50 29.3 24.8 29.9
60 24.8 21.7 25.9
70 19.3 16.3 21.6
80 14.4 11.0 16.3
90 13.3 10.4 15.0
100 15.0 12.0 16.9

Table C10: RMSE in different energy range of a PES. This is a testset data analyzed
below 10000 cm−1 and 80N fit.

Energy Range RMSE (cm−1) Number of Points
0.0 - 3000.0 4.6 59

3000.0 - 6000.0 6.3 340
6000.0 - 10000.0 12.4 978

0.0 - 10000.0 10.6 1377
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Figure C1: Effect of Scaling data sets on the fitting quality

Table C11: Refitting previous PES131 with NN-expnn; MCTDH vibrational states of
trans-HONO, compared with PES generated from normal mode 1D, 2D and random
energy data. Number of neurons is 80 here. 5k, 7k, 8k, 9k, and 10k represent 5000,
700, 8000, 9000, and 10000 cm−1 cut-off energy PES, respectively.

Torsion ONO bend ON str HON bend N=O str OH str ZPE

Expt.a 543.8 595.6 790.1 1263.1 1699.8 3590.7
Ref [131]b 538.0 601.0 796.0 1267.0 1698.0 3590.0 4367.6

Normal modec 541.5 612.4 803.7 1270.4 1705.5 3590.9 4369.2
5k 538.4 601.1 796.1 1267.5 1690.0 3587.0 4364.2
7k 538.0 601.0 795.0 1268.0 1690.0 3589.0 4365.4
8k 539.2 600.7 795.6 1268.2 1689.4 3586.0 4364.6
9k 537.5 600.5 794.4 1267.5 1689.0 3586.7 4366.8

10K 534.5 601.0 796.0 1268.6 1685.0 3587.5 4371.6

a( Torsion, ONO bend) from,275( ON streching, HON bend) from,276 N=O stretching from237 and
OH stretching from.;277 b Previous MCTDH work by Gatti and co-workers.; c Normal mode cuts
data upto 10000 cm−1 cut-off energy included in the PES.

153



5

20

35

50

65

80

95

110

125

15 25 35 45 55 65 75 85 95 105

--- train
--- test
--- validation

R
M

SE
 (c

m
-1

)

Number of Neurons (NN)

Figure C2: RMSE vs NN

Table C12: Refitting Gatti PES with NN-expnn; MCTDH vibrational states of cis-
HONO, compared with PES generated from normal mode 1D, 2D and random energy
data. 5k, 7k, 8k, 9k, and 10k represent 5000, 700, 8000, 9000, and 10000 cm−1 cut-off
energy PES, respectively.

Torsion ONO bend ON str HON bend N=O str OH str ZPE

Expt.a 638.5 609.0 851.0 1315.2 1640.5 3426.2
Ref [131]b 632.0 617.0 850.0 1312.0 1637.0 3436.0 4461.5

Normal modec 639.1 621.2 866.4 1322.5 1646.4 3427.5 4491.7
5k 632.2 617.2 850.1 1311.4 1632.8 3432.5 4457.7
7k 631.3 617.0 850.5 1311.0 1632.4 3436.0 4457.1
8k 629.2 616.3 850.3 1310.0 1634.0 3432.0 4458.5
9k 629.1 616.0 850.0 1310.0 1631.6 3434.3 4458.3

10k 632.0 616.0 848.5 1307.6 1633.6 3437.4 4458.7

a( Torsion, ONO bend) from,275 (OH stretching, N=O stretching) from,238 HON bending in a Kr
matrix from254 and ON stretching from;276 b Previous MCTDH work by Gatti and co-workers; c

Normal mode cuts data upto 10000 cm−1 cut-off energy included in the PES.
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Table C13: CBS limit of HONO PES from CCSD(T)/AVTZ,AVQZ and AV5Z
compared with Gatti PES and the experiment: trans-HONO results

Torsion ONO bend ON str HON bend N=O str OH str ZPE
Expt.a 543.8 595.6 790.1 1263.1 1699.8 3590.7

Ref [131]b 538.0 601.0 796.0 1267.0 1698.0 3590.0 4367.6
CCSD(T)/AVTZ 530.7 596.8 788.3 1258.7 1688.0 3577.4 4328.7
CCSD(T)/AVQZ 539.4 608.6 799.8 1267.4 1701.6 3593.0 4364.4
CCSD(T)/AV5Z 543.9 612.3 802.8 1268.8 1705.0 3595.0 4370.3

CBS TQ 542.9 609.9 802.5 1266.1 1703.8 3593.6 4362.7
CBS Q5 534.6 610.0 801.4 1265.6 1702.3 3589.2 4360.3

CBS TQ5 542.7 608.5 800.1 1266.6 1700.1 3586.4 4350.5

a( Torsion, ONO bend) from,275( ON streching, HON bend) from,276 N=O stretching from237 and
OH stretching from;277 b Previous MCTDH work by Gatti and co-workers.
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Table C14: CBS limit of HONO PES from CCSD(T)/AVTZ,AVQZ and AV5Z
compared with Gatti PES and the experiment: cis-HONO results

Torsion ONO bend ON str HON bend N=O str OH str ZPE
Expt.a 638.5 609.0 851.0 1315.2 1640.5 3426.2

Ref [131]b 632.0 617.0 850.0 1312.0 1637.0 3436.0 4461.5
CCSD(T)/AVTZ 627.4 605.2 847.6 1306.6 1628.9 3418.0 4491.5
CCSD(T)/AVQZ 634.0 616.9 865.0 1322.0 1643.0 3429.0 4499.0
CCSD(T)/AV5Z 637.5 620.0 865.6 1321.8 1645.8 3431.0 4495.3

CBS TQ 635.6 618.2 865.7 1321.3 1644.5 3432.0 4487.8
CBS Q5 631.6 618.5 864.5 1320.3 1642.8 3425.0 4476.4

CBS TQ5 636.4 617.6 861.2 1318.4 1640.7 3426.0 4469.8

a( Torsion, ONO bend) from,275 (OH stretching, N=O stretching) from,238 HON bending in a Kr
matrix from254 and ON stretching from;276 b Previous MCTDH work by Gatti and co-workers.

Table C15: Vibrational frequencies of selected overtones and combination modes (in
cm−1) of trans-HONO for the CBS 345 80 NN fit PES.

(ν1 ν2 ν3 ν4 ν5 ν6)a This work Previous Expt. Guilmot et al.237 Richter et al.131

020000 3374.5 3372.1b 3372.1 3367.4
101000 4384.2 4379.0c 4378.3
100100 4830.1 4829.0c 4829.6
100200 6052.4 6045.8
200000 7012.1 7017.0c 7016.8
300000 10297.0 10279.0c 10280.5
400000 13507.0 13385.0c

a ν1: CH stretch. (A′), ν2: N=O stretch. (A′), ν3: ON stretch. (A′), ν4: HON bend.
(A′), ν5:ONO bend. (A′) and ν6: out-of-plane bend. (A′′); b From Ref. 279; c From Ref. 280

Table C16: Vibrational frequencies of selected overtones and combination modes (in
cm−1) of cis-HONO for the CBS 345 80 NN fit PES.

(ν1 ν2 ν3 ν4 ν5 ν6)a This work Previous Expt. Guilmot et al.238 Richter et al.131

011000 2515.9 2493.0b 2492.9 2476.7
020000 3264.7 3257.9c 3257.9 3253.6
101000 4297.8 4281.0d 4281.0
200000 6676.7 6665.0d 6664.4

a ν1: CH stretch. (A′), ν2: N=O stretch. (A′), ν3: ON stretch. (A′), ν4: HON bend. (A′),
ν5:ONO bend. (A′) and ν6: out-of-plane bend. (A′′); b From Ref. 281; c From Ref. 275; d

From Ref. 280
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C.3 CBS 345 Extrapolated PES of HONO using

80 NN: Operator file

OP DEFINE-SECTION

title

HONO r1 = OH, r2 = N=O, r3 = ON, th1 = HON, th2 = ONO, p1 = torsion

This operator file is for cos-DVR for p 1 defined on [0,pi].

end-title

end-op define-section

PARAMETER-SECTION

q20 = 2.696732586 , q30 = 1.822912197 , q10 = 2.21332641 , q11 = 1.8653 , th20 = 1.777642018 , th10 = 1.9315017

, mh = 1.0, H-mass , mc = 12.0,AMU , mo = 15.9949,AMU , mn = 13.9939,AMU , M11 = 1.0/mo+1.0/mh , M22 =

1.0/mo+1.0/mn , M33 = M22 , M13 = 1.0/mo , M23 = -1.0/mn , p1 = PI/2.0 , p2 = 3.0*PI/2.0

, r0 = 215.033298376 , w0u0 = 0.125823534531891 , w0u1 = -1.806035654434605 , w0u2 = -0.136998979298039 , w0u3

= 0.338250129812485 , w0u4 = -0.361491345675920 , w0u5 = 0.095141353516250 , r1 = -0.708473537487 , w1u0 =

-0.210381681518466 , w1u1 = -0.447015055533330 , w1u2 = -0.038602335795481 , w1u3 = -1.959115130022963 , w1u4

= -1.018487355760621 , w1u5 = -0.277829182688022 , r2 = 83.9689779887 , w2u0 = -0.771685038364569 , w2u1 =

-1.260299658252386 , w2u2 = 0.487090587125463 , w2u3 = 2.622113502878132 , w2u4 = 1.734331845853653 , w2u5

= -0.178116680144332 , r3 = -2.23874546314 , w3u0 = 0.235335596499319 , w3u1 = -1.311359141632936 , w3u2 =

0.054695242716243 , w3u3 = -1.784466867582287 , w3u4 = 0.440080169072798 , w3u5 = 0.166020227963305 , r4 =

0.000102243324097 , w4u0 = 0.058266485690154 , w4u1 = 1.365158385417139 , w4u2 = 0.211264413395750 , w4u3

= 0.577910496455408 , w4u4 = -0.205169940469451 , w4u5 = 0.287098008216782 , r5 = -635.314882534 , w5u0 =

0.103364007738257 , w5u1 = -1.576766228592027 , w5u2 = -0.099218493004741 , w5u3 = 0.212006630085992 , w5u4

= -0.481785373545057 , w5u5 = 0.088661350753319 , r6 = 0.0234213127706 , w6u0 = -2.082550943640675 , w6u1 =

1.176586426580983 , w6u2 = 0.402671476454461 , w6u3 = 1.367468909657925 , w6u4 = -0.714440236204393 , w6u5

= 0.047012220632286 , r7 = 0.206464429698 , w7u0 = -0.379420359845496 , w7u1 = -0.311133141916230 , w7u2 =

-0.018890450307341 , w7u3 = -2.071792886395266 , w7u4 = -1.076104856733825 , w7u5 = -0.591349020627664 , r8

= -1.79339528347 , w8u0 = 0.307272070048732 , w8u1 = -1.265611185448160 , w8u2 = 0.019999792672684 , w8u3

= -2.004830275188881 , w8u4 = 0.552983691951995 , w8u5 = -0.809710372839196 , r9 = 0.159973819578 , w9u0 =

0.255908865067018 , w9u1 = -0.151370137417048 , w9u2 = -0.930178870819283 , w9u3 = -0.113111112497356 , w9u4

= 0.112641921420822 , w9u5 = -0.946037923928646 , r10 = 0.3367210372 , w10u0 = -0.538804280776509 , w10u1 =

-0.717183574945979 , w10u2 = -0.398953826388468 , w10u3 = 1.691463032037448 , w10u4 = -2.935766121160888 ,

w10u5 = 0.177123547045084 , r11 = 382.930491391 , w11u0 = -0.864581908148141 , w11u1 = -2.861822574339154 ,

w11u2 = 0.158267925646723 , w11u3 = -1.869927286775813 , w11u4 = 0.030130646797633 , w11u5 = -0.029466799709394

, r12 = -4.99303304942e-08 , w12u0 = 1.243935963393556 , w12u1 = 0.098045838957343 , w12u2 = 3.089091390362069

, w12u3 = 0.680225432885033 , w12u4 = -1.539241705181553 , w12u5 = 0.160953697119371 , r13 = 23.7591918778 ,

w13u0 = -1.425350635293963 , w13u1 = -0.385338624445347 , w13u2 = -1.224791768253172 , w13u3 = 0.169886446398477

, w13u4 = 0.322504267513744 , w13u5 = -0.128901143540096 , r14 = -0.0871982129012 , w14u0 = 0.098005176576224 ,

w14u1 = 0.124102922754623 , w14u2 = -1.580897776883444 , w14u3 = -0.726095336765562 , w14u4 = -0.002073543593550

, w14u5 = 0.441546026621100 , r15 = 115.3480285 , w15u0 = 0.060639080019321 , w15u1 = -1.536262327770898 ,

w15u2 = -0.106976756491459 , w15u3 = 0.456052777546998 , w15u4 = -0.525328643863887 , w15u5 = 0.444163906462205

, r16 = 23.6350250287 , w16u0 = -0.211883845421597 , w16u1 = -0.967194232561933 , w16u2 = -0.224056968426485 ,
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w16u3 = 0.928050648041108 , w16u4 = -1.410364914927638 , w16u5 = -1.610387048364686 , r17 = -1237.96922576 ,

w17u0 = 0.160503257852956 , w17u1 = -1.494570083280115 , w17u2 = -0.103853200619006 , w17u3 = -0.222896763508138

, w17u4 = -0.655234312104624 , w17u5 = -0.714563190714063 , r18 = 38.1670430153 , w18u0 = 0.286156508346835 ,

w18u1 = -1.508125244636193 , w18u2 = -0.248448310561833 , w18u3 = -0.815118479703325 , w18u4 = -1.204116460890554

, w18u5 = -2.107457921622166 , r19 = 22.5516846217 , w19u0 = -0.483970110922961 , w19u1 = -1.128462930367552 ,

w19u2 = -0.179632869376950 , w19u3 = 3.130610900806947 , w19u4 = -0.103261851573917 , w19u5 = 0.109607730501244

, r20 = 0.830288709995 , w20u0 = 0.787558999336503 , w20u1 = -2.031293984137298 , w20u2 = 0.102639312526616 ,

w20u3 = -2.355258927500568 , w20u4 = 1.890281289683642 , w20u5 = -0.059070088510453 , r21 = 0.918334874384 ,

w21u0 = -2.646368651671837 , w21u1 = 0.452974952194262 , w21u2 = 0.107400849566796 , w21u3 = -1.938416736949235

, w21u4 = -0.041402694944184 , w21u5 = -0.026312386418054 , r22 = -321.969395459 , w22u0 = 0.226185718475238 ,

w22u1 = -1.481014211025087 , w22u2 = -0.180363344718838 , w22u3 = -0.542047682033697 , w22u4 = -0.982811116232047

, w22u5 = -1.553831626888309 , r23 = -3.98494199893 , w23u0 = -0.367100500645524 , w23u1 = -1.408642314411877 ,

w23u2 = 0.435437966924311 , w23u3 = 3.424047955307278 , w23u4 = 0.807171158792301 , w23u5 = 0.227731668938768

, r24 = -22.791224454 , w24u0 = -0.166042119995561 , w24u1 = -1.183473502484889 , w24u2 = -0.254267673204818 ,

w24u3 = 2.042991894109432 , w24u4 = -0.514564307476311 , w24u5 = -0.136140506624085 , r25 = -0.0134173644718 ,

w25u0 = 1.038369760154856 , w25u1 = -0.290263433006996 , w25u2 = -1.123941134480203 , w25u3 = -2.100084780723947

, w25u4 = -0.853930572845061 , w25u5 = -0.335551957025956 , r26 = 8.55436345147 , w26u0 = 0.206757386989288 ,

w26u1 = -1.429827359179757 , w26u2 = 0.105320840637524 , w26u3 = -1.596391393355998 , w26u4 = 0.487445191393735

, w26u5 = -0.448411020098712 , r27 = 41.5238151983 , w27u0 = -0.824214653524812 , w27u1 = -0.857389373382693 ,

w27u2 = -0.243953674329364 , w27u3 = 1.365125429252300 , w27u4 = 2.540847922960905 , w27u5 = -0.148226223559230

, r28 = 0.843867858846 , w28u0 = -0.063531958793103 , w28u1 = -0.583829077214041 , w28u2 = -0.097794871176437

, w28u3 = -1.898849996913780 , w28u4 = -0.575446111842980 , w28u5 = 0.011735225813560 , r29 = -22.8343173701 ,

w29u0 = -0.877276555793962 , w29u1 = -0.655234492586132 , w29u2 = -0.598449785886289 , w29u3 = 1.270183070726200

, w29u4 = 2.753317702506051 , w29u5 = -0.210528489922387 , r30 = 38.860410417 , w30u0 = -1.374254458427669 ,

w30u1 = -1.242429565665795 , w30u2 = 0.146362209782475 , w30u3 = -2.281578500953064 , w30u4 = 0.076975574052538

, w30u5 = -0.022579104403494 , r31 = -217.028708752 , w31u0 = -0.785106775143492 , w31u1 = -1.421326261434761 ,

w31u2 = 0.728257719542637 , w31u3 = 2.757656011707904 , w31u4 = 2.353281853955700 , w31u5 = -0.571311107203414

, r32 = -7.77193688281 , w32u0 = -0.847959247269636 , w32u1 = -0.222804407658939 , w32u2 = -0.251473843505371

, w32u3 = -0.132407796413705 , w32u4 = -0.032303669523464 , w32u5 = 0.057115709304850 , r33 = -0.838521027988 ,

w33u0 = -0.706731846243094 , w33u1 = -0.080266093459614 , w33u2 = -0.264545873458030 , w33u3 = 2.109671263231354

, w33u4 = -1.280354945522662 , w33u5 = -0.055731334393189 , r34 = 190.455191043 , w34u0 = -0.837965600803032 ,

w34u1 = -1.655391872381884 , w34u2 = 1.157180514787483 , w34u3 = 3.131983580236994 , w34u4 = 2.834310557245700

, w34u5 = -1.019679841186801 , r35 = -8.17656146002e-05 , w35u0 = -0.254814355947369 , w35u1 = 1.741252817765529

, w35u2 = 0.290070980730520 , w35u3 = 0.318314065914855 , w35u4 = -0.340559673947432 , w35u5 = 0.154156182965224

, r36 = -2.26851606494 , w36u0 = -0.052411078604690 , w36u1 = -0.196490144464146 , w36u2 = -1.061265269264264 ,

w36u3 = 1.241302539855455 , w36u4 = 0.558202639349858 , w36u5 = -0.262926764023980 , r37 = 0.00904528386081 ,

w37u0 = -0.550042415864926 , w37u1 = 0.436154131149496 , w37u2 = -0.126808067524024 , w37u3 = -0.075011926917543

, w37u4 = -2.399571902912988 , w37u5 = 0.031068927795595 , r38 = -1.39176742612 , w38u0 = 0.717035549136906 ,

w38u1 = -1.999122402350024 , w38u2 = 0.179260968725505 , w38u3 = -1.914022048834026 , w38u4 = 1.810483394123775

, w38u5 = 0.056134570830038 , r39 = -4.30610890888 , w39u0 = -0.112283033331136 , w39u1 = -1.252950958745576 ,

w39u2 = -0.295102937619947 , w39u3 = 0.219852987502287 , w39u4 = -2.026266663199123 , w39u5 = -0.100838204865778

, r40 = 0.681425148941 , w40u0 = -0.265051927260367 , w40u1 = -0.892044252972442 , w40u2 = -0.259998360323446
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, w40u3 = -0.787611449614359 , w40u4 = -2.459497607683900 , w40u5 = -0.315898028685410 , r41 = 0.271046615988 ,

w41u0 = -0.749065822385963 , w41u1 = 0.613799722370821 , w41u2 = -1.258128385410575 , w41u3 = 2.151844305187226

, w41u4 = 1.105096771046574 , w41u5 = -0.391199709045411 , r42 = 1.17635621753 , w42u0 = 0.377967478598610 ,

w42u1 = -1.695171134161845 , w42u2 = 0.205494910261157 , w42u3 = -1.508720434375944 , w42u4 = 1.043393114409791

, w42u5 = 0.638083665855028 , r43 = -34.1288492855 , w43u0 = -0.919383651615041 , w43u1 = -0.962946362205706 ,

w43u2 = -0.049448502709749 , w43u3 = 1.635704267316419 , w43u4 = 1.556078410083341 , w43u5 = 0.165829720282759

, r44 = 30.4589623727 , w44u0 = -0.482600312487793 , w44u1 = -0.753918894339439 , w44u2 = -0.143471536464763

, w44u3 = 1.420016423669167 , w44u4 = -1.255728427348348 , w44u5 = -0.790966117387628 , r45 = 50.3885510604 ,

w45u0 = -0.771117881473166 , w45u1 = -1.136670350231372 , w45u2 = -0.313192983843149 , w45u3 = 1.478167109274165

, w45u4 = 0.481917480894273 , w45u5 = 0.354430541949418 , r46 = 968.908407916 , w46u0 = 0.130576845419502 ,

w46u1 = -1.513465473590139 , w46u2 = -0.091342719233646 , w46u3 = -0.029368857801711 , w46u4 = -0.561190632534115

, w46u5 = -0.303127856911043 , r47 = 70.8946842702 , w47u0 = -0.733063179278421 , w47u1 = -1.629622268758132 ,

w47u2 = 0.789288490550507 , w47u3 = 3.119801098928447 , w47u4 = 2.833654296722980 , w47u5 = -0.963018041078552

, r48 = -0.192642883066 , w48u0 = 0.359753464519960 , w48u1 = -1.783499081094813 , w48u2 = 0.269243759223069

, w48u3 = -1.447535437057270 , w48u4 = 1.213211437552736 , w48u5 = 1.011257311999415 , r49 = 0.011869646682 ,

w49u0 = -0.143991820237945 , w49u1 = 0.200844814797353 , w49u2 = -1.180018573305406 , w49u3 = -1.095635231927168

, w49u4 = -0.350765412341257 , w49u5 = 0.775973256634383 , r50 = -9.39586901388 , w50u0 = -2.004309249331419 ,

w50u1 = -0.348256403951743 , w50u2 = 0.144238997687260 , w50u3 = -2.098013287385470 , w50u4 = 0.135390114574372

, w50u5 = -0.036724431677873 , r51 = 906.419898421 , w51u0 = 0.189854169070978 , w51u1 = -1.481879417275660 ,

w51u2 = -0.134510143992100 , w51u3 = -0.374948885582379 , w51u4 = -0.801011921988930 , w51u5 = -1.117580506591630

, r52 = -16.5334309005 , w52u0 = -0.426400232194459 , w52u1 = -1.423232829076349 , w52u2 = -0.244414910595229

, w52u3 = 1.791512601764764 , w52u4 = 0.085854872270283 , w52u5 = 0.665073600460340 , r53 = 1.43810060947 ,

w53u0 = -0.669062418107514 , w53u1 = -1.366090909969609 , w53u2 = 0.305453426383842 , w53u3 = -3.406465584755819

, w53u4 = 0.790076269496740 , w53u5 = -0.285603889194554 , r54 = 147.478476375 , w54u0 = -3.018202027177908 ,

w54u1 = -0.132093357359990 , w54u2 = 0.047434140523326 , w54u3 = -0.117839746945070 , w54u4 = 0.051998282988900

, w54u5 = -0.002837615036507 , r55 = -6.92467973017 , w55u0 = 0.011488582748737 , w55u1 = -1.568871508251123 ,

w55u2 = -0.134962055690593 , w55u3 = 0.994255295760675 , w55u4 = -0.558971505282510 , w55u5 = 1.021569390272837

, r56 = -2.8416146856e-07 , w56u0 = 1.357756237248721 , w56u1 = 1.784003603369558 , w56u2 = 0.218199177303585

, w56u3 = 1.813149410401791 , w56u4 = 1.802099182282840 , w56u5 = -0.252698519050476 , r57 = 21.6055106955 ,

w57u0 = 0.020012126388130 , w57u1 = -0.018321059320640 , w57u2 = -3.196031325819046 , w57u3 = 0.009350138300733

, w57u4 = 0.021145863768890 , w57u5 = 0.002856387050370 , r58 = 2.9259381122 , w58u0 = -0.255661616517409 ,

w58u1 = -0.421969079850881 , w58u2 = -0.599367040714134 , w58u3 = 2.151826593418869 , w58u4 = -0.627492778644224

, w58u5 = -0.388097130059263 , r59 = -209.785154924 , w59u0 = -1.172419618035117 , w59u1 = -1.291375794533033 ,

w59u2 = 0.064627662413098 , w59u3 = 2.974821834874014 , w59u4 = 1.551932038871447 , w59u5 = -1.678507872993984

, r60 = 0.0136798542056 , w60u0 = 0.094386687568331 , w60u1 = 0.209609217477351 , w60u2 = -1.557337854229193 ,

w60u3 = -1.932519291250121 , w60u4 = -0.374202173603191 , w60u5 = -0.115627571695610 , r61 = -0.00932807811812

, w61u0 = -0.252074212151064 , w61u1 = -0.134991482653103 , w61u2 = -0.266888403868647 , w61u3 = -1.331512410318276

, w61u4 = -1.232011543256694 , w61u5 = 0.688811809987881 , r62 = -0.643838644364 , w62u0 = -0.520697944359742 ,

w62u1 = 0.201035790325336 , w62u2 = -0.906898264410254 , w62u3 = 0.091010738975916 , w62u4 = 0.024420165039072

, w62u5 = -0.399686201820311 , r63 = 0.00219545075621 , w63u0 = 1.008239811634577 , w63u1 = -0.336070310343361

, w63u2 = -0.515744153110423 , w63u3 = -3.226657712453456 , w63u4 = -1.035846871554554 , w63u5 = -0.717393631207543

, r64 = -189.338621623 , w64u0 = -0.824691611377172 , w64u1 = -1.898474435953118 , w64u2 = 1.447451751619065
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, w64u3 = 3.484504759277509 , w64u4 = 3.206227354234469 , w64u5 = -1.557545504958584 , r65 = -12.3358784709 ,

w65u0 = -0.576295269930288 , w65u1 = -1.836166011584152 , w65u2 = 0.378995406829392 , w65u3 = -2.637604522206471

, w65u4 = 0.632565347484929 , w65u5 = -0.246706657591886 , r66 = 0.000766953486858 , w66u0 = 2.074636612590538

, w66u1 = -1.844010684390077 , w66u2 = 1.250713716020937 , w66u3 = 2.883255359685029 , w66u4 = 0.605356782536396

, w66u5 = -0.115865077198536 , r67 = -75.9225630503 , w67u0 = -0.702818638851484 , w67u1 = -1.482794343603591 ,

w67u2 = -1.017936814079278 , w67u3 = 0.990517438361159 , w67u4 = 0.072153241787141 , w67u5 = 0.007356552198966

, r68 = 0.193896558034 , w68u0 = 0.343368723057545 , w68u1 = -0.387305905759735 , w68u2 = -0.460052438480687

, w68u3 = 0.232330238926853 , w68u4 = 1.391149769715387 , w68u5 = -0.125365834831055 , r69 = 28.8888781331 ,

w69u0 = -1.649239150151173 , w69u1 = -0.988113699673671 , w69u2 = -0.441781225893546 , w69u3 = 0.532298327444435

, w69u4 = -1.465506511665277 , w69u5 = -0.010855597674084 , r70 = 75.1831647295 , w70u0 = -0.832228790818582 ,

w70u1 = -2.045506455909168 , w70u2 = 1.631883447581282 , w70u3 = 3.683620571834991 , w70u4 = 3.379681735585193

, w70u5 = -2.009808496825519 , r71 = 0.00387317118305 , w71u0 = -0.581294984580651 , w71u1 = -0.868811687075429

, w71u2 = -0.036430139136950 , w71u3 = -1.057795650817691 , w71u4 = 1.660469379409591 , w71u5 = 1.389556592961171

, r72 = 0.0759996165006 , w72u0 = -0.035182558644811 , w72u1 = 0.288218611363679 , w72u2 = 0.298576455500861

, w72u3 = 0.085805434564398 , w72u4 = -0.077207653848329 , w72u5 = -0.010765516171013 , r73 = -0.734951132865 ,

w73u0 = -1.319427009409104 , w73u1 = 0.230525317724424 , w73u2 = 0.416757268484731 , w73u3 = 0.482362403342543

, w73u4 = -0.144213079439785 , w73u5 = -0.042561940888112 , r74 = -49.9940952069 , w74u0 = -0.329964175182422 ,

w74u1 = -0.868847751777221 , w74u2 = -0.186776117921342 , w74u3 = 1.177320195724601 , w74u4 = -1.307902219159446

, w74u5 = -1.221807095074365 , r75 = -1.16392292794 , w75u0 = -1.296798053895331 , w75u1 = -0.268706575054995 ,

w75u2 = -0.240623346263197 , w75u3 = 0.608796940960312 , w75u4 = -2.555126580224502 , w75u5 = -0.165413990829340

, r76 = 242.912093143 , w76u0 = -1.094886387046626 , w76u1 = -1.241993682396458 , w76u2 = 0.012077152754223 ,

w76u3 = 2.874193202426282 , w76u4 = 1.333880639289986 , w76u5 = -1.345831920493652 , r77 = -48.3138284073 ,

w77u0 = -1.267062327346737 , w77u1 = -0.839344564402828 , w77u2 = -0.236605744128114 , w77u3 = 3.248150385632202

, w77u4 = 0.503356528245979 , w77u5 = -0.338486279189680 , r78 = 0.978964667455 , w78u0 = -0.076477277381700 ,

w78u1 = -1.581762041423235 , w78u2 = -0.145453889657714 , w78u3 = 1.607094109233751 , w78u4 = -0.434806942211019

, w78u5 = 1.370789113319065 , r79 = -277.010485191 , w79u0 = -1.207736452990555 , w79u1 = -2.272118210510676 ,

w79u2 = 0.107259914309597 , w79u3 = -2.097955708597492 , w79u4 = -0.038908519827878 , w79u5 = 0.001497224334231

c = 0.017982894

end-parameter-section

LABELS-SECTION

q1 = exp1[-0.70,q10]

q2 = exp1[-0.70,q20]

q3 = exp1[-0.70,q30]

t1 = acos[1.0 0.0 th20]

t2 = acos[1.0 0.0 th10]

qs1 = qs[1.0]

g1 = gauss[1.0,q10]

g2 = gauss[1.0/9.0,q20]

g3 = gauss[0.25,q30]

g4 = tgauss[0.25,th10]

g5 = tgauss[0.25,th20]

c1 = gauss[-4.0,q10]
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c2 = gauss[-1.0,q20]

c3 = gauss[-4.0,q30]

c4 = tgauss[-4.0,th10]

c5 = tgauss[-4.0,th20]

g0pi = gauss[2.0,0.0]

g1pi = gauss[2.0,PI]

g2pi = gauss[2.0,2.0*PI]

cos2 = cos[2.0]

cos3 = cos[3.0]

cos4 = cos[4.0]

st1 = step[p1]

st2 = rstep[p2]

#Labels are adapted in a general form to save space end-labels-section

HAMILTONIAN-SECTION

—————————————————————————–

modes | r 2 | r 3 | r 1 | t 2 | t 1 | p 1

—————————————————————————–

-M11/2.0 | 1 | 1 | dq2̂ | 1 | 1 | 1

-M22/2.0 | dq2̂ | 1 | 1 | 1 | 1 | 1

-M33/2.0 | 1 | dq2̂ | 1 | 1 | 1 | 1

-M13 | 1 | dq | dq | 1 | q | 1

M23 | dq | dq | 1 | q | 1 | 1

-M13 | 1 | q̂-1 | q̂-1 | 1 | q | 1

M23 | q̂-1 | q̂-1 | 1 | q | 1 | 1

-M13 | 1 | q̂-1 | dq | 1 | udq2 | 1

M13 | 1 | q̂-1 | dq | udq | qs1 | cos

-M23 | dq | q̂-1 | 1 | qs1 | udq | cos

M23 | dq | q̂-1 | 1 | udq2 | 1 | 1

-M13 | 1 | dq | q̂-1 | 1 | udq2 | 1

M23 | q̂-1 | dq | 1 | udq2 | 1 | 1

M13 | 1 | q̂-1 | dq | q*qs1̂-1 | qs1 | sdq

-M23 | dq | q̂-1 | 1 | qs1 | q*qs1̂-1 | sdq

-M11/2.0 | 1 | 1 | q̂-2 | 1 | dq*qs12̂*dq | 1

-M33/2.0 | 1 | q̂-2 | 1 | 1 | dq*qs12̂*dq | 1

M13 | 1 | q̂-1 | q̂-1 | 1 | dq*qs12̂*q*dq | 1

-M22/2.0 | q̂-2 | 1 | 1 | dq*qs12̂*dq | 1 | 1

-M33/2.0 | 1 | q̂-2 | 1 | dq*qs12̂*dq | 1 | 1

-M23 | q̂-1 | q̂-1 | 1 | dq*qs12̂*q*dq | 1 | 1

-M13/2.0 | 1 | q̂-1 | q̂-1 | qs1*dq | dq*q*qs1 | cos

-M13/2.0 | 1 | q̂-1 | q̂-1 | dq*qs1 | q*qs1*dq | cos

M23/2.0 | q̂-1 | q̂-1 | 1 | q*qs1*dq | dq*qs1 | cos

M23/2.0 | q̂-1 | q̂-1 | 1 | dq*q*qs1 | qs1*dq | cos
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M33/2.0 | 1 | q̂-2 | 1 | qs1*dq | dq*qs1 | cos

M33/2.0 | 1 | q̂-2 | 1 | dq*qs1 | qs1*dq | cos

-M13/2.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | dq*q*qs1 | sdq

-M13/2.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | q*qs1*dq | sdq

-M13/4.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | q2̂*qs1̂-1 | cos

M13/4.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1 | cos

M23 | q̂-1 | q̂-1 | 1 | qs1̂-1 | udq | sdq

-0.25*M23 | q̂-1 | q̂-1 | 1 | qs1̂-1 | q*qs1̂-1 | cos

M33 | 1 | q̂-2 | 1 | q*qs1̂-1 | udq | sdq

M23/2.0 | q̂-1 | q̂-1 | 1 | dq*q*qs1 | q*qs1̂-1 | sdq

M23/2.0 | q̂-1 | q̂-1 | 1 | q*qs1*dq | q*qs1̂-1 | sdq

M23/4.0 | q̂-1 | q̂-1 | 1 | q2̂*qs1̂-1 | q*qs1̂-1 | cos

-M23/4.0 | q̂-1 | q̂-1 | 1 | qs1 | q*qs1̂-1 | cos

-M13 | 1 | q̂-1 | q̂-1 | udq | qs1̂-1 | sdq

-M13/4.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1̂-1 | cos

M33 | 1 | q̂-2 | 1 | udq | q*qs1̂-1 | sdq

-M11/2.0 | 1 | 1 | q̂-2 | 1 | qs1̂-2 | dq2̂

M13/2.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1̂-1 | cos*dq2̂

M13/2.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1̂-1 | dq2̂*cos

M13/2.0 | 1 | q̂-1 | q̂-1 | q*qs1̂-1 | qs1̂-1 | cos

M13 | 1 | q̂-1 | q̂-1 | 1 | q*qs1̂-2 | dq2̂

-M22/2.0 | q̂-2 | 1 | 1 | qs1̂-2 | 1 | dq2̂

-M23/2.0 | q̂-1 | q̂-1 | 1 | qs1̂-1 | q*qs1̂-1 | dq2̂*cos

-M23/2.0 | q̂-1 | q̂-1 | 1 | qs1̂-1 | q*qs1̂-1 | cos*dq2̂

-M23 | q̂-1 | q̂-1 | 1 | q*qs1̂-2 | 1 | dq2̂

-M33/2.0 | 1 | q̂-2 | 1 | 1 | q2̂*qs1̂-2 | dq2̂

-M33/2.0 | 1 | q̂-2 | 1 | q2̂*qs1̂-2 | 1 | dq2̂

-M33/2.0 | 1 | q̂-2 | 1 | q*qs1̂-1 | q*qs1̂-1 | dq2̂*cos

-M33/2.0 | 1 | q̂-2 | 1 | q*qs1̂-1 | q*qs1̂-1 | cos*dq2̂

——————————————————————————-

c | 1 | 1 | 1 | 1 | 1 | 1

# The following lines would have the following genral form

ri | qiu0 | qiu1 | qiu2 | qiu3 | qiu4 | qiu5

# So, total 80 lines will be there; i goes from 0 to 79

——————————————————————————-

end-hamiltonian-section

HAMILTONIAN-SECTION cis

usediag

——————————————————————————

modes | r 2 | r 3 | r 1 | t 2 | t 1 | p 1

——————————————————————————

5.862318d-6 | q̂-1 | 1 | 1 | 1 | 1 | 1

162



-3.674923d-5 | dq2̂ | 1 | 1 | 1 | 1 | 1

0.199815 | q10̂ | 1 | 1 | 1 | 1 | 1

-0.1995720744 | g1 | 1 | 1 | 1 | 1 | 1

-0.02919914 | g1*q1 | 1 | 1 | 1 | 1 | 1

0.4880250 | g1*q12̂ | 1 | 1 | 1 | 1 | 1

-1.303379 | g1*q13̂ | 1 | 1 | 1 | 1 | 1

0.9694112 | g1*q14̂ | 1 | 1 | 1 | 1 | 1

—————————————————————————— 1.152891d-5 | 1 | q̂-1 | 1 | 1 | 1 | 1 -3.6749237d-5 | 1 | dq2̂

| 1 | 1 | 1 | 1 0.199815 | 1 | q20̂ | 1 | 1 | 1 | 1 -0.19939010 | 1 | g2 | 1 | 1 | 1 | 1 0.017770776 | 1 | g2*q2 | 1 | 1 | 1 |

1 0.1326029 | 1 | g2*q22̂ | 1 | 1 | 1 | 1 -0.19864533 | 1 | g2*q23̂ | 1 | 1 | 1 | 1 0.0963012354 | 1 | g2*q24̂ | 1 | 1 | 1 | 1

—————————————————————————— 3.243973d-6 | 1 | 1 | q̂-1 | 1 | 1 | 1 -2.893093d-4 | 1 | 1 | dq2̂

| 1 | 1 | 1 0.199815 | 1 | 1 | q30̂ | 1 | 1 | 1 -0.1997286 | 1 | 1 | g3 | 1 | 1 | 1 -0.01330962 | 1 | 1 | g3*q31̂ | 1 | 1 | 1 0.41641177

| 1 | 1 | g3*q32̂ | 1 | 1 | 1 -0.50147370 | 1 | 1 | g3*q33̂ | 1 | 1 | 1 0.23521044 | 1 | 1 | g3*q34̂ | 1 | 1 | 1 -0.4574862 | 1 |

1 | g3*q35̂ | 1 | 1 | 1 0.8193689 | 1 | 1 | g3*q36̂ | 1 | 1 | 1 ——————————————————————————

-6.65897d-6 | 1 | 1 | 1 | q | 1 | 1 -1.26493d-5 | 1 | 1 | 1 | dq*qs12̂*dq | 1 | 1 6.65897d-6 | 1 | 1 | 1 | dq*q*qs12̂*dq

| 1 | 1 0.199815 | 1 | 1 | 1 | t20̂ | 1 | 1 -0.1992434 | 1 | 1 | 1 | g4 | 1 | 1 -0.026653980 | 1 | 1 | 1 | g4*t2 | 1 | 1

0.27134390 | 1 | 1 | 1 | g4*t22̂ | 1 | 1 -0.26446122 | 1 | 1 | 1 | g4*t23̂ | 1 | 1 0.23762334 | 1 | 1 | 1 | g4*t24̂ | 1 | 1

—————————————————————————— -7.07777d-6 | 1 | 1 | 1 | 1 | q | 1 -9.06079d-5 | 1 | 1 | 1 | 1 |

dq*qs12̂*dq | 1 7.07777d-6 | 1 | 1 | 1 | 1 | dq*q*qs12̂*dq | 1 0.199815 | 1 | 1 | 1 | 1 | t10̂ | 1 -0.1996101 | 1 | 1 | 1 | 1 | g5 |

1 -0.00931089145 | 1 | 1 | 1 | 1 | g5*t1 | 1 0.058163918856 | 1 | 1 | 1 | 1 | g5*t12̂ | 1 -0.05969423564 | 1 | 1 | 1 | 1 | g5*t13̂

| 1 0.02626388225 | 1 | 1 | 1 | 1 | g5*t14̂ | 1 ——————————————————————————- -1.14605d-4 |

1 | 1 | 1 | 1 | 1 | dq2̂ -3.07824d-6 | 1 | 1 | 1 | 1 | 1 | dq2̂*cos -3.07824d-6 | 1 | 1 | 1 | 1 | 1 | cos*dq2̂ -7.172084d-5 | 1 | 1 |

1 | 1 | 1 | cos -0.0104828 | 1 | 1 | 1 | 1 | 1 | cos2 -0.000334943 | 1 | 1 | 1 | 1 | 1 | cos3 0.000171863 | 1 | 1 | 1 | 1 | 1 | cos4

0.006 | 1 | 1 | 1 | 1 | 1 | g1pi ——————————————————————————- end-hamiltonian-section

HAMILTONIAN-SECTION trans

usediag

——————————————————————————

modes | r 2 | r 3 | r 1 | t 2 | t 1 | p 1

——————————————————————————

5.130465d-6 | q̂-1 | 1 | 1 | 1 | 1 | 1 -3.674923d-5 | dq2̂ | 1 | 1 | 1 | 1 | 1 0.200239252946 | q10̂ | 1 | 1 | 1 | 1 | 1

-0.200239252946 | g1 | 1 | 1 | 1 | 1 | 1 0.47224 | g1*q12̂ | 1 | 1 | 1 | 1 | 1 -1.28108 | g1*q13̂ | 1 | 1 | 1 | 1 | 1 1.01278

| g1*q14̂ | 1 | 1 | 1 | 1 | 1 —————————————————————————— 1.0114998d-5 | 1 | q̂-1 | 1 | 1

| 1 | 1 -3.6749237d-5 | 1 | dq2̂ | 1 | 1 | 1 | 1 0.200239252946 | 1 | q20̂ | 1 | 1 | 1 | 1 -0.200239252946 | 1 | g2 | 1 |

1 | 1 | 1 0.148565 | 1 | g2*q22̂ | 1 | 1 | 1 | 1 -0.20644 | 1 | g2*q23̂ | 1 | 1 | 1 | 1 0.1018 | 1 | g2*q24̂ | 1 | 1 | 1 | 1

—————————————————————————— 2.611952d-6 | 1 | 1 | q̂-1 | 1 | 1 | 1 -2.893093d-4 | 1 | 1 |

dq2̂ | 1 | 1 | 1 0.2002393 | 1 | 1 | q30̂ | 1 | 1 | 1 -0.2002393 | 1 | 1 | g3 | 1 | 1 | 1 0.42615 | 1 | 1 | g3*q32̂ | 1 | 1 | 1

-0.49848 | 1 | 1 | g3*q33̂ | 1 | 1 | 1 0.29256 | 1 | 1 | g3*q34̂ | 1 | 1 | 1 -0.36536 | 1 | 1 | g3*q35̂ | 1 | 1 | 1 0.54825 |

1 | 1 | g3*q36̂ | 1 | 1 | 1 —————————————————————————— -6.56776d-6 | 1 | 1 | 1 | q | 1 | 1

-1.25549d-5 | 1 | 1 | 1 | dq*qs12̂*dq | 1 | 1 6.56776d-6 | 1 | 1 | 1 | dq*q*qs12̂*dq | 1 | 1 0.200239252946 | 1 | 1 | 1 | t20̂ |

1 | 1 -0.200239252946 | 1 | 1 | 1 | g4 | 1 | 1 0.28985 | 1 | 1 | 1 | g4*t22̂ | 1 | 1 -0.173188 | 1 | 1 | 1 | g4*t23̂ | 1 | 1 0.16913

| 1 | 1 | 1 | g4*t24̂ | 1 | 1 —————————————————————————— -6.97676d-6 | 1 | 1 | 1 | 1 | q | 1

-9.21157d-5 | 1 | 1 | 1 | 1 | dq*qs12̂*dq | 1 6.97676d-6 | 1 | 1 | 1 | 1 | dq*q*qs12̂*dq | 1 0.200239252946 | 1 | 1 | 1 | 1 |
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t10̂ | 1 -0.200239252946 | 1 | 1 | 1 | 1 | g5 | 1 0.0471315 | 1 | 1 | 1 | 1 | g5*t12̂ | 1 -0.0446942 | 1 | 1 | 1 | 1 | g5*t13̂ | 1

0.0120094 | 1 | 1 | 1 | 1 | g5*t14̂ | 1 —————————————————————————— -1.131196d-4 | 1 | 1 |

1 | 1 | 1 | dq2̂ -2.481013d-6 | 1 | 1 | 1 | 1 | 1 | dq2̂*cos -2.481013d-6 | 1 | 1 | 1 | 1 | 1 | cos*dq2̂ 0.001091769 | 1 | 1 | 1 |

1 | 1 | cos -0.00967354 | 1 | 1 | 1 | 1 | 1 | cos2 -0.358768d-3 | 1 | 1 | 1 | 1 | 1 | cos3 0.122464d-3 | 1 | 1 | 1 | 1 | 1 | cos4

0.005 | 1 | 1 | 1 | 1 | 1 | g0pi 0.005 | 1 | 1 | 1 | 1 | 1 | g2pi ——————————————————————————

end-hamiltonian-section

end-operator
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Appendix to Chapter 5
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Table D1: Fitting Parameters of bond lengths (in Å) for HFCO global PES

Fitting Parameter A0 A1 A2

HFCO
CH 0.170523 1.91503 1.09197
CF 0.140033 2.19966 1.34058
CO 0.323817 2.31931 1.17885

trans-HOCF
CH 0.40318 1.15625 1.8253
CF 0.161191 2.1032 1.32096
CO 0.180574 2.25003 1.3078

cis-HOCF
CH 0.27858 1.3776 1.88176
CF 0.126212 2.202258 1.34323
CO 0.207766 2.16394 1.29538

TS#
cis↔trans

CH 0.384223 1.23925 1.93094
CF 0.125528 2.24039 1.32174
CO 0.188859 2.10828 1.33224

TS#
trans↔eq.

CH 0.19022 1.37438 1.24565
CF 0.138298 2.18594 1.32527
CO 0.251685 2.15293 1.26038

TS#
eq.↔diss.

CH 0.122952 1.86676 1.13992
CF 0.207685 0.965338 1.85693
CO 0.37914 2.38939 1.13183
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Table D2: Fitting Parameters for bond angles and dihedral angle of HFCO global
PES

Fitting Parameter A0 A1 A2 A3 A4

HFCO
cos θHCO

1 -0.00941689 0.655782 -0.712589 0.246601 -0.0260739
cos θFCO

2 4.12442 -6.47744 3.91998 -1.1034 0.123926
φ 0.148051 0.184528 0.0410732 0.00456629 -0.0000426235

trans-HOCF
cos θHCO

1 1.16407 -5.92812 10.5444 -7.68789 2.01949
cos θFCO

2 3.16337 -5.32248 3.32299 -0.929076 0.101849
φ 0.0169521 0.00183211 -0.0155756 0.0000674612 0.000531103

cis-HOCF
cos θHCO

1 0.845562 -4.62362 8.89735 -7.10876 2.08893
cos θFCO

2 6.0662 -10.8735 7.29698 -2.18907 0.250653
φ 0.0145962 -0.00004804 -0.0151842 0.000175393 0.000485224

TS#
cis↔trans

cos θHCO
1 0.766402 -4.42355 8.9767 -7.56858 2.36852

cos θFCO
2 4.142 -7.22621 4.73598 -1.40105 0.161227

φ -0.014438 0.000262282 -0.0139564 0.000145259 0.000469644

TS#
trans↔eq.

cos θHCO
1 1.42998 -5.50878 7.73936 -4.68779 1.02693

cos θFCO
2 3.04765 -4.78936 2.81346 -0.743932 0.0767932

φ 0.0351776 0.03771 0.00122596 -0.00200 -0.000713794

TS#
eq.↔diss.

cos θHCO
1 33.663 -45.4056 22.8712 -5.09897 0.424502

cos θFCO
2 1.50609 -2.41497 1.43761 -0.376511 0.0366299

φ 0.514862 -0.835363 0.435901 -0.133681 0.0182813

Table D3: RMSE vs NN for HFCO global PES

Number of RMSE (in cm−1)
Neurons (NN) Testset Trainset

10 2238.6 2348.4
20 1229.0 1295.0
40 307.3 263.4
60 205.7 164.5
80 140.5 112.9
100 133.6 90.8
120 131.6 92.4
140 138.4 95.7
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Table D4: Grid lengths and parameters of the primitive basis set employed for each
degree of freedom of HFCO. HO is the harmonic oscillator (Hermite) DVR.

Modes R1 cosθ1 R2 cosθ2 R3 φ
Primitive basis HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR

Number of basis functions 16 18 16 18 25 25
Grid length (a.u.) [1.30,3.39] [-0.98,0.12] [1.98,3.85] [-0.90,-0.06] [1.83,2.94] [1.4586,4.8245]

Mode combinations ( R1, cosθ1 ) ( R2, cosθ2 ) ( R3,φ1 )
Number of SPF 25 30 25

Table D5: Grid lengths and parameters of the primitive basis set employed for each
degree of freedom of trans-HOCF. HO is the harmonic oscillator (Hermite) DVR.

Modes R1 cosθ1 R2 cosθ2 R3 φ
Primitive basis HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR

Number of basis functions 16 18 16 18 25 25
Grid length (a.u.) [3.0,4.5] [0.74,0.97] [2.10,3.28] [-0.707,0.129] [2.15,3.01] [1.5714,4.8246]

Mode combinations ( R1, cosθ1 ) ( R2, cosθ2 ) ( R3,φ1 )
Number of SPF 25 30 25

Table D6: Grid lengths and parameters of the primitive basis set employed for each
degree of freedom of cis-HOCF. HO is the harmonic oscillator (Hermite) DVR.

Modes R1 cosθ1 R2 cosθ2 R3 φ
Primitive basis HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR HO-DVR

Number of basis functions 16 18 16 18 25 25
Grid length (a.u.) [3.0,4.5] [0.74,0.97] [2.10,3.28] [-0.707,0.129] [2.15,3.01] [-1.5714,1.57142]

Mode combinations ( R1, cosθ1 ) ( R2, cosθ2 ) ( R3,φ1 )
Number of SPF 25 30 25
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Table D7: Selected vibrational energies (in cm−1) for states up to 2600 cm−1 for
cis- and trans-HOCF from the global PES compared with CCSD(T)/aug-cc-pVTZ
anharmonic frequencies (using VPT2 method). Vibrational states assignment is based
upon comparing with corresponding VPT2 assignment.

cis-HOCF trans-HOCF
Assignment CCSD(T)a MCTDHb Assignment CCSD(T) MCTDHb

(ν1ν2ν3ν4ν5ν6) (ν1ν2ν3ν4ν5ν6)

0 0 0 0 1 0 628.9 632.0 0 0 0 0 1 0 645.8 651.4
0 0 0 0 0 1 741.4 764.2 0 0 0 0 0 1 707.5 742.9
0 1 0 0 0 0 959.2 957.0 0 1 0 0 0 0 1043.3 1043.1
0 0 0 1 0 0 1254.6 1240.2 0 0 0 1 0 0 1231.1 1251.5
0 0 0 0 2 0 1254.7 1265.3 0 0 0 0 2 0 1291.3 1302.9
0 0 1 0 0 0 1321.6 1335.6 0 0 1 0 0 0 1323.7 1321.5
0 0 0 0 1 1 1370.3 1397.2 0 0 0 0 1 1 1354.2 1394.9
0 0 0 0 0 2 1468.8 1512.9 0 0 0 0 0 2 1398.9 1457.5
0 1 0 0 1 0 1580.6 1582.6 0 1 0 0 1 0 1683.7 1688.7
0 1 0 0 0 1 1701.2 1719.2 0 1 0 0 0 1 1751.7 1789.1
0 0 0 0 3 0 1877.3 1860.6 0 0 0 1 1 0 1870.1 1898.8
0 0 0 1 1 0 1883.3 1897.8 0 0 0 1 0 1 1928.1 1954.2
0 2 0 0 0 0 1898.5 1898.6 0 0 0 0 3 0 1936.6 1970.4
0 0 1 0 1 0 1946.8 1962.5 0 0 1 0 1 0 1966.6 1986.8
0 0 0 1 0 1 1988.4 1996.5 0 0 0 0 2 1 2000.6 2047.1
0 0 0 0 1 2 1996.2 2030.4 0 0 1 0 0 1 2026.7 2067.2
0 0 1 0 0 1 2046.6 2075.0 0 0 0 0 1 2 2046.6 2074.9
0 0 0 0 2 1 2097.9 2145.2 0 2 0 0 0 0 2073.0 2109.8
0 0 0 0 0 3 2182.4 2187.1 0 0 0 0 0 3 2074.5 2145.5
0 1 0 0 2 1 2198.9 2209.9 0 1 0 1 0 0 2272.9 2301.5
0 1 0 1 0 0 2206.9 2249.3 0 1 0 0 2 0 2323.8 2334.8
0 1 1 0 0 0 2277.2 2290.8 0 1 1 0 0 0 2352.7 2355.2
0 1 0 0 1 1 2322.7 2346.4 0 1 0 0 1 1 2390.3 2435.4
0 1 0 0 0 2 2429.3 2449.5 0 0 0 2 0 0 2441.5 2495.2
0 0 0 2 0 0 2489.6 2466.7 0 1 0 0 0 2 2444.1 2506.4
0 0 0 1 2 0 2508.9 2483.5 0 0 0 1 2 0 2508.8 2545.9
0 2 0 0 1 0 2512.4 2517.0 0 0 1 1 0 0 2542.1 2575.1
0 1 1 0 0 0 2555.8 2531.2 0 0 0 1 1 1 2568.0 2695.1
0 0 1 0 2 0 2568.9 2552.4 0 0 0 1 0 2 2609.2 2619.9
0 0 0 1 1 1 2617.2 2590.5 0 0 1 0 2 0 2609.3 2630.7

a Using aug-cc-pVTZ basis set and VPT2 method in CFOUR.124

bBased on CCSD(T)-F12/cc-pVTZ-F12 computed 100 NN fit PES.
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D.1 40000 cm−1 cut 100 NN fit PES operator file

for HFCO

The operator file is exactly the same structure as the Appendix D. Only the fitting
parameters are provided here.
PARAMETER-SECTION

a11 = -0.996014, a12 = 2.06649, a21 = -1.07919, a22 = 2.54408, a31 = -1.19789, a32 = 2.22995, mh = 1.0, H-mass, mc

= 12.00,AMU, mo = 15.9949146221,AMU, mf = 18.99840320,AMU, M11 = 1.0/mh+1.0/mc, M22 = 1.0/mf+1.0/mc,

M33 = 1.0/mo+1.0/mc Mu = 1.0/mc # Mu = Mij; i neq j, R1eq = 2.06320d0, R2eq = 2.5340d0, R3eq = 2.228740d0,

U1eq = 0.789459, U2eq = 0.8414164680d0, E1eq = -0.61380310d0, E2eq = -0.54038720d0

, r0 = -4.16991810462d-05 , w0u0 = 0.577739296615502 , w0u1 = 0.364802012405860 , w0u2 = 1.318909354162213 ,

w0u3 = 0.530745606677309 , w0u4 = 1.177607033196864 , w0u5 = 0.279174788467111 , r1 = 3.64022403025 , w1u0 =

-0.839578266364988 , w1u1 = -0.378396502067425 , w1u2 = 0.741431950733731 , w1u3 = 3.420498531258265 , w1u4

= -0.029708769550532 , w1u5 = -0.006113340164022 , r2 = 3.71295435763 , w2u0 = 0.287063556606475 , w2u1 =

-1.170412715728625 , w2u2 = -0.459604502987128 , w2u3 = 1.118723673469369 , w2u4 = -0.712149197836188 , w2u5

= -0.281633732843197 , r3 = -7.31328671614 , w3u0 = 0.121474155060917 , w3u1 = -0.525901917292006 , w3u2 =

-0.478778964855351 , w3u3 = 0.291914605518526 , w3u4 = -0.141371698899919 , w3u5 = -0.929991950773385 , r4

= 207.404100493 , w4u0 = -0.017559838694596 , w4u1 = -0.050448373149514 , w4u2 = -3.381897564963545 , w4u3

= 0.071857169973141 , w4u4 = -0.139735254297427 , w4u5 = -0.016408565919342 , r5 = -5.9321139127 , w5u0 =

0.061221955872117 , w5u1 = -1.158090327090918 , w5u2 = -0.143579510332362 , w5u3 = -3.171292275778967 , w5u4

= -2.078722271047108 , w5u5 = -0.209967147073400 , r6 = -5.19943885979 , w6u0 = 0.284872559605997 , w6u1 =

-1.021450857962388 , w6u2 = -0.492366950862660 , w6u3 = -1.095118394447858 , w6u4 = -1.566440854272596 , w6u5

= 0.191517393180694 , r7 = -57.1319109211 , w7u0 = -0.526353686978408 , w7u1 = -1.167036170493288 , w7u2 =

-0.187032676966528 , w7u3 = 0.935337817766746 , w7u4 = -1.123466878119092 , w7u5 = -0.433972084392229 , r8

= -8.59531994183 , w8u0 = 0.543725766548193 , w8u1 = -1.089351285318377 , w8u2 = -0.725904622166933 , w8u3

= -0.658271720208572 , w8u4 = -1.484857932547301 , w8u5 = -0.281063176364276 , r9 = 0.463823077686 , w9u0 =

0.008058500708986 , w9u1 = -1.069193528178423 , w9u2 = -0.030649557355871 , w9u3 = -8.449486616517992 , w9u4

= -1.700457212974302 , w9u5 = -0.516729247260890 , r10 = -0.00229962451386 , w10u0 = 0.468576521992768 , w10u1

= 0.862258373414940 , w10u2 = -0.654193728290914 , w10u3 = -2.729228779726665 , w10u4 = -2.806676450408779 ,

w10u5 = -0.506996125056840 , r11 = 31.8160542028 , w11u0 = 0.161721884546187 , w11u1 = -0.406057209459314 ,

w11u2 = -0.646494684947232 , w11u3 = 1.438734883123415 , w11u4 = 0.138540759909740 , w11u5 = 0.313015572510880

, r12 = 0.0122833724562 , w12u0 = 0.600215817411941 , w12u1 = 0.665383992089364 , w12u2 = -0.634162704977210 ,

w12u3 = -2.345399291678224 , w12u4 = -2.908815513711600 , w12u5 = -0.456669662038281 , r13 = -0.00424282679862

, w13u0 = -0.398210209755173 , w13u1 = -0.488281120111609 , w13u2 = 2.191476288558438 , w13u3 = 2.126589113185838

, w13u4 = 0.966685063567495 , w13u5 = 0.043684264364885 , r14 = 4.31190827317 , w14u0 = -0.030690714208931 ,

w14u1 = -0.406735929759648 , w14u2 = -0.230485544824226 , w14u3 = 1.097362496582178 , w14u4 = -0.066300472127542

, w14u5 = -0.554489261660661 , r15 = -11.5084713591 , w15u0 = 0.353367121732586 , w15u1 = -0.254275628481591 ,

w15u2 = -0.762259629407990 , w15u3 = 3.097338664752718 , w15u4 = 0.028979790764896 , w15u5 = -0.752782414614103

, r16 = -7.59924122327 , w16u0 = 0.433749217345842 , w16u1 = -0.684673999221812 , w16u2 = -0.685845525531516 ,

w16u3 = 1.090024897772241 , w16u4 = 0.021219446085162 , w16u5 = 0.021636346022023 , r17 = -0.00461754764621 ,

w17u0 = -0.665735504566998 , w17u1 = 0.905682778554172 , w17u2 = 0.633994984711044 , w17u3 = 0.551742068621788

, w17u4 = 1.519454264999029 , w17u5 = -0.156274770594540 , r18 = 0.00795747492259 , w18u0 = -0.038796112314585
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, w18u1 = 1.076216717337046 , w18u2 = -0.825691015735533 , w18u3 = -0.809142346036502 , w18u4 = -0.975799759546187

, w18u5 = -0.473339310092979 , r19 = 88.6201185897 , w19u0 = 0.446381139638723 , w19u1 = -0.296811866573782 ,

w19u2 = -0.803629662916175 , w19u3 = 3.413657552720172 , w19u4 = 0.054631178201507 , w19u5 = -1.138080370340223

, r20 = -5.99219063657 , w20u0 = -0.696467072657822 , w20u1 = -0.586241508333827 , w20u2 = 0.559043490016027

, w20u3 = 1.537837246094041 , w20u4 = -0.145506329632145 , w20u5 = -0.139355290118540 , r21 = -0.417067601991 ,

w21u0 = 0.455887639880311 , w21u1 = -0.526833845620239 , w21u2 = -0.488632254894506 , w21u3 = -1.376522177412964

, w21u4 = 0.465017387670366 , w21u5 = 0.220403918699748 , r22 = 5.23006770681 , w22u0 = 0.779564757949549 ,

w22u1 = -1.087499078151688 , w22u2 = -0.931199238724953 , w22u3 = -0.374625829636220 , w22u4 = -0.020807492023271

, w22u5 = -0.096992615633671 , r23 = 6.83318000677 , w23u0 = 0.251414719873395 , w23u1 = -1.168767717600650 ,

w23u2 = -0.540194717548044 , w23u3 = -0.609562104659726 , w23u4 = -2.182528126897380 , w23u5 = -0.341970748588511

, r24 = -0.0222699872628 , w24u0 = -0.002702641852643 , w24u1 = -0.728027483966623 , w24u2 = -0.257008088894586

, w24u3 = 0.002357876281161 , w24u4 = -0.871443585070177 , w24u5 = -0.088749972825090 , r25 = 17.455356004 ,

w25u0 = 0.225543020785034 , w25u1 = -0.442633655955038 , w25u2 = -0.734109220396171 , w25u3 = 0.853574588991114

, w25u4 = 0.154909409446326 , w25u5 = -0.568907415605138 , r26 = 0.747104265829 , w26u0 = -0.326598594039228 ,

w26u1 = -0.190904919851986 , w26u2 = -0.162837517462372 , w26u3 = 8.094063279767193 , w26u4 = 0.250955763396014

, w26u5 = 0.111973151392174 , r27 = -11.5865857737 , w27u0 = 0.492936827694900 , w27u1 = -0.301249415648155 ,

w27u2 = -0.817341666836425 , w27u3 = 3.614809149630531 , w27u4 = 0.029366374465673 , w27u5 = -1.327906843676313

, r28 = -3161.44268893 , w28u0 = 0.254770521195832 , w28u1 = -0.283474441373207 , w28u2 = -0.731789550400320

, w28u3 = 2.750510545800161 , w28u4 = 0.157462010940399 , w28u5 = -0.143600184859073 , r29 = -0.0309177874382 ,

w29u0 = 0.675558883788327 , w29u1 = 0.500783708233544 , w29u2 = -0.633120221935511 , w29u3 = -1.745730773334296

, w29u4 = -2.906907255262786 , w29u5 = -0.377391706809615 , r30 = -525.775979337 , w30u0 = 0.387071561152176 ,

w30u1 = -0.291650217321996 , w30u2 = -0.784950046540488 , w30u3 = 3.164862798929071 , w30u4 = 0.087408418339530

, w30u5 = -0.878334977277496 , r31 = 10.1289395675 , w31u0 = -2.627102240724649 , w31u1 = 0.078770051718374 ,

w31u2 = -0.006306013396358 , w31u3 = -0.024189819387966 , w31u4 = 0.031475151712836 , w31u5 = 0.065666403280857

, r32 = -0.689241721099 , w32u0 = -0.344317068088799 , w32u1 = -0.190039624930709 , w32u2 = -0.142855504479063

, w32u3 = 8.196776944827237 , w32u4 = 0.249715920562343 , w32u5 = 0.109882786183660 , r33 = -0.437349492037 ,

w33u0 = -1.170476209199126 , w33u1 = -0.170712382672496 , w33u2 = 1.038788269435308 , w33u3 = 10.585954547350145

, w33u4 = 0.207264895125130 , w33u5 = 0.064793501596819 , r34 = 0.015683806253 , w34u0 = 0.656889774485164 ,

w34u1 = 1.009702242396779 , w34u2 = -1.503593816064203 , w34u3 = -0.230835832296360 , w34u4 = 1.059802232929915

, w34u5 = 0.047838356600411 , r35 = -22.5157972808 , w35u0 = 0.174575467751591 , w35u1 = -0.356968836276332 ,

w35u2 = -0.672194326109733 , w35u3 = 1.825404294725173 , w35u4 = 0.136064169023028 , w35u5 = 0.399663690073619

, r36 = 0.0392931532675 , w36u0 = 0.135090857616445 , w36u1 = 0.654364264853994 , w36u2 = -0.930140526904383

, w36u3 = 1.808186883597199 , w36u4 = -0.131400675231109 , w36u5 = -0.274250965339362 , r37 = 15.2929285496 ,

w37u0 = 0.066509998641655 , w37u1 = -1.113180635628618 , w37u2 = -0.124744205730496 , w37u3 = -4.129204997447228

, w37u4 = -2.245509055280770 , w37u5 = -0.537035439917634 , r38 = 489.193857491 , w38u0 = 0.052000941607351 ,

w38u1 = -4.187793668976839 , w38u2 = -0.093954971314386 , w38u3 = -0.040098708254868 , w38u4 = 0.060200568780177

, w38u5 = 0.049184817855449 , r39 = 0.00612313164389 , w39u0 = -0.384758597990867 , w39u1 = 0.240151316396118 ,

w39u2 = 0.259574894304137 , w39u3 = 0.052345668481917 , w39u4 = 0.021756067600526 , w39u5 = 0.036494002634463

, r40 = -1.9031624045 , w40u0 = -0.949604348790300 , w40u1 = -0.294642675953554 , w40u2 = 0.933143824804099

, w40u3 = 4.846531048792728 , w40u4 = 0.031779958757153 , w40u5 = 0.044085152962012 , r41 = -15.5851404636 ,

w41u0 = -0.513512141622168 , w41u1 = -0.663322315510871 , w41u2 = -0.345684141464899 , w41u3 = -0.544752964283277

, w41u4 = -0.199348654023021 , w41u5 = -0.069343947840589 , r42 = 0.00539419312219 , w42u0 = -0.147715877658163
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, w42u1 = -0.137847056586809 , w42u2 = 0.519002201686035 , w42u3 = -0.818930998249140 , w42u4 = 0.814517216354192

, w42u5 = -0.381079203962102 , r43 = 0.0802132573347 , w43u0 = -0.352497111997417 , w43u1 = 0.211410840637369 ,

w43u2 = 0.224016073307244 , w43u3 = 1.007219249052409 , w43u4 = 0.046646846172278 , w43u5 = -0.130883773049865

, r44 = -0.0743591852798 , w44u0 = -0.285678973528675 , w44u1 = 0.352536050132551 , w44u2 = -0.287013019371255

, w44u3 = -0.247100748184672 , w44u4 = 0.527142213642225 , w44u5 = 0.437949863206590 , r45 = 0.0129882902067 ,

w45u0 = -0.480586972159899 , w45u1 = 0.302821864413237 , w45u2 = 0.488977601531796 , w45u3 = 0.367944819227344

, w45u4 = -1.885838597623759 , w45u5 = -0.289228918131450 , r46 = 7.31205881331 , w46u0 = 0.040883012167856 ,

w46u1 = -1.211212216290000 , w46u2 = -0.198441408518460 , w46u3 = -2.173309025249773 , w46u4 = -2.251650205986686

, w46u5 = -0.062020702177717 , r47 = -0.0566793098901 , w47u0 = -0.047878064578809 , w47u1 = 0.332623830404475 ,

w47u2 = -0.462833106160332 , w47u3 = -1.186886226328104 , w47u4 = -1.553680328466275 , w47u5 = -0.218222514833004

, r48 = 0.0901676771813 , w48u0 = -0.031450559380997 , w48u1 = 0.838964347021116 , w48u2 = -1.429430504618531

, w48u3 = 0.462860965910763 , w48u4 = 0.425938848123677 , w48u5 = 0.263676275007881 , r49 = 1.22727013778 ,

w49u0 = 0.151270444434554 , w49u1 = -0.886340828938803 , w49u2 = -0.337156862492473 , w49u3 = -2.292712310183083

, w49u4 = -0.856436484110062 , w49u5 = 0.134749575265030 , r50 = 5.33766124186 , w50u0 = 0.061963737521786 ,

w50u1 = -0.786071539838896 , w50u2 = -0.760391047485215 , w50u3 = 0.114386885942747 , w50u4 = 3.247341852731722

, w50u5 = -0.119944773648415 , r51 = -1.76460495656 , w51u0 = -0.219915469625617 , w51u1 = -0.624647032196350 ,

w51u2 = -0.276261756865753 , w51u3 = 0.348769778157179 , w51u4 = 0.239111342976674 , w51u5 = 0.678633907381688

, r52 = -0.000539915387304 , w52u0 = 1.357816398981088 , w52u1 = 0.639815270541873 , w52u2 = -1.189131780446365

, w52u3 = -2.014177051533041 , w52u4 = 0.060482603638121 , w52u5 = -0.245693085367951 , r53 = 0.220878597777 ,

w53u0 = -0.249074007644993 , w53u1 = -0.836504150274033 , w53u2 = 0.984100764147841 , w53u3 = 0.991768129459050

, w53u4 = -0.292679270071117 , w53u5 = -0.304139504325273 , r54 = 1.70798124224 , w54u0 = 0.174368017520032 ,

w54u1 = -1.056514601489333 , w54u2 = -0.201191074288665 , w54u3 = -3.010796602910186 , w54u4 = -2.728783891196509

, w54u5 = -0.877357379185521 , r55 = 5.28169675655d-05 , w55u0 = -1.400863608004426 , w55u1 = -0.151264448841782

, w55u2 = 1.294861026017208 , w55u3 = 14.774353999911385 , w55u4 = 0.371387153177501 , w55u5 = 0.046510954044298

, r56 = 0.100029860699 , w56u0 = -0.004943870963242 , w56u1 = 0.293637008736924 , w56u2 = 0.158032146937629 ,

w56u3 = 0.196928360943084 , w56u4 = 0.389259524298499 , w56u5 = 0.132918671044628 , r57 = 0.0147242216392 ,

w57u0 = -0.716662004535817 , w57u1 = -0.421103960582040 , w57u2 = 1.969127244627034 , w57u3 = 3.230171524953269

, w57u4 = 0.683905257473096 , w57u5 = 0.040155869081459 , r58 = 2211.17542976 , w58u0 = 0.337373828585744 ,

w58u1 = -0.287720683642584 , w58u2 = -0.767081908814244 , w58u3 = 2.971082998176700 , w58u4 = 0.112902046862304

, w58u5 = -0.640081226522553 , r59 = -0.553838329765 , w59u0 = -1.075867303103811 , w59u1 = -0.196124907178188 ,

w59u2 = 0.960695162870240 , w59u3 = 8.134297888880029 , w59u4 = 0.097876548467491 , w59u5 = 0.072185388848856

, r60 = 37.8017892618 , w60u0 = -0.756868501845973 , w60u1 = -1.033122580370870 , w60u2 = -1.205489675411792

, w60u3 = -0.341287091376902 , w60u4 = 1.367282355418201 , w60u5 = 0.192354697887263 , r61 = 1.03776631908 ,

w61u0 = -1.041472147460211 , w61u1 = -0.220462600174668 , w61u2 = 0.958703540367636 , w61u3 = 6.915054344152382

, w61u4 = 0.059052873345051 , w61u5 = 0.069984958703455 , r62 = 0.0124733625296 , w62u0 = 0.142300973682369 ,

w62u1 = -0.493715418857844 , w62u2 = 0.792312244464035 , w62u3 = 0.437526867769169 , w62u4 = 0.389884177464348

, w62u5 = 0.151824380011441 , r63 = 0.0223874433445 , w63u0 = 0.381749206400599 , w63u1 = -0.145609261982420 ,

w63u2 = -0.465266250771509 , w63u3 = -0.701631321868313 , w63u4 = 1.660869357962825 , w63u5 = 0.658509180332857

, r64 = 0.00400815968505 , w64u0 = -0.371134527241616 , w64u1 = 0.518384250132498 , w64u2 = 0.410003161586691

, w64u3 = -0.724630298030106 , w64u4 = 1.258538662245388 , w64u5 = -0.143371703680463 , r65 = 96.6011345954 ,

w65u0 = -0.590904599571934 , w65u1 = -1.123538832347626 , w65u2 = -0.128364236888470 , w65u3 = 0.456025071807558

, w65u4 = -0.971074279346625 , w65u5 = -0.445189234440927 , r66 = 1.55922768359d-05 , w66u0 = 0.838102824707261
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, w66u1 = -0.160433198746739 , w66u2 = 1.993550985526628 , w66u3 = 0.219351996026708 , w66u4 = 1.805489873861869

, w66u5 = 0.170737027441086 , r67 = -0.0873969495752 , w67u0 = -0.212437270876071 , w67u1 = 0.499826983220182 ,

w67u2 = -0.356931235130331 , w67u3 = 0.646014646150175 , w67u4 = -1.493271324517211 , w67u5 = -0.052609507095137

, r68 = 0.519112511853 , w68u0 = -1.164040150752691 , w68u1 = -0.171487049137076 , w68u2 = 1.031117672798583 ,

w68u3 = 10.468526485530296 , w68u4 = 0.201670376172516 , w68u5 = 0.065309578998843 , r69 = -0.0025029582161 ,

w69u0 = 0.640343024505876 , w69u1 = 0.749485470323417 , w69u2 = -0.398000012456532 , w69u3 = -0.197315357142888

, w69u4 = -1.185673505124250 , w69u5 = -0.036547764498961 , r70 = 3.6948100147 , w70u0 = 0.455290628949746 ,

w70u1 = -0.996682206487039 , w70u2 = -0.640272560957080 , w70u3 = -0.820666673017353 , w70u4 = -1.502177631261605

, w70u5 = 0.152114542066331 , r71 = -1.54249916742 , w71u0 = 0.022046457278402 , w71u1 = -1.062116553734765 ,

w71u2 = -0.044310401563896 , w71u3 = -7.923116834322894 , w71u4 = -1.763576647757806 , w71u5 = -0.545931576546123

, r72 = 5.05503437942 , w72u0 = 0.052204315763714 , w72u1 = -1.055490500404144 , w72u2 = -0.075253961762354 ,

w72u3 = -6.666234978735950 , w72u4 = -1.931030914640736 , w72u5 = -0.597707606092860 , r73 = -0.0557984859314 ,

w73u0 = 0.027546661097965 , w73u1 = -0.997307556701072 , w73u2 = 0.931228728627617 , w73u3 = 0.824985346906503

, w73u4 = -0.798798642102170 , w73u5 = -0.522818522762574 , r74 = 0.000647421620573 , w74u0 = 0.716104402668682

, w74u1 = 0.415582350679438 , w74u2 = 0.207756138919516 , w74u3 = -1.069469432346300 , w74u4 = -0.236805526981045

, w74u5 = 0.096413948561824 , r75 = -0.000768015124329 , w75u0 = 0.185650008183667 , w75u1 = -0.039973343512557

, w75u2 = 0.508006514420574 , w75u3 = -0.255846298774271 , w75u4 = 0.241109580643783 , w75u5 = -0.019039345115434

, r76 = -11.5298741098 , w76u0 = 0.071562745716792 , w76u1 = -1.067427059424005 , w76u2 = -0.102522368981235 ,

w76u3 = -5.443562639495840 , w76u4 = -2.103536322301759 , w76u5 = -0.613535322627714 , r77 = 0.0215638964981 ,

w77u0 = 0.970396625459726 , w77u1 = 0.189829125882600 , w77u2 = -0.793217081592396 , w77u3 = -1.377360248200592

, w77u4 = -2.228507489036832 , w77u5 = -0.226238259974719 , r78 = 0.156566652271 , w78u0 = -0.232141783339805 ,

w78u1 = -0.549967839714569 , w78u2 = -0.321509806474215 , w78u3 = 0.268553749698811 , w78u4 = 0.082323161115334

, w78u5 = 1.059247326790769 , r79 = -14.4600403732 , w79u0 = 0.205112096912156 , w79u1 = -0.270839623753977 ,

w79u2 = -0.700266006098565 , w79u3 = 3.071219903530748 , w79u4 = 0.196680886011015 , w79u5 = 0.338366664893728

, r80 = 0.0220640145375 , w80u0 = 0.444369314211184 , w80u1 = 0.539477869617900 , w80u2 = -0.593082847280868

, w80u3 = -0.890061558142355 , w80u4 = -2.797671414383015 , w80u5 = -0.216338218351844 , r81 = -1.21007262626 ,

w81u0 = -1.276351400735217 , w81u1 = -0.094207824444882 , w81u2 = -0.325499817922146 , w81u3 = 3.457571482497354

, w81u4 = -0.165817408172000 , w81u5 = 0.144676343767072 , r82 = 0.303208575475 , w82u0 = 0.037668022172578 ,

w82u1 = 0.050396277192387 , w82u2 = -0.858377947229910 , w82u3 = 1.078709828738378 , w82u4 = -1.179001044612128

, w82u5 = 0.214990758595530 , r83 = 2.3700103426 , w83u0 = 0.189551796365068 , w83u1 = -0.292661516550572 ,

w83u2 = -0.685303358570454 , w83u3 = 2.829312119879968 , w83u4 = 0.186135028050196 , w83u5 = 0.557621799193029

, r84 = 0.65772948445 , w84u0 = 0.307426918706072 , w84u1 = -0.242648479011099 , w84u2 = -0.536500675212424

, w84u3 = 1.103664828006365 , w84u4 = -0.580487936952305 , w84u5 = -0.518200620828503 , r85 = -0.356919755492 ,

w85u0 = 0.495415218257807 , w85u1 = -0.315793158948306 , w85u2 = -0.560231822228178 , w85u3 = 0.471150075185933

, w85u4 = 0.823335744455845 , w85u5 = 0.243157937244943 , r86 = 810.413455758 , w86u0 = 0.238441014164608 ,

w86u1 = -0.282153990449833 , w86u2 = -0.723290358957124 , w86u3 = 2.750037336462124 , w86u4 = 0.167072085120639

, w86u5 = -0.003100071801093 , r87 = -0.0298368390829 , w87u0 = -0.515786133815231 , w87u1 = 0.176188810579050 ,

w87u2 = 0.259524928506412 , w87u3 = 0.945676241219544 , w87u4 = 0.896456836874206 , w87u5 = 0.117326720065308

, r88 = -0.646688594738 , w88u0 = -0.087316525132470 , w88u1 = -0.291831486471338 , w88u2 = -0.092947174909537

, w88u3 = 2.723847604076803 , w88u4 = -0.077778787070632 , w88u5 = -0.287502791746024 , r89 = 2.04964528234 ,

w89u0 = -0.735005492268909 , w89u1 = -0.059945125918544 , w89u2 = -0.568941585783969 , w89u3 = 2.849402078332382

, w89u4 = 0.273625829602798 , w89u5 = 0.138693215291586 , r90 = -4824.75364157 , w90u0 = 0.302727623569067 ,
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w90u1 = -0.286136547191467 , w90u2 = -0.753338483712698 , w90u3 = 2.851968612682050 , w90u4 = 0.131519852933756

, w90u5 = -0.454767746422297 , r91 = -32.0687616821 , w91u0 = 0.108053139259059 , w91u1 = -0.353981644783447 ,

w91u2 = -0.626370978281938 , w91u3 = 1.408920670114594 , w91u4 = 0.143009908711770 , w91u5 = -0.109037622390768

, r92 = -12.8688517017 , w92u0 = 0.006003232157463 , w92u1 = -1.232602916817761 , w92u2 = -0.163345698581569 ,

w92u3 = -2.321775355793676 , w92u4 = -2.544712145650465 , w92u5 = -0.413095022944811 , r93 = 5448.94682317 ,

w93u0 = 0.276282241962728 , w93u1 = -0.284881224735465 , w93u2 = -0.741848750841652 , w93u3 = 2.782198674140654

, w93u4 = 0.145590155023437 , w93u5 = -0.295291952664330 , r94 = -0.153315917674 , w94u0 = 0.822488803360089 ,

w94u1 = 0.005498433202169 , w94u2 = -1.564099744499153 , w94u3 = -0.189520421939817 , w94u4 = -1.466409595622114

, w94u5 = 0.112462085754964 , r95 = 0.00870603655818 , w95u0 = 0.463918922665083 , w95u1 = -0.008071656975637 ,

w95u2 = -0.495743554993691 , w95u3 = -0.845850818890365 , w95u4 = -0.653379728711700 , w95u5 = -0.087495123702144

, r96 = -0.263859337385 , w96u0 = 0.137626496474963 , w96u1 = 0.767375382029750 , w96u2 = -1.207663355724944 ,

w96u3 = 0.231624854880772 , w96u4 = 0.708869825270077 , w96u5 = -0.071150495884325 , r97 = -0.00658084310416 ,

w97u0 = -0.106661228405277 , w97u1 = 1.046665870947527 , w97u2 = -1.362077966456989 , w97u3 = 0.625872478671948

, w97u4 = 0.107836783646556 , w97u5 = 0.577304279533526 , r98 = 0.213420915519 , w98u0 = -0.991744128003810 ,

w98u1 = -0.540167162227647 , w98u2 = 0.443804527270521 , w98u3 = -0.114870690389039 , w98u4 = 1.660173308524129

, w98u5 = 0.061951503772172 , r99 = 4.18108546396 , w99u0 = -0.344027446888542 , w99u1 = -0.972300537838800 ,

w99u2 = -0.039931175625579 , w99u3 = 0.166929688667627 , w99u4 = 0.168199598407611 , w99u5 = 0.311138200462158

c = 0.219898906

end-parameter-section

174



Appendix E

Appendix to Chapter 6

Table E1: RMSE vs NN for HFCO on the S1 PES

Number of RMSE (in cm−1)
Neurons (NN) Testset Trainset

10 157.5 137.9
20 38.3 33.0
40 8.6 6.7
60 5.2 3.9
80 3.1 2.1
100 1.4 0.9

The Morse oscillator is defined in terms of the dissociation energy (a0), predisso-
ciation factor (a1) and equilibrium coordinate (a2) as,

V (x) = a0(1− e−a1(x−a2))2 (E.1)

Table E2: One dimensional fitting parameters to Morse functional form for R1
CH ,

R2
CF and R3

CO physical coordinates

Physical Coordinates Fitting Parameters
a0 a1 a2

R1
CH 0.164216 1.02917 2.05681

R2
CF 0.157972 1.15394 2.52932

R3
CO 0.204523 1.04952 2.5215
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Table E3: One dimensional fitting parameters to the fourth order Polynomial func-
tional form for θ1

HCO, θ2
FCO and fifth order for φ physical coordinates

Physical Fitting Parameters
Coordinates a0 a1 a2 a3 a4

θ1
HCO 0.0261503 0.123836 0.192181 0.160517 0.129113

θ2
FCO 0.0211551 0.140332 0.29972 0.273869 0.202697
φ 0.608371 -0.601016 0.15261 0.00866992 -0.0049585

nth order polynomial functional form of coordinate x is defined as,

V (xn) =
n∑
q=0

(anx
n) (E.2)
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Table E4: Optimized geometries of HFCO ground and excited states minimum and
intermediates conformers at various methods and active space. Bond distances are
in Å and bond angles are in degrees. All present computations use the aug-cc-pVTZ
basis set. Previous computational results are also provided.

Method CH CF CO HCO FCO φ
HFCO (S0) The minimum at the singlet ground state
CASSCF(18,13) 1.078 1.347 1.187 127.40 122.26 180.00
mrci (18,12) 1.075 1.373 1.190 127.68 122.48 180.00
mrci (12,9) 1.086 1.354 1.183 128.13 122.72 180.00
mrci (8,7) 1.088 1.348 1.184 128.03 122.76 180.00
Ref:194/A 1.091 1.330 1.187 128.00 122.80 180.00
Expt.185,186,213 1.09 1.34 1.18 127.3 122.8 180.00
HFCO (TSD1T1) HCO + F dissociation transiton state on T1 surface
CASSCF(8,7)a 1.096 1.739 1.230 122.60 95.10 109.20
CASSCF(8,7)b 1.087 1.749 1.220 123.00 95.10 108.40
UMP2b 1.103 1.764 1.200 125.40 86.40 100.80
CASSCF(18,12) 1.083 1.772 1.239 121.82 96.80 108.19
CASSCF(8,7) 1.085 1.837 1.210 123.55 94.11 106.47
CASSCF(12,9) 1.083 1.764 1.240 121.71 96.50 108.51
HFCO (TSD2T1) FCO + H dissociation transition state on T1 surface
CASSCF(8,7)a 1.542 1.312 1.239 97.30 122.40 110.90
CASSCF(8,7)b 1.531 1.302 1.235 97.00 122.90 111.00
UMP2b 1.452 1.339 1.202 89.40 128.20 102.30
CASSCF(18,12) 1.531 1.302 1.234 97.03 122.86 110.99
CASSCF(12,9) 1.531 1.303 1.234 97.13 122.89 110.84
CASSCF(8,7) 1.528 1.301 1.235 96.88 123.19 111.03
HFCO (TSD1S1) HCO + F dissociation transition state on S1 surface
CASSCF(8,7)a 1.089 1.732 1.238 125.90 97.00 103.20
CASSCF(8,7)b 1.087 1.743 1.229 126.40 96.60 102.00
CASSCF(18,12) 1.076 1.786 1.248 125.95 96.28 99.43
CASSCF(12,9) 1.076 1.784 1.249 125.32 96.87 100.46
CASSCF(8,7) 1.077 1.874 1.216 126.63 94.37 95.34

a CASSCF (8,7)/cc-pVDZ results from 194; b CASSCF (8,7)/cc-pVTZ results from
194.
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Table E5: Selected vibrational energies (in cm−1) of first 30 states for S1 excited
state 80 NN fit NN-expnn PES of HFCO. See Section 6.3.5 for details of assignment
procedure.

Assignment EOM-CCSD-MCTDH Assignment EOM-CCSD-MCTDH
(ν1ν2ν3ν4ν5ν6) (ν1ν2ν3ν4ν5ν6)

0 0 0 0 1 0 454.6 0 0 0 0 1 2 2022.3
0 0 0 0 0 1 876.9 0 0 0 0 3 1 2060.6
0 0 0 0 2 0 916.1 0 2 0 0 0 0 2091.8
0 1 0 0 0 0 1125.7 0 0 0 0 5 0 2118.3
0 0 1 0 0 0 1187.4 0 0 2 0 0 0 2222.2
0 0 0 0 1 1 1331.2 0 1 0 0 1 1 2225.6
0 0 0 1 0 0 1345.2 0 1 0 0 3 0 2231.3
0 0 0 0 3 0 1411.0 0 0 1 0 1 1 2244.8
0 1 0 0 1 0 1592.8 0 0 1 0 3 0 2282.9
0 0 1 0 1 0 1637.8 0 0 0 0 0 3 2304.9
0 0 0 0 0 2 1664.5 0 0 0 0 2 2 2367.7
0 0 0 0 2 1 1777.9 0 0 0 2 0 0 2446.9
0 0 0 0 4 0 1793.1 0 0 0 0 4 1 2456.5
0 1 0 0 2 0 1822.9 0 2 0 0 1 0 2461.8
0 0 1 0 2 0 2000.4 0 0 2 0 1 0 2474.8
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E.1 10000 cm−1 cut 80 NN fit PES operator file

for the S1 state of HFCO

The operator file structure is exactly same as the Appendix B. Only the fitting pa-
rameters are given here.
PARAMETER-SECTION

, a11 = -1.02917 , a12 = 2.05681 , a21 = -1.15394 , a22 = 2.52932 , a31 = -1.04952 , a32 = 2.5215 , mh = 1.0,

H-mass , mc = 12.00,AMU , mo = 15.9949146221,AMU , mf = 18.99840320,AMU , M11 = 1.0/mh+1.0/mc , M22 =

1.0/mf+1.0/mc , M33 = 1.0/mo+1.0/mc , Mu = 1.0/mc # Mu = Mij; i neq j , R1eq = 2.0570d0 , R2eq = 2.53050d0

, R3eq = 2.52140d0 , U1eq = 0.89187640d0 , U2eq = 0.94093980d0 , E1eq = -0.4522790d0 , E2eq = -0.33857370d0

, r0 = 3.55420057021d-07 , w0u0 = 1.171156666982833 , w0u1 = -1.099094250794489 , w0u2 = -0.299296758083863

, w0u3 = 1.629189842813214 , w0u4 = 1.700425983652629 , w0u5 = 5.192321482065484 , r1 = 0.000268488901303 ,

w1u0 = -0.026238641062026 , w1u1 = 0.653819993913979 , w1u2 = 0.265365515066824 , w1u3 = 0.068210259361839

, w1u4 = 0.669286173611580 , w1u5 = 1.710309813270403 , r2 = 0.000145995289083 , w2u0 = 2.413443774422379 ,

w2u1 = -2.070855939004337 , w2u2 = -1.822597474374239 , w2u3 = -1.087531212488764 , w2u4 = 1.216221746221809

, w2u5 = 3.373787800041887 , r3 = -16.2685106239 , w3u0 = -1.249943974805711 , w3u1 = 0.273739418113034 , w3u2

= -1.735327823669221 , w3u3 = -0.242269254407064 , w3u4 = 1.962769801495739 , w3u5 = -0.655605049991432 , r4

= -102.285026975 , w4u0 = 0.143101737332200 , w4u1 = -1.274327872276258 , w4u2 = 0.043276733161153 , w4u3

= -1.003571441183166 , w4u4 = -0.796218921195865 , w4u5 = -2.042976521318406 , r5 = 0.0345692079037 , w5u0 =

-3.528401290726351 , w5u1 = 1.425130181267610 , w5u2 = 0.741448966316332 , w5u3 = 1.347547151510961 , w5u4

= -0.525524859200215 , w5u5 = 0.054424004259404 , r6 = -0.0141887552846 , w6u0 = 0.213339113636840 , w6u1 =

0.213923348181382 , w6u2 = -0.255452637186345 , w6u3 = -2.500317919760658 , w6u4 = 0.725264452325959 , w6u5

= 0.260228772860919 , r7 = -2.89686352613 , w7u0 = -0.027905438513155 , w7u1 = -0.136875667592787 , w7u2 =

-0.283463862423174 , w7u3 = -0.037427199345287 , w7u4 = 0.108497129508539 , w7u5 = 0.075183505365319 , r8 =

0.045837723141 , w8u0 = 0.175820726916132 , w8u1 = 0.082648398691942 , w8u2 = -0.258244315902518 , w8u3 =

-2.381964287474481 , w8u4 = 0.485966088949358 , w8u5 = 0.074653398725381 , r9 = -0.00925306725576 , w9u0 =

-0.159732671288696 , w9u1 = 0.993982046526610 , w9u2 = -0.176355751591068 , w9u3 = -1.429543646510991 , w9u4

= -0.017887323697675 , w9u5 = -0.494462347857475 , r10 = 0.774947089855 , w10u0 = -0.023855080928849 , w10u1

= -0.077807923040876 , w10u2 = -0.768597251248800 , w10u3 = 2.432008739884567 , w10u4 = 0.013038295087428 ,

w10u5 = 0.428783012781158 , r11 = -0.395147511801 , w11u0 = 1.617349238871167 , w11u1 = -0.264929576787361 ,

w11u2 = -1.062895656924539 , w11u3 = 2.251160100438413 , w11u4 = 3.139614568876533 , w11u5 = 1.784041290255702

, r12 = -4.20365148106 , w12u0 = 1.681580561792374 , w12u1 = 0.020408668035945 , w12u2 = -1.406332347060500 ,

w12u3 = 2.833938830950114 , w12u4 = 3.825017232128297 , w12u5 = 0.256473806379301 , r13 = -0.00817625729811 ,

w13u0 = 0.791113827579508 , w13u1 = 0.150435378578124 , w13u2 = -0.038453743320958 , w13u3 = -0.570645227900161

, w13u4 = 0.229807798606093 , w13u5 = 0.046748805008813 , r14 = -2.20851724781d-05 , w14u0 = 2.516023767312669

, w14u1 = -0.216220407944076 , w14u2 = -0.121687069365532 , w14u3 = 3.069022289431679 , w14u4 = 3.666764374368822

, w14u5 = 0.815019701368257 , r15 = 859.355241707 , w15u0 = 0.194070056821249 , w15u1 = 0.259807081011087 ,

w15u2 = -3.384074761380140 , w15u3 = 0.705014445365372 , w15u4 = -3.822884538368623 , w15u5 = -1.322325271069581

, r16 = 0.464978244643 , w16u0 = -0.360155154849525 , w16u1 = -1.399554337677334 , w16u2 = 0.364179834864968

, w16u3 = -5.089749932794002 , w16u4 = -2.923864676882602 , w16u5 = -1.378785370918360 , r17 = -18.1018316403 ,

w17u0 = 0.445378696638515 , w17u1 = -1.789423961540532 , w17u2 = -0.646658326228650 , w17u3 = 1.284822464845653

, w17u4 = 2.960322724483682 , w17u5 = -0.218096176505548 , r18 = -1.26415578474d-06 , w18u0 = 0.189844551417092
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, w18u1 = -0.138020724126611 , w18u2 = -0.344663490520063 , w18u3 = -1.323001913758728 , w18u4 = 0.318791173009525

, w18u5 = 3.794002374620306 , r19 = -20.0008817846 , w19u0 = -0.008666612383633 , w19u1 = -0.638730910367066 ,

w19u2 = -0.450492840832808 , w19u3 = 1.332043381176530 , w19u4 = 1.713996742658584 , w19u5 = -0.373264985937916

, r20 = -1.69789482032 , w20u0 = 0.383133871392605 , w20u1 = 0.015347897087061 , w20u2 = -2.302005222378397 ,

w20u3 = 2.258847893360300 , w20u4 = -0.204158996903534 , w20u5 = 0.835244067404298 , r21 = 0.384017093505 ,

w21u0 = 0.171086130970682 , w21u1 = 0.117975254904918 , w21u2 = 0.012538692313811 , w21u3 = -0.098574342062176

, w21u4 = 0.047873685274962 , w21u5 = 0.020125416600241 , r22 = 0.0787880520089 , w22u0 = 1.550880961081798 ,

w22u1 = -0.375530640951121 , w22u2 = -0.927842099064458 , w22u3 = 2.008520340008002 , w22u4 = 2.865152210025270

, w22u5 = 2.420266739322893 , r23 = 88.4077303872 , w23u0 = 0.043164876043188 , w23u1 = -2.812997139678137 ,

w23u2 = 0.000899626043813 , w23u3 = 0.261917102523249 , w23u4 = 0.063491705421291 , w23u5 = 0.033646632621666

, r24 = 83.0840659929 , w24u0 = -0.095902121388073 , w24u1 = 0.021647048291347 , w24u2 = -2.759567053856676 ,

w24u3 = -0.111774438918134 , w24u4 = -0.125934278184276 , w24u5 = -0.025410207737020 , r25 = 0.0978453575197 ,

w25u0 = 0.227131481116360 , w25u1 = -0.188938661636874 , w25u2 = -0.583989672828324 , w25u3 = 0.307803787568596

, w25u4 = 0.486433315321691 , w25u5 = 1.109821017846900 , r26 = -1.74305265946d-05 , w26u0 = 1.282823401435111

, w26u1 = -0.865609011098150 , w26u2 = -0.455951192551653 , w26u3 = 1.545205174831154 , w26u4 = 2.022700924773130

, w26u5 = 4.471709053136204 , r27 = -2.6421398437d-05 , w27u0 = 0.017407487169398 , w27u1 = 0.317476283497371 ,

w27u2 = 0.305268552305961 , w27u3 = 0.095006445966786 , w27u4 = 0.523027595566540 , w27u5 = 2.616423901372888

, r28 = -210.971260264 , w28u0 = -0.165263198261548 , w28u1 = -1.146401256502281 , w28u2 = 0.070882129322945 ,

w28u3 = -1.228952275688558 , w28u4 = -1.039116651352781 , w28u5 = -2.398502996627870 , r29 = -0.0255407682085 ,

w29u0 = -1.160045828985586 , w29u1 = -0.659401130410642 , w29u2 = -0.523603803711810 , w29u3 = -2.661474216225630

, w29u4 = -9.886691750140885 , w29u5 = -2.971153112533248 , r30 = -0.0168125160283 , w30u0 = -1.246485138475861

, w30u1 = 1.017831868166547 , w30u2 = -3.086972470344355 , w30u3 = -3.349372171643084 , w30u4 = -4.227043136038438

, w30u5 = 0.394889104578549 , r31 = 2.63749341372 , w31u0 = -1.508726798661946 , w31u1 = -0.320041654918139 ,

w31u2 = 0.139307877166800 , w31u3 = -0.532148534749809 , w31u4 = 0.620808028577890 , w31u5 = -0.530400990769081

, r32 = 62.5162615994 , w32u0 = 0.328359883553525 , w32u1 = -0.128228997528182 , w32u2 = -3.133806345277390

, w32u3 = 0.927098864772183 , w32u4 = 0.919598565019283 , w32u5 = -0.504669666075170 , r33 = -0.0719322621191 ,

w33u0 = 0.274809816131287 , w33u1 = -0.512128060357561 , w33u2 = -1.104723805124439 , w33u3 = 1.494170069693616

, w33u4 = 0.410324821805319 , w33u5 = 1.392674787384642 , r34 = -0.00942804949407 , w34u0 = 1.474103316838892 ,

w34u1 = -0.495948312237105 , w34u2 = -0.789158585933010 , w34u3 = 1.792539091490017 , w34u4 = 2.602997318279916

, w34u5 = 3.047005339073372 , r35 = -1.87408969352d-06 , w35u0 = 0.716522201031320 , w35u1 = -0.698296528003879

, w35u2 = -0.411543420915645 , w35u3 = -1.031047960123738 , w35u4 = 0.856960908280349 , w35u5 = 3.737185019577849

, r36 = 1.73770321135 , w36u0 = 0.421285282611504 , w36u1 = -0.031089974053124 , w36u2 = -2.466191601532332 ,

w36u3 = 2.156647504505738 , w36u4 = 0.085301891112349 , w36u5 = 0.945154335369147 , r37 = 9.42376598363d-07 ,

w37u0 = 0.036020032487762 , w37u1 = 0.128741171491332 , w37u2 = 0.343974361128390 , w37u3 = -0.051870278955370

, w37u4 = 0.189035099123102 , w37u5 = 3.352607936513188 , r38 = -0.202329388784 , w38u0 = -0.175131616252240 ,

w38u1 = -0.067661788615826 , w38u2 = -0.658089028073966 , w38u3 = 3.229904048316191 , w38u4 = -0.068604713259307

, w38u5 = 0.444271565074747 , r39 = -27.2262624039 , w39u0 = 1.290539453381701 , w39u1 = 0.417622481103595 ,

w39u2 = -1.853729362389350 , w39u3 = 3.142287141819980 , w39u4 = 4.247125342121761 , w39u5 = -1.338122338383461

, r40 = 6.06565889874d-05 , w40u0 = -0.356739851924167 , w40u1 = -0.718895846391489 , w40u2 = 0.011436032503426

, w40u3 = -1.296836126060803 , w40u4 = -8.705209970969264 , w40u5 = 0.011661557249701 , r41 = -1.88605543016 ,

w41u0 = -0.737235745529193 , w41u1 = -0.632319241554324 , w41u2 = 0.350859159765471 , w41u3 = -0.533028599702045

, w41u4 = 0.275308841028644 , w41u5 = -0.626898283414772 , r42 = 0.0032801511183 , w42u0 = -0.153896127469758 ,
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w42u1 = 0.085758726422497 , w42u2 = -1.075955498540534 , w42u3 = 1.387548173902996 , w42u4 = -2.726076766481954

, w42u5 = 1.535934711709153 , r43 = -52.2829924163 , w43u0 = 0.278424270104819 , w43u1 = 0.069746992880547 ,

w43u2 = -2.063440458468953 , w43u3 = 0.829186148005168 , w43u4 = 5.489996132621749 , w43u5 = -0.696086406491536

, r44 = 1.35158007085 , w44u0 = 1.670005163365882 , w44u1 = -0.144265365169987 , w44u2 = -1.210793619252976

, w44u3 = 2.524941188071885 , w44u4 = 3.450433384216361 , w44u5 = 1.090077825917100 , r45 = 29.3718699407 ,

w45u0 = 0.124029093305129 , w45u1 = -1.443237770331561 , w45u2 = 0.000142660829358 , w45u3 = 0.860051663031763

, w45u4 = 0.516370524882737 , w45u5 = -0.594233485218134 , r46 = -0.158846632236 , w46u0 = 0.036259021528496 ,

w46u1 = -1.022049295401776 , w46u2 = -0.304790535175516 , w46u3 = -1.940500786749442 , w46u4 = -2.522539000148388

, w46u5 = -0.137425458272470 , r47 = -0.000151392397125 , w47u0 = 2.469178265674428 , w47u1 = -2.098194001157384

, w47u2 = -1.863692926987774 , w47u3 = -1.069154722064659 , w47u4 = 1.203094874721098 , w47u5 = 3.349836830452504

, r48 = 0.000585572631915 , w48u0 = 1.385324023324369 , w48u1 = -0.649684413771371 , w48u2 = -0.633107569958711

, w48u3 = 1.617236766169625 , w48u4 = 2.329139568682493 , w48u5 = 3.716316428590288 , r49 = 12.7686345859 ,

w49u0 = 0.258051196166153 , w49u1 = -0.568313683238482 , w49u2 = -1.590247034042726 , w49u3 = 0.359021653383828

, w49u4 = 5.269992469834441 , w49u5 = -0.203559666537561 , r50 = -0.00120439526935 , w50u0 = 0.184632923468849

, w50u1 = -0.170168583064895 , w50u2 = -0.480434396416797 , w50u3 = -0.656241740312302 , w50u4 = 0.542502376969987

, w50u5 = 2.270702731215742 , r51 = 0.0158692264252 , w51u0 = -0.191173769357014 , w51u1 = -0.988146477963124 ,

w51u2 = -0.269748430142647 , w51u3 = -2.605323181965038 , w51u4 = -2.683599695188490 , w51u5 = 0.442675074826798

, r52 = 486.775797863 , w52u0 = -0.049011466705645 , w52u1 = -1.193369083165663 , w52u2 = 0.071926610412018 ,

w52u3 = -0.927130200993672 , w52u4 = -1.108675270090148 , w52u5 = -2.216980796525117 , r53 = 2.25750378047d-

06 , w53u0 = -0.039811148297532 , w53u1 = -1.047139970812603 , w53u2 = 0.029824632534913 , w53u3 = -

11.179585764301164 , w53u4 = -1.470158012106983 , w53u5 = 0.225359265647942 , r54 = -0.000458291361587 , w54u0

= -0.010430799768616 , w54u1 = 1.027072165347232 , w54u2 = 0.213807628598379 , w54u3 = -0.557899336476453 ,

w54u4 = 0.752969647295462 , w54u5 = 0.961552008451534 , r55 = 0.443039464606 , w55u0 = 1.036822182268231 ,

w55u1 = -0.933627749142066 , w55u2 = -0.449056185454432 , w55u3 = -0.115111528763321 , w55u4 = -0.368083928045229

, w55u5 = -1.023338546002750 , r56 = -24.4097346861 , w56u0 = 0.483611416467720 , w56u1 = -0.668030613292850 ,

w56u2 = -0.921591644726321 , w56u3 = 1.565109452422065 , w56u4 = 1.728041607852819 , w56u5 = -0.295424399695306

, r57 = 0.000969764772141 , w57u0 = -0.158609506942595 , w57u1 = 1.262768871053726 , w57u2 = -0.005300647727663

, w57u3 = -1.203899020384625 , w57u4 = 0.598616691513922 , w57u5 = 0.261437430166769 , r58 = 40.2907155695 ,

w58u0 = -0.138503656993572 , w58u1 = -2.259254550555071 , w58u2 = -0.277723433059147 , w58u3 = -0.519871128458581

, w58u4 = 0.151208826140915 , w58u5 = -0.282172640744977 , r59 = -885.888577215 , w59u0 = 0.195977016598176 ,

w59u1 = 0.249061374131947 , w59u2 = -3.366034837158871 , w59u3 = 0.683127693267584 , w59u4 = -3.795421666172456

, w59u5 = -1.329207804034171 , r60 = 12.4848776895 , w60u0 = -2.900917698831391 , w60u1 = 0.084521348214542 ,

w60u2 = 0.021967315137997 , w60u3 = 0.077063117514900 , w60u4 = -0.004360094467221 , w60u5 = 0.042951582135449

, r61 = -0.0806723574819 , w61u0 = -3.395982656507708 , w61u1 = 1.238820782035821 , w61u2 = 0.614144621369395 ,

w61u3 = 1.153647907607316 , w61u4 = -0.360232884491086 , w61u5 = 0.110569620791515 , r62 = -7.59254214055d-05 ,

w62u0 = 0.358380155310094 , w62u1 = -0.364877398419629 , w62u2 = 2.012202343401440 , w62u3 = 0.408653341254073

, w62u4 = -0.016511016616444 , w62u5 = 0.162256516895884 , r63 = -0.398206375634 , w63u0 = -0.363884460552878 ,

w63u1 = -1.412345992782474 , w63u2 = 0.383988440878303 , w63u3 = -5.314807024829985 , w63u4 = -2.947262708894936

, w63u5 = -1.460740181772298 , r64 = 1.42663263585 , w64u0 = 0.350611805932449 , w64u1 = -0.855141918286774 ,

w64u2 = -0.844618832442666 , w64u3 = -0.809908676803381 , w64u4 = -3.382813629833590 , w64u5 = -0.254881598044187

, r65 = 80.6381176153 , w65u0 = 0.215129790234729 , w65u1 = 0.241114612092929 , w65u2 = -2.356025781938511 ,

w65u3 = 0.973149813181353 , w65u4 = 5.963303334126470 , w65u5 = -0.979981315952972 , r66 = 0.000137235310169 ,
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w66u0 = 0.429093897140132 , w66u1 = -0.514965299137968 , w66u2 = 1.717870518004942 , w66u3 = 0.744833828623217

, w66u4 = 0.174739202906955 , w66u5 = 0.442559196567081 , r67 = -0.249827081841 , w67u0 = 0.139538355117664 ,

w67u1 = 1.422024855707526 , w67u2 = -2.827792395992360 , w67u3 = -0.466334043267081 , w67u4 = 0.303737324487712

, w67u5 = -0.245859191910363 , r68 = -169.993011768 , w68u0 = -0.028367417364525 , w68u1 = -1.208327031749608 ,

w68u2 = 0.085601541995079 , w68u3 = -0.622991872123809 , w68u4 = -1.422664834955042 , w68u5 = -2.197961136038069

, r69 = 58.8792500161 , w69u0 = 0.277854417060480 , w69u1 = -1.136487866719021 , w69u2 = -0.601521759157689 ,

w69u3 = 1.217306859225153 , w69u4 = 1.527257696966378 , w69u5 = -0.174488167334597 , r70 = -2.86191326596d-07 ,

w70u0 = 1.121418571091532 , w70u1 = -1.601810793265924 , w70u2 = 0.009830214692608 , w70u3 = -7.606406214300840

, w70u4 = -2.244711517747978 , w70u5 = 1.127421920293229 , r71 = -1.1392881138 , w71u0 = 0.439013165929856 ,

w71u1 = -0.876793314583145 , w71u2 = -0.978300712417195 , w71u3 = -0.814034289083154 , w71u4 = -3.561495319708979

, w71u5 = -0.237618096675690 , r72 = 13.7267389737 , w72u0 = 1.573525065909979 , w72u1 = 0.230839683737639 ,

w72u2 = -1.646815261663597 , w72u3 = 3.080335068960788 , w72u4 = 4.162950985780570 , w72u5 = -0.641133634531616

, r73 = 4.87913642217d-05 , w73u0 = 0.225382142475718 , w73u1 = -0.207849358865932 , w73u2 = -0.385308248740076

, w73u3 = -1.092578037680616 , w73u4 = 0.512592053309786 , w73u5 = 3.152384750458141 , r74 = -51.395369559 ,

w74u0 = 0.162936178873633 , w74u1 = -1.640149559405016 , w74u2 = -0.099784991996545 , w74u3 = 0.748756369626001

, w74u4 = 0.539915352725742 , w74u5 = -0.241971410269628 , r75 = 26.2553824806 , w75u0 = 0.280998863144045 ,

w75u1 = -0.162294790644787 , w75u2 = -1.079605181464803 , w75u3 = 1.925790930303141 , w75u4 = 2.294567729044204

, w75u5 = -0.821800825219680 , r76 = -0.00848668195271 , w76u0 = 0.166327175489812 , w76u1 = 0.369107740371492

, w76u2 = -0.300661930558245 , w76u3 = 1.084015521399461 , w76u4 = 0.310937532127148 , w76u5 = 0.926421390002950

, r77 = -0.00574769018717 , w77u0 = -0.159614552910174 , w77u1 = -0.030439634025100 , w77u2 = -0.931496340603121

, w77u3 = 1.290869091944860 , w77u4 = -2.757881922574533 , w77u5 = 1.348223031286090 , r78 = 5.73933095597d-05

, w78u0 = 0.605613429872508 , w78u1 = 0.810359167475118 , w78u2 = -0.022376208106600 , w78u3 = -1.460670759454577

, w78u4 = 1.202595730149319 , w78u5 = 0.958758827609009 , r79 = 3.54701191404 , w79u0 = -0.090406804443713 ,

w79u1 = -0.485789812050632 , w79u2 = -0.291023169422437 , w79u3 = 0.650332579265194 , w79u4 = 1.613378317275738

, w79u5 = -0.196801249137671 , c = 0.005883354

end-parameter-section

# Label section is exactly same as Appendix B

# HAMILTONIAN-SECTION is also same as Appendix B

HAMILTONIAN-SECTION r1i usediag —————————– modes | rch —————————– -M11/2.0 | dq2̂

0.164216 | rq12̂ —————————– end-hamiltonian-section HAMILTONIAN-SECTION r2i usediag —————

————– modes | rcf —————————– -M22/2.0 | dq2̂ 0.157972 | rq22̂ —————————– end-hamiltonian-

section HAMILTONIAN-SECTION r3i usediag —————————– modes | rco —————————– -M33/2.0 |

dq2̂ 0.204523 | rq32̂ —————————– end-hamiltonian-section HAMILTONIAN-SECTION theta1 usediag ——

———————– modes | ohco —————————– coeff3 | dq*q*qs12̂*dq coeff4 | q coeff5 | dq*qs12̂*dq 0.0261503 | 1

0.123836 | q 0.192181 | q2̂ 0.160517 | q3̂ 0.129113 | q4̂ —————————– end-hamiltonian-section HAMILTONIAN-

SECTION theta2 usediag —————————– modes | ofco —————————– coef17 | 1 coef16 | qs1 coef15 | q

coeff6 | dq*q*qs12̂*dq coeff7 | q coeff8 | dq*qs12̂*dq 0.0211551 | 1 0.140332 | q 0.29972 | q2̂ 0.273869 | q3̂ 0.202697

| q4̂ —————————– end-hamiltonian-section HAMILTONIAN-SECTION phii usediag —————————–

modes | phi —————————- coeff1 | dq2̂ coeff2 | dq*cos*dq 0.608371 | 1 -0.601016 | q 0.15261 | q2̂ 0.00866992 |

q3̂ -0.0049585 | q4̂ —————————- end-hamiltonian-section end-operator
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