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Abstract 

In many applications, it is desired to separate unwanted fine particulates from a liquid by gravity 

settling.  An efficient separation, however, will be feasible only if a combination of aggregation 

and sedimentation occurs.  To understand the kinetics of such a process, a mathematical model 

that accounted for aggregation and sedimentation was developed.  The simulation was based on 

Smoluchowski’s equation of population balance, with the collision frequency determined by 

Brownian motion and differential settling, while treating the aggregates as fractal objects as the 

particles collide and aggregate.  One of the most important issues here is that aggregating 

systems, especially those encountered in particle technology and separation processes, often 

involve non-uniform particle distributions.  Situations with evenly distributed aggregates are very 

rare in practice, but this continues to be the “default assumption” in many theoretical treatments.  

This study addressed this issue by developing a series of experiments and numerical model to 

properly account for non-uniform particle sizes and their spatial variations.   

Our results showed that the rate of settling could be improved significantly if the particles 

aggregated (the settling time may be reduced from hours to minutes).  Experimentally, we 

showed that, depending on the strength of interaction between the particles, different settling 

regimes were observed.  It was also observed that under certain experimental conditions, an 

initial ‘induction time’ appeared before the apparent onset of sedimentation.  It appears that the 

particles required some ‘waiting time’ before commencement of aggregation.  Our simulations 

showed that the observed ‘induction period’ may in fact be a kinetic phenomenon that was 

independent of the nature of the inter-particle forces (i.e. on the microscopic scale, the particles 

began to aggregate immediately without any delay).  Our simulation showed that inter-particle 
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attraction could significantly affect the rate of aggregation and sedimentation.  Larger attractive 

forces also resulted in a perceptible clear liquid-suspension interface; as such forces diminished, 

the clear liquid-suspension interface became more diffuse and eventually appeared as a gradual 

concentration gradient.  A novel approach was used to predict formation of this ‘mud line.’   

We have also demonstrated that sedimentation kinetics are largely insensitive to the initial 

particle size distribution; an explanation for this observation is discussed.   
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1 Introduction 

1.1 Aggregation and Sedimentation of fine solids 

Separation of fine particles from a fluid is one of the important processes in many industrial 

applications (e.g. in water treatment, mineral processing, and aerosol technology).  There are 

several methods to separate particulates from a fluid [1]–[3].  However, when it comes to fine 

particles, most methods are not efficient and sufficiently reliable.  The fine solids are typically in 

the colloidal or micron-sized range; they are not amenable to the usual methods of separation 

such as centrifugation or screening [2].  The removal of these solids from the fluid, however, can 

be accomplished through sedimentation under certain conditions.  Sedimentation is the simplest 

and cheapest form of separation processes; it is the settling of small particles in a fluid under 

gravity.  Despite its simplicity, it may be used to separate fine particulates.  The main challenge 

to the separation of fine particulates — due to the small size — can be identified in two 

categories: (a) colloidal (sub-micron) particles are susceptible to thermal agitation and can be 

suspended indefinitely (an equilibrium situation); (b) even when the particles are larger than 

~1µm, the settling velocity can be so slow that, on the time scales of the separation process, the 

particles are effectively ‘neutrally buoyant.’  In both situations, the remedy is to cause the 

particles to aggregate, as larger entities are not prone to Brownian motions and also will settle 

much faster.   

Aggregation is a process where two or more suspended particles in a fluid combine together to 

form a larger particle.  Efficient separation by sedimentation can be achieved following 

significant aggregation of particulates.  The entire process (i.e. aggregation and sedimentation 

together) is carried out in a settling vessel.   
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The design of settling vessels must account for many parameters, but the key element is the 

settling velocity of the particulates, which is determined by the size of the particles and 

properties of the fluid.  Designers size the vessels such that they ensure that the particulates have 

enough time to be removed from the fluid.  If the particles, for any reason, do not aggregate, then 

only the initial size distribution of the particles matters; under this condition, the process time 

should be impractically long to allow enough settling time for the particles to be removed.  On 

the contrary, if particles are able to aggregate, the settling time requirement, and therefore the 

size of the vessel will be reduced significantly.  Therefore, it is necessary to investigate how the 

aggregation for a certain system can be improved.  An understanding of the underlying 

mechanisms of aggregation will provide valuable information in efforts to enhance the 

aggregation. 

In addition to mechanisms, the kinetics of aggregation should be taken into account in the design 

of the vessel.  Kinetic study includes investigations of how different experimental conditions can 

influence the aggregation and, in turn, the rate of separation.  Knowledge of process kinetics will 

be necessary to be able to design the equipment proficiently.   

1.2 Motivation of this project 

Canada has, in the form of oil sands, one of the largest petroleum resources in the world.  These 

oil sands deposits are found mostly in the province of Alberta; it consists of a mixture of bitumen 

(a heavy form of crude oil [4]), silica sands, clay minerals and trace amounts of connate water.  

Such deposits are suitable for large-scale surface mining, in which the ores are recovered using 

open-pit mining technology.  After it is mined, the ore is ‘slurried’ in massive amounts of water, 

and the bitumen is eventually separated from the sand through a flotation process.  Despite the 

economic benefits brought on by the oil sands industry, the environmental impacts are also 

http://en.wikipedia.org/wiki/Surface_mining
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considerable due to the extremely high demand for fresh water.  The huge amount of water 

consumed everyday ends up in tailings ponds.  These ponds in Northern Alberta are considered 

one of the largest human-made structures in the world that can be seen from space.  With 

planned increases in oil production in the coming years (by up to five times the current level), 

this environmental impact will certainly become more serious.  In view of this, an alternative 

solvent-based (or ‘non-aqueous’) extraction technique is proposed to replace the current water-

based method.  The basic principles of such a non-aqueous technology are simple:  Mined oil 

sands are first mixed with an organic solvent in which bitumen is soluble.  This mixture is then 

put through separation vessels where coarse sand grains and other solid particles are removed 

(Figure 1.1).  The product of this non-aqueous process, as shown in the Figure 1.1, is solvent-

diluted bitumen.  This product stream should ideally be free of any suspended solids.  

Unfortunately, in reality, it is unavoidable to see fine solids entrained in the diluted bitumen (i.e. 

product) stream.  These fine solids are highly undesirable as they can lead to fouling problems 

downstream.   

 

Figure 1.1. Schematic of the separation of coarse solids from solvent-diluted oil sands  

 

product:  

diluted bitumen 
feed:  

solvent-diluted 

 oil sands 

reject solids 
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Various non-aqueous processes had been proposed in the past decades for bitumen extraction, 

but no process design has progressed beyond large scale pilot tests.  The two main obstacles to 

all the proposed non-aqueous processes are:   

1. Entrained fine solids in the oil phase (i.e. diluted bitumen) can result in the fouling of 

pipelines and catalysts in downstream upgrading facilities.  

2. The residual oil attached to the reject sand grains (underflow stream in Figure 1.1) will 

result in solvent loss and large scale environmental pollution.   

To develop a successful non-aqueous (i.e. solvent-based) extraction process, the mechanisms 

which underlie the above two obstacles should be understood before development of any 

commercial operation.   

One of the applications of this research will be on the basic science which underlies the first 

challenge: the removal of suspended fine solids from a hydrocarbon medium.  The nature of the 

organic solvent plays a central role in the destabilization of suspended solids in diluted bitumen.  

A discussion of the background and motivation of this can be found in an earlier paper [5].   

 

1.3 Thesis Objectives 

A successful gravity separation process requires substantial aggregation followed by 

sedimentation.  Here, sedimentation is the collective behaviour of a large number of aggregating 

and settling particles.  Despite extensive studies in the literature regarding aggregation or 

sedimentation, very little work was done that consider both aspects at the same time.  The overall 

dynamics that is crucial to evaluating the performance of a settling vessel is not yet understood.  
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There is a lack of knowledge in the literature to relate these two components (aggregation and 

sedimentation).  The purpose of this research is to bridge the gap, and study the collective 

behaviour of sedimentation from first principles.  The study will be then extended to examine the 

kinetics of the sedimentation in detail.   

Empirical experiments on sedimentation produce valuable data, but they will not provide 

sufficient information required for a comprehensive kinetic study.  A mathematical model which 

captures the intricate details of the phenomena seems inevitable.  As a result, the study has been 

conducted by means of two approaches: (1) empirical experiments, and (2) numerical modeling.   

The main objectives of this thesis can be listed as below: 

 To conduct the experiments to measure the overall rates of settling under different 

conditions (including the nature of the suspension, fluid properties and the characteristics 

of particles such as size distribution).   

 To create a model to simulate the aggregation of settling particles.  All key factors should 

be considered in the model to minimize the simplifying assumptions.   

 To use the model to facilitate experimental development.   

 To use the modeling results to gain detailed insight into the sedimentation process.  

 To predict the optimal condition (e.g. suspension medium properties) for the aggregation 

of fine particles.   

 To use the results to identify the influence of different attributes (e.g. initial size 

distribution of the particles) on the design of separation vessels.   
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1.4 Thesis outline 

This thesis is organized as follows:  Given our objective of study discussed in Chapter 1, Chapter 

2 reviews the relevant literature.  A brief discussion of the background theory is presented in 

Chapter 2.  Experimental procedures will be presented in Chapter 3.  Chapter 4 is on the 

modeling procedure, and how a numerical method was employed to solve the equations.  All the 

governing equations, along with the associated assumptions, will be presented in this chapter.  

Chapter 5 will be devoted to the preliminary results and brief discussion on model validation.  

The settling behaviour of a suspension, and the kinetics study and other relevant settling 

observables, will be addressed in Chapter 6.  Chapter 7 will be dedicated to initial size 

distribution as it is the key consideration in the design of settling vessels.  The conclusions will 

be presented in Chapter 8.   
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2 Literature review 

2.1 Separation of Fine Particles from a fluid 

Solid particles are found in many different types of suspensions.  They come in various 

compositions, shapes and sizes.  Solid particles suspended in gases (smoke) or liquids 

(dispersions) are the most common examples.  Suspensions of very fine particles in a fluid (gas 

or liquid) are called colloidal dispersions.  The size range of particles in the dispersed phase is 

roughly between 1 nm to 1µm — still much larger than the molecules of the dispersion medium.  

Such dispersions have been the subject of several studies in many fields of science [6]. 

In many applications, it is desired to have particles remain suspended in a fluid.  In many others, 

the particulates are required to be separated from the fluid.  The particles may contain important 

minerals, or they may be pollutants that must be removed.  It is a very important phenomenon 

that underlies a wide variety of science application, such as atmospheric sciences and air 

pollution control, water and waste water treatment, the oil industry, etc.  For example, in air 

pollution control, it is desired to remove any particulates from air (e.g. dust particles). Water or 

wastewaters are required to be free of any suspended particles.  In a refinery, the product stream 

should ideally be free of any suspended solids as they may, for example, result in fouling 

problems downstream.  Various methods and equipment have been developed in many industries 

to remove solids [7],[1]; settling tanks, thickeners, or centrifuges are some examples. The 

simplest and cheapest method is sedimentation.   
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Separation of solids from a fluid by gravitational sedimentation has long been used in many 

applications.  Sedimentation is the settling of particles in a fluid under gravity.  The process is 

based on the density difference between the two phases.  It is an easy and cheap technique to 

separate particulates, and the equipment is often small and inexpensive; they can be used to 

process large amount of materials as they can be incorporated in several stages or in parallel.  

The simplest configuration is that the suspension enters from a side and leaves from another side.  

As the fluid flows through the vessel, the particles fall out and accumulate at the bottom.   

If the particles are fine ( 10µm) and/or the density difference is small, the settling rate is quite 

low so that larger and more expensive equipment will be required to separate solids efficiently.  

In this case, the remedy is to make the particles aggregate.   

 

2.2 Aggregation 

Aggregation is a process in which two or more particles combine together to form a larger entity.  

The total number of particles reduces in aggregation (with each aggregate counting as one 

“particle”), while the total mass remains conserved.  This is an important process in many fields 

relevant to the process of fine particle separation, and extensive studies can be found in the 

literature regarding this phenomenon [8], [9].  An understanding of the underlying mechanisms 

of aggregation will provide valuable information in efforts to remove the fine particles more 

efficiently. To illustrate this matter, let us look into an example: Experiments revealed that the 

choice of the suspending medium is one of the most important parameter affecting the rate of 

settling [5]; it is proposed that it has very strong effects on the aggregation of the fine solids. It is 

because we know that in the absence of aggregation, the type of suspending liquid has only a 
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very minor effect on the settling rate (e.g. Stokes velocity). Another example would be the water 

treatment; the chemistry of the medium affects the aggregation rate. The concentration of salt, 

pH, etc. would influence the aggregation and sedimentation.  

The aggregation process is usually assumed to include two stages: First the particles are brought 

about together by collisions and second they should be held in contact by surface forces. In the 

following sections the mechanism of aggregation will be discussed.  Here, we start with the 

inter-particle forces as it is the most important element in aggregation.   

2.2.1 Inter particle forces 

Several types of interactions between particles influence many of the important properties of 

solids suspensions [10].  These forces are short-ranged, in that their extents of influence are often 

much less than the size of the particles.  Colloidal interactions have two major effects on the 

aggregation process:  First, if strong repulsion exists between the particles, they repel each other 

and aggregation will occur only very slowly, if at all.  In other words, the stability of suspended 

particles against aggregation is governed by the colloidal forces. Much less clear, but just as 

important, is the effect of colloid interactions on the strength of the aggregates; this property will 

determine whether the aggregates would break up under hydrodynamic shear forces.  A brief 

description of the forces is given below:   

Van der Waals Attraction 

Van der Waals forces play a very important role in the interaction of colloidal particles; these 

forces often cause particles to aggregate in a suspension.  The spontaneous electrical polarization 

is the source of these attractive forces.  The magnitude of these forces depends on the properties 
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of the particles and of the intervening medium.  Although at times repulsive, the van der Waals 

interaction between similar materials in a liquid is always attractive.   

Electrical Double Layer Repulsion 

When immersed in water, most particle surfaces are charged.  If the aqueous solution contains 

dissolved ions (i.e. if it were an electrolyte), there would be an accumulation of counter ions 

around the particles to form an ‘electrical double layer’.  A part of these counter ions is 

compacted at the particle surface and forms a ‘Stern layer,’ while the remainder is distributed in 

the so-called diffuse layer, where the ions can move about via Brownian motions.  As two 

particles come into close proximity, the electric double layers will be compressed.  This results 

in a repulsive force which can stabilize particles in aqueous suspension.   

Polymer Bridging 

Adsorbed macromolecules, such as polymers, may play an important role in promoting 

aggregation through the so-called bridging mechanism.  If polymers with an affinity for the 

particle surfaces were present in the solution, they can attach to two or more particles (i.e. 

forming a “bridge”) and cause them to aggregate.  However, the polymer needs to adsorb in such 

a way that a significant portion of the molecule will extend some distance into the continuous 

medium.  In other words, the suspending liquid should be a “good solvent” for the polymer.   

In this study, we have not planned to use polymers as an additive and hence the influence of 

polymer bridging on aggregation will not be studied.   
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Steric Repulsion 

Although there is no significant double layer repulsion between surfaces in non-aqueous 

systems, stabilizing forces due to adsorption of macromolecules (e.g. polymers) may have to be 

included.  As mentioned above, polymers at low surface concentrations could increase the 

aggregation rate through cross-bridging.  In contrast, full (or close to full) surface adsorption can 

result in the opposite effect, i.e. enhanced stability by creating repulsive forces known as steric 

stabilization [11]. For example, in bitumen diluted systems, these forces arise from the 

adsorption of asphaltenes, which influence the process in a way similar to complete surface 

coverage by polymers.  The larger molecules of asphaltenes can adsorb on surfaces in such a 

way that they extend some distance into the continuous medium, forming tails and loops which 

give enhanced stability against aggregation (Figure 2.1).  The degree of stabilization depends on 

the thickness of the adsorbed layer relative to the particle size, and on the solvency of the 

medium for the stabilizing segments.   

On the microscopic scale, very little is known about the surface forces of colloidal particles in oil 

sands systems.  The two familiar types of colloidal interactions — the attractive van der Waals 

forces and the repulsive double layer interaction — form the basis of the well-known DLVO 

theory of colloid stability.  In this theory, the repulsive force acts as a dispersion stabilizer, while 

the attractive force destabilizes the dispersed phase.  
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Figure 2.1. Prevention of particle contact by adsorbed macromolecules on solid surface [12] 

 

2.2.2 Mechanism of aggregation 

A key element to understanding the mechanics of aggregation is to determine how individual 

particles come into contact, and then remain together, to make a stable aggregate in various 

environments.  Therefore, aggregation of particles can conceptually be divided into two steps: 

transport, which is the bringing of two particles into close contact, followed by destabilization, 

which is adhesion of the particles via short-range colloidal forces.   

2.2.2.1 Collision frequency 

The collision frequency, denoted      , depends on the physical environment such as temperature, 

viscosity, shear stress and size of particles.  It is a parameter reflecting how frequently particles 

of size   encounter and collide with particles of size  .  It is generally accepted that there are three 

mechanisms which cause particle collision: Brownian motion (perikinetic aggregation), fluid 

shear (orthokinetic aggregation), and differential settling [8], [9], [12].   

Brownian motion is the random movement of colloidal particles in a fluid, which can have the 

effect of bringing two entities together via diffusion.  If the suspension is subjected to fluid shear, 

particle transport will be brought about by fluid motion, which can greatly increase the rate of 
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collision; this is called orthokinetic aggregation.  Differential settling occurs when larger 

aggregates settle more rapidly than smaller ones; such relative motion can result again in 

particles collisions.  For simple cases, with the particles considered spherical, the collision 

frequency is calculated as follows [12]:   

                                    
   

  

(     )
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)       (     )

 
(     )                                                       

In the above expressions,    is the radius of particle   and   is the velocity gradient or shear rate.  

In our settling study, no shear is applied to the suspension.  As such, collision between particles 

will result only from Brownian motion and differential settling.  Brownian motion is often the 

dominant mechanism of transport for colloidal (i.e. submicron) particles.  As the aggregates 

grow in size, however, differential settling gradually becomes the more important transport 

mechanism.   

2.2.2.2 Collision efficiency 

Not all collisions result in successful aggregation.  It depends whether the suspension is 

destabilized or not. The fraction of collisions which result in flocculation, called the collision 

efficiency, is usually denoted by the symbol    .  In the limit of very large number of collisions, 

    is defined as  
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Aggregation is not possible if there is strong repulsion between the particles — in which case the 

suspension is stable, and   is equal to zero.  On the other hand, the collision efficiency 

approaches unity, and the suspension is destabilized when there is strong attraction between 

particles such that they are likely to stick to each other on contact.  It is a function of the surface 

properties of the particles and colloidal interactions [13].  The collision efficiency thus should be 

incorporated into the rate expressions.   

The collision efficiency and the stability of suspended particles against aggregation are usually 

assumed independent of the transport mechanism.  It is dependent only on inter-particle forces.  

There are, nevertheless, observations that suggest the contrary [14].   

2.2.3 Structure of aggregates 

When two particles collide and aggregate, the simplest picture is that spherical particles come 

together to form a larger sphere of the same total volume.  Although unrealistic except for the 

coalescence of liquid drops, this scenario has often been assumed in many treatments of 

aggregation kinetics.  In reality, the aggregate, which is formed from many primary particles, is 

typically of a branched and random structure; the “compactness” of an aggregate can be 

characterized by its fractal dimension (see Figure 2.2) [15], [16].   

 

Figure 2.2. Fractal shape of aggregates: (a) packed, and (b) loose structure (modified from [17]) 
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For a solid object, its mass   is proportional to the third power of its characteristic length   (i.e. 

    ).  For fractal objects, however, the exponent is less than 3.  The mass of a fractal object 

scales as  

      

where fd  is the fractal dimension.  Figure 2.3 illustrates how the fractal dimension can be 

measured experimentally.  Fractal dimension indicates how densely the primary particles are 

distributed in the aggregate.  The fractal dimension can range of 1 (for rod-like objects) to 3 (for 

solid objects); a denser packed aggregate has higher fractal dimension.  The fractal dimension is 

an important parameter as it determines the effective size and settling velocity of non-compact 

aggregates [18].   

 

Figure 2.3.  Schematic illustration on how fractal dimension is calculated under various 

conditions [12].   

 

Several experimental studies of the fractal nature of aggregates have been reported.  The fractal 

dimension has been measured by various techniques, such as image analysis [19]–[21], settling 
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velocity measurement [22], [23], Xray or light scattering [24], [25], and electron microscopy 

[17].  Experiments show that fractal dimension of aggregates formed from smaller particles 

depends on the transport mechanism which is involved in the aggregation process.  Ref [22], [26] 

reported that fluid shear (i.e. orthokinetic aggregation) results in creation of aggregates with 

fractal dimension greater than 2.4, whereas aggregates created by differential sedimentation has 

lower fractal dimension — in the range of 1.6 to 2.3.  It is also reported that the fractal dimension 

is between 1.6 and 1.9 for rapid aggregation (i.e. when      ), and between 2 and 2.3 for slow 

aggregation (i.e.      ) [12], [27].  Lin et al. [28] showed that in the regime of slow 

aggregation (or reaction-limited aggregation), the aggregates had a fractal dimension        

[28].   

 

2.3 Previous studies 

Despite extensive studies in the literature regarding aggregation [29]–[33] or sedimentation [7], 

[34], the results were limited to either process; very little work was done that consider both 

aspects at the same time.  Furthermore, the solution were for special cases or they were carried 

out with simplifying assumptions which apply only to highly idealized — even unrealistic — 

situations [35]–[38].  A few studies, for example, assumed that aggregation was driven by 

differential settling (which implied sedimentation), but the number densities of the aggregates 

were assumed independent of the fluid depth. In other words the spatial variation in particles 

density has been overlooked. Some other studies considered the sedimentation of particles, but 

differential settling was not taken into account as the mechanism of aggregation [39].  Also, the 



17 

attachment probability     was in most cases assumed to be 100% (the so-called rapid 

aggregation scenario), which cannot be a general occurrence.   

It is true that all features relevant to sedimentation (e.g. fractal dimension, etc.) have been the 

subject of various investigations, but they are treated only in a fragmentary way; there is, to date, 

no study that considers all the important issues simultaneously.  Many early models assumed all 

aggregates to have fractal dimension       , which is correct only for the coalescence of liquid 

drops [40]–[44].  Other studies, while acknowledging the fractal nature of the aggregates, had 

neglected to account for other properties affected by non-compact structures (e.g. settling 

velocity and the rate of collision) [45].  Other researchers later made all necessary modifications 

to their models for fractal aggregates [26], [46], but the mechanism of transport was limited to 

orthokinetics, not differential settling.   

With regard to experimental measurement, it is practical to track only a very limited number of 

observables; some examples are “mud line” level [47],[48], turbidity [49],[50], mass 

concentration of solids at a fixed location [5], settling balance [51], and aggregation time [52].  

In some studies [53], imaging techniques were used to investigate aggregation and 

sedimentation.  We, however, can gain only limited knowledge of process kinetics by these 

experimental works.   

In many studies (see Ref [45], [54], [55]), the collision efficiency and fractal dimension were 

estimated by fitting the experimental results to modeling results.  It is often assumed that the 

collision efficiency is independent of the transport mechanism, so that it can be generalized to 

aggregation resulting from other transport mechanisms.   

In most studies, a simple case of mono-size dispersion is assumed as the initial state of the 

particles; there are few papers in which a ploy-disperse size distribution is considered [54]; none 
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of these studies, however, deal with effect of all the important issues mentioned earlier; e.g. 

differential settling as the dominant mechanism of particle transport.  A large body of literature is 

dedicated to the modeling (see Ref [56]).  Among the three transport mechanisms mentioned 

earlier, fluid shear has been central to many studies[26], [41], [54]–[59], while differential 

settling, which is the most dominant mechanism when particles settle, was overlooked in 

research projects.  Differential settling was taken into account as the main mechanism in some 

works [52], but again the sedimentation was not considered in the study.   

Here in this study, we followed two approaches to investigate the aggregation and sedimentation 

systems while spatial variation of particles density is taken into account: 1) Experimental; and 2) 

modeling work. Brownian motion would be the dominant transport mechanism in aggregation of 

fine particles while differential settling becomes dominant for larger aggregates as they grow. 

The aggregates were treated as fractal objects.  In following chapters, we will first describe the 

experimental procedure and then continue with explanation of our modeling scheme.  
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3 Experiments procedure 

In this study, two sets of experiments were conducted by using two different methods: ashing 

technique and settling balance.  The first method (i.e. ashing technique) was mainly used to 

investigate the aggregation and sedimentation of bitumen coated particles in several organic 

solvents.  The second method, the settling balance, was used in our group for a wide range of 

different suspensions.  The main objective of both experiments was to determine the settling rate.  

The settling rate of particles can be used as an indicator of kinetics of aggregation.  Particles that 

aggregate faster make larger particles, so the rate of settling can be used to indicate how fast the 

fine particles can form aggregates.   

A major advantage of these two methods is that they can be used for dark and opaque liquids 

(when the mud line is impossible to locate).  The traditional method in which the interface 

between the top clear liquid and the cloudy suspension is recorded over time is only practical if 

the interface can be detected.  The traditional method, which is based on optical detection of the 

sludge zone interface, was not applicable to dark liquids.   

   

3.1 Ashing technique 

In a non-aqueous process, an organic solvent is mixed with oil sands to dissolve the bitumen.  

Based on experience, we know it is possible to exploit the solvent property to maximize the 

elimination of solids.  For reasons not yet fully understood, some solvents are known to facilitate 

the sedimentation of suspended fines.  To evaluate this capability, a series of settling tests were 

conducted in organic solvent mixtures which include an aliphatic component (either paraffinic n-

heptane or naphthenic cyclohexane) and an aromatic component (toluene).  By changing the 
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volume fraction of toluene in the mixture, the aromatic content of the solvent was adjusted.  It is 

known [60] that aromatic solvents have much higher asphaltene solubility.  Hence, the 

interaction of the solvent with adsorbed asphaltenes on particle surfaces could be studied in our 

experiments.   

Materials   

Silica beads of diameter 0.25 m (Fiber Optic Center, New Bedford, MA) were first surface-

treated as follows:  The beads as received were heated in an oven at 400ºC for 30 minutes to 

eliminate any possible surface contamination.  They were then dispersed in toluene-diluted 

bitumen and stirred for 2 hours to allow adsorption of bitumen materials onto the silica surfaces.  

(Toluene-diluted bitumen was a 1:1 mixture, by weight, of toluene and an extra heavy crude oil 

known as bitumen; the latter was supplied by Syncrude Canada Ltd.)  Next, the silica beads were 

washed multiple times (i.e. repeated centrifugation and decantation) in toluene until the 

supernatant was clear; this ensures that the only bitumen components that remain in suspension 

are those that are irreversibly adsorbed onto the bead surfaces.  The solids were then recovered 

and dried.  The resulting silica beads were rendered hydrophobic and mimicked the indigenous 

solids in oil sand ores [5].    

The treated solids were dispersed in three different types of solvent: toluene, n-heptane and 

cyclohexane.  These solvents were chosen to represent the three low molecular weight 

components in crude oil, namely, the aromatics, alkanes and cycloalkanes.  All solvents were 

HPLC grade.   
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Experimental Procedures for Sedimentation Test 

The following test was designed for quantifying sedimentation rates in the event that the 

suspending liquid is completely opaque (e.g. crude oil) [5].  Model solids (0.25-µm, surface-

modified silica) at 2.0 wt% were suspended in a hydrocarbon (toluene, n-heptane or 

cyclohexane); they were agitated vigorously by sonication.  At time      , the agitation ceased 

and the particles were allowed to settle.  A series of small samples, each of volume 0.5 mL, were 

drawn from a fixed location (1 cm from the free surface) at specific times.  The silica was 

isolated from each sample (by vaporizing all organic matter in an oven) and its mass     was 

determined using a microbalance (Mettler Toledo, model MX5).  A plot of     vs.     served as 

an empirical representation of the sedimentation process (see Figure 3.1).  A minimum of three 

runs were made for each system.  

 

 

Figure 3.1. Schematic of the sedimentation test.  A suspension of solids begins settling at time 

     .  (a) Small samples were drawn from a fixed location, and the mass of the solids,    , was 

determined; (b) typical — or expected — plot of     vs.    .  The “settling time” as shown is not a 
precisely defined quantity. 
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3.2 Settling Balance 

In this method, the settling rate of particles is measured by tracking the solids content at a fixed 

location over time using a sedimentation balance (KRÜSS K100).  This device comprises of a 

tray that goes into the suspension at the time     , and collects the falling solids overtime.  The 

location of the tray remains constant at a distance below the liquid surface during the experiment.  

The tray is connected to a sensitive balance and a computer that records the weight of collected 

solids over time.  The experimental setup is shown in Figure 3.2a.   

A suspension of evenly dispersed particles in liquid (i.e. water, for example) was prepared by 

adding silica particles to the suspending liquid.  The particles were 0.25, 0.5, and 1µm silica 

particles.  This method was mainly used to investigate the effect of initial size distribution on the 

aggregation and settling in water, thus the particles were clean uncoated powders of just different 

sizes.  Silica particles with a given size, or a mixture of different sizes, were used to make the 

suspension.  The suspension was then agitated by sonication for about one minute.  The sample 

is then put into the settling balance. The balance is equipped with a built-in magnetic stirrer that 

kept the suspension well-mixed and the particles dispersed before commencement of each test.  

In this study, the suspensions were stirred for two minutes.  In case when the pH had to be 

lowered, a certain amount of hydrochloric acid was injected to the suspension just before the 

experiments began.  The amount of hydrochloric acid was calculated according to the required 

pH.  When the stirrer was switched off, the suspended particles begin to settle to the bottom.  

The particles were deposited on the tray, and the weight gain is recorded over time.  The 

sedimentation rate can be determined by analysing the amount of mass that the tray receives.  It 

can be used to gain knowledge about the kinetics of aggregation as the particles fall faster when 

they aggregate; in that case a larger amount of mass is collected in short time periods.   
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A typical plot of the solids mass vs. time is shown in Figure 3.2b.  The time at which the stirrer is 

stopped and particles start falling was defined as the starting time (i.e.    ). The time that the 

mass on the probe reaches a constant value is taken as a measure of the solids settling time.   

 

 

 

Figure 3.2. a) Sedimentation experimental set up; b ) a typical plot of the solids mass m vs. time 

t in settling experiments.   
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4 Modeling 

The aim of this section is to model the sedimentation of aggregating particles in a settling 

column.  As such, the population of aggregates is a function of time and position.  It is 

impossible to characterize empirically a sedimentation process to the level of details as one can 

do in a numerical simulation (i.e. population of all class size of aggregates as a function of time 

and position).  Experimentally, it is practical to track only a very limited number of observables.  

However, to reconcile these few observables with the fundamental mechanisms of 

sedimentation, a “full blown” simulation of the sedimentation process appears inevitable.  With 

regard to theoretical simulation: although by no means straightforward, it is in principle possible 

to predict the detailed evolution of a suspension.  The results of such a calculation, which contain 

full information on a sedimentation process, can be summarized as follows:  

            ;                                                            (4) 

where      is the number density of aggregates containing     primary particles (also called the 

“ -aggregates”),     is the depth in the quiescent fluid (often measured from the free surface), and 

    is the time (with       marking the beginning of aggregation).  After such a detailed 

calculation, one may then extract, from the massive amount of information embodied, the few 

observables that are accessible through experimentation.  To date, there has been no theoretical 

or numerical study that provides the level of detail as expressed in Eq. (4).   

In this study, we report a numerical procedure which we have developed for simulating the 

sedimentation of particles.  The initial PSD of the particles can be arbitrary, and the simulation 
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allows for adjustable    ,     , solid-liquid density difference and liquid viscosity.  Particle 

transport in the liquid is by perikinetics and differential settling; orthokinetics (i.e. shear-driven 

collisions) is not included.  We do not follow the trajectories of individual particles (as done in 

granular /particles dynamics); instead, the number concentrations of the  -aggregates,    , are 

treated as continuous functions of position and time.  For simplicity, only gradients in the 

vertical direction are considered.  The evolution of the aggregates is tracked using local 

population balance, while accounting for variations with position and time.  The results of such 

calculations are summarized in the form of Eq. (4), from which empirical observables can be 

extracted.  The simulation software is, however, only limited to suspensions of low solids 

concentrations.  As such, the modelling of complex phenomena, such as hindered settling or 

sludge formation, is beyond our current capability.   

4.1 Equations  

4.1.1 Population balance: the Smoluchowski equation 

Sedimentation is the collective behaviour of a large number of aggregating and settling particles.  

To predict sedimentation, the population balance of interacting particles and aggregates should 

be tracked over time.  The population balance equation is well-established in the literature owing 

to Smoluchowski’s work [40], which considered particle aggregation to be analogous to a series 

of chemical reactions.  The Smoluchowski equation assumes that the aggregation is a second-

order process in which the rate of collision/conversion between two species is proportional to the 

product of their number concentrations; the rate constant is denoted      , where     and     are the 

sizes (i.e. numbers of constituent primary particles) of the two aggregates.  For a suspension with 

aggregates of all sizes; the rate of change of      is given by the Smoluchowski equation  
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where the first term represents the combining of two smaller aggregates into a   -aggregate, and 

the second term accounts for the loss of   -aggregates as they join others to form larger 

structures; equation 5 assumes no breakage of aggregates.  The rate constant       is the product 

of the collision rate       and the collision efficiency   , i.e. 

           (6) 

In the context of our earlier discussion,       is associated with the transport of the aggregates, 

while   is determined by close-range colloidal interactions.  In this study, no shear is applied on 

the suspension; thus, collisions between particles result only from Brownian motion and 

differential settling.   

Note that the Smoluchowski equation (Eq. 5) has no explicit dependence on spatial coordinates.  

As such, the equation may be applied in two ways: (a) globally, for a closed and well-mixed 

system in which the total mass is fixed, and the    ’s have no gradients; or (b) locally, as a 

“chemical reaction” equation, while allowing the    ’s to be functions of position and time.  The 

latter situation, which is of course much more complex, is unfortunately also the case for 

sedimentation. 

The size of aggregates 

Consider an aggregate of     primary particles (i.e. a   -aggregate); the primary particles are 

assumed spherical with diameter     .  The effective diameter of the   -aggregate, according to 

the characteristics of fractal structures, is given by  
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           ⁄                                                                         

If the size of primary particles is assumed to be 1µm, for a fractal dimension of 1.5, 1000 

primary particles are needed to build an aggregate with 100 µm diameter.  It is worth noting that 

particles gradually adhere together to make such an aggregate, and smaller aggregates, each one 

composed of a number between 1 and 1000 particles, are formed in the intermediate stages.  As a 

result, one would expect to see 1000 types of aggregates, which necessitate solving 1000 

simultaneous differential equations.  The number of equations needed is a function of the largest 

allowable aggregate size and the fractal dimension.   

4.1.2 Settling velocity and collision kernels 

In case of settling in a gravitational field, a particle rapidly reaches its terminal falling velocity as 

the gravitational force becomes equal to drag and buoyancy forces.  Stokes Law expresses the 

settling velocity of a sphere of density    and diameter   as  

  
(    )   

   
 (8) 

where     is the gravitational acceleration, and     and     are the density and viscosity of the 

suspending medium.  The porous nature of aggregates requires modifications of their 

hydrodynamic properties.  The main parameter that should be modified is the Stokes settling 

velocity.  For a   -aggregate with fractal dimension       , its settling velocity      is given by 

[52] 
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(Note that in the special case of coalescing droplets, with       , the above expression reduces 

to the familiar Stokes settling velocity for spheres.)  The other property of importance is      , 

the effective density of a   -aggregate in excess of the fluid density; it is given by  

                                                                                    

where     , as noted earlier, is the density difference between the solid and the fluid, and  

          ⁄                                                                       

is the porosity of a   -aggregate.   

With the above modifications for fractal structures, the collision kernels for the two transport 

mechanisms (Eq. 1 and 3) become [61] 
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where      is the “diameter” of the   -aggregate,      is the thermal energy,      is the solid-fluid 

density difference,     is gravitational acceleration, and     is the fluid viscosity.  When both 

transport mechanisms are present, the total rate of collision (      in Eq. 5) is just the sum of the 

two frequencies, i.e.   

    (   )     (   )                                                                     

4.1.3 Assumptions 

1- In a concentrated suspension, the frictional force exerted at the particles may be increased 

because of flow pattern changes.  Thus, the sedimentation rate of particles may be less 



29 

than the expected terminal velocity.  In this study, the concentration of solid particles was 

assumed to be sufficiently low (i.e. dilute suspensions) to avoid hindered settling 

phenomena. (The volume fraction of solids was around 0.5%).  

2- To avoid excessive computational complexity, we assumed all aggregates to have a 

common fractal dimension of  . It is reported that aggregates created by differential 

sedimentation has fractal dimension in the range of 1.6 to 2.3 (see section 2.2.3).  In this 

study, it was assumed that the fractal dimension      of all aggregates were equal.  

3- The equations apply when the Reynolds number is very low (      ). The Reynolds 

number for the primary particles in this study is quite less than one (     ). It may be 

about 0.1 for the largest aggregates. 

4- The aggregates were assumed to be fractal objects, but they were treated as spherical 

particles to estimate the drag forces. 

5- It was also assumed, consistent with equation 5, that all aggregations were irreversible 

(i.e. no breakage of aggregates, as the hydrodynamic shear created by settling motion is 

minimal). 

4.1.4 General smoluchowski equation with spatial variation 

Through his 1916 and 1917 papers, Smoluchowski had laid a timeless foundation for the study of 

aggregation kinetics ([40],[62]).  We present here a small extension to Smoluchowski’s work as 

we attempt to account for spatial variations in particle densities.  Aggregated structures do not, in 

general, distribute themselves evenly in space.  Similar equations had been proposed in the past 

which included gradient terms ([9], [46], [55], [63]), but they were tailored for either 

macromolecular structures (50 nm or smaller) or applications involving vigorous (i.e. turbulent) 

mixing; there was also no treatment of non-uniform particle distributions in those studies.  Here, 
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we apply the convection-diffusion equation of aggregation (based on population balance) to four 

simple situations; particular attention will be given to the inhomogeneous distributions of 

particles.   

Aggregation kinetics with density and velocity gradients    

Consider a suspension of aggregates in a fluid.  The size of each aggregate is specified by the 

number of primary particles within it.  Thus, a “  -aggregate” is one with     primary particles; 

its diffusivity is denoted     .  We assume all primary particles to be of the same size.  Let      

be the number density of the   -aggregates (units of m
3 ), and      be the macroscopic velocity of 

such entities.  In general, both      and      are functions of position     and time    , i.e.  

          
                 

   

It should be noted that     , the macroscopic velocity of the   -aggregates, can in general be 

different from         , the local fluid velocity [64].   

 

Population balance:  The convection-diffusion equation 

As defined earlier,    is the number density of the   -aggregates, and      the macroscopic 

velocity of the same entities.  Both      and      can be functions of position     and time    , i.e.  

          
    and            

   .  If the aggregates are sufficiently small, they will be 

susceptible to thermal agitations; the resulting diffusivity of the   -aggregates is denoted     .  In 

general, the transport of aggregates can be by convection and/or diffusion; the associated fluxes 

of the   -aggregates are, respectively,        and          .  We also define   ̇   to be the rate at 
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which   -aggregates are created per unit volume.  Expressions for   ̇   are given by 

Smoluchowski (Eq. 5).  

Consider now an arbitrary control volume (i.e. one with stationary boundaries) in space.  The 

number of   -aggregates within the control volume changes with time according to  

 

  
 ∫        ∮               ̂     ∫  ̇                                    

where   ̂  is the unit outward normal.  Converting the surface integral to volume integral, and 

noting that the control volume is arbitrary, we arrive at Eq. (14), the convection-diffusion 

equation of aggregation (assuming constant     ):   

   

  
               

     ̇                                                       

The ratio of convective to diffusive contributions (i.e.  |        | |   
   | ⁄ ) is the Péclet 

number (Pe).  In the high Pe limit, Eq. (14) simplifies to  

   

  
            ̇                                                              

The term   ̇   in Eq. (14) or (14a) represents the rate of production of   -aggregates.  Following 

Smoluchowski [40], [62], we write  

 ̇   
 

 
 ∑              

   

   

  ∑           

   

   

                                

where       is the rate constant for the   - and   -aggregates, and     is the maximum aggregate 

size.  For       and     (the smallest and largest aggregates), we have   
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 ̇      ∑           

   

   

              ̇    
 

 
 ∑              

   

   

                      

In addition, the total number of primary particles (i.e. mass of all aggregates/mass of one primary 

particle) is given by  

     ∫∑   

 

   

                                                                       

Clearly, by mass conservation,        must be invariant with time. This condition is in fact 

already built into the Smoluchowski equations and need not be imposed separately.  A proof of 

this mass conservation property is given as follows. 

Mass balance  

      is the total number of constituent particles in a control volume; it is given by Eq. (17).  

From Eqs. (13) and (17), it follows that   

     

  
    ∮∑ [               ̂]

 

   

     ∫∑  ̇ 

 

   

                             

The principle of mass balance can now be stated as follows: Any change in        within the 

control volume must be due to mass fluxes through its boundaries, i.e.  

     

  
    ∮∑ [               ̂]

 

   

                                                    

Comparing this equation with (18), the requirement of mass balance reduces to   
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∫∑  ̇ 

 

   

                                                                            

As the control volume is arbitrary, the integrand must itself vanish. We have therefore the 

following final equation of mass balance:  

∑  ̇ 

 

   

                                                                              

where   ̇   are the Smoluchowski expressions given by Eqs. (15) and (16).   

Proof of the mass balance equation  

For simplicity, and without loss of generality for the proof, we ignore all rate constants (i.e. by 

setting        ).  The Smoluchowski expressions (Eqs. 15 and 16) thus become  

 ̇   
 

 
 ∑       

   

   

  ∑      

   

   

                                                  

and  

 ̇     ∑      

   

   

        ̇    
 

 
 ∑        

   

   

                                          

Eq. (21) can be proved by induction as follows:  We begin with a “base case,” with       , in 

which Eq. (21) can be verified directly.  The easiest case would be for       .  Now suppose 

the value      is increased by 1; Eq. (21) must still hold, i.e. we must have  

∑   ̇ 

  

   

  ∑    ̇ 
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Next, let     to be the algebraic difference between the two sums, i.e.   

    ∑    ̇ 

    

   

  ∑   ̇ 

  

   

 

Clearly, for Eq. (21) to be satisfied,     must vanish identically.  From the Smoluchowski 

expressions, it is easy to show that   

     ∑            

  

   

   
 

 
      ∑          

  

   

 

Writing     as     in the second sum, we get  

     ∑(
    

 
  )            

  

   

                                                  

To demonstrate that      , we substitute the index          with the new variable    :   

         ;   or            

In terms of    , Eq. (24) becomes  

     ∑(
    

 
  )            

  

   

                                                  

Comparing Eqs. (24) and (25), it is clear that     must be zero.  This in turn means that Eq. (21), 

the mass conservation equation, is identically satisfied with the Smoluchowski expressions.   
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Applications of the General Equation of Aggregation  

The main difficulty with Eq. (14) is determination of the aggregate velocity field         ; in 

many situations (particularly when particle inertial effects are significant), one may need to 

resort to numerical means.  Here, we examine four simple cases in which such a difficulty can be 

avoided.  Rather than obtaining full solutions to Eq. (14), we will focus only on aspects related to 

the spatial variations of     .  In the first three cases, we assume small and neutrally buoyant 

particles in the low Stokes number regime.  Also, it is assumed that there are initially only 

primary particles that are distributed uniformly in space, i.e.  

        and                  

      Cases 1, 2 and 3  

                                              

where      is the density difference between the dispersed and continuous phases.   

Case 1:  Perikinetic aggregation in quiescent fluid 

Here,       and there are no gradients in    ; the conduction-diffusion equation (Eq. 14) 

reduces to      ⁄   ̇  . Also, the “collision kernels”        have no spatial dependence.  Since 

the initial particle distribution is uniform, the   ’s will remain also uniform as they evolve over 

time.  Solutions to this problem were first discussed by Smoluchowski (1917) and subsequently 

by many others ([9], [12], [62]).   

The remaining cases (Cases 2, 3 and 4) are in the high Péclet number regime for which Eq. (14a) 

applies.   
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Case 2:  Orthokinetic aggregation in simple shear flow  

In Cartesian coordinates, simple shear is characterized by  

                  

where     is the shear rate (a constant).  This flow field is created, for example, by relative lateral 

motion between parallel plates.  For infinite plates, there are no gradients of any quantity in the 

lateral directions; in particular, we have       ⁄    .  As such, the term            in Eq. 

(14a) vanishes identically.  Just as in Case 1, the collision kernels       contain no spatial 

dependencies; this leads again to a situation in which the    ’s remain uniform in space as their 

values evolve over time.   

At the initial stage of aggregation, we can make the usual (and rather crude) “nearly 

monodisperse” approximation: that all aggregates have roughly the same size as the primary 

particles.  This leads to an exponentially decaying   ∑     — the total number of aggregates (of 

any value    ) per unit volume [12].  Specifically, we have  

∑    ⁄          ⁄                                                         (26) 

The time constant      in Eq. (26) is  

     
 

  
 
 

 
                                                                             

where     is the volume fraction of the dispersed phase.  The aggregate number density  ∑     

can be detected, for example, through turbidity measurement [65].  Thus, for Case 2, one expects 

the suspension turbidity to decrease exponentially, with a characteristic time    , while 

remaining spatially uniform throughout.   
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Cases 1 and 2 were first discussed by Smoluchowski (1917), with the implicit (and of course 

correct) assumption that the aggregates are uniformly distributed in space.  In what follows, we 

will examine situations in which the   ’s are non-uniform.   

Case 3:  Orthokinetic aggregation in Poiseuille flow   

Here, we have laminar flow in a tube of inner radius     and infinite length. The velocity field is 

expressed in cylindrical coordinates as 

                   [     ⁄   ]   

For an infinitely long tube, we have      ⁄   .  Thus, the term            in Eq. (14a) again 

vanishes.  However, unlike in the previous cases, the collision rates        have here spatial 

dependencies.  In particular, the shear rate, given by   |     ⁄ | , is now a linear function of 

the radius    :  

  
   

  
                                                                                

Substituting Eq. (28) into Eq. (27), we see that for orthokinetic aggregation in Poiseuille flow, 

the turbidity would exhibit radial variations as time progresses.  In particular, the turbidity near 

the axis remains relatively constant, while that near the tube wall will show the fastest decrease 

with time. This effect will be especially apparent in its 2-D projection, i.e. if the aggregation 

process were observed in a direction perpendicular to the cylinder axis.   

Case 4:  Sedimentation in a quiescent fluid  

In this case, the density difference      must clearly not vanish.  With regard to the velocity     , 

its only non-zero component will be in the downward (    ) direction; it is denoted     .  For 
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simplicity, we assume Stokes flow for even the largest coalesced droplets.  Thus, for a fluid of 

viscosity     and primary particles of diameter    , we have  

   
   

   
 (    

   )
 
                                                                

This velocity has evidently no dependence on spatial coordinates.  Assuming      , the 

equation of aggregation (Eq. 14a) becomes  

   

  
      

   

  
   ̇                                                                   

It is shown in later that the Péclet number for sedimentation depends very strongly on the particle 

size, i.e.          .  As such, the crossover condition, at which      , can practically be the 

demarcation between the        and        regimes.  

Estimating the Péclet Number 

The Péclet number is the ratio of convective to diffusive rates of transport. It is commonly 

expressed as  

      ⁄                                                                                 

where     and     are, respectively, the characteristic velocity and characteristic length, and     is 

the diffusivity of the dispersed particles.  For spheres of radius     undergoing Brownian motion, 

   is given by the Einstein-Stokes relation: 

   
  

    
                                                                               

We now examine the Péclet number in two scenarios.   
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Particles in shear flow at low Stokes number 

There are two length scales in this situation, namely,     for the particles and     for the flow 

field.  Smaller particle size means higher diffusivity; for      10 nm, we have            m2
/s 

(using viscosity of liquid water).  This leads to the relation  

                          

Thus, in most “normal” situations, we have        and Eq. (14a) can be applied.  However, 

this will no longer be the case when the physical dimensions are reduced.  For example, when 

10-nm colloidal particles are transported in microchannels, with             and 

            ⁄ , the Péclet number is not     , and the full convection-diffusion equation must 

be solved.   

Sedimentation of particles in quiescent liquid  

Here, the characteristic length is the particle size, i.e.        ; the characteristic velocity is the 

Stokes settling velocity given by             ⁄ . Putting these into (31) and (32), we have  

     
   

  
                                                                              

Let us now consider the “crossover” condition for which         : assuming               ⁄  

(e.g. silica beads in water), the crossover particle size is about 1 µm.  Because of the strong 

dependence of      on    , particles that are smaller or larger than the crossover size will quickly 

enter the        or        regime.   
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4.2 Numerical scheme for handling temporal and spatial variation 

The equations described above can be used to model the sedimentation of settling particles in a 

column.  The number densities of particles (as well as the aggregates that are created by 

aggregation) are functions of position and time.  This means that at any instant, the number 

densities of particles varies over depth of a column, for example.  To implement the modeling, 

we followed two separate procedures: 1) Conducting population balance at each time step for all 

positions by applying the Rosenbrock technique (discussed below), followed by relocation of 

aggregates due to settling; and 2) providing a numerical solution for general Smoluchowski 

equation.  In both cases, the numerical scheme would require that time and position be 

discretized.   

4.2.1 Rosenbrock method 

With adhesion between particles, a suspension of primary solids will very quickly acquire 

aggregates of all sizes.  The time rate of change of      (number density of   -aggregates) is 

given by Eqn. (5); the index     in the equation ranges from     to    , where     is the size of the 

largest aggregate.  As such, Eqn. (5) represents a set of     differential equations which must be 

integrated simultaneously over time; this is already a non-trivial task.  The complexity of the 

problem is greatly exacerbated when, in the general case, the    ’s are functions also of position.  

In such a situation, Eqn. 5 captures only the local kinetics of aggregation — which we will here 

call the Smoluchowski kinetics.  In addition to Smoluchowski kinetics, spatial variations in      

must also be tracked based on mass conservation.   

We non-dimensionalize all variables with the following basis parameters:    ,     and    .  The 

first two parameters are, respectively, the size and Stokes settling velocity of a single primary 
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particle;      is the imaginary number concentration in the situation when all particles exist as 

singlets (     ) and are evenly distributed in space.  The dimensionless form of the 

Smoluchowski equation is  
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where  

  
  

  

  
        

  
  

  
        

   

  
        

 

  
                                                  

The collision kernel for differential settling is non-dimensionalized as follows:   

    
       

     

  
                                                                       

Discretization 

The problem is treated numerically as follows:   

Sedimentation clearly creates non-uniform particle distributions, but we are at least fortunate that 

there is only one spatial coordinate this is of relevance, namely, the fluid depth.  As such, the 

functions      have two independent variables: the vertical position     and the time    (see Eq 4).  

There is no hope of solving such a problem analytically [66], [67].  In this study, we will 

simulate the sedimentation process by discretizing both space and time.   

Since this is a one-dimensional problem, we need only focus on a vertical fluid column of unit 

cross section.  We envision this fluid column to be divided into thin horizontal layers — or 

“bins” — each of the same thickness   .  As such, the continuous variable     is coarse-grained 
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into an integer      which is the bin number (we let      increase in the downward direction).  To 

customize to our numerical scheme, the number density function           is rewritten as  

                 |     

where           is a two-dimensional array with the index     denoting the aggregate size and      

specifying the bin number (i.e. the depth).  Entries of this 2-D array are the corresponding 

aggregate densities at time    . These aggregate densities are updated as time progresses.  As 

sedimentation is not history-dependent, there is no need to archive past entries of         .   

As mentioned earlier, we divide time also into a series of short durations    .  However, unlike 

discretization of space, the series of time steps can be non-uniform (this will be further discussed 

below).  At every time step, the following two operations are performed:   

 Over a short time interval    , each bin is treated as a closed system (i.e. borders between 

adjacent bins are “sealed”).  Within each bin, the aggregates are assumed to be uniformly 

distributed, thus allowing Smoluchowski kinetics to apply.  At the end of each time 

interval, the number densities are updated based on a simple Euler formula, i.e.  

       |              |    
   

  
                                                     

where the “conversion rates”        ⁄   are calculated from Eq. (5) using local aggregate 

densities.  This updating is carried out for all aggregate sizes and in every bin (i.e. for all 

values of     and     ). 

 Before proceeding to the next time step (and after all bins are updated according to Eq. 

37), aggregates are relocated to lower bins if their settling velocities are sufficiently high; 

the new location of an aggregate depends on its travel distance over the time interval     .  
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Specifically, the travel distance of a   -aggregate is           , where      is given by 

Eq. (9).  This travel distance leads to a downward migration of the   -aggregate by     

bins, where     is an integer (which can be 0, 1, 2 …) satisfying the relation  

                    

This relocation scheme is clearly approximate; its accuracy improves as       .  In our 

simulation, relocation of the   -aggregates is done by adjusting their number densities in 

the two bins (current bin and the       bin below).  To be clear, let us suppose the current 

bin number is      and that       for the   -aggregates; in such a case, the following two 

steps are carried out (in the context of a computer code):   

                              

            

If       (i.e. no downward migration), the above steps are bypassed.  Two practical 

points should be noted here: (a) aggregate relocation must begin from the bottom and 

proceed upward; (b) the lowest bin should be treated as a “sink” for all aggregates.   

We now comment on the time step     :  The modelling of sedimentation is inherently a “stiff” 

problem in that some aggregate densities in the Smoluchowski equation (Eq. (5)) vary much 

more rapidly than others; for this reason, a sufficiently small      must be used in Eq. (37) to 

maintain a numerically stable and accurate solution.  To use the same      for the entire 

sedimentation process would be unwise as the time interval could, for a given error tolerance, be 

considerably lengthened at certain stages of the simulation.  In this study, a modified Runge-

Kutta algorithm, called the Rosenbrock method, was used.  With this approach, the time step is 

not fixed.  An automatic step size adjustment is applied to regulate the time step      according to 
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the local truncation error at each iterative step.  Details of the Rosenbrock method can be found 

in Ref [68].  A brief discussion of how this adaptive algorithm was applied to the present 

problem is given in Apendix A.    

4.2.2 General Smoluchowski equation 

There is no hope of any analytical solution to Eq. (30).  Here, we will solve the equation 

numerically by evaluating spatial gradients (      ⁄   in Eq. 30) using backward difference 

approximation, and marching forward in time with a simple Euler approach.  Details of this 

numerical scheme are outlined below.   

We first non-dimensionalize all variables with the following basis parameters:     ,      and     .  

The first two parameters are, respectively, the diameter and Stokes settling velocity of a primary 

particle; the third is           ⁄  , where        is given by Eq. (17) and     is the volume of the 

domain.  Note that      and      are not dimensionally independent; this will be addressed below.  

The dimensionless form of Eq. (30) is  
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The collision kernel for differential settling is likewise non-dimensionalized as follows:   

    
       

     

  
                                                                

Substituting Eq. (3) into (40), and recognizing that          
     ⁄  , we obtain  
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where    
       ⁄  .  With the above scaling, the only required input parameter is      

   .  In our 

simulation, we have chosen plausible values of     and    .   

Eq. (38) is integrated numerically using finite difference (specifically, backward difference) 

approximation for spatial derivatives, and simple Euler formula to advance in time.    

4.2.3 Computer code in FORTRAN  

FORTRAN is one of the oldest programming languages which is still popular in the field of high 

performance computing.  It is often referred to as a scientific language as it is suitable to model a 

wide range of applications in scientific and engineering problems.  Despite the ease of coding in 

FORTRAN, the programs run almost as efficiently as those written in machine language.   

Due to these facts, we have used FORTRAN to implement our numerical model.  The source 

code is described in Appendix B.  The FORTRAN code then was compiled and executed by 

submitting batch jobs on WestGrid
1
 to take advantage of parallel programming and fulfill the 

large memory requirement.  WestGrid is a facility which provides high performance computing 

mainly in Western Canada.   

4.2.4 Parallel programming 

As will be shown later, the program is quite time consuming.  Even for a small system consisting 

of not many sizes of aggregates, it takes several days to run the model.  It is because all types of 

aggregates interact with one another and one needs therefore to keep track of the number 

                                                 

1
 https://www.westgrid.ca 
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densities of all aggregate sizes — at every time step and at all positions.  Single processors, even 

the fastest ones, provide only limited computational power; the problem can be solved much 

faster by using multiple processors.  A major advantage of parallel programming is that we can 

extend the model to a larger number of aggregate sizes.   

The numerical code should be developed in a parallelized way so that the work is distributed 

across multiple processors.  Some code modifications or reformulation of algorithms would be 

necessary to enhance parallelization.  This introduces additional programming complexity to 

computer codes, but it will bring along significant time-saving advantages.  There are several 

techniques to develop parallel programs [69],[70].   

Here, we used OpenMP to run the source codes in parallel.  OpenMP is a shared-memory 

programming technique to run a computer code on a number of processors.  It uses a set of 

‘compiler directives’ to facilitate parallelism in the source code.  The computer code should be 

developed such that computational work is decomposed across multiple processors.  More details 

on parallel processing are available in the book by Chandra et al [71]. Here in this study, by 

using six processors working in parallel, the speed was improved 33%. 
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5 Simplified cases and model validation 

5.1 A dimensionless settling curve 

The equations as described earlier were solved numerically using both Rosenbrock method and 

general PDE form (see previous sections for the details).  In this section, for the sake of 

obtaining preliminary results, we assume, entirely arbitrarily, that the maximum aggregate size is 

100 (i.e. the largest drops are from the coalescence of 100 primary droplets).  We also neglect all 

other “complexities” of aggregation; these include: collision efficiency (i.e. we assume rapid 

coagulation), fractal nature of aggregates (i.e. we consider only droplet coalescence), and 

aggregate breakup; these aspects will be taken into account in later sections.   

The equations were scaled so the required input parameters are    and   .  The parameters    

and    are the size and the number density of primary particles, respectively; the third parameter 

is defined as          ⁄ , where        is the total number of primary particles.  Here, we have 

chosen the values of         and               (number density equal to 2 wt% of 

silica particles suspended in an organic solvent).  Regarding the initial and boundary conditions: 

we had specified an initial mixture of 90 wt% singlets (i.e. individual primary particles) and 10 

wt% doublets — both uniformly distributed in space at time    .  We envision the domain to 

be a vertical settling column.  The boundary conditions are zero mass flux at the top and bottom 

of the column.  The fractal dimension is set to 3.  The settling column is 5 cm in height; it is 

discretized into 500 segments, each with therefore a thickness of          .  For the PDE 
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solution, the dimensionless time step              is chosen small enough that the solution 

remains stable.  The Rosenbrock method uses a varying time step.   

The settling curves obtained using both simulations (i.e. Rosenbrock and PDE solution) will be 

presented next.  The experiment to be modelled was the settling balance (see Figure 3.2), in 

which the cumulative amount of mass collected on a tray was determined as a function of time.  

Here, the tray was located at a depth of 5 cm from the free surface.   

5.1.1 Rosenbrock method 

First, mass conservation was checked upon completion of the modeling.  The total mass of 

particles is shown in Figure 5.1.  Since the mass should be conserved in the settling column, the 

total mass plotted versus time is a straight line.  Total mass has been determined by calculating 

total number of primary particles,     , as below 

     ∫∑                                                                      

 

   

 

where     is the size of each aggregate which is the number of primary particles within it, and     is 

the maximum aggregate size.      is the number density of the  -aggregate.  The total mass, 

      , is  

                                                                                  

Here, in Figure 5.1             was plotted, where        is the total mass at time    .   
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The settling curve obtained from the Rosenbrock simulation is shown in Figure 5.2.  All 

quantities are expressed in their non-dimensional forms (see earlier sections for definitions).  

Total number density of primary particles,    , is determined from  

  ∑                                                                               

 

   

 

Figure 5.2 shows the cumulative amount of mass collected at a tray 5 cm deep over time.  Note 

that the amount of mass has been divided by total mass at     (i.e.        ), and then plotted 

versus time.   

 

Figure 5.1. Conservation of mass;             was plotted where        is the total mass at time 

   .  The graph was obtained by using the results from Rosenbrock method.   
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Figure 5.2. The cumulative mass collected at a plate 5 cm deep. The amount of mass was 

divided by total mass at      , and then plotted versus time. The graph was obtained by using 

the results from Rosenbrock method. 

 

Mesh size dependency 

The number of spatial and time steps depends on how fine the grids were selected during 

discretization.  As check, the simulations are repeated with both and reduced to half their values 

to ensure that the results are reproducible.  Figure 5.3 shows the settling curves when     

      .  The original plot was shown for comparison.  There is good agreement between two 

curves, illustrating that the results are independent of the size of vertical segments (i.e. bin sizes 

used in spatial discretization) in the settling column.   
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Figure 5.3. The cumulative mass collected at a plate 5 cm deep when step size is reduced to half 

(        ) compared to the result obtained by step size          . 

 

If the step size is twice as large, (i.e.           , we will still obtain the same results; see 

Figure 5.4.  This shows that the mesh size was small enough that we can save on time by using 

the larger step size.   
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Figure 5.4. The cumulative mass collected at a plate 5 cm deep when step size is twice larger 

(         ) compared to the result obtained by step size          . 

 

5.1.2 General Smoluchowski equation 

There is no hope of any analytical solution to Eq. (30).  Therefore, it was integrated numerically 

using finite difference (specifically, backward difference) approximation for spatial derivatives, 

and simple Euler formula to advance in time.  Details of this numerical scheme were outlined in 

Section 4.2.2.  Figure 5.5 shows the total mass of particles in order to check for mass 

conservation.  The total mass has been determined by the same approach used for the results 

obtained from Rosenbrock method (see Eq. 42).   

The settling curve is also plotted in Figure 5.6.  All the quantities are determined in the same way 

as that used for the Rosenbrock method (see the section above for details).  The only difference 

is that the raw data were obtained by solution of Eq. (30).   
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Figure 5.5. Conservation of mass; the graph was obtained by integrating Eq. (30). 

 

 

Figure 5.6. The cumulative mass collected at a plate 5 cm deep. The amount of mass was 

divided by total mass at      , and then plotted versus time. The graph was obtained by using 

the results from integrating Eq. (30).   
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Mesh size dependency 

In order to show that the results are independent of step sizes, the simulations are repeated with 

both and reduced to half their values to ensure that the results are reproducible. Figure 5.7 and 5.8 

show the settling curves when    and     are reduced to half, respectively. 

 

Figure 5.7. The cumulative mass collected at a plate 5 cm deep when    is reduced to half 

compared to the result obtained by step size            .  The results were obtained by 

integrating Eq.(30).   
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Figure 5.8. The cumulative mass collected at a plate 5 cm deep when dimensionless time step, 

     , is reduced to half. The results were obtained by integrating Eq. (30).   

 

5.1.3 Comparison of results of two methods 

In order to compare the results obtained from two above-mentioned methods, the settling curves 

are plotted in one graph (Figure 5.9).  As seen, there is no significant discrepancy between the 

two curves.  This is good way to test the accuracy of the methods, as we dealt with the problem 

by using two different approaches, and we achieved the same results.   
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Figure 5.9. The cumulative mass collected at a plate 5 cm deep. Solid line is result of 

Rosenbrock, and dashed-line is the result obtained from integrating Eq. (30). 

 

5.2 Maximum allowable size of aggregates,   

At time      , the fluid contains only primary particles that could be in a range of sizes 

according to the initial PSD, but all are in the form of singlets.  However, soon after beginning of 

aggregation, single particles attach to each other to make larger species, e.g. doublets, triplets, 

etc.  The size of the aggregates grows by adhering to other primary particles and previously 

created aggregates over time.  Consequently, theses particulates settle under the force of gravity.  

The larger the aggregates, the faster will settling occur.  The process continues until all the solids 

are settled and make a solid layer at the bottom of the vessel.  Particles can grow to a certain size 

depending on the depth of the column and the particle settling velocities.  

Let        be the largest aggregate that can be produced in a settling column for a given depth.  

Accordingly we can find the number of primary particles within it as we know each aggregate 
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consists of only primary particles; this number is called the “maximum allowable number of 

primary particles,” which is denoted by    .  It is the number of primary particles within the 

aggregate with the maximum allowable size,       . Figure 5.10 shows that the settling curve 

(i.e. collected mass against time) depends upon    .  If the aggregates are able to grow larger, 

they will settle faster.  However, beyond a certain value of    , the aggregates do not have 

enough time to grow more as they reach the bottom of the vessel.  Of course, for an infinite 

depth and time, the aggregates can grow until all the particles become united to make only one 

large aggregate.  It is worth noting that it is assumed that no breakage takes place, and 

aggregation is irreversible.  The preliminary results were only obtained by assuming         

Here, we implemented our model to examine the effect of    . 

Suppose that the collecting tray was placed at a depth of 15 mm in a suspension.  The suspension 

consisted of 1     silica particles (with density of 2.65 g/cm
3
) in n-heptane.  The mass 

concentration of particles was 5 wt%, and the collision efficiency was assumed to be 1.  Figure 

5.10 shows the settling curves (i.e. the amount of mass collected at the tray over time) for several 

values of     in the range of 100 and 2400.  The rate of sedimentation increases by increasing   ; 

however, there is a certain value beyond that the settling rate does not improved by increasing 

   .  It is then assumed to reach the ‘saturation’ condition.   
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Figure 5.10. The cumulative mass collected at a plate 1.5 cm deep in a suspension which is 

made of 1µm silica particles in pure heptane. The situation of rapid aggregation was assumed.  

 

In the case of fast aggregation, particles quickly join the others to reach that maximum size, and 

then travel downward until they get to the bottom of the vessel.  In contrast, slow aggregation 

takes more time for the particles to reach the maximum size so that most of the aggregates reach 

the bottom without having the chance to reach the maximum size.   

By increasing the maximum allowable size for the aggregates,  , the CPU time increases 

exponentially as it requires a larger number of equations to be solved at each time step.  In 

addition, the set of equations becomes stiffer so that smaller time steps are required to keep the 

solution stable.  Figure 5.11 shows the turn-around time versus     for the above-mentioned 

system (i.e. 1     silica particles at 5wt% concentration in heptane).  As shown in the picture, 

N 
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for small  , it takes only minutes to obtain the results, but the simulation takes longer by 

increasing  , such that it requires to run the program for weeks for       .   

 

Figure 5.11. The amount of time required to get the results for different values   

 

5.3 Scaling procedure to calculate the settling behavior  

To run the model, a value of     should be assumed; therefore particles can grow only to a 

certain size.  Accordingly, the results are then obtained based on this assumption.  The settling 

curves, however, can be plotted for any value of   by scaling the one that was obtained for a 

given value of    . The scaling procedure is discussed as follows:  First the mass-weighted 

average size of particles in the entire vessel is calculated as below 

       

∫      

∫     
                                                                      

       (    )
 
                                                                       

0

100

200

300

400

500

600

0 1000 2000 3000 4000 5000

tu
rn

 a
ro

u
n

d
 t

im
e

 (
s)

 

N 

minutes hours days weeks 



60 

In above equation,        is the number of primary particles within the aggregate with the average 

size of       ;      is the number density of   -aggregates (i.e. an aggregate containing   primary 

particles).   

The settling velocity of such an aggregate can then be calculated.  The settling velocity for a 

fractal objects is  

   
(    )   

 

   
(
  

  
)
    

                                                           

For a different value of    , the average size and in turn the average settling velocity would be 

different.  However, one may obtain one curve from another by scaling using the ratio of settling 

velocities of average size of aggregates.  The ratio of average settling velocity of aggregates,     , 

is determined as follows.  The subscripts 1 and 2 indicate the two simulation cases in which two 

different values of     were chosen.  The ratio of average settling velocity is given by  

   
  

  
 (

      

      
)

    

                                                              

Or, in terms of       ,   

   (
      

      
)

    

  

                                                                

By scaling the time axis in one of the settling curves using this ratio, we see an approximately 

‘universal’ trend.  Figure 5.12a shows the settling curves for   =200, 500, 800, and 1000.  The 

suspension consisted of 1-    silica particles in n-heptane.  The mass concentration of particles 

was 5 wt%, and the collision efficiency was assumed to be 1.  The collecting tray was assumed 
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to be placed at a depth of 15 mm from free surface.  Figure 5.12b shows the scaled settling 

curves by using the procedure described above.  It illustrates that the settling curve for   =1000 

can be roughly approximated by other settling curves obtained for smaller    .  

 

Figure 5.12. a) normal and b) scaled settling curves for  =200, 500, 800, and 1000.  The test 

includes of a suspension of 1 µm silica particles in n-heptane. The collecting tray was assumed to 

be at 15 mm deep.    

 

5.4 Validation of the numerical model 

It is always desirable to have the results of a computer simulation study verified and validated.  

Although the results of a simulation can only be approximations of the real system, the goal is to 

produce accurate representation of the system.  Simulation results are usually compared to some 

actual system behavior (e.g. simple experiments that can easily be done in the lab) or previous 

simulation results that have been already tested and validated.  The accuracy should be also 

examined by mesh refinement to show that the results are independent of mesh size.   

In this section, our simulation results are compared to three situations: Cases (1) and (2) are 

actual experiments involving sedimentation of 1-µm silica particles in two different liquids, and 

N=200 
400 

N=1000 800 
600 

(a) 
(b) 
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Case (3) is a theoretical scenario that is well-known in the literature: the universal ‘self-

preserving’ PSD (particle size distribution) involving perikinetic collisions only.  

5.4.1 Validation1: Sedimentation of treated silica particles in diluted maltene 

A series of settling tests have been conducted using the sedimentation balance in our lab by my 

colleagues.  It is known that bitumen-treated silica particles will adhere strongly to one another 

in an aliphatic organic liquid, in this case, n-heptane with dissolved maltene (i.e. the portion of 

crude oil that is soluble in n-haptane).   

The methods and procedures have been discussed earlier.  The solid particles were 1-micron 

bitumen treated silica particles, and the suspending liquid was diluted maltene.  The liquid phase 

was prepared by mixing 5 wt% maltene with n-heptane.  The solid particles were added at 5 wt% 

to the suspending liquid.  The experiment was repeated three times using the sedimentation 

balance.  The settling curves are shown in Figure 5.13.   

The case of diluted maltene with pure heptane was recognized as the rapid coagulation so that we 

can reasonably assume that the collision efficiency,    , is equal to unity.  The turn-around time 

(i.e. time at which the collected mass on the tray reachs its maximum) was approximately 55 

seconds. 
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Figure 5.13. The settling curve for bitumen coated silica particles in 5% diluted maltene; 

collecting tray was located at depth of 15mm 

 

The simulation model was implemented for the same situation and the results are shown in 

Figure 5.14 as the maximum aggregate size     varies.  As the value of N increases, the settling 

time decreases until a certain time after which it does not reduce by increasing    .  However, as 

mentioned earlier, running the simulation for arbitrarily large value of     is impossible using 

current computing resources; therefore an extrapolation analysis is inevitable.  The sedimentation 

times are plotted versus     in Figure 5.15.  The data points were fitted to the equation in the 

form of below:   
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where   is the settling time.  The parameters       and   are constants;   indicates the settling 

time as     is infinitely large.  In this case,   was equal to 56.  Therefore, the settling time would 

be 56 seconds from simulation, which is in very good agreement with experimental result (i.e. 55 

seconds).   

 
Figure 5.14. The cumulative mass collected at a plate 1.5 cm deep in a suspension which is 

made of 1µm silica particles in pure heptane.  The situation of rapid aggregation (     ) was 

assumed.   

N 
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Figure 5.15. Turn-around time versus   (largest allowable number of primary particles in an 

aggregate) for treated silica particles in diluted maltene; the fitted coefficients are:   3.921E5, 

 =2.099E-8,  =56.99,  =0.08508 (          ).   

5.4.2 Validation 2: Sedimentation test of silica particles in water at pH=2 

Another sedimentation experiment was conducted, this time concerning the behavior of 1µm 

silica particles in water.  The mass concentration of silica particles was 5% by weight, and the 

collecting tray was again located at 15 mm depth.  If the pH is neutral, the 1-micron particles 

may take several hours to settle (in accordance with the Stokes velocity of individual spheres) as 

the particles do not aggregate at pH=7.  At this pH, silica particles carry a net negative surface 

charge; the resulting double layer repulsion prevents any particle-particle adhesion.  However, as 

the pH is lowered to around 2, the pzc (point of zero charge) is reached, and the silica particles 

readily aggregate due to van der Waals attraction [51].  Such a situation is most likely one of 

rapid coagulation, with the collision efficiency     being 100%.  Figure 5.16 illustrates the 

settling behavior at pH=2 for 1-micron particles in deionized water.  The settling time is about 

180 seconds.   
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Figure 5.16. Settling curves of 1µm untreated silica particles at 5 wt% concentration in water 

with pH=2.  The sampling tray was at a depth of 15mm.   

 

For the same situation, the settling curve was obtained from simulation model at different values 

of     (shown in Figure 5.17).  Just as in the previous case, in order to find the actual settling 

time, the turn-around times at various     values are plotted in Figure 5.18, and then fitted to Eq. 

(48).  The coefficient   was obtained equal to 173.  Therefore the settling time would be 173 

seconds based on numerical simulation.  This is once again in good agreement with experiment 

result (i.e. 180 seconds).  Table 5.1 shows a comparison between the numerical results and 

experimental data for both cases discussed above.  
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Figure 5.17.  The cumulative mass collected by a plate at a depth of 15 mm.  The suspension 

consisted of 1µm silica particles in water of pH 2.  Rapid aggregation (     ) was assumed.   

 

 

Figure 5.18. Turn-around time versus N (largest allowable number of primary particles in an 

aggregate) for silica particles in water at pH=2; the fitted coefficients are:   2.545E4, 

 =0.1977,  =173.2,  =0.1738 (          ).   
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Table 5.1. Comparison between modeling and experimental results 

Sedimentation test Settling time (s) 

      Experiment Modeling 

Treated silica in diluted maltene 55 56 

Silica in water at pH=2 180 173 

 

5.4.3 Validation 3: Determination of self-preserving PSDs  

Here, we choose to use the so-called “self-preserving” particle size distributions (PSDs) as the 

test.  Early investigations of aggregation dynamics often involved seeking solutions to the 

Smoluchowski equation — in the form of PSDs as functions of time. What was common 

amongst these studies was the assumption that the number concentrations were independent of 

spatial position, i.e. the general functions           were reduced to        .  Working under this 

limitation, Friedlander and coworker [9], [72] showed that, by properly scaling the physical 

parameters, the PSD of a suspension undergoing perikinetic (i.e. Brownian) aggregation would 

exhibit a “self-preserving” form.  Specifically, let the aggregate size     be expressed in its scaled 

form     according to  

  
    

            
 

 

〈 〉
 (49) 

where  〈 〉 , the average aggregate size, is given by  

〈 〉        ⁄                                                                            

the quantities     and        are, respectively, the total number of primary particles and the total 

number of aggregates.  For discrete particles sizes (i.e. with     having integral values), we have  
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Finally, the scaled particle size distribution     is  

   
  

    
   ⁄

                                                                           

For perikinetic transport with 100% collision efficiency, it was shown that plots of     versus     

(i.e. the scaled PSD) would exhibit, after some initial transience, an asymptotic form that was 

invariant with time; further, the final         was independent of the initial PSD.  Such 

asymptotic behaviour is said to be ‘self-preserving.’  Detailed forms of the self-preserving 

        were given by Vemury & Pratsinis [61] and Friedlander & Wang [72] for different fractal 

dimensions (     ranging from 1 to 3).  Figure 5.19 shows self-preserving size distribution of 

aggregates of various fractal dimensions (      ).  The distributions narrow with decreasing 

   because the rate of aggregate growth is larger for lower fractal dimension.  

 

Figure 5.19. Self-preserving size distribution of aggregates of various fractal dimensions [61].  
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As validation, we will use our numerical scheme (see Section 4) to predict the “literature” self-

preserving PSDs.  There are two fundamental differences between the analyses of those earlier 

studies [9], [61], [72] and the current one:   

1. The PSDs in the earlier studies were based on a continuous particle size which ranged 

from 0 to    .  In this study, the aggregate size     was discrete and, for practical reasons, 

could not have a maximum value of infinity (    ranged between 1 and    ).  Our discrete 

approach can lead to truncation errors which we must ensure, through the present 

validation process, are negligible.   

2. Our numerical scheme is more versatile in that it can account for spatial variations of      

as well as particle collision by differential settling.   

To compare with literature results, we had to suppress spatial variations and differential settling 

in our numerical simulation; this was done, very simply, by “turning off” gravity (i.e. by setting 

      in the equations).  The maximum aggregate size was chosen to be 1000.  Figure 5.20 

shows results of our simulations for      1, 2.2 and 3.  The contour-like lines represent the 

transient PSDs as they evolved to the final asymptotic shape [73].  In all three cases, the final 

PSDs agree very well with what were reported in earlier studies [61], [72] — with differences of 

less than 1%.   
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Figure 5.20. Self-preserving PSDs for rapid perikinetic aggregation.  The fractal dimensions      
were (a) 3, (b) 2.2, and (c) 1.  The final asymptotic shapes agree very well with those reported by 

Vemury & Pratsinis [61] and Friedlander & Wang [72].   
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6 Kinetics of aggregation and sedimentation 

6.1 Three stages of settling behavior  

In addition to settling velocity, the mechanism of aggregation also depends on the size of 

primary particles.  If the particles are small and/or of equal sizes, Brownian motion will plays a 

dominant role.  As particles aggregate and grow in size, differential settling becomes much more 

important.  Differential settling depends significantly on size.  If there is a wider range of 

aggregates, the rate coefficients will increase dramatically.  Hence, in a settling test conducted by 

using a settling balance (see Section 3.1 for details), one generally expects to see the aggregation 

of falling particles following three main stages: 1) Growth phase, which begins at     and may 

last for few seconds or minutes. During this phase, the primary particles begin aggregation to 

create doublets, triplets, etc.  The span at which the settling remains in this stage is determined 

by the rate of aggregation at the beginning.  The faster the aggregation, the shorter will be the 

growth phase; 2) steady state phase, when aggregation is improved significantly due to birth of 

larger particles, providing in turn a broader size range; 3) the resting phase.  Within the previous 

two phases, the larger primary particles and a portion of small particles are leaving the 

suspension (forming a packed bed at the bottom).  Towards the end of the process, only a small 

amount of fine particles will remain.  These particles will sediment at a much slower rate.  Also, 

since the number density is reduced significantly during the previous phases, there will not be 

much aggregation.  The resting phase begins when the settling rate slows down significantly and 

rapidly (corresponding to the ‘turn-around’ point discussed in the last section).  It lasts until it 

reaches the total mass of particles initially present in the settling column.  Figure 6.1 shows a 
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typical settling curve (i.e. a settling curve resulted from a settling balance) with these three 

stages. 

 

Figure 6.1. A typical settling curve based on data from a settling balance test (see Section 3.2).  

A collecting tray is placed at a fixed location in a liquid and the mass of collected solids is 

recorded over time.   

 

The length of each stage, relative to the others, depends on several factors such as the size of 

primary particles, the attachment probability, etc.  In what follows, we discuss a few case studies.  

Case Study 1: Short growth period; 1-micron silica particles suspended in heptane 

The growth period can be significantly short comparing to the other two stages.  Mostly in the 

case of rapid aggregation (i.e. attachment probability    ), this growth stage is short.  

However, it is not necessarily true for large primary particles due to poor aggregation (see 

discussion in the next section).  The growth phase is likely not observed (or missed) when a wide 

initial size distribution exists.  A mixture of different sizes stimulates the aggregation process 

steady state 

growth 

resting 
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due to occurrence of significant differential settling right at the outset.  Figure 6.2 shows a 

cumulative settling curve resulting from a simulation.  It represents a process in which the 

sampling tray was located at a depth of 1.5 cm.  The suspension consisted of 5 wt% 1-micron 

silica particles in heptane.  The largest aggregate was allowed to have 1000 primary particles.  

The fractal dimension was 2, and the collision efficiency was assumed to be unity (i.e. rapid 

coagulation).   

 

Figure 6.2. The cumulative mass collected by a plate at a depth of 1.5 cm.  The amount of mass 

was divided by total mass at     .  The primary particles were 1-micron silica spheres at a 

concentration of 5 wt%.  Aggregates were allowed to grow to a maximum size of         .   
 

Case Study 2: Lengthened growth stage; 1-micron silica particles in slow aggregation 

Suppose the same test on the same suspension in Case Study 1, except the attachment probability 

is 0.1.  In this case, the particles collide but only one tenth of the collisions are successful in 

making an aggregate; this results in a slow aggregation.  It takes more time to produce larger 

aggregates in order to enhance the aggregation rate.  Figure 6.3 shows how slow aggregation 
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causes a lengthened growth period.  Nonetheless, after creation of enough larger aggregates, 

when differential settling is improved, a steady sate period begins which lasts for quite some 

time.  

 

Figure 6.3. The cumulative mass collected at a plate 1.5 cm deep. The amount of mass was 

divided by total mass at    . Aggregates grow up to one containg 1000 primary 1-micron 

particles. Solid concentration was set to 5% by weight. The attachment probability is 0.1.  

 

Case study 3: Lengthened growth and resting stages; 10-micronsilica particles in heptane  

If the primary particles have two specifications: 1) fairly large, and 2) of equal size, the rate of 

aggregation will be quite low.  At the early stages, there is no differential settling (because of the 

equal sizes).  Therefore, aggregation shall be dependent on Brownian motion only, which is 

insufficient for such large particles to make a great degree of aggregation.  In that case, it takes a 

rather long time to create small amounts of aggregates of different sizes, and this is why the 

suspension remains longer in the first phase.  Figure 6.4 shows the settling curve for a suspension 
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of mono-size 10-micron silica particles suspended in heptane with a 2 wt% concentration.  The 

measuring tray is at a depth of 2 cm, and the collision efficiency     is one.  The aggregates were 

allowed to grow to a size comprising of 250 primary particles.   

Here, the middle phase is short, but the resting period is long.  The reason is that, at any instant, 

the aggregation rate is not the same at different depths along the column.  At lower locations, 

closer to the sampling point, the rate of aggregation is higher because the newly-created 

aggregates encounter the smaller ones on their downward paths and result in aggregation due to 

differential settling.  However, over time, they meet less number of aggregates which lowers the 

aggregation rate.  As a result, the suspension goes through a longer resting phase after a very 

short steady state phase.   

 

Figure 6.4. The cumulative mass collected at a plate 2 cm deep.  The amount of mass was 

divided by the total mass at    .  Aggregates grow to one containg 250 primary 10-micron 

particles.  The solids concentration was set to 2% by weight.  The attachment probability is 1.   
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6.2 The role of collision efficiency in settling behavior 

As shown above, a mono size dispersion of particles may affect the settling behaviour, especially 

when the attachment probability is less than 100% (see Case Study 2 in Section 6.1).  Here we 

are interested in examining the impact of collision efficiency on the settling time, rather than the 

initial growth rate.  In industrial applications, the settling time is the most important issue in the 

design of settling tanks.  Settling time is the time that particles take to migrate through some 

characteristic distance in the vessel (for example, half of the vessel height).  The settling time 

should be less than the ‘resident time’ of the fluid in the vessel to achieve an acceptable 

separation efficiency.  In our settling curve, the settling time is the point that the curve stops 

rising and then turns around to level out.  It is the time that particles initially located above the 

measuring tray take to completely settle.   

Note that in reality, the particles in a slurry are most likely not of equal size.  In the separation of 

these particles by sedimentation, the poly-dispersity in size will enhance differential settling and 

reduce the growth period.  We will discuss the influence of initial particle size distribution later.  

Here, let the particles be a mixture of spheres with the size range shown in Table 6.1.  This size 

distribution has been used as the initial condition in the model, and then the settling curve was 

plotted using the obtained results.  The collision efficiency was set to be 1, 0.1 and 0.01.  As we 

discussed in Chapter 2, the collision efficiency is determined by inter-particle forces so by 

changing the collision efficiency, we actually take the inter-particle forces into account. If there 

is a strong attractive force between particles, the collision efficiency will be equal to 1; weak 

forces will results in the lower values of collision efficiency. If repulsive forces exist, particles 

will not aggregate as collision efficiency is zero. The settling curves are shown in Figure 6.5.  

The suspension was a mixture of 2 wt% silica particles in a fluid with properties (i.e. density and 
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viscosity) of heptane.  The aggregates were allowed to grow to ones containing 1000 primary 

particles of 5-micron diameter.  The sedimentation probe was assumed to be located at a depth of 

2 cm. 

Table 6.1. The initial size distribution of particles used to study the role of collision efficiency 
size (µm) wt% 

5 0.22 

9 0.87 

11 2.7 

13 6.49 

15 12.11 

16 17.62 

18 19.97 

19 17.62 

20 12.11 

21 6.49 

23 2.7 

24 0.87 

25 0.22 

 

When      , the process is quite fast, and the settling time is short.  In the other words, the 

particles are separated very quickly as they adhere to one another to create bigger aggregates that 

settle faster than the individual particles.  In contrast, the settling time is much longer if     is less 

than one.  For        , a growth period and an extended resting period are observable, as the 

particles take more collisions to create aggregates.  This phenomenon makes a remarkable 

resting period.  It is interesting to note that if     is sufficiently small (e.g.         ), the 

aggregates do not grow much so that a large portion of the aggregates are the small ones.  Under 
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this condition, there is not a significant amount of large aggregates.  This is the reason that the 

settling curve looks like the one when    , except it is much slower.   

 

Figure 6.5. The cumulative mass collected on a tray that is 2 cm deep.  The settling curves are 

shown for     1, 0.1, and 0.01.  The collision efficiency is determined by inter-particle forces.  

 

In terms of settling time — which is an important factor in the design of settling tanks — if the 

conditions were properly chosen so that     is equal to one, the sedimentation would occur much 

faster and easier, otherwise the settling time would be longer, and therefore a bigger settling 

vessel is required.  The other point is that for the suspensions with         or         , both 

settling curves reach the maximum at roughly the same time. Therefore, if we aim for 100% 

separation, we will not be able to decrease the size of the settling vessel by increasing collision 

efficiency from 0.01 to 0.1.  If one, on the other hand, requires only 75% separation, then the 

situation with         will perform better than the one with        .   
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6.3 Size distribution over time 

One of the best ways to investigate aggregation kinetics is to follow the evolution of the 

aggregate size distribution as they grow and at the same time settle.  In our simulation, no 

breakage is assumed, so that the population of aggregates may diminish only due to 

sedimentation.  The size of aggregates increases as they adhere together, which consequently 

accelerates their removal by increasing their sedimentation velocity.  As a wide range of 

aggregate sizes are involved in the process (from a single primary particle to aggregates 

comprising of thousands primary particles), it is easier to look instead at the average aggregate 

size.   

Consider a suspension of aggregates in a fluid.  The size of each aggregate is specified by the 

number of primary particles within it.  Thus, a ‘  -aggregate’ is one with     primary particles.  

Let    be the number density, and    be the mass of the k-aggregates.   

The number-weighted and mass-weighted average sizes of k-aggregates in a settling column, 

denoted         , and          respectively, are given by the following expressions:  

       
∫     

∫    
                                                                  

        
∫       

∫      
                                                               

In the above equations,     is the number of primary particles in the largest aggregate.  Since 

        

the mass average is 
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∫       

∫      
                                                             

Each   -aggregate is comprised of     primary particles of diameter      and has a fractal 

dimension    ; therefore 

       (    )
   ⁄

 

In above equation,         is the number of primary particles in an aggregate of average size 

      .   

Recalling Case Studies 1 and 2 in Section 6.1, let us examine the size distribution of aggregates 

as time progresses.  A suspension of 1-micron silica particles, at a concentration of 5 wt% in a 

liquid, was considered.  The largest aggregate was allowed to be made up of 1000 primary 

particles.  The collision efficiency was assumed to be 100% in Case Study 1, while it was 0.1 in 

Case Study 2.  Figure 6.6 and 6.7 show the mass-weighted average size of aggregates for Cases 1 

and 2.   
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Figure 6.6. Mass-weighted average size of aggregates over time for a suspension of 1-micron 

silica particles.  The collision efficiency was assumed to be 1.     is the number of primary 

particles in the largest allowable aggregate (here,    =1000).   

 

Figure 6.6 illustrates that in rapid aggregation (i.e.      ), the aggregates grow promptly so that 

the average size of the aggregates increases rapidly, and it reaches a value very close to the 

maximum number,    , in a short time period (    is the number of primary particles in the 

largest allowable aggregate).  Here, the rate of aggregation is larger than the rate of 

sedimentation as the aggregates that are removed by sedimentation are replaced quickly by 

production of new aggregates.  Therefore, the average size of aggregates remains high for an 

extended time period, until all the particles are settled and no more smaller particles are left to 

create large ones.  Note that the turn-around time is roughly the same as that in Figure 6.2.   
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Figure 6.7. Mass-weighted average size of aggregates over time for a suspension of 1-micron 

silica particles. The collision efficiency was assumed to be 0.1. N is the number of primary 

particles in the largest allowable aggregate. Here N=1000. 

 

Figure 6.7 shows the average size plotted against time for the case        .  In contrast to 

     , the size of the aggregates do not increase rapidly; it takes some delay to reach a certain 

time at which an abrupt improvement occurs.  The aggregates grow during the growth period, 

which is about 60 s in this case.  There is good agreement between the point here and the one in 

Figure 6.3, at which great improvement is observed in the settling rate.  In addition, it is noted 

that the average size of the aggregates is not a value close to the maximum allowable size, unlike 

the situation with      .  This is because the largest aggregates, which settle the fastest, are not 

replaced as quickly by aggregation.  As the aggregation rate is not as rapid, aggregate 

replacement is limited to smaller entities.   
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In addition to mass-weighted average, the number-weighted average was also calculated.  

Figures 6.8 and 6.9 show the number-weighted average size of aggregates in Cases 1 and 2 (see 

Section 6.1 for details).  The mass-weighted average places more emphasis on the larger 

aggregates.  In other words, the average is closer to the size of larger particles.  (One may argue 

that averaging by mass is more representative of our situation since the experimental settling 

curves are presented on a mass basis.)   

Figure 6.8 shows the number average for Case 1 with      .  The average size of the 

aggregates increases after a very short delay time, but unlike the mass-weighted average, it takes 

more time to reach the maximum value, which is not close to the maximum allowable size.  This 

shows that many smaller particles still exist, even though a large portion of the aggregates are the 

larger ones.   

 

Figure 6.8. Number-weighted average size of aggregates over time for a suspension of 1-micron 

silica particles.  The collision efficiency was 1; the maximum aggregate size     was 1000.   
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Figure 6.9. Number-weighted average size of aggregates over time for a suspension of 1-micron 

silica particles.  The collision efficiency was 0.1.  The maximum aggregate size     was 1000.   

 

As shown in Figure 6.9, the number-weighted average size, when        , is much less than the 

largest allowable number    .  This illustrates that there are many very fine particles along with 

some fairly large aggregates.  One may compare the mass-weighted average with the number-

weighted average, as shown in Figure 6.10, in which dramatic difference is observed between 

these two parameters.  The mass average is seen to increase significantly within the first several 

seconds; it shows that large aggregates are formed within such a time period.  These large 

aggregates leave the system soon after, owing to their high settling velocities.   
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Figure 6.10. Comparison number-weighted average and mass-weighted average size of 

aggregates over time for a suspension of 1-micron silica particles. The collision efficiency was 

assumed to be 0.1. ( =1000). 

 

Size distribution at different depths 

Thus far, only the average size of the aggregates, determined over the entire settling column, has 

been investigated.  To investigate the effect of depth on size, we calculate the integral in Eq. (54) 

over two intervals.  The first interval was from top (zero depth) to middle of the column; the 

second interval was from the mid-point to the bottom of the column.  Figure 6.11 shows the 

mass-weighted average size computed over the top and bottom halves of the column, in addition 

to the entire depth in Case Study 2 (see Section 6.1 for properties of the suspension).  As the 

aggregates grow as they settle, the average size becomes larger in the bottom half compared to 

that in the top half.  The deeper the depth, the higher is the concentration of larger aggregates.  It 

mass-weighted average 

number-weighted average 
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is interesting to note that the growth periods are the same within all three vertical segments (see 

Figure 6.11).   

 

Figure 6.11. Mass-weighted average size of aggregates at different depths (see Section 6.1, Case 

Study 2 for properties of the suspension).   

 

6.4 The “induction time”: mass vs time plot 

In Section 3.1, we described a new approach of measuring sedimentation rates in a suspension 

(tailored for opaque liquids); it involved collecting small samples (0.5 mL) from a fixed location 

(1 cm below the free surface) and determining the solid masses     within them.  The solid mass 

was measured and plotted in Figure 6.12.  From a previous study, it is known that the suspended 

solids are colloidally stable (i.e. they do not aggregate) in toluene, but become unstable in n-

heptane [5].  Indeed, as seen in Figures 6.12a and 6.12b, the characteristic settling times in the 

two solvents differed by orders of magnitude: the solids took over 3 days to traverse a distance of 

1 cm in toluene (slightly longer than the time which corresponds to the terminal velocity of 

bottom half 

top half 

entire depth 
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individual particles, as the silica were susceptible also to thermal agitation), but covered the same 

distance in less than 2 minutes in n-heptane.  This difference was attributed to the steric 

repulsion between silica particles in toluene, which left the particles to settle as individual, 0.25-

µm spheres.  In contrast, there was strong inter-particle attraction in n-heptane, giving rise to 

rapid coagulation and sedimentation [5].   

The last set of settling tests was conducted in cyclohexane, following the same procedures.  As 

seen in Figure 6.12c, the settling rate in cyclohexane was somewhat slower than that in n-

heptane, but was nevertheless of the same order of magnitude.  What is noteworthy in Figure 

6.12c is the existence of an apparent ‘induction time’ before which aggregation appeared not to 

occur.  On first reflection, the origin of this ‘induction time’ is unclear; there does not seem to be 

any molecular basis for such a phenomenon.  To gain further insight into the sedimentation 

process, we next turned to detailed simulation of the sedimentation process.   
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Figure 6.12. Settling behaviours as expressed by plots of     vs.    .  The suspending liquids 

were (a) toluene, (b) n-heptane, and (c) cyclohexane.  Note that the vertical axes, which are 

labelled ‘solids concentration,’ shows the solids mass that were recovered from the 0.5-mL 

samples.   

 

 

Simulation results 

As seen in Figure 6.12, there were situations when an ‘induction time’ (i.e. an apparent delay 

before aggregation commenced) was observed.  We show here, from our simulation results, that 

the apparent induction time may be an artifact resulting from the kinetics of aggregation.   

The results obtained from our numerical simulations have been used to provide insights into the 

experimental results.  The suspension was comprised of 1µm silica particles in n-heptane.  The 

collision efficiency was assumed to be 0.1.  The particles were allowed to grow and make large 

a b 

c c 
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aggregates such that the largest one contains 1000 primary particles.  The mass     can be easily 

calculated from the local number concentrations of all aggregates (multiplied by the sample 

volume to obtain the actual number of particles, then converted to a mass based on          and 

    ).  Figure 6.13 shows the solids mass at 1 cm below the free surface (cf. Figure 3.1) up to a 

time of 50 seconds.  Note that the mass     on the vertical axis is expressed as a fraction of its 

maximum value      (i.e.     at      ).   

Figure 6.14 shows the results of another modeling test for the particles with initial size 

distribution presented in Table 6.1. Again, the particles were assumed to be suspended in 

heptane; the calculations were done for collision efficiencies     of 1 and 0.1.   

 
Figure 6.13. The mass concentration of 1-micron silica particles in n-heptane at a location that is 

1 cm from the free surface; the largest aggregate contains 1000 primary particles (      ).  

The collision efficiency was assumed to be 0.1.   
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Figure 6.14.  Mass concentration of silica particles undergoing aggregation and sedimentation in 

heptane with two collision efficiencies:       and        .  The initial size distribution was 

presented in Table 6.1.   

 

As seen from Figure 6.13 and 6.14, there are, at the beginning, flat regions similar to what was 

observed experimentally (see Figure 6.12).  These flat regions appear to suggest periods during 

which aggregation has yet to take place, thus leading to speculations of ‘induction times’ (which 

have no real physical basis).  However, in our simulation, particle aggregation commenced 

immediately at      ; no delay time was imposed in the calculations.  To illustrate this, Figure 

6.15 shows the number densities of singlets (i.e. primary particles, with      ) and doublets 

(     ) at a 1-cm depth as functions of time.  As expected, the number of singlets decreased 

monotonically from time       as they combine with others to form larger aggregates; the 

number of doublets rose momentarily as they were created from singlets, but dropped as they 

went on to form bigger entities.   
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Figure 6.15.  Scaled number densities of (a) primary particles, and (b) doublets as functions of 

time; the time       corresponds to commencement of the settling process.   

 

It is clear from Figure 6.15 that, between the suspended particles (i.e. on the smallest length 

scales), there was no delay in aggregation.  The apparent induction times seen in Figure 6.13 are 

in fact results of sedimentation kinetics.  We propose that sedimentation by differential settling 

requires some ‘lead time’ before the phenomenon manifests itself on the macroscopic scale — 

almost discontinuously as in the case of avalanches.   

Figure 6.14 also suggests that the apparent induction time becomes longer as the collision 

efficiency     decreases.  Even for the highest efficiency of      , it appears that there would 

be a finite delay time before sedimentation is seen macroscopically.  In reality, however, this 

delay time may be too short to be observed (as was the case with n-heptane in Figure 6.12).   

The rate of sedimentation observed in experiments is in fact a function of the rate of aggregation 

and the rate of settling.  The rate of settling, which is essentially the settling velocity, is very low 

and can be neglected in the early stages of the process.  As the aggregates grow, the velocity 

increases as the settling velocity is proportional to        .  The rate of aggregation, however, 

a a b 
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scales as       (according to the Smoluchowski theory).  The collision frequency,    , is not 

identical for all particles; indeed, it can be a strong function of aggregate size.  On the other 

hand, the particle number concentrations decrease as they adhere to one another to make bigger 

aggregates.  Thus, as the aggregates grow, the settling velocity increases while the rate of 

aggregation decreases.  Although, the settling velocity is negligible at the beginning, after some 

time, it will become dominant.  That point is the time after which precipitation becomes visible.   

6.5 The “induction time”: height vs time plot 

The traditional method of studying the settling behavior of solids is to monitor the position of the 

interface between clear liquid and ‘cloudy’ suspension; the position of this ‘mud line’ is usually 

plotted against time.  There are some reports in the literature regarding an ‘induction time’ that 

was observed experimentally (See Ref [47], [49], and [74]).  Here, we demonstrate the capability 

of our numerical modelling to predict such an ‘induction time.’  We will evaluate the conditions 

under that the induction time will be observed.   

Figure 6.16 shows the plot of the material density (i.e. mass concentration of material per 

volume) versus the fluid depth at various times.  The material density changes from zero to 

maximum over a very short vertical distance.  This distance is the interface between clear liquid 

at the top and the suspension at the bottom.  The mud line descends over time as aggregation and 

sedimentation occurs.   
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Figure 6.16.  Density profiles in a settling column.  The curves are obtained from integration of 

Eq. (30).  All quantities are expressed in their non-dimensional forms.   

 

To monitor the location of the mud line over time, the average vertical position was calculated as 

follows:  Writing the material density as    ∑    , and recognizing that this density varies 

rapidly with depth across the mud line, we can define the average mud line position by  

     
∫   

∫  
                                                                     

The procedure is shown in Figure 6.17: it shows how the location of the mud line (at a given 

time) was determined.  Using this method, the mud line location was approximated and shown in 

Figure 6.18.   

material density ( ∑    ) 
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Figure 6.17.  Determining location of the mud line 

 

This work has been repeated for various values of collision efficiencies, from      to      .  

At the maximum aggregation rate, no induction time was observed.  However, as the collision 

efficiency decreases, a perceptible induction time was seen.  Although the delay time is rather 

small from      and        , it is quite noticeable when         .  The mud line moves 

slowly at the beginning because not much aggregation occurs.  With creation of larger 

aggregates, the rate of aggregation increases significantly so that an “avalanche” phenomenon 

occurs, and the mud line descends much faster from that point on.   

location of  

mud line 

material density ( ∑    ) 
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Figure 6.18.  Mud line location (calculated using eqn. 55) vs. time.  The diameter of the primary 

particles was 5 µm (    
      ).  The parameter     is the collision efficiency.   

 

Note that the ‘induction time’ was observed because the initial rate of particle sedimentation and 

aggregation are relatively slow.  However if the rate of sedimentation is higher than the rate of 

aggregation (e.g. with larger particles), this delay time will not form or will be less visible.  

Figure 6.19 shows the mud line location for primary particles that are 1.6 times bigger than those 

in Figure 6.18.   
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Figure 6.19.  Mud line location vs. time.  The diameter of the primary particles was 8 µm 

(    
    ).  The parameter     is the collision efficiency.   

 

6.6 Diffuse layer 

6.6.1 Formation of diffuse layer 

As suspended particles and aggregates settle, a layer containing lower concentration of solids 

begins to form at the top.  The population of particles in this layer depends on how quickly the 

particles aggregate to make larger aggregates and descend faster.  This phenomenon results in 

the formation of an interface between the clear layer and the concentrated layer.  The interface 

travels toward the bottom as displayed in Figure 6.20.  The higher degree of aggregation 

accelerates sedimentation and the interface displacement.  However, a sharp interface does not 
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always exist.  Travelling from top toward bottom demonstrates that the mass concentration is 

gradually decreasing.  It begins from a clear liquid ending to a completely cloudy region.  The 

length of transition region (i.e. clear region to dark region) can be expressed as a function of the 

rate of settling and the time elapsed.  A diffuse interface, therefore, is observed which is called 

the mud line. 

 
Figure 6.20.  Sedimentation of particles and aggregates results in the formation of a diffuse 

interface between the clear phase and dark region.   

 

6.6.2 The thickness of diffuse layer 

A sharp interface is likely to be observed under two conditions during the settling process: either 

where the particles are all mono-size or when the particles do not aggregate.  If particles are 

neither mono-size nor having a certain tendency to aggregate, a diffuse layer will develop at the 

interface.  It is, therefore, not easy to keep track of the interface in most experiments.  However, 

it is helpful if one looked at the mass concentration of particulate solids in the transition area 

instead.  Mud line, thus was defined as the area where solid content varies between a typical 

number (e.g. 90% of initial value) and the current maximum concentration, as illustrated in 

Figure 6.21.  At time       the ratio of mass concentration to its initial value is unity at all 

locations, but this ratio decreases as time proceeds.  The large particles (even without 



99 

aggregation) settle quickly, leaving the concentration ratio less than unity.  Furthermore, 

aggregation, followed by sedimentation, will remove more solids.   

 

Figure 6.21.  The mudline thickness ss defined as the height in which the solid concentration 

varies between 90% of initial value and maximum value. 

 

According to this definition, the thickness of the diffuse layer was measured over time using the 

simulation results.  Figure 6.22 shows the thickness for collision efficiencies of 0.1, 0.04 and 

0.01.  The diffuse layer initially expanded until it reached a maximum value after a certain time, 

then it decreases to a constant value.  It remained constant until the diffuse layer (as defined) 

touched the bottom of the vessel where the thickness began to reduce.  In other words, three 

regimes could be identified: an expansion, constant and ground contact.  The slope of the curve 

at the last section determines the rate at which the interface layer is lowering toward the bottom 

of the vessel.     
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Figure 6.22. The mud line thickness over time 

 

The thickness of the constant section was plotted against collision efficiency in a log-log plot in 

Figure 6.23.  Also shown in the figure is a case where the mud line is defined for the region 

where the solids content varies between 80% of initial value and the maximum concentration 

(open symbols), compared with 90% of initial value and the maximum concentration (closed 

symbols).  As seen, there is not a big difference if the arbitrary number of 90% is replaced by 

80%.   

time 
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Figure 6.23. The mud line thickness once it becomes constant against the collision efficiency    .  
δ80 is similar to δ90, except the lower range was taken as 80% of the initial mass concentration.   

 

6.6.3 Multiple diffuse layer 

It is well-known that an interface (i.e. the mud line), which can be somewhat diffuse, is 

developed when particulates settle in a fluid.  The interface divides the fluid in two parts: a clear 

liquid and a solids suspension.  The concentration of the particulates varies across the interface 

— from zero to some finite value that is equal to the concentration of the suspension.  How the 

diffuse layer is formed was discussed at length in the previous sections.  Note that it is often 

assumed that only one interface is formed, and therefore it is this interface that is tracked in order 

to quantify the rate of settling.  However, it is possible that multiple layers are developed instead 

of only one.  In such a case, the concentration of materials would not increase monotonically 

with depth.  The reason only one interface is observed is likely because the other layer(s), if they 

exist, are visually difficult to detect; as will be shown here, the particle concentrations around 

these ‘secondary layers’ do not vary as dramatically.  However, if one measures the turbidity 
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very carefully and with enough resolution, multiple interfaces can sometimes be observed.  Here 

in this section, the underlying mechanism that causes the formation of several diffuse layers will 

be discussed.    

6.6.3.1 Experiments 

Let us assume one is doing a settling test by using the sedimentation balance (see Figure 3.2); the 

detailed procedures have been described earlier.  If only one interface exists in a settling column, 

one expects to see the amount of collected mass increases more or less linearly over time.  This 

continues until the collected mass reaches a maximum value, at which point the curve levels off.  

If the initial particle size distribution (PSD) includes some smaller particles, the settling curve 

will continue increasing but at a much reduced rate.  This is because the larger particles settle 

first with higher velocities along with smaller particles, and when they are all settled, the small 

particles will be still received by the collecting tray (these small particles do not aggregate easily 

as their number concentrations would be very low at this point).   

It is unusual to see the slope of the settling curve increase after it has already reduced — it looks 

like the rate of settling improves after it was about to reach zero.  However, this behavior was 

sometimes observed with the settling balance.  Figure 6.24 shows the settling curve for a 

suspension of 5 wt% of 1.5 micron silica particles (claimed by vendor to be 1.5 µm mono-size 

particles) in water at pH=2.  (Recall pH 2 is the point of zero charge; the silica particles will 

aggregate via van der Waals attraction, giving rise effectively to a collision efficiency of 100%.)  

The collecting probe was placed 15 mm below the surface.  The rate of the mass received by the 

probe is quite large at the beginning.  Soon after that, the rate decreased, and then again 

increased until it stops rising and levels off.  Again at the end, it increased until it reaches the 

maximum amount.  
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If the primary particles were all of the same size, the settling curve was expected to rise at a 

constant slope until it levels off.  The observed behavior is attributed to the formation of multiple 

diffuse layers.  At the sampling point, a large number of bigger aggregates are received first.   

 
Figure 6.24.  Experimental settling curve of a suspension of 5 wt% of 1.5 micron silica particles 

(claimed by vendor to be 1.5 µm mono-size particles) in water at pH=2.  The collecting tray was 

placed 15 mm below the surface.   

 

How multiple layers are formed 

Larger particles settle at a higher rate so that on their way to the bottom they catch the smaller 

particles and bring them along.  This is the main mechanism which occurs in sedimentation 

systems, as was discussed earlier (i.e. differential settling).  As a result, the rate of aggregation is 

much higher in the mid-layers, because particles grow to even larger aggregates on their way to 

the bottom, and then they catch the particles in the mid layers at high collision rates.  This results 

in more particle aggregation, and therefore faster sedimentation in the middle zones.  Smaller 

particles at the top, however, do not have any chance to meet larger primary particles.  They do 

not aggregate as much as the particles in the mid-layers, hence they settle at a lower speed.  As 
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time progresses, a clear zone with lowered solids concentration will be developed in the middle, 

while a layer of suspension still remains at the top.  Figure 6.25 is a sketch which illustrates such 

a phenomenon.   

It is speculated that the 1.5 µm silica particles were not actually mono-size.  A size distribution 

measurement that was done in our group has verified this suspicion.   

 

Figure 6.25.  Smaller particles are caught by larger ones due to differential settling, so the 

concentration of particles is much lower in the middle region than at the top.   

 

6.6.3.2 Modeling 

Experimentally, it is not always easy to observe the phenomenon of a multiple diffuse layers, 

especially when the suspending liquid is opaque.  Conversely, modeling can provide enough 

detailed information to demonstrate such an effect.  Figure 6.26 shows a settling curve from a 

numerical study.  Here, the primary particles consisted of 5 and 35 µm (90 wt% and 10 wt% 

respectively) spherical particles in water (1 % by weight concentration).  The collection tray is 
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placed 1.5 cm below the surface, and the collision efficiency is equal to unity.  Due to poly-

dispersity in size, the rate of sedimentation goes through several inflection points.   

Simulation results have been used to show the mass concentration of solids material in the vessel 

as time progresses.  Figure 6.27 shows the mass concentration of solids at different heights in a 

settling column by colour.  The yellow colour corresponds to clear liquid or zero concentration.  

The dark green colour denotes the initial concentration of the solids; this turns to lighter green as 

the concentration decreases.  A mud line is developed and descends as time progresses.  

However, a layer of concentrated particles remains at the top.  The primary mud line reaches the 

bottom after a certain time, but the column still contains a cloudy suspension at a lower 

concentration.  Here, a layer of concentrated particles exists above the low concentration region.  

This is the situation of an ‘inversion phenomenon’ which occurs sometimes in sedimentation 

systems.  The second mud line descends at a lower speed. It will leave a clear liquid at the end.    

 
Figure 6.26.  Theoretical settling curve of a suspension of 1 wt% of 5 and 35 micron silica 

particles in water.  The collecting tray was placed 15 mm below the surface, and the collision 

efficiency     was 1.   
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Figure 6.27.  Simulation results showing the sedimentation of particulates in a suspension.  The 

yellow colour indicates clear liquid while dark green denotes the highest particle concentration.  

Multiple diffuse layers are seen in the concentration profiles.   

  

time 
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7 Effect of initial size distribution 

The particle size is of great importance in many industrial processes; for example, it plays a 

central role in the design of settling tanks.  Smaller particles have lower settling velocities, which 

in turn require larger settling equipment.  If the particles individually settle (i.e. according to 

Stokes’ law), the settling velocity is proportional to the third power of the characteristic length L 

(i.e.         ).  This means when the particle size doubles, it will settle eight times faster.  

However, when aggregation comes into effect, the size of the particles will not remain constant 

and therefore the above rule will no longer apply.  The primary particles will combine and make 

aggregates of various sizes as time proceeds; before long, the initial particle size distribution 

(PSD) may be ‘forgotten.’  In this section, the effect of initial PSD on the overall kinetics of 

aggregation and sedimentation will be examined.   

Note that in the study of size distribution, a single number (such as the average size) cannot 

describe the distribution of the sample.  Usually, a central point of the distribution, along with 

one or more values which characterize the width of the PSD, are reported.  Therefore, one should 

distinguish between two equally important descriptor of a distribution: (1) central point, and (2) 

width describing how much the distribution is spread out.  We deal with these two quantities 

separately in the following sections.  We first focus on the second parameter assuming that the 

central size value is the same; only the width of the PSD is different.  In all cases, it is assumed 

that the primary particles are, at time      , distributed uniformly in a settling column.   
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7.1 The width of distribution 

Different PSDs can share the same peak (e.g. the value of highest probability), but their widths 

can be quite different from one another; Figure 7.1 illustrates some of such distributions.  Almost 

all real particle samples exist as a distribution of sizes.  In industrial applications, the real 

particles to be separated in settling tanks are not mono-sized, although the tanks are often 

designed with only one average size in mind.  It is thus desirable to investigate the effect of PSD 

width on the settling behaviour.   

Numerical simulation is used here to predict the behaviour of situations with different initial 

PSDs (shown in Figure 7.1).  The suspension is assumed to consist of silica particles in heptane, 

and a sedimentation balance (Figure 3.2) is used to characterize settling process.  The sampling 

point is 1 cm below the free surface.  The simulation results (scaled mass versus time at a fixed 

location) were plotted in Figure 7.2.  The only difference between four cases is the initial PSDs; 

the other properties have been kept unchanged. Interestingly, all the curves fell on top of each 

other, indicating that the settling behaviour is insensitive to initial PSD under certain condition 

(i.e. here in this case the width of distribution is different, but they share the same peak).   

 
Figure 7.1. A mixture of spherical particles of various diameters was used to mimic the initial 

particle size distribution (PSD).  In the mixtures, the amount of each size could be different.   
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Figure 7.2.  Theoretical settling curves (scaled mass concentration at a fixed location) against 

time for four different initial PSDs.  The results suggest that, given a common average size, the 

width of the initial PSD does not influence the settling behaviour.   

 

With regards to experiments, a series of tests was also conducted to study the effect of PSD.  

Two mixtures of silica particles (A and B), as shown in Figure 7.3, were used to carry out 

settling tests using the sedimentation balance (see Section 3.2 for details).  These two samples 

were mixtures of 0.25, 0.5, and 1µm silica particles at different mass ratios.  The peaks occur at 

the same size, but the compositions were different.  The particles were suspended in water at pH 

2 (point of zero charge, which leads to rapid coagulation).  The settling curves (amount of mass 

collected on the tray) were plotted in Figure 7.4.  The tray was located at a depth of 15 mm in the 

suspension.  The settling curves were close enough to conclude that the settling curves were 

insensitive to the initial PSDs (while sharing a common peak size).   
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Figure 7.3.  Two mixtures of silica particles comprising 0.25, 0.5 and 1µm beads at different 

mass fractions.  The mass fractions were adjusted so that the two mixtures share a common 

average size.   

 

 
Figure 7.4.  Experimental settling curves for a suspension of two mixtures of silica particles 

(Mixtures A and B, as indicated in Figure 7.3) in water at pH 2.  The solid lines are the results 

for Mixture A, and the dashed line for Mixture B.   
 

The above theoretical and experimental results indicate that, for PSDs of the same average size 

(weighted by mass), the settling behaviours are insensitive to the width of the size distribution.  

However, the settling behaviour might be influenced if the initial PSDs were significantly 
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dissimilar (i.e. in a case where the initial PSDs have different peaks).  Further simulations were 

carried out to investigate such a conjecture.  Figure 7.5 shows two size distributions with slightly 

different peaks.  

 
Figure 7.5.  Two significantly different initial PSDs applied to the model to study effect of its 

dissimilarity on the settling behaviour. 

 

These new initial PSDs were then applied as the initial condition to solve the simulation 

equations.  The resulting settling curves were compared in Figure 7.6.  It is remarkable that, 

given the different PSDs shown in Figure 7.5, the settling curves were practically overlapped.   

 

Figure 7.6.  Theoretical settling curves (plotted in red and blue) resulting from the two initial 

PSDs shown in Figure7.5.   
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For another two mixtures shown in Figure 7.7, the collected mass at the tray (i.e. similar to a 

sedimentation balance experimental test) was plotted.  Again, our numerical simulation shows 

that in this case the settling curves are insensitive to the initial PSD.   

 

Figure 7.7.  Numerical simulation of the cumulative mass collected by a plate at a depth of 2 cm.  

The primary particles, 1 micron in diameter, were allowed to grow to a size of 1000.  The solids 

concentration was set at 5 wt%.   

Nonetheless, one may expect to see variations in the settling rate if the initial PSDs were vastly 

different.  (The settling rate of a 1-micron particle would be quite different from that of a 10-

micron particle, for example.)  In order to model such a scenario, the initial PSDs were selected 

in such a way that the initial size distributions are very different.  The peaks were located further 

from each other as displayed in Figure 7.8.   
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Figure 7.8.  Initial PSDs for the case of vastly different mixtures of primary particles 

 

Figure 7.9 presents the results of a study carried out for these initial PSDs.  It shows that if the 

initial conditions were sufficiently dissimilar, the settling curves would no longer overlap.  

Similar to a buffer solution, the settling behaviour of a mixture of fine particles shows 

insensitivity to the initial PSD; however, this ‘buffering effect’ breaks down when the initial 

perturbation becomes too large.   

 
Figure 7.9.  Theoretical settling curves resulting from initial PSDs in Figure 7.8.   
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The commutative mass collected at the tray was also plotted in Figure 7.10.  The tray was 

located at a depth of 2 cm.   

 
Figure 7.10.  Cumulative mass collected on a plate at a depth of 2 cm.  The two samples have 

initial PSDs specified in Figure 7.8.  
 

7.2 The central value of distribution 

It is believed that large particles always fall faster than small particles of the same material.  For 

example, suppose that two spherical glass beads are allowed to settle in water: it is clear that the 

larger bead will settle faster than the smaller one; it is because the larger bead has a higher 

Stokes velocity.  This obvious result, however, may not be easily extended to aggregating 

particles.  When it comes to a large number of particles, aggregation may turn all predictions 

‘upside down.’  The question arises here is whether a suspension of large particles still settle 

faster than smaller ones, if they aggregate at the same time.   

Let us compare two samples of particles of the same material and same weight suspended in a 

given amount of liquid in two separate containers.  One sample consists of particles with smaller 
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size than the other.  If the particles do not aggregate, assuming they are spherical, their settling 

velocity (terminal velocity) will follow Stokes’ law; their velocity will not change as they move 

downwards.  On the contrary, when aggregation comes into play, the particles attach to the 

others on their way to the bottom; this process will make larger objects (aggregates) which settle 

faster.  The settling velocity of these entities, then, constantly increases as they travel more 

distances.   

 At    , all particles — in the form of singlets — begin aggregating.  Both initially large and 

small particles aggregate, but the rate of aggregation is higher among small particles than large 

particles (not due to size but because at the same mass concentration, there would be larger 

number of small particles suspended in the fluid).  After a while, when the particles travel a 

certain depth, initially small particles are now large enough that they can settle at the same rate 

of the initially large particles.  

If there is still large amounts of particles suspended in the fluid, aggregation continues so that 

one may see that at a deeper location, initially smaller particles settle even faster than initially 

large particles.  Note that when we compare two suspensions (i.e. small size against large size) 

with the same mass concentration, this phenomenon will be observed only if two following 

conditions are met:   

1. The mass concentration of particles should be above a certain amount.  The availability 

of enough amounts of particles to participate in the aggregation is necessary to obtain the 

desired result.   

2. If one lets the aggregation occur, then after enough time (corresponding to a certain 

depth), the rate of settling of initially small particles will catch up to the rate of settling of 
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initially large particles; therefore, larger particles will not necessary settle faster than 

smaller particles.  

To verify this hypothesis, we use a simple model: we compare two suspensions in two separate 

containers.  Sample a contains      particles, and sample b contains        diameter; both 

samples are suspended in water.  The mass concentrations of samples a and b in suspension is 

kept identical; therefore, the number concentration of particles in suspension b is eight times the 

number concentration of sample a; (at    , we assume that the number concentration of 

particles in suspension a is           ).  We let the particles in both suspensions aggregate 

according to Smoluchowski equation of balance (see Eq.(5)).  For simplicity, we assume the 

particles coalesce upon collision (i.e.     ), and the collision efficiency is 100%.  Differential 

settling was considered as the dominant collision mechanism (Eq.(3)).  Since aggregation by 

differential settling will not start if all particles are of the same size, we introduce a small amount 

of doublets in the suspensions (about 4 wt% doublets).  As time proceeds, the average size of the 

aggregates in both suspensions is determined according to Eq. (44); the results are shown in 

Figure 7.11.   

At    , suspension a contains larger particles (    ) while suspension b includes smaller ones 

(      ).  The average size increases over time; the only difference is that particles in 

suspension b grow much faster so that their average size will become equal and even greater than 

that in suspension a.  This will cause the particles in suspension b settle faster than the ones in 

suspension a.  
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Figure 7.11. The average size of aggregates against time in suspension a and b.  Number 

concentration of particles in suspension a is equal to           , and is            in 

suspension b.   

 

Note that this phenomenon is observed only if the initial concentration of materials in the 

suspension is large.  We reduced the concentration to half of what it was in the above trial (let 

number concentration of sample a be equal to 5        ).  The average size of aggregates 

over time is shown in Figure 7.12.  Contrary to what was observed earlier, within the same time 

period, the average size of aggregates in suspension b remains less than that in suspension a.  

Therefore, one observes that particles in suspension b settle at a lower velocity comparing to 

suspension a.   

a 

b 
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Figure 7.12. The average size of aggregates against time in suspension a and b.  Number 

concentration of particles in suspension a is equal to          , and that for suspension b is 

           

 

Experimental observations 

To examine the above theory experimentally, a series of sedimentation tests was conducted by 

using the sedimentation balance.  Three separate suspensions of silica beads with different sizes 

(                        ) were prepared in three containers.  The mass density of the 

particles was set to 1.5wt%, and they were fully suspended in deionized water at pH=2.  A 

collecting tray was placed at 10 mm below the surface (see Section 3.2 for details of procedure).  

At time    , the particles were allowed to settle.  We knew previously that silica particles 

aggregate at pH=2, therefore aggregation and sedimentation occur together.  The amount of mass 

collected on the tray was measured over time; the results are shown in Figure 7.13.   

a 

b 
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Figure 7.13. The settling curves of 1.5 wt% silica particles (0.25, 0.5 and 1 µm) in water at 

pH=2. The settling probe was at 10 mm below surface. 

 

As it was generally expected, Figure 7.13 shows that      particles settled faster so that the 

corresponding curve took less time to turn around and level out.  The 0.25-micron particles were 

the slowest particles to settle.  This is in agreement with the general belief that larger particles 

settle faster than small ones.  However, we showed earlier that if the concentration of particles 

increases, aggregation may produce larger aggregates from small particles that settle faster; the 

question is whether a higher concentration (e.g. 3wt% instead of 1.5 wt%) of particles will 

contain enough amounts of particles for a required degree of aggregation?  Is Condition 1 met by 

increasing the concentration from 1.5 wt% to 3 wt% ?   

Examination of Condition 1, concentration: 

To answer the question, another series of experiments were conducted with 3 wt% of materials in 

water.  All other properties were kept similar.  Figure 7.14 presents the settling curves.  It shows 

that the 1-micron particles settled faster than the other two; however, the 0.25-micron particles 
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seem to settle at the same rate as the 0.5-micron particles.  It shows that aggregation of 0.25-

micron particles has created large entities that settle at a rate equal to settling rate of initially 0.5-

micron particles.  Nonetheless, the concentration of primary particles (i.e. 3 wt%) was only 

enough to make particles of       m settle at about the same rate for particles of      m in size.  

Therefore, if we increase the concentration again, we would expect to see the 0.25-micron 

particles settle even faster than before.  To test this situation, experiments were repeated with a 

greater value of concentration (the mass concentration of silica particles in samples were 

increased to 5 wt%).  The settling curves are shown in Figure 7.15.   

 
Figure 7.14. The settling curves of 3 wt% silica particles (0.25, 0.5 and 1 µm) in water at pH=2. 

The settling probe was at 10 mm below surface. 

 

Figure 7.15 shows that by increasing the mass concentration, the rate of aggregation has been 

increased significantly so that the 0.25-micron particles settle even faster than 0.5-micron 

particles.  The settling curve has passed the settling curve of 0.5-micron particles, although it was 

still slower than 1-micron particles.   
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Figure 7.15. The settling curves of 5 wt% silica particles (0.25, 0.5 and 1 µm) in water at pH=2. 

The settling probe was at 10 mm below surface. 

 

Examination of Condition 2, time:  

The second condition mentioned in the theory was that the particles should aggregate for a long 

enough time.  To examine this condition experimentally, another series of experiments was 

conducted with similar mass concentration (i.e. 5 wt%), but this time the collecting tray was 

placed at 15mm below the free surface.  A longer time period, in order to provide more 

aggregation time, would be achieved by relocating the collecting point to a deeper place.  The 

settling curves are shown in Figure 7.16.  It seems that the 0.25-micron particles settled at about 

the same rate as the 1-micron particles.  This evidence proves that the aggregation time is a key 

parameter affecting the settling behavior.  We can therefore conclude that there is a certain time 

(accordingly, a certain sampling depth) at which small particles settle at the same rate as large 

particles.  It is the point after which the particles ‘forget their history’ (re: their initial PSD).   
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We tried another series of experiments by placing the collecting tray 30 mm below the free 

surface.  At a deeper location, the 0.25-micron particles settle much faster; in this case even the 

settling rate of 0.5-micron particles could catch up to the settling rate of 1-micron particles 

(Figure 7.17) so that they settle almost at the same rate as the settling rate of the 1-micron 

particles.   

 
Figure 7.16. The settling curves of 5 wt% silica particles (0.25, 0.5 and 1 µm) in water at pH=2. 

The settling probe was at 15 mm below surface. 
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Figure 7.17. The settling curves of 5 wt% silica particles (0.25, 0.5 and 1 µm) in water at pH=2. 

The settling probe was at 30 mm below surface. 
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8 Conclusion remarks 

The aggregation and sedimentation of fine particles in a liquid was studied both theoretically 

(with development of a detailed model) and experimentally.  Our model accounts for spatial 

variations in particle densities, which is a new and important extension to all current theories.  

Moreover, our model is capable of predicting the overall dynamics which results from two 

simultaneously occurring effects, namely, aggregation and sedimentation.  In the design of 

settling tanks in which both aggregation and sedimentation take place, it is not sufficient to only 

consider a cut off size; the underlying kinetics is much more complicated and requires deeper 

insights into the overall process.  The results of this study provide just such information (e.g. in 

the explanation of an ‘induction time,’ and the relation between settling rate and initial particle 

size distribution).  Although this is a general study of the sedimentation process, its major 

motivation is the separation of unwanted fine particulates from diluted bitumen.  In the process 

of bitumen extraction from the Canadian oil sands, a new approach has been proposed that uses 

an organic solvent instead of water to liberate bitumen from oil sands ores.  One of the main 

challenges of such a technology has been the removal of suspended fine solids in hydrocarbon.  

The results of this research will contribute to the solution of this problem, in particular, the 

elimination of the unwanted fines by gravity settling.   

The following are highlights of this research:   

 A detailed numerical model of aggregation and sedimentation was developed which 

applies to situations that have non-uniform particle distributions.  All previous studies in 
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the literature were limited to either macromolecular structures (50 nm or smaller) or 

applications involving vigorous (i.e. turbulent) mixing; there was also no treatment of 

non-uniform particle distributions in those studies due to the complexity of the 

phenomena.  Here, all main issues of aggregation and sedimentation, including fractal 

properties of the aggregates, were taken into account.  Solutions to the equations were 

discussed, and the model was successfully solved through two different approaches and 

then validated against the experimental results.   

 The model provides deeper insights into the performance of settling units through 

prediction of detailed dynamics of aggregation and sedimentation.  

 The model revealed valuable information regarding the formation of a ‘mud line,’ which 

is the interface between clear liquid at the top and a ‘cloudy’ suspension at the bottom.  

This is an important issue as most experiments on sedimentation are based on following 

the location of this mud line over time.  Our model showed how the various mud lines are 

formed and predicted the thickness of such lines.   

 One of the most important issues in the design of sedimentation units is the size 

distribution of particles.  Although the settler is designed for a specific size range of 

particulates, the feed that is sent to the equipment may not be always be of the 

appropriate size distribution.  This study resulted in two main conclusions:  (a) The 

settling behaviour will remain insensitive to the initial size distribution if the median size 

remains unchanged.  Distribution of sizes around a common median, and even moderate 

changes of the median value, will not affect the settling behaviour.  (b) If aggregation 

continues for sufficiently long time, the initial size distribution may be ‘forgotten’; this 
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means that a suspension of initially smaller particles may settle faster than a suspension 

containing initially larger particles.   

 The kinetics of the sedimentation process was studied through experiments and numerical 

modeling.  There were situations when an “induction time” (i.e. an apparent delay before 

aggregation began) was observed.  We showed here, from our simulation results, that the 

apparent induction time may be an artifact resulting from the unique kinetics of 

aggregation.  

Recommendations and future work 

The aggregates can grow to large species (e.g. as big as 1mm) if they remain in the liquid for a 

long enough time period.  When these aggregates reach the bottom of the vessel, they join the 

others to make a packed bed.  We suppose that aggregation continues until the aggregates arrive 

at the bed.  If the primary particles are very small (i.e. in the sub-micron range), thousands and 

thousands may attach to each other. Therefore, the suspension contains thousands of aggregate 

sizes.  The model should keep track of these thousands of aggregates at each time step, which is 

not practical with current computing capabilities.  However, in the future, the code developed in 

this study can be used to study such large systems.   

Particles make fractal objects when they aggregate.  In this study, it was assumed that the fractal 

dimension      of all aggregates were equal.  Actual aggregates, however, may become 

restructured as time progresses so that some aggregates may not have the same fractal dimension 

as the others.  Therefore, a single value of the fractal dimension may not represent the entire 

range of aggregate sizes.  With enhanced computational powers in the future, it may be possible 

to take this phenomenon into account.  This will require storing more information of the 
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aggregates when they coagulate and settle.  It is also recommended that the fractal dimension of 

the particles be measured experimentally.  With this new information, the values of      in the 

model can then be adjusted accordingly.   

By combining experimental and modeling results (i.e. by fitting theoretical predictions to 

empirical data), it is possible to predict the collision efficiency     of any situation, especially for 

the case of fine clays in diluted bitumen.  This is important as the collision efficiency is the 

primary parameter which affects the kinetics of aggregation.   

The numerical and experimental studies in this research were focused exclusively on situations 

with low concentration of suspended materials, as fine particles are usually at low concentrations 

in our bitumen-related applications.  However, our theoretical model can be extended to examine 

the effects of particle concentration on sedimentation kinetics, especially in the regime of 

hindered settling.    
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Appendix A 

Here, a brief description of Rosenbrock method is given. The solution is obtained using this 

equation (fourth-order method): 

       |              |                                              (A1) 

where   ,   ,    and    are constants: 

   
  

 
     

 

 
    

  

   
     

   

   
 

        ,         ,         ,          are some coefficients. Let    be a vector that its 

components are          for         . Therefore    has   components.    is determined by solving 

the equation below: 

     ⁄            |   
(A2) 

Note that  |  is a vector that its components are         |  . On the right side    |   is a vector 

that its components are calculated as below: 

   
   

  
    

   

  
      

   

  
   

In above equation    is the Jacobian matrix; the elements of the N-by-N Jacobian matrix in this 

case have been calculated by analytical differentiation (shown in Table A1).       . 
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Let   ,           be the other coefficients         ,         , and         . They are determined 

as follows 

      ⁄            |                  (A3) 

      ⁄            |                                (A4) 

      ⁄            |                                            (A5) 

In above equations the coefficients    , and     are constants: 

Table A1. The Jacobian matrix to be used in Rosenbrock method 
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The method here exerts an adaptive step size control. Implementation of this algorithm by 

adjusting the step-size results in minimum computational efforts while the desired accuracy of 

the solution is preserved. A few greater step sizes may results in a faster computation.  The 

truncation error in this method is estimated for any step size, and then compared with required 
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tolerance. If the error is larger than the desired one, we should decrease the step-size; and if the 

error is smaller, the step-size is increased. The size of next step,        is adjusted as below 

       

{
 
 

 
    |

 

  
|
    

      

   |
 

  
|
    

      

   (A6) 

In above equation S is a safety factor which is a number close to unity, and    and    are the 

truncation error and required tolerance, respectively. 

The error is estimated as below: 

                                     
(A7) 

         and    are coefficients. The maximum value of error is compared with required 

tolerance.  
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Appendix B 

The FORTRAN code is presented here. Note that variables N and alpha, number of primary 

particles in the largest aggregates, and the collision efficiency respectively, should be set in the 

body and subroutines as well. 

PROGRAM Sedimentation_aggregation _test 

IMPLICIT NONE 

include "omp_lib.h" 

INTEGER :: i,j, p         

INTEGER :: h             

INTEGER :: m,r 

INTEGER :: condition 

INTEGER N 

INTEGER :: plot_counter 

INTEGER :: time_counter, max_time_counter 

DOUBLE PRECISION :: Df,D0,particle_wt_percent 

DOUBLE PRECISION :: height,sampling_location 

DOUBLE PRECISION :: delta_t,delta_h,alpha,final_time 

DOUBLE PRECISION :: k, T,g 

DOUBLE PRECISION :: liquid_density, liquid_viscosity 

DOUBLE PRECISION :: particle_density 

 

PARAMETER (N=28000) ! number of primary particles in the largest aggregate 

PARAMETER (Df=2.0)   ! fractal dimension     

PARAMETER (D0=1.E-6) ! (m) Diameter of primary particles    

PARAMETER (particle_wt_percent=5.0)  ! mass concentration of particles 

PARAMETER (height=0.05) ! (m) height of the settling column 

PARAMETER (final_time=200) ! time set up 

PARAMETER (sampling_location=0.001) !(m)  

PARAMETER (delta_h=0.001) 

PARAMETER (h=(1.0/delta_h)) ! h is the number of bins 

 

PARAMETER (alpha=0.001) ! collision efficiency 

PARAMETER (k=1.38e-16) ! (g cm2 / s2 K) Boltzman constant 

PARAMETER (T=298.0) ! (K) temperature 

PARAMETER (g=9.80665) 

PARAMETER (liquid_density=0.98) !(g/cm3) water 

PARAMETER (liquid_viscosity=0.9) !(cp) water 

PARAMETER (particle_density=2.65) ! (g/cm3) silica 

DOUBLE PRECISION :: Progress 

DOUBLE PRECISION , EXTERNAL :: derivs 
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!------------------------------------------------------------ 

! The place we decide to switch on or off the differential settling 

      LOGICAL:: differential_settling 

      PARAMETER (differential_settling=.TRUE.) 

!------------------------------------------------------------ 

DOUBLE PRECISION :: real_final_time, time(h) 

DOUBLE PRECISION :: real_time 

DOUBLE PRECISION :: w_bin, w_bin_samp 

DOUBLE PRECISION ::  htry, eps, hdid(h), hnext, time1(h) 

DOUBLE PRECISION :: D(N) 

DOUBLE PRECISION :: s(h,N),yscal(N) 

DOUBLE PRECISION :: nold(N) 

DOUBLE PRECISION :: ds1(N), ds2(N) 

DOUBLE PRECISION :: sumpart1, sumpart2 

DOUBLE PRECISION :: beta(N-1,N-1), y(N),dydx(N) 

DOUBLE PRECISION :: No_bin_travelled(N) 

DOUBLE PRECISION :: settlling_velocity(N) 

DOUBLE PRECISION :: No_bin_travelled_modify(N) 

 

DOUBLE PRECISION :: single_particle_weight 

DOUBLE PRECISION :: w,wt1, wt2, wt5, wt7, wt9, wt11, wt13, wt15 

DOUBLE PRECISION :: wt17, wt19, wt21, wt23, wt25 

DOUBLE PRECISION :: liquid_volume 

DOUBLE PRECISION :: particle_volume 

DOUBLE PRECISION :: mixture_volume 

DOUBLE PRECISION :: particle_initial_conc 

DOUBLE PRECISION :: nT0 

DOUBLE PRECISION :: pco1, pco2 

DOUBLE PRECISION :: settlling_velocity1 

 

DOUBLE PRECISION :: phi_bin, nt_bin 

DOUBLE PRECISION :: eta_bin(50,N), psi_bin(50,N) 

DOUBLE PRECISION :: phi_t, nt_t, mass_t 

DOUBLE PRECISION :: eta_t(50,N), psi_t(50,N) 

DOUBLE PRECISION :: ni(N), hmin,hmax, timefake 

      common /coeff/ beta 

           

! **************************************************************** 

!  particle concentration calculation 

! **************************************************************** 

 

      single_particle_weight=4.0/3.0*3.14*(D0/2.0)**3.0* 

     *   (particle_density*1000.0)*1000.0 !(g/particle) 

      liquid_volume=(100.0-particle_wt_percent)/liquid_density ! (cm3) 

      particle_volume=particle_wt_percent/particle_density ! (cm3) 

      mixture_volume=liquid_volume+particle_volume 

      particle_initial_conc=particle_wt_percent/ 

     *    single_particle_weight/mixture_volume ! (# of particles/cm3) 

      nT0=particle_initial_conc 

      ! PSD (1) 

      wt1=80.0 
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      wt2=20.0 

      wt5=0.0  ! % wt 

      wt7=0.0  ! % wt 

      wt9=0.0 

      wt11=0.0 

      wt13=0.0  ! % wt 

      wt15=0.0 

      wt17=0.0 

      wt19=0.0 

      wt21=0.0  ! % wt 

      wt23=0.0  ! % wt 

      wt25=0.0 

!$omp parallel do 

      DO i = 1,h 

      DO j=2,N 

       s(i,j)=0.0 

      END DO 

 s(i,1) = wt1/100.*1. 

             s(i,2) = wt2/100.*1./2. 

             s(i,5)=wt5/100.*1./5. 

             s(i,7)=wt7/100.*1./7. 

             s(i,9)= wt9/100.*1./9. 

             s(i,11)= wt11/100.*1./11. 

             s(i,13)=wt13/100.*1./13. 

             s(i,15)=wt15/100.*1./15. 

             s(i,17)= wt17/100.*1./17. 

             s(i,19)= wt19/100.*1./19. 

             s(i,21)=wt21/100.*1./21. 

             s(i,23)=wt23/100.*1./23. 

             s(i,25)=wt25/100.*1./25. 

       End DO 

!$omp end parallel do 

!--------------------------------------------------------------------------------- 

      settlling_velocity1=g*D0*D0*(particle_density-liquid_density)* 

     *    1000.0/18.0/(liquid_viscosity*0.001) 

!$omp parallel do 

      DO i = 1,N 

          D(i) = i**(1.0/Df)*D0 

          settlling_velocity(i)=g*D(i)*D0* 

     *       (particle_density-liquid_density)*1000.0/18.0/ 

     *         (liquid_viscosity*0.001)/settlling_velocity1 

!    m/s   

          No_bin_travelled_modify(i)=0.0 

      END DO 

!$omp end parallel do 

 

      pco1=2.0*k*T/3.0/(liquid_viscosity*0.01) 

      pco2=(D0*3.14*g/18.0/liquid_viscosity/0.01)* 

     *    (particle_density-liquid_density) 

!$omp parallel do 

      DO i=1,N-1 
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           DO j=1, N-1 

             beta(i,j)=pco1*((D(i)+D(j))**2.0/(D(i)*D(j))) 

         ! cm3/s 

             IF (differential_settling) THEN 

                 beta(i,j)=beta(i,j)+pco2*ABS(D(i)-D(j))*(D(j)+ 

     *              D(i))**2.0/4.0*1.0e10; 

                  ! cm3/s 

             END IF 

         END DO 

      END DO 

!$omp end parallel do 

!$omp parallel do 

      DO i=1, N-1 

           DO j=1, N-1 

         beta(i,j)=beta(i,j)*nT0*height/settlling_velocity1 

           END DO 

      END DO 

!$omp end parallel do 

 

!---------------------------------------------------------------------------------- 

      OPEN(UNIT=1, FILE='time.dat') ! recording time 

      OPEN(UNIT=2, FILE='OUTn.dat') ! number density of aggregates 

      OPEN(UNIT=3, FILE='OUTwbin.dat') ! mass density  

      OPEN(UNIT=4, FILE='mass.dat') ! total mass 

      OPEN(UNIT=8, FILE='n_before_arrange.dat') ! number densities before rearrangements 

      OPEN(UNIT=9, FILE='OUTwbin_samp.dat') ! mass density at only one bin 

      OPEN(UNIT=7, FILE='No_bin_travelled.dat')  

!----------------------------------------------------------------------------------- 

 

      max_time_counter=INT(final_time/delta_t) 

      plot_counter=0 

      do i=1,h 

      time(i)=0. 

      time1(i)=0. 

      enddo 

      htry=0.0001 

      eps=0.00001 

      

      DO 

         hmax=-1000. 

         hmin=1000. 

 

!$omp parallel do private (y) 

!$omp+ shared (/coeff/,eps) 

         DO i=1,h 

             DO j=1,N 

                y(j)=s(i,j) 

                yscal(j)=1. 

             END DO 

 

             call stiff(y,N,timefake,htry,eps,yscal,hdid(i),hnext,derivs) 
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             if (hdid(i)<hmin) hmin=hdid(i) 

             if (hdid(i)>hmax) hmax=hdid(i) 

             htry=hnext 

 

        END DO !i 

!$omp end parallel do 

!$omp parallel do private (y) 

!$omp+ shared (/coeff/,eps) 

        DO i=1,h 

             DO j=1,N 

                y(j)=s(i,j) 

                yscal(j)=1. 

             END DO 

             If (hmin>0.001) hmin=0.001       ! delta_t 

            call stiff2(y,N,time(i),hmin,eps,yscal,hdid(i),hnext,derivs) 

             DO j=1,N 

                s(i,j)=y(j) 

             END DO 

 

        END DO !i 

!$omp end parallel do 

   real_time=time(9)*(height/settlling_velocity1) 

   WRITE (8,*) real_time                                     ! 

    DO i=1,h-1 

         DO j=1,N 

            w=s(i,j) 

                        WRITE (8,*) w 

                END DO 

             END DO 

 

!   ***REARRANGEMENT_SETTLING*** 

             DO j=1, N 

      No_bin_travelled(j)=INT(settlling_velocity(j)*hmin/ 

     *         delta_h) 

 

            No_bin_travelled_modify(j)=No_bin_travelled_modify(j)+ 

     *             ((settlling_velocity(j)*hmin/delta_h- 

     *              No_bin_travelled(j))) 

             END DO 

 

             DO j=1,N 

   IF (No_bin_travelled_modify(j)>1.) THEN 

     No_bin_travelled(j)=No_bin_travelled(j)+1 

    No_bin_travelled_modify(j)=No_bin_travelled_modify(j) 

     *                     -1.0 

           END IF 

              WRITE (7,*) real_time,j, No_bin_travelled(j)              ! 

      

             END DO 

! 

       DO i=1, N 
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       DO p=h, No_bin_travelled(i)+1, -1 

      DO j=1 ,No_bin_travelled(i) 

         s(p,i)=s(p,i)+s(p-j,i) 

       s(p-j,i)=0.0 

                  END DO 

              

                 END DO 

              END DO 

 

             mass_t=0.0 

              DO i=1,h 

          w_bin=0. ! w=m/m0 

                 DO j=1,N 

                    w_bin=w_bin+j*s(i,j) 

                    mass_t=mass_t+j*s(i,j) ! nT0*single_particle_weight; 

                 END DO 

          WRITE (3,*) real_time, i, w_bin 

      END DO 

             WRITE (4,*) real_time, mass_t 

 

             w_bin_samp=0. ! w=m/m0 

             DO j=1,N 

           w_bin_samp=w_bin_samp+j*s(NINT(sampling_location*h/height),j) 

!nT0*single_particle_weight; 

             END DO 

      WRITE (9,*) real_time, w_bin_samp 

      WRITE (1,*) real_time, h,N 

             WRITE (2,*) real_time 

      DO i=1,h 

         DO j=1,N 

            w=s(i,j) 

                   WRITE (2,*) w 

                END DO 

             END DO 

      IF (real_time> final_time) EXIT   ! time check 

      END DO !time_counter 

    

      CLOSE(1) 

      CLOSE(2) 

      CLOSE(3) 

      CLOSE(4) 

      close(9) 

      CLOSE(8) 

      CLOSE(7) 

 stop 

      END PROGRAM p 

 

      SUBROUTINE stiff(y,n,x,htry,eps,yscal,hdid,hnext,derivs) 

      INTEGER n,NMAX,MAXTRY 

      DOUBLE PRECISION eps,hdid,hnext,htry,x,xx,dydx(n),y(n),yscal(n), 

     * SAFETY,GROW,PGROW,SHRNK,PSHRNK,ERRCON,GAM,A21,A31,A32,A2X,A3X, 
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     * C21,C31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X, 

     * C4X 

      EXTERNAL derivs 

      PARAMETER (NMAX=2800,SAFETY=0.9,GROW=1.5,PGROW=-.25,                         

     * SHRNK=0.5,PSHRNK=-1./3.,ERRCON=.1296,MAXTRY=1000) 

      PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8., 

     * C31=372./25.,C32=12./5.,C41=-112./125.,C42=-54./125., 

     * C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108., 

     * E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2., 

     * C2X=-3./2.,C3X=121./50.,C4X=29./250.,A2X=1.,A3X=3./5.) 

 

C     USES derivs,jacobn,lubksb,ludcmp 

 

      INTEGER i,j,jtry,indx(NMAX) 

      DOUBLE PRECISION d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX), 

     * dfdy(NMAX,NMAX),dysav(NMAX),err(NMAX),g1(NMAX),g2(NMAX),g3(NMAX), 

     * g4(NMAX),ysav(NMAX) 

      xsav=x !Save initial values. 

      call derivs(x,y,dydx) 

      do i=1,n 

         ysav(i)=y(i) 

         dysav(i)=dydx(i) 

      enddo !11 

      call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX) 

      h=htry !Set stepsize to the initial trial value. 

      do jtry=1,MAXTRY  !23 

         do i=1,n !Set up the matrix 1 -    !13 

            do j=1,n !12 

               a(i,j)=-dfdy(i,j) 

            enddo !12 

            a(i,i)=1./(GAM*h)+a(i,i) 

         enddo !13 

         call ludcmp(a,n,NMAX,indx,d) !LU decomposition of the matrix. 

         do i=1,n !Set up right-hand side for g1.  !14 

            g1(i)=dysav(i)+h*C1X*dfdx(i) 

         enddo !14 

         call lubksb(a,n,NMAX,indx,g1) !Solve for g1. 

         do i=1,n !Compute intermediate values of y and x. !15 

            y(i)=ysav(i)+A21*g1(i) 

         enddo !15 

         x=xsav+A2X*h 

         call derivs(x,y,dydx) !Compute dydx at the intermediate values. 

         do i=1,n !Set up right-hand side for g2.    !16 

            g2(i)=dydx(i)+h*C2X*dfdx(i)+C21*g1(i)/h 

         enddo !16 

         call lubksb(a,n,NMAX,indx,g2) !Solve for g2. 

         do i=1,n !Compute intermediate values of y and x.  !17 

            y(i)=ysav(i)+A31*g1(i)+A32*g2(i) 

         enddo !17 

         x=xsav+A3X*h 

         call derivs(x,y,dydx) !Compute dydx at the intermediate values. 
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         do i=1,n !Set up right-hand side for g3. !18 

         g3(i)=dydx(i)+h*C3X*dfdx(i)+(C31*g1(i)+ 

     *      C32*g2(i))/h 

         enddo !18 

         call lubksb(a,n,NMAX,indx,g3) !Solve for g3. 

         do i=1,n !Set up right-hand side for g4.  !19 

          g4(i)=dydx(i)+h*C4X*dfdx(i)+(C41*g1(i)+ 

     *       C42*g2(i)+C43*g3(i))/h 

         enddo !19 

         call lubksb(a,n,NMAX,indx,g4) !Solve for g4. 

         do i=1,n !Get fourth-order estimate of y and error estimate. !21 

            y(i)=ysav(i)+B1*g1(i)+B2*g2(i)+B3*g3(i)+B4*g4(i) 

            err(i)=E1*g1(i)+E2*g2(i)+E3*g3(i)+E4*g4(i) 

         enddo !21 

         x=xsav+h 

 

       !if(x.eq.xsav)pause 'stepsize not significant in stiff' 

         errmax=0. !Evaluate accuracy. 

         do i=1,n      !22 

            errmax=max(errmax,abs(err(i)/yscal(i))) 

         enddo !22 

         errmax=errmax/eps !Scale relative to required tolerance. 

         if(errmax.le.1.)then !Step succeeded. Compute size of next step and rehdid= 

                hdid=h                               !turn. 

                if(errmax.gt.ERRCON)then 

                       hnext=SAFETY*h*errmax**PGROW 

                else 

                       hnext=GROW*h 

                endif 

                return 

         else !Truncation error too large, reduce stepsize. 

                 hnext=SAFETY*h*errmax**PSHRNK 

                 h=sign(max(abs(hnext),SHRNK*abs(h)),h) 

         endif 

      enddo !23 !Go back and re-try step. 

      pause 'exceeded MAXTRY in stiff' 

      END 

      SUBROUTINE jacobn(x,y,dfdx,dfdy,nn,nmax) 

      INTEGER nn,nmax,i,j 

      DOUBLE PRECISION x,y(*),dfdx(*),dfdy(nmax,nmax) 

      DOUBLE PRECISION alpha 

                                                                                   

      parameter (alpha=1.0) 

      INTEGER N 

      parameter (N=2800)                                                            

      DOUBLE PRECISION beta(N-1, N-1) 

      common /coeff/ beta 

      do i=1,nmax  ! 11 

         dfdx(i)=0. 

      enddo !11 

      do i=1,nmax 
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         do j=1,nmax 

            dfdy(i,j)=0.0 

         enddo 

      enddo 

       

      do i=2, nmax-1 

         do j=1,nmax-i 

            dfdy(i,j)=alpha*(-y(i)*beta(i,j)) 

         enddo 

      enddo 

      do i=2,nmax 

         do j=1,i-1 

            dfdy(i,j)=dfdy(i,j)+alpha*beta(i-j,j)*y(i-j) 

         enddo 

      enddo 

 

      do i=1,nmax 

         dfdy(i,i)=0.0 

         do j=1,nmax-i 

            dfdy(i,i)=dfdy(i,i)-alpha*beta(j,i)*y(j) 

         enddo 

      enddo 

 

 

      return 

      END 

      SUBROUTINE derivs(x,y,dydx) 

      DOUBLE PRECISION x,y(*),dydx(*) 

      DOUBLE PRECISION sumpart1,sumpart2 

      INTEGER N 

      DOUBLE PRECISION alpha 

      parameter (N=2800)                                                                                      

      parameter (alpha=1.0) 

      DOUBLE PRECISION beta(N-1, N-1) 

      common /coeff/ beta 

      INTEGER r,j,m 

       

      DO j=1, N                                                                                          

     sumpart1=0. 

    DO m=1, j-1 

       r=j-m 

       sumpart1=sumpart1+beta(m,r)*y(m)*y(r) 

           END DO 

           sumpart2=0. 

           DO m=1, N-j 

              sumpart2=sumpart2+beta(j,m)*y(m)*y(j) 

    END DO 

! 

           dydx(j)=alpha*(0.5*sumpart1-sumpart2)                                                          

 

    END DO ! j 
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      return 

      END 

      SUBROUTINE lubksb(a,n,np,indx,b) 

      INTEGER n,np,indx(n) 

      DOUBLE PRECISION a(np,np),b(n) 

      INTEGER i,ii,j,ll 

      DOUBLE PRECISION sum 

      ii=0 

      do i=1,n !12 

         ll=indx(i) 

         sum=b(ll) 

         b(ll)=b(i) 

         if (ii.ne.0)then 

            do j=ii,i-1 !11 

               sum=sum-a(i,j)*b(j) 

            enddo !11 

         else if (sum.ne.0.) then 

                 ii=i 

         endif 

         b(i)=sum 

      enddo !12 

      do i=n,1,-1     !14 

         sum=b(i) 

         do j=i+1,n  !13 

            sum=sum-a(i,j)*b(j) 

         enddo !13 

         b(i)=sum/a(i,i) !Store a component of the solution vector X. 

      enddo !14 

      return !All done! 

      END 

       

      SUBROUTINE ludcmp(a,n,np,indx,d) 

      INTEGER n,np,indx(n),NMAX 

      DOUBLE PRECISION d,a(np,np),TINY 

      PARAMETER (NMAX=2800,TINY=1.0e-20) !Largest expected n, and a small number.                                          

      !Given a matrix a(1:n,1:n), with physical dimension np by np, this routine replaces it by 

      !the LU decomposition of a rowwise permutation of itself. a and n are input. a is output, 

      !arranged as in equation (2.3.14) above; indx(1:n) is an output vector that records the 

      !row permutation eected by the partial pivoting; d is output as 1 depending on whether 

      !the number of row interchanges was even or odd, respectively. This routine is used in 

      !combination with lubksb to solve linear equations or invert a matrix. 

      INTEGER i,imax,j,k 

      DOUBLE PRECISION aamax,dum,sum,vv(NMAX) !vv stores the implicit scaling of each row. 

 

      d=1.                                !d=1. No row interchanges yet. 

      do i=1,n ! 12             Loop over rows to get the implicit scaling informaaamax= 

                                                      !0. tion. 

           aamax=0. 

           do j=1,n !11 

              if (abs(a(i,j)).gt.aamax) aamax=abs(a(i,j)) 

           enddo !11 
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           if (aamax.eq.0.) pause 'singular matrix in ludcmp' !No nonzero largest element. 

      vv(i)=1./aamax !Save the scaling. 

      enddo !12 

      do j=1,n ! 19   This is the loop over columns of Crout's method. 

         do i=1,j-1 ! 14 This is equation (2.3.12) except for i = j. 

            sum=a(i,j) 

            do k=1,i-1 !13 

               sum=sum-a(i,k)*a(k,j) 

            enddo !13 

            a(i,j)=sum 

         enddo !14 

         aamax=0. 

         do i=j,n !16 

         sum=a(i,j) 

             do k=1,j-1 !15 

               sum=sum-a(i,k)*a(k,j) 

             enddo !15 

             a(i,j)=sum 

             dum=vv(i)*abs(sum) !Figure of merit for the pivot. 

             if (dum.ge.aamax) then !Is it better than the best so far? 

                imax=i 

                aamax=dum 

             endif 

         enddo !16 

         if (j.ne.imax)then !Do we need to interchange rows? 

            do k=1,n !  17       Yes, do so... 

               dum=a(imax,k) 

               a(imax,k)=a(j,k) 

               a(j,k)=dum 

            enddo !17 

            d=-d !...and change the parity of d. 

            vv(imax)=vv(j) !Also interchange the scale factor. 

         endif 

         indx(j)=imax 

         if(a(j,j).eq.0.)a(j,j)=TINY 

               if(j.ne.n)then !Now, ally, divide by the pivot element. 

                   dum=1./a(j,j) 

                   do i=j+1,n !18 

                      a(i,j)=a(i,j)*dum 

                   enddo !18 

               endif 

      enddo !19 Go back for the next column in the reduction. 

      return 

      END 

      SUBROUTINE stiff2(y,n,x,htry,eps,yscal,hdid,hnext,derivs) 

      INTEGER n,NMAX,MAXTRY 

      DOUBLE PRECISION eps,hdid,hnext,htry,x,xx,dydx(n),y(n),yscal(n), 

     * SAFETY,GROW,PGROW,SHRNK,PSHRNK,ERRCON,GAM,A21,A31,A32,A2X,A3X, 

     * C21,C31,C32,C41,C42,C43,B1,B2,B3,B4,E1,E2,E3,E4,C1X,C2X,C3X, 

     * C4X 

      EXTERNAL derivs 
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      PARAMETER (NMAX=2800,SAFETY=0.9,GROW=1.5,PGROW=-.25,                         

     * SHRNK=0.5,PSHRNK=-1./3.,ERRCON=.1296,MAXTRY=1000) 

      PARAMETER (GAM=1./2.,A21=2.,A31=48./25.,A32=6./25.,C21=-8., 

     * C31=372./25.,C32=12./5.,C41=-112./125.,C42=-54./125., 

     * C43=-2./5.,B1=19./9.,B2=1./2.,B3=25./108.,B4=125./108., 

     * E1=17./54.,E2=7./36.,E3=0.,E4=125./108.,C1X=1./2., 

     * C2X=-3./2.,C3X=121./50.,C4X=29./250.,A2X=1.,A3X=3./5.) 

 

C     USES derivs,jacobn,lubksb,ludcmp 

 

      INTEGER i,j,jtry,indx(NMAX) 

      DOUBLE PRECISION d,errmax,h,xsav,a(NMAX,NMAX),dfdx(NMAX), 

     * dfdy(NMAX,NMAX),dysav(NMAX),err(NMAX),g1(NMAX),g2(NMAX),g3(NMAX), 

     * g4(NMAX),ysav(NMAX) 

      xsav=x !Save initial values. 

      call derivs(x,y,dydx) 

      do i=1,n 

         ysav(i)=y(i) 

         dysav(i)=dydx(i) 

      enddo !11 

      call jacobn(xsav,ysav,dfdx,dfdy,n,NMAX) 

      h=htry !Set stepsize to the initial trial value. 

      do jtry=1,1  !23 

         do i=1,n !Set up the matrix 1 -    !13 

            do j=1,n !12 

               a(i,j)=-dfdy(i,j) 

            enddo !12 

            a(i,i)=1./(GAM*h)+a(i,i) 

         enddo !13 

         call ludcmp(a,n,NMAX,indx,d) !LU decomposition of the matrix. 

         do i=1,n !Set up right-hand side for g1.  !14 

            g1(i)=dysav(i)+h*C1X*dfdx(i) 

         enddo !14 

         call lubksb(a,n,NMAX,indx,g1) !Solve for g1. 

         do i=1,n !Compute intermediate values of y and x. !15 

            y(i)=ysav(i)+A21*g1(i) 

         enddo !15 

         x=xsav+A2X*h 

         call derivs(x,y,dydx) !Compute dydx at the intermediate values. 

         do i=1,n !Set up right-hand side for g2.    !16 

            g2(i)=dydx(i)+h*C2X*dfdx(i)+C21*g1(i)/h 

         enddo !16 

         call lubksb(a,n,NMAX,indx,g2) !Solve for g2. 

         do i=1,n !Compute intermediate values of y and x.  !17 

            y(i)=ysav(i)+A31*g1(i)+A32*g2(i) 

         enddo !17 

         x=xsav+A3X*h 

         call derivs(x,y,dydx) !Compute dydx at the intermediate values. 

         do i=1,n !Set up right-hand side for g3. !18 

         g3(i)=dydx(i)+h*C3X*dfdx(i)+(C31*g1(i)+ 

     *      C32*g2(i))/h 
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         enddo !18 

         call lubksb(a,n,NMAX,indx,g3) !Solve for g3. 

         do i=1,n !Set up right-hand side for g4.  !19 

          g4(i)=dydx(i)+h*C4X*dfdx(i)+(C41*g1(i)+ 

     *       C42*g2(i)+C43*g3(i))/h 

         enddo !19 

         call lubksb(a,n,NMAX,indx,g4) !Solve for g4. 

         do i=1,n !Get fourth-order estimate of y and error estimate. !21 

            y(i)=ysav(i)+B1*g1(i)+B2*g2(i)+B3*g3(i)+B4*g4(i) 

            err(i)=E1*g1(i)+E2*g2(i)+E3*g3(i)+E4*g4(i) 

         enddo !21 

         x=xsav+h 

 

      enddo !23 !Go back and re-try step. 

      return 

      END 

 

 


