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A Abstract
A two-dimensional lcochn-cic rinc icihg nod-l vas dovolopod to
model rime foathor growth at the ice accretion cd;c- on a right
. cirouinr oygindlr Thu ntraighclin; and curved trajoctory modals
naturally produnod a d.nsity vatiation along the lurface of any
urbicrury Igructﬂli unlik. provious icing nodala Both nodols were

‘conlcruccod for conpatison of their gtowth g?gle and density
/rl - . e

prodictionn with oxporinant
" For cylindrical lqaﬁtrntes. the 5rowth angles of feathors from the

‘curvcd trnjoctory Fodnl vercmin close agreement with cxperinent.in flow

coﬁditions vhctq droplets have inrge inertia and fre‘ze ind1v1dua1iy.

" The density predictions from the straightline model agreed with

oxporinont in flow conditions where the droplets tend to geform or

_ coalosce in the region of the stagnation point on the cylinder

. Otherwine,,the curvud.:rgéqc:ory modol is a-better predictqr‘of local

1c§'dansities.
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‘1. INTRODUCTION
A _

Atmospheric icing refers to the freezing ofasupercooled waterv
droplets onto a surface whose temperature is near or: below 0 'c‘. The
continuous accretion of frozen droplets onto a !kructure would producef
a load that could result in a failure of the structure
helicopters are especially prone to icing conditions when they fly

through clouds at low altitudes. Specifically, the rotor blades‘may
.collect‘ice and'iflthe thickness‘and shape of the accretion is right,
theaaerodynamic performance of,the vehicle would degrade;' Hore
-inportantly, if during the flight the ice cracks'and separates fromvthe
"blades the flying projectiles may make impacts with the craft itself
thereby endangering it and its occupants Transmission lines and ships
are'also susceptible to icing problems when they operate in
environments where the temperature drops below 0 “C.

| Once formed on a.structure, ice is a good adhesive. From an

: engineer s point of view, in the case of a helicopter, it would be

désirable to design a de-icer system thst would be capable of

sepﬁrating‘ice from thebrotor blades as completely,and as safely as
K possible. ' | - o

1The present. goal for researchers in the field of atmospheric icing
“is to predict the ice:loads on arbitrary structures, given the
meteorological conditions This 1s’ extremely difficult -and requires
the de;elopment of a physical model to describe the icing process.

Studies on icing began when scientists in the field of meteorology‘

decided to measure the growth rate of hailstones as they fell through

-

¥



& clowd of supercooled droplets, end‘relete them to the properties of
the_olodd‘droplet eﬁectre. of note, Dolozell; Cunninghem, and Katz
(1956)‘expoled,rote€ing cylinders to edpercooled clouds tovmeasdre lte
IIQuid water coocentretion;;ehd'oven'to,prOvide some informetion-about
. the drop-size dietribdtion. Tribus ot al. (1§48)fepp11ed the
principles of dimeneionlets elnilnrity and ueed'experimentel.models to

eolve the differentiel equatione of motion for eqdroplet ‘This

provided a Vay of releting regulte from scale'uo:”

-

‘prototypee. Later, Ludlam (1951) deternined that the rate of ice

}eocunuletion.on a heiletone yee dependent on t;;\hegt balance at the

eurfeée of the hniletone> He'ﬁsed a cylindor'to show this and in

effect pioneered the hietory of the evolution of modelling efforts in

-
IS
T~

.icing research vhen he created a model for the 1cing of a rotating 5g,
cylinder._.Then, Messiqger (1953) discovered that under-certain flow
cOnditionn; not all of theviipinging liquid freezes in the impingement
regioﬁ. This flnding led to the ciesiificetion of etmospﬁeric icing’y
_into two regimes: wet (surface tenperature 1s near 0 'C), and dry
’(eurface tenperature is below 0 °C) 1cing |
‘,;[ Ludlam discovered thet his work could be extended to -any situation
wvhere there 13 a relative mot\ﬁmgt between water droplets and an
object Since “then; various people have formulated 1cing models that
are specific to thelr fiekﬁs of interest. For example, there are . -
models by Lozowski and d’Amours (1980) for hail Lozowski and 01eakiw
' ”(1981) for eirfoile Stallebrass (1980) for fiehigg‘trawlers and
McComber (1982) for power lines

The previous uodels used cylinder icing as an initial estimate of

1cing effects to relate to the actual 1cing effects. Lozowski



 Stallabrass, and Hearty (1983) have extended the modsl for a
non-rotetin; cylinder to ellov:ifor the dependence of icing on 'the engl:'
.eround the cylinder for all icing conditions. with'thie‘ici;;(model,
" Lozowski et al. (1983) ettempted’to-predict ice shapes on cylinders at
various icing wind tunnel conditions Figure 1.1 shoéws how the model
i predictions compare vith ectual eccretixn shapes at three different
~ liquid water contents while - 10 m/s, Ty = -lO}'c, end HVD = 130 um.
The model‘predictions*yere not in good agreement sith meesmrements
‘under vet icing Conditions Under rime icing conditions however the
model predictions were in closer agreement with the meesurementS‘ In
‘..thevlatter case‘(Figure 1.1(a)), the general discrepenciee between‘the
"model predictions and theeactmal eccretion occurred neer,thehedges of
Vthe accretion. .Closer exeminstion of the sample grown in the tunnel .
showed that there were some "feathery" structures at the edge ofrthel
deposit. In the area—of‘the stagnation line, the ice appeered greyish
- indicating a relatively denser ‘ice than that ohserved at the edge of-.
"the eccretion ‘These features ere clearly shown in Plate 1. l“ |
An assumption made in the Lozowski et al model {is. thet the
'density of ice is everywhere a constant and equal to 890 kg/m
Essentially this. model, and all other existing models, ignore the Jﬁgﬂ‘
ldetails of drOplet impacts completely and rather does an energy bsl&nce.r
for a controi volume. .They are concerned with svereged droplet
properties and effects. .
Bain anleayet (1983) and Finsted (1986) incorporettd'density

) variations into Lozowski's model and demonstretedrthat the dependence

of ice'accretion shape on the ice'density'mas importent.v The resolting_

accretion shape, produced with Bain and Gayet's formulation for density



. (&) LNC = 0.47 g/m3

) (B) e = 0.71 g/m®

(¢) LVC = 1.45 g/m’

ACTUAL . - ‘PREDICTION

Figure 1.1 Cquparison of 1ce accretion al'rapo predictions from the model
of “Lozowski et al. (1983) with actual 1ccretion shapes. '
-10:/3 Ty = -10°°C, MVD = 130 ;m..



Plate 1.1 Ice accretion produced in -an icing wind tunnel at conditions
of Figure 1.1(a). :
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" density variationT~ This would be stkaightforward for a wet icing model

: - y k
variation’along the cylinder surface, was an improvement over the

original model but the predicted ice shapes, were again elliptical and

‘failed to account for the discrepancies at the accretion edges. A

‘brief description) of Bain gnd Gayet's model is provided in Chapter 5.

Finl:nd, however, had more success in prddictingwthe shape of the

actual ice accretion. This is shown in figure 1.2. ‘Her're-ults;

- suggest that existing models requirs gome ehpiricnlﬂcofralgtidn for.ﬁhe
] _

where the density would be a maximu and equal to some constant

toVeryﬁhoro on the ice accretion. ‘Iawdapoaits‘grown uAder rime icing

conditions..tho ice dﬁnkity c#n vary_frog_§0 to 900 kg/m3, according to

Macklin (1862). '

Althoﬁgh providing a density correlation for the model of Lozowski

ot al. may improve on its accretion shape predictions, it should be

cautioned that two ice accretions haviﬁg different appearances in color
and“taxture may have iimilar densities (Mackltn; 1962). .Therefére, it
is not enough to assume a density variation in Lozowski’s ﬁodel.

The presence of feathqri in the actual accretion Qhovs that; in these

areas, the actual details of single droplet impacts may have to be

~ taken into'zénsidetatioq to adequately describe the resulting accretion

* characteristics. As long as the droplets were smeared onto the _

dcposit,»as in Lozowski’s model, air pockets cannot be created within

the structure and consequently, the size of the ice would always be

-

underestimated. This nacfoscopic approach would seem to work in regions

vhere droplet impacts are sufficiently frequent. At the edges, however,
t§g impacts are 1nfr§quen; and a stochastic approach would be méie

appropriate. Therdf;te, further inproveneng@qf Lozowski'’s icing model

oy -
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(a) ‘actual accretion

(b) model of Lozowski et al. (1983)

(c) model of Finstad (1986)

//
/

R /
Figure 1.2 Comparison of accretion shapcl produced by various models.

. 3
D./Dg = 508, U, = 10.7 m/s, T, = -10 °C, and LWC = 0.48g/m’.



# e " o ‘\ .
. e g

o0 o - \
could be achieved 1f the shaps of the water droplets fbllowing\;npact
with the cylindn? 1s taken into coﬁsidoration:’ The droplet sha;gs
would depend on thouicinjxconditionn. Macklih (1962) found that the
degree of droplet spreading depends largely on the inpagt nononcuﬁ‘of
~The droplets and the heat balance at the icing surface.
The fro?zing ﬁrocill of cho'&roploc is complicated and is cffectod
. by various ﬁroﬁortiol of the airflow, the }cing objcct. and the
impinging water drops. In.general, upon iﬁpact_w1Ch‘the ifcing gurface,
the droplets freeze and liberate heat7 The h!fF is transferred Lo the
droﬁlot'l onvironnontvpriﬁarily-by cdnvﬁctién/evaporation {nto the
airstream and conduction into the icing object. The latter has a
warming effect on thi icing surface.
Fraser, Rush and Baxter (195i) found that during an ice accretion
procesl,vrino ice forms Qhonavcr the temperature of'the icing surface
is below 6 *C. This is referred to as a dry-growth coﬁdition in whic#l‘l‘
each droplet freezes completely before another dfoplet collides with -
"it. An accretion built in this fashion usually traps air within the
. structure and has a whitish appearance. An extreme case of rime icing‘
~occu;llvhqn the icing surface temperature and-the dr plﬁc impact
velocities are moderately low. Under. these conditions. the dropléts
" not onli‘freozo'individually buc’tond1¥o remain spherical following
ana;t-vigh a surface (anklin,m196£).‘ In 1983, Lozov#ki 1n£roduced a
Hoﬁti Carlo simulation fo oblitv. tﬂi‘%ffects of single droplet iqpacts 
on a cuifacc..'ln the model, solid spheres were c‘ﬂ%ecte& on a single
frozén droplet; this produced an open structure h;ving low density.
Thiq:ltoéhastlc model providos.n link to the present study, because the

approach could be extended to model an entire accretion.
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The ﬁurpcu 6: this .research, then, is to devise a stochastic rime

icing modsl that would provide a method of analyzing the microscopic

details in a'rime ice structure. The modsl would hopefully explain the

nature of the accretion processes that occur around the edge# of a rime

r .

ice deposit on .a cylinder.
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2.1 Presentation of the Models

A stochastic modsl is one thit ensbles vat-r«dropict- to be .
1 adaitted into chc.flov nndxcolloct on a'lurflco one at a time. In the
onauin; tvo sections, eha n-ehod ‘of eonstruction of tho‘sttaighclina

and thn curved trajoctory nodnln v111 bo given in dotail with tho

formexr provided first b&cause of its
_ ; ! ,
. the ®tochastic models Jz:l~sﬁ:n be p

presentation.

licity.. The bnaic felturas of '

inted out to complete the I'd

©

2.1.1 The Straightline Trajechory Model |
The thrﬂc bllic‘lttp; for the dnvtlophont of)a sinple_

two- dinonsionnl stochastic.model are shown in Figure 2.1. In the

model, a dtophc; of a ptodatorninod size is. firlt introduced at an

arbitrary vnrtical distanco. Y., fron the ntagnation 1ine. The‘ e

diatnncl is dotornin.d by a random nunber generator Then, the dropletj

follows a straight line path until it collidas}ﬁith the surface of a

PR,

cylinder. At the point of inpact the droplet 13 assumed to freeze..as
a rigid cylindor By repeating this ptocodurc for numerous equal-aized

droplets, a tvo dimensional rime accrotian could bo formed. The model

o \

was p:oducnd und.t the added assumptions thac ‘the grtvitational effect

vas omitted and thc accretion was lynnottic w*th respcct to the

lta;ﬁution line. Thil assumption is roasonnble for rime 1cing‘ T T,

conditiona in vhich vater. runback is minimal. A listing of’a‘ptogram
%

»iht ' 1 ltthi‘lﬁiinl ttaJoctory model is provided in Appendix 1

)

- 1o




(c) droplet makes an impingement and remains spherical
Figure 2.1 Basic steps in a straightline model.
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2.1.2 The “Curved Trajectory Model ' B

The curved trajectory model is produced in 4 similar fashion to
"the straightline model only the. droplets follow curved paths The
mcurvature of the droplet 8, trajectory is calculated by solving the

3equations of motion for the droplet in an airstream The extensive

. oy ‘
1calcu1ations are mhown in Appendix 2  This involve the reduCtion of

7

'the general equatapns to the following first order differential

‘_equations, g » ‘ B , o
.:/vf t p' de CDRe . “ ‘ , | |
e T T L | S (2.1.1y
dt. » 24 S . G o -
ol ‘ , ."' s ‘ D
o) “ ‘ K dvy " CDRe ( . ) (2 l 2)
: . : —_— - - - v .
— vy SN . (2.1.3)
dt .
— vy . | e ‘(2-1'4?.

S hde

]
» . PR : o

.All variables .are dimensionless with respect to flow parameters as

;indicated by equations (A 2. 6) to (A 2 .8) in Appendix 2. The inertia’

—

o parameter K measures the ease with which a- droplet may deflect away

from ‘the’ substrate The Reynolds number Re, represents the‘ratlo of .

d.inertia forces to'frictionvforces and the drag coefficient;‘CD, is the
- [

. -

, ratio of total drag to the dynamic pressure All three dimen51onless.

parameters depend on the flow conditions, and for 1ncompressib1e ‘flow;
. 7 Pt .
CD is a: function only of Re. (SchIichting, 1979), as shown in Figure 2 2.

‘ For instance when the flow conditions are such that the friction

forces exerted by the airstream on the droplet are large compared to.

- - k I
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number (Schlichting, 1979).
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the droplet s inertie the Re is small and the drag forces on the
droplet 1is large. This causes droplets to be easily deflected away
from the substrdle‘end follow the streemlines. When the inertia forces
are'lergevcompared to fridtion forces.'however, he is large and Cp is.
smell. Beceuse:of the'reducedydreg on the droplet, their.trajectories

' canmot be easily changed and the‘droplets tend to make.impacts'on‘the

: structure. Other variables in the above equations inclede the uy, and
Uy, which are the air speeds in the x and y directions, and V\\and vy,
which are. the droplet speeds in the x and Yy directions Finally, x'and

1

y represent the coordinate of the.droplet s location. The formulas for

the calculation of K CD, and Re .are given in Appendix 2. Appendix 3

shows how u, and uy could 2e obtained from the theory of potential flow
peat a right circular cylinder. ‘The above foqr equations have four ‘
unknowns (vy, vy, X, and y) and arg solved with a &4-th order

x* vy
‘Runge-xhtta numerical technique. The method is giyen,in detail in
Appendix 2. | | i

Onceithe droplet's trajectory i{s determined, the accretion.is
buil® in a mahner'sinilar to that,in the simple model. - Droplets are j

releaged ynto the flow at x = 10 D and y =Y with v, = 0 and vy = 0.

It should be pointed out that the siwmple model is ‘involved with v'_ N,
basically one variable - the cylinder cto- -droplet’ diameter ratio, D /Dd
In the curved traJectory model, however, there is an additional
variable - the freestreem velocity A listing of a pxogram for the

curved trajectory model is provided in Appendix
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mplementation of‘the Curvod Trajectory Model | ' L

The curved tr;jectory model is expensive t?vexeoute.because the
instantaneous location of the approaching droplet‘is'calculated with an
iterative'techniQue. Also,_the location is referenced to‘;he positiohs
:of every accretedlgroplet to determine where and when the oncoming |
droplet makes a collision To render the. model more cost- efficient
there are several ways of éyducing the nTmber of- iterations required iﬁ
~ the calculations. b

One, the area bounded by the cylinder surfacep thehlimiting
trajectory (trajectory correep%nding to O defined in Section 3.1),
the.stagnation line, end the line x = lODc.ieisplit up.into five bandsh
The boundaries of.the’bands are éiven by the droplet trajectories uith

o
starting positions of x = 10D, and y = 0. 0, 0. 21, 0.4Y), 0.6Yy, 0.8Y),
éhd‘Yl Following the introduction of a droplet 'A’ into the flow,
rather than determining which droplet in the accretion ic will collide

4

with, only the droplets within the band that droplet A enters will be.
considered. PRI : dé?

A‘second'cost;sauing feature 1s utilized tO'determine where R
-droplet A would make alcollision.' This'method ithlves the elihinetion
' of the'iterative droplet_trajectory'celculations in favour of an
interpolation technique . as illustrated in Figure 2. 3 Within the
'band, any droplet having a c/d value‘ﬁiphin a certain tolerance of a/b
is assumed to bg within the path of the oncoming droplec Among thesev
droplets only the outermost droplet will be impacted upon. i.e. the
one with the greatest de| Calculation of the final'position’of the

impinging droplet (x4, yd) involves: the satisfaction of the assumptions»

¢/d = a/b.and (2R)? = (%, - xd) £ (yy - ya 2.
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To execute the curved trejectory model, ane would be reQuired to

17

firse, eelect the eppropriete flow conditions D.. D4q,» Ug,, and Ta

Then, the corresponding Y; is celculeted by triel and error from

the program in Appendix 4 as followe Txy increesing veluee for y,,
“and deternine when the droplet berely collidee or misses the cylinder.
,The droplet makes.an 1np1ngement if the nearest 4teration is priﬁted
-Otherwise, the droplet is ehed in the eiretreen and the nearest |
:thoqsand iterationa‘is printed. Once yg = Yl is found, it (YHAX), _
alopngith the flow parameters, must be supplied to the curved |
trajectory oodel. ‘The model is then executed with the conmands in

Appendix o5.

%3 stochestlc Model Features ji R ‘ T\;L

N Figure 2.4 illustrates en exaﬁple of a stochastic mode: produced
with streightline-trejectories. Since gravitational effecte are
ignored, the stochastic models are assumed to produce symmetrig
accretions and, thus. ooly a>querter.cy11nder will be shown'in the i
.models.‘ A careful-e*amlnatiod of:thedaccretlon shows that there are.%.
two intereeting features.of a stochastic model. One is tﬁat discretev:
‘structures have grown along the edges of the accretion These
structures seem to have preferred groyth directione and could represent ‘
two-dimensionel rime feathdrs. ‘Measurements of the growth angles c/old
Be-obteined readily and compared with those from actual accretions. - ~

A second feature of'thg"godel is its tengoncy to trap air within

~;j§he structure. By examining the area occupied by the droplets, one
can obtain ao estimate of theAlocal droplet concentration TRis is not
the case in the models of Lozowski ot al. end Bain & Geyet for they

- » . . - . {4
] - . : 'k



Figure 2.4 A straightline
on a cylinder.

model produced by collecting 20,000 droplets
Do/Dg = 1000.
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require some empirical correlation for ice density. In the.preient
models,‘the packing factor of the droplets in an annular areagAdjacent
to the cylinder surface can be obtained and compared q% the local ice
.density measurements on actual accretions. Appendix 6 provides the
technique for the calculation of droplet concentration at dvery
5;-sector relative to the forward stagnation line. This praqpice will
be-employed in the present‘studyl and droplet concentrations are
plotted against the anguiarfposition of the midpoints of each sector.

At this time, it 1s important to acknowledge why the icing object
willpbe limited to having a cylindrical form. Firstly, many structures
often affected by atmospheric icing have a cylindricallshape
Secondly, the potential flow field which affects both the droplet
impact speed and the heat transfer to the airstream, is easily

determined around a cylinder. This is not so with a real viscous

flow field.
_ . Another assumption made in the models is that each droplet
remains cylindrical on impact with another dgoplst or the cylinder re

actuai accretions, Macklin (1962) deduced that droplets are abl: .,
freeze spherically Qhen the parameter (-rv,/Tg) is less than ts: -uei.
'r is the median volume radius of the.droplet spectrum in pm; T, s e
‘mean temperature of the icing surface in °C; and v, is the.droplet
impact Veiocityiat the stagnation point in m/s. Low surface ¥
.temperatures would shorten the droplet’s freezing time, while a
/-reduction of the droplét’s impact speed and size would minimize droplet
spreading activity. Therefore, comparisons bétween the rime icing.

-

model and the actual ice accretions could be performed. only under: these
: : !
flow conditions.
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) 3. MODEL PREDICTIONS AND DISCUSSION
;
ot ¢ > )
Figure 3.1 illuqfrates an example of an accretion produced by the

stochastic model with straight 1ine ‘trajectories. .It is important to
note that there are two unique characteristics of a stochastic model.
The model predicts the development of two- dimensional feathers and
provides a meéhod for obtaining an initial estimate for local droplet
concentration These two features are examined closely under separate

section headings in this chapter rime feathers and local droplet

.

concentration. In both sections, there is a presengation of each
Vstochasticlmodel's predictionsr Comparisons between model predictions
will be.made and this will be aided with a detailed analysis_of the
accretion processes that occur in the stochastic models The chapter
is intended to point out the physical similarities between the models,
| and to exp&ain -how - the models consistently produce feathers and air
inclusions | ‘ >
ﬁefore any results from a curved trajectory modei are considered
in the discussion, however, it must be assured that'the trajectories in
the model were calculated correctly. Langmuir-and Blodgett (1946),
hereafter referred.to as L & B, have determined several.parameters -
analytically which could be used for comparison with those‘obtained
from the model. The first section deals with this comparison with the

view to establishing confidence in the curved trajectory model

predictions of feather growth angles and local droplet concentration

20



A straightline model produced by collecting 20,000 droplets on a .cylinde’r.

DC/Dd hd 508.

Figure 3.1

21
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5.1 Confidence in Curved Trajectory Hoh;l Predictions

Rcsoarchnrl"in the field of atmospheric icing often encounter two
familiar paranncnrl?ﬁthe maximum 1mpingqhent angle, 6 , and the overall
collision céficienby,’!‘. ’According to Langmuir and Blodgett, these -
parameterns determine uﬁd}i.oﬁhtYand distribution of ice on a structure .

and, therefore, hnving'aygi;abge data on E, and 0, would be a valuable
. ‘.

v

asset for relating one*iceQﬁqdelling situation to another. The two
paramétets'have,been calculated analytically by L & B, and have been

used as a basis_fﬁf‘comparison ever since. This section begins wifﬁ a
L LA '
definition of E, and #,. Then, the method by which L & B calculated

these two parameters will be provided in detail. The sectioniconcludes
: ‘ o

with a comparison of model predictions of Ep and amfwith those by’
, = B

v 4

Langmuir and Blodgett. .

Figﬁre 3.2 1s a~aiagram i1lustrating how E and 9, could be
optainedl It can be seen that the c&lculation of both pérameters is
dependent on.the‘cdrﬁature of‘the droplet trajeetdties. For examplg,
Ey 1§.def1néd,as:qhe ratio'dffthe mass élow~of water droplets strik}ng‘
the surface to the mass flow that would strike the s;rface had the
droplets not been def}gctpd by the.airgtgeam.“ This definition was

provided ‘by Langguir aﬁdiﬁlodgeCt (1546’ and Makkoﬁen (1984). As a .
H‘direcé consaqu;nc; of the droplet’s trajectory cﬁrvatu:é, ;h;fe existé
a point on the cylinder surface downstream from which the droplets“willf -
"ch fmpinge. ‘The angular‘ﬁositipn of ;his-point is referred to as oo

An increase in craqutofi curvature would-decrease E, and 4. Because
"‘h"‘"“ . “ N
the determination of E; and 6 relies on the curvature of the

J

trajectories, L & B had to calculate tﬁe'trajéctories before Ep and 4

’

could be found.

3 . " <
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“The approach onployoa‘by L & B begins with a cpnvdrnioq of the
dimensionless equations of motion of the droplets into the following

M

integral form:

x = (1/K) g -vaf (cho/za)dc *+ vy,

- (l/K) I (uy, - vy ) daf <cbno/24)dc + vy N
X - f A/ dt + xl ‘ -
y - f Vydt ": yl

.

where all the variables are as defined in Section 2.1.2, and u
represents air velocitiesl The Vo X1, Yl' X1, and y, are constants of

°1nﬁegra£ion. 7< ' L. .

Then, with a differential analyzer, the equacioﬁs were soléed;for
the x and y coérdingces of. the droplet at eachiﬁime step. By repeating
this step-by-step igtegracion'procaduréffér a droplet with an arbitrary
initial y distance y, from tha’ftagnaéign line, a dropletAtrajectory is
‘determined and plétted on a trace. A set of three or four droplet
.pacha could be obtained at a'gfveﬁ flow condition by using different Y
values. From this set of trajectories: two are selected for
{interpqlation purposes: one barely missing a collision witk the
~ cylinder, and one barely making an impingement. The idea is to
dotermiﬁe a limiting trajectory, one‘whose path is tangent to the
surface of tﬁg cylinder at the point of impact, froﬁ these two curves.
Once the limiting trajectory is interpoléted by the operator of the
analyzer, E; and 4, can be calculated and feasured on the analyzer
trace respectively. | | |

In a similar fashion, Em‘And 6, can be obtained for various flow
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conditions. The data obcnin;d'wich_tho-diftoton:iul analyzer wvas
planned to give families of curves in which'thc characteristi¢s of the

ice deposit, such as Eulnnd §,  are expressed as functions 6! the

’

‘ ) a ZpVRdZU.,
inertia parametér, K « —————, and the impingement parameter,
b 99 R
185,28 U, ge
¢ » ——ee., The Pyr Rqr Uy, n,, R., and p, are the water density,
MaPw :

droﬁlet radius, freestream velocity, air viscosity, cylindqr radius;
and air density respectively. Thﬁ#, K and ¢ are énlculatod from the
the flow conditions gnd, once knowm, wi@i determine Ep and Out Figures‘
3.3(a) and 3ﬂ3(b) i ustrate‘the family of'curvouﬂfor the data on

- quantities Ej and §p. Figure 3.3(c) is included for use in Chapter 5.
o . 9

The ¢ is a constant along each curve and every K-¢ combination
represents a unique flow condition. With the' aid of these curves, we
are in a position to compare L & B’'s calculations of E, and 4 with
model predictions, to de;ermine if the the trajectory calculations in
the model are correct. : ’

The comparison is performed at nine different flow conditions, for

" a bare cylinder. These caﬁdifioni are shown 1n’Tabloj3.r and represent
the range of icing conditions, outlined in next chapter, in which rime
feathers could develop in the icing wind tunnel. A sample calculation

» of K and ¢ for test condition A is provided in Appendix 7.

‘In the curved trajectory model; the E; and 4 values are
calculated as follows: A droplet is r9;eased into the flow, with zero
initial velocity, at an arbitrary initial distance of ten cylindeér
diameters away from the center of the cylinder in the i-direc;ion
(xg = 10D.), and an arbitrary y di ce from the stagnation line

(g = Yp). Then: the droplet}s trajectory is calculated using the 4-th

bl
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Table 3. 1 Presentation of 4, and Em values calculated by Langmuir & ‘&
_Blodgett (1946) .and the curved trajectory model for a bare

Test

_.cylinder.. = 2.54 cm.

- CONDITIONS '%’%;‘.‘ . L&B MODEL
Dy Vs T, By o K4 8y By 4y Ey
(ump (m/s) (°C) -(N/m?) ey ).

M @ @G @ (5 ®) (D (B (9 10

© 18.
27,
36.
17.
30.
3.
17.
27.

32.

2 10 -15 100,000 0.89 255 45.0 0.26 45.5 0.26 «
2 10 -15 100,000 1.9 255 59.7 0.46 59.9 0.46
9 10 -15 1003000\ 3.57 255 68.1° 0.60.68.7 0.60
4 20 -15 100,000 159 480 54.9 0.39. 54.3 0.39
3 20 "15 100,000 4.81  480 702 0.64 73.6 0.66
4 20 -15 100,000 6.95 480 73.9 0.71 76.7° 0.74
7. 30  -15 100,000 2.46 720 60.9 0.48 62.3 0.49
3". 30 -15 100,000 5.86 720 71.5 0.66 74.7. 0.70°

4 30 -15 100,000 8.26 720 74.7 0.72 78.3 '0.76
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order Runge-Kutta numerical meghod ’outline in Appendix 2. The

found. In this caae, the ys 'is stored‘as Yy: the trajectory is

plotted consequently, Ep and 0 are calculated as defined in Figure®.
3.2, only Yp = ¥; in the model The limiting trajectories for all the

' conditions in Table 3 1 are calculated in this manner and the results
’.fornv and Em -are tabulated in :olumn; (9) and (10) respeomively in the"
table. L& B's results are listed in columns (7) and’ (8).

The agreement between L & B and model results for E “and b
conVeniently illustrated in Figures 3. 4(a) and 3. A(b) In each plot,
any point lying on the 45° line represents a good agreement between the
two metbods of calculation of the appropriate parameter in the plot
Any point located to the left of the line indicates an underestimation
byrthe_model, whereas those appearing'to the.right of the line'
‘translates into.an overprediction by the model. - .

In particular,llet us eyamine Figure 3.4(a5,_3.4(b);'and Table 3.l
to investigate-how.model predictions of E and O compare with those
icalculated by L & B. It was observed that fer ‘cases where K was lesa.
than or equal to 3 5, both methods predicted a similar value for E and
fn- With larger K values the model overestimated L & B’s calculation
by 5%..1The.inertia parameter seems to have an effect on the accuracv)_
of the calculation of E; and O ; One reason for this w;s that all the
droplets were‘released at xg = 10D in the model.;ather than at xs -
- this was necessary to’ lower the computing costs by reducing the |

umber of extensive»trajectory calculations in the model. The -~

instantaneous drag and. inertial forces on’ the droplet highly dépends on -

where the droplet was initially released into the flow, and on the
i N
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error, in doing oéherwise, was found to be small, A

. 32
i}

droplet size. L & B realized this andu vided a correction to the

‘initial droplet velocity, which effectively releases droplets at x

i . _ ,
This could have been done in the mode;{ but it was

“all Re, whéreap the model used equations (A.2.20) to:( A
depéndiné on the‘valué for Re. J

?he‘two factors contributé to};heginaccuracy of the médal
predictions of E; and 0&,'buc since they'are within 5% of L & B's
calculations, confidence in the curved trajectory model has been
lesﬁabliéhed. Thqrefore, comparisons between'theﬂstraightline and
curved trajectot& model.ptedicfions_could.be made. The next two
ééﬁﬁioﬁg will do.this,.beginﬁing with a comparison .of rime feather

growth directions,

3.2 Rime Fe#thers \

| Rime feathers are.discreté.structures with preferr;d growth
directions on ice accretions. The angle of growth of the feathers, ¥,
measured rel#éiye c&vthe stagnation line as shown in Figure 3.1,.
influences ﬁhe drag p;operties of the entire icing structure.

. Accurate stqchasﬁic model predictions of ¥ is important if this resﬁlt
is to be useﬁ‘in models such 45 that of Lozowski et al. (1983) to
produce accuvgte ice sﬁape§ hear the edges of the a;cretion;
.Thergfore,.itgis dés@rable to measur9vthese angles from a stochasfic
model and tabulate them for comparison purposes.

. The abiiity to produce feathers on an iting structure is a

'Efﬁdit to ;he construction of the stochastic modgls. This seqtion .
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investigates the manner in which an accretion is built.on a
two-dimensional cylinder to determine how feathers are formed it will
help explain why they are likely ‘to appear near the edges of an

o
accumulation in the model. Then, based on comparisons between each

stochastic model’s predictions; the influence of various flow
upaxameters on the"growthyangies of feathers will be described
Ehoroughly.
3.2.1 Mechanisms for Feather-Growth

Model acéretions were produced at nine sets of flow conditions in
order to‘emamine the properties of feathers more closely These
conditions are identical to those in Table 3.1 for convenience. At
'.each set of conditions, two accretionstwete‘built: one with droplets

. :

having straightliné tfajectories and the other with droplets following
curved paths.. At the comoletion of each test, each“model.was-examined .
and found to exhibit feather development in the yicinity of the edge of
the accretions. A reason why feathers consistently appear at the edges

of a model accretion is directly related to the impact angle of the

impinginéldroplets, a. The a isAd%fined as the anglevbetmeen the -
Pl

surface normal and the tangent of a trajectony at the point of impact
it determines whether feathers would form or not.

Figure 3.5 defines « diagrammatically and- shows how it could
influence feather growth for the straightline trajectory case.
Basically, as the droplets accrete on one anogber the resulting .
dropletgstructure grows in the upstream direction. The feathers have a

‘tendency to origindte at some point on the surgace'of the cylinder ﬁﬂd “

develop into a two-dimension§i>coneeshaped,structute, the head of which*
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Figure 3.5 Effect of the droplet impact angle on the degree of shading
activity downstream from discrete structure, .for cadse with
straightline trajectories.
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is exposed to the airstream. The head shields the regions on either
v

s{de'of the cone-like structure from the approaching droplets, leaving

/

behind air‘pockets. This will be referred to as the shading effect,
If the collector’s surface is everywhere normal to the droplet’'s
trajectory, the feathers would be expected to shade regions on either
sidesvofgkt equally. Vhen the droplets are collected on a surface |
whose normal is at some positive angle to the droplet trajectories a,

the area downstream from the feather is shaded more than the area

upstream from the feather. The imbalance of the shading effect is

greater as a increases.from 0° at the stagnation linp to o (defined in
the figure) at the point on the cylinder corresponding to 4,. Minimal
shading cccurs at the stagnation line where a is zero. Progressively,
more shading takes place along the surface of the cylinder, downstream
from the stagnation line as a increeies\and/larger air pockets are
produced., There is maximal shading near §, where the air pockets have
enlarged to the degree that they appear as layers of air, enhancing-
featMer growth Although this may be an explanation for the existence

of rime feathers at the edge of an ice accretion grown on a cylinder,

it would be interesting to observe where the feathers develop on

7]

accretions produced on other structural shapes. This requires a

‘ modification of the‘two-dimensional straightline model with the

insertion of the appropriate equation for the ‘surface of the structure.

For example, the equation for an NACA 0012 airfoil, with a chord

o

length of 30 cm,vhas been used in the model. The leading edge of the

airfoil, consisting of an accretion of 25.4 um droplets, is shown in
3 X v

Figurel3 6. As in -the case of the cylindrical collector, the shading

wffect: increases with the angle of impact, with a resulting formation

’
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of feathers in regions where a is tclativoly'largc. Experimentally, at -
conditions of U, = 11.2n/s, T, = -10°C, MVD = 22um, and LWC = 0.86g/n>,

' the gro&tﬁ angle of the feathers were approximately 10°. This compared
to a prediction of 20: by the model. The discrepancy was expected
because in the actuizraccrecion,'che feathers only,grew at the tip of -
the leading edge. In the model, the feathers dppoarod furtgor
downstream on Fhe airfoil. The reasip for this is that the model does

_ n&c take into account' for the éhgngo in flow field with time.

To observe fu:therbif feather-growth ii,qindeed, dependent on the
angle of impact, an aﬁalysis of a deposit on a collector whose ‘shape is

such that a is constant over the whole surface facing the upstream

direction, has been,doné.

Figure 3.7 shows typical accretions on three

wedges whose normals are 60°, 45°, and 30° to the scraighclino
trajectories, referred to as 60°-, 45°-, and 30‘-;edges respectively.
An important‘obserVatidn from the figure is cHﬁc fe#thers ;re
clearly distinguishable over the entire surface when the imﬁacc angl§
is relatively high, as evidenced 1n'Figur; 3.7(a). With ;el;tively Jlow
a (Figure 3.7(c)), however, the featﬁershdid not appear at.all. It is
interesting to note that these two results are in agreement with k///
“observations found on an accretion on arcylinderAwhete feathers are |
visible in regions where a is greater than 45°. In fact, measurements
of featﬁer growﬁh directions on the w;dges areAcomparAble to those
grown on a cylinder. For instance, the average gfoﬁch angles are about
15° and 23° oﬂ the 45° and 30° ;edées respectively. Thi:tcérrenponds
to measurements of about 13° and 25° at p§ints on the surface of a
éylinder whéré the normals were 45° and 30° to the droplet trajectorieg

\ .
. respectively. The accretions on the cylinder and wedges were produced



(a) 60° - wedge .

, { | _ |
(b) 45° -/ wedge (¢) 30° - wedge
( .

/

Figure 3.7 Straightline models produced by colfdcting 10,000 droplet on
various wedges. D4 ='25.4 um.

38
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with 25.4 pﬁ droplets. The results from the airfoil and wedges confirm
that rime feathers develop readily in regions where a is relatively
high, where the lhadihg effect is greatest. Also, the growth angles of

feathers seem to depend on a.

v

After establishing a stochastic model could pgroduce a feather,

. ,
one is {n a position re grewth angle predictions batween each

type of stochastic m  ensuing dection deals with this
exclusively with an empha®is on the various elements that hgve an
eff?ct on the growth direction of a feather. P
3.2.2 Growth Angles

The growth angles of feathers were measured on mpdel ac:totions
produced at thexconditions given in Table 3.1. The measﬁrgments have
an error of ¥2°* and are shown in Table 3.2. It should be pointed out
that, the grewth angles are always measured for the feather located
AElo§e;t to the edge of the ascrecion, where they are the .most
distinctive; this practice is followed throughout the study. Alse, the
random number generator ;hat determines the droplet’s initial y .
distance, yg, from the sﬁagnation line was unchanged from model to
model. In other words, the sequence of yg values at which the droplets
were introduced into ﬁhe flow was equivalent from model to médel. The
advantage of assuming the same random number generator throughout ch;
study was Lo eliminate it as a variable. This was acceptable because
at,can be shoﬁn that each stochastié model could produce the same
feacher grow;ﬁ angles, at a given flow condition, with different random

number genéfators. For example, the model with straightline

trajectories produced feathers with growth angles of 15.5° and 15° when
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Table 3.2 Growth angle measurements from straightline and curved
o trajectory models at various flow conditions. Straightline
and curved trajectory models ‘were producpd with 20,000 and
10,000 droplets respectively
Qu -
' WIND TUNNEL CONDITIONS ' vy ¢
: ‘ ‘ p o ; © .str.’ Cufveda Curved
Test Dy U, T, , Py ¢/Pg “traj. traj. traj..
‘ - i -y , model mode} . model,
#. - (pm) (m/s) (°C) (N/m®) . N ;o
: o ey (rcz Yy () w28
(L @ 3 W (5): ®) (D (8) (9 a(lOXf_?w
A 182 10 ' -15 100,000 1396 0.89 16 -27 17
B - 27.2 10 -15 100,000 934 ,1.94 - 25 -5 25
€ 36,9 10 . -1I5 100,000 = 688 3.57 23 -1 20
D 17.4 20, -15. 100,000 1460- 1.59 15 -20 15
"E30.3 20 +-15 100,000 838 4.81 25 3 20
" 'F 36.4 20A,7 -15 100,000 - 698 6.95 23;5’? 13 26 '
‘G 17.7-. 39 -15 100,000 , 1435 2.46 15 -10 17
H©27.3 30 -5 100,000 930 5.86 25 14 29
Ie 324 30 -15 1100,000 784 §.26 20 9 21
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two different random mymber generators were used for D /Dd of 1000, In
‘the. curved trajectory model the "two generators produced an angle of -
<12° at a condition of 10 m/s, -15 °C and Dc/Dd equal to 1000. A
change in the sequence‘of ys‘values at which the dropletslwere
introduced into the flow did not appear to have a significant effect on
the'grovth angle. Therefore, a specific rendom number generator will

"be applied,in the pres;%% study. :

‘ Another element com?on to all cases in Table 3 2 is that each
‘ ‘model was prdduced with;a monodisperse droplet spectrum, As noted in
'_{ Section~3 1, it is desirable to optimize‘the cost of producing elmodel

Although introducing the droplets into the flow close to the cylinder

thOD ) in a curved trajectory model minimizes the extensive

'hﬁ ca culetions'of the trajectories,‘they.could-be further reduced with.

ﬁse'of a monodisperse droplét spectrum.

To show”éﬁht a monodbsp%rse droplet spectrum does not. have'a

p-51gnif1ctnt effect on the feather growth angles. the straightline model
. . “EL

“was. produced with droplets of equal size (Dd = 27.2 pm) in one case and -

of: variable size (MVD - 27 2 um) in another In the‘latter model the

droplets were: introducad into the flow one at a time \and their size

ER

was determlned as f0110ws Plot probability distribution function (PDF)

. of the droplet spectrum histogram against the midpoint droplet size‘

‘bgelue of each ofeits ‘bins. Then convert PDF to a cummulative «;

x
PRI

distribution function”(CDF). aftet selecting a number betweenlééro‘end;'_
. , = , : o g
oneywith a‘random'number.generator, the corresponding droplet sire is;‘g{
obtained fromrthe»CDF.“Model results of the‘twohcsses'on a 2.5 cm
ldiameter cylinder are shown:in‘Figures‘3.8(§) end 3.8(b). Results for

local droplet conCentration in these two cases will be given in the

y:



Figure 3.8(a) A s*raightlinelli

droplets on a*
TRy

produced by’ collectxng 20 000
er, D -272p1n -
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next lecpion.‘ The growth angles cf.the feathers were measured to h%
'25° and 24° in the model composed of monodisperse and- variable si;ed

: ‘ . . . " 7‘ .
dropletl respectively. ‘A difference of 1° represents an error of about.

4y, but when compared to the range of growth angle measurements

e

lobtained in a curved trajectory model composed of equal -sized droplets o

(column (9) in Table 3. 2), the error is reduced to about 2.5%. | This
error 1is small, but ‘unfortunately it cand!t be compared with the error
in using a monodieperseﬂgroplet spectrum in a curved trajectory model.

" For complexity reasqns,,a curved trajectory model made, with droplets of

"h k »: "

| variable size is nof“ivailable; Despite this setback; there are \
several interesting.trends observed from Table 3.2 which contains ¥ \
predictions from models produced with ed&ﬁl sized droplets L ' X
Firstly, attention is directed to the column of straightline model‘
‘results. Fromvthis set of measurements,,it_is nbserved that the growth
anglesiwere approximately 15° for cases'wherevbé/bd was greater than
1400, Then, ale /Dd'decreases to 700, ¥ increases to about 23°. It
.iappears that ¢ varies inversely proportional to Dc/Dd, but this notion
is incorrect because, in two other cases: not presented in the table,
the growth angles were 15° and 23° in the models where Dc/Dd was 254
and. 508 respectively Therefore, all'that ‘can be said is that in the
straightline model the feathers point away from the stagnation line
(positive growth angles) and grow at angles between 15‘ and 25°‘ This
. was also discovered by Lozowski et al. (1983) in whose model single
droplet impacts were made on a single frozen droplet. His ‘Monte Carlo
simulation model~involvedua Dc/Dd equal to one and produced a feather

with a growth angle-of 15° with respect to the mean impingement

direction or droplet path This implies that if the flow field remains

A\



unchanged, as in the stochastic nodela, the rime feather growth‘
direction dependa only on the path of thevtrajectories. and on D,/Dy.

: The next set of important observations from Table 3.2 originates’
from the first oolunm (9).of—results pertaining'to the curved .

\trajectory model. The ¥ measurements from this column varied from -27°

¢ ’;

(feathers pointing towards stagnation line) to 14°, The relatively
;wide range of growth angles is reflected in the various degrees of
droplet trajectory curvature experienced from one curvedttrajectory
" model to another. Figure’3.§ clearly illustrates‘how the curvature of
‘limiting trajectories, in three different flow conditions, influence
,the location of the feathers by changing the angle, x, of the
approaching droplets,‘defined as the anglel etween the tangent of a
droplet trajector& and the stagnation.line, t the point of droplet
: 1mpaCt; When the dropletskfollow straight trajectories (* -0), T,
droplets are erpected to make_collisiona on the surface of the cylinder -

e

up to a‘maximum impingement angle of 90°. Essentially, Ep is unity.

As the curvature of the trajectories increases . to T2 or T3, om

gdecreases because their points of tangency on the cylinder ia shifted
upstream along {ts surface and, therefore, the region for feather
growth is relocated.

Figure 3.10 shows how an increase in the degree of trajectory
curvature could depress the growth angle of the feathers As mentioned
in Section 3.2.1, feathers tend to grow towards the’ upstream droplet.
flow direction, indicated by V in the figure. In the
straightline model, V is parallel to the freestream direction and '

feathers were seen to grow at angles between 15° and 25° relative to

the stagnation line direction. .In the curved trajectory model, V is at
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(a) x = 0°,.straightline model
T g

(b) x < 0°, curved trajectory model

-

*

Figure 3.10 Areas'(shadéd) on a droplet to which approaching droplets
could stick. '

-
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some angle x to the freestream directiop and this changes Ehe likely
area gp the accreted droplet to which approaching aropletn would stick.
The effect-of this is a reduction of ¢y as compared to thﬁsg measured in
the straightline model. In fact, if x is lgrgé,enough, the feathers in
the curyod'trajectory model could point towards the stagnation line.
Therefore, the degree of trajectory curvatutevof the droplets directly
afféc;s the growth directions‘of the>feathérsf' The degree §f
trajectory curvature is determined by the inertia of the droplets. Fof
this reason, 1; is desirableAco interpret the curved trajegtory model
results for ¥ in terms of the’iner;ia parameter K.

In cases where K < 3.5, the gro&th angles ¥ were less.than‘zero.
The dfoﬁlec'ﬁ 1néptia w#s low enough that the droplet tended to follow
the airstre;;. The angle of attack x of the trajectory was large
enough to result in featbers pointiné towards the stagnation line. 1In
~ the remaining cases, K was gééaCer than 3.5 and ﬁhé trajectories
straightened enough to resulﬁ in droplets ﬁroducing feathers with
positive gro;th angles. jDrpplets with relatively lafge inertia are not
ﬁasiljainfluenéed by théwairgkream and, therefore, tend to folloﬁ
'sﬁraiéht trajectories. Therefore, the basic differenée betﬁeen the two
" types of sﬁocﬁaﬁtic models lies in the difference between the K values
in each model. In the curved trajeétéry model; K is determined by the
flow parameters D./D4q and U,. A limiting case of the curved trajectory
model could be the straigﬁtline model, wherelk is equal‘ég infinity.

I§>pointing out that the curved trajectory model‘differed from' the
étfiigﬁtline case by the degree of curvature of the tt;jectories, it
was expected that the growth'angles of the feathers, relative to the

path of the trajectory at the point of impact, would be similar between
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the two‘ﬁodels, provided their flow conditions were similar. Indeed,

column (10) shows that the growth angles of the feathers ¢, reletive to
L]

the tangent of the trajectories at the point of impact vere all

~

positiye and within 5° of Y measurements from the corresponding
straigﬁtlioe”case In the simple model, ¥ and § are interchangable.’
F@gure 3 11 shows that regardless of whether ¥ is positive or
negative, g’remains poqitive. Interestingly enough, in none of the .
casee ffomtTable 3.2 was ;fgreater than 25°, which could ioply that
this is approximqtely the uppe;‘limit“for ¢ on aAcylinder in any Cype-

of stochastic medel. The parallel between the~§ predictions of ghe two

models>Was-ex§ecfﬁd, because the curvature in the trajectories in the
complex model should cause their grogth apgle'predictions ¥ to be
depressed in cohparieog with those from the scraightline'model./ The
growth angies relative to the éangenés of the trajeccories.,howev:r,
should only depend on'Dc/Dd when dealing with accretion of spheres.
The close ag?eement between results in columns (8)‘and (10) coqfirms
that_tﬁe curved trajeotory model is conetruooed properlyt

| To summarize, there are-various parameters that de:erminejthe
locacioo and grooth angle of two-dimensional rime feathers in a
stochastic model. Feathere grow readily along the edges of an
accretion on a cylinder where the 4rop1et impact angles are the
greatest. The shading effect becomes a prevailing factor at high
impact aogles and because a is maximal ao 0, the feathers have‘a
tendency to appear in regions on the cylinder corresponding to O
Since 0n is relatively lower in a curved trajectory model, it is not

surprising their feathers grow on the surface of a cylinder-closer to

the stagnation line compared to those formed in a straightline model.
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horizontal line

horizontal line

‘ . T
<¢— tangent to trajectory T
at point P
' (b) $<0°, ¢ >0° B
o

v

Figure 3.11 Diagtammakiqal definition of {. The ¢ has a positive
' : value, regardless of the sign for ¥. Trajectory T is not
necessarily-the limiting trajectory. :
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The curvature of the droplet trajectories directly affects the

growth angle of the feathers. Droplets with.relatively low i{nertia
ha;e a high degree of trajectory curvature., This doptogsol the growth
angle of th; feathers. In a simﬁle model, all trajectories ard
straightvand growth angles ire positive, relative to the.scagnaiion
line, for all D./D4q. In the more complex model, however: an increase
in'D,/Dy would inctgase';he trajectory curvature and the resulting
ifeathers'wbuld tend to point towards the stagnation line. Regardless
of the f16v conditions, however, ¢ should be simliar in both models. -
The stochastic models have provided a means of analyzing'rime

Qfeather growth. Itvﬁould be interesting te observe how the groﬁth

-

angle predictions from the models compare with those measured on rime’

L

-ice accretions produced on a cylinder in an icing wind tunnel. This

%

will be investigétedvlacer in the study.

3.3 Local Droplet Concentration ‘ i

Figure 3.1 shows a typical miérostructure of a dfoplec accretion
ﬁroduced by a stochastic model. The existence of voids within-che.
~droplet accreéion structure is anmactribuCe unique to the pres?nt s
models. By examining the area og%ﬁpied by‘the droplets Qithin a
certain boundary, one is ablé to obtain an estiﬁate_of the locale
droplet cbncéntration. The current ;ection begins with a look into the
nature of the accretion proceeses occurring in the stochastic models ﬁﬁr
,undg;;tan& hoﬁ air is trapped 19?1dq the mpdel deposits; this
information will help e;ﬁl#in'whyit#e droplet concentration varies )

along the surface of a cylinder. ‘Then. based on comparisons between

the simple and complex model predictions for density, -the effcct.that
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various flow paranmeters have Qn thd density prefiictions will be

ahalyzed completely.

3.3.1 Mechanisms for Developing Porous Accretions.

The two ltochaqt}évnodclllwoto produced ﬁith G;sizo rnt1§ Dc/Dd
equal to 1000: a -cruighclin. model and a curved trajectory modsl. The
‘canco ition of droploci along the surfaca‘éf cﬁ;bcylindqr vas
calcula for each case and plotted in Figure 3.12. For conveniehce

the droplet concentration and density will be used incerchangably when

rofetence i{s made to the stochqatic models. The quaﬁtigy p/pbwis

P

nondhumioml an¢ is refers to the density nomlizedity‘th&

at the ltagnacion point

i

found to be true for'any D./D4. as will be sho y p tha qqxtdgect1¢ﬁdn,'ﬁé

To see why this is ‘so requires an explanation f“ w’ait tnciusion§;are
. . : - ' R

assumes iolloﬁing its impact on the accretiqP‘

droplets to rbnnin spherical on impact. Thgg?

doforuing, fion coalescing, and from fornif“

fact, egardles: of how droplets are pack
nablc packing facton,fot spheres in 35

Vlack.f&g8p);‘
: P,ackiri:g is 09 : ';‘hdi:e' wilél always be |

ey
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some. space created in the structure when droplets do not’ deform upon
. \
impact with the ‘structure.
- g = v
o » . o >$ Lo
. < : : « . } , N“,‘r
\,'3 3.2 Density Veriation S A

3

Having established how air is trapped inside a rime structure, e
Che .

§' is easy to explainohow the'shape of‘a‘collector.affects the

o

vconcentration,of droplets‘along‘its surfade.' As discovered in,Section-‘
3. 2. ’1, it is the impact angle a, ‘gf the approaching droplets that
determines the amount of shading along the entire surface of the

s structure. Ag increase in a results in the production of pxogreSSiVely i

AN

larger air inclusions,.because'of~droplet shading activitx_/ggth ‘the \
effect of reducing thq.density, along the surface of the cy<f;der.

Since the shading effect is minimal at the stagnation line the density
in its vicinity is the.greatest Rime feather growth at the edge of
thelaccretion'providesJmaximal-shading with the effect of IOWering the

gconcentratiOn of the droplets there
ke

- Although this explains the general decrease in- density'from the

L

jstsgnation line to the edge of the accretion on a cylinder, it should

,-be noted tﬁ%t the dependencegof density on a applies to all types of

TJ"

collectors. ~Regard1ess of the shapr of the collector, the density is

I3

expected to be- relatively low in regions where a is relatively high‘

The converse is "also true. A glance at Figure 3. 6 for instance, shows‘

124

& :
. model automatically produces a density variation because droplets

\"this to: be valid for 4€r§;bA 0012 airfoil . Ther fore a stochastic K

\ remain spherical upon.impact and the shape of the collector is su¢h -

that a varies along its. surface
- o

LU
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3 3. 3 Influence of Flow Parameters on Density .7 ‘,, LN

An analysis of the density predictions from each type of

stochastic model is essential to point out the differences between the

simple and complex models. " From Figure 312, it 1is apparent that the
: density in the straightline model iSPrelatively constant along. the .

: qurface of the cylinder from the stagnation line to an angular position

/

x

of about 20, Thereafter the density :ﬁcreases to zero at the edge of

the %ccretion' The density variation predicted by the curved : - A

trajectory model, however, shows that the rate of change of density was

]
greater than that produced by the-sim:fe model. To observe*if D /Dd )

had an effect on the difference in ‘the rate of density change betyéen ‘

/
the two models both models were subjected to three different size

‘ratios and*their resulting density p edictions are shown in Figures
: N
3.13<a), 3. 14(&), and 3.15(a). ./ . £
[ ' ‘
In general both model density prqdictions were similar with one

. LS
it

another when accretions were built with relatively low Dc/Dd such as

s |

508. With 1arger size ratios, the difference in the rate. of change of

t ;

/Kdensity between the.two models increased.v The implication of these
"results is that the mannervin which theddeposit was formed in both

\ models was similar when~accretion droplets are relatively large. Large

droplets have . large inertia and their trajectories would approach
o SR TR T )
straight lines when the inertia paraméter is large enough

On the other hand when dealing with relatively small droplets

the effect of trajectory curvature cnmes into play The droplet impacti

»

angle a is high at 6_ m’ where shading is maximal and density is minimal

In both stochasticvmodels, the density decre:ses from\a~max£mum,at che

L -‘ff"

: stagnation line to a minimum'at - Because the trejectofy of’smaller"

2 YO
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l:; trajectory model, compered to. that in*the simple model Thus, at a.
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]

droplets has a tendency to lower the #,, the local density of the
resulting deposit decreases to a minimum value over a shorter surface
area on the cylinder, as compared to the reletively.lerger surfece area

in a straightline model on which to build the accretion. This gives

-

rise to a larger rate of change of density along the surface of a

cylinder in the curved trajectory model.
If one compared p/p, from a straightline model with thit of a
‘curved trajectory model, at a position 8/0y, however, the discrepancies .

between the model predictions would appear to be reduced. "This
: ‘ »
-~

’ observation is clear in Figures 3.13(b), 3. la(b); and 3.15(b) which are

o

reproductions of the results from the (a) portion of the respective

figures, only this time, the non-dimensional densities were plotted

against 4/0_. :
g‘ . /0 | t .
Although the (b) portion of Figures 3.13 to 3.15 show that the

discrepancies in the density predictions .between each model were less
@
the dénsities from the complex model were, again, relatively loyer than

W

those of the simple model. This suggests that the structure;produced
withqurved.trejectories is; in general, more porous than‘thatiproduced
with straight trajectories;' This assumption appears to be’valid_gﬁé; a
Dc/b; greater than 508. ‘In‘these cases, it is suspected that the v
‘curvatureﬁof the trajectoried in the complex modél was sufficient to

result in relatively heavy shadin..activity onggreas on the surface of

’ y;e 4, ;i
the Cylinder close to the sﬁagna‘%ggﬂline 2
_create open ‘structures closer to tﬁ sta-“a> 1 .ﬁn the curY?d v

Ctee e e 1

tendency to

°
'fgiven pasition 0/0 on the cylinder . the density is expected to be

. ) 0“ oo -
loyer in the complex mog}l. ‘ : N S : }}”"f

[ i . ) : . I R
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dIn'the’Eise whgre.b;/Dd wss“equal to 508, both model predictions

in Figure 3.13(b) appear to coihcide. Since the‘simple’model (K - w)'

is an ertreme’case of the curved trajectory model. it was.expected that

if x_ﬁa. lsrge'enough. both models’ accretions would~he similsr.

bFigure 3;13(h) confirms that when the droplets’ inertie exceeds a

certein value, yet unknown, droplets follow approximately straight

_‘lines. Thorefore D;/Dd has an effect on the discrepancies Qetween the

two types of stochastic model in terms of density predictions. The

disagredments, howeper; vanish for situations where 5C/Dd"is less than

about-508. _ , ‘ .
The discrepancies are reduced further when one plots p/p;&eéainst -

a. . Figure’3.l6 shows that both modellpredictions for the case with |

D./Dyq = 1396 were similar. The plot suggests that the local droplet

cdncentrition depends on the local dropltt(fhading activity, given by ’:

Ca. ) ' N '

) A second element that could have an effect on the density

. predictions is the type of droplet spectrum assumed in the models//vIn

'vthis study. ‘a monodisperse droplet spectrum was: utilized To‘

=investtga$n whether a variable size droplet spectrum has ‘an effect on

" the density predtcti%aa. a 2-D straightline model was produced ithH: ﬁn:’

L{droplets of variable q}ze The‘MVD was 27.2 pm. N The density <

%

'_*droplet spectrum. iﬁsFigure 3 1

”?

vsriable sized and monodisperse droplets respectively " Although the

'L
effects of a rqsl droplet spectrum were observed for only one case; the
:figure indiqates thst the application of a monodisperse droplet ‘
: . & S
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MODEL TYPE
® = Straightline
. 6= Curved trajectory |

1.00
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| 'b‘/pv.,
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D4 ;-,‘-‘18.2 um
T, =-15°C
U; =10 ms™

= D, = 254 mm -
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Figure 3.16 Model predictions of p/p, versus a for test A fromf'l‘able 3.1.
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® =Monodisperse droplet spectrum
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Figure 3.17 Effect of a variable droplet spectrum on the density
predictions by a stragitline model. D./Dy = 934.
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spectrum does not have a significant effect on the density predictions
from a simple model Unfortmnately, nothing could be concluded about
the complex model, because a curved trajectory model produced with
drOplets ggving different gize is not availqble

The third ‘and final factor that has an influence on the
stochastic model’s predictions for ;ensity is the 2-D nature of the
dccretions Nshetefore, it would be useful to observe the behaviour of
the simple moéel in three dimensions. In one example, a 3-D accretion
was produced and the density analysis was confined to a 3-D annular
region on the surface of a'cylinder. The thickneqs of the region was
20Dd; and the depth was SQd. All sectors were sgain 5°-sectors, and
D./D4 was 1000. .The density predictions from the 3-D model, along with
those from the 2-D model, are;plotted in Figure 3.18. ‘It was found
that . the packing factor at the stagnation line was 0.2 iﬂd 0.4 in the
3-D and 2-D accretions respectively. There was no apparent reason for
this disctepancy, but the figure. shows that the variation in density
along the cylinder surface was similar in the two cases. " The B
implication of these“tmo findings is that it would suffice to create
2-D model accretions to obtsin correlations for dcnsity that would be
representative of the 3-D case. Although the 2-D and 3-D models could
produ¢e similar correlations for dengity} the 2-D model should be used.
with a precaution: the 2-D model generally overpredicts the absolute
density of a 3-D case by a factor of‘about'two.

Unfortunatelj, due to the extensive calculations involved,‘a 3-D

. curved trajectory model is not available. Also, a'graphical

presentation of a 3-D straightline accretion could not be produced withh

the existing computer fécility.

)
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Figure 3.18 Comparison of density predictions from a 2-D model wlt:h

those from a 3-D model

.D./Dy = 1000,
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Pursuit of the stochastic appro;ch‘io thé‘ﬁodnlling of rime fcing
has provided an avenue for obtaining a loénl &enolty prediction.
Uniiﬂe previous icing models, the density predictipn in a stochastic
model is arrived at without fecourse~to empirical correlations. The .:-
next step is to investigate the accuracy oé the prgdiéqiohs by
comparison‘wich some exﬁogimegtal results. Before this could be

accomplished, however, the experimental technidue should be outlinedi

This will be provided-in the following chapter. ////



4, EXPERIMENTAL INVESTIGATION

-~

4.1 !xpitiﬁ’ntal Apparatus and Technique

Expo;inanAI'no‘lurcmcnci of rime feather growth angles and loégl
ice d.qgitiol oﬁ ice samples are noedeq to verify the predictions by
the ltogh?IC1c'n9dll;. A fnciii:y for producing rime ice'samples on
cylinders ;nd a technique . for measuring lo;al ice densities is | |
’ i -

essential to further our present research. The current section will

outline the equipment and techniques required for, the production and
preparation of ice samples for‘the-measurement of local 1ce>den51§;;:
and rime feather growth angles. " | ~

| The simulation ?f atmospheric rime icing on structures is carried
out in the FROST ! tunnél at the Depart:men:: of Mephzic.al Engineering
at the University of Albozfa. * The closed-loop icing wind tunnel
providés an environment %n which the four basic icing parameters of
win&apced. air temperature, liquid water cbntgnt, and the water d;éplet
spoctrum:qﬁn be conqrolled.' Figure 4.1 shows a layout of the facility
vil;ustrating the essential components. )

Air movement inside the tunnel is produced.by a fan lécéted.

dﬁﬁnstream from the test section. The airspeed is controlled by
.aBJUIﬁing a set of yaneé situated immediately downstream from the fan.

“ From the fan, the air circulates past a heat exchanger and through the

spyi&:bar section, There, the air carries thghwater droplets from ‘the -
sprair through a cogcti and into the test section, where a 'cytfndér ;
issyoupted horizon yﬁ The af then returns £o the fan and ancthéf;l7'

1 Acronyn for the Facility for Ressarch on Solidification and Thawing.
- Acrouy | eseaxch on 1ing
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) cycle boginsr o . :‘i Co o o
- The tunnelﬂis instrumented to measure several icing parameters A |

. K/elded copper constantan thermocouple is placed in the test section

_end a control system is set up to’ regulate the air temperature to
’within 1 °C at large syst;m loads i.e. high air speeds, low’ﬂ_‘f:‘ -
.;temperatures, ahe refrigeration unit has the capacity to bring the air -
ftemPerature to as~low as -15 °C e - o fi* ?
b A spray bar fﬂ‘located up;tream from the contraction and consists

e B ' - . ~

of a pneumatic nozzle which\atomizes the water flowing through the

: nd&glegtb produce water droplets The droplet spectrum of the spfay is-
2 . N
> fed using an oil slide technique from which the median volume

diame’ rs(MVD) can be‘calculated. Thedtechnique involves a'brief
A l,, - . Coa ; . -
‘ g»introduction of a glass slide coated'wkthﬂoil into'theitest sectidn”

of about.200 droplets from the airstream After

,:to collect a samp'
taking a phot‘ raph of the slide containing the water droplets,lthe’

droplet si,es can- be measured from the projection of the developed film L

. : -

- ohto,a screen A. dibplet spe)trum could then be obtained whereby the

«

';MVD could be c!lculated o *,:';'l‘:; ;gf A ‘Vf'. P - ,i'

f-,. The‘tunﬂ!; is also instrumented with ‘a manometer to measure the,‘

[N

,.gf/ksure change through the conttaction : The measurement is -

Sdonvoniently converted into a velocity reading usfng Bernoulli s .
'11

3equatibn~ A maximum airspeed of 60 m/s.is attainable in the/testb

section ‘v s lxri'i}%' : o:”v; = R 5 : -é

U ’ ’ ' |

e -
Fq; the foathoq,growth‘angle a?d logal ice density tests the flowV:
Q'conditions were set—in\pkrange én which iié%*feqtﬂprs can gPow For ll?%;,

1‘_oxomple, if a f 54 Qiameter cylihder i!Fthe substrate the MVD and d-

.‘;windopeed=must not ep&i‘dfao microns and 30 m/s respectively This,yas._
: \ | ST IR e



determined“by trial and error. Also. the air temperaturé should be

:below 0 °C to promote dry growth

D s

Measuring growth angles require minimal equipment » Basic ly' ice
o e
is grown on a cylinder Following ‘the test, a ci‘oss sqo)ouav \“\’kp 1,
Y

. __‘,,-'/

’ photogragh of the accretion is taken and developed From the prin‘ts,‘

the rime jEeather growth angles can be measured

A few more essential pieces of equipment are needed for the »

e ,"

.‘, measurement of local ice densities ml?‘ollowfl.ng the accretion of an ice

n

‘ sample on a cylinder the sample is separated from the cy‘linder and a

S Yy

thin cross- sectional slice is required for use with X rays. A coarse :
il

thickness of the slice is obtained with a band saw, but ¥hqp utilizing ' '

an Xaray teg'w%*}:to n&&a*@ﬁe yariation inlﬂdcal ice density" ic is

: important thar’ the ice thi!kness remains co,nstan!: | This is obtained '

with a- sledge microtome which is -a precision mechanical instrument

that may be ‘used for shaving an ice slice down to a uniform thickness
Plate 4. 1 shows the type that was used in the experiments vThe '

‘microtoming procedure is ‘accomplished first by gluing .one side of a,
.

thin ice slice onto a flat plat>é The plate is® then mounted in a .' -
v1ce like clamp, and the specimen is sha\% by movin;-g the helder et
: s “
: assembly acroés a- stationary knife repetitively The microtoang

NG : <

technique ‘is straightforward,\ but a careful choice of the glue‘"t&péﬁ* "5‘@—\

» . : f \ ,& .'”." s

= 1',:the plate material the operating room temperature (',he th &k
. , A‘ . : \' : “"

,“of the- ice to be removed in -aach cycle will determine the Verall:

o success in microtomi& an ice sample to the required* thickness After
_',\ e

exPerimenting with different types of glue. it vas found that bond#fast

e e

: white gltjxe e}‘xibited excellent bonding characteristics when used w,ith

"'v"'x“an aluminum plate in an environment of 12 'C - the glue did not: soak

‘l
]

”.
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n

into the ice structure
After securing an ice sample onto a plate, a preset thickness of

up to’ 40+ um could be removed from the ice surface each time the holder

assembly 1s moved across the knife - The duration-pfrthe shaving

,process would be reduced when reLatively thick sections are removed
" 9' t . o N

' but it was found that the adhesive forces provided by the’,lue was able.

to sustain the . forc;ﬂk};;m the cutting‘action only when 1ess than 10. N
£ m o g e ' .

’microns is removed p&g ﬁ»‘ting cycle

Then ;he bond -etwéen the- glue and the plate is’ weakened t%kseparate
the slice from the plate Then, the‘remaining side of the sf%ce 'was
thenvkhaved~until the overail thickness'reached'l'mm Finally, the
thin slice was separated from the. plate by manually chipping the glue
. from the plate with a raZOn blade *
At this time, it is important to note that‘in order to oblﬁin
"local" ice densities ‘it would be appropriate to minimize the ice’ % .
‘thickness. .lhereforefthe,sample.shou?d be‘microtomed to as thin a
'slice as possible, . With‘rime ice> howe;er the minimum attainablef q
tgﬁgkness was found to be about 1 mm before the normal forces from the f
cutting action could initiateha crack within the weak' ice sample “,
| 7~

JFollowing the microtoming procedure, the rime ice slice is ready to be

X-rayed, v . ST 2 S ‘

4.2 Heasurement of Local Ice Density ST :, B
N e : SRRy . Y
The local ice densities within an ice Tample were measured by

transmitting an X-ray beam through the ice structufe end onto a film

Ty S



Ty ‘ - “ ‘ . ‘

v
t

Tha principlo behindr'ti\e techniqne is that the reduction in intensity
of the original beam ia dependent on the variation in abaotptivity

within the samplo, which ould bo related to the varia’tion in local ice :

:'demi'@ 3 | - -

.
.
. " .. . .
A}

5y 'i'he x-r;y unit used in the “”experimentp consisted 'of a - oo B
B Kri!talipflex 2H generator, a cooling unit and the X- -ray tube itself.
A
: ‘I'he gener‘tot‘ l}&h ;:ati‘ng of 60kv and the cooling unit is énnec‘ed

5 &
‘to the X- ray tu.be t tract as much heat from the anode as posiible
A '# . O
The X- ray unit in shown in Plate 4.2 #ﬂ\e penetration of an X-ray
~

e
beam, generated at 60kv with a tuw curreﬂt of 10mg, and exposed for 9
seconda through a 1 mm ‘fce sample, placed on an X- ray filmﬁo cm, from
vthe focus. wag found to produce ,op_t_imum rad\iograpbic qqality. Since '

the denait‘y‘ of ice is similar to"that,‘of' the human tissue, t-hera"gy Tl
] .
verification film, which was used successfully in mammography, wag N

]

vappropriate for the present study ’ ,

A 30 X 0 X 72 cm wooden box lined @ich 3 ‘qm lead on the interior
’we; uh/aDtO enclose the 5{ ray tube, the film, and"::he ice. sample, “to
i protect ‘the. Operator,and toskeep the film from exposure to light

Also, without the box. scettered radiation from nearby objects may :
'lvroachthe film' P | “ o, . ’ : bR
The X-ray 5 an ice sample produces a lafent image ‘on the film
ﬁhio; whon developed, showa up as a variation in film darkr{ess b A IR

\ .
;hicro%tometer is an opticalx deviée consisting of a light beam that o

traverses across a radiogreph end plots its film density The type v

L

- ,'used in the study 'ie shovn in Plate &. & The basic principle of o

A

opc’ration of a micttdonsitometer is basged on a tme dbuble-beam light

. ! 0
*  system, in ‘which wmbem»: from a single, 1ight»pource taro switched

R B . .
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Co sltermtely to a single ph%top\iltipliet. One beem passes through the

S ':)1
" 1m while the other is ‘used as a reference If the two beem are of

di.fferem;° intensity. .8 signal is produced by “the phetomultiplier

P we

e&er emplffication causes a servomotor to mo\n ‘an opticel

.
'»m"‘"

) attenuetor to which a direct writing pen is emsﬂ"ched so ? to reduce _
o g L P S SR
¢ the intensity differénce to - zero. 'l'henp poﬂ‘ition of ‘the optical )
; L '

attem.xator records the film c'stty of any eree on the rediogreph
film density is an average ‘value for the darkness of an effective -
‘mre‘on the film. A smaller effective illumineted aree

’ 1
4 in a better approximation for local film density.

fllumine:

. Prodi (19_7_0) showed that the 'local ice densities coufd be o te_ined

‘from a dens'itome?r trace by using the following fomula,
- ‘ 7 : : : ‘

A

- 3 . Do - Db . s - C‘;
v‘ ph«- pi — - . (4.2-1) ‘
S "D, - D, " . - . o : "

where, " .. . ® :‘ -

p = reference ice density .
= local ice density in test sample
/313 film density -in reference ice .sample
Db = local film density in test sample
'= backgrouhd film density ‘

A

- *
s

Figure 4.2%{1lustrates the ty'picel areas on a rediogragh through

which a densitometer beam would traverse. ~ The accompanying density T

N plot is algo shown in the figure. If the densitometer is calibrated to ,
provide film densities directly on.-the plot, then Prodi's formul'ation

can be used to calculate local ice densities for any point on the .-

images in the radiogtagh - Because there is a linear verietion between
{

the densitometer s pen diSplacement (X's in the figure) Qnd the film-

X )
density, the calib*retiou technique is streightforwetd m;l is as " *
,follows. Eirstlyv. a reference ice sample of known demity,' "i;' was be

[y
K
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Figure 4.2 Variationgf film density with position on the film. The
pen displatement is proportional to the fil!n darkness.
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' measuring local ice densities., ' e

SN

placed on the film, ne;t to the rime ice sample. Aﬂux-ray is taken to

»

produce two images, as shown in Figure 4.2. ®Then, as the densitometer \“

beam

:i;ses throuhh the image corresponding to the reference sample,
the ped will move a distance of (X, - X,). After performing this

calibration, an'alternate exptession,

\ S
X - X o e
0 R . .
. PhTry . : (4.2.2),
: X, - X, I ~
[
is used to calculate local ice densities In. fact the traces could be
,”‘i P
inverted and an ahsolute ice density scale could be gonstructed based

<

on (X, - X, ) = py. This practice was used in the ex?eriments when

4.3 Expetime%tal Procedure | .

-~

In ‘the firgt of two sets of experiments carried out in the prasent,‘
N\ -

study, the growth direitions of rime feathers wgre measured from .

accrétions formed on a 2 54 cm diameter cylinder Three different =

drOplet size distributions with median volume diameters of

approximately 20,30, and 40 um and three windspeeds of 10, 20, and 30

m/s were used to run thetests. The nine different combinations of

airspeed and spray represented the range of the FROST’tunnei conditions

in which rime couldﬁgnou. Air temperature in the test section was kept

at -15 °C, and the duration of each test was in the range of 10 to 45

minutes. The-sole criteria for the test duration was that the ,rime
#

feathers must appear clearly distinguishable in the viewfinder of the

\
Nikon.camera. et - ' . . . j. S
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Following each test, a picture of the cross section of the

4

78

aceretion Vee'teken end when the experiment was completed, the ..11 of

bleck end white filn wvas developed. -A princ of eech aécretien was made

on whieh the gﬁarth angles of\che rime feathers were measured
P
Predfctions from the two stochastic models at the experimental

. . 2y v

cénditions end_the growth angle of.@he twp-dimens;onal rime feathers

~

 were obtained. . o U v ’
. A second sat of experirents was co.ndu’»ich the local ice
- ' x Rt ‘

;densitiee were to he meesureg%pn fifteen rime*ice samples colleCtaﬁ on

1

-

)

a 2.54 cm diameter c¢ylinder. Unfortunacely, onlysfive samples suryived
P . ‘“Qt“‘“' »,cr’r" h'ad W

the microtoming procedure without cracking. Thege semples were

produced under tunnel condiﬁions.listed in Table 4.1. The reference

/

133 semple howevet -was accreted under wet icing conditions in order

to forn ice having a uniform, but high density. The density of the

reference sample was measured to be 900 kg/m using the ‘ol

IS

displacement technique whereby the sample was first Weighed and its
. X.

4
volume was determidedqﬁy the amount of oil that was displaced;. The

error in the me&sﬁreneht'Was estimated to be 20 kg/mS.

Voo

‘Each rime icing test was'comﬁleged vhen the accretioh attained

‘size that was ¢ ible with the X}tey technique, Typically, a

’Hiﬁimumtsta fon line ice thickness of about 2.54 cm is required t
‘ L

// produce ax iographic
measuxem' ts with a microdensitometer At the c?npietiOQ of each te
‘the ic' sample was separated from the cylinder ‘and stored in a room

where the opereting tempereture was -12 *C. Im the cold»room the r
[ Y

end reference '{ce slices were microtomed to a uniforn thickness of 1

[

The next phase of the experiment consisted ’f?plecmg a rine

» ; ' : L Or

a-

o]

image large enough on which to ﬁhrform density

st,

?
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Table 4.1 FROST tunne

79

;m‘&‘ ° . . -
conditions at which ice samples were produced

on a cylinder {dr local ice density measurements.

] . [y
%
Test # : Dd (pm)
1 17.1
2 @‘ 17;0
3 18.4
4 25.0
, rd
5 s 1 ‘7
» \ 8 “A

.

Uo (m/s)  Ta (°6)

20

“ 20
10

10 ,

30

-10

-10

-14
N

l“‘,";
\é.ll;’
-~
24 *
P, (N/n)
100,000 '
100,000, -
AT T
100,000 o
. .

o

15, -7 100,000 s .

-10

7’“19.0"‘, 000, N
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- sample beside a _ro!oron‘b- ice sample on sn X-ray film and ox’n

- N

fo an x-x;'ny*bun. In setting up the X- rcy technique, the two M

lixﬁ:ln vers placed flulh on a 10 by 12.5 cm t:hnrapy verification £1ilm
which was cont.inod in a wbodun tray used for handling purposu Tha an

- tray wu placed on the floor of the lead box 60 cm from t:he mOde mﬂ

!

o

&n *—g«nition such that when the X-ray bum is applied it would be

mdicuhr ‘to thé plma of the-samples And the -hut of £f11m. This

o

ucup ic shﬂ\m in Plsta 4, 4

'l'ho nnplu were 1rr¢diated wich an x~ray beam gbneratad at 60kv
L

‘and- 10!! -ior: 9 uconds Following t:he exposure, t:he X-ray filvas
dnvcloped nnd thn radiognph cons*st:ing of two imlges was clipped v
onto (‘k spccifen table of the nicromfouter wh;re the local film -
densities could be nu:ured s '

A beam of light scans the x-ray imagea along a straight line path.

. _and tho effccciva illunimted am thcr film was a 0.2 mm dilmeter

\

i

- »

Ly
light spot. I-‘oz the. rime smplo, the area on its image representing

the area on the smple closest ga the cylinder surface was exmined by

tpc light bom.. fl'hiu pmidod an sppro imat

Lﬂ. . '\g.

} f‘
- demicies g]&ing th suffdce *of phe cyllndet

.’ AN . x

for t:he local' 1ce
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5 l Rime Feathers ‘-)‘,j'17; R E

W

In Chapter 3 the stochastic model predictions of rime feather

4
FR N
.

growth for Several arbitrary collector $eometries were examined The

LA '.'"m“

‘1 1moﬁe1 was found to be useful in estimat}ng the growth angle of the

o-

feathers\which were produced on cylindrical structures under various

v

3‘flow conditidns Although ther&.was no doubt -the model was capable:of

produCing feathers én structures of arbitrary shape there‘was concern

'over the accuracy of the model predictions of feather growth angles

A\

In this secthh the flow conditidﬁs under which rime feathers grow in‘

o

' the real world, will be»distussed Then, the model predictions of .

\vov“

Chapter 3 will be compared with growth angle measurements obtained from
“»

PR

e
nine ice accretiOns produced in an icing wind tunnel. Any

- discrepanc1es between predicted and actual growth angles will be

’ explained in terms of the assumptions made in the models

v

o Before making any, growth'angle comparisons let us discuss a major‘

assumption,made in the stochastic'models droplets remain spherical
¢

upon impact This has enabled the models to produce feathers on

-

cylindrical structures under any flow condition op ice accretions

Vv

howavern'rime feathers develop only when droplets freeze individually,

w1th minimal deformation following impact with a surface This was

concluded by Macklin (196?) who has used the quantity (-rv /T ) as

indicator of the tendency of droplets to freeze together as sphe;
The parameters were pxeviously defined in Section 2. 3 Basically, in

.flthconditionsvwhere (frvo/Ts)'is relatively low, less,than ten;

82
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1,

'Macklin (1962) obaerreh that/dropletq-tended to freeze,spheriéally‘on‘a

.

surface, with 1ittle deformﬁtion At the other extreme with (-rv /T )

greater than about fifty,vdroplets ‘tend to coalesce splash and rq‘..

‘
t PR

" back along the SUrface of the ice deposit There was a smooth -

°

plates and, Table 5. l. one would note that although there was

Y

transition in structural\ice appearance from the white, distinctive

(e

t ! E

rime feather growth at low ( T /T ), to the. grey, clear and"

'

featherless ice. deposit, at ‘high ( rv, /T ) It is not known precisely
. ‘ ‘
what value for (ttv /T ) is the dividing 1ine between droplets freezing

individually and droplets coalescing, but it is estimated ta he. around

ten»(Macklin 1962) /v , iﬁ‘ . R
/ ~ e ® '

To obsefve whether (-rv o/Tg) could be related to the general

- ,‘,

appearpnce,of accretions pro u&ed in the FROST\tunnel (-rv /Ts) was

calculated for each of the ni‘e/fiow conditions of Table 3 2, ‘The‘:
/ . S A
results are tabulated in Table S l The v, ‘was calculated by,_first

obtainin§ the normalized impact Velocity at the stagnation pQX*t Vl'

b
» A . N

from the curves of L & B (Figure 3. 3(c)) Then Vl was multiplied.to

'»UJL The mean" surface ?emperature was calculated from the model of

/

.Lozowski et al (1983) Plates 5.1 to" 5.3 illustrate the i

- ¢

& L
-i\cross-sections of'the accretions‘grown in_the tunnel From these
yA .

/

[}

r&me feather development in each case the feathers were more whitish

ani discrete‘when'(-rp’/T ) was less than“abOut ten (Plates,S.l(a) and -
(b)

'5.2(a), and 5. 3(a)) similar to. Macklin’s findings" As (-Tv /T )
increased the accretions were feathery near the edges of the accretion
but %reyish near the stagnation;poiht (Plates 5. l(c) and 5 2(b)) In‘v

factﬂ the fedthers appeared gpeyish and were not clearly defined for

\

'valuea of (-rvo/ls) greater thanpfifteen (Plates 5f2(c), S.3(b),‘an

\ . ,-‘]l ‘ i R /vo

v
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,Table 5.1 | Calculation of (-rvo/T;)‘ét varioﬁs flow condvi_t'ions.

1

(
p.\ ! A, . ———
' ' . s
. SN |
: o N ) ’ o A ‘_ , ¥
FROST TUNNEL CONDITIONS L MACKLIN
Test Dy U, T, P, D./Dy K P, T, T, v /T
. “ >\\‘ . B N » ) ” i
" 2/ Y e pmems”
# 0 (um) - (°C) (N/m%) ~ | - o e '
i3 S . ,/ ‘ S -

. C
A 18.2 10 -is 1E0s 13% 0.9 240 07 "3.7 -12.9 -10.5 4.6
B 2?.2e\10~ -15 1E05 934 1.9 20 ofs7 5.7 8.6 0.9 6.8
C 36.9 ‘10 -15 1E0S 688 3.6 260 0.70 7.0 -6.3 ,o;o 92
D 17.4 20 -15 1EO5 1460 1.6 480 0.50 10.0 -12.4 9.4 8.7
E 30.3 20 -15 1EOS _538 4.8 480 0.74.14.8 -6.6 |

F 36.;\\50\\715 1E05 698 6.9 480 0.79'15;8 <4.5

G 17.7 30 -15 1E05 1435 2.5 720 0,61 18.3 -12.4
H 27.3 30 -15 1E05S 930 5.9 720 0.75 22.5 -6.2 0.0 ~ 20,4

I 32.4 30 -15 1EO05 784 8.3 720 0.80 24.0 4.8 0.0 2.3
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Plate 5.1 Crosg-sections of i_c‘e’acéret»ionsd pfoduce,d'a; U, = 10 m/s and
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v . (b)'MVD = 30.3 m

(c) MVD = 36.4 pm S
Plate 5.2 Cross-sections of ice accretions produce\ci‘a,t U, = 20 m/s and-

T, = -15 °C. .




(c) MVD = 32.4 pm

Plate 5.3 Cross-sections of ice accretions produced at U,

T, = -15 °C.

= 30 m/s and



5.3(c)),. Table 5.1 also shows that w;c icing occurred at the
stagnation point (T, = 0 °C) in five cases. In these éh-.-. partial |-
coa;escence 6f<dr9p1ets probably occurred with runback, and thus,
produced greyish feathers, fhspite;;f droplet spreading activity, the -
growth direccio; of the feathers was still noticeable. Therefore, to
assure f{hg f?achgr'growth. (-ruo<Ts) must be less thanlapout ten.
This could be accomplished by reducing the quantity rv, or decreasing
Tgt In either case, droplet deformation would be minimized, with
enhanced .spherical dropiet accretions. Consequently, open structures
of low density could be produced. |

At this time, it should be realized ;hat thé observations and
~(-rvo/Ts) valﬁes pre;enCeﬂ, thus far, were general anq pertain to the
.overall appearance of ﬁhe ice accretion on a cylinder. A more
appropriate quantity (-rvr/Tsu),‘applied to }ocai areas, could be
calculated for anywhere on the surface of tﬂe accretion. Low values of
(-rvr/Tsu) would represent favorable areas in théh rime feaﬁhers could

- develop. Here, v, is the nbrmal'component of the droplet's impact

veloéity, referred to as the local impact speed, and Tgu 1s the local

¢ and T are moderately low,

.surface temperature. In fegions where v
droplet spreading and/é;eezing time would be reduced.

‘ - The value f‘or‘,vr depends on the overal%ifloﬁ conditions. . Simple
fluid floﬁ theory (SﬁreeCer and Wylie, 1979)N§hows that as air flows
around a cylinder.‘the-air‘velocity increases. This tends to speed ﬁp
thebdroplet, increasing ifg velocity in the direction tapgent to its

trajectory. This also reduces the normal component of the impact speed

from v, at the stagnation point to some value v, at a point on the

Eylindef further downstream. Therefore, v, is minimal near the edges

L ]
3
~
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of any ice accumulation.
Thé surface timpera;ure Tgy» On the other hand. is also minimal

near the odgel of the accretion. There, the curvature of the droplec

t}ctajcctoriea is relatively high, and the trajectories are further apart

from one another, resulting in in‘

acts and preventing

@

coalescence of droplets. 'In additio f“;;

ajirstream than to the relatively warmer QCanation poin;?
factors enhance spherical droplet a;cretionsz -Therefo;é, since
(-rvr/Tsu).has>che lowest value in the vicinity of the.edges of the ice
accretion, if they develop at all, rime feathers would be expected to
grow there first. In fact, Plates 5.1 to 5.3 clearly illustrate that
rime feathers grow solely near the edges.

With the favorable conditions for the growth of rime f{gthers
established, the next step is to determine the accuracy of the model
predictions of growth aggles by comparing them with tho;e measured on
ice accretions. Th1§ comparison would aid in narrowing the set of flow
conditions under which the model could provide accurate predictions of
growth difections. From Secgion 3;2.2, the growth angle of the
feathers from the curved tréjectory model generally increases with
droplet inertia. Basically, as the droplet inertia increases, the

" droplets follow increasingly straighter trajectories, produciﬁg .
feathers with positive gfowth angles. The growth angles were extremely
 sensitive to the curvature of the cr#jectbries, provided the dropléts
\

\

remained spherical upon impact. -
In the experimental situation, the results are not as prédictable
becausp the droplet distribution consists of droplets of variable size,

and élthough droplgt-spréading was minimized by the‘belection of the
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#ppropriate flow cond}tions (-rv, /T, optimiied),tﬁe droplets will
always deform to a certdin degree. To’oblorvc the impact of these two
factors, the growth angles of rime feathers were measured on nine
different ice deposits ;nd tabulated, along with stochastic modol‘ v
pte&iétions,.in Table 5.2.

- From the table, one can immediately.see that the range of the rime
featﬁer}growtblangle measurements was relatively small in comparigpn
with' that ffom the curved trajectory model (-7° to 11° versus -27° to
ld's.v More importantly, the gtowth angle measﬁrements generally“have a
positive value. These observations suggest that the large droplets are
the main contributors to rime feather growth. Let us investigate
experimental tests A,D and G to explaip this.

In tests A and D, the smallet‘droplets (< 18 pm) in the sp8ctrum
have high angles of attack, y, but the droplets have low inertia (K <
6.95 and are easily-carried away by the a rstream. The larger
ldroplets, on the other hand, have more ingrtia and are able to resist a
change in direction - their paths could deviate from the pgth of the
airstream and collide with the icing object. So, the larg¥~&ro§1ets
from the spectrum would contribute more to the iciﬁg processon;ar the
edge of the accrftions in tests A and D. This is confirmed by.Table
5.2 results which show that the measured /  was greater than the
predicted ém when ;he inertia parameter, K,-wa; less than‘two. Because
these large droplets have a:m;ch lower angle of attack than those of 18
pm droplets (the MVD), it -is, then not surprising that the rime feathers
they form\tend to point away from the stagnation line (8°). |

As the windspeed increased, the smaller droplets, in the spectrum,

. \ have higher collision efficiencies and contribute more to the icing



del predic ions and rime feather growth angbpwqeasurements
\ degrees) at r‘ us flow conditions. Straightline and
| urved trajectory models were produced with 20,000 and
v 0,000 droplets respectively.
\\
\.‘
FROST TUNNEL CONDITIONS )//’/ERoth ANGLE, 6,
: , A
Test Dd Uy Ta Pa Dc/Dd K  MODEL TYPE ACTUAL Curved
2 , ~ Simple Curved Expt traj. Expt
# (um) (m(s) (°C) (N/m“) (F2°) (F2°) (F2°) model (¥1°)
A 18.2 10 -15 1EO5 1396 0.9 16 . -27 8 - 45.5 62
B 27.2 10 -15 1E05 934 1.9\ 25 -5 8 59.9 60
C 36.9 10 -15 1EO5 688 3.6 23 -1 8 68.7 64
D 17.4 20 -15 1E05 1460 1.6 15 -20 -3 -7 54.3 64
E 30.3 20 -15 1EOS 838 4.8 25 3 6.5 72.6 . 72
f
F 36.4 20 -15-  1EO5 698 6.9 23 13 11 . 76.7 72
G 17.7 30 -15 1EO5 1435 2.5 15 -10 -7 62.3 . 60
H 27.3 30 -15 1E05 930 5.9 25 14 5.5 74.7 68

I 32.4 30 -15 1EO5 784 8.3 20 9 11 . 78.3° 75
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:préco:l (to;c G}vtﬁﬁntéhu ones in é§i§§ A and D did.- Since cﬂoy have
_ high mglcf of attack, and they outnumber large droplets from the
spectrum, the small droplets make é?ro nﬁrfnco‘collilldna and form rime ,
"feathers with a relatively low angle of growth (-7°). This ciplninl
the de~resse of 5fo;th angle with windspeed when dealing with a droplet
spectrum with a feiatively‘low MVD (< 18 ﬁp):
Since a 14rg§ percentageiof smalf droplefs (< 18 um) céntriﬁute to
“the accretion process in test G, it is not surprising that, of the
thrag,testé (A.ﬂ, and G), ycaquremontl from test G were the closest to
the predicted value ( -7°.vs ;10', with an error of 2° in the
measurements). This is because, in this test, the curved trajectory
moﬁel aléoyassumed very small éroplets formed the aécretion (17.7 pm).
A second observation.from the eprrimentai results in Table 5.2 is
that, by keeping the windspeed constant and increasing the Hvai'che.
rime feathers grew at increasingly positive angles from the stagnatioﬁ
liﬁe. This is easy to see, because large droplets tend té follow
str#ighter trajectories: as explained in Section 3.2.2.
Contrary to observationsffrom tests A,D,and G, experimental tests
jC,F,and I show that as the windspeed increases, the rime feathers
point 1qpreasingly away from éhe stagnation iine. Possibly, when the
MVD is large enough (; 30 pm), the droplet inertia is such that
straight line Crajectoriés prevailed, -regardless.of the curwvature of
the SCIéamlinéé. As tests F and I shgw,'ehe best agreement between
model and experiment exists wpen d%bplet inertia is high. 1In test I,
‘even though the droplet inertia was the greatest of the nine cases, the

growth angle did not exceed 11°. ‘Perhaps,'this is because droplets

have difficulty reﬁaining spherical when impact speeds increase.
g .
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5.2 Local Tce Demsity
In Chapter 3, it vas shown that the a;ochaitic_rimo fcing models

produced -truccurc-j;f variable density. 'The sttu:£uro of ého‘cutvod
crujbcggty model accretion was found co'bo relatively more porous than
that forncd‘by the ltriightline nodal‘aé similar tlé; conditions. In
this section, the accuracy of tho’n:ochi;gig models and that of the
model of Bain and Gayet (1953), will be determined by comparing their
Lprudictionl with k-ray measurements of lqgal ice densities in ice

* aceretions produced in the FROST cunnel.' Thisranai;;is will lead to a

comparison of the stochastic models with experimental results from

Prodi (1985). Finally, based on model comparisons with experiment, a
i X k7 g

suitable empirical correlation for local ice density on a cylindtical

-~ .
*collector will be sought. .

5.2.1 Description of Model of Bain and Gayet .
The only previous attempt to model the dependence of local ice

+density with angular position on a fixed cylinder was*by Bain and Gayet

(1983). In their formulation, they proposed that the local ice denchy/.

p(8) could be represented as a mean value of the discrete densities
Tcontributqd by each of‘the droplet categories, from a real droplet
spectrum, weighted by the liquid water content of these droplets:
n

T pi(8) X G,(8) x £, X my
j-lj J' h| 3

p(8) -
n :
LGy(8) x £, xm
j=1 ] ‘J Js

. » ~ *
The droplet spectrum was assumed to be formed by n droplet categories,

each ch;racterized by a radius, rj, a liquid water mass per droplet,

-
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my, & local collection efficiency, GJ(O). and a number, tj.
representing the fraction of droplets 1q the spectrum con:iuting of the
jth size category. Now, pj(ﬂ) was calculated for each droploc‘ba:c;ory

-

and assumed to be, ,

| p3(0) = (g (/T (0) | |

which is ba‘ically’uuéklin‘a alluhption‘appliod to local regions on the
cylinder ;urface ; recalling, Macklin assumed the gulk ice density on a
Fotfcing cylinder was related to the parameter (-xv,/T,). in Bain and .
Gayet’s model, v,.(#) is the normal component of cge droplotriupnét. |
velocity, V(4), calculated at the angle 6. 1i.e. ur(O)‘¥ V(O)cos(a)}
where ¢ and g are as previously defi?od. One could see that v (4)
varies from v, = Vluw,;ac the lcagnntion4.o t, to O at the mn;imum'
impingement angle, 4 .’ in accordance with th;ory. ro:"ihy j: GJ(O) and
the normaliz@d impact velocity at the stagnation point,lvl, gould be’
obtained from tEE‘curves of Langmuir and Blodgett (1946);‘ The local
surface temperature, Tsu(a), ;nd fj could be determined from the model
; of Lozowski et al. (1983) and from the droplet spectrum respéccively.
When rJvr(D)/¥su(0) was less than 10, Bain and Gayet usedvuacklin's

L

equation,

p = 110(-rvr/Tsu)0'76 kg/m3

2

to obtain-pj(O); otherwise, a different expression for pJ(a) was
employed:

p = 1000(-rv /Ty, )/(-Tv /Ty, + 5.61) kg/m>
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'uﬁytests Also the radial distances of these measurements ranged from YL

P

5 2 2 Hodel Predictions Versus Experiment ;d‘_ hf:.mﬁ“‘.' ;ﬁ”\ﬂ,m;}hf“:

‘4.' "/,. v .

ln the experimental tests local ice densities were measured*

C , .

Successfully from five different ice samples The accretions are.shown '

.

in Plates 5, 4 end 5 5 The microdensitometer traces ere provided in

e

Figures 5. l(a) to (e),'along with the respective pictures of the

”‘radiographs with the path of the densitometer beam illustrated ! The

‘*calibration technique outline in Section 4 2 was perfomed to produce an

! absolute ice density scale for direct density read off. The reference

*

iCe density\( 900 *. 20 kg/m Y was-the standard density used in the L

e

calibretion ,'3,i vf”;'”,_‘ '}{ufilf 7 .

Local ice densities from each test were obtained from Figure 5. 1
end plotted elong with hodel preaictions in Figures S 2(a) to (e)

Before analyzing these plots there are several items Wbrthy ‘of note

Lt _v E TR X o3

vFirstly, the area oi‘exami ation on the X- ray images of the thin ice.

','n“x.’ 'f-"ﬂ“_'_\ﬁ o o

ﬁslices were slightly away from the cylinder surface, and ‘the

Y

‘densitometer scan was in a linear direction, this limits the range of

’ ‘.,;' . hn’

‘h30° from the stagnation line approximately half of 0 in some of thg_"f‘

2 8 cm to 3 2 cm. from the center of the cylind,er as’ Figure 5 3 o .

LY

‘4indicates Secondly, the experimental densities in Figure 5 2 are,

:fj'averaged val“es’;°btained by drawing smooth curves through the small

:vfluctuations in the traces from Figure 5 1 This is done because we4

K

;' lare interested in the general variation in dedsity along the surfacé of

v=the cylinder._ Ihirdly, due to the symmetric nature of the accretions 3-w

a

;.fdensity measurements from only half of the rime sample 1mage were used o

o

: iﬂ’for comparison With models ‘ This half is indicated on the traces by

RN '_ )

:'ﬂ;angular positions in which density measurqments were' obtained to only + Qe
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’ the letter A with an arrow Finally.'the edges of the rime sample .

v e

treces were omitted because they represent densities of ‘the ‘bondfast y

' 2

-

glue. These areee are located on the traces with theﬁletter B

: The three models were produced with a monodisperse spectrum For

i : N <

‘Bain and Gayet s model then the density formulation is reduced ‘to

&

: .'p(ﬂ) - pj(o) Figure 5. 2 shows that in the actual ice.accretions, the

-‘jsurface reaching a minimum value at ‘the accretlon edges. This result

the straightline model resylts.occurred in case #5. There, the ice

) 'maximum ice densityVis in the area of the stagnation p01nt

,Thereafter"the ice density generally decreases along the cylinder

3

e

. agrees with the type of density variations found in the models. In'

fact the five eXperimental results fall in the region bounded by the

model predictionsi The«reasons for this.will be explained shortly, but -

»the-results by’hain and Gayet should be excluded from théﬂremainder of

o

the discu;sion because they used density results from a rotating
g.cylinder and applied them in their formulation for localﬁice denSLty
. One would expect the density of the»accretion on a rotating cylinder‘to

) be*uniform,since the droplets are distributed uniformly over the entire

icing'surface.'sTherefore, Bain and Gayet's predictions represent-

Prabl s o

averaged values and should hot be used for further comparison in this

: study.‘ Therefore only the stochastic model predictlons will be

¥
compared with the experimental results '

o

Figure 5,2*shows that the closest agreement between experiment and
: ex i ‘ e o

density wé?ﬂuniform along the cylinder surface, up to ﬁ/gm equal to

>

.ebout 0. 3 before declining As mentioned earf&ﬂr the surface of the

7/

ylinder near the stagnation point is approximately normal to the
trajectories‘(a = 0 b) in a straightlinepmodel. The collection of

S
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droplets on such ausuffﬂﬁe'is ‘analogous to the accretion of droplets on
a vertical flat plate - minimal dgo%}et ahading activity occurs and the
resulting accretion density is expected to be uniform In the actual .

ice accretions, when the icing is dry, the uniform density results from
droplet spreading‘activity near the.Stagnation point, provided the

impact velocity and local surface temperature are moderately low.

Sable 5.3 shows that the quantity -rv, /T  was quite high for case #5

(=32). Since the median volume radius,~r, and  he qtagnation point

[

temperature, T,, were relatively small and be »w g o respectively, it

fo] y

was the high impact speeds (v, = 19 m/s) of the #oplets that probably

- led to the occurence of droplet spreading upon-collision. _ﬁhen
droplets spfead,‘they have a tendency to fill nearby vacancies and

produce a relatively dense structure.

The deformation of droplets also occurred in case #4 but, unlike

" case #5, v, was relatively low (5.5 m/s). Table 5.3 clearly indicates

/]

v

T, was -1.3 °C. Wet icing conditions exist in areas where -the surface
. - .

‘temperature is about 0°C, resulting in partial water runback along the

icingbsurface. This has the effect of smearing droplets onto the - .
. i .
N _ .

surface, creating a dense ice structure, free from air entrapment. -

Therefore, in this case, uniform density in the vicinity:of'the

-

'stagnation point is the result of wet icing in that region

| An interesting case is that of number three (Figure 5. 2(c)) ‘where
' theiexperimentalvresults'are closely‘matched by the curved trajectory
model ptedictions. The ice density atfthe stagnation point was the

K lowest in. this case (~ 780. kg/m F 20 kg/m )y which was expected,

“BEQause -TY /T (6) was the lowest for this case, indicating minimel

dropibt spreading activity The v, (3.9 m/s) and MVD (18 um) vere also
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. Y
relativelyllow,‘énhancing spherical droplet accretions. Also,  the
small dropiegs-tend to follow the airstream. Since the physiés of the‘
accretion process resembled those in a curved trajectory model, it isi

not surprising. the modei provided a better agreement with experiment

’
'

than tbe straightliﬁe model did, for this test.
The remaining two cases iﬁ figure 5.2 are extremely 1nteré$t1ng,
beqause théré is ; fine liﬁe between the two. In case #1, the ice
density.was uniform near the stagnation point, but only up to 070m
about 0.2. The denségglin'hage #2, howé;er, decreaséd;stéadily as 8/6,,
" increased from zero. - Tabie 5.3 shows that rime icing prevailed in both
cases ( T, < 0°C.)fand their_-rvb/To values were much lower than those
of cases #4 aid #5. . The major Aifference Between cases #1 and #2 is .
their T, values. Hence, it appearé that the border iihg distinguishing
uniformband,nonuniform ice'density near the stagnation point 1ies in

]

the critical value for -rv,/T,,

which appears to be between eight and.
“~ fifteen and a half.
In an effort to confirm this, a combarisbn of model predictions
with three sets of experimenté by Prodi (1985) is presented in Figures
o | . ‘ .
5.4(a) to (c). These resul&§ are the only ones made available by
Prodi to date. The megn volume radius of the droplet spectrums were 15

pm, - and this was assumed to be the droplet size in the models. Because

-

§_ was not gvailable, 8/8_ was not calculated for each case. Inspite

m m
of this, the figurgs clearly débict that, whether the acfdal ice
density is uniform or ner near the stagnation point depends on the

/value of -rv /T,. Specifically, Figure 5.4 and Table 5.4 show that the

curved trajéctory'model provides good agreement with experiment in

conditions wherev'-rvo/To is less than about 6; otherwise, the
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Figure 5.4(a) Cémparison between Prodi’s results and the stochastic

models at test condition I from Table 5.4. o -
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models at test condition II from Table 5.4.

. 114

90



115

1.25

MODEL YTYPE
® =Straightline
‘-4 =Curved trajectory
+ =Prodi, 1985

1.00

0.75

p/b,

0.50

- 0.25

0.00

40 S50 60 70 80 90

0 10 20 30
| 6 (degrees)

’_,___’;___—-er-—’,i‘ ) . )
Figure ‘5.&(c) Comparison between Prodi’'s results and the&"gtochastic
' models at-test condftion III from Table 5.4.
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straightline model provides a better agreement.

Because the straightline model provides accurate predictions of
densicy variations in cases where -rua/To is greater than or equal to

6, it is useful to obtain a correlation for density for these flow
' ' |

conditions. In Figure 5.5, the simple model predictions, fqr three

different,Dc/Dd values, were fitted with the curve having the equation,

-

.‘,

p\ 76 - exp(4.20/0m)

Po 75

4

The coefficients of scatter iﬁ the vertical direction were 0.1, 0.06,
and 0.05 for q§ses with.Dc/Dd equal Fo 50?,‘1000, and 2540
regpectively. \The largest error (0.1) occurred in the case where Dc/Dd
WASvSOB. Th1§ c;rresponds to about 90 kg/m3 if p, was 900 kg/m3.‘ The
émpiriéal correlatién is expected to be valid only for DcéPd z 508,lin
which cases the a;sumption of spherical droplet accretions is most
likely. 1In cases #1,2,4, and 5 from the FROST tunnel experiments, and
III from Prodi, in the area where the ice density was measured to be
uniform (4/6, up to about 0.25), the straightline model predictioné
‘were not greaCeggtban.3% from the measured values.’ Thi§ corresponds to
an error of about 30 kg/m3; Tﬁe model predictions were off by as much
as 15% in soﬁe cases, as V/ﬂm increased to about 0.4 - an error of
aboutilaO kg/m3. With the above'corrélation, all that is required is

p,- Makkonen (1984) proposed that the following relationship could be

used to estimate Por
p = 0.378 + 0.425(logR) - 0.0823(logR)2 g/cm’

where,

R = -Tv,/Tg
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Figure 5.5 Curve fit for several straightline model predictions.
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All #araQoturn are defined as‘proviously. Table 5.5 showg kypical Py
values obtained with this equation for the 8 experimental cases. The
calculntod&valuou were significantly different from the measured
values, butrthe cticulaced densities were in the sam; proportion from
test to test as the measured densities were. .Perhaps the absolute
stagnation potgc density by Makkonen is an Avexaged value, because it
was Bbcgined<f£oﬁ experiments with a rotating cylinder. -

In conditipﬁq7ﬂp¢ri 7fvo/To < 6, in the FROST tunnel and in
Prodi’'s tests, th; dqnnity was nonqniform‘néar the stggnation point,
and the cugved tfajoétdry model Was'a betteribrééictor of dénstty.

*Because this merl's predictions vary with flow conditions, unlike the

£

‘behavior of ghe simple mOAel, it is not easy to determine a cormelation
\ - : :

for densityd;ﬁtt would be a representative for all the curved

trajectory model predictions. Despite thif,-the agrépment batween’model

and experimental cases ;3 from the gﬁOST tunnel, and I and II from

Prodi, were within 3%. ‘

Regardless of which stochastic model is being conce}ned, once a
correlation is found, it would be ideal to be able to produce p
directly from a stochastic model, for use with the correlation. 1In
flow conditions where -?vo/To is less than ten, a relationship between
the packing factor at the stagnation point in the model and the
measured values for p, could be obt;ined. Unfortunately, only two of
the five density experiments from thé FROST tunﬁel cover ‘these

conditions. Further experiments performed under these conditions are

required to observe if there 1s a relation between p, and -rv /T .
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\w
Table 5.5 Average values for absolute stagnation point density (p,) as
calculated by Makkonen (1984) and by Macklin (1962) for a
rotating cylinder. The calculations pertained to flow
conditions from (a) FROST tunnel and (b) Prodt (1985).

CASE (7F”0/Ts) Po (Makkonen)'pou(ﬂacklin) P, (X-ray) packing
0 s'

factor
pmms” L kg kg : kg  at
_ — — . ¥20-— - stagnation
°C m3 ) m3 m3 “point
1 10.8 723 734 909 - 0.38
2 6.9 \ 677 534 853 0.38
3 4.4 617 429 . 785 - 0.37 )
4 8.1 696 904 872 0.40
5 22.0 800 848 917 0.40
(a)
"'P
TEST (-rv,/Ty) p, (Makkonen) p, (Macklin) p, (X-ray) packing
; : factor
um'ms'1 kg kg kg at
— —_ — -3 stagnhtion
°C m3 m3 m point ~
1 3.2 572 266 620 0.39
2 3.4 . 580 o 279 ‘ 695 ~ 0.39

3 4.1 608 321 917 0.38

(b)



X 6. CONCLUSIONS ' i

6.1 Rine Feather Growth Angles

| Between the two stochastic models, the curved trajectory model
predictions of growth angles were in closer agreement with experiment.
This was because the growth directioqs depend directly on the path of
the droplet crajectoriea. The curved trajectory model predictions |
provided better agreement with actual res;lts when K was greater than
about 3.5 because, in these flow conditions, droplets of all size in
the real droplet spectrum tend to follow straight trajectories and
contribute to the growth of rime feathers. One should note, however,
the agreement is expected to be poor whenever: (-rv /T. ) at the
accretion edges exceeds a certain'value. Such conditions promote
droplet deformation and rime featﬁers may not develop on the actual ice
accretion. |

With K less than 3.5, the problem of using a monodisperse droplet
spectrum in the models exfsts Eocause, for these cases: large droplets
from the spectrum gontri:ute to the icing précesses near the edges of

the actual accretion. Thus, for small K values, a droplet diameter,

D4, greater than the spectrum MVD should be applied in the models.

6.2 Local Ice Densities

The basic difference between the two models’ predictions is that
the straightline model produces a uniform density near the stagnation
point, while the curved trajectory model does not. The simple model

.

provides good agreement with experiment in flow conditions where

121
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? .
(-rv,/T,) is greater than abpuc six. The curve fit in Figure 5.5 shows

\ 122

that the empirical correlation for densicy is accurai; whon‘bc/Dglln
greater than 508. o
“In flow conditions where (-rv,/T,) is less than six, the curved
trajectory model produced more accurate predictions for density.
i

ff;)

6.3 Applicntipis .. ; )
The curved, trajectory model may prove useful in prodiccin;.ice

.accretion shapes in models such as that of Lozowsk{ et 1. 1In dry
icing bbnditionsl and when K is greater than 3.5, but (-rv./T,,) at the
accretion edges is low, the model provides qccutat; predictions for‘ché
feather growth angles. The model, however, is limiged for use in a
small time intfrval at the beginning of the accretion procosa; because N
the droplet gfajeccories vary with tﬂe change of the ice profile.

| As for theﬁdensfty variation along the surface of the cylinder,
both models could provide accurate density variations for the model of
Lozowski et al. Wﬁen (-ruo/To) is greater than about six and D./Dy is
greater than 508, the density correlation from the straightline model

couid be applied. When (-ruo/TO) is less than six, the curQed

'trajectory model ﬁfovides d better correlation for density.

-
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APPENDIX 1

PROGRAM FOR STRAIGHTLINE TRAJECTORY MODEY
o 1 \ : .
C SET FLOW PARAMETERS DG AND DD‘BEFORE EXECUTING
c
- DIMENSION A(ZOOOO) B(20000),C(20000),R1(20000), x<50000) Y(SOOOO)
INTEGER COUNT,DROPLT,DROPS,K(110) . , ‘
DOUBLE PRECISION DSEED ) _ ,
c
CALL PLOTS -
'CALL METRIC(O0)
CALL FACTOR(5.0/D) : -
DIST = 0.0 o
D = 100.0
DC = 0.0254 -
DD = 0.0000254
RATIO = DC/DD
R = D/RATIO
NDROP = 20000 : ‘
" NSECT = 110 A “
DSEED = 13957.D0
' CALL- GGUBS(DSEED NDROP,RI)
CALL CIRGCLE(D,0.0,0.0,90.0,D,D,0.0)
CALL CIREPl(iO 0)
CALL PLOT(0.0,0.0,2)
CALL PLOT(D;Q.O,Z).
DO 20 M =.1,NSECT .. e
20 K(M) = M ' O
" COUNT = 1 , ‘ 3
PO 77 J = 1,50000 . : S .
X(J) = 0.0 '
77 Y(J) = 0.0
Z=0.0 .
DO 50 DROPLT = 1,NDROP .
YR.=_(D*1.1)*RI(DROPLT) = ¢
IF(YR.GT.(D+R)) XH =« -1.0°
IFHYR. LE. (D+R)w - SQRT((D+R)**2 - (YR¥¥2))

M = YR+1.0. R .
IF(M.EQ. 111) M= D*l 1
L = R(M) -
DO 100 N - M, L NSECT '
' - X(N) /

= Y(N), \
IF(N EQ.15 GOTO 99 -
IF (ABS (YP-YR) .GT. (2*R)) GOTO 99
| Z = SQRT((2*R)**] - (YP-YR)¥*2) + XP
99 IF(Z.GT.XH)H = 2 |
2200 -
100 CONTINUE
IF(XH.EQ.0) GOTO 50
CALL CIRCL2(XH,YH,0.0,360.0,R) & &

X(L)L_z XH ‘

> 125 -
o e *
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" Y(L) = YR

200

. K(M) = L+NSECT"

IF(M.GE,NSECT .OR. YR.LT.(M - 2*R)) GOTO 200"
L = K(M+1) v .

X(L) = XH

Y(L) = YR _

K(M+1) = L+NSECT

CONTINUE

IF(M:LE.1 .OR. YR.GT.((M-1) + 2*R)) GOTO 300

L = KM-1) . . ’ '

X(L) = XH ‘ o '
Y(L) = YR

K(M-1) = L+NSECT
CONTINUE _
'COUNT = COUNT+1

CONTINUE

- CALL PLOT(0.0,0.0,999)

DROPS = COUNT-1 :

WRITE(6,1) DROPS g , .
FORMAT (1X, '#DROPLETS IN RIME STRUCTURE-',15) '
STOP ’ :

END

Vay
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APPENDIX 2

DROPLET TRAJECTORY CALCULATIONS

and the forces

- forces. So,

dvd
m __._.- -

dt

dvg
m_..._-

dt

LA/
v >
X
Ihe‘equationvof motion for the droplet in an airstream is,
. o
— T F =

ma . ’ (A.2.1)

acting on-the droplet are the gravitational and drag

v,

Wi + Fpy g L (A.2.2)
1 - | |

WY+ —pACpe |V, - v4lZex (A.2.3)
2 .

The directional vector A can be written as,

A‘—

Va -~ V4
(A.Z.Q)

Va -~ vdf
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. Substi ting (A.2.4) into (A.2.3),

\ dvy 1
#ddt - Wi+ EpaAch |v - vgl (vq - vy

Introduci g the following nondimensional variables

v
*
v -
U(!)
x
*
x [ Jee—
D¢
oo D
D, :
and substituting,
. 1
. 3 »
(b‘ md-..ﬂ-Dd pw
J 6
and
nDdz
. Ad-
‘ : -4

into (A.2.5), one obtains

B 2 * 2
1 3 U, dvd 1 3 1 1de .
—7|’Dd p —_—— ———— - - -;‘KDd

*
6 »Dc dt

which reduces to,

K—— = -Hj +
dt 24

(va - vd )

. 2
P 8y * ;pa—z_—cDUm [va -.vdl(va

(A.

(A.

(A.

(A.

(A.

(A

.3)

.6)

1)

.8)

.9)

.9)
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- vd) (A.2.10)

e

(A.2.11)
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‘ vhere,
2 . 2 ' * *
Dy“ Pyl Dy“ry8 PaDaUsu|Vy - V4 |
Ks ——— , H= , and Re "~ -
18Dc"a ‘,1>8U¢,na o _ ‘ Na

Rewriting (A.2.li) in x and y components and drdpping the * notation,

dv ReC . .
K—gx - l)(vax - vdx) (A.2.12)
~dt 24 ) ;
dxd ‘
dt :
dv ReC o '
x-fy - D(v - vdy) ' (A.2.14)
& 2 Y- |
dyq
— - de (A.2.15)
dt .

:All variables are nondimensional. The above equations are first order
differential equations and by letting vdx = u and Vd.y = v, one would

observe the equations are in the form,

du

— = f(x,y,u,v) - (A.2.16)
dt '

dx | -

—_— - ' (A.2.17)"
dt ‘

dv ‘ . .

— = g(x,y,u,v) (A.2.18)
dt . -
dv ,

- » . (A.2.19)

dt e

which may be solved with a 4-th order Runge-Kutta numerical technique .

by letting,



where,

1

uitl - Ui + E(ki + 2k2 + 2k3 + ka)

1

xi+1 - xi + 2(11 + 212 + 213 + 14)

|

Vi+1 - Vi‘+ ~(m1’+ 2m2 + 2m3’+ mh)

m

|

-~

~

1

Ey1+1 - yi + g(nl + 2n2 +.2n3 + na)

1 n k
1 1 1
2 2 2-
1 n2 k2
= hf(x; + —,yy + —uy + —,vy +
2 2 2
- hf(xi + 13,yi + n3,ui +‘k3,vi +
k
1
- h(u1 + —)
2
k 2
2
2
- h(uy + kq)
= hg(xy,y{,uq,vy)
. 1 np - Kk
- hg(xi + —¥i + —,uy + —,Vi +
2 2
- ‘ . o
15 ny ko
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v and

LA
ny - hvi
. my
ny, = h(vi —)
, 2
m

2
n3 - h(Vi + —)
2

hg(xi + 13,y1 + ﬂ3,ui + k3,Vi + m3)

where the nondimensional time step is h. From Beard and Pruppacher

-(1969),

ReCD

24

ReCD

26 .

ReCD

24

.ReCD

24

1 +.0.102Re0-935
1 + 0.115Re9-802
1 + 0.089Re?-632

1+ 0.197Re®-63 + 0.00026Rel- 38

0.2 < Re

2 < Re

21 < Re

200 < Re

<2

< 21

< 200

(A.2.20)

(A.2.21)

(A.2.22)

(A.2.23)
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APPENDIX 3

POTENTIAL FLOW PAST A CYLINDER - {

For steady-state incompressible flow around a right circular cylinder

in an’x-y plane, the stream function is given by,

UwyDc2

Vv o-Uy - ———
4(x2 + y2)

Thg velocity in the x-direction is,

v U.D,> 2y?u,p.>
R SN S NPT )
STl T2 ot

-
or in nondimensional form,

. : y*2 - x*2
u, =L+ (A.3.1)
4(x*2 + y*2)2
(-
The velocity in the y-direction is,
- av U xyD, 2
. wyc
 uy”. ax 2(x% + y)?

or in nondimensional form,

ok %k
. x"y |
- , (A.3.2)
Yy 22 + y*2)2
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APPENDIX 4

PROGRAM FOR THE DETERMINATION OF Y,

C TRY VARIOUS VALUES OF YS FOR A PARTICULAR SET OF FLOW CONDITIONS
C (DC,DD,VA,TA) UNTIL Y§ = Y, IS OBTAINED. PROGRAM IS EXECUTED

C WITH,

c

c ,A |

C **************************. .
c * . *

c * ' #R *FORTG SCARDS-file *

c * #R -LOAD® *

c * \ *

C d* %k Kk ok k% k k Rk Kk kok ok Kk Kk k Kk Kk k Kk ok k kK

e .

c

DOUBLE PRECISION FUNCTION CDRE(A,B,C,D)

DD - 36.9D-6

VA = 10.0D0

TA = -15.0D0

ADENS = 1.0D5/(287.0DO*(TA + 273.0D0))
AVISC = 0.2033D-5*(TA + 273.0D0)**1.5/(TA + 273.0D0 +232.7D0)
VAAY = -0.5%A%B/(A%*2 + Bkk2)**k2

VAAX = 1.0 + 0.25%(B**2 - A¥*2)/(A%*2 + BA*2)%*2

RE = ADENS*DD*VA*( (VAAX - C)**2 + (VAAY - D)**2)#**0.5D0/AVISC
IF(RE.LT.0.2) CDRE = 1.0D0

IF(0.2.LE.RE.AND.RE.LT.2.0) CDRE = 1.0DO + 1.02D-1%RE**9_ 55D-1
IF(2.0.LE.RE.AND.RE.LT.21.0) CDRE = 1.0D0 + 1.15D-1*RE**8.02D-1
IF(21.0.LE.RE.AND.RE.LT.200.0) CDRE = 1.0D0 + 8.9D-2*%RE**6,32D-1
IF(RE.GT.200.0) CDRE=1.0D0 + 1.97D-1*RE**6.3D-1 + 2.6D-4*RE**1.38D0
RETURN

END , -

C . . . —
INTEGER SUM

REAL K : 2
DOUBLE PRECISION ADENS,ADX,ADY,AVISC,CDRE,DC,DD,H,K1,K2,K3,K4 “

DOUBLE PRECISION L1,L2,L3,L4,M1,M2,M3,M4,N1,N2,N3,N4,R,RATIO, TA /", ‘ a
DOUBLE PRECISION VA,VAX,VAXX,VAY,VAYY,WDENS,X,XS,Y, Ys é -
C . P
VAY(A,B) = -0, 5%A*B/(A%*2 + B#x2)**2

VAX(A,B) = 1.0 +"0.25%(B**2 - A%*2)/(A%*2 + Br*2)**x2

ADX(A,B,C,D) = CDRE(A,B,C,D)*(VAX(A,B) - C)/K

ADY(A,B,C,D) = CDRE(A,B,C,D)*(VAY(A,B) - D)/K

C .

DD = 36.9D-6

DC = 2.54D-2

VA = 10.CD0

TA -15.0D0

XS -10.0D0

YS = 0.1877

H= 0.0050D0

WDENS = 1000.0DO -—

ADENS = 1.0D5/(287.0D0*(TA+273.0D0))
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. @

AVISC = 0,2033D- 5*(TA + 273, 000)**1 5/(TA + 273.0D0 + 232.7D0)

K = (
DIST =

- RATIO

109 FORMAT('0’,6X,'X',9X, ‘Y’ ,7X,'VDX',7X,' VDY’

113

+ N1

110

112

120

R = 0.

WRITE

Z5X,'T
c
X=X

DD#*#*2) *WDENS*VA/ (18 . O¥DC*AVISC)
(DG/2.0 + DD/2.0)/DC

. DC/DD

5DO/RATIO

(6,109)

IME SJEP’)

S

Y = Y¥YS

VDX =
VDY =
I =1
Kl
L1
M1

K2
L2
M2
N2
K3
L3
M3
N3
K4
L4
M4
N4

0.0D0
0.0D0.

o' :
H*ADX(X,Y,VDX, VDY)
H*VDX
H*ADY (X, Y, VDX, VDY)
H*VDY

H*ADX(X + L1/2.0,Y + N1/2.0,VDX + Kl/2.

H*(VDX + K1/2.0)

H*ADY(X + L1/2.0,Y + N1/2.0,VDX + K1/2.
H*(VDY + M1/2.0) °

H*ADX(X + L2/2.0,Y + N2/2.0, va + K2/2.
H* (VDX + K2/2.0)

H*ADY(X + L2/2.0,Y + N2/2.0,VDX + K2/2.

H* (VDY + M2/2.0)

,7X, 'VAXX', 7X, ‘VAYY'

I

0,VDY + M1/2.0)
0,VDY + M1/2.0)
0,VDY + M2/2.0)

0,VDY + M2/2.0)

H*ADX(X + L3,Y + N3,VDX + K3,VDY + M3) .

H*(VDX + K3)
H*ADY(X + L3,Y + N3,VDX + K3 VDY + M3)
H* (VDY + M3)

X=X+ (L1 + 2.0%L2 + 2.0%L3 + 14)/6.0D0
Y=Y+ (NL +# 2.0%N2 + 2.0%N3 + N&)/6.0D0
VDX = VDX + (K1 + 2.0%K2 + 2.0%K3 + K&4)/6.0DO
VDY = VDY + (M1 + 2.0*M2 + 2.0%M3 + M4)/6.0DO

VAXX

VAYY =

- VAX(X,Y)
VAY(X'Y)

IF((I1/1000)*1000.EQ.I)WRITE(6,110)X,Y, VDX, VDY, VAXX, VAYY, I
FORMAT('0’,6F10.5,110)
IF(X**2 + Y**2 LE. DIST**2 OR.X. GE 0.0) GOTO 112
X0 - X

YO =Y -

~I-I
GOTO

+1
113

IF(X.GE.0.0) GOTO 120

WRITE

(6,110)X,Y,VDX,VDY, VAXX, VAYY I

CONTINUE

STOP
END

(%Y
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APPEN®IX 5

PROGRAM FOR CURVED TRAJECTORY MdDEL

INSERT APPROPRIATE SET OF FLOW CONDITIONS (DC,DD,VA,TA) AND YMAX
(=YS FROM APPENDIX 4) AND EXECUTE MODEL WITH THE FOLLOWING SET OF
COMMAND. THE PLOT WILL BE PRODUCED ON CALCOMPQ PAPER.

LA B L AR AR BN B R BE R B B R N AL R RS BE AR B B B B AR B B IR K N

/ %
#R *FORTG SCARDS=file T=400 v %
#CR -PLOT SIZE=3000P *

#EMPTY -PLOT OK *
#R -LOAD#+*APPLOT+*PLOTLIB+*IMSLLIB 9=-PLOT T=400 *
#TRUNC -PLOT *
#R *GALCOMPQ PAR-FILE—-PLOT PEN-BBLK *
#SOURCE PREVIOUS *

* % % % % % * % * * *

* Kk ok ok ok Kk ok ok kK k ok ok ok hk ok ok ok ko k k ok k k% kb

ALL POSITIONS"AND VELOCITIES ARE NORMALIZED
DOUBLE anctsxon FUNCTION CDRE(A,B,C,D,E,F,VD)
VAAY = -0.5%A%B/(A%*2 + Bi#2)%*2

VAAX = 1.0 + 0.25%(B**2 - A%*2)/(A%*2 + Ban2)%*2

RE = E*VD*((VAAX - C)**2 + (VAAY - D)**2)%%0,5DO0/F

IF(RE.LT.0.2) CDRE = 1.0DO

IF(0.2.LE.RE.AND.RE.LT.2.0) CDRE = 1.0D0 + 1.02D-1*RE%*9.55D-1
IF(2.0.LE . RE.AND.RE.LT.21.0) CDRE = 1.0DO + 1.15D-1*RE#*8.02D-1
IF(21.0.LE.RE.AND.RE.LT.200,0) CDRE = 1.0D0 + 8.9D-2%RE**6.32D-1
IF(RE.GT.200.0) CDRE=1.0DO + 1.97D-1#*RE**6.3D-1 + 2.6D-4*RE**1.38D0
RETURN

END
c
C SPECIFICATION OF VARIABLE TYPES
C

.INTEGER COUNT,DROPLT,DROPS"{¢, IER ,KCOUNT ,M,MM(90) ,NX
REAL BPAR(4),CS(2999,3),C2 9,3),C3(2999,3),C4(2999,3), cs<2999 3)
REAL.DENSTY(90) ,DS(5) , DYC(20000) , E(3000) , E1(3000),E2(3000),E3(3000)
REAL E4(3000),ES5(3000) ,F(3000),F1(3000),F2(3000¥,F3(3000),F4(3000)
REAL F5(3000),K(5),KK,S(2),RI(10000),SC(6),U(2),UU(10000),V(10000)
REAL W(10000),XX(20000),YBC(20000), YBL(20000) , YTC(200000,YTL(20000)
DOUBLE PRECISION ADX,ADY,CDRE,DC,DD,DSEED,H,K1,K2,K3,K4,L1,L2,L3,L4
DOUBTE PRECISION M1,M2,M3,M4,N1,N2,N3,N4,R,RATIO, TA,VA,VAX, VAXX
DOUBLE PRECISION VAY,VAYY,WDENS,X,XS,Y,YS

aooo0o00o0O00000000000000

c ( - .
C CALCULATION OF COMPONENTS OF AIR VELOCITY AND DROPLET ACCELERATION
c , - : _ -
VAX(A,B) = 1,0 + 0.25%(B¥*2 - A%*2)/(A%*2 + Bk*2)*x2
VAY(A,B) = -0.5%A%B/(A%*2 + Bk*2)**2
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113

ADX(A,B,C,D) - CDRE(A,B,C,D,ADENS,AVISC,VD)*(VAX(A,B) - C)/KK
ADY(A,B,C,D) =~ CDRE(A,B,C,D,ADENS,AVISC,VD)*(VAY(A,B) - D)/KK
c : :

C FLOW CONDITIONS
c

DD - 36.9D-6

DC = 2.54D-2

VA = 10.0DO

TA = -15.0D0 .
VD = VA*DD « '
DIST = (DC/2.0 + DD/2.0)/DC

RATIO =~ DC/DD

R = 0.5DO/RATIO °

WDENS = 1000D0 =~-

ADENS = 1.0D5/(287.0DO*(TA + 273. 000))

AVISC.= 0.203 *(TA + 273.0D0)**1.5/(TA + 273.0D0 +232.7D0)
KK = (DD**2)% *VA/ (18 .0*DC*AVISC) .

OF THE FIV CATED UPSTREAM FROM THE CYLINDER. INITIAL
VELOCITY (VDX,VDY) OF THE DROPLET MUST BE
SPECIFIED FIRST. THEN, THE POINTS THAT MAKE UP THE TRAJECTORIES
ARE CALCULATED WITH A 4-TH ORDER RUNGE-KUTTA TECHNIQUE.

s

s NN NN NeN !
g
o
w
]
-3
-
(&)
2z
~
<

H = 0.005D0

XS = -10.0D0
VDX = 0.0DO0

VDY = 0.0D0

J-1 , :
SC(J) = 0.0 % ‘
I=-1 :

KO = 1

KX = 2

SIX TRAJECTORIES THAT MAKE UP THE BOUNDARIES °

136

o

X = XS .

Y = 0.1%J

E1(1) = X

F1(1) = Y

K1 = H*ADX(X,Y,VDX, VDY)

L1 = H*VDX !
M1 - H*ADY(X,Y,VDX, VDY)

N1 = H*VDY

K2 = H*ADX(X+L1/2.0,Y+N1/2.0,VDX+K1/2.0,VDY+M1/2.0)

L2 = H*(VDX+K1/2.0)

M2 = H*ADY(X+L1/2.0 Y+N1/2.0,VDX+K1/2.0,VDY+M1/2.0)
N2 = H*(VDY+M1/2.0)

K3 = H*ADX(X+L2/Z.0,Y+N2/2.0,VDX+K2/2.0,VDY+M2/2.0)
L3 = H*(VDX+K2/2.0)

M3 = H*ADY(X+L2/2.0,Y+N2/2.0,VDX+K2/2.0,VDY+M2/2.0)
N3 = H*(VDY+M2/2.0)

K4 = H*ADX(X+L3,Y+N3,VDX+K3, VDY+M3)

H* (VDX+K3)
M4 = H*ADY(X+L3,Y+N3 K VDX+K3, VDY+M3)
N4 = H*(VDY+M3)

X Tlx + (L1+2.0%L2+2.0*L3+14)/6. 0D0
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Y = Y 4 (N1+2.0%N2+2,0*N3+N4)/6.0D0 . ’
was= ' UDX = VDX + (K1l+2,0%K2+2.0%K3+K&)/6.0D0 . - . =~ %
" wVUDY = VDY + (M1+2.0%M2+2.0*M3+M4)/6.0D0 - '
VAXX = VAX(X,Y)
"VAYY = VAY(X,Y)
IF(X.GE.0.0) GOTO 112
- IF (X#*2+Yk*2' GT,.DIST**2 OR.KO0.EQ.2) GOTO 114
CALL CONTAK(X,Y,X0,YO,XR,YR,DIST) - ‘
KO = 2 )
114 X0 = X T .
‘ YO =Y . S o
I = I+1 : ‘ o
EL(I) = X 3 .
FI(I) = Y? ~ ‘
IF(I.NE. 3000) GOTO 113 r o
[ : '
C THE BOUNDARY.POINTS ARE FITTED WITH A CUBIC SPLINE USING
 C THE IMSLLIB ROUTINE ICSICU.
IC = 2999 - o 0y ) .
‘NX = 3000 , - _ o
FNX = SQRT(VDX**2+VDY**2) ; , ,
BPAR(1l) = 1.0
BPAR(2} = 6. 0/(E1(2) -E1(1))*((F1(2)- Fl(l))/(E1(2) 51(1)) -0. 0)
BPAR(3) = 1.0
. BPAR(4) = 6. 0/(E1(NX) E1(NX- 1))*(FNX- (Fl(NX) Fl(NX 1))/(E1(NX)- ,‘ o
ZE1(NX-1))) ; e
IF(J.EQ.1) GOTO-10 SR ' : e i
IF(J.EQ.2) GOTO 20 : ' ¢ o
IF(J.EQ.3) GOTO 30 | : . o )
IF(J.EQ.4) GOTO 40 o A R " _ S
~ IF(J.EQ.5) GOTO 50 -~ ¢~ ' g S A AP
. 10.DO 11 I=1,NX | - ‘ ‘ R
©E(I) = EL(I) , oo R
11 F(I) = FI(I) . :
' CALL ICSICU(E,F,NX,BPAR,CS, IC Iga) w
J =2
GOTO 60 f g
20 DO 21 I=-1.NX : , . R
. E’(I) = EL(I) ' '
21 F2(I) = F1(I)
: ICSICU(E2, F2,NX, BPAR, C2, IC, IER)
J =3
. GOTO 60 R A R ' 5 LA
- 30 DO 3L I-1,NX Lo _;5;; it - R T
- E3(I) = EL(I) . S R ¢ A ; L e
31 F3(I) = FI(I) + . ‘ ‘ R &
' CALY .ICSICU(E3,F3,NX, BPAR, c3, 1, IER) , ; o R
Y w4 m o : T T
' GOTO 60 S B : o
40 DO 41 ‘I=1,NX - |
- E4{1) = EI(I) | ' o . :
41 F4(I) = FI(I) " e
' - CaLL ICSICU(E& Fb4, NX(bPAR Ch, IC IER) ' AR U
. O
' ' < o >. R ;




J =35
~ +GOTO 60
50 DO 51 I=1,6NX
CE5(1) = El(I)
51 F5(I) = E}(I)
'~ CALL ICSICU(ES,F5,NX,BPAR,CS,IC,IER)

m

C . ) .
C PLOT A QUApTER CYLINDER WITH RADIUS OF 0.5
c | Rl
COMMON XX,YY,U,V :
CALL PLOTS ' d
PI = 3.14159 : '
FD =~ 0.0
CALL METRIG(O)
CALL FACTOR(10.0)
‘CALL CIRCLE(0.5,0.0,0.9%90.0, 0. 5,0.5,0. 0)
CALL CIREP1(10. 0)
CALL PLOT(0.0,0.0,2) ,
CALL PLOT(O 5,0.0,2) .
c ,
C SPECIFY NuMBER OF DROPLETS TO BE INTRODUCED INTO THE FLOW
C USE RANDOM NUMBER GENERATOR IMSLLIB ROUTINE GGUBS TO DETERMINE
'C YR POSITION OF DROPLET. ‘ .
c . .
NSECT = 5
NDROP = 10000
DSEED = 13957.DO
CALL GGUBS (DSEED, BDROP RI)
DO 70 M=1,NSECT

: 76'K(M) - M

C' - R . ¥ ‘ . o
DO 80 DROPLT=-1,NDROP ' | : v;*“ R

COUNT = 1 : o ,
DO 7 J=1 20000 ; ‘ ‘ ’ .
XYy % 0.0 - v ' -
.Yy =-0.0 . -
DYC(J) = 0.0
“YTG(J) = 0.0
YTE(J) = 0.0
YBC(J) 4= 0.0
YBL(J) = 0.0
77 CONTINUE » : :
* CALL SPACE ' -
ZX = 0.0 ‘ -
ZY ~ 0.0
YMAX = 0.3014
C : . o e
C YMAX = YR FOR LIMITING TRAJECTORY

YR =~ 5.5*%RI(DROPLT) . . A
M=YR +1,0 o - _ : ]

C DETERMINE WHICH BAND (M-ljZ,...S) DROPLET WILL ENTER.' Iﬁ M>5,

.. C. DROPLET 1S SHED INTO. THE AIRSTREAM, OTHERWISE DROPLET STICKS TO
C STRUCTURE AND CALCULATION OF ITS POSITION (XD,YD) IN THE -
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C ACCRETION IS PERFORMED.
c , : .
IF(M.GT.5) GOTO 80
IF(YR.LT.1.0) FR =
IF(YR.GE.1.0) MB
IF(YR.GE.1.0) FR
YR = YR/10.0 _
XD = -0.0001 : : ‘ '
IF(YR.GT.YMAX) XD =~ 1.0 ' ’

L = K(M)

DO 100 N=M,L,NSECT

XP = XX(N) ©

YP = YY(N) }

IF(N.EQ.L) GOTO 99

YT = YTC(N)-(1-FR)*DYC(N) . .
IF(ABS(YP-YT).GT. (2*R)) GOTO 99 - ,
SLOPEU = (YTC(N)-YTL(N))/(20*R)

SLOPEL = (YBC(N)-YBL(N))/(20%*R)

SLOPE = SLOPEL+FR*(SLOPEU- - SLOPEL).

YINT = YT-SLOPE+*XP

YR
YR
YR

- MB

A = SLOPE#**2 +1 :

97

99,

B = 2.0%(YINT- YP)*SLOPE-2.0*XP
CC = XPH*2+(YINT-YP)#42- (24R) %42
GG = B**%2-4 . 0%A*CC .
IF(GG.EQ.0.0) GOTO 97
GG = -GG -
‘X1 = (-B+SQRT(GG))/(2.0%A)
X2 = (-B-SQRT(GG))/(2.0%A)
IF(X1.LE.X2) ZX=X1 ;
IF(X2.LE.X1) ZX=X2 p &
zy - SLOPEXZX+YINT

-1
IF(ZX4E.XD) GOTO 105 * =~ .
XD = ZX. ,
YD = ZY v

100 = XX(N)

103

102

YOO = YY(N) By
ZX = 0.0
ZY = 0.0 o

;‘CONTxNUE L

IF(XD.EQ.0.0) GOTO 80 v .
IF(KX.EQ: I AND, XD*#24YD**2. G?CﬁiST**z) GOTO 101
I =1 ;

X = XS _
Y = ¥R ‘ i L
_VRX = 0.0D0 - g

VDY = 0.0D0 SRR, o

K1 = H*ADX(X,Y,VDX VDY) . <§§3' )

Ll = H*VDX - |

Ml - H*ADY(X,Y,VDX VDY)

N1 « H*VDY .

K2 = H*ADX(X+L1/2.0 Y+N1/2 0,VDX+K1/2.0,VDY+M1/2.0)

L2
M2

'H*(VDX+K1/2.0)
H*ADY(X+L1/2.0, Y4N1/2.0 VDX+K1/2 0,VDY+M1/2. 0)

LY - VN
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61

417

140

L4

N2 = H*(VDY+M1/2.0)

K3 = H*ADX(X+L2/2.0',Y+N2/2.0,VDX+K2/2.0 ,UDY+42/2..0)
L3 = H*(VDX+K2/2.0)

M3 = H*ADY(X+L2/2.0,Y+N2/2.0,VDX+K2/2.0 VDY+M2/2 0)
N3 = H*(VDY+M2/2.0)

H*ADX (X+L3 , Y+N3, VDX+K3, VDY+M3)
L4 = H*(VDX+K3)

M4 & IH®ADY (X413 , Y+N3, VDX+K3, VDY+M3)
N4 = HE( "7 £a
' ,g“~ 12+2.0*L3+L4) /6 . 0DO

142 0M12+2 . 0*N3+N4 ) /6 . 0DO
VDX = VDX + (K1+2,0%K2+2.0%K3+K4)/6.0D0
VDY = VDY + (ML+2.0%M2+2.0%M3+M4)/6.0DO
IF (X#*2+Y**2\LE.DIST#*2) GOTO 61

X0 = X - _

YO = Y

I = I+1 . ‘
GOTO 102 : S "
SLOPE = (¥-Y0)/(X- xo, : - | N

YINT = Y-SLOPE*X : , - \quliiad
A = SLOPE**2+1 - ' } _ m '
B = 2.0%SLOPE*YINT | e T A
CC = YINT#**2-DIST**2

WBl = B#*2

WB2 = 4.0%A*CC

WB3 = WBl-WB2 _
IK(WB3.GE.0.0) GOTO 617 y
= -WB3 o ' : ‘

= (-B+SQRT(WB3)) /(2. O*A) R - R
2w | -B-SQRT(WB3))/(2.0%A) ‘
IF(X1.LT.0.0) XR=X1

IF(X2.LT.0.0) XR=X2

YH = SLOPE*XR+YINT.

XD = XR

YD = YH

IF(KX.EQ.2) GOTO 101
IF((YOO-YH)**2+(X00-XR)#%2.GE. (2*R)*+2) GOTO 101
A = SLOPE#**2+1.0

B = 2.0%(YINT-YOO)*SLOPE-2.0%X00 .

CC = XOO#%2+(YINT-YOO)**2 - (2%R)%*2

© HTS = B*¥2-4,0%A*CC N

655

101 KX

IF(HTS.GE.0.0) GOTO 655

HTS = -HTS. :

X1 = (-B+SQRT(HTS))/(2.0%A)
X2 = (-B-SQRT(HTS))/(2.0%A)
IF(X1.LE.X2) XT-X1 - _

s IF(X2.LE. Xl) XT=X2

YR - SLOPE*XT+YINT

XD . XT

- YQ

2 ,
X00 = 0.0 . , . .

" Y00 = 0.0

LA

CALL ¢IRCLE(-XD,YD,0.0,360.0,R)
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STORE LOCATION OF DROPLET IN THE ACCRETION AND THE CORRESPONDING

BAND NUMBER.

U(l) = XD

U(2) = XD - 20*R.

IF(M.NE.1) GOTO 200 -

CALL ICSEVU(E,F,NX,CS,IC,U,S,2,IER)
YTCM = S(1)

YTIM = S(2) )

DYC(L) = YTCM

YTC(L) = YTCM

YTL(L) = YTLM

YBC(L) = 0.0

L]

_YBL(L) = 0.0

CALL ICSEVU(E2,F2,NX,C2,IC,U,S,2, IER)
L = K(M+1) oy

- YTCU = ‘§(1)

200

YTLU = S(2)

DYC(L) =.YTCW-YTCM

YTC(L) = YTCU

YTL(L) + YTLU

YBC(L) % YPCM

YBL(L) & YTIM

YTCL = 0.0

YTLL = ¢.0 :
IF(M.NE.2) GOTO 201 o

CALL ICSEVU(E2,F2,NX,C2,1IC, ?s,z,IER).'

YTEM = S(1)

YTIM = S(2) v

CALL ICSEVU(E,F,NX,CS,1C,U,S, 2 IER)
YTCL = S(1)

YTLL = S(2)

DYC(L) = YTCM-YICL

YTC(L) = YTCM

YTL(L) = YTLM
YBC(L) = YTCL
YBL(L) = YTLL
L = K(M-1)

DYC(L) = YTCL
YIC(L) = YTCL -

YTL(L) = YTLL

YBC(L) = 0.0

YBL(L) = 0.0

CALL ICSEVU(E3,F3,NX,C3,IC, U,s,2, IER)
YICU = S(1)

. YTLU = S(2)

L = K(M+1)

DYC(L) = YTCU-YTCM
YIC(L) = YICU , -~
YTL(L) = YTLU
YBC(L) = YTCM
YBL(L) = YTIM

201 IF(M.NE.3) GOTO 202

11



CALL ICSEVU(E3,F3, NX C3 IC,U,8,2,1IER)
YTCM = S(1) -

YTIM = S(2)

YTC(L) = YTCM

YTL(L) = YTLM

CALL ICSEVU(E2,F2,NX,C2,IC,U,S,2.IER)

YTCL = S(1)

YTLL = S(2)

DYC(L) = YTGM-YTCL

YBC(L) = YTCL

YBL(L) = YTLL

L = K(M-1)

YTG(L) = YTCL

YTL(L) = YTLL .

CALL ICSEVU(E,F, NX cs,Ic,u,S,2,1ER)
DYC(L) = YTCL-S(1)
YBC(L) = 5(1)
YBL(L) = S(2)

CALL ICSEVU(E4,F4 NX,C4,1C,U,S,2,1ER)

r

- YICU = S(1)

202

" YTILU = S(2)

L = K(M+1)

DYC(L) = YTCU-YTCM

YTC(L) = YTCU

YTL(L) = YTLU

YBC(L) = YTCM

YBL(L) = YTIM

IF(M.NE.4) GOTO 203

CALL ICSEVU(E4,F4,NX,C4,I1IC,U,S,2,1ER)
YTCM =~ S(1)

YTLM = S(2)

YIC(L) = YTCM

YTL(L) = YTIM

CALL ICSEVU(E3,F3,NX, C3 , IC, U S,2,IER)

. YICL = S(1)

YTLL = S(2)

DYC(L) = YTCM-YTCL

YBC(L) = YTCL

YBL(L) = YTLL'

CALL ICSEVU(E2,F2,NX, c2 1c,U,s, 2, IER)
L = K(M-1)

YTC(L) = YTCL

YTL(L) = YTLL

DYC(L) = YTCL-S(1) .

YBC(L) = S(1)

YBL(L) ="S(2)
CALL ICSEVU(ES,Y¥5,NX,CS,IC,U,S,2,IER)

YICU = S(1)

YTLU = S(2)

L = K(M+1)

YTC(L) = YTCU
YTL(L) = YTLU
DYC(L) = YTCU-YTCM
YBC(L) = YTCM
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: YBL(L) = YTLM
203 IF(M.NE.5) GOTO 204
- CALL ICSEVU(ES,F5,NX,CS,IC,U,S,2,IER)
YTCM = S(1) .
YTLM = S(2) : .
YTC(L) = YTCM N
YTL(L) = YTIM :
CALL ICSEVU(E4,F4,NX,C4,IC, U $,2,IER)
YTCL = S(1)
YTLL = S(2) .
DYC(L) = YTCM-YTCL
YBC(L) = YTCL
YBL(L) = YTLL K 4
L = K(M-1)
YTC(L) = YTCL ‘ 4
YTL(L) = YTLL , .
- CALL ICSEVU(E3,F3,NX,C3,IC,U,S,2, IER) ,
DYC(L) = YTCL-S«(1)
YBC(L) = S(1)
YBL(L) = S(2)
204 L = K(M)
XX(L) = XD
YY(L) = YD e
K(M) = L + NSECT . :
TG = YTCM-YD
BG = YD-YTCL
IF(M.GE.NSECT.OR.TG.GT. Z*R) GOTO 250
L= K(M+1)
XX(L) =
YY(L) = YD
~ K(M+1l) = L4NSECT
250 CONTINUE
IF(M.LE.1.0R.BG. GT 2%R) GOTO 300
L = K(M- 1) .
XX(L) =
YY(L) -,YD ,
K(M-1) = L + NSECT®
300 CONTINUE
UU(COUNT) = SQRT (XD**2+YD**2)
V(COUNT) = ATAN(YD/(-XD))*180.0/PI
IF(UU(COUNT) .GT.FD,) FD=UU(COUNT)
COUNT = COUNT+1
80 CONTINUE
CALL PLOT(0.0,0.0,999)
DROPS = COUNT-1 .
WRITE(6,1) DROPS -
1 FORMAT(1X,.'#DROPLETS IN RIME STRUCTURE- ,15)
C - :
C DENSITY CALCULATION AT 5° SECTORS FROM STAGNATION POINT
c . , .

NSECT = 18 '

DO 575 ITHICK=1,3
IF(ITHICK.EQ.1) SECTHK=8.0.
IF(ITHICK.EQ.2) SECTI:{K-A.O



25

26

45

55

65

47
75

575

-

IF(ITHICK.EQ.3) SECTHK=2.0
DOUT = 0.5+(FD-0.5)/SECTHK

SAREA = (DOUT*#2-0,5%*2)+P1/72.0

DAREA = PI*R**2
KCOUNT = 1

DO 25 KS=1,DROPS
IF(UU(KS).GT.DOUT) GOTO 25
W(KCOUNT) = V(KS)
KCOUNT = KCOUNT+1
CONTINUE

DO 26 L=1,NSECT
MM(L) = O -
NC = KCOUNT-1

DO 45 KS-1,NC

ET = W(KS)/5.0

N =« ET+1.0

MM(N) = MM(N)+1

ES = N-1

IF(ES.NE.O.0.AND.ES.EQ.W(KS)) MM(N- 1)—MM(N 1)+1

CONTINUE
ISEC = SECTHK
‘WRLTE(6,55) ISEC

FORMAT('0', 'SECTION’, 1X, 'DENSITY (1/',11,")")

DO 65 L=1, NSECT

DENSTY(L) = MM(L)*DAREA/SAREA
CONTINUE - 4, ¢

DO 75 1=5,9Q.5

1J = 1/5 °

PACFAC = DENSTY(IJ)

DIMLES = PACFAC/DENSTY(1)
WRITE(6,47)1,PACFAC, DIMLES
FORMAT (4X,12,3X,F6.3,1X,F6.3)
CONTINUE

AROSTG = DENSTY(1)*890.0
WRITE(6,5)DENSTY(1)

FORMAT (1X, ' PACKING FACTOR AT STAG POINT=',FS5.3)

WRITE(6,7)AROSTG

FORMAT(1X, ' ABSOLUTE ' DENSITY AT STAG POINT=',F7.2)

CONTINUE
STOP
END
c

SUBROUTINE CONTAK(X,Y,XO,YO,XR,YH,DIST)

SLOPE = (Y-YO0)/(X-X0)
YINT = Y-SLOPE#*X

A = SLOPE**2+1.0

B = 2.0*SLOPE*YINT
CC = YINT#%2-DIST**2

X1 = (-B+SQRT(B**2-4.0%A*CC))/(2.0%*A)
X2 = (-B-SQRT(B**2-4. 0*A*CC))/(2 0*A)

IF(X1.LT.0.0) XR=X1
IF(X2.LT.0.0) XR=X2 -
YH - SLOPE*XR+YINT
RETURN

el

lag
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END -
c

SUBROUTINE SPACE

DIMENSION XX(20000),YY(20000),U(10000),V(10000)

COMMON XX,YY,U,V

RETURN .

END . - ' 0
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' APPENDIX 6

CALCULATION OF DROPLET CONCENTRATION

Gt forward stagnation line
) [+

yd

S; = ith 5° - sector, where i = 0 at the stagnation line and

increases to i = 17 at the edge of the accretion.

O
~
N
e
~
[ ]

concentration of droplets in sector i

R -Acylinger radius

Rq = droplet radius

w = width of annular region in which density calculations are made.

N; = number of‘droplets in sector i

Therefore,

Area occupied by droplets in sector Sy

Area 6f sector Si
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’ .
In the stochastic models, each sector occupies a constant area of, Y.

/

w(Rc + w)2 - chz

s -
1
72 4

and an assumption,

(distance of furthest droplet from the center of the cylinder) - R,

W -

2

-

is made. Thus, the approximation,

2
Ni * er
Sq

\\\:iii/Bi used in the stochastic model to calculate droplet concentration
n each sector. In fact} C(Si)/C(So) is calculated and will represent

p/p, in the density plots.



where,

APPENDIX 7 Ay

CALCULATION OF K AND ¢
i oy
‘?-P Q'Rdzum

! IngR,

180, %R U,

‘\'¢-._—_____
NaPy

Py (kg/m3) - water density

Pa (kg/m3) - air density ‘ o

Uﬂ

ng, (kg/mesec)

-

(m/s) = freestream velocity ~

air viscosity

'Rc (m) = cylinder radius

© Ry (m)

All Qariables

Na

where T is in

(=]
1

L
i

and therefore,

ﬂa-

droplet radius

.

are in S.I. units. From L & B (1946),

2.48 X 1077 0. 754 kg/mesec
: .

°K. At the flow conditions of test A érom Table 3.1,

9.1 um
10 m/s
258 °K

10% N/m?

1.632 X 1079 kg/mesec

.:‘.
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and,

Thus,

and,

P 103

RT (2.87)(258)

o
y |

1000 kg/m3

»

2(1060)(9.1 x 10-9)2(10)

R
k-4
. )

e -1.35 kg/m®

= 0.89

9(1.632 X 10°%)(0.0254/2)

#

18(1.35)2(0.0254/2) (10)

(1.632 X 10°%)(1000)

L J

- = 255

“®
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APPENDIX 8

PACKING FACTOR FOR AREAL PACKING

The maximum packing factor for 2-dimensional droplets of equal

size is determined as follows,

5

X = ((4R)Z - (2R)%)0.5

and the packing factor in the iectahgular region is,

Ar@a occupied by the droplets

PE -
Area of rectangle
2 * xR? !
PF ——— = 0,91
2R * X
¥
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