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Introduction

Having taught MATH 217 five times during the past six years, I had not expected to teach
it yet another time. But the powers that be chose to decide otherwise. ..

This resulted in touch ups to the notes, mostly in Chapters 1 to 4 and in Appendix
A.

Volker Runde, Edmonton December 7, 2022

v



Introduction (2021/22)

This is the latest—and for the foreseeable future last—revision of my MATH 217/317 notes
based on my lectures during the academic year 2021/2022. Beyond the usual debugging

and nip-and-tuck, the following changes have been made:
e A substantial number of new exercises has been added.

e There are now a list of symbols and an index, which should make the notes easier

to navigate.

Volker Runde, Edmonton March 31, 2022



Introduction (2020/21)

This is the 2020/2021 update of my MATH 217/317 notes. Unlike the previous changes

to these notes, these ones are more substantial:
e All graphics have been reworked and—hopefully—made more intelligible as a result.

e The proof of the Change of Variables Theorem has been moved from Chapter 6 to
Chapter 5, where it fits in better.

e An entirely new Chapter 7 has been inserted, which treats differential forms and puts

the classical integral theorems of Green, Stokes, and Gauf} into proper perspective.

e Consequently, the old Chapters 7 and 8 have become Chapters 8 and 9, respectively.

Volker Runde, Edmonton August 30, 2021
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Introduction (2018/19)

This is the 2018/2019 update of my MATH 217/317 notes. There are no major revisions,

just minor touch ups.

Volker Runde, Edmonton June 1, 2019
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Introduction (2017/18)

The present notes are based on the courses MATH 217 and 317 as I taught them in the
academic year 2004/2005 and later, again, in 2016/17 and in 2017/18. It is an updated
(and debugged) version of previous incarnations of these notes. The most distinctive
notion of this version is that it includes exercises. Also, some new material has been
added to Sections 6.3 (on conservative vector fields) and 8.3 (Weierstra’ Approximation
Theorem).

The notes are not intended replace any of the many textbooks on the subject, but
rather to supplement them by relieving the students from the necessity of taking notes
and thus allowing them to devote their full attention to the lecture.

Of course, the degree of originality conveyed in these notes is (very) limited. In putting

them together, I mostly relied on the following sources:

1. JAMES S. MULDOWNEY, Advanced Calculus Lecture Notes for Mathematics 217
317. Third Edition. (available online);

2. ROBERT G. BARTLE, The Elements of Real Analysis. Second Edition. Jossey-Bass,
1976;

3. OTTO FORSTER, Analysis 2. Vieweg, 1984;
4. HARRO HEUSER, Lehrbuch der Analysis, Teil 2. Teubner, 1983.

It ought to be clear that these notes may only be used for educational, non-profit

purposes.

Volker Runde, Edmonton April 1, 2018
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Chapter 1

Topology in RN

1.1

The Real Line

What is R?

Intuitively, one can think of R as of a line stretching from —oco to co. Intuition,

however, can be deceptive in mathematics. In order to lay solid foundations for calculus,

we introduce R from an entirely formalistic point of view: we demand from a certain set

that it satisfies the properties that we intuitively expect R to have, and then just define
R to be this set!

What are the properties of R we need to do mathematics? First of all,we should be

able to do arithmetic.

Definition 1.1.1. A field is a set F together with two binary operations + and - satisfying

the following:

(F1)
(F2)

(F3)

for all z,y € F, we have x +y € F and z - y € F as well;
forall z,y €e F, wehave x +y=y+zandz-y=y-x (commutativity);

for all x,y,2 € F, we have z + (y +2) = (z+y)+zand x- (y-2) = (x-y) - 2

(associativity);
for all z,y,z € F, we have z - (y+ 2) =z -y+z- 2 (distributivity);

there are 0,1 € F with 0 # 1 such that forallz € F, we have s+ 0=z and z-1 ==z

(existence of neutral elements);

for each = € T, there is —x € F such that x + (—z) = 0, and for each x € F\ {0},

there is 27! € F such that z - 271 =1 (existence of inverse elements).

Items (F1) to (F6) in Definition 1.1.1 re called the field azioms.
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For the sake of simplicity, we use the following shorthand notation:

TY =T Y;
r+y+z:=x+ (y+2);
xyz = x(yz);
r—y:=x+ (—y);
T zy ! (where y # 0);
Yy
L v (where n € N);
e
n times
20 = 1.

Ezamples. 1. Q, R, and C are fields.

2. Let F be any field then
F(X):= {p : p and ¢ are polynomials in X with coefficients in F and g # O}
q

is a field.

3. Define + and - on {A, B} through the following tables:

This turns {A, B} into a field as is easily verified.

4. Define 4+ and - on {0, &, V}:

EXIENEA |- [ol+[9]
olols]v] ., [o]ololo
» %90 NEIRE
IVAEVERGRN | ClO|19 | &

This turns {O), &, ©} into a field as is also routinely verified.

5. Let
F[X] := {p: pis a polynomial in X with coefficients in F}.

Then F[X] is not a field because, for instance, X has no multiplicative inverse.

6. Both Z and N are not fields.
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There are several properties of a field that are not part of the field axioms, but which,

nevertheless, can easily be deduced from them:

1. The neutral elements 0 and 1 are unique: Suppose that both 0; and 0y are neutral

elements for +. Then we have
01 =01 + 02, by (F5),
= 02 + 01, by (F2),
= 0Oq, again by (F5).
A similar argument works for 1.

2. The inverses —z and 2~ ! are uniquely determined by x: Let x # 0, and let y, 2z € F

be such that zy = zz = 1. Then we have
y=y(zz), by (F5)and (F6),
= (yx)z, by (F3),
— (wy)z by (F2),
= z(xy), again by (F2),
=z, again by (F5) and (F6).

A similar argument works for —zx.

3. z0=0 for all z € F.

Proof. We have

20 =z(0+0), by (F5),
= 20 + 20, by (F4).
This implies

0=20—20, by (F6),

= (20 4 20) — =0,
= 20 + (20 — 20), by (F3),
= z0,
which proves the claim. ]

4. (—x)y = —xy holds for all z,y € F.

Proof. We have
zy+ (—2)y = (z —x)y = 0.
Uniqueness of —zy then yields that (—z)y = —xy. O
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5. For any x,y € I, the identity

holds.

6. If zy =0, then x =0 or y = 0.
Proof. Suppose that z # 0, so that 2! exists. Then we have
y=ylza™) = (yx)z~' =0,
which proves the claim. O

Of course, Definition 1.1.1 is not enough to fully describe R. Hence, we need to take

properties of R into account that are not merely arithmetic anymore:

Definition 1.1.2. An ordered field is a field O together with a subset P with the following

properties:
(01) for z,y € P, we have z +y € P as well;
(02) for z,y € P, we have xy € P, as well;
(03) for each = € O, exactly one of the following holds:
(i) =z € P
(ii) = = 0;
(ili) —z € P.
Again, we introduce shorthand notation:
r<y &= y—x€P;
r>y = y<u;
r<y &= x<yorz=y;
T2y =

T>yorx=y.

As for the field axioms, there are several properties of ordered fields that are not part
of the order azioms (Definition 1.1.2(01) to (0O3)), but follow from them without too

much trouble:

1. z <y and y < z implies = < z.

Proof. If y—x € P and z—y € P, then (O1), implies that z—z = (z—y)+(y—z) € P

as well. ]
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2. If x <y, then x + z < y 4+ 2z for any z € Q.
Proof. This holds because (y + z) — (x +2) =y —z € P. O

3. x <y and z < u implies that x + z < y + w.

4. x <y and t > 0 implies tax < ty.
Proof. We have ty — tx = t(y — z) € P by (02). O

5. 0 <z <yand 0 <t < simplies tr < sy.

6. x <y and t < 0 implies tx > ty.

Proof. We have
tr —ty=t(r—y)=—tly—xz) € P

because —t € P by (03). O
7. 22 > 0 holds for any x # 0.

Proof. If x > 0, then 2 > 0 by (02). Otherwise, —z > 0 must hold by (03), so
that 22 = (—2)2 > 0 as well. O

In particular 1 =12 > 0.

8. 271 >0 for each = > 0.

Proof. This is true because

holds. =
9. 0 <z <y implies y~' < z~1.
Proof. The fact that 2y > 0 implies that 271y~ = (2y)~! > 0. It follows that

1

y =z ly ) <yl ly ) =2"!

holds as claimed. O

Examples. 1. Q and R are ordered.

2. C cannot be ordered.



CHAPTER 1. TOPOLOGY IN R¥ 6

Proof. Assume that P C C as in Definition 1.1.2 does exist. We know that 1 € P.
On the other hand, we have —1 = i?> € P, which contradicts (O3). O

3. {4, B} cannot be ordered.

Proof. Assume that there is a set P as required by Definition 1.1.2. Since B € P
and A ¢ P, it follows that P = {B}. But this implies A = B+ B € P contradicting
(0O1). O
Similarly, it can be shown that {O), &, O} cannot be ordered.

The last two of these examples are just instances of a more general phenomenon:

Proposition 1.1.3. Let O be an ordered field. Then we can identify the subset {1,1 +
1,1+1+1,...} of O with N.

Proof. Let n,m € N be such that

14 +1=1+---+1.

TV
n times m times

Without loss of generality, let n > m. Assume that n > m. Then

O=1+4-41-1+-41=14---41>0

TV TV
n times m times n — m times

must hold, which is impossible. Hence, we have n = m. O

Hence, if O is an ordered field, it contains a copy of the infinite set N and thus has to
be infinite itself. This means that no finite field can be ordered.

Both R and Q satisfy (O1), (02), and (O3). Hence, (F1) to (F6) combined with (O1),
(02), and (0O3) still do not fully characterize R.

Definition 1.1.4. Let O be an ordered field, and let @ # .S C Q. Then C € Q is called:
(a) an upper bound for S if x < C for all x € S (in this case S is called bounded above);
(b) a lower bound for S if x > C for all z € S (in this case S is called bounded below).
If S is both bounded above and below, we simply call it bounded.

Ezample. The set
{geQ:g>0and ¢*> <2}

is bounded below (by 0) and above by 2022.

Definition 1.1.5. Let O be an ordered field, and let @ # S C O. Then:



CHAPTER 1. TOPOLOGY IN R¥ 7

(a) an upper bound for S is called the supremum of S (in short: supS) if sup S < C for
every upper bound C for S;

(b) a lower bound for S is called the infimum of S (in short: inf S) if inf S > C for every
lower bound C for S.

Remark. 1t is easy to see that, whenever a set has a supremum or an infimum, then they
are unique.
Ezample. The set

S:={qeQ:-2<g<3}

is bounded such that inf S = —2 and sup S = 3. Clearly, —2 is a lower bound for S and
since —2 € S, it must be inf S. Clearly, 3 is an upper bound for S; if € Q were an upper
bound of S with r < 3, then

1 1

§(T+3) > §(T+r):r
can not be in S anymore whereas

Loy <i@4s) =3

“(r - _

2 2

implies the opposite. Hence, 3 is the supremum of S.

Do infima and suprema always exist in ordered fields? We shall soon see that this is

not the case in Q.

Definition 1.1.6. An ordered field O is called complete if sup S exists for every @ # S C
O which is bounded above.

We shall use completeness to define R:
Definition 1.1.7. R is a complete ordered field.

It can be shown that R is the only complete ordered field (see Exercise 1.2.1 below)
even though this is of little relevance for us: the only properties of R we are interested in
are those of a complete ordered field. From now on, we shall therefore rely on Definition
1.1.7 alone when dealing with R.

Here are a few consequences of completeness:
Theorem 1.1.8. R is Archimedean, i.e., N is not bounded above.

Proof. Assume otherwise. Then C := sup N exists. Since C — 1 < C, it is impossible that
C' — 1 is an upper bound for N. Hence, there is n € N such that C'—1 < n. This, in turn,
implies that C < n 4 1, which is impossible. O
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Corollary 1.1.9. Let € > 0. Then there is n € N such that 0 < % < €.

Proof. By Theorem 1.1.8, there is n € N such that n > e~!. This yields % < €. O

Ezample. Let

n
Then S is bounded below by 0 and above by 1. Since 0 € S, we have inf S = 0.

Assume that supS < 1. Let € := 1 —supS. By Corollary 1.1.9, there is n € N with
0< % < €. But this, in turn, implies that

S::{l—lanN}CR

1
l1——>1—e=supb,

n
which is a contradiction. Hence, sup S = 1 holds.
Corollary 1.1.10. Let z,y € R be such that x < y. Then there is ¢ € Q such that
r<qg<y.
Proof. By Corollary 1.1.9, there is n € N such that % < y—x. Let m € Z be the smallest
integer such that m > nzx, so that m — 1 < nx. This implies

nr<m<nz+1<nz+n(y—z)=ny.

Division by n yields z < 7+ < y. O

Theorem 1.1.11. Let x € R be such that x > 0. Then there is a unique y > 0 such that
y? = . Moreover, if v € N andy ¢ N, then y ¢ Q.

Proof. To see that y is unique, suppose that there are yi,y2 > 0 such that y? = y3 = .
It follows that
O=2—z=yf —45 = (11 — v2)(v1 + ),
so that y1 —yo =0or y1 +y2 = 0. If y1 —yo = 0, then y1 = yo. If y1 + yo = 0, then
y1=0=y>.
To prove the existence, set

S:z{zER:zZOanszSx}.

Then S is non-empty and bounded above, so that y := sup .S exists. Clearly, y > 0 holds.
We claim that y? = .

Assume that y? < 2. Choose n € N such that 1 < g;j’i Then

1\?2 2 1
<y+> =yt
n n n

1
<yt -2+ 1)
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holds, so that y cannot be an upper bound for S. Hence, we have a contradiction, so that
y2 > z must hold.
Assume now that y? > z. Choose n € N such that % < 21y (y? — ), and note that

for all z € S. This, in turn, implies that y — % > z for all z € S. Hence, y — % <y is an
upper bound for S, which contradicts the definition of sup S.

All in all, y? = z must hold.

Suppose now that z € N, and assume that y € Q \ N. Let m,n € N be such that

y = ', and suppose without loss of generality that gcd(n,m) = 1. Let p1,...,pr and
qi, - --,qe be each pairwise distinct primes such that

m:p’fl---p’k"“ and n=gq"--q
for suitable p1, ..., g, v1,..., v €EN. As x =% = 77’:—22, it follows that

q%Vl e q?”‘x — 2y =m2 = p%m ...pzﬂk‘

Uniqueness of the prime factorization of n?z then yields {q1,...,q} C {p1,...,pr}, which
contradicts ged(m,n) = 1. O

The proof of this theorem shows that QQ is not complete: the set set
{g€Q:q¢>0and ¢* <2}

is bounded above, but has no supremum in Q, for, if there were such a supremum, it
would be a rational number ¢ > 0 with ¢> = 2. But the theorem asserts that no such
rational number can exist.

For a,b € R with a < b, we introduce the following notation:

[a,b] :={x € R:a <z < b} (closed interval );
(a,b) :={reR:a<z<b} (open interval );
(a,b :={reR:a<z<b}

[a,b) ={r e R:a <z <b}.
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Theorem 1.1.12 (Nested Interval Property). Let I, Is, I3, . .. be a decreasing sequence of
closed intervals, i.e., I, = [ay, by] such that I41 C I, for alln € N. Then (oo, I, # .
Proof. For all n € N, we have

a; < <ap <apgr << Kby <0y <--- < by

Hence, each by, is an upper bound for {a, : n € N} for any m € N. Let = := sup{a,, :
n € N}. Hence, a, < x < b, holds for all n € N, i.e., z € I, for all n € N and thus

[eS)
x € (ol In. 0
e = F—------- = = =
@ a s by b b,

Figure 1.1: Nested Interval Property

The theorem becomes false if we no longer require the intervals to be closed:

Ezample. Forn € N, let [, := (0, %], so that Ip,41 C I,,. Assume that thereise € (2, In,
so that € > 0. By Corollary 1.1.9, there is n € N with 0 < % < €, s0 that € ¢ I,. Thisis a

contradiction.

Definition 1.1.13. For x € R, let

z, if x>0,
|z := .
—z, ifz <0.

Proposition 1.1.14. Let x,y € R, and let t > 0. Then the following hold:
(i) |[x|=0 <= z=0;

(i) | == = |z[;

(i) |zy| = [=[lyl;

(iv) |z| <t <= —t<z<t;

v) |z +y| <|z|+ |y (triangle inequality);

(vi) [z = [yll < |z —yl.

Proof. (i), (ii), and (iii) are routinely checked.

(iv): Suppose that |z| < t. If 2 > 0, we have —t < x = |z| < t; for < 0, we have
—x > 0 and thus —t < —x < ¢. This implies —t < x < t. Hence, —t < x <t holds for any
x with |z| <t
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Conversely, suppose that —t < z < t. For # > 0, this means z = |z| < t. For z <0,
the inequality —t < x implies that |z| = —x < t.
(v): By (iv), we have

—lel <z <lz| and |yl <y <yl
Adding these two inequalities yields
—(lz| + [y) <z +y < |z + Jyl.

Again by (iv), we obtain |z + y| < |z| + |y| as claimed.
(vi): By (v), we have

|| =z —y+y| < |z —y|+ ]yl

and hence
2] = ly| < |z —yl.
Exchanging the roles of x and y yields
—(z] = lyl) = Iyl = |z < ly — 2| = [z —y],
so that
|| = [yl < |o -y
holds by (iv). O

Fxercises

1. Let 4+ and - be defined on {#,t,(O, A} through:

[+[aftfofa] [-[alt]O]a]
afali]O]A alalalala
it ]olale AN
oflola]a]t OllalolaloO
Alalalt]o Alolalol+

Do these turn {#,T,(O, A} into a field?

2. Show that
Q [\/ﬂ = {p+q\/§:p,q€ Q},
with + and - inherited from R, is a field. (Hint: Many of the field axioms are true
for Q [ﬂ} simply because they are true for R; in this case, just point it out and

don’t verify the axiom in detail.)
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{1 2)ee

be equipped with addition and multiplication of matrices. Show that F is a field.

3. Let

(Hint: Many properties of a field follow immediately from corresponding properties

of addition and multiplication of matrices.)
4. Let O be an ordered field, and let z,y, z,u € O:

(a) suppose that z < y and z < u, and show that x + z < y + u;

(b) suppose that 0 < x <y and 0 < z < u, and show that zz < yu.

You may use the axioms of an ordered field and all the properties that were derived

from them in class.
5. Let @ # S C R be bounded below, and let —S := {—x : x € S}. Show that:

(a) —S is bounded above.
(b) S has an infimum, namely inf S = —sup(—25).

6. Find sup S and inf .S in R for

S:z{(—l)”(l—i):neN}.

Justify, i.e., prove, your findings.

7. Let S, T C R be non-empty and bounded above. Show that
S+T:={z+y:zeS,yecT}
is also bounded above with

sup(S+T)=supS +sup7T.

8. An ordered field O is said to have the nested interval property if (\,— I, # @ for

each decreasing sequence I1 D Is D I3 D -+ of closed intervals in Q.

Show that an Archimedean ordered field with the nested interval property is com-

plete.

9. Let 2,y € R with < y. Show that there is z € R\ Q such that z < z < y.
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1.2 Functions

In this section, we give a somewhat formal introduction to functions and introduce the
notions of injectivity, surjectivity, and bijectivity. We use bijective maps to define what
it means for two (possibly infinite) sets to be “of the same size” and show that N and Q

have “the same size” whereas R is “larger” than Q.
Definition 1.2.1. Let A and B be non-empty sets. A subset f of
Ax B:={(a,b):a€ A, be B}

is called a function, mapping map if, for each x € A, there is a unique y € B such that

(z,y) € f.
For a function f C A X B, we write f: A — B and, for (z,y) € A x B,
y=[f(z) = (z,y) el

We then often write
fiA—= B, =~ f(x).

The set A is called the domain of of f, and B is called its co-domain.

Definition 1.2.2. Let A and B be non-empty sets, let f: A — B be a function, and let
X CAand Y C B. Then

f(X):={f(x) ;2 X} C B
is the image of X (under f), and
fFAY)={zecA: f(x)eY}CA
is the inverselimage of Y (under f). The set f(A) is called the range of f.

Ezample. Consider sin: R — R, i.e., {(z,sin(z)) : « € R} C R x R. Then we have:

sin(R) = [-1,1];
sin([0,7]) = [0, 1];
sin~'({0}) = {n7 :n € Z};
smnt{reR:z>7}) =a.

Definition 1.2.3. Let A and B be non-empty sets, and let f: A — B be a function.
Then f is called:

(a) injective if f(x1) # f(x2) whenever x1 # xo for x1, 29 € A;
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(b) surjective if f(A) = B;
(c) bijective if it is both injective and surjective.

Ezamples. 1. The function
fi:R—>R, z— 22

is neither injective nor surjective, whereas

for [0,00) =R, z—z
N——
={zeR:xz>0}
is injective, but not surjective, and

f3:]0,00) = [0,00), s z?

is bijective.
2. The function
sin: [0,27] — [-1,1], =z~ sin(z)
is surjective, but not injective.

Remark. If f: A — B is bijective, the map
B— A, f(z)—=x

is well defined and called the inverse map and denoted by f~1: A — B.

For finite sets, it is obvious what it means for two sets to have the same size or for
one of them to be smaller or larger than the other one. For infinite sets, matters are more

complicated:

Ezample. Let Ny := N U {0}. Then N is a proper subset of Ny, so that N should be
“smaller” than Ny. On the other hand,

No—= N, n—=n+1

is bijective, i.e., there is a one-to-one correspondence between the elements of Ny and N.

Hence, Ny and N should “have the same size”.
We use the second idea from the previous example to define what it means for two

sets to have “the same size”:

Definition 1.2.4. Two sets A and B are said to have the same cardinality—in symbols:
|A| = | B|—if there is a bijective map f: A — B.

Ezamples. 1. If A and B are finite, then |A| = |B| holds if and only if A and B have

the same number of elements.
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2. By the previous example, we have |[N| = |Ny|—even though N is a proper subset of
Np.
3. The function
fIN—=Z, nw—(-1)" LgJ
is bijective, so that we can enumerate Z as {0,1,—1,2,—2,...}. As a consequence,

IN| = |Z| holds even though N C Z.

4. Let ay,a9,as,... be an enumeration of Z. We can then write Q as a rectangular

scheme that allows us to enumerate Q. Omitting duplicates, we conclude that

Q| = [NJ:

al Clz a3 a4 as

ar /a /aa a as
2 2 2
a a

3 3 3
ar @ a ay as
4 4 4 4 4
a, @ a ay as

Figure 1.2: Enumeration of Q

S

5. Let a < b. The function

filab] = 0,1, 2 —2

b—a
is bijective, so that |[a, b]| = [0, 1]|.
Definition 1.2.5. A set A is called countable if it is finite or if |A| = |N|.

A set A is countable, if and only if we can enumerate it, i.e., A = {a1, as,as, ...} where
the sequence a1, as, as, ... may break off after a finite number of terms.
As we have already seen, the sets N, Ny, Z, and Q are all countable. But not all sets

are:
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Theorem 1.2.6. The sets [0,1] and R are not countable.

Proof. We only consider [0, 1] (this is enough because it is easy to see that a an infinite
subsets of a countable set must again be countable).

Each z € [0, 1] has a decimal expansion
Tr = 0.616263--' (1.1)

with €1, €2,€3,... € {0,1,2,...,9}.
Assume that there is an enumeration [0,1] = {a1, a2, as,...}. Define x € [0,1] using
(1.1) by letting, for n € N,

6, if the n-th digit of a, is 7,
€n 1=
" 7, if the n-th digit of a,, is not 7

Let n € N be such that x = a,,.

Case 1: The n-th digit of a,, is 7. Then the n-th digit of x is 6, so that a,, # x.

Case 2: The n-th digit of a, is not 7. Then the n-th digit of x is 7, so that a, # =z,
too.

Hence, z ¢ {a1,as,as, ...}, which contradicts [0,1] = {aq1, a2, as,...}. O

The argument used in the proof of Theorem 1.2.6 is called Cantor’s Diagonal Argu-

ment.

Fxercises

1. Let R be a complete ordered field, and let 1p: Q — R be the canonical embedding.
Show that
R R, 2w sup{io(g) 1 ¢ €Q, ¢ <z}

defines a bijective map satisfying:
o sz +y)=1z)+(y) for z,y € R;
o (zy) = (x)(y) for z,y € R;

o (z)>0if x> 0.

2. For any set S, its power set B(S) is defined to be the set consisting of all subsets of
S. Show that there is no surjective map from S to B(S). (Hint: Assume that there
is a surjective map f: S — PB(S) and consider the set {x € S :z ¢ f(x)}.)
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1.3 The Euclidean Space RY

Recall that, for any sets Si, ..., Sn, their (N-fold) Cartesian product is defined as
Six - xSy :={(s1,...,sn):s5€ S for j=1,...,N}.

The N-dimensional Fuclidean space is defined as

RY:=Rx - xR={(z1,...,2x) : 21,...,25 € R}.

N times
An element z := (21,...,zy) € RY is called a point or vector in RV ; the real numbers
Z1,...,xN € R are the coordinates of x. The vector 0 := (0,...,0) is the origin or zero

vector of RN, (For N = 2 and N = 3, the space RY can be identified with the plane and
three-dimensional space of geometric intuition.)
We can add vectors in RY and multiply them with real numbers: For two vectors

r=(21,...,2N),y:= (y1,...,yn) € RY and a scalar A € R define:

x4y :=(@x1+y1, ..., eN +YnN) (addition);

Ax = (Ax1,...,A\xN) (scalar multiplication).

The following rules for addition and scalar multiplication in RY are easily verified:

r+y=y+ux;
(+y)+z=2+(y+2);
0+ x=uz;
z+ (—1)z = 0;
lz = a;
O0x = 0;

Apz) = (Ap);
Az +y) = Az + Ay;
A+ p)x = Az + pz.

This means that RY is a vector space.

Definition 1.3.1. The dot product on RY is defined by

N
-y = ijyj
7j=1

for x = (21,...,2n),y:= (y1,...,yn) € RV,

Proposition 1.3.2. The following hold for all z,y,z € RN and X € R:
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(i) z-x>0;

(i) z-2=0 <= a=0;
(iil) -y =y-x;

(iv) z-(y+z2)=x-y+z-2;
(v) (Az) -y =Xz y) =2z Xy

Definition 1.3.3. The (Euclidean) norm on RY is defined by

o] == vaz =

for x = (x1,...,2N).

For N = 2,3, the norm ||z of a vector z € R" can be interpreted as its length. The
Euclidean norm on RY thus extends the notion of length in 2- and 3-dimensional space,

respectively, to arbitrary dimensions.

Lemma 1.3.4 (Geometric versus Arithmetic Mean). For z,y > 0, the inequality

1
VY < §<3«" + )
holds with equality if and only if x = y.

Proof. We have
22 —2zy+ oy =(z—y)*>0 (1.2)

with equality if and only if x = y. This yields

1
vy < zy+ (2" = 22y +y°) (1.3)
UVRE UPTIE R
ST Tt Ty
1, 1 1,
—Zaz +2:1:y+4y
1
= 1(332 +2zy +4%)
1
:Z(JUJFZ/)Q-

Taking roots yields the desired inequality. It is clear that we have equality if and only if
the second summand in (1.3) vanishes; by (1.2) this is possible only if x = y. O
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Theorem 1.3.5 (Cauchy-Schwarz Inequality). We have
N
@yl <D lagysl < lllllly]
j=1
forx = (21,...,2x),y:= (y1,...,yn) € RV,
Proof. The first inequality is clear due to the triangle inequality in R.
If ||z]] = 0, then z; = --- = zx = 0, so that Z;VZI |zjy;| = 0; a similar argument
applies if ||y|| = 0. We may therefore suppose that ||z||||y|| # 0. We then obtain
N N 2 2
Z B2 :Z (%) <?/J>
= =iyl = V\dlel/
N z; \? Yj 2
< - <J> + <]> , by Lemma 1.3.4,
23 |\elt) ol
N N
1] 1 , 1 )
— — RN x5 _|- J— y
2 !3322; ’ HMPZ_; ’
j= Jj=
L[l ot
2 [ll=l  llyl?
=1
Multiplication by ||z||||ly|| yields the claim. O

Proposition 1.3.6 (Properties of || - ||). For z,y € RN and A € R, we have:
(i) [l=[| = 0;
(i) ||z]| =0 <= x=0;
(i) [[Az]l = [A[ll]l;
(iv) llz +yll < llzll + llyll  (triangle inequality);
) Mzl =Nyl < llz = yll-
Proof. (i), (ii), and (iii) are easily verified.
For (iv), note that
lz +yl* = (z+y) - (z +)
=x-rx+x-y+ty- rx+y-y
= |l2ll* + 22 -y + [ly|I*

< Jl2ll? + 2llallllyll + Iyl by Theorem 1.3.5,
= (lell + llyl)>.
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Taking roots yields the claim.
For (v), note that—by (iv) with z and y replaced by x — y and y—

[zl = 1l(z = y) + yll < llz =yl + lyl,

holds, so that
[zl = [lyll < [z =yl

Interchanging = and y yields
Iyl = llzll < lly — =l = [[= =y,

so that
=llz =yl < llzll = llyll < llz = yll.
This proves (v). O

We now use the norm on R to define two important types of subsets of RY:
Definition 1.3.7. Let 29 € RY and let r > 0. Then:

(a) the open ball in RY centered at x¢ with radius r is the set

B (z0) == {z € RN : ||z — x| < r}.

(b) the closed ball in RN centered at xq with radius r is the set

B[zo] == {z e RN : ||z — 20| < 7).

For N =1, B,(z¢) and B, [xo] are nothing but open and closed intervals, respectively,
namely

B, (xg) = (xg —ryxo+ 1) and By lxo] = [xo — ry 0 + 7).

Moreover, if a < b, then
(a,b) = (xg — ryxo + 1) and [a,b] = [xo — 1,20 + 7]

holds, with zg := 3(a +b) and 7 := (b — a).

For N = 2, B,(z¢) and B,[zo] are just disks with center x¢ and radius r, where the
circle is not included in the case of B,(zg), but is included for B [xo].

Finally, if N = 3, then B,(xo) and B,[z¢] are balls in the sense of geometric intuition.
In the open case, the surface of the ball is not included, but it is included in the closed
ball.

Definition 1.3.8. A set C C RY is called conver if tx + (1 —t)y € C for all 2,y € C and
t € [0,1].
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In plain language, a set is convex if, for any two points x and y in the C, the whole

line segment joining x and y is also in C:

Figure 1.3: A convex subset of R?

Figure 1.4: Not a convex subset of R?

Proposition 1.3.9. Let 29 € RY, and let r > 0. Then B,(x¢) and B,[xo] are convex.

Proof. We only prove the claim for B, (zp) in detail.
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Let 2,y € By(zo) and t € [0,1]. Then we have

[tz + (1 = )y — xol| = [[t(x — zo) + (1 = 1) (y — wo)||
< tllz = ol + (1 = #)lly — ol

<tr+(1—1t)r (1.4)
= ’]"7
so that tx + (1 — t)y € B,(zo).
The claim for B,[zo] is proved similarly, but with < instead of < in (1.4). O

Let I1,...,In C R be closed intervals, i.e., I; = [a;j, b;] where aj < bj for j =1,...,N.
Then I :=I; x --- x Iy is called a closed interval in RY. We have

I={(z1,...,2n) €ERY :a; <x; <bjfor j=1,...,N}.

For N = 2, a closed interval in RY, i.e., in the plane, is just a rectangle. For N = 3, a

closed interval in R is a rectangular box.

Theorem 1.3.10 (Nested Interval Property in RY). Let Iy, I, I3,... be a decreasing
sequence of closed intervals in RY. Then Mooy I, # @ holds.

Proof. Each interval I, is of the form
In=1,1 x---x1IpnN

with closed intervals I, 1,...,1, v in R. For each j =1,..., N, we have
L;jD>Il;DI3;D: -,

i.e., the sequence Iy j,I>j, I3 j,... is a decreasing sequence of closed intervals in R. By
Theorem 1.1.12, this means that ()2, I,; # &, i.e., there is z; € I, ; for all n € N.
Let x := (z1,...,2n). Then x € I, X --- x I, y holds for all n € N, which means that

z € oy In. O
Exercises
1. For x = (z1,...,zn) € RV, set
|1 == |z1]| + - - + |zn]| and |%]|oo := max{|z1],...,|zN]|}

(a) Show that the following are true for j = 1,00, 2,y € RY and A € R:
(i) [|z|l; > 0 and ||z||; = 0 if and only if = 0;
(i) [[Azll; = [Alllll5;
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(i) [l +yll; < lll; + llyll;-
(b) For N = 2, sketch the sets of those = for which ||z|; < 1, [Jz|]| < 1, and
[2]loo < 1.

(c) Show that
lzlli < VN||z]| < N [|z]|o0

for all x € RV,

2. Let z,y € RY. Show that |z - y| = ||z|||y|| holds if and only if z and y are linearly
dependent.

3. Show that
lz+yll> = l=|*+ Iyl <= z-y=0

for any z,y € RY.

4. Let C be a family of convex sets in RY. Show that Ncec C is again convex. Is

Ucec € necessarily convex?

1.4 Topology

The word topology derives from the Greek and literally means “study of places”. In
mathematics, topology is the discipline that provides the conceptual framework for the

study of continuous functions.

Definition 1.4.1. Let g € RY. A set U C RY is called a neighborhood of g if there is
€ > 0 such that B.(zg) C U.

B¢(xo)

Figure 1.5: A neighborhood of xg, but not of Zg

Examples. 1. If zg € RV is arbitrary, and r > 0, then both B,(z¢) and B,[z¢] are
neighborhoods of x.
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2. The interval [a,b] is not a neighborhood of a: To see this assume that is is a
neighborhood of a. Then there is € > 0 such that

Be(a) = (a — €,;a+¢€) C [a,b],

which would mean that a — € > a. This is a contradiction.
Similarly, [a,b] is not a neighborhood of b, [a,b) is not a neighborhood of a, and
(a,b] is not a neighborhood of b.

Definition 1.4.2. A set U C RY is open if it is a neighborhood of each of its points.

Examples. 1. @ and RY are trivially open.

2. Let 29 € RY, and let » > 0. We claim that B,(xg) is open. Let 2 € B,.(xg). Choose
e <r—|lz—uxo, and let y € Be(x). It follows that

ly = zoll < [ly — 2| +|lz — 2o
N——
<e
<r = |z — ol + [lz — @0l

:’)";

hence, B¢(x) C By(xo) holds.

Br(xo)

Figure 1.6: Open balls are open

In particular, (a,b) is open for all a,b € R such that a < b. On the other hand,

[a,b], (a,b], and [a,b) are not open.



CHAPTER 1. TOPOLOGY IN R¥ 25

3. The set
S:={(z,y,2) eR3: >+ 22 =1,z >0}

is not open.

Proof. Clearly, xo := (1,0,1) € S. Assume that there is € > 0 such that B¢(xzg) C S.
It follows that

<1,0, 1+ %) € B.(z) C S.

On the other hand, however, we have

62
1 7) > 1,
(145

so that (1, 0,1+ %) cannot belong to S. O

To determine whether or not a given set is open is often difficult if one has nothing
more but the definition at one’s disposal. The following two hereditary properties are

often useful:
Proposition 1.4.3. The following are true:
(i) if U,V C RN are open, then UNV is open;
(ii) if I is any index set and {U; : i € I} is a collection of open sets, then |J;c; U; is open.

Proof. (i): Let 9 € U N V. Since U is open, there is ¢; > 0 such that B, (z9) C U, and
since V' is open, there is €2 > 0 such that Be,(zg) C V. Let € := min{e;, e2}. Then

Be(xg) C Bey (x9) N Bey(xo) CUNV

holds, so that U NV is open.
(ii): Let 29 € U := [J;; Us. Then there is ig € I such that x¢ € U;,. Since Uy, is open,
there is € > 0 such that Be(xo) C U;, C U. Hence, U is open. ]

Ezample. The subset |2, B ((n,0)) of R? is open because it is the union of a sequence

of open sets.

Definition 1.4.4. A set F c RY is called closed if
FC=RV\F:={zeR":z¢F}
is open.

Ezamples. 1. @ and RY are (trivially) closed.
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2. Let 29 € RV, and let 7 > 0. We claim that B,[z] is closed. To see this, let
x € Bylxgl¢, ie., ||z — zg|| > r. Choose € < ||z — xg|| — r, and let y € Bc(z). Then

we have
ly = @oll = [lly — [l = |z — zol|
2 |z = ol — lly — x|l
> |lz = woll = flz — ol + 7
=r,

so that Be(z) C Bylzol¢. It follows that B, [xo]¢ is open, i.e., B,[zo] is closed.

Figure 1.7: Closed balls are closed

In particular, [a,b] is closed for all a,b € R with a < b.

3. For a,b € R with a < b, the interval (a, b] is not open because (b —¢,b+ ¢€) Z (a, b
for all € > 0. But (a,b] is not open either because (a —€,a+¢€) ¢ R\ (a,b].

Proposition 1.4.5. The following are true:

(i) if F,G C RN are closed, then F UG is closed;

(ii) if I 4s any index set and {F; : i € I} is a collection of closed sets, then (o F; is

closed.
Proof. (i): Since F¢ and G are open, so is N G° = (F U G)¢ by Proposition 1.4.3(i).
Hence, F'U G is closed.
(ii): Since FY is open for each i € I, Proposition 1.4.3(ii) yields the openness of

UFr = (ﬂF)

1€l i€l
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which, in turn, means that (), F; is closed. O

Ezample. Let x € RY. Since {z} =N
if £1,...,2, € RV, then

+~0 Br[z], it follows that {z} is closed. Consequently,

{z1,...,2n} ={z1}U---U{zn}

is closed.

Arbitrary unions of closed sets are, in general, not closed again.

Definition 1.4.6. A point € RY is called a cluster point of S C R if each neighborhood
of x contains a point y € S\ {z}.

Ezamples. 1. Let z € R. Then, for every € > 0, the open interval (z — e,z + €) contains

a rational number different from x. Hence, every real number is a cluster point of

Q.

2. Let S ¢ RY be finite. We claim that S has no cluster points. This is clear if S = @,
so we can suppose without loss of generality that S # @. Let z € RY. If 2 ¢ S,
set € ;= min{|ly —z| : y € S}, so that € > 0 and Be(x) NS = @; if z € S, set
e:=min{|ly —z|| : y € S\ {z}}, so that € > 0 and Be(x) NS = {z}. In either case,

x cannot be a cluster point of S.

S::{lzneN}.
n

Then 0 is a cluster point of S. Let € R be any cluster point of S, and assume that

x # 0. IfoS,itisoftheformx:%forsomeneN. Lete::%—n%rl,sothat

Be(z) NS = {z}. Hence, z cannot be a cluster point. If x ¢ S, choose ng € N such
that 7710 < % This implies that % < % for all n > ng. Let

3. Let

. x 1
e::mln{|2|,]1x,..., no_lx}>0.
It follows that ) )
1,5,. S ¢ B.(z)
because ‘:r—%‘ >efork=1,...,n9— 1. For n > ng, we have ‘%—x‘ Z%‘ > €.

All in all, we have % ¢ B(x) for all n € N. Hence, 0 is the only accumulation point
of S.

Definition 1.4.7. A set S C R" is bounded if S C B,[0] for some r > 0.

Theorem 1.4.8 (Bolzano-Weierstra8 Theorem). Every bounded, infinite subset S C RY

has a cluster point.
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Proof. Let r > 0 such that S C B,[0]. It follows that

ScC[-rr]x-x[-rr]=1.

-~

N times

We can find 2V closed intervals Ifl), . ,Isz) such that I} = UJQZI Ifj), where

1= 1) x < 19)

Since S is infinite, there must be jo € {1,...,2"} such that SN Il(jo) is infinite. Let
Iy =1,

Inductively, we obtain a decreasing sequence I, Io, I3, ... of closed intervals with the

for j =1,...,2" such that each interval I{]g has length 7.

following properties:
(a) S NI, is infinite for all n € N;
(b) for I, = In1 % --- x I, y and
¢(I,) = max{length of I,, j : j =1,...,N},

we have

((Lysr) = %K(In) - ié([n,l) St —_——

o

1
I® 1@ !

Figure 1.8: Proof of the Bolzano—Weierstral Theorem

From Theorem 1.3.10, we know that there is z € (), .

We claim that x is a cluster point of S.
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Let € > 0. For y € I,, note that

max{la; —y;|:j=1,... . N} <lIn) = 575

and thus

2

N
lz =yl = Doy — w5l
j=1

VN max{|z; —y;|:5=1,...,N}
VNr

— 2n—2 '

IN

Choose n € N so large that ‘Q/F_Q < e. It follows that I,, C Bc(z). Since S N I, is infinite,

Be(x) NS must be infinite as well; in particular, B¢(z) contains at least one point from

S\ {z}. O
Theorem 1.4.9. A set F C RY is closed if and only if it contains all of its cluster points.

Proof. Suppose that F is closed. Let z € RY be a cluster point of F' and assume that
x ¢ F. Since F° is open, it is a neighborhood of x. But F“ N F' = & holds by definition.

Suppose conversely that F contains its cluster points, and let z € RV \ F. Then zx is
not a cluster point of F. Hence, there is € > 0 such that B.(z) N F' C {x}. Since x ¢ F,
this means in fact that Be(z) N F' = @, i.e., Be(x) C F°. O

For our next definition, we first give an example as motivation:

Ezample. Let 29 € RY and let r > 0. Then
Spzo] := {x e RN : ||z — ]| = 7}

is the the sphere centered at z¢ with radius r. We can think of S,[z¢] as the “surface” of
B[]

Suppose that € Sy[zg], and let ¢ > 0. We claim that both Be(z) N By[zo] and
Be(x) N By [xo)¢ are not empty. For Bc(z) N By[z], this is trivial because S,[xo] C By[zo],
so that = € B.(z) N Bylxg]. Assume that B.(z) N B,[xo]® = &, i.e., Be(x) C By[zg]. Let
t > 1, and set y; := t(x — x0) + zo. Note that

lys — =l = [lt(z — x0) + xo — || = (¢ = 1) (z — zo)[| = (¢ = 1)r.
Choose t < 1+ £, then y; € Be(z). On the other hand, we have
lyz — @ol| = tllz — zol > r,

so that y; ¢ B,[zo]. Hence, Be(x) N By[zp]¢ is not empty.
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Define the boundary of By[xo] as
OB, [zo] := {z € RY : B.(x) N B,[xg] and B.(x) N B,[x(]® are not empty for each ¢ > 0}.

By what we have just seen, S,[zo] C 0B,[z¢] holds. Conversely, suppose that x ¢ S,[zo].
Then there are two possibilities, namely x € B,(xo) or x € B,[z]°. In the first case, we
find € > 0 such that B.(z) C B,(xg), so that B.(z) N B.[z9]¢ = &, and in the second
case, we obtain € > 0 with B.(xz) C B;[x0]%, so that Be(z) N By[zo] = @. It follows that
x ¢ 0By[xo).

All in all, OB, [zo] is Sy[zo].

This example motivates the following definition:

Definition 1.4.10. Let S ¢ RY. A point 2 € RY is called a boundary point of S if
B(z) NS # @ and B(x) NS¢ # & for each € > 0. We let

98 := {z € RV : z is a boundary point of S}
denote the boundary of S.

Ezamples. 1. Let 2o € RV, and let » > 0. As for B,[xg], one sees that 9B, (xg) =
Sylxo].

2. Let z € R, and let € > 0. Then the interval (x — €,z 4 €) contains both rational and
irrational numbers. Hence, x is a boundary point of QQ. Since x was arbitrary, we
conclude that 0Q = R.

Proposition 1.4.11. Let S C RY be any set. Then the following are true:
(i) 05 = 0(5°);

(i) 9SNNS =@ if and only if S is open;

(iii) 0S C S if and only if S is closed.

Proof. (i): Since S = S, this is immediate from the definition.

(ii): Let S be open, and let z € S. Then there is € > 0 such that Bc(xz) C S, i.e.,
B.(z) NS¢ = @. Hence, x is not a boundary point of S.

Conversely, suppose that 9SNNS = &, and let z € S. Since B,(x) NS # & for each
r > 0 (it contains x), and since x is not a boundary point, there must be € > 0 such that
B (z) NS¢ =, ie., Bzx) CS.

(iii): Let S be closed. Then S¢ is open, and by (ii), 95°NS°¢ = @, i.e., 95° C S. With
(i), we conclude that 9S C S.

Suppose that 9S C S, i.e., SN S° = @. With (i) and (ii), this implies that S¢ is

open. Hence, S is closed. O
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Definition 1.4.12. Let S € RY. Then S, the closure of S, is defined as
S:=SuU{zx cRY :zis a cluster point of S}.

Theorem 1.4.13. Let S C RN be any set. Then:

(i) S is closed;

(ii) S is the intersection of all closed sets containing S;

(iii) S =SUdS.
Proof. (i): Let € RN\ S. Then, in particular, = is not a cluster point of S. Hence,
there is € > 0 such that Bc(z) NS C {z}; since x ¢ S, we then have automatically that
Be(x) NS = @. Since B((z) is a neighborhood of each of its points, it follows that no
point of B¢(x) can be a cluster point of S. Hence, Bc(x) lies in the complement of S.
Consequently, S is closed.

(ii): Let ' C RY be closed with S C F. Clearly, each cluster point of S is a cluster
point of F', so that

S c FU{z eR"Y :zis a cluster point of F} = F.

This proves that S is contained in every closed set containing S. Since S itself is closed,
it equals the intersection of all closed set containing S.

(iii): By definition, every point in 95 not belonging to S must be a cluster point of
S, so that SUAS C S. Conversely, let z € S and suppose that = ¢ S, i.e., z € S¢. Then,
for each € > 0, we trivially have B.(z) NS¢ # &, and since  must be a cluster point, we
have B.(z) NS # @ as well. Hence,  must be a boundary point of S. O

Ezxamples. 1. For g € R and r > 0, we have

Br(l'o) = Br(wo) U aBr(.’L'()) = Br(aﬁo) U S,«[x()] = B,«[xo].

2. As 0Q = R, we also have Q = R.

Remark. Theorem 1.4.13 suggests that the notions of cluster point and boundary point
of a set S are related, but they are not the same. For instance, given zg € RY and r > 0,
every point of B,[z] is a cluster point of B,[z¢] whereas 0B, [xo] = Sy[z¢]. On the other
hand, if 0 # S C RY is finite, it is easy to see that S = S whereas there are no cluster
points of S.

Definition 1.4.14. A point z € S C RY is called an interior point of S if there is € > 0
such that Be(x) C S. We let

int S :={z € S :z is an interior point of S}

denote the interior of S.
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Theorem 1.4.15. Let S C RN be any set. Then:

(i) int S is open and equals the union of all open subsets of S;
(ii) int S =5\08S.
Proof. For each x € int S, there is €; > 0 such that B, (z) C S, so that
int SC | J Be (). (1.5)
z€int S
Let y € RN be such that there is « € int S such that y € B, (z). Since B, (z) is open,
there is 0, > 0 with
Bs,(4) € Bo,(x) C 5.
It follows that y € int S, so that the inclusion (1.5) is, in fact, an equality. Since the right
hand side of (1.5) is open, this proves the first part of (i).
Let U C S be open, and let € U. Then there is ¢ > 0 such that B.(x) C U C S, so
that = € int S. Hence, U C int S holds.
For (ii), let € int S. Then there is € > 0 such that B.(z) C S and thus B.(z)NS¢ = @.
It follows that z € S\ 0S. Conversely, let = € S such that x ¢ 9S. Then there is € > 0
such that B.(z)NS = & or B.(z)NS® = &. Since x € B.(x)N.S, the first situation cannot
occur, so that Be(x) NS¢ = @, i.e., B(x) C S. It follows that x is an interior point of
S. O

Example. Let 2o € RV, and let » > 0. Then
int B, [xg] = B, [xo] \ Sy [xo] = BT(JZ())
holds.

Definition 1.4.16. An open cover of S C R¥ is a family {U; : i € I} of open sets in RY
such that S C U, Us.

Ezample. The family {B,(0) : » > 0} is an open cover for RY.

Definition 1.4.17. A set K C RY is called compact if every open cover {U; : i € I} of

K has a finite subcover, i.e., there are i1,...,7, € I such that
KcU,u---uU,.

Ezxamples. 1. Every finite set is compact.

Proof. Let S = {z1,...,2,} C RY, and let {U; : i € I} be an open cover for S,
ie., x1,...,2n € U Ui- For j =1,...,n, there is thus i; € I such that z; € Ui
Hence, we have

ScU,U---UUs,.
Hence, {U;,,---,U,;,} is a finite subcover of {U; : i € I}. O
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2. The open unit interval (0,1) is not compact.

Proof. For n € N, let U, := (%, 1). Then {U,, : n € N} is an open cover for (0, 1).
Assume that (0,1) is compact. Then there are ni,...,n; € N such that

(0,1) = Up, U+~ U Up,.

Without loss of generality, let ny < --- < ng, so that

1
(0,1) = Up, U+ UUp, = Uy, = <1>
Ny

which is nonsense. O
3. Every compact set K C RY is bounded.

Proof. Clearly, {B,(0) : > 0} is an open cover for K. Since K is compact, there
are 0 < ry < --- <ry, such that

K c B, (0)U---UB,,(0)=B,,(0),
which is possible only if K is bounded. O

Lemma 1.4.18. Every compact set K C RN is closed.

Proof. Let x € K¢. For n € N, let

1
Uy = {y eERYN : |y —z|| > n} = Bilx]°,
so that
oo
EcRY\ {2} = | J Un.
n=1
Since K is compact, there are nq < --- < ng in N such that
KcU,U---UUy,, =Up,.
It follows that
BL(‘%‘)CBL[.T]:UTC%CKC.
nE Tk
Hence, K¢ is a neighborhood of z. O

Lemma 1.4.19. Let K ¢ RY be compact, and let F C K be closed. Then F is compact.
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Proof. Let {U; : i € I} be an open cover for F. Then {U; : i € I} U {RY \ F} is an open
cover for K. Compactness of K yields i1, ...,4, € I such that

KcU,U---UU;,, URV\ F.
Since F N (RY\ F) = @, it follows that
FcU,U---UU,,.
Since {U; : i € I} is an arbitrary open cover for F', this entails the compactness of F. [J

Theorem 1.4.20 (Heine-Borel Theorem). The following are equivalent for K C RN :
(i) K is compact;
(ii) K is closed and bounded.

Proof. (i) = (ii) is clear (no unbounded set is compact, as seen in the examples, and
every compact set is closed by Lemma 1.4.18).
(ii) = (i): As K is bounded, there is r > 0 such that

K C B.(0) C [-r,r] x -+ X [—r,r] =t I1.

Since K is closed, it follows from Lemma 1.4.19 that K is compact if I is. It is therefore
enough to show that I; is compact.

Let {U; : i € I} be an open cover for I;, and assume that it does not have a finite
subcover.

As in the proof of the Bolzano—Weierstrafl Theorem, we may find closed intervals

(1) @) . () 1 - N 2N () g

L7, ., 1;7 7 with E(Il ) = 3l(Iy) for j = 1,...,2" such that I} = Uj:1 I}, Since
{U; : i € T} has no finite subcover for Iy, there is jo € {1,...,2¥} such that {U; : i € I}
has no finite subcover for I{jo). Let I := I§j°).

Inductively, we thus obtain closed intervals I1 D Iy D I3 D --- such that:
(a) £(Int1) = 30(I,) = -+ = 5:4(]h) for all n € N;
(b) {U; : i € I} does not have a finite subcover for I,, for each n € N.

Let x € ﬂflozl I, and let ig € I be such that x € U;,. Since Uj, is open, there is € > 0
such that Be(z) C Uj,. Let n € N and y € I,; it follows that

VN
ly — x| < \/Nj:n;lax yj — x| < Wf(h)-

-----

v

Choose n € N so large that 2\,{]?1 0(11) < e. It follows that
In C Bg(w) C Uim

so that {U; : i € I} has a finite subcover for I,,.

This is a contradiction. Therefore, {Uj; : ¢ € I} must have a finite subcover for I;. O
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Definition 1.4.21. A disconnection for S C R is a pair {U,V'} of open sets such that:
(a) UNS #£2#VNS;

(b) (UNS)N(VNS)=g;

(c) (UNS)yu(Vns)==5.

If a disconnection for S exists, S is called disconnected; otherwise, we say that S is

connected.

Note that we do not require that UNV = &.

Figure 1.9: A set S with disconnection {U,V'}

Ezamples. 1. Z is disconnected: Choose

1 1
U := <—OO, 2> and V= (2)OO> )

then {U, V'} is a disconnection for Z.

2. Q is disconnected: A disconnection {U, V'} is given by
U= (—o0,V?2) and V= (V2,00).
3. The closed unit interval [0, 1] is connected.

Proof. We assume that there is a disconnection {U,V'} for [0, 1]; without loss of
generality, suppose that 0 € U. Since U is open, there is ¢g > 0—which we can
suppose without loss of generality to be from (0, 1)—such that (—ep, €9) C U and thus
[0,e0) C UNI0,1]. Let ¢y :=sup{e > 0:[0,¢) CUNJ0,1J}, so that 0 < e <ty < 1.
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Assume that tg € V. We can choose 6 > 0 such that to—0 > 0 and (tg—9,tg+06) C V.
This, in particular, means that [0,¢) ¢ UNJ0, 1] for all € > ¢ty — d, which contradicts
the very definition of ¢g.

Assume therefore that tg € U. If t5 < 1, we can choose # > 0 such that to +6 < 1
and (to — 0,tp + 0) C U: this also contradicts the definition of ty. Hence, assume
that tp = 1. But this implies that V' N[0, 1] = &, which contradicts the definition of

a disconnection.

All in all, there is no disconnection for [0, 1]. O
Theorem 1.4.22. Let C C RY be conver. Then C' is connected.

Proof. Assume that there is a disconnection {U, V'} for C. Let x € UNnC and let y € VNC.
Let

U:={tecR:te+(1—-t)ycU}
and

Vi={tcR:tz+(1—-t)ycV}.

We claim that U is open. To see this, let tg € U. It follows that zq := toz + (I—to)y €
U. Since U is open, there is € > 0 such that Bc(x¢) C U. For t € R with |t —tg| < m,

we thus have
[tz + (1 = )y) — @ol| = [|(tz + (1 = t)y) — (tox + (1 — to)y)|
= [|(t = to)z — (£ — o)yl
< [t = tol(llz]l + llyl)
<€

and therefore tz + (1 — t)y € Be(zo) C U. Tt follows that ¢ € U.
Analogously, one sees that V is open.
The following hold for {U, V'}:

(2) UN[0,1] # @ #VN[0,1]: sincex =1z + (1 - 1)y € U and y = 0z + (1 - 0)y € V,
WehaveleﬁandOEf/;

(b) (UN[0,1)N(VNI0,1]) = @: if t € (UN[0,1]) N (V N[0,1]), then tz + (1 —t)y €
(UNC)N(VNC), which is impossible;

(c) (UN[0,1))U(V NI[0,1]) = [0,1]: for t € [0,1], we have tz + (1 —t)y € C = (UNC) U
(V U C)—due to the convexity of C—, so that t € (U N[0,1]) U (V N[0, 1]).

Hence, {U,V} is a disconnection for [0, 1], which is impossible. O

Example. @, RV, and all closed and open balls and intervals in RY are connected.



CHAPTER 1. TOPOLOGY IN R¥ 37

Corollary 1.4.23. The only subsets of RV which are both open and closed are @ and
RV,

Proof. Let U C RY be both open and closed, and assume that @ # U # RM. Then
{U,U®} would be a disconnection for RY. O

Fxercises

1. Let S ¢ RM. Show that 2 € RY is a cluster point of S if and only if each neighbor-

hood of x contains an infinite number of points in S.
2. Let S € RY be any set. Show that 0 is closed.

3. For j=1,...,N,let I; = [aj,b;] with aj < bj, and let [ := I} x --- x Iy. Determine
0I. (Hint: Draw a sketch for N =2 or N = 3.)

4. Let S1,...,8, C RN, Show that 9(S1U---US,) C 981 U---UdS,. Does equality

necessarily hold?

5. Which of the sets below are compact?

(a) {z e RN :r < ||z|| € R} with 0 < r < R;
(b) {z e RN :r < ||z|| < R} with 0 < r < R;
(c) {(t;sin}) :t € (0,2022]};

(d) {i:neN};

(e) {5 :neN}U{0}.

Justify your answers.
6. Show that:

(a) if U1 € RN and Uy € RM are open, then so is Uy x Uy ¢ RN+M;
(b) if F; ¢ RN and F, ¢ RM are closed, then so is F} x Fp ¢ RV+M,
(c) if K1 C RN and Ky ¢ RM are compact, then so is K1 x Koy C RN+M
7. Show that a subset K of RY is compact if and only if it has the finite intersection

property, i.e., if {F; : i € [} is a family of closed sets in R such that KN Nic1 Fi = 2,
then there are 71,...,%, € I such that K NEF; N---NF;, =

8. A set S C RY is called star shaped if there is xg € S such that txg + (1 — t)z € S
for all z € S and t € [0, 1]. Show that every star shaped set is connected, and give

an example of a star shaped set that fails to be convex.



CHAPTER 1. TOPOLOGY IN R¥ 38

9. Let C c RY be connected. Show that C' is also connected.
10. Show that:

(a) if C is a family of connected subsets of R such that (,ce C # @, then Jpee C

is connected;

(b) if C; C RN and Cy ¢ R are connected, then so is C; x Cy € RN Nz,

(Hint for (b): Argue that we can suppose that C and Cs are not empty, and fix
x9 € Co; then apply (a) to C := {(Cy x {z2}) U ({x1} x C2) : 21 € C1}.)

11. For € € (0,1), determine whether or not the set
{(z,y,2) eER*: 1 <2® +y? <4, 2 € [¢,1]}
is (a) open, (b) closed, (c) compact, or (d) connected.
12. Let @ # S C RY be arbitrary, and let @ # U C RY be open. Show that
S+U:={zx+y:z€S,yecU}

is open.



Chapter 2

Limits and Continuity

2.1 Limits of Sequences

Definition 2.1.1. A sequence in a set S is a function s: N — S.

When dealing with a sequence s: N — S, we prefer to write s,, instead of s(n) and
denote the whole sequence s by (s,,)52 ;. We shall also consider, when the occasion arises,

sequences indexed over subsets of Z other than N, e.g., {n € Z : n > —333}.

Definition 2.1.2. A sequence (1,)>%; in R converges or is convergent to z € RY if, for
each neighborhood U of x, there is ny € N such that x,, € U for all n > ny. The vector
x is called the limit of (2,)52 ;. A sequence that does not converge is said to diverge or

to be divergent.

Equivalently, the sequence (z,)52; converges to x € RN if, for each € > 0, there is
ne € N such that ||z, — z|| < € for all n > n..
If a sequence (z,,)%; in RY converges to z € RN, we write = lim,, o 7, OT 2, IO

or simply x,, — x.
Proposition 2.1.3. Every sequence in RY has at most one limit.

Proof. Let (z,,)72, be a sequence in RY with limits z,y € RY. Assume that = # y, and
. lz—yll
set € := =
Since x = limy,_yo0 Tn, there is n; € N such that ||z, —z|| < € for n > ny, and since also
y = limy, o0 T, there is ng € N such that ||z, — y|| < € for n > ng. For n > max{ni,na},
we then have

Iz = yll < llz = znll + llen =yl < 2¢ = [lz —yl|,

which is impossible. O

39



CHAPTER 2. LIMITS AND CONTINUITY 40

Figure 2.1: Uniqueness of the limit

We call a sequence ()02, bounded
Proposition 2.1.4. Every convergent sequence in RN is bounded.

We omit the proof which is almost verbatim like in the one-dimensional case.

[e.e]

Theorem 2.1.5. Let (x,)22, = ((xg), . ,x%N)» ) be a sequence in RN. Then the
n—=

following are equivalent for x = (x(l), e ,:C(N)):

(1) imy oo n = ;
(i) limy, oo 2 = 20) forj=1,...,N.

Proof. (i) = (ii): Let € > 0. Then there is n. € N such that ||z, — z|| < € for all n > n,,
so that
‘x,(@j) - l’(j)‘ < |lwn —z|| <€

holds for all n > n, and for all j =1,..., N. This proves (ii).

(ii) = (i): Let € > 0. For each j =1,..., N, there is nY) € N such that
_c
VN
holds for all j =1,..., N and for all n > n . Let Ne 1= max {ngl), .. .,nEN)}. It follows
that

20) _ x(j)‘ <

n

and thus
|lxn — z|| < VN max
j=1,...,N

20) _ x(j)‘ <e

n

for all n > n.. ]
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Ezamples. 1. The sequence

1 5 3n?2 — 4\~
n’ ' n24+2n

n=1
2_ .
converges to (0, 3,3), because % — 0,3 — 3 and igwi — 3 in R.
2. The sequence
1 o0
<33, (—1)n>
ne + 3n n=1

diverges because ((—1)")5; does not converge in R.

Since convergence in RY is nothing but coordinatewise convergence, the following is a

straightforward consequence of the limit rules in R:

Proposition 2.1.6 (Limit Rules). Let (7,)% 1, (y,)3% be convergent sequences in RY,
and let (Ay)22, be a convergent sequence in R. Then the sequences (zn + yn)oq,
(Anxn)o2q, and (Tn - yn)o2, are also convergent such that:

lim (z, + yp) = lim x, + lim y,,

n—00 n—00 n—00

gy Ann = (100, An) (150, %)

and
52 - yn) = (Jig n) - (108 )
Definition 2.1.7. Let (s,,)72; be a sequence in a set S, and let ny < na < --- be in N.

)
n=1"

Then (sp, )72 is called a subsequence of (sy)
As in R, we have:

Theorem 2.1.8. Every bounded sequence in RY has a convergent subsequence.

Proof. Let (z,)%; be a bounded sequence in RY and let S := {z,, : n € N}.
If S is finite, (z,)02; obviously has a constant and thus convergent subsequence.
Suppose therefore that S is infinite. By the Bolzano—Weierstrafi Theorem, it therefore
has a cluster point x. Choose n; € N such that z,,, € Bi(z) \ {z}. Suppose now that

ny < no < --- < ng have already been constructed such that

Tn; € B%(x) \ {z}

for j=1,...,k. Let

1
e::min{k;_i_l,”:cl—xH:lzl,...,nk andml#x}.
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Then there is nj41 € N such that x,,, , € Be(x) \ {x}. By the choice of ¢, it is clear that
Ty, 7o for 1 =1,... ng, so that that ngyq > ng.

The subsequence (z,, )7, obtained in this fashion satisfies

1
lam, = 2l <
for all k € N, so that x = limj_,o 7y, - ]
Definition 2.1.9. A sequence (z,,)72 ; in R is called decreasing if x1 > 9 > x3 > --- and
increasing if r1 < xo < a3 < ---. It is called monotone if it is increasing or decreasing.

Theorem 2.1.10. A monotone sequence converges if and only if it is bounded.

Proof. Let (z,,)72, be a bounded, monotone sequence. Without loss of generality, suppose
that (z,,)5°

o0 | is increasing. By Theorem 2.1.8, (x,);2; has a subsequence (x,, )7, which

converges. Let x := limy_,o xp,. We will show that actually x = lim, o0 5.
Let € > 0. Then there is k. € N such that

T — Tp, = |Tp, — | <€

i.e.,

T—€< Ty, <T+E€

for all k£ > k.. Let n. := ng_, and let n > n.. Pick m € N be such that n,, > n, and note
that z,, <z, <x,,,, so that

T—e<Tp <xp < Ty, <T+Ee

i.e.,

T — xy| <e.

This means that indeed x = lim,,—yo0 Zn. O
Ezxample. Let 6 € (0,1), so that
0< O =g <h" <1

for all n € N. Hence, the sequence ()7 ; is bounded and decreasing and thus convergent.
Since

lim 0" = lim "' =6 lim 0",

n—oo n—oo n—o0
it follows that lim,, .., 8™ = 0.

Theorem 2.1.11. The following are equivalent for a set F C RN :

(i) F is closed;



CHAPTER 2. LIMITS AND CONTINUITY 43

(ii) for each sequence ()% in F with limit x € RN, we already have x € F.

Proof. (i) = (ii): Let (2,,)%%; be a convergent sequence in F with limit + € RY. Assume
that x ¢ F, i.e., x € F°. Since F€ is open, there is € > 0 such that B.(z) C F°. Since
x = limy, o0 Ty, there is n. € N such that ||z, — z|| < € for all n > n.. But this, in turn,
means that x,, € B¢(x) C F° for n > n., which is absurd.

(ii) = (i): Assume that F' is not closed, i.e., F'° is not open. Hence, there is x € F*
such that Be(x) N F # & for all € > 0. In particular, there is, for each n € N, an element
xn € F with ||z, — z|| < % It follows that = = lim,_,oc =y, even though (x,)5%  lies in F'
whereas x ¢ F. O

Ezample. The set
F:{(arl,...,xN)GRN:xl—:L‘g—~-—3:NE [0,1]}

is closed. To see this, let (x,,)22, be a sequence in F' which converges to some x € RN,
We have
Tp,l —Tp2 — " — TN € [0, 1]

for n € N. Since [0, 1] is closed this means that

xl—x2—-~—xzvznli_{go(an—a:n,z—'--—arn,N)6[0,1]7

so that z € F.
Theorem 2.1.12. The following are equivalent for a set K C RN :
(i) K is compact;
(ii) every sequence in K has a subsequence that converges to a point in K.

Proof. (i) = (ii): Let (z,)52; be a sequence in K, which is then necessarily bounded.
Hence, it has a convergent subsequence with limit, say € RY. Since K is also closed, it
follows from Theorem 2.1.11 that z € K.

(ii) = (i): Assume that K is not compact. By the Heine-Borel theorem, this leaves
two cases:

Case 1: K is not bounded. In this case, there is, for each n € N, and element z,, € K
with ||z,| > n. Hence, every subsequence of (z,)9° ; is unbounded and thus diverges.

Case 2: K is not closed. By Theorem 2.1.11, there is a sequence (z,)52; in K that
converges to a point x € K°. Since every subsequence of (z,,)5°; converges to = as well,
this violates (ii). O
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Corollary 2.1.13. Let @ # F C RY be closed, and let @ # K C RN be compact such
that
inf{||lz —y|| :x € K,y € F} = 0.

Then F and K have non-empty intersection.

This is wrong if K is only required to be closed, but not necessarily compact:

y

Figure 2.2: Two closed sets in R? with distance zero, but empty intersection

Proof. For each n € N, choose z,, € K and y,, € F such that ||z, —y,| < % By Theorem
2.1.12, (z,,)952; has a subsequence (z, )72, converging to € K. Since limy, o0 (zn—yn) =
0, it follows that

= Jm = Jim (O =) + ) = Jim i,
and thus, from Theorem 2.1.11, x € F holds as well. O

Definition 2.1.14. A sequence (z,,)°%; in R¥ is called a Cauchy sequence if, for each

€ > 0, there is n, € N such that ||z, — z,,,|| < € for n,m > n,.
Theorem 2.1.15. A sequence in RY is a Cauchy sequence if and only if it converges.

Proof. Let (2,)%%; be a sequence in R with limit 2 € RY. Let € > 0. Then there is
ne € N such that ||z, —z|| < § for all n > ne. It follows that
€ €
[#n = Zm|| < [lon — 2| + [l — 2m]| < B + 5~ ¢

o0

o2 1 is a Cauchy sequence.

for n,m > n.. Hence, (x,)
Conversely, suppose that (z,,)22; is a Cauchy sequence. Then there is n; € N such

that ||z, — x| < 1 for all n,m > n;. For n > ny, this means in particular that

[zall < llzn = @n, | + ll2n, | <1+ [z, -
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Let

C = max{|[z1ll, .., [|en, —1ll, 1+ lzn, |}
Then it is immediate that ||z,| < C for all n € N. Hence, (z,)32, is bounded and thus
has a convergent subsequence, say (,,)5e;. Let x := limy_,o 2y, , and let € > 0. Let
no € N be such that |z, — x| < § for n > ng, and let ke € N be such that |z, —z| < §
for k > ke. Let ne := Npax{k.,no}- Then it follows that

[2n — 2| < |20 = 2n || + |20, — 2| <e

<3 <3
for n > n.. ]
Ezample. For n € N, let
1
Sp = %
k=1
It follows that ) )
n n
1 1 1
_ — > = =
s = sl = D, 1= o 2
k=n-+1 k=n+1
so that (s,)5%; cannot be a Cauchy sequence and thus has to diverge. Since (s,)5; is

increasing, this does in fact mean that it must be unbounded.

FExercises

1. Use induction to prove Bernoulli’s Inequality, i.e.,
(1+2)">1+nz
for n € Ng and x > —1. Conclude that, if # > 1 and R € R, there is n € N such

that 6" > R. Conclude that the sequence (6™)2°; does not converge.

2. Let (7,)%%; be a convergent sequence in RY with limit #. Show that {z, : n €
N} U {z} is compact.

3. Let (7,)%, be a sequence in RY such that there is € (0, 1) with

[Znt2 = Zptall < Oflzns1 — znl|
for n € N. Show that (x,)2, converges.
(Hint: Show first that
|Znr1 =zl < 0" a2 — 21|
for n € N, and then use this and the fact that > >° 6" converges to show that
(z5,)22, is a Cauchy sequence.)

n=1

4. Let S ¢ RV, and let 2 € RY. Show that € S if and only if there is a sequence

(2r)0%, in S such that z = lim,, o0 2.
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2.2 Limits of Functions

We define the limit of a function (at a point) through limits of sequences:

Definition 2.2.1. Let @ # D c RY, let f: D — RM be a function, and let 2y € D.
Then L € RM is called the limit of f for x — xop—in symbols: L = limy ., f(z)—if

limy, o0 f(zn) = L for each sequence (z,,)°°; in D with limy,_,c 2, = xo.

It is important that zq € D: otherwise there are not sequences in D converging to .

For example, lim,_,_1 /2 is simply meaningless.

Ezamples. 1. Let D = [0,00), and let f(z) = /z. Let (x,)22; be a sequence in D

with lim,, s z, = 2g. For n € N, we have

[V = Vol < 1V — v/l (v + /o) = fan — 0.

Let € > 0, and choose n. € N such that |z, — zq| < € for n > n.. It follows that

IV/Zn — /To| < €

for n > n.. Since € > 0 was arbitrary, lim, . /Tn, = 1/Zo holds. Hence, we have

lim:r:—):co f = \/5570

2. Let D = (0,00), and let f(z) = 1. Let (2,,)5%, be a sequence in D with lim, o 2, =
0. Let R > 0. Then there is ng € N such that z,, < % and thus f(zp,) = % > R.

70
Hence, the sequence (f(xy))s2; is unbounded and thus divergent. Consequently,

lim, o f(x) does not exist.

3. Let
FrR2\{(0,0)} = R, (x,y)HTny.

Let x,, = (%, %), so that lim,, _,. x,, = 0. Then

holds for all n € N.
On the other hand, let z,, = (%, n—lz), so that

11 s 1 a nt s
i) =f(= =) =—2n" = = 1 0.
f(@n) f(n n2> L+ mdni4+l nS4nd 144

Consequently, lim, ) (0,0 f(7,y) does not exist.

As in one variable, the limit of a function at a point can be described in alternative

ways:
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Theorem 2.2.2. Let @ # D C RN, let f: D — RM, and let xog € D. Then the following

are equivalent for L € RM :
(1) hmxﬁwo f(l') =L;

(ii) for each € > 0, there is 6 > 0 such that || f(z) — L|| < € for each x € D with
|z — zoll < 0;

(iii) for each neighborhood U of L, there is a neighborhood V of xo such that f~1(U) =
VnD.

Proof. (i) = (ii): Assume that (i) holds, but that (ii) is false. Then there is ¢g > 0
sucht that, for each § > 0, there is x5 € D with ||z5 — zo|| < 6, but ||f(xs) — L|| > €. In
particular, for each n € N, there is z, € D with ||z, — 20| < L, but || f(zn) — L|| > €. It
follows that lim, o z, = 2o whereas f(x,) 4 L. This contradicts (i).

(i) = (iii): Let U be a neighborhood of L. Choose ¢ > 0 such that B.(L) C U, and
choose > 0 as in (ii). It follows that

D N Bs(xo) C fYB(L)) C f~HU).

Let V := Bs(xo) U f~1(U).

(iii) = (i): Let (x,)s2; be a sequence in D with lim, ,. 2, = zo. Let U be a
neighborhood of L. By (iii), there is a neighborhood V of xg such that f~1(U) =V N D.
Since xg = lim,_ oo T, there is ny € N such that z, € V for all n > ny. Conse-
quently, f(z,) € U for all n > ny. Since U is an arbitrary neighborhood of L, we have

limy, o0 f(zn) = L. Since ()22, is an arbitrary sequence in D converging to xo, (i)

n=1

follows. O

Definition 2.2.3. Let @ # D C RN, let f: D — RM and let 29 € D. Then f is

continuous at xo if limg_,, f(z) = f(z0).
Applying Theorem 2.2.2 with L = f(x¢) yields:

Theorem 2.2.4. Let @ # D C RN, let f: D — RM | and let xog € D. Then the following

are equivalent:
(i) f is continuous at xzo;

(ii) for each € > 0, there is 6 > 0 such that ||f(x) — f(xo)|| < € for each x € D with
[ = zol| < 4;

(iii) for each neighborhood U of f(xg), there is a neighborhood V' of x¢ such that f~1(U) =
VnD.
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Continuity in several variables has hereditary properties similar to those in the one

variable situation:

Proposition 2.2.5. Let @ # D C RN, and let f,g: D — RM and ¢: D — R be
continuous at xg € D. Then the functions
f+9:D=>RY ze f(x) +g(2),
¢f: D =RY, () f(2),

and

fr9:D=RY ze f(z)-g(x)
are continuous at xg.

Proposition 2.2.6. Let @ # D; C RN, @ # Dy C RM | let f: Dy — RX and g: D; —
RM be such that g(D1) C Da, and let o € Dy be such that g is continuous at xo and that

f is continuous at g(xo). Then
fog:Di = RN, w— f(g(x))
18 continuous at xg.

Proof. Let ()02, be a sequence in D such that =, — xg. Since g is continuous at

xo, we have g(z,) — g(x0), and since f is continuous at g(zg), this ultimately yields

flg(@n)) = fg(0)). =

Proposition 2.2.7. Let @ # D C RN. Then f = (f1,..., far): D — RM s continuous
at xo € D if and only if fj: D — R is continuous at xo for j =1,..., M.
Ezamples. 1. The function

17

2 Y
fRZ SR (z,y) — (sin <2fy4+> , esin(log(rtcos(@)2)) 2022)
T Y ™

is continuous at every point of R2.

2. Let
fR%RQ T (ZE,l), IL'SO,
’ (x,-1), =>0,
so that
fi:R=>R, z—=x
and
1, <0,
forR—=R, z+— =
-1, x=>0.

It follows that fi is continuous at every point of R, where is fo is continuous only
at g # 0. It follows that f is continuous at every point xg # 0, but discontinuous

at xg = 0.
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Fxercises
1. Let D := {(z,y) € R? : y # 0}, and let

2

f:D—>R, (z,y)+— m
Show that:
(a) lim,%;(()) f(txo,tyo) = 0 for all (xo,y0) € D;
(b) lim(, y)—(0,0) f(@,y) does not exist.
2. Let

. TYZ
|23 + [y + |2

111 11 1
lim f (,, > and lim f (, ,2> .
n—00 n nmn n—oo n n n

What does this tell you about lim, , .)0,0,0) f (7,9, 2)?

FRIN{0} =R, (2,9,2)

Calculate

2.3 Global Properties of Continuous Functions

So far, we have discussed continuity only in local terms, i.e., at a point. In this section,

we shall consider continuity globally.

Definition 2.3.1. Let @ # D ¢ RV, A function f: D — RM is continuous on D if it is

continuous at each point xg € D.

Theorem 2.3.2. Let @ # D C RN. Then the following are equivalent for f: D — RM:
(i) f is continuous.
(ii) for each open U C RM | there is an open set V.C RN such that f~*(U) =V N D.

Proof. (i) = (ii): Let U ¢ RM be open, and let x € D such that f(z) € U, i.e.,
r € f~YU). Since U is open, there is ¢, > 0 such that B (f(z)) C U. Since f
is continuous at z, there is 6, > 0 such that ||f(y) — f(x)| < € for all y € D with
ly — || < 8z, e,

Bs,(z) N D C f~H(Be,(f(x))) € f7H(U).

Letting V' := U, -1y Bs, (¢), we obtain an open set such that
YUy cvnbc Y.

(i) = (i): Let 29 € D, and choose ¢ > 0. Then there is an open subset V of RY
such that VN D = f~Y(B(f(20))). Choose § > 0 such that Bs(zo) C V. It follows that
| f(x) — f(xo)|| < € for all z € D with ||z — x¢|| < . Hence, f is continuous at x. O
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Corollary 2.3.3. Let @ # D C RN. Then the following are equivalent for f: D — RM:
(i) f is continuous.
(ii) for each closed F C RM | there is a closed set G C RN such that f~1(F) =GN D.

Proof. (i) = (ii): Let F C RM be closed. By Theorem 2.3.2, there is an open set V' C RY
such that
VD = fH(F) = fH(F)"

Let G := V<.
(ii) = (i): Let U € RM be open. By (ii), there is a closed set G C RY with

GND=f"U°) = fU)"

Letting V := G¢, we obtain an open set with V N D = f~}(U). By Theorem 2.3.2, this
implies the continuity of f. O

Ezample. The set
F ={(z,y,2z,u) € R*: e sin(zu?) € [0,2] and = — 3 + 2° — u* € [—7, 2022]}
is closed. This can be seen as follows: The function
fRY SR (2,9, 2,u) = (e Ysin(zu?), z — 3 + 2% —u?)
is continuous, [0, 2] x [~m,2022] is closed, and F = f~1(]0,2] x [—,2022]).

Theorem 2.3.4. Let @ # K C RY be compact, and let f: K — RM be continuous. Then
f(K) is compact.

Proof. Let {U; : i € I} be an open cover for f(K). By Theorem 2.3.2, there is, for each
i € T an open subset V; of RY such that V; N K = f~%(U;). Then {V; : i € I} is an open

cover for K. Since K is compact, there are i1, ...,4, € I such that
KcV,u---uV,.

Let z € K. Then there is j € {1,...,n} such that x € V;; and thus f(z) € U;;. It follows
that
fI(K)ycU;, u---UU;

n

so that f(K) is compact. O

Corollary 2.3.5. Let @ # K C RY be compact, and let f: K — RM be continuous.
Then f(K) is bounded.
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Corollary 2.3.6. Let @ # K C RN be compact, and let f: K — R be continuous. Then

there are Tmax, Tmin € K such that
f(max) = sup{f(z) : x € K} and f(@min) = inf{f(x) : z € K}.

Proof. Let (y,)52; be a sequence in f(K) such that y, — yo := sup{f(x) : z € K'}. Since
f(K) is compact and thus closed, there is zmax € K such that f(zmax) = yo

The existence of T, is shown similarly. O

The two previous corollaries generalize two well known results on continuous functions
on closed, bounded intervals of R. They show that the crucial property of an interval, say
[a, b] that makes these results work in one variable is precisely compactness.

The intermediate value theorem does not extend to continuous functions on arbitrary
compact set, as can be seen by very easy examples. The crucial property of [a,b] that

makes this particular theorem work is not compactness, but connectedness.

Theorem 2.3.7. Let @ # D C RN be connected, and let f: D — RM be continuous.
Then f(D) is connected.

Proof. Assume that there is a disconnection {U, V'} for f(D). Since f is continuous, there

are open sets U,V C RN open such that
UND=f1YU) and VND=fYV).
But then {U,V'} is a disconnection for D, which is impossible. O

This theorem can be used, for example, to show that certain sets are connected:

Ezample. The unit circle in the plane
Sti={(z,y) eR*: [|(z,9)l| = 1}
is connected because R is connected,
f:R—=R? t+ (cost,sint)

is continuous, and S' = f(R). (Inductively, one can then go on and show that SV~1! is
connected for all N > 2.)

Corollary 2.3.8 (Intermediate Value Theorem). Let @ # D C RN be connected, let
f: D — R be continuous, and let x1,x2 € D be such that f(x1) < f(x2). Then, for each
y € (f(x1), f(x2)), there is x, € D with f(zy) =y.

Proof. Assume that there is yo € (f(x1), f(x2)) with yo ¢ f(D). Then {U,V} with
U={yeR:y<yo} and Vi={yeR:y>uyo}

is a disconnection for f(D), which contradicts Theorem 2.3.7. O
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Ezamples. 1. Let p be a polynomial of odd degree with leading coefficient one, so that

lim p(x) = o0 and lim p(x) = —oc.
T—r00 T——00

Hence, there are 1, x2 € R such that p(z1) < 0 < p(z2). By the Intermediate Value
Theorem, there is € R with p(z) = 0.

2. Let
D:={(z,y,2) €R®: ||(z,y,2)|| <},

so that D is connected. Let

Ty + 2

D =R — .
f — K, (l’,y,Z) = COS(CCyZ)Q-f-l

Then . .
= 1,0,1)= —— = .
f£(0,0,0)=0  and f(1,0,1) 1" 2

Hence, there is (o, 0, 20) € D such that f(zo,y0,20) = L.

Ezxercises
1. Let K,L ¢ RN be compact. Show that
K+L:={z+y:zeK,yelL}
is compact in RY.
2. Show that, if C1,Cy C RY are connected, then so is C; + Cy C RV

3. Let C ¢ RY. We say that 29,21 € C can be joined by a path if there is a continuous
function v: [0,1] — RY with v([0,1]) € C, v(0) = z¢, and (1) = z;. We call C
path connected if any two points in C' can be joined by a path.

Show that any path connected set is connected.
4. Show that:

(a) if C; € RM and Cy € RM2 are path connected, then so is C; x Cy ¢ RN1+Nz,
(b) if C C RY is path connected and f: C — RM is continuous, then f(C) is path
connected;

(c) if C1,Cy € RY is path connected, then so is C; + Co C RY.

e {(min (1)) x>0} e

Show that C' is connected, but not path connected. (Hint: Show that {0} x[-1,1] C
C and that any point in {0} x [—1, 1] cannot be joined by a path with any point of
the form (z,sin (1)) with > 0.)

xT

5. Let
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6. Show that RV \ {0} is disconnected if and only if N = 1.
7. Let
D= {(emy,e_””Q_Z) :(z,y,2) € R}

Short that there is (u,v) € D such that

log(u + v) = V19.

8. Let @ # D c RY. A point 2y € D is called an isolated point of D if there is € > 0
such that Be(xg) N D = {zp}. Show that the following are equivalent for xy € D:
(i) xo is an isolated point of D;
(ii) xo is not a cluster point of D;

(iii) every sequence (z,,)22 in D such that lim,,_, z, = x¢ is eventually constant,

i.e., there is ng € N such that x, = zg for all n > ng;

(iv) every function f: D — R is continuous at zg.
9. A set D C RV is called discrete if each z € D is an isolated point of D. Show that:
(a) Z and {1 :n € N} are discrete;

(b) Q is not discrete;

(¢) a compact set is discrete if and only if it is finite.

2.4 Uniform Continuity

We conclude the chapter on continuity, with a property related to, but stronger than

continuity:

Definition 2.4.1. Let @ # D € RY. Then f: D — RM is called uniformly continuous
if, for each € > 0, there is § > 0 such that || f(z1) — f(x2)|| < € for all x1,z9 € D with
||$1 — .1‘2” < 4.

The difference between uniform continuity and continuity at every point is that the
6 > 0 in the definition of uniform continuity depends only on € > 0, but not on a particular

point of the domain.

Examples. 1. All constant functions are uniformly continuous.

2. The function
f:0,1] =R, =z~ 2?
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is uniformly continuous. To see this, let € > 0, and observe that
|2F — 23| = |21 — @a|(21 + 22) < 2|21 — 2o
for all 21, x5 € [0,1]. Choose ¢ := 5.

3. The function .
f:(0,1] = R, z~ —
x

is continuous, but not uniformly continuous. For each n € N, we have

’f(:b)—f(nil)’:m—(n—kl)\:l.

Therefore, there is no § > 0 such that ‘f (%) —f (%ﬂ)’ < % whenever
J.

1
n n+1

4. The function
f:[0,00) = R, x> 2?
is continuous, but not uniformly continuous. Assume that there is 6 > 0 such that
|f(z1) — f(z2)| < 1 for all 21,29 > 0 with |z; — 22| < §. Choose, z1 := 2 and

Ty 1= % + % It follows that |z1 — 2| = % < 4. However, we have

|f(z1) = f(z2)| = |21 — 22| (71 + 22)

_0(2,2.98
S 2\5 5 2

The following theorem is very valuable when it comes to determining that a given

function is uniformly continuos:

Theorem 2.4.2. Let @ # K C RN be compact, and let f: K — RM be continuous. Then

f is uniformly continuous.

Proof. Assume that f is not uniformly continuous, i.e., there is g > 0 such that, for all
d > 0, there are x5, ys € K with ||zs —ys|| < 0 whereas || f(zs)— f(ys)|| > €o. In particular,

there are, for each n € N, elements x,,y, € K such that

lon =l < and [ fGea) = fn)l 2 a0

Since K is compact, (x,)52; has a subsequence (z,, )32, converging to some = € K. Since

ZTn,, — Yn, — 0, it follows that

r = lim z,, = lim y,,.
k—o0 k—o0
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The continuity of f yields

f({E) lim f(xnk) = hm f(ynk)

k—oo
Hence, there are k1, ks € N such that

€0

1F (@) = flan)ll < 5

For k > max{k1, ko}, we thus have

fork >k and  |f(x)— flyn,)ll < %0 for k > ks.

1 £ () = F )| < 1F Gng) = F@+ £ = Flm)ll < 2 + 5 = o,

which is a contradiction. OJ

FExercises

1. Let @ # D Cc RN. A function f: D — RM is called Lipschitz continuous if there is
C > 0 such that

1f (@) = f()ll < Cllz =yl
for all z,y € D.

Show that:

(a) each Lipschitz continuous function is uniformly continuous;

(b) if f: [a,b] — R is continuous such that f is differentiable on (a,b) with f’

bounded on (a,b), then f is Lipschitz continuous;
(c) the function
f:00,1] >R, zwz
is uniformly continuous, but not Lipschitz continuous.

2. (Banach’s Fived Point Theorem.) Let @ # F C RY be closed, and let f: F — RN
be such that f(F) C F and that there is 6 € (0, 1) with

1f(2) = F(»Il < Ollz =yl

for z,y € F. Show that there is a unique 2y € F such that f(xg) = xo. (Hint:
Problem 2.1.3.)

3. Let @ # D C RV, let f: D — RM be continuous, and let (x,)>%, be a Cauchy
sequence in D. Show that (f(z,))3%, is a Cauchy sequence in RM if D is closed or

if f is uniformly continuous.

Does this remain true without any additional requirements for D or f?



Chapter 3

Differentiation in R

3.1 Differentiation in One Variable: A Review

In this section, we give a quick review of differentiation in one variable.

Definition 3.1.1. Let I C R be an interval, and let g € I. Then f: I — R is said to be
differentiable at xq if

lim
h—0
h+£0

f(zo+h) — f(z0)
h

exists. This limit is denoted by f’(z¢) or %(zg) and called the first derivative of f at xg.

Intuitively, differentiability of f at xp means that we can put a tangent line to the

curve given by f at (xo, f(zo)) of which the slope is f'(z9):

y

Figure 3.1: Tangent lines to f(z) at xo and x;

Example. Let n € N, and let

n

fTR=>R, x— 2"

56
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Let h € R\ {0}. From the Binomial Theorem, we know that
n n . .
(l‘—i—h)n: <,>l‘]hn_J

and thus

Letting h — 0, we obtain

n n n—1
(x+h)"—x (n>xjh”j1

Proposition 3.1.2. Let I C R be an interval, and let f: I — R be differentiable at

xg € I. Then f is continuous at xq.

Proof. Let (x,)5%, be a sequence in I such that =, — xo. Without loss of generality,

suppose that x, # g for all n € N. It follows that

Tn)— J(T
F(@n) = Fa0)] = [on — af | LEL =S @)) g
$n — I’O
—0 ~
—|f (o)
Hence, f is continuous at xg. -

We recall the differentiation rules without proof:

Proposition 3.1.3 (Rules of Differentiation). Let I C R be an interval, and let f,g: I —
R be differentiable at xo € I. Then f+ g, fg, and—if g(xg) # 0, g—are differentiable at
xo such that

(f +9) (w0) = f'(x0) + ¢ (w0),
(f9) (x0) = f(z0)g (x0) + f'(x0)g(x0),

and

(f)’ (2g) = £/ E0)9(@0) = [ (z0)g(a0)
g) g(@o)? '
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Proposition 3.1.4 (Chain Rule). Let I,J C R be intervals, let g: I — R and f: J - R
be functions such that g(I) C J, and suppose that g is differentiable at xo € I and that f
is differentiable at g(xg) € J. Then fog: I — R is differentiable at xo such that

(f ©9) (z0) = f'(9(x0))g' (z0)-

Definition 3.1.5. Let I C R be an interval. We call f: I — R differentiable if it is
differentiable at each point of I.

Ezample. Define

It is clear f is differentiable at all x # 0 with

f'(z) = 2xsin (i) — xQ% cos <glv>

#(2)- ()
=2zsin| —) —cos| — ).
x x
Let h # 0. Then we have

fO+n) - f(O)’ = ‘th sin <1>’ = ‘hsin (;)' < [h| 30 0,

h h h

so that f is also differentiable at = 0 with f'(0) = 0. Let @, := 53—, so that z,, — 0. It
follows that

f(zn) = in sin(27n) — cos(2mn) 4 f'(0).
w N—_——

S—— —
=0 =1

Hence, f’ is not continuous at z = 0.

Definition 3.1.6. Let @ # D C R, and let zg be an interior point of D. Then f: D — Ris
said to have a local maximum [minimum] at x¢ if there is € > 0 such that (xg—e¢, xo+€) C D
and f(z) < f(zo) [f(z) > f(xo)] for all z € (zg — €, 29 + €). If f has a local maximum or

minimum at xg, we say that f has a local extremum at xg.

Theorem 3.1.7. Let @ # D C R, let f: D — R have a local extremum at xg € int D,
and suppose that f is differentiable at xo. Then f'(xg) = 0 holds.

Proof. We only treat the case of a local maximum.
Let € > 0 be as in Definition 3.1.6. For h € (—¢,0), we have g + h € (xg — €, 20 + €),

so that
<0

Flao+h) — @) .
SO
<0
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It follows that f’(x¢) > 0. On the other hand, we have for h € (0, ¢€) that

<0
f(@o 4+ h) — f(z0) <0,
h
—
>0
so that f’(x¢) < 0.
Consequently, f'(x¢) = 0 holds. O]

Lemma 3.1.8 (Rolle’s “Theorem”). Let a < b, and let f: [a,b] — R be continuous such
that f(a) = f(b) and such that f is differentiable on (a,b). Then there is £ € (a,b) such
that f'(€) = 0.

Proof. The claim is clear if f is constant. Hence, we may suppose that f is not constant.

Since f is continuous, there is &1, &2 € [a, b] such that

f(&) =sup{f(z): 2z €a,0]}  and  f(&)=nf{f(z):z € [a,b]}.

Since f is not constant and since f(a) = f(b), it follows that f attains at least one local

extremum at some point ¢ € (a,b). By Theorem 3.1.7, this means f’(£) = 0. O

Theorem 3.1.9 (Mean Value Theorem). Let a < b, and let f: [a,b] — R be continuous
and differentiable on (a,b). Then there is & € (a,b) such that

f() — f(a)
b—a

f1(€) =

Figure 3.2: Mean Value Theorem
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Proof. Define g: [a,b] — R by letting

g(z) = (f(z) = f(@))(b = a) = (f(b) = f(a))(x = a)

for « € [a,b]. It follows that g(a) = g(b) = 0. By Rolle’s theorem, there is £ € (a,b) such
that

which yields the claim. O

Corollary 3.1.10. Let I C R be an interval, and let f: I — R be differentiable such that
f'=0. Then f is constant.

Proof. Assume that f is not constant. Then there are a,b € I, a < bsuch that f(a) # f(b).
By the mean value theorem, there is £ € (a, b) such that

f(b) = f(a)

0=f0) ="

40,

which is a contradiction. O]

3.2 Partial Derivatives

The notion of partial differentiability is the weakest of the several generalizations of dif-

ferentiablity to several variables.

Definition 3.2.1. Let @ # D C RY, and let 2y € int D. Then f: D — RM is called
partially differentiable at xg if, for each j = 1,..., N, the limit

lim f(zo + hej) — f(zo)

h—0 h
ho£0

exists, where e; is the j-th canonical basis vector of RN,

‘We use the notations

ﬁ(l‘o)

ox; N
D;f(zo) (= lim flxo + he;i) (o)
ij (wo) h#0

for the (first) partial derivative of f at x¢ with respect to z;.
To calculate 5%, fix xq1,...,2j-1,Tj41,..., TN, i.e., treat them as constants, and con-

sider f as a function of x;.
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Ezamples. 1. Let
f:R? SR, (z,y) v e” 4 zcos(zy).

It follows that

of of

a] _ _ . g 2
o (x,y) = €* + cos(zy) — xysin(zy) and 9y (z,y) x* sin(zy).
2. Let
f:R® =R, (x,y,2) exp(zsin(y)z?).
We obtain
Y (0,9.2) = i) exp(osin)=?), 2 (a,,2) = weos(y) expla sin(y) ),
T Y
and
of . . 2
a—(x,y, z) = 2zxsin(y) exp(x sin(y)z<).
z
3. Let
R R (g | T @07 00)
0, (z,y)=(0,0)
Since

1
(ha) =12 =5 po0

n'n) # 4 % T2
the function f is not continuous at (0,0). Clearly, f is partially differentiable at
each (z,y) # (0,0) with

af
ox

y(z? 4+ y?) — 22%y
(.%'2 _|_y2)2

(:L‘ay) =

Moreover, we have

T 0
h#£0
Hence, % exists everywhere.

The same is true for %.
Definition 3.2.2. Let @ # D C RV, let xp € int D, and let f: D — R be partially

differentiable at xp. Then the gradient (vector) of f at x¢ is defined as
0 0
(grad f)an) = (V) an) = (2 a0)o o))

,...,axN
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Example. Let

. N _
[TRY SR, x|z =4 /22 +-- + 2%,

so that, forx 20 and j=1,..., N,

holds. Hence, we have (grad f)(z) = 1% for « # 0.

Definition 3.2.3. Let @ # D C RY, and let 2o be an interior point of D. Then f: D — R
is said to have a local mazimum [minimum] at xg if there is € > 0 such that Bc(z9) C D
and f(z) < f(zo) [f(x) > f(wo)] for all x € Be(xp). If f has a local maximum or minimum

at xg, we say that f has a local extremum at xq.

Theorem 3.2.4. Let @ # D C RN, let zg € int D, and let f: D — R be partially
differentiable and have local extremum at xo. Then (grad f)(zg) = 0 holds.

Proof. Suppose without loss of generality that f has a local maximum at xg.
Fix j € {1,...,N}. Let € > 0 be as in Definition 3.2.3, and define

g:(—€¢e) >R, t— f(zo+tej).
It follows that, for all ¢ € (—¢, €), the inequality

g(t) = f(zo +te;) < f(zo) = g(0)
~——

EBC(CEQ)

holds, i.e., g has a local maximum at 0. By Theorem 3.1.7, this means that

of f(wo + hej) — f(wo) . g(h) —g(0)
5z (@0 = fim 7 fim =5 = 6'(0) = 0
h#£0 h#£0
Since j € {1,..., N} was arbitrary, this completes the proof. ]

Let @ # U C RY be open, and let f: U — R be partially differentiable, i.e., partially
differentiable at each point of U, and let j € {1,..., N} be such that ngj: U — R is again

partially differentiable. One can then form the second partial derivatives

*f _ 0 (of
&rkaxj o 6a;k 833]‘

for k=1,...,N. Of course, one can continue in this fashion and define partial derivatives

arbitrarily high order.
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Ezample. Let U := {(z,y) € R?:  # 0}, and define

xy
f:U—=R, (x,y)— e—.
z
It follows that
g _ aye™ — e
oxr 22
-1
= xny e™y
y 1y 4
- (x - xz) -
and
9 _ e*Y.
Jy

For the second partial derivatives, this means that

O*f y 2 y 1
axf(‘xﬁx:a R i) ke

f = ze™Y
oz~
an o Ty
0xdy ve

and

82f 1 Ty ) 1 Ty 1 Ty
Bydz T +<x‘xz>“ =2 +(
This means that
*f  O*f
0xdy  Oydz’

holds. Is this coincidence?

63

Let @ # U C RY be open, let f: U — R be partially differentiable such that

5)7]; : U — R is continuous for j = 1,...,N. Then we call f continuously partially
differentiable.

Theorem 3.2.5 (Clairaut’s Theorem). Let @ # U C RN be open, and suppose that

f:U —= R is twice continuously partially differentiable, i.e., all second partial derivatives

of f exist and are continuous on U. Then

cf P
Oxj0xy, N O0x0x;

holds for all x € U and for oll j,k=1,...,N.
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Proof. Without loss of generality, let N =2 and x = 0.
Since U is open, there is € > 0 such that (—¢,¢€)? C U. Fix y € (—¢,¢), and define

Fy: (—€,¢) = R, z— f(z,y) — f(z,0).

Then F, is differentiable. By the Mean Value Theorem, there is, for each x € (—¢,¢€), an
element § € (—¢, €) with |£| < |z| such that

Fyo) = R0 = (0 = (G - 560 =

Applying the Mean Value Theorem to the function

0
(_676)_>R7 yHaii(gﬂ/)a

we obtain 1 with |n| < |y| such that

of of o
Consequently,
0% f
f(x,y) = f(@,0) = f(0,y) + f(0,0) = Fy(z) — Fy(0) = m(&n)fvy
holds.

Now, fix x € (—e¢,¢€), and define

Fp: (—e¢) > R, y— f(z,y) — f(0,y).
Proceeding as with F,, we obtain &, 7 with |£| < || and |j] < |y| such that

f -
f(z,y) — f(0,y) — f(=,0) + f(0,0) = m(&n)wy.

Therefore,
0% f ’f - .

holds whenever zy # 0. Let 0 #£ 2 — 0 and 0 # y — 0. It follows that & — 0, £ — 0,

n — 0, and n — 0. Since gzlzgx and gjgy are continuous, this yields

32f( ) = 0% f
oyox ' 0xdy

(0,0)

as claimed. 0
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The usefulness of Clairaut’s Theorem appears to be limited: in order to be able to
interchange the order of differentiation, we first need to know that the second oder partial
derivatives are continuous, i.e., we need to know the second oder partial derivatives before
the theorem can help us save any work computing them. For many functions, however,

e.g., for
arctan(z? — y")
eTYz ’

f:]R3HR, (x,y,2) —

it is immediate from the rules of differentiation that their higher order partial derivatives

are continuous again without explicitly computing them.

FExercises

1. Show that the mean value theorem becomes false for vector valued functions: Let
f:10,27] = R?,  x (cos(x),sin(x)).

Show that there is no & € (0,27) such that

f@2m) = 1(0)

7€) =

2. Let y
vy i (z,y) # (0,0),
0, otherwise.

f:R?> 5 R, (x,y)r—>{

Show that f is twice partially differentiable everywhere, but that

0% f 0% f
ayax(o’o) 7 8xay(0,0)-

Is f continuous at (0,0)?

3. Calculate all partial derivatives up to order two of the functions

Y
flx,y) = 2 — 42:6@/3 —yr and flz,y,2) = %

where z # 0 for the latter function.

3.3 Vector Fields

Suppose that there is a force field in some region of space. Mathematically, a force is a
vector in R3. Hence, one can mathematically describe a force field as a function v that
that assigns to each point x in a region, say D, of R? a force v(x).

Slightly generalizing this, we thus define:
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Definition 3.3.1. Let @ # D Cc RY. A wector field on D is a function v: D — RV,

Example. Let @ # U C RY be open, and let f: U — R be partially differentiable. Then
V f is a vector field on U, a so-called gradient field.

Is every vector field a gradient field?

Definition 3.3.2. Let @ # U C R? be open, and let v: U — R? be partially differentiable.

Then the curl of v is defined as

curl v := %_% %_% %_%
o 0xo 8$3781’3 (91‘1’81'1 0xs :

Very loosely speaking, one can say that the curl of a vector field measures “the tendency

of the field to swirl around”.

Proposition 3.3.3. Let @ # U C R? be open, and let f: U — R be twice continuously
differentiable. Then curl grad f =0 holds.

Proof. We have, by Theorem 3.2.5, that

0 of o of o0 of o of o0 of o of

curl grad f = (aa ~ Dus Oy Ous Ou1 w1 Dy’ Our Ovs aa>

holds. O

Definition 3.3.4. Let @ # U C RY be open, and let v : U — RY be a partially

differentiable vector field. Then the divergence of v is defined as

div v = Z gvj
Lj

Examples. 1. Let @ # U C RY be open, and let v: U — RN and f: U — R be
partially differentiable. Since

0
7(fv]):ax ]+f %

L

for j =1,..., N, it follows that

Y9
div fv = Z 87(]%])
j=1""7
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2. Let
v: RV \ {0} = RV, T
x

Then v = fu with

1 1
u(z) =z and f(z) = Tl =
x%—k--'-i-x?v
for z € RV \ {0}. Tt follows that
ﬁ(x) _ 1 2z; __
dr; "2 >0 =)
o ot ad
for j=1,..., N and thus
x
VI =

for z € RV \ {0}. By the previous example, we thus have

(div v)(z) = (Vf)(z) = + 1 (div u)(x)

=N
_ =z N
[zl [l
N -1

]

for z € RV \ {0}.
Definition 3.3.5. Let @ # U C RY be open, and let f: U — R be twice partially

differentiable. Then the Laplace operator A of f is defined as
N 62
Af = ;&E? = div grad f.

Ezample. The Laplace operator occurs in several important partial differential equations:
o Let @ # U C RY be open. Then the functions f: U — R solving the potential

equation
Af=0
are called harmonic functions.
e Let @ # U C RY be open, and let I C R be an open interval. Then a function
f:U x I — R is said to solve the wave equation if

10%f

[ aae ="
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and the heat equation if

1of
2ot
where ¢ > 0 is a constant. (Here, the Laplace operator is taken with respect to the

first N coordinates only, i.e., Af = Zjvzl %.)
J

Af - 07

Fxercises

1. Let @ # U C R3 be open, and let f,g: U — R be twice continuously partially
differentiable. Show that div(Vf x Vg) = 0 on U, where x denotes the cross
product in R3.

2. Compute Af for

1

NEZEREEe

3. Let @ # U C RY be open, and let f,g: U — R be twice partially differentiable.
Show that

f:R3\ {(0,0,0)} = R, (z,y,2)+—

A(fg) = fAg+2(Vf)-(Vg) + (Af)g.

4. Let f: R — R be twice continuously differentiable, let ¢ > 0 and v € RY be
arbitrary, and let w := ¢||v||. Show that

F-RYNXR—SR, (z,t)— f(z-v—wt)

solves the wave equation
1 0°F
— =5 =0,
c2 ot?

where A denotes the spatial Laplace operator, i.e.,

N 92
Ao
j=1 Tj
5. Show that the function
RN L (N2
FiRY X R\{0}) = R, (&,8) 1 — exp
t 4t
solves the heat equation
Af — 8—f =0
ot

where again A stands for the spatial Laplace operator.
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3.4 Total Differentiability

One of the drawbacks of partial differentiability is that partially differentiable functions
may well be discontinuous. We now introduce a stronger notion of differentiability in

several variables that—as will turn out—implies continuity:

Definition 3.4.1. Let @ # D C RY, and let 2y € int D. Then f: D — RM is called
[totally] differentiable at xq if there is a linear map 7': RY — RM such that

o 10+ ) = (o) = ThI| _

h—0 12l
h+£0

If N =2 and M = 1, then the total differentiability of f at xg can be interpreted

as follows: the function f: D — R models a two-dimensional surface, and if f is totally

0. (3.1)

differentiable at xg, we can put a tangent plane—described by T—to that surface.

Theorem 3.4.2. Let @ # D C RY, let xg € int D, and let f: D — RM be differentiable
at xo. Then:

(i) f is continuous at xo;

(ii) f is partially differentiable at xqy, and the linear map T in (3.1) is given by the matrix

0 0

o8 (x0), oy H(a0)
Jf(ﬂfo): : .

0, 0,

8t (o), .., 50 (a0)

Proof. Since

10 1) = f @) = Th] _
o0 ]

we have
lim [|f(z0 + ) — f(z0) — Th]| = 0.
h£0
Since limy_,0 Th = 0 holds, we have limy_¢ || f(zo + h) — f(x0)|| = 0. This proves (i).
Let
aii, .., QN
A=
ami, ---, QMN
be such that T'=Ty4. Fix j € {1,..., N}, and note that

o =y 1 @0+ he;) = f(o) = T(hey)|

h—0 ||he;l|
h#0 ——
=[h|
) 1
= }ng% E[f(%'o + hej) — f(xo)] — Tej)|

h£0
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so that .
lim —(f (w0 + he;) — f(z0)] = Te;.

h#£0
It follows that f is partially differentiable at z¢ with respect to x; with

d

Wf; (o) ai,j
: = Te] = .

)

HAL (o) an.j

O

This proves (ii).
The linear map in (3.1) is called the differential of f at xy and denoted by D f(zg).

The matrix J¢(xg) is called the Jacobian matriz of f at x.
Ezamples. 1. Each linear map T: RY — RM is totally differentiable with DT(z) = T
for each zRY.

2. Let My(R) be the N x N matrices over R (note that My (R) = RN?). Let
f: My(R) = My(R), X~ X2

Fix Xo € Mn(R), and let H € My (R) \ {0}, so that
f(Xo+ H)= X2+ XoH + HX, + H?

and hence
f(Xo+ H) — f(Xo) = XoH + HX, + H*.

Let
X — )(0)('+’)()(0.

]12]Mﬁv(ﬂg) — ]Mﬁv(ﬁ@),

It follows that, for H — 0,

Xo+ H) — f(Xo)—TH H? H
I (Xo + H) — f(Xo) | _ I _ | o

| H| I H ~= 4]l

N~

bounded

Hence, f is differentiable at Xy with D f(X)X = XoX + X X).

The last of these two examples shows that is is often convenient to deal with the

differential coordinate free, i.e., as a linear map, instead of with coordinates, i.e., as a

matrix.
The following theorem provides a very useful sufficient condition for a function to be

totally differentiable.
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Theorem 3.4.3. Let @ # U C RY be open, let f: U — RM be partially differentiable,
and let xg € U be such that ngj 18 continuous at xo for j = 1,...,N. Then f is totally
differentiable at xg.

Proof. Without loss of generality, let M = 1, and let U = B¢(xg) for some ¢ > 0. Let
h = (h1,...,hy) € RY with 0 < ||h|| <e. For k=0,...,N, let

k
2™ =+ hje;.
=1

It follows that
o 20 = Zo,
o :(N) =g+ h,
e and 2"~ and z®) differ only in the k-th coordinate.
Foreach k=1,...,N, let
gi: (—e,6) = R, t— f(z* Y +tep);

it is clear that g is differentiable and that g(0) = f(z*~V) and gx(hy) = f(=*)). By
the Mean Value Theorem, there is & with || < |hx| such that

Fa) = £@) = gu(h) = 9u(0) = G460 = 51+ el
This, in turn, yields
N ‘ ' N af
flao+h) = flwo) =D (fV) = faU=V) = a2, 207D + ¢e)h;
j=1 j=1

It follows that

[f (o + ) = flz0) — Y70, Gt (wo)hy]
1]

N
1 af
- 21 N Y
i Z.: <6x] TLe) = 5y

9 o of Of v _of > ,
~ Tl ‘(a W taien) - (@) g (@Y +ven) = g (o) )
< (851( O+ ¢er) - ai(:ﬁo), ey 8;;(;;;(1\7—1) +¢énven) — agj;@@) H (3.2)

where the last estimate is due to the Cauchy—Schwarz Inequality.
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As || < |hg| for k=1,..., N, we have &1,...,& — 0 as h — 0 and therefore
2 (k=1 + &per — xg

fork=1,...,N —1. As 6?7{1’ cee % are continuous at xgy this means that

af

_ of
(k—1) Y
. (x + &rer) — B (z0),

i.e., the right hand side of the inequality (3.2) tends to zero as h — 0. Consequently, the
left hand side of (3.2) converges to zero as well as h — 0, i.e., f is totally differentiable at
xQ. ]

Corollary 3.4.4. Let @ # U C RN be open, let f: U — RM be continuously partially
differentiable. Then f is totally differentiable on U, i.e., totally differentiable at each point
of U.

Very often, we can spot immediately that a function is continuously partially differ-
entiable without explicitly computing the partial derivatives. We then know that the

function has to be totally differentiable (and, in particular, continuous).

Theorem 3.4.5 (Chain Rule). Let @ # U C RY and @ # V C RM be open, and let
g: U —=RM and f: V — RE be functions with g(U) C V such that g is differentiable at
xo € U and f is differentiable at g(xo) € V. Then fog: U — RE is differentiable at x
such that

D(f o g)(wo) = Df(g(x0))Dg(z0)
and
Jtog(w0) = Jp(g(x0))Jy(20).

Proof. Since g is differentiable at xg, there is 6 > 0 such that

lg(zo + h) — g(w0) — Dg(zo)h||
|7l

<1
for 0 < ||h|| < 6. Consequently, we have for all h € RV with 0 < ||h|| < 6 that

lg(zo + ) — g(wo)||
< [lg(zo + h) — g(z0) — Dg(xo)h|| + | Dg(xo)hll < (1 + [[[Dg(xo)ll|)||A-
=:C

Let € > 0. Then there is § € (0,60) such that

1£(g(w0) + 1) = f(g(x0)) = Di(glao))ll < lInl
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for ||h]] < C§. Choose ||h|| < §, so that ||g(xo + h) — g(z0)]| < Cd. It follows that

[f(g(zo + h)) — f(g(x0)) — Df(g(x0))lg(wo + h) — g(zo)]|l
< Glatao + h) = gao)]| < el

We conclude that
i 4 Y@ + 1)) = f(g(x0)) — Df(g(0))[g(z0 + h) — g(z0)]

la, 7l =0
h£0
Let h # 0, and note that
1f(g(zo + h)) — f(g(z0)) — Df(g(x0))Dg(xo)h|
IRl
< 1f(g(xo + h)) — f(g(0)) —|§Lﬁ(g($o))[9($o +h) = g(zo)]] (3.3)
. 1D f(g(w0))[g(x0 + h) — 1(;'('))] — Df(g(x0))Dg(z0)h|| (3.4)

As we have seen, the term in (3.3) tends to zero as h — 0. For the term in (3.4), note
that

1D f(g(x0))lg(xo + h) — g(z0)] — Df(g(w0))Dg(xo)hl|
Al

xo + h) — g(xo) — Dg(xo)h| S0
[|A]]

—0

< 1D f(g(ao))] 14"

as h — 0. Hence,

i I (9o + 1)) = f(g(wo)) — Df(g(wo)) Dg(zo)hl| _

h—0 17|
h£0

0

holds, which proves the claim. ]

Definition 3.4.6. Let @ # U C RY be open, let 2y € U, and let v € RN be a unit vector,
i.e., with ||v]| = 1. The directional derivative of f: U — RM at zq in the direction of v is

defined as
lim f(xo + hv) — f(z0)

h—0 h
h+#0

and denoted by D, f(xg).

Theorem 3.4.7. Let @ # U C RY be open, and let f: U — R be totally differentiable at
w9 € U. Then D, f(z0) exists for each v € RN with ||v|| = 1, and we have

D, (o) = V(o) -v.
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Proof. Define
g RSRY, ¢tz + to.

Choose € > 0 such small that g((—e,e)) C U. Let h := f og. The chain rule yields that h
is differentiable at 0 with

=1 %
= Vf(zo) v
Since h
h'(0) = lim flzo + ) = flao) _ Dy f (o),
h—0 h
h#£0
this proves the claim. ]

Theorem 3.4.7 allows for a geometric interpretation of the gradient: The gradient
points in the direction in which the slope of the tangent line to the graph of f is maximal.
Existence of directional derivatives is stronger than partial differentiability, but weaker
than total differentiability. We shall now see that—as for partial differentiability—the

existence of directional derivatives need not imply continuity:

Example. Let
iﬂyQ
FiRZ SR, (z,y)—{ = (@y) 70 .
0, otherwise.

Let v = (v1,v2) € R? such that ||v|| = 1, i.e. v} +v3 = 1. For h # 0, we then have:

fO+hv) = f(0) 1 RPuws 003
h ~ hh2v? 4+ ko) 0?4 h20)

Hence, we obtain

- 0 =0
va(o) — lim f(o + h’U) f(o) — v27 v ?
h50 h -2 otherwise.
#0 v1

In particular, D, f(0) exists for each v € R? with |Jv|| = 1. Nevertheless, f fails to be

continuous at 0 because

1
limf<1 1): lim =L 20= f(0).

1 1
n—>oom—|-m 2
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Fxercises

1. Determine the Jacobians of
R? = R3,  (r,0,¢) — (rsinf cos ¢,rsinfsin ¢, r cos b)

and
R?® =+ R3, (r,0,2) — (rcosf,rsinb, z).

2. Let A € My(R) be symmetric. Show that
fRY SR, 22— Az -z
is totally differentiable, and that
(Df)(x)§ = 2Ax - §
for z,& € RV,
3. Let N € N, and show that
f: My(R) = My(R), X — X3

is totally differentible and determine its differential Df(X): My(R) = My (R) for
each X € My(R).

4. An N x N matrix X is invertible if there is X' € My(R) such that XX ! =
X~1X = Iy where Iy denotes the unit matrix.

(a) Show that U := {X € My(R) : X is invertible} is open. (Hint: X € My(R)
is invertible if and only if det X # 0.)

(b) Show that the map
f:U—= MyR), XX

is totally differentiable on U, and calculate D f(Xy) for each Xy € U. (Hint:

You may use that, by Cramer’s Rule, f is continuous.)

5. Let
p: (R\{0}) xR = R?  (r,0) — (rcosb,rsinf),

let @ # U C R? be open, and let f: U — R be twice continuously partially
differentiable. Show that
_ (o) 10(fop) | 16*(fop)

A _ -
(Af)ep Or? + r Or r2 062

on p~1(U). (Hint: Apply the chain rule twice.)
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6.

10.

Let @ # C C RY be open and connected, and let f: C — R be differentiable such
that Vf = 0. Show that f is constant. (Hint: First, treat the case where C'is convex
using the chain rule; then, for general C, assume that f is not constant, let z,y € C
such that f(z) # f(y), and show that {U,V} with U := {2 € C': f(z) = f(z)} and
V:={ze€C: f(z) # f(z)} is a disconnection for C.)

Let

Show that:

(a) f is continuous at (0,0);
(b) for each v € R? with ||v|| = 1, the directional derivative D, f(0,0) exists and
equals 0;

(c) f is not totally differentiable at (0,0).

(Hint for (c): Assume towards a contradiction that f is totally differentiable at
(0,0), and compute the first derivative of R > ¢ ~ f(t2,¢) at 0 first directly and
then using the chain rule. What do you observe?)

. Let @ # U C RY be open, and let f: U — R be partially differentiable such that

ng, e aa—f are bounded. Show that f is continuous.
1 TN

. Let f:R? — R be defined by

fz,y) ;:{ S, if (w,y) # (0,0),

0, otherwise.

Check—and justify— whether or not f is (a) partially differentiable, (b) continuous,
(c) totally differentiable, and (d) continuously partially differentiable.

Let @ # U C RY be open, and let f: U — RM be continuously partially differen-
tiable.

(a) Let 2 € U, and let £ € RN be such that {z +t£:t € [0,1]} € U. Show that

1
fl@+6 - flx) = /0 Jia + o€ dt.

(b) Suppose that U is convex, and that {|||J¢(z)||| : « € U} is bounded. Show that

f is Lipschitz continuous.
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3.5 Taylor’s Theorem

We begin with a review of Taylor’s theorem in one variable:

Theorem 3.5.1 (Taylor’s Theorem in One Variable). Let I C R be an interval, let n € Ny,
and let f: I — R be n+1 times differentiable. Then, for any x,xg € I, there is £ between

z and xg such that

)y (n+1)
=31 e =t + L g,

Proof. Let x,xg € I such that z # xy. Choose y € R such that

n k) (g
f(:n)zsz(!o)(:c—xo)k+ Y _(x—xo)”ﬂ.
k=0

Define

" fk)
P = f0) - 3o e 0 = e
k=0

so that F'(zg) = F(xz) = 0. By Rolle’s Theorem, there is £ strictly between x and z( such
that F'(£) = 0. Note that

n (k+1) (k)
Py ==Y (f O g SO t>’“> HENCEE

p k! (k—1)! n!
_ _f(n:!)(t) (=" + L@ -,
so that f(”“)(g) ,
0= (@=g"+ (z-¢"
and thus y = f(*+D(¢). O

For n = 0, Taylor’s Theorem is just the mean value theorem.
Taylor’s theorem can be used to derive the so-called second derivative test for local

extrema:

Corollary 3.5.2 (Second Derivative Test). Let I C R be an open interval, let f: I — R
be twice continuously differentiable, and let xo € I such that f'(x¢) = 0 and f"(xg) < 0

[f"(x0) > 0]. Then f has a local maximum [minimum] at xg.

Proof. Since f” is continuous, there is € > 0 such that f”(z) < 0 for all z € (g —¢,xg+€).
Fix z € (xg — €, 29 + €). By Taylor’s Theorem, there is £ between x and xg such that

1) = fao) + o) w — o) + T ZI0 < i
- -

which proves the claim. ]
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This proof of the second derivative test has a slight drawback compared with the usual
one: we require f not only to be twice differentiable, but twice continuously differentiable.
Its advantage is that it generalizes to the several variable situation.

To extend Taylor’s Theorem to several variables, we introduce new notation.

A multiinder is an element o = (a1, ...,ay) € NY. We define
lal :==a1+ -+ ay and ol i=a!-ayl

If f is || times continuously partially differentiable, we let

o f olel
Df = = .
/ oz~ Qx(t -z
Finally, for z = (21,...,2n) € RY, we let 2% := 2§ - 2QN.

We shall prove Taylor’s Theorem in several variables through reduction to the one

variable situation:

Lemma 3.5.3. Let @ # U C RY be open, let n € Ny, let f: U — R be n times
continuously partially differentiable, and let x € U and & € RN be such that {x +t& : t €
[0,1]} CU. Then

g:[0,1] > R, t— f(z+1t)

18 n times continuously differentiable such that

ar !
() = > 5D+ )8

la|=n
fort €[0,1].
Proof. We prove by induction on n that

N

d*g

g () = > Dj,-Dj fw+ 1), &
jlv“wjn:l

For n = 0, this is trivially true.

For the induction step from n — 1 to n, simply note that

dg d

N
AW =2 Di D@ 8

J1yen—1=1

N N
=> D > DDy fle ), Gy | &

]:1 jl:"'7jn—1:1
by the Chain Rule,

N

J1yesdn=1
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For (j1,...,7n) € {0,1,...,N}"and k € {1,..., N}, let a; denote the number of times
k occurs among the coordinates of (ji, ..., ), so that « is a multiindex with |a| = n. As f
is n times continuously partially differentiable, we may change the order of differentiation,

so that
Dj, - Dj, f(x + )&, -+~ &, = DI --- DRN fx + )T --- E3.

On the other hand, given a multiindex o with |a| = n, it is known from combinatorics

that there are al,"i'ow, n-tuples (ji,...,Jn) € {0,1,..., N}" such that k occurs among its

coordinates exactly oy times for K =1,..., N. All in all, we obtain
d"g N
() = > Dy Dy flw+ 1), &,
j17"'7jn:1
= Y Dy DR e )
= oyl an! 1 N 1 N
la|=n
n!
=D D@ +te)E
laj=n
as claimed. O

Theorem 3.5.4 (Taylor’s Theorem). Let @ # U C RN be open, let n € Ny, let f: U — R

be n+1 times continuously partially differentiable, and let x € U and € € RN be such that
{r+t&:te€]0,1]} CU. Then there is 0 € [0,1] such that

10%f

fla+& =" ol Bz

lo|<n |a|=n+1

e+ Y L0 e, (3.5)

ol Oz

Proof. Define
g:[0,1] = R, ¢t~ f(x+1t).

By Taylor’s Theorem in one variable, there is 6 € [0, 1] such that

= g®(0) g t(0)
9(1)‘;% BT

By Lemma 3.5.3, we have for k =0,...,n that

g (0) _ Z 10%f

k! ol Oz
la|=k

(z)¢"

as well as

(n+1) o
9" (0) 10%f o
CESVEN IZ ol e+ 0)E%
al=n+1
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Consequently, we obtain

8&
fer9=g)= Y oL

ol 9z
la|<n lal=n+1

as claimed.

We shall now examine the terms of (3.5) up to order two:

e Clearly,
> 0 e = 1w
holds. o
o We have Loy N o
|§1a!axa< =2 gy, @6 = (Erad H@) -

e Finally, we obtain

1 8af a al 19 2 82f .
> Sl Bga (L)ET = Z289c§(x)£j +j§<;€ Da,08 (2)&58k

|a|=2 j=1
N

1 9? 5 1 0% f

- EZW(@ D) Ox,;0x ()&%
j=1 """ J
N

1 0’ f
=5 (2)&;&k

2 j,kz—l 8$]8$k J

92 92

(] #Heo e @] e

=35 . 62f. :
01107 N (), ..., 23, () EN

1

= 5(Hess )(2)¢ &,
where 52 52
87%‘(3;), g (@)
(Hess f)(z) := : : :
N2 2
i (), ..., gx?{ (z)

is the so-called Hessian of f at x.

This yields the following, reformulation of Taylor’s Theorem:

e+ Y @t age

&1

EN
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Corollary 3.5.5. Let @ # U C RY be open, let f: U — R be twice continuously partially
differentiable, and let x € U and & € RN be such that {x +t&:t €[0,1]} C U. Then there
is 0 € [0,1] such that

Flz+€) = (&) + (grad £)(z) €+ 5 (FHoss )(z+09)E &

Fxercises

1. Let z,y € R. Show that there is 6 € [0, 1] such that

1
sinfz +y)=x+y— 5(:1:2 + 2xy + y?) sin(0(z + ).

2. Let U C RY be open and convex and contain 0, let n € Ny, and let f: RY — R
be n + 1 times continuously partially differentiable such that % =0 on U for all

multiindices o € N}’ with |a| = n+ 1. Show that, there are (Ca)aeNéV in R such that

la|<n
fz) = Z Cax™
lal<n

forallz € U.

3.6 Classification of Stationary Points

In this section, we put Taylor’s theorem to work to determine the local extrema of a
function in several variables or rather, more generally, classify its so-called stationary

points.

Definition 3.6.1. Let @ # U C RY be open, and let f: U — R be partially differentiable.
A point xg € U is called stationary for f if V f(xg) = 0.

As we have seen in Theorem 3.2.4, all points where f attains a local extremum are

stationary for f.

Definition 3.6.2. Let @ # U C RY be open, and let f: U — R be partially differentiable.
A stationary point x¢g € U where f does not attain a local extremum is called a saddle
point (for f).
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Figure 3.3: Saddle point = center of a Pringle

The notion of positive definiteness for a symmetric matrix and related ones—such as

negative definiteness and indefiniteness—are defined in Section A.3.

Lemma 3.6.3. Let @ # U C RY be open, let f: U — R be twice continuously partially
differentiable, and let xg € U be such that that (Hess f)(xzg) is positive definite. Then
there is € > 0 such that Be(xo) C U and such that (Hess f)(z) is positive definite for all
x € Be(zo).

Proof. Since (Hess f)(xz¢) is positive definite,

92 9?
%%(xo), oy b (o)
det : : >0
92 0
Tp—(10), -, 3725(900)
holds for k = 1,..., N by Theorem A.3.8. Since all second partial derivatives of f are
continuous, there is, for each K = 1,..., N, an element ex > 0 such that B, (zo) C U
and o -
%{(x), oy DmebEr (x)
det : : >0 (3.6)
9?2 ?
gg—(z), ..., aé(x)

for all z € Be, (z0). Let € :== min{ej,...,en}, so that Be(xg) C U and (3.6) holds for all
x € Be(z). By Theorem A.3.8 again, this means that (Hess f)(z) is positive definite for
all z € Be(xo). O
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As for one variable, we can now formulate a second derivative test in several variables:

Theorem 3.6.4 (Second Derivative Test). Let @ # U C RN be open, let f: U — R
be twice continuously partially differentiable, and let xqg € U be a stationary point for f.
Then:

(i) if (Hess f)(xo) is positive definite, then f has a local minimum at zo;
(ii) if (Hess f)(xo) is negative definite, then f has a local mazimum at xo;
(iii) if (Hess f)(xo) is indefinite, then f has a saddle point at xg.

Proof. (i): By Lemma 3.6.3, there is € > 0 such that B¢(z¢) C U and that (Hess f)(z) is
positive definite for all x € Bc(xp). Let & € RY be such that 0 < ||£]| < e. By Corollary
3.5.5, there is 6 € [0, 1] such that

Flwo+€) = F(wo) + (grad f)(wo) -+ (Hess f)(wo + BE & > f(ao).

=0 >0

Hence, f has a local minimum at z.

(ii) is proven similarly.

(iii): Suppose that (Hess f)(zo) is indefinite. Then there are Aj, A2 € R with A\; <
0 < A2 and non-zero &1, & € RY such that

(Hess f)(20)&; = Aj&;

for j =1,2. Let € > 0 be such that Bc(zg) C U. Scaling & and & such that ||§;|| < e for
j = 1,2, we can suppose without loss of generality that {zo+t§; : t € [0,1]} C Be(zg) for
7 =1,2. Since
(Hess )(z0)é; & = A& P { RN
>0, j=2,
the continuity of the second partial derivatives yields 6 € (0, 1] such that

(Hess f)(zo +t&1)&1 - &1 <0 and (Hess f)(zo +t&2)&2-&2 >0

for all t € (0, d]. From Corollary 3.5.5, we obtain 61,6 € [0, 1] such that

52 xo), ) = 1,
f (o + 665) = f(wo) + 5 (Hess f)(ao +6’j5€j>€j'fj{ i;ExE; j— 2.

Consequently, for any € > 0 such that Be(xg) C U, we find 1,29 € Bc(zp) such that
f(z1) < f(xo) < f(z2). Hence, f must have a saddle point at zo. O
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Example. Let
fR SR, (z,y,2) — 22+ 9% + 22 + 2zyz,

so that
Vi(x,y,z) = 2z + 2yz,2y + 2zx,22 + 22y).

It is not hard to see that

Vf(z,y,z) =0
— (z,y,2) € {(0,0,0), (—1,1, 1), (1, -1,1), (1,1, —1), (—1, -1, —1)}.

Hence, (0,0,0), (-1,1,1), (1,-1,1), (1,1,—1), and (—1,—1,—1), are the only stationary
points of f.

Since
2 2z 2y

(Hess f)(z,y,2)=| 22 2 2z |,
2y 2z 2

it follows that

2
(Hess £)(0,0,0) = | 0
0

S N O
N OO

is positive definite, so that f attains a local minimum at (0,0, 0).
To classify the other stationary points, first note that (Hess f)(z,y, z) cannot be neg-

ative definite at any point because 2 > 0. Since

2 2
det = 4 — 47
2z 2

is zero whenever 22 = 1, it follows that (Hess f)(x,y,2) is not positive definite for all

non-zero stationary points of f. Finally, we have

2 2z 2y

2 2 2z 2 2 2
det | 22 2 2z | =2det Tl osdet | 7T | 1 2ydet |
2x 2y 2y 2x
2y 2z 2
=2(4 — 42?%) — 22(4z — dzy) + 2y(4zz — 4y)
=8 — 8z — 822 + 8xzy + Sxyz — 8y?
=8(1 — 2% — y? — 22 + 2zy2).
This determinant is negative whenever |z| = |y| = |z| = 1 and zyz = —1. Consequently,

(Hess f)(z,y, z) is indefinite for all non-zero stationary points of f, so that f has a saddle

point at those points.
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Corollary 3.6.5. Let @ # U C R? be open, let f: U — R be twice continuously partially
differentiable, and let (xo,yo) € U be such that

0 0
i(x07y0> = l($0,y0) = 0.
Oz oy
Then the following hold:
N 2 2 2 2 2
(i) of %(mo,yo) > 0 and %(mo,yo)%(xo,yo) - (%(%,yo)) > 0, then f has a
local minimum at (xo,yo);

2

ey - 2 2 2 2
(ii) af %(wo,yo) < 0 and %(xo,yo)g—?ﬁc(xo,yo) — (;Tgy(xg,yo)) > 0, then [ has a
local mazimum at (xg,yo);

2

e . 2 2 2 .
(i) of %(xo, yo)g—?ﬁ(a:o,yo) — <§Tgy(x0, y0)> < 0, then f has a saddle point at (xo,yo)-

Ezample. Let
D :={(z,y) eR?: 0<zyx+y<m7},

y

0,m)

(0’0) (TC,O)
Figure 3.4: The domain D

and let
f:D—=R, (z,y) (sinz)(siny)sin(z + y).

It follows that f|sp = 0 and that f(x) > 0 for (x,y) € int D.
Hence f has the global minimum 0, which is attained at each point of 0D.

In the interior of D, we have

%(m, y) = (cosz)(siny) sin(z + y) + (sinz)(siny) cos(z + y)

and
(;ch(m, y) = (sinz)(cosy) sin(z + y) + (sinz)(siny) cos(z + y).
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It follows that %(:p,y) = g—g(x, y) = 0 implies that

(cosz)sin(x 4+ y) = —(sinzx) cos(x + y)
and

(cosy)sin(z + y) = —(siny) cos(z + y).

Division of the first equation by the second one yields

CcoS ¥ sinx

cosy  siny

and thus cot z = coty. It follows that x = y. Since g—ﬁ(:v, x) = 0 implies

0 = (cos z) sin(2x) + (sinx) cos(2x) = sin(3z),

which—for # + 2 € [0,7]—is true only for » = F, it follows that (%, %) is the only
stationary point of f.
It can be shown that

(T =va<o

9r2 \3"3
and )
0? 0? 0? 9
J(Ij)i(ﬁj)_ / (D) =250
0x2 \33/ 0y2 \3’ 3 0xOy \3’ 3 4
Hence, f has a local (and thus global) maximum at (g, %), namely f (g, %) = %.
Exercises

1. Determine and classify all stationary points of
fR3 SR, (x,y,2) — 2% -3z — 3+ 9y + 22

If f attains a local minimum or maximum at one of its stationary points, evaluate

it there.
2. Determine and classify the stationary points of
I R? & R, (z,y) — (a:2 + 2y2)e*(x2+y2).

If f has a local extremum at a stationary point, determine the nature of this ex-

tremum and evaluate f there.
3. Let c1,...,c, € RV, For which x € RY does >l — ¢j||* become minimal?
4. Determine the minimum and the maximum of
f:D—=R, (x,y)+ sinx+siny+ sin(z +vy),

where D := {(ac, y) ERZ:0<m,y < g}, and all points of D where they are attained.
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Integration in RN

4.1 Content in RY

What is the volume of a subset of RV?
Let
I:=la1,by] x - x [an,by] C RN

be a compact N-dimensional interval. Then we define its (Jordan) content u(I) to be

N
w(1) =[] (6 = ay).
j=1

For N = 1,2, 3, the Jordan content of a compact interval is then just its intuitive lenght /-
area/volume.
To be able to meaningfully speak of the content of more general set, we first define

what it means for a set to have content zero.

Definition 4.1.1. A set S C RY has content zero [u(S) = 0] if, for each ¢ > 0, there are
compact intervals I, ..., I, C RV with

S C LnJ I; and Z,u(lj) <e.
j=1

Ezamples. 1. Let x = (21,...,2x) € RY, and let € > 0. For § > 0, let
I5 .= [a;l—d,xl—i—é] X“-X[SCN—(S,CCN—I—(;].

It follows that = € I5 and u(I5) = 2V6Y. Choose § > 0 so small that 2V§" < ¢ and
thus pu(l5) < e. It follows that {z} has content zero.

87
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2. Let S1,...,S,, € RV all have content zero. Let € > 0. Then, for j = 1,...,m, there

are compact intervals /; U ) R (] ) ¢ RN such that

n; . n;
S; C UIIEJ) and Zu([lij))<f
k=1 k=1

It follows that

m Ny

Siu--us.c Uy

j=1k=1

and
ng

m J
Zz,u <m— €.

=1 k=1
Hence, S1U---U S, has content zero. In view of the previous examples, this means

in particular that all finite subsets of RY have content zero.
3. Let f:[0,1] — R be continuous. We claim that {(x, f(z)) : x € [0, 1]} has content
zero in R2.

Let € > 0. Since f is uniformly continuous, there is § € (0,1) such that |f(z) —
f(y)] < § for all z,y € [0,1] with |z —y| < §. Choose n € N such that nd < 1 and
(n+1)6 >1. For k=0,...,n,let

= k3, (k + 1)d] x [f(ké) - i,f(ké) +§ .

Let = € [0, 1]; then there is k € {0,...,n} such that = € [kd, (k + 1)0] N [0,1], so
that |z — kd| < 0. From the choice of 6, it follows that |f(x) — f(kd)| < §, and thus
f(@) € [f(kd) — 5, f(k6) + §]. Tt follows that (z, f(x)) € Ij.

Since x € [0, 1] was arbitrary, we obtain as a consequence that

(. /@) e e 0} < U I

k=0

Moreover, we have

This proves the claim.

4. Let r > 0. We claim that
S = {(z,y) e R?: 2 +¢* =12}

has content zero.
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Let
Sy = {(z,y) e R?: 22 +¢* =12,y >0},

and let

fil-rr]—=R, z—r?2—2a2

Then f is continous, and S; = {(z, f(x)) : © € [—r,r]}. By the previous example,
w(S1) = 0 holds. Similarly,

So 1= {(x,y)€R2:x2+y2:r2,y§0}

has content zero. Hence, S = S U S has content zero.

For an application later on, we require the following lemma:

Lemma 4.1.2. A set S C RY does not have content zero if and only if, there is eg > 0
such that, for any compact intervals In, ..., I, C RN with S C U?Zl I;, we have

Z 1(15) > eo.

j=1
int [;NS#o
Proof. Suppose that S does not have content zero. Then there is €y > 0 such that, for
any compact intervals Iy, ..., I, C RY with S C Uj=1 Ij, we have >0, u(1;) > &.
Set ¢ = %0, and let I;,...,I, € RN a collection of compact intervals such that
SchU---UlI, We may suppose that there is m € {1,...,n} such that

int Ij NS #go
for j =1,...,m and that
I; N S C 8Ij
for j =m+1,...,n. Since boundaries of compact intervals always have content zero,
n n
U Ij ns c U 81]
j=m+1 j=m+1
has content zero. Hence, there are compact intervals Ji,. .., J; C RY such that
n k n c
0
U IynsS c UJj and ZM(JJ)<§'
j=m+1 j=1 j=1

Since
Schu---Ul,UJiU---UJg,
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we have
m k
éo <Y )+ py),
j=1 j=1
W—/
<%
which is possible only if
m ~
0
> ully) > 5 — €
j=1
This completes the proof. O

FExercises

1. Let (2,)%%; be a convergent sequence in RY with limit z. Show that {z, : n €
N} U {x} has content zero.

2. Let I ¢ RN be a compact interval. Show that dI has content zero.

3. Let Iy,...,I, C R be compact intervals such that QN [0,1] C I; U---U I,,. Show
that Z?:l M(I]) > 1.

4.2 The Riemann Integral in RY

Let
I := [al,bl] X oo X [aN,bN].

For j=1,...,N, let
aj =tjo <tj1 <. <tjn; =b;

and
Pj={tjr:k=0,...,n;}.

Then P :="P; x --- Py is called a partition of I.

Each partition of I generates a subdivision of I into subintervals of the form

(1 ks T k1) X [E2,kos t2 ko 41] X =+ X [EN ks EN k1)

these intervals only overlap at their boundaries (if at all).
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b,

az bl

Figure 4.1: Subdivision generated by a partition

There are nj - - - ny such subintervals generated by P.

Definition 4.2.1. Let I ¢ RY be a compact interval, let f: I — RM be a function, and
let P be a partition of I that generates a subdivision (I,),. For each v, choose z, € I,.
Then
S(f,P) =) flz)u(l)
v

is called a Riemann sum of f corresponding to P.

Note that a Riemann sum is dependent not only on the partition, but also on the
particular choice of (x,),.

Let P and Q be partitions of the compact interval I € RY. Then Q called a refinement
of Pif P;C Qjforallj=1,...,N.
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P refinement of P

Figure 4.2: Subdivisions corresponding to a partition and to a refinement

If P; and P, are any two partitions of I, there is always a common refinement Q of
P1 and P.

common refinement of
P, and P,

Figure 4.3: Subdivision corresponding to a common refinement

Definition 4.2.2. Let I C RY be a compact interval, let f: I — RM be a function,
and suppose that there is y € RM with the following property: For each € > 0, there is a
partition P, of I such that, for each refinement P of P, and for any Riemann sum S(f,P)
corresponding to P, we have [|S(f,P) — y|| < e. Then f is said to be Riemann integrable

on I, and y is called the Riemann integral of f over I.

In the situation of Definition 4.2.2, we write

y::/If::/Ifdpc::/If(xl,...,xN)d,u(xl,...,a:N).

The proof of the following is an easy exercise:
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Proposition 4.2.3. Let I ¢ RY be a compact interval, and let f: I — RM be Riemann
integrable. Then f]f 1S unique.

Theorem 4.2.4 (Cauchy Criterion for Riemann Integrability). Let I C RN be a compact
interval, and let f: I — RM be a function. Then the following are equivalent:

(i) f is Riemann integrable;

(ii) for each € > 0, there is a partition P of I such that, for all refinements P and Q
of Pe and for all Riemann sums S(f,P) and S(f, Q) corresponding to P and Q,
respectively, we have ||S(f,P) — S(f, Q)| < e.

Proof. (i) = (ii): Let y := [; f, and let € > 0. Then there is a partition P, of I such
that

€
IS, P) —yl < &

for all refinements P of P, and for all corresponding Riemann sums S(f,P). Let P and Q

be any two refinements of P, and let S(f,P) and S(f, Q) be the corresponding Riemann

sums. Then we have

IS(£,P) = S(£. QN < IS P) =yl +1S(£,Q) —yl < 5+5 ==,

which proves (ii).
(ii) = (i): For each n € N, there is a partition P,, of I such that

1

IS(7.P) = S(£. Q) < 5
for all refinements P and Q of P,, and for all Riemann sums S(f,P) and S(f, Q) cor-
responding to P and Q, respectively. Without loss of generality suppose that P41 is a
refinement of P,. For each n € N, fix a particular Riemann sum S, := S(f,P,). For

n > m, we then have

n—1 n—1 1
1S = Sl < > I1Sks1 = Skl < Y o
k=m k=m
so that (S,)22, is a Cauchy sequence in RM. Let y := limy_00 Sn. We claim that

y:fyf'

Let € > 0, and choose ng so large that 5z < 5 and [[Sp, — yl| < §. Let P be a

refinement of Py, and let S(f,P) be a Riemann sum corresponding to P. Then we have

ISC/P) =yl < [IS(f,P) = Snoll + [|Sne — ¢l <€

1 € 3
<gmg <3 <

(1L

This proves (i). O
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The Cauchy Criterion for Riemann Integrability has a somewhat surprising—and very
useful—corollary. For its proof, we require the following lemma of which the proof is

elementary, but unpleasant (and thus omitted):

Lemma 4.2.5. Let I C RN be a compact interval, and let P be a partiation of I subdi-

viding it into (I,),. Then we have
w1y = 3" (L),

Corollary 4.2.6. Let I C RN be a compact interval, and let f: I — RM be a function.

Then the following are equivalent:
(i) f is Riemann integrable;

(i) for each € > 0, there is a partition Pe of I such that ||S1(f,Pe) — Sa(f, Pe)| < € for
any two Riemann sums S1(f,Pe) and Sa(f,P.) corresponding to P..

Proof. (i) = (ii) is clear in the light of Theorem 4.2.4.

(i) = (i): Without loss of generality, suppose that M = 1.

Let (I,,), be the subdivions of I corresponding to P.. Let P and Q be refinements of
P. with subdivision (J,,), and (Ky) of I, respectively. Note that

S(f,P) = 5(f,9Q)

= Z f@p)p(Jy) — Z Fyn)u(Ky) = Z Z f@p)pn(Jy) — Z Fy)n(K)

A v JuCIy KyCly

For any index v, choose 2}, z,« € I, such that

f(z) = max{f(zu), f(yr) : Ju, Kx C I}
and
f(zve) = min{f(z,.), f(yr) : Ju, Kx C L}
For v, we obtain
(f (zu) = f(2)) (1)
= f(2e) Y u(Ju) = f(25) Y w(Ky), by Lemma 4.2.5,

JuCI, KyCl,
< Y f@a)p(T) = D Flunu(Ky)
JuCI, K\CI,
<FG) D ) = flas) D u(Ky)
JuCI, KyCl,

= (f(2)) = f(zv)) (L0, by Lemma 4.2.5 again,
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so that

Z f mu Z f yA K)\ < (f(zi) _f(zu*)):u(IV)'

JuCly KyCl,
It follows that

<D G = faully) = | Y @) =Y flanl) | <e

:Sl(f»Pé) :S2(f77>6)

which completes the proof. O

Theorem 4.2.7. Let I C RN be a compact interval, and let f: I — RM be continuous.

Then f is Riemann integrable.

Proof. Since I is compact, f is uniformly continuous.
Let € > 0. Then there is § > 0 such that ||f(z) — f(y)| < o for x,y € I with
[l —yll <.

Choose a partition P of I with the following property: If (1), is the subdivision of I
generated by P, then, for each

we have

0 — )| < 0

j=1,...,.N \/N

Let S1(f,P) and Sa(f,P) be any two Riemann sums of f corresponding to P, namely

=Y fla)ul,)  and  Sy(f.P) =Y fly)ud

with x,,y, € I,. Hence,

N N 52
low = oll = | D (s = 90)? < (| D5 =9
7=1

holds, so that

1S1(£,P) = S2(f, P < D 1 F () = flww) (L) < Me > ully) =e

This completes the proof. O

Our next theorem improves Theorem 4.2.8 and has a similar, albeit technically more

involved proof:
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Theorem 4.2.8. Let I C RN be a compact interval, and let f: I — RM be bounded
such that S := {x € I : f is discontinous at x} has content zero. Then f is Riemann

integrable.

Proof. Let C > 0 be such that || f(z)|] < C for z € I, and let € > 0.
Choose a partition P of I such that

Z p(ly) < m

I,NS4o

holds for the corresponding subdivision (7,,), of I, and let

K = U I,.

I,NS=2

Figure 4.4: The idea of the proof of Theorem 4.2.8

Then K is compact, and f|x is continous; hence, f|x is uniformly continous.
Choose 0 > 0 such that [|f(z) — f(y)|| < g7 for 2,y € K with [z —y[| < 4. Choose
a partition Q refining P such that, for each interval Jy in the corresponding subdivision
(J)\))\ of I with
ri= [ bV o a0,
we have

§
max ]a(~)‘) — bgf\)\ < —=.

]:17""N J \/N

Let S1(f, Q) and Sa(f, Q) be any two Riemann sums of f corresponding to Q, namely

Si(f,Q) =) flanpu(dy)  and  So(f,Q) = Flun)ul]y).
A A
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It follows that

151(f, Q) = Sa2(f, Q)| <ZHf (zx) = Fy)llu(In)

Z £ @@x) = Fn L p(In) + D @) = Fn)] ax)

INEK <20 JNCK )
€
<2C Z 1(Jx) +m Z ()
INZK H JA\CK
<%

§%7§:umﬂé

which proves the claim. ]

Let @ # D C RY be bounded, and let f: D — RM be a function. Let I € RY be a
compact interval such that D C I. Define

(x), z€D,

0, z¢D. (1)

fiI—RM, xH{f

We say that f Riemann integrable on D if f is Riemann integrable on I. We define

Ll

It is easy to see that this definition is independent of the choice of I.

Theorem 4.2.9. Let @ # D C RN be bounded with ;1(0D) = 0, and let f: D — RM be

bounded and continuous. Then f is Riemann integrable on D.

Proof. Define f as in (4.1). Then f is continuous at each point of int D as well as at each

point of int(I \ D). Consequently,
{z € I: fis discontinuous at z} C D

has content zero. The claim then follows from Theorem 4.2.8. O

Definition 4.2.10. Let D ¢ RY be bounded. We say that D has content if 1 is Riemann
integrable on D. We write
w(D) = / 1.
D
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Sometimes, if we want to emphasize the dimension N, we write uy (D).

For any set S C RY, let its indicator function be

1, z€68,

RV SR, 22—
X8 {0, x ¢ S.

If D ¢ RY is bounded, and I ¢ RY is a compact interval with D C I, then Definition

4.2.10 becomes
WD) = /1 XD-

It is important not to confuse the statements “D does not have content” and “D has
content zero”: a set with content zero always has content.
The following theorem characterizes the sets that have content in terms of their bound-

aries:

Theorem 4.2.11. The following are equivalent for a bounded set D C R :
(i) D has content.
(ii) 0D has content zero.

Proof. (ii) = (i) is clear by Theorem 4.2.9.

(i) = (ii): Assume towards a contradiction that D has content, but that 0D does
not have content zero. By Lemma 4.1.2, this means that there is ¢9 > 0 such that, for any
compact intervals I, ..., I, C RN with 0D C U?Zl I;, we have

> uld)) > e

=1
int [;N0D#2

Let I ¢ RN be a compact interval such that D C I. Choose a partition P of I such that

S0, P) = u(D)] < T

for any Riemann sum of yp corresponding to P. Let (1), be the subdivision of I corre-
sponding to P. Choose support points x,, € I, with x, € D whenever int I, N 0D # &.
Let

S1(xp,P) = Z XD (@) (1)

Choose support points ¥y, € I, such that y, = x, if int [, N90D = @ and y, € D¢ if
int I, N9D # @, and let

Sa2(xp,P) = > xo(yw)u(L).
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It follows that
Si(xp,P) = Sa(xp,P) = > (L) > e.
(int 1,)NOD£

On the other hand, however, we have

1S1(xp, P) = S2(xp, P)| < 1S1(xD, P) — u(D)| + [S2(xp, P) — u(D)| < <o,
which is a contradiction. OJ

Before go ahead and actually compute Riemann integrals, we sum up (and prove) a

few properties of the Riemann integral:
Proposition 4.2.12 (Properties of the Riemann Integral). The following are true:

(i) Let @ # D C RY be bounded, let f,g: D — RM be Riemann integrable on D, and
let \,p € R. Then \f + pg is Riemann integrable on D such that

//D(Aerﬂg):A/Deru/Dg-

(ii) Let @ # D C RN be bounded, and let f: D — R be non-negative and Riemann

integrable on D. Then fD f is non-negative.

(iii) Let @ # D C RY be bounded, and let f: D — RM be Riemann integrable on D.
Then
Ifll: D =R, = [f(x)l

|[ = [

(iv) Let Dy, Dy C RN be non-empty and bounded such that (D1 N Dy) = 0, and let
f: D1 UDy — RM be Riemann integrable on both Dy and Dy. Then f is Riemann
integrable on D1 U Dy such that

/[)1UD2f N D1f+ Dy f

(v) Let @ # D C RN have content, let f: D — R be Riemann integrable, and let
m, M € R be such that

is Riemannn integrable with

m < f(z) <M
forx € D. Then
mu(D) < [ < MuD)
holds.
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(vi) Let @ # D C RN be compact, connected, and have content, and let f: D — R be

continuous. Then there is g € D such that
| £= taan(n)

Proof. (i) is routine.

(ii): Without loss of generality, suppose that I is a compact interval. Assume that
f]f < 0. Let € := — fl f > 0, and choose a partition P of I such that for all Riemann
sums S(f,P) corresponding to P, the inequality

stP) - [1] <5

holds. It follows that
S(f.P) <=5 <0,

whereas, on the other hand,
S(f,P)=>_ fl)ul,) >0,

where (I,), is the subdivision of I corresponding to P.

(iii): Again, suppose that D is a compact interval I.

Let € > 0, and let fi,..., far denote the components of f. By Corollary 4.2.6, there
is a partition P, of I such that

€
[S1(f5, Pe) = Sa2(f5, Pe)l < 47
for j =1,..., M and for all Riemann sums S;(f;, P.) and Sa(fj, P.) corresponding to P..
Let (I,), be the subdivision of I induced by P.. Choose support points x,,y, € I,. Fix

je{l,...,M}. Let 2}, zy« € {2y, y,} be such that

fi(z) = max{fj(z.), fi(y,)}  and  fi(z.) = min{f;(zv), fj(y0)}

We then have that

Z |f]($u) - fj(yll)m(lu)

v
€

= _(F(=) = fila)n(l) = Y f(E)ud) = ) filzaud) < 57
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It follows that

> I @)L lef (w)ln(L)| < Z\If () — fy)llpn(ly)
< ZZUJ ) — [ (yo) (1)

v =1
—ZZ!JZ ) = fi(y)lu(ly)
j=1 v

€
M—
< M

:67

so that ||f]| is Riemann integrable by Corollarly 4.2.6.
Let € > 0 and choose a partition P of I with corresponding subdivision (I,,), of I and
support points z, € I, such that

and

<,

) L, / T

5 < St + 5 < [ sl +e

Since € > 0 was arbitrary, this means that Hf[ f” < 7 IF1-
(iv): Choose a compact interval I C RY such that Dy, Dy C I, and note that

/Djfz/lfxfjj :/1)1UD2fXDj

for 5 = 1,2. In particular, fxp, and fxp, are Riemann integrable on D; U Dy. Since

It follows that

f=

w(D1 N Dy) =0, the function fxp,np, is automatically Riemann integrable, so that

f=fxp, + fxps — fXDinD,

is Riemann integrable. It follows from (i) that

APRey o R
R
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(v): Since M — f(z) > 0 holds for all x € D, we have by (ii) that

o< for-p=nm[ 1| r=mup)- [

Similarly, one proves that m u(D) < [, f
(vi): Without loss of generality, suppose that (D) > 0. Let

=inf{f(z): xz € D} and M :=sup{f(x):z € D},

so that
f < M.
wD) =
Let x1,29 € D be such that f(z1) = m and f(ze) = M. By the Intermediate Value
Theorem, there is g € D such that f(zg) = Jp f) O
Ezercises

1. Let I be a compact interval, and let f = (fi,..., fur): I — RM. Show that f
is Riemann integrable if and only if f; : I — R is Riemann integrable for each
j=1,..., M and that, in this case,

[r= ([ )

2. Let I ¢ RN be a compact interval, and let f: I — RM be Riemann integrable.
Show that f is bounded.

holds.

3. Let @ # D C RY have content zero, and let f: D — RM be bounded. Show that f

is Riemann-integrable on D such that

| 1=0

4. Let @ # D C RN be bounded, and let f,g: D — R be Riemann-integrable. Show
that fg: D — R is Riemann-integrable.

Joro= () (o)

(Hint: First treat the case where f = g, treat the general case by observing that
fg=5((f+9?-*—34°)

5. Determine whether or not the function f in Exercise 3.4.8 is Riemann integrable on
[—1,1]2

Do we have
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6. Let @ # U C RY be open with content, and let f: U — [0,00) be bounded and
continuous such that fU f =0. Show that f =0 on U.

7. Let I € RN be a compact interval. Show that
A:={A CI: A has content}
is an algebra over I, i.e.,

(a) @, 1€ A,
(b) if A€ A, then I\ A € A, and
(c) if Ay,..., A, € A, then Ay U---UA, € A

4.3 Evaluation of Integrals in One Variable: A Review

In this section, we review the basic techniques for evaluating Riemann integrals of func-

tions of one variable:

Theorem 4.3.1. Let f: [a,b] — R be continous, and let F: [a,b] — R be defined as

F(z):= / f(t)dt
for x € [a,b]. Then F is an antiderivative of f, i.e., F' is differentiable such that F' = f.
Proof. Let = € [a,b], and let h # 0 such that z + h € [a,b]. By the Mean Value Theorem
of integration, we obtain that

x+h
Fm+hw4ww=/' F(tydt = f(En)h

for some &, between x 4+ h and x. It follows that

PerM = F®) _ 16" )

because f is continuous. O

Proposition 4.3.2. Let F and F» be antiderivatives of a function f: [a,b] — R. Then

Fy — F5 1s constant.

Proof. This is clear because (Fy — Fy) = f— f =0. O
Theorem 4.3.3 (Fundamental Theorem of Calculus). Let f: [a,b] — R be continuous,
and let F: [a,b] — R be any antiderivative of f. Then

b
/ (@) dz = F(b) — F(a) = F(x)

a

holds.
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Proof. By Theorem 4.3.1 and by Proposition 4.3.2, there is C' € R such that

/ f(t)dt =F(z)—C
for all x € [a,b]. Since
Fla)—C = / () dt =0,
we have C' = F(a) and thus

b
/ ft)dt = F(b) — F(a).
This proves the claim. O

Ezxample. Since % sinx = cosz, it follows that

™

s
sinzxdx = —cosz| = 2.
0 0

Corollary 4.3.4 (Change of Variables). Let ¢: [a,b] — R be continuously differentiable,
let f:[c,d] = R be continuous, and suppose that ¢([a,b]) C [c,d]. Then

o(b) b
/ f(x) de = / FS(0)@ (1) dt
¢(a) a

holds.
Proof. Let F' be an antiderivative of f. The chain rule yields that
(Fog¢) =(fod)d,

so that F o ¢ is an antiderivative of (f o ¢)¢’. By the Fundamental Theorem of Calculus,

we thus have

#(b) b
/¢>( ) f(@)dz = F(¢(b)) — F(¢(a)) = (Fo¢)(b) — (Fog)(b) = / f(o(t)¢'(t) dt

as claimed. O

Ezxamples. 1. We have
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2. We have
1 3 3 5
/ \/1—x2d:v:/ V1 —sin?t costdt:/ Vcos? t costdt:/ cos? tdt.
0 0 0 0

Corollary 4.3.5 (Integration by Parts). Let f, g: [a,b] — R be continuously differentiable.
Then

b b
/ f(x)g'(x) dz = f(b)g(b) — f(a)g(a) —/ f(x)g(x) dx
holds.

Proof. By the product rule, we have

d
2o @)9(x) = f@)g (@) + f'(2)g(z)
for = € [a,b], and the fundamental theorem of calculus yields

b
FO)9) - fa)gla) = [ 5 fw)gla)da

b
= [ @) + gt i
(lb b
_ / (@) (2) d + / I (@)g(x) da

as claimed. 0

Ezamples. 1. Note that

/2 cos® x dz = —sin(0) cos(0) + sin (g) cos (g) + /2 sin? x da
0 0

us

2 . 92
= sin“ x dx
0

3
:/ (1 — cos®x) dx
0

us
m 2
=—— cos? z dz,
2 Jo

2 m
dr = —.
/0 cos” x dx

Combining this with the second example on change of variables, we also obtain that

so that

[SIE]

Jus

1
/ \/1—t2dt:/2c082xd33:7r.
0 0 4
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2. We have
X X T xX 1
/logtdt—/ llogtdt:tlogt’ —/ t—dt =x logx — (z — 1).
1 1 1oyt
Hence,
(0,00) >R, z+—zlogex—=z

is an antiderivative of the natural logarithm.

4.4 Fubini’s Theorem

Fubini’s Theorem is the first major tool for the actual computation of Riemann inte-
grals in several dimensions (the other one is Change of Variables). It asserts that multi-
dimensional Riemann integrals can be computed through iteration of one-dimensional

ones:

Theorem 4.4.1 (Fubini’s Theorem). Let I C RN and J C RM be compact intervals, and
let f: I xJ— RE be Riemann integrable such that, for each x € I, the integral

F(z) == /J £ ) dyune (v)

exists. Then F: I — RX is Riemann integrable such that

/ F={ r
I IxJ
Proof. Let € > 0.

Choose a partition P. of I x J such that

from- ] <

for any Riemann sum S(f,P) of f corresponding to a partition P of I x J finer than P,.

Let Pe, and Pe, be the partitions of I and J, respectively, such that P, := Pe z X P .
Set Q¢ := Pe, and let Q be a refinement of Q. with corresponding subdivision (1), of
I; pick z, € I,,. For each v, there is a partition R., of J such that, for each refinement

R of R, with corresponding subdivision (J))x, we have

€

= 2un (1)

(4.2)

D f@e g )uar () — F(a)
X

for any choice of yy € Jy. Let R, be a common refinement of (R.,), and P, with
corresponding subdivision (Jy)) of J. Consequently, Q x R, is a refinement of P, with
corresponding subdivision (I, x Jy)x, of I x J. Picking y) € Jy, we thus have

€

S favmn Lyma(h) = [ 1 <5 (4.3)

2
VA IxJ



CHAPTER 4. INTEGRATION IN RY 107
We therefore obtain
ZF(xu)MN(IV) _/ fH
v IxJ

ZF 2 )N (L) = > F(@o, ya) i (Io) par ()

(79N

> (L)~ [ f
(70N

IxJ
ZF () pn (1 Zf (@v, y ) (L) e () || + %’ by (4.3),
_ Z f(xl/a y)\),UM(J)\) MN(L/> T %
A

Since this holds for each refinement O of 9., and for any choice of x,, € I,,, we obtain

that F' is Riemann integrable such that

/ I><J

as claimed. 0

Examples. 1. Let
0,1 x[0,1] = R, (2,y) — zy.

1 1
Joon? =y (f van)
0,1]%[0,1] 0o \Jo

‘We obtain
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2. Let
Fr0] % [0,1] 5 R, (z,5) — ™.

Then Fubini’s Theorem yields

1 1
/ f= / </ y?’exyz dy) dx =7.
[0,1]x[0,1] 0 0

Changing the order of integration, however, we obtain

1 1
[ ( / y%wyzdx) dy
0,1]x[0,1] 0 0

2

1

leyQ v

2 2,
111
—2°7 3273

1
=—e—1.

2

The following corollary is a straightforward specialization of Fubini’s Theorem applied

twice (in each variable).

Corollary 4.4.2. Let I = [a,b] X [c,d], let f: I — R be Riemann integrable, and suppose
that:

(a) for each x € [a,b], the integral fcdf(:v,y) dy exists;

(b) for each y € [c,d], the integral f; f(x,y) dx exists.

b df(:r,y)dy de = [ f= ' bf(w,y)dw dy
a c I c a

Similarly straightforward is the next corollary:

Then

holds.

Corollary 4.4.3. Let I = [a,b] X [¢,d], and let f: I — R be bounded such that the set Dy
of its discontinuity points has content zero and satisfies p1({y € [c,d] : (z,y) € Dp}) =0
for each x € [a,b]. Then f is Riemann integrable such that

f= b df(x,y)dy dz.
I a c
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Another, less straightforwarded consequence is:

Corollary 4.4.4. Let ¢,7: [a,b] — R be continuous such that ¢ < 1), let
D= {(z,y) e R?: z € [a,b], p(z) <y < ()},

and let f: D — R be bounded such that the set Do of its discontinuity points has content
zero and satisfies p1({y € R : (z,y) € Do}) = 0 for each x € R. Then f is Riemann

integrable such that
b ¥ ()
/fz/ / [z, y)dy | d.
D a o (x)

Figure 4.5: The domain D in Corollary 4.4.4

Proof. Choose ¢,d € R such that D C [a,b] x [¢,d] and extend f as f to [a,b] X [¢,d] by
setting it equal to zero outside D. It is not difficult to see that the set of discontinuity
points of f is contained in Dy U @D and thus has content zero. Hence, Fubini’s theorem

is applicable and yields

= Lo ([ o) [ ([ )

This completes the proof. O

Ezample. Let
D:={(z,y) eR*: 1<z <3, 2 <y<a®+1}.

o= = [ 1) oo [rac-e

It follows that
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Corollary 4.4.5 (Cavalieri’s Principle). Let N > 2, and suppose that S,T C RN have
content. For each x € R, let

Sx = {(1'1, cee ,xN—l) € RN_I : (I’,l’l, s 7$N—1) € S}

and
T, :={(x1,...,oN-1) € RN, (r,z1,...,xny-1) € T},

and suppose that S, and T, have content with pun_1(Sy) = un—1(Ty) for each x € R.
Then un(S) = pn(T) holds.

Proof. Let I C R and J C RV~! be compact intervals such that S,7 C I x J, and note
that

:/I(/ng(x,xl,...,xN_l)duN_l(:cl,...,xN_1)> dx
- ()

= [ uv-a(s)

Z/IMN—l(Tx)

- ()
:/I</JXT(x,x1,...,xN1)d,uN1(x1,...,$N1)) du
J

= pn(T).
This completes the proof. O
Ezample. Let r > 0, and let
T :={(z,y,2) €R3: 2>0, 2% 4+ + 2* < r?},
i.e., the half of B,[(0,0,0)] lying above the xy-plane, and
S:={(z,y,2) eR3:2>0, 22 + 9> <72, 0< 2% <2?+4%,

i.e., the part of the cylinder standing perpendicularly on the zy-plane with base B, [(0,0)]
between the zy-plane and the plane z = r with the cone with base B,[(0,0,7)] and apex
(0,0,0) removed.
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Figure 4.6: Sketch of S

For z ¢ [0, ], it is obvious that T, = S, = &, so let z € [0,r]. Then

T, ={(z,y) €ER?: 22 +9? <r? — 22} = B ;7=[(0,0)],

r2—z

and
S. ={(z,y) e R*: 2> <a® +y* <r°} = B,[(0,0)] \ B.((0,0)),

so that

pa(Tz) = m(r? — 2%) = 7r? — m2? = pa(S2).

From Cavalieri’s Principle we conclude that ps(T) = ps(S). An inspection of the proof of

Cavalieri’s Principle shows that

so that 13(B,[(0,0,0)]) = 4z,

FExercises

1. Let
f:100,1] x[0,1] = R, (z,y)— xy.

Evaluate f[o 1x[0.1] f using only the definition of the Riemann integral, i.e., in par-

ticular, without use of Fubini’s Theorem.
2. Calculate [, f for the following I and f:

(i) I =10,2] x [3,4], f(z,y) = 2z + 3y;
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(ii) [0,%] x [0,%], f(z,y) = sin(z + y);

I=\0,5
(iii) 1=1[1,2] x [2,3] x [0,2], f(z,y,2) = F-

3. Let a < b, let f: [a,b] — [0,00) be continuous, and let
D:={(z,y) : z € [a,0], y € [0, f()]}-

Show that D has content and that

b
u(D) = [ f(a)da.

4. Let
D:={(z,y) €R:z,y >0, 2% +y> <1},
and let
f:D—=R, (z,y)— Uk
' ’ Y (x+1)2
Evaluate f nf
5. Define
<
fr0,1P 5 R, (z,y,2) { s
z, z2Z>uxy.

Evaluate f[o e -

6. Let I ¢ RN and J ¢ RM be compact intervals, let f: I — R and g: J — R be

continuous, and define
fg:IxJ—=R, (z,y)— f(x)g9(y).

7. Let f: ]a,b] — (0,00) be continuous. Show that

</abf(x)d:c> (/ab]v(lgc)d”“") > (b—a)*

(Hint: Apply Fubini’s Theorem to [a,b]? > (z,y) — %)

—

8. Define f:[0,1] x [0,1] — R by letting

220 if (m,y) € [277, 27" ) x [277,27"FL) for some n € N,
flz,y) =< —22H1 if (z,y) € 27771, 277) x [277,27"F)) for some n € N,

0, otherwise.

Show that the iterated integrals

/01 (/Olf(:n,y)dy> dz and /01 (/Olf(az,y)dzv> dy
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both exist, but that

/01 </01f($,y)dy>d:137é/01 </01f(l’,y)dl’>dy,

Why doesn’t this contradict Fubini’s Theorem?

4.5 Integration in Polar, Spherical, and Cylindrical Coor-

dinates

In the last example of the previous section, we used Fubini’s Theorem to determine the
volume of a sphere in R3>—by making recourse to the area of a disc in R%. But how can
we rigorously compute the are of a disc with given diameter in R?? We will answer this
question in this section.

The second main tool for the calculation of multi-dimensional integrals is the multi-

dimensional Change of Variables formula:

Theorem 4.5.1 (Change of Variables). Let @ # U C RY be open, let @ # K C U be
compact with content, let ¢: U — RY be continuously partially differentiable, and suppose
that there is a set Z C K with content zero such that ¢|k\ 7 is injective and det Jy(x) # 0
forallxz € K\ Z. Then ¢(K) has content and

/d)(K)fz/K(fowldethsl

holds for all continuous functions f: ¢(U) — RM.
Proof. Postponed, but not skipped! ]

Examples. 1. Let a,b,c > 0 and let

2 2 2

T Y z
E = R¥P: S +5+5<1g.
{(x,y,z)e Stmt < }

What is the content of E7
Let
¢:R® =R (r,0,0) — (ar cosf cosa,br cosh sino, cr sinf),
and let o
K :=[0,1] x [—5, 5} x [0, 271],

so that £ = ¢(K). Of course, ¢ is not injective on K.
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Set

Z = ({0} X [_g g} x [0,277])
U ([0, 1] x {_gg} x [0,2%]) U ([0, 1] [_gg} X {0}),
so that
K\ Z=(0,1] x (—gg) % (0, 27).
It is clear that y3(Z) = 0.

We claim that ¢|g\ 7 is injective. To see this, let (r1,01,01), (12,02,02) € K\ Z be
such that ¢(r1,601,01) = ¢(ra,02,02). As a,b,c > 0, this means that

r1 cos 01 cos 01 = 19 cos By cos oa,

r1 cos 61 sin o1 = 19 cos O sin o9, and r1sin @y = rosin .

It follows that

2 = r2(cos? 01 (cos® oy + sin® o1 ) + sin® 4;)

= 7“% cos? 0y cos® o1 + r% cos? By sin’ o1 + r% sin? 6,
= 7“% cos? 05 cos® oy + r% cos? 0y sin® oy + r% sin? 0y

= 13(cos? B3(cos® oy + sin? a3) + sin? 6)

2
:’r‘2’

so that ry = ro. As r1,79 > 0, this means that

cos 01 cos o1 = cos by cos o9,

cos f1 sin 01 = cos 05 sin 09, and sin 61 = sin 6s.

Now, sin is injective on [—g, ﬂ], so that #; = 05 and—consequently—cos 61 = cos 65.

2
As cos is non-zero on (—%, g), we conclude that
COS 01 = COS 0y and sinoq = sinos.
Since
(0,27] =+ R%* o+ (coso,sino)
is injective, it follows that o1 = o9 as well.
For (r,0,0) € K, we have

a cosf coso, —ar sinf coso, —ar cosf sino
Jp(r,0,0) = | bcosfsino, —brsinfsino, br cosf coso |,

csinf, cr cosf, 0
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and thus
cosf coso, —rsinf coso, —r cosf sino
det Jy(r,0,0) = abc det | cosf sino, —r sinf sino, r cosf cosc
sin 6, r cos, 0

. —r sinf coso, —r cosf sinc
= abc | sinf . )
—r sinf sing, 1 cosf coso

cosf coso, —r cosf sino
— rcosf

cosf sino, r cosf coso
= —aber? (sin @ ((sin6)(cos f)(cos® o) + (sin H)(cos #)(sin® o))
+ cos 0 ((cos® ) (cos® o) + (cos® §) (sin® 0)))

= —abcr? cosf ((sin® 0)(cos® o) + (sin? 0)(sin® o) + cos? )
= —abcr? cosf (sm 0 + cos 0)

= —aber? cos,

so that, particular, det J,(r,0,0) # 0 if (r,0,0) ¢ Z.

Therefore, Change of Variables applies, and we obtain

M(E)—/El

:/ 1\detJ¢]

K
1 2

:abc/ (/ </ r20089d0> d9> dr
0 - 0

1 us
—27rabc/ r? (/2 cosedﬁ) dr
0 _

2

Wl

us
2

1
:27Tabc/ r 81119’ dr
0

1
:47'('(le/ r2 dr
0
31
:47rabcr—
0
47‘(’
— ab
3 abe.
2. Let 1
‘R2 5 R S
f o (zy) R

Find [p Lk
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Use polar coordinates, i.e., let

¢: R 5 R?, (r,0) — (r cos,r sinfh).

I (x,y)

Figure 4.7: Polar coordinates

It follows that B1[(0,0)] = ¢(K), where K = [0, 1] x [0, 27]. We have

Jo(r,0) = c?s f, —r sinf
sind, r cosf
and thus
det Jy(r,0) =r.
Set

Z = ({0} x [0, 27]) U ([0, 1] x {0}),

so that Z has content zero, d)\K\Z is injective, and det Jy is non-zero on K \ Z.
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Change of Variables then yields

= 7 log s|i
=7 log 2
3. Let
fRE SR, (x,y,2) = Va2 +y2 + 22,
and let R > 0.

Find fBR[(O,O,O)} f.

Use spherical coordinates, i.e., let
¢:R® = R3  (r,0,0) — (r cosb coso,r cosf sino,r sinf),

so that
det Jy(r,0,0) = —r? cosf.

Figure 4.8: Spherical coordinates
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It is clear that Bg[(0,0,0)] = ¢(K), where K = [0, R] x [-%,Z] x [0,27]. Define Z

as in the first example. By Change of Variables, we thus have

/ f:/ 3 cos 0
Br[(0,0,0)] K
R 21
:/ / </ rs cos@da) do | dr
0 - 0
R iy
SN
O —

us
2

[SIE]

jus
2

cos d@) dr

4 1R
:47rr—
4 0
=R
4. Let
D:={(z,y,2) ER3: 2,y >0,1< 2z <z +19? <e?},
and let )
:D— R _ .
f ) (.Z',y,Z) (a;2—|—y2)z

Compute [, f.

Use cylindrical coordinates, i.e., let

p:R® =R (r,0,2) — (r cosf,r sinb, z),

so that
cosf, —r sinf,
Jp(r,0,2) = | sinf, 1 cosh, O
0, 0,
and

det Jy(r,0,2) =r.
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(x,y,2)

R

Figure 4.9: Cylindrical coordinates

It follows that D = ¢(K), where
— . ™ 2
K = {(r,@,z) :rele], 0 € [O, 2] ,z€[l,r ]}

It is clear that ¢ is injective on K and that det Jy doesn’t vanish there. We thus

obtain
IR
:/16 (/02 (/1r2;dz>d9>dr

5. Let R > 0, and let
C:={(x,y,2) e R’ : 2% +y* < R?}

and
B = {(x,y, Z) € R3: 1'2 +y2 + 22 < 4R2}

Find pu(C N B).
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'
'
' -
-
|-
[N
\ S~
\ -
\
\
\
\
<
\
\
N

Figure 4.10: Intersection of ball and cylinder

Note that
u(CNB) =2(u(D1) + p(D2)),
where
D = {(m,y,z) eR?: 2?2 +y? + 22 <4R?, 2 > \/3(a2 +y2)}
and
Dy = {(x,y,z) eR?: 2?2 + 2 < R? 0<2<+/3(a2 +y2)}.
Use spherical coordinates to compute p(D1).

Note that D; = ¢(K7), where
K =[0,2R)] x [gg] x [0, 271].
We obtain

M(Dl):/ 2 cos
K

us

:/02R (/2 </027Tr2c089d0> d9> dr

3

2R z
:271'/ 7«2/ cos6do | dr
0 z

3

—or [ (sn () s (5)) ar
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Use cylindrical coordinates to compute p(D2), and note that Dy = ¢(K3), where
Ky = {(r,@,z) :r €[0,R], 0 €10,27], z € [O,\/gr}}.

‘We obtain
u(Da) = [ v
Ko

:/OR </027r (/Oﬁrrdz>d«9>dr

R
= 277\/§/ r2 dr
0

2v/3R3
3

.

All in all, we have

w(BNC) =2(u(D1) + pu(D2))

16R3 4v/3R3
32R3 16V3R3 4/3R3
= m™— T+ ™
3 3 3
32
= (3 - 4\/§> TR3.
FEzxercises
1. Let a,b > 0. Determine the area of the ellipse
2 2
e 2 X Y
E = {(:L‘,y)ER .az—i—b2§1}.

2. Let
D:i={(z,y,2) eR®:2? + > + 22 <4, 2® +y* > 1, 2 > 0}.

Determine us3(D).

3. Let D C R3 be the region in the first octant, i.e., with =, %y, z > 0, which is bounded
by the cylinder given by z? + y> = 16 and the plane given by z = 3. Evaluate

Jpayz.
4. Let R > 0, and define, for 0 < p < R,
Apri={(z,y,2) e R®: p? <2? +y* + 2% < R?}.
Determine

lim

1
P=0Ja, p /x2+y2+22'
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5. Let D in spherical coordinates be given as the solid lying between the spheres given
by r = 2 and r = 4, above the xy-plane and below the cone given by the angle
0 = Z. Evaluate the integral [, zyz.

6. Let D C R? be the trapeze with vertices (1,0), (2,0), (0, —2), and (0, —1). Evaluate

Jpexp (%) (Hint: Consider

$: R 5 R?, (u,v) — <1(u+v), %(u — u)>

and apply Change of Variables.)



Chapter 5

Properties of C'-Functions and

Applications

5.1 Local Properties of C'-Functions

In this section, we study “local” properties of certain functions, i.e., properties that hold
if the function is restricted to certain subsets of its domain, but not necessarily for the
function on its whole domain.

We start this section with introducing some “shorthand” notation:
Definition 5.1.1. Let @ # U C RY be open. We call f: U — RM to be:
(a) of class CO—in symbols: f € CO(U,RM)—if f is continuos;
(b) of class CP with p € N—in symbols: f € CP(U,RM)—if f is p times continuously

partially differentiable, i.e., all partial derivatives of f up to order p exist on U and

are continuous.
Our first local property is the following:

Definition 5.1.2. Let @ # D C RV, and let f: D — RM. Then f is locally injective at
zo € D if there is a neighborhood U of xg such that f is injective on U N D. If f is locally

injective each point of U, we simply call f locally injective on D.
Trivially, every injective function is locally injective. But what about the converse?

Lemma 5.1.3. Let @ # U C RY be open, and let f € C*(U,RY) be such that det J¢ (o) #
0 for some xg € U. Then f is locally injective at xg.

Proof. Choose € > 0 such that B¢(xg) C U and

L2y, L, i (2
det : : #0
Gx (2N) L g (2)

123
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for all z(1, ... 2(N) € B.(z).
Choose z,y € B(zp) such that f(z) = f(y), and let £ := y — z. By Taylor’s theorem,
there is, for each j =1,..., N, a number 6; € [0,1] such that

——
=~ k=1
It follows that
Of
8;?(3: +0;6) =0
k=1 "k
for j=1,...,N. Let
L@+, ..., H& <m+01£>
A= . : ,
G (z+0n8), ..., (& + 08)
so that A = 0. On the other hand, det A # 0 holds, so that £ =0, i.e., z = y. O

Theorem 5.1.4. Let @ # U C RN be open, let M > N, and let f € C*(U,RM) be such
that rank J¢(x) = N for all x € U. Then f is locally injective on U.

Proof. Let g € U. Without loss of generality suppose that

0, 2]
L@o), -y S (xo)
rank : : = N.
0 ]
N (), .., G ()
Let f:= (f1,..., fn). It follows that
0 0
h@), ..., i
Ji(z) = : : :
0 0
@), .., @)
for z € U and, in particular, det J#(zo) # 0.
By Lemma 5.1.3, f—and hence f—is therefore locally injective at xg. O

Ezample. The function
f:R—=R? z+ (cosz,sinx)

satisfies the hypothesis of Theorem 5.1.4 and thus is locally injective. Nevertheless,
flz+2m) = f(z)

holds for all z € R, so that f is not injective.
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Next, we turn to an application of local injectivity:

Lemma 5.1.5. Let @ # U C R be open, and let f € C*(U,RY) be such that det J¢(x) #
0 forxz € U. Then f(U) is open.

Proof. Fix yp € f(U), and let xg € U be such that f(zo) = yo.

Choose ¢ > 0 such that Bs[xo] C U and such that f is injective on Bj[zo] (the latter is
possible by Lemma 5.1.3). Since f(0Bs[zo]) is compact and does not contain yo, we have
that

cim %inf{”yo — f(@)] : x € DBs[zo]} > 0.

We claim that Be(yo) C f(U).
Fix y € Be(yo), and define

9: Bslzo) = R, @ [|f(x) -yl

Then g is continuous, and thus attains its minimum at some & € Bgs[zg]. Assume towards

a contradiction that & € dBs[xo]. It then follows that

V(@) = 1f@&) =yl = |1/(@) = yoll — [lyo — yl| = 2¢ > e > [|f(z0) — yll = Vg(z0),
>3e <e

and thus g(z) > g(xo), which is a contradiction. It follows that € Bs(xo).
Consequently, Vg(z) = 0 holds. Since

N
=Y _(file) = y;)?

J:

—

for x € Bslxo], it follows that

0 f]
8$k Z 6$k y])
holds for k =1,..., N and x € Bs(x¢). In particular, we have

0= Loas) -y

J=1

for k=1,..., N, and therefore
Jp(@)f(Z) = Jp(2)y,
so that f(Z) = y. It follows that y = f(z) € f(Bs(zo)) C f(U). O

Theorem 5.1.6. Let @ # U C RY be open, let M < N, and let f € C*(U,RM) with
rank J¢(z) = M forx € U. Then f(U) is open.
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Proof. Let zg = (20,1, .-

f(xg). Without loss of generality suppose that

., xzo,N) € U. We need to show that f(U) is a neighborhood of

0 0
50 (o), 7L ()
det : : #0
0, 0
L (o), -y 5L (wo)
and—making U smaller if necessary—even that
2] 0
o), .., @
det : : #0
0 2]
(@), ..., Shi(x)
for x € U. Define
f:ﬁ—)RM, .1"—)f(:Cl,...,xM,$07M+1,...,$07N),
where
U:= {(z1,...,xpm) € RM . (1,..., My o MA+1,---,ZoN) EUY C RM,

Then U is open in R f is of class C! on U, and det Jf(:c) # 0 holds on U. By Lemma
5.1.5, f(U) is open in RM. Consequently, f(U) D f(U) is a neighborhood of f(xg). [

FExercises

1. Let U :=R?\ {(0,0)}, and let

T Y
U =R (z,y) — , .
f (,9) (\/$2+y2 \/x2+y2>

(a) Calculate det J¢(x,y) for all (z,y) € U.

(b) Determine f(U). Does it contain a non-empty open subset?

2. Is the following “theorem” true or not?

Let @ # U C RN be open, let xg € U, and let f € C1(U,RN) be such that
f(V') is open for each open neighborhood V-C U of xg. Then det Jy(xq) #

0.
Give a proof or provide a counterexample.

3. Let @ # U C RY be open, and let f € C}(U,RY) be such that det J;(z) # 0 for all
rzeU.
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(a) Show that
U—=R, zw|f(2)
has no local maximum.

(b) Suppose that U is bounded (so that U is compact) and that f has a continuous
extension f : U — RV, Show that the continuous map

U—R, z=|f()]

attains its maximum on OU.

5.2 The Implicit Function Theorem

The function we have encountered so far were “explicitly” given, i.e., they were describe by
some sort of algebraic expression. Many functions occurring “in nature”, howere, are not
that easily accessible. For instance, a R-valued function of two variables can be thought of
as a surface in three-dimensional space. The level curves can often—at least locally—be

parametrized as functions—even though they are impossible to describe explicitly:

Z

domain of f

Figure 5.1: Level curves

In the figure above, the curves corresponding to the level ¢; can locally be parametrized

whereas the curve corresponding to the level co allows no such parametrization close to

f(o, 90)-
More generally (and more rigorously), given equations

fj(xly"wxM?ylw"?yN) =0

for j=1,...,N, can y1,...,yn be uniquely expressed as functions y; = ¢;(x1,...,zn)?
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Ezamples. 1. “Yes” if f(z,y) = 2? — y: choose ¢(z) = 2.

2. “No” if f(x,y) = y? — x: both ¢(x) = v/z and ¥(x) = —/z solve the equation.

The implicit function theorem will provides necessary conditions for a positive answer.

Lemma 5.2.1. Let @ # K C RN be compact, and let f: K — RM be injective and

continuous. Then the inverse map
LK) = K, fa) e
is also continuous.

Proof. Let x € K, and let (z,,)72; be a sequence in K such that lim,_,o f(zy,) = f(z).
We need to show that lim,,_s Z, = . Assume that this is not true. Then there is ¢g > 0
and a subsequence (xy, )72, of (x,)52, such that ||z, — x| > € for all kK € N. Since K is
compact, we may suppose that (z,, )72, converges to some 2’ € K. Since f is continuous,
this means that limy_,o0 f(2n,) = f(2/). Since lim,_,o f(z,) = f(x), this implies that
f(z) = f(2'), and the injectivity of f yields z = a’, so that limj_,o z, = x. This,
however, contradicts that ||z, — x| > € for all k£ € N, O

Proposition 5.2.2 (Baby Inverse Function Theorem). Let I C R be an open interval,
let f € CH(I,R), and let xg € I be such that f'(xg) # 0. Then there is an open interval
J C I with xg € J such that f restricted to J is injective. Moreover, f=1: f(J) = R is a

C'-function such that
df—1 1
(@) =

(5.1)
forx e J.

Proof. Without loss of generality, let f’(x¢) > 0. Since I is open, and since f’ is continu-
ous, there is € > 0 with [xg—€, 29+ €] C I such that f'(x) > 0 for all z € [xg—€,z0+€]. It
follows that f is strictly increasing on [zg — €, 2o + €] and therefore injective. From Lemma
5.2.1, it follows that f=': f([xo — €, w0 + €]) — R is continuous. Let J := (z¢ — €, 29 + €),
so that f(J) is an open interval and f~': f(J) — R is continuous.

Let y,y € f(J) such that y # §. Let x,& € J be such that y = f(x) and § = f(2).

Since f~! is continuous, we obtain that

I Ol D T S
7y y—7 e f(z) = f(2)  f(2)
whiche proves (5.1). From (5.1), it is also clear that % is continuous on f(J). O

Lemma 5.2.3. Let @ # U C RY be open, let f € CH(U,RY), and let xog € U be such that
det Jy(xg) # 0. Then there is a neighborhood V- C U of xg and C > 0 such that

1f(2) = f(@o)| = Cllz — o
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forallx € V.

Proof. Since det J¢(zg) # 0, the matrix J¢(z¢) is invertible. For all 2 € RY, we have
]l = 1177 (z0) ™" Iy (o) || < [T (o) " Il Ty (zo)zl

and therefore .

[ (o) ]|

1 1
3 M o1 SO that

[zl < {15 (o).
Let C :=
20|z = wol| < (/5 (wo)(x — o)l
holds for all € RY. Choose € > 0 such that B(z¢) C U and
1f(2) = f(2o) = J¢(z0)(x = z0)|| < Cllz — 2o
for all x € Be(zg) =: V. It follows that

Cllz = zoll = [If(x) = f (o) — Jy(wo)(x — zo)||
> || (o) (@ — wo)|| — [[f () — f(zo)l
> 20|z = zol| = £ (=) = f(zo)]l

for all x € V, which proves the claim. O

Lemma 5.2.4. Let @ # U C RY be open, let f € CH(U,RN) be injective such that
det Jg(x) # O for all x € U. Then f(U) is open, and f~1 is a C'-function such that
Ji—1(f(x)) = Jg(x)~! forallz €U.

Proof. The openness of f(U) follows immediately from Theorem 5.1.6.
Fix g € U, and define

f(x)—f(x0)—Js(x0)(x—1x0)
g U—=RY, Te—ao] , T # X0,
07 Tr = Xg.

Then g is continuous and satisfies

2 — 2ol T (w0) " tg(z) = Jr(zo) ' (f(z) — f(w0)) — (z — o)

for x € U. With C > 0 as in Lemma 5.2.3, we obtain for yo = f(z¢) and y = f(z) for x
in a neighborhood of xg that

Sl = 9ol (o) @)l = S 1) — FallI Ty (o) 9]
> 2o — |73 (w0) " g(z)]

= [[J¢(z0) " (f(2) = f(20)) — (& — z0)|-
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Since f~! is continuous at 3y by Lemma 5.2.1, we obtain that

1f " (y) — ' (yo) — J¢(0) " (y — wo) |
1y — wol|

1 _
< Zp(wo) (@) = 0

as y — yo. Consequently, f~! is totally differentiable at 3o with J -1(y0) = J £(z0) L.

Since yo € f(U) was arbitrary, we have that f~! is totally differentiable at each
point of y € f(U) with Jy-1(y) = Jp(x)~!, where 2 = f~!(y). By Cramer’s Rule, the
entries of J;-1(y) = Jy(x)~! are rational functions of the entries of Jy(x). It follows that
e CUHU),RY). =

Theorem 5.2.5 (Inverse Function Theorem). Let @ # U C RY be open, let f €
CY(U,RN), and let o € U be such that det J¢(xo) # 0. Then there is an open neigh-
borhood V. C U of g such that f is injective on V, f(V) is open, and f~1: f(V) — RN
is a C'-function such that Jp1 = J;l.

Proof. By Theorem 5.1.4, there is an open neighborhood V' C U of x with det J¢(z) # 0
for x € V and such that f restricted to V is injective. The remaining claims then follow

immediately from Lemma 5.2.4. O

For the implicit function theorem, we consider the following situation: Let @ # U C
RM+N he open, and let

f:U—>RN, (T1y s T YLy UN) > (X1, o AL, YLy - YUN)

=T =y

be such that 687]; and %exis‘us onUforj=1,...,Nand k=1,...,M. We define

d d

L@y, - p(ay)
of . .
%(x,y) = : :

d d

%(xay)a sty agﬁt;(x7y)

and

for(.9) S )

Byl 7:1/7 MRS | 6:1/]\7 7y
of . )
@(x’y) = : :

d d

N (2, ..., U(ay)

Theorem 5.2.6 (Implicit Function Theorem). Let @ # U C RM*N be open, let f
CYU,RYN), and let (zo,y0) € U be such that f(xo,y0) = 0 and det %(Iﬂo,yo) # 0. Then
there are neighborhoods V.C RM of xq and W C RN of yo with V x W C U and a unique
¢ € CH(V,RN) such that:

(i) ¢(xo) = vo;
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(ii) f(z,y) =0 if and only if ¢(x) =y for all (x,y) € V x W.

_ (or\Tlof
J¢—‘<ay> o0

Moreover, we have

f71{oh

Figure 5.2: The implicit function theorem

Proof. Define
F:U—=RYN (z,y) = (2, f(2,y)),

so that F € C1(U,RM*N) with

ol
Jrle) = [ s y) | 5) ] |

It follows that

0
det JF(l'o,yo) = det ai(xo,yo) £ 0.

By the Inverse Function Theorem, there are therefore open neighborhoods V- C RM of x
and W C RN of yy with V x W C U such that:

e [ restricted to V x W is injective;
e F(V x W) is open (and therefore a neighborhood of (x¢,0) = F (g, y0));

o F7LeCHF(V x W),RM+N),
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Let
o RMAN RN (2,) = .

Then we have for (z,y) € F(V x W) that

(z,y) = F(F~ ! (z,y)) = Fla,n(F ! (2,9))) = (z, f(z, 7(F}(2,y))))
and thus
Yy = f(xvﬂ-(Fil(x?y)))'
Since {(z,0) : x € V} C F(V x W), we can define

oV =RY, z n(F Yz, 0)).

It follows that ¢ € C'(V,RY) with ¢(x9) = yo and f(x,¢(x)) = 0 for all z € V. If
(z,y) € V x W is such that f(z,y) =0 = f(z,¢(x)), the injectivity of F—and hence of
f—yields y = ¢(x). This also proves the uniqueness of ¢.
Let
YV RMEN g (z,0()),

so that ¢ € CH(V,RM+N) with

Jy(z) = [ Ji](\i) ]

for x € V. Since f o = 0, the chain rule yields for x € V' that
0= Jp(e(x))Jy(x)
I
= | L) | E@w@) | [ = ]

_of
= 5 (¢.6(x) o (z, ¢(2)) I ()

and therefore

e = = (o)) Gl o)

This completes the proof. O
Ezample. The system

2?4+ y? 222 =0,

2?24+ 22 + 22 =4
of equations has the solutions x¢y = 0, yo = \/§ ,and zg = \/% . Define

f:R3 5 R% (z,y,2) — (@ + 9% — 222, 2% + 2% + 22 — 4),
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so that f(xo,yo0,20) = 0. Note that

[ H(zy,2), Py, 2) ] B [ 2y, —A4z ] |

0
Ty(xay7 Z), %(xvyvz) 4@/7 2z

Hence,

Of2 [p)

ofr ofr
det oy (xvyaz)a Oz (x,% Z)
Ty(xayvz% W(xvghz)

] =4yz + 16yz = 20yz # 0

whenever y # 0 # z. By the Implicit Function Theorem, there is ¢ > 0 and a unique
® € CY((—¢,¢€),R?) such that

a0 =2 mo=\1 i@ a@n) =0

for x € (—e,€). Moroever, we have
%(:c) 2y, —4z ! 2x
J¢(.%') = dea = —
T2 (x) dy, 2z 2z

12 3
= 2 = —4 =1 1
200° | -4y, 2y 2z — S0 5%

and thus

for x € (—¢,€).

Fxercises

1. Let
I R? - R, (z,9) |—>:62—|—y2.

Show that, there is € > 0 and a C!-function ¢: (—¢,€) — R with ¢(0) = 1 such that
y = ¢(x) solves the equation f(x,y) =1 for all x € R with |z| < e. Show without
explicitly determining ¢ that

¢a)=——— (z€(-€0).

2. Show that there are € > 0, and u,v,w € C'(Bc((1,1)),R) such that u(1,1) = 1,
v(1,1) =1, and w(1,1) = —1, and

u(a:,y)5 + .T’U(.’L‘,y)Q -y + w(:r:,y) = 07
v(:E?y)E) + yu(x’y) -+ U}(.CL',y) = 07
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and

for (z,y) € Be((1,1)).
3. Let fo,..., fn—1: R = R be continuously differentiable, and let
PR =R, (2,9) = g+ fuoa(@)y" T 4+ fil@)y + folw).
Suppose that fy(0) = 0 and that f;(0) # 0. Show that there is € > 0 and a unique
Cl-function ¢: (—¢,€) — R with ¢(0) = 0 such that p(z, ¢(x)) = 0 for all 7 € (—¢, €).
4. Let f € C}(R? R) be such that
PN = {(@y) €R?: (r— 12+ 9P = Lor (s + 1) 442 = 1},

(a) Sketch f~1({0}).
(b) Show that
of of

7,00 = 5,0.0=0.

5.3 Local Extrema under Constraints
Example. Let
f:Bi[(0,0)] = R, (z,y) = 42® — 3zy.
Since Bj;[(0,0)] is compact, and f is continuous, there are (x1,y1), (z2,y2) € B1[(0,0)]

such that

1, = sup x, and 9, = inf T,y).
f(z1,91) (:v,y)EBl[(0,0)]f( Y) f(z2,92) (Ly)eBl[(O’O)]f( Y)

The problem is to find (x1,y1) and (z2,y2). If (x1,y1) and (z2,y2) are in B1((0,0)), then

f has local extrema at (z1,y1) and (x2,y2), and we know how to determine them.

Since 5 5
U iay)=sr—3y and 85@, y) = —3z,
the only stationary point for f in B1((0,0)) is (0,0). Furthermore, we have
0*f 0*f o*f
_ = _— = d = —
5p2 (&Y) =8, 0y (z,y)=0,  an 900y (z,y) = =3,
so that

(Hess f)(z,y) = [ o ] .

Since det(Hess f)(0,0) = —9, it follows that f has a saddle at (0,0).
Hence, (z1,y1) and (z2,y2) must lie in 9B1[(0,0)]. ..
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There are, of course, ways to steer around the problem that occurs in this example.

For instance, we might parametrize the unit circle via
[0,27] = R?, t+ (cost,sint)

and then determine the minimum and maximum—along with the values of ¢ where they
are attained—of
0,27] = R, t > 4(cost)? — 3(cost)(sint).

This would be an ad hoc solution that actually might lead to success, but is specific to the
particular problem. Instead, we develop a general approach to determine so-called local
extrema of functions under constraints.

We first make precise what this is supposed to mean:

Definition 5.3.1. Let @ # D C RY, and let f,¢: D — R. We say that f has a local
mazimum [minimum] at xo € D under the constraint ¢p(x) = 0 if ¢(z9) = 0 and if there
is a neighborhood U of ¢ such that f(z) < f(xo) [f(z) > f(xo)] for all z € U N D with

o(x) =0.

Theorem 5.3.2 (Lagrange Multiplier Theorem). Let N > 2, let @ # U C RN be open,
let f,¢ € CH(U,R), and let zo € U be such that f has a local extremum, i.e., a minimum
or a mazimum, at xo under the constraint ¢(x) = 0 and such that V¢(xo) # 0. Then
there is A € R, a Lagrange multiplier, such that

Vf(ajo) = )\ V(ﬁ(l'o)

Proof. Without loss of generality suppose that %(:co) # 0. By the Implicit Function
Theorem, there are an open neighborhood V- RN~1 of 7 := (o,1,---,20,N—1) and
¥ € CY(V,R) such that

Y(Zo) = zo,N and d(x,(z)) =0 forallzeV.

It follows that

_ 99 0¢ oY
0= %j(ﬂﬂﬂﬁ(fﬂ)) + %(%1/}(93))67%(@
forall j=1,...,N —1and x € V. In particular,
9 96 O,
0= gj(xo) + %(iﬁo)aij(fﬁo) (5.2)

holds for all j =1,...,N — 1.

The function

g: V — R? (xlw"a"EN—l) = f(mla"‘ ,$N_1,¢($1,...,$N_1))



CHAPTER 5. PROPERTIES OF C'-FUNCTIONS AND APPLICATIONS 136

has a local extremum at Zg, so that Vg(Zy) = 0 and thus

9y of of 9y

0= — 5.3
T @) = (o) + () 52 0) (5.3
forj=1,...,N —1. Set
_of o, \ '
A= 83:N( %) <8:UN( 0)> '

so that fx—f(xo) = ;Td’(xg) holds trivially. From (5.2) and (5.3), it also follows that

of __of oY o¢ oY ) 99

83:]( 0) =~ 81‘]\[( )Bx]( 0) = )\81‘]\7( )8:):3( 0) = 836]( 0)
holds as well for j =1,..., N — 1. All in all, Vf(xg) = AV (x0). O

Ezxample. Consider again
f:B1[(0,0)] = R, (z,y)+ 4a* — 3zy.

Since f has no local extrema on B;((0,0)), it must attain its minimum and maximum
on 0B1[(0,0)].
Let
p:R* =R, (z,y)— 2> +y% -1,
so that
0B1[(0,0)] = {(x,y) € R? : ¢(x,y) = 0}

Hence, the mimimum and maximum of f on B1[(0,0)] are local extrema under the con-
straint ¢(x,y) = 0. Since Vo(z,y) = (2z,2y) for z,y € R, V¢ never vanishes on
9B4[(0,0)].

Suppose that f has a local extremum at (z¢,yo) under the constraint ¢(z,y) = 0. By
the Lagrange Multiplier Theorem, there is thus A € R such that V f(xo,y0) = A Vé(zo, v0),

i.e.,

8.%0 — 3y0 = 2)\%0,
—31‘0 = 2)\y0.

For notational simplicity, we write (x,y) instead of (xg,yo). Solve the equations:

8z — 3y = 2\x; (5.4)
—3z = 2)\y; (5.5)
22 % =1. (5.6)
From (5.5), it follows that x = —f)\y Plugging this expression into (5.4), we obtain

[ — — e —— 2
3 /\y 3y 3/\ Y. (5.7)
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Case 1: y = 0. Then (5.5) implies x = 0, which contradicts (5.6). Hence, this case
cannot occur.

Case 2: y # 0. Dividing (5.7) by § yields

AN —16A0—9=0

and thus 9
M4 -Z =0
1 0
Completing the square, we obtain (A —2)2 = % and thus the solutions A = % and \ = —%.

Case 2.1: A\ = —%. Then (5.5) yields —3x = —y and thus y = 3z. Plugging into (5.6),
we get 1022 = 1, so that z = :l:\/%. Hence, (\/%, V%) and (—\/%, —%) are possible
candidates for extrema to be attained at.

Case 2.2: A = 3. The (5.5) yields —3z = 9y and thus z = —3y. Plugging into (5.6),

we get 10y? = 1, so that y = iﬁ' Hence, (J%’_J%) and (—\/%, \/%) are possible

candidates for extrema to be attained at.

Evaluating f at those points, we obtain:

1 3 1

f<10710> :_57

1 3 1

f<_107_10> :_57
3 1 9
f<107_10> :§7
T RN
V10'V10/) 2

All in all, f has on B;[(0,0)] the maximum %, attained at ( 3 #) and (_J%’ L ),

V10’ V10 V10
i 1 iah 3 ; 1 3 1 3
and the minimum -3 which is attained at ( NATIL \/ﬁ) and ( NATL m).

Given a bounded, open set @ # U C RY an open set U C V C RY and a C'-function
f:V — R, the following is a strategy to determine the minimum and maximum (as well

as those points in U where they are attained) of f on U:
e Determine all stationary points of f on U.

e If possible (with a reasonable amount of work), classify those stationary points and

evaluate f there in the case of a local extremum.

e If classifying the stationary points isn’t possible (or simply too much work), simply

evaluate f at all of its stationary points.

e Describe OU in terms of a constraint ¢(z) = 0 for some ¢ € C(V,R) and check if
the Lagrange Multiplier Theorem is applicable.
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e If so, determine all x € V' with ¢(z) =0 and Vf(x) = AV¢(z) for some A € R, and

evaluate f at those points.

e Compare all the values of f you have obtain in the process and pick the largest and

the smallest one.

This is not a fail safe algorithm, but rather a strategy that may have to be modified

depending on the cirucmstances (or that may not even work at all... ).

Example. Let
K :={(z,y,2) e R®: 2? + 49> + 2* < 9}

and
f:]R3—>R, (x,y,2) » xz+y(y — 1)

As K is compact and f is continuous, f attains both a minimum and a maximum on K.
We want to determine those values and the points in K where they are attained.
We first consider the interior of K. Since

of _ . of _

) 2 _17 d == )
o ay Y an X

the only stationary point f has in the interior of K is (O, %, O). Since

(Hess f) (0, ;o> _

= o O
S N O

it is immediate that the Hessian can neither be positive nor negative definite (otherwise,
the upper left corner would not be zero). Since the Hessian clearly has rank three—and
thus is invertible—, it must be indefinite. Hence, f has a saddle at (0, %, )

To investigate the boundary of K, we apply the Lagrange multiplier theorem. Let

¢:R> >R, (z,9,2) 2%+ 4y + 2% -9,

so that 0K = {(z,y,2) € R?: ¢(z,y, 2) = 0}. We have to find solutions to the equations

z = 2z, (5.8)
2y — 1 =8y, (5.9)
T = 2\z, (5.10)

and

2?4+ 4y? + 22 = 0. (5.11)



CHAPTER 5. PROPERTIES OF C'-FUNCTIONS AND APPLICATIONS 139

Plugging (5.10) into (5.8), we obtain z = 4)\?z.

Case 1: z # 0. It follows that A2 = %, so that A = :t%.

Subcase 1.1: A = 1. Then (5.8) (or (5.10)) yields = 2. Moreover, (5.9) yields
2y — 1 = 4y and thus 2y = —1, i.e. y = —%. Plugging into (5.11), we obtain 222 + 1 =9,
i.e. x = +2. Possible points on 0K, where f could attain a minimum or a maximum are

therefore (2, —%, 2) and (—2, —%, —2). The values attained at those points are

1 1 19

Subcase 1.2: A\ = —%. Then (5.8) yields x = —z. Moreover, (5.9) yields 2y — 1 = —4y
and thus 6y = 1, i.e. y = . Plugging into (5.11), we obtain 2z + § = 9, i.e. z = i@.
Candidates for points where f could attain a minimum or a maximum are therefore

(@, %, —QT\/E) and (—@, %, ZT‘/E) The values attained at those points are

2v/10 1 210 2v/10 1 2V10\ 165
NSoe 5 )7/ 73073 )" 36

Case 2: z = 0. Then (5.10) yields that z = 0 as well. From (5.11), we obtain that
4> =9, ie. y = i%. Therefore (0, %,O) and (O, —%,O) are also candidates for points
where an extremum could be attained at. The corresponding values attained by f at

3 3 3 15
f <0, 2,0) = Z and f <0, —2,O> = Z

Thus, f attains on K the minimum —18 at (QT‘/E,

those points are

36
and the maximum % at (2,—%,2) and (—2, —%, —2).

FEzxercises
1. Determine the maximum and the minimum of
[iRZ =R, (z,y) = (2 - 1) +¢°

on
K :={(z,y) € R?: 2% +y* < 4}.

as well as all points at which they are attained.

2. Determine the maximum and the minimum of

f:R?> 5 R, (:U,y)»—>x2+y2+my
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on
K :={(z,y) e R?: 2 < 2% +¢4? <8}

Also, find all points in K, where the maximum and the minimum, respectively, are

attained.

3. Find the minimum and maximum of
f:R?> 5 R, (z,9) 2?2 — P
on
K :={(z,y): 2” +2y* <2}

and determine all points in K where the minimum and the maximum, respectively,

are attained.

4. Determine the minimum and maximum of the function
f:RZ SR, (z,y)—e ™

on the ellipse {(z,y) € R? : 22 + 4y? < 1} as well as all points where those are

attained.

5. Determine the maximum and minimum of
[R5 R, (z,y,2)— zy+ 2>

on
B:={(z,y,2) eR3:2? +4? + 22 <2}

as well as all the points at which they are attained.

6. Of course, the definition of a local extremum under a constraint, can also be formu-
lated with respect to a vector-valued function ¢. Prove the following generalization

of the Lagrange multiplier theorem from class:

Let @ # U C RN be open, let ¢ € CH(U,RM) with M < N, let f € C*(U,R)
have a local extremum at xo € U under the constraint ¢(x) = 0, and
suppose that Jy(xo) has rank M. Then there are \i,..., Ay € R such

that
M

(V) (o) =) X(Véy)(zo).

J=1
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5.4 Change of Variables

In this section, we shall actually prove the change of variables formula stated earlier:

Theorem 5.4.1 (Change of Variables). Let @ # U C RY be open, let @ # K C U be
compact with content, let ¢ € CY(U,RYN), and suppose that there is a set Z C K with
content zero such that ¢| i\ 7 is injective and det Jy(z) # 0 for allx € K\ Z. Then ¢(K)

has content and
[ = (ool
H(K) K

holds for all continuous functions f: ¢(U) — RM,

The reason why we didn’t proof the theorem when we first encountered it were twofold:
first of all, there simply wasn’t enough time to both prove the theorem and cover ap-
plications, but secondly, the proof also requires some knowledge of local properties of
C!-functions, which wasn’t available to us then.

Before we delve into the proof, we give yet another example:

Example. Let
D:={(z,y) eR?:1<2®+¢*> <4}

/ 1
pa?+y*

¢:R*? - R?, (r,0) — (rcosf,rsinb),

and determine

Use polar coordinates:

so that det Jy(r,8) = r. Let K = [1,2] x [0,27], so that ¢(K) = D. It follows that

1 1 2 27T1
D K K 1 0

To prove Theorem 5.4.1, we proceed through a series of steps.
Given a compact subset K of R and a (sufficiently nice) C'-function ¢ on a neigh-
borhood of K, we first establish that ¢(K’) does indeed have content.

Lemma 5.4.2. Let @ # U C RY be open, let ¢ € CH(U,RY), and let K C U be compact

with content zero. Then ¢(K) is compact with content zero.

Proof. Clearly, ¢(K) is compact.
Choose an open set V C RN with K C V, and such that V C U is compact.
As ¢ is a C'-function, the map

UxRY R, (2,8 — ||Jy(x)E]|
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is continuous; in particular, it is bounded on V x Bj[0], so that there is C' > 0 such that
| Js(2)€|| < C for all z € V and all £ € RY with ||| < 1. Tt follows that

176 ()]l < Ci&ll (5.12)
for all z € V and all £ € RV,
Let € > 0, and choose compact intervals I1,..., I, C V with

n n €
K C I; d )< —-.
Uhemd o 200 = e

Figure 5.3: K, U, V,and I1,...,1I,

Without loss of generality, suppose that each I; is a cube, i.e.,
I = [wjn —rj i+ ] X X i =15, @58 + 7]
with (zj1,...,2;n) € RY and r; > 0: this can be done by first making sure that each I;

is of the form
Ij = [al,bl] X e X [aN,bN]

with a1,b1,...,an,by € Q, so that the ratios between the lengths of the different sides of

I; are rational, and then splitting it into sufficiently many cubes.

**************************************************

Figure 5.4: Splitting a 2-dimensional interval into cubes
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(You're asked to work out the details in Exercise 1 below.)
Let j € {1,...,n}, and let x,y € I;. Then we have

60(@) — S ()] < 16(@) — 6(0)]
1
=\/0 J¢<x+t<y—m>><y—w>dtH

1
g/o 1o+ ty — ))(y — )] dt

1
< [ Cla-yld. by (512)
0

= Cllz =yl

<C (2r;)?
\ >

v=1

= C\/NQ’I“]'
= CVN u(I;)~.

fork=1,...,N.
1
Fix z¢ € I;, and R;j := CV/'N u(I;)~, and define

Jj = [¢1(z0) — Rj, ¢1(wo) + By] X - -+ X [dn(20) — Rj, dn(20) + Ry
It follows that ¢(I;) C J; and that
u(Jj) = (2R;)N = 2CVN)N (1))

All in all we obtain, that

oK) |Jg,  and S ulgy) = @OVEIN S (L) < e
i=1 j=1

j=1
Hence, ¢(K) has content zero. O

Lemma 5.4.3. Let @ # U C RY be open, let ¢ € CH({U,RY) be such that det Jy(z) # 0
forallx € U, and let @ # K C U be compact. Then

{r e K :¢(x) € 0p(K)} C OK

holds. In particular, 0¢(K) C ¢(0K) holds.
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Proof. Let x € K be such that ¢(x) € 0¢(K), and let V' C U be a neighborhood x, which
we can suppose to be open. By Lemma 5.1.5, ¢(V') is a neighborhood of ¢(x), and since
#(z) € 0¢(K), it follows that ¢(V) N (RN \ ¢(K)) # @. Assume that V C K. Then
#(V) C ¢(K) holds, which contradicts ¢(V) N (RY \ ¢(K)) # @. Consequently, we have
VN (RY\ K) # 2. Since trivially V N K # @, we conclude that z € K.

Since ¢(K) is compact and therefore closed, we have 0¢(K) C ¢(K) and thus 0¢(K) C
»(OK). O

Proposition 5.4.4. Let @ # U C RY be open, let ¢ € CH({U,RY) be such that det J,(x) #
0 for allx € U, and let @ # K C U be compact with content. Then ¢(K) is compact with

content.

Proof. Since K has content, 0K has content zero. From Lemma 5.4.2, we conclude that
w(p(0K)) = 0. Since 0¢(K) C ¢(0K) by Lemma 5.4.3, it follows that u(0¢(K)) = 0. By
Theorem 4.2.11, this means that ¢(K) has content. O

Next, we investigate how applying a C!-function to a set with content affects that

content.

Lemma 5.4.5. Let D C RN have content. Then

n
u(D) = inf S 1) (5.13)
j=1
holds, where the infimum is taken over alln € N and all compact intervals Iy, . .., I, C RY
such that D C Iy U---U I,.
Proof. See Exercise 2 below. O

Proposition 5.4.6. Let @ # K C RN be compact with content, and let T: RN — RN be
linear. Then T(K) has content such that

p(T(K)) = | det T|u(K).

Proof. We first prove three separate cases of the claim:
Case 1:

T(x1,...,2N) = (T1,...,Azj,...TN)

with A € R for z1,...,zx5 € R.
Suppose first that K is an interval, say K = [a1,b1] X -+ X [an, by], so that

T(K) = [a1,b1] % -+ x [Aaj, Abj] % - % [an, by]

if A >0 and
T(K) = ar,bi] % -~ x [Abj, Aay] x -+~ x [a, by]
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if A < 0. Since detT" = A, this settles the claim in this particular case.

Suppose that K is now arbitrary and A # 0. Then T is invertible, so that T(K)
has content by Proposition 5.4.4. For any closed intervals Iy,...,I, ¢ RY with K C
I U...UI,, we then obtain

Si ]detT\Z,u

and thus p(T(K)) < |det T|u(K) by Lemma 5.4.5. Since T~ is of the same form, we get
also get u(K) = p(T~YT(K))) < |det T|~'p(T(K)) and thus p(T(K)) > |det T|u(K).
For arbitrary K and A = 0, let I C RY be a compact interval with K C I. Then T(I)
has content zero, and so has T'(K) C T'(I).
Case 2:

T(:Ul,...,xj,...,xk,...,a:N):(xl,...,xk,...,xj,...,:cN)

with j < k for z1,...,2zy € R. Again, T is invertible, so that T'(K) has content by
Proposition 5.4.4. Since detT' = —1, the claim is trivially true if K is an interval and for
general K by Lemma 5.4.5 in a way similar to Case 1.

Case 3:

T(x1,..., %5, ... Ty ..., ZN) = (T1,...,Zj,..., Tk + Tj,...,ZN)

with j < k for x1,...,2zxy € R. It is clear that then T is invertible, so that T'(K) has
content by Proposition 5.4.4. Again, suppose first that K is a compact interval. As only
the two coordinates j and k are concerned, it follows from a straightforward application

of Fubini’s Theorem, that we can limit ourselves to the case where j =1 and k= N = 2.
Let K = [a,b] x [c,d], so that

T(K)={(z,z+y) €eR*: z € [a,b], y € [¢,d]}
={(z,y) eR*:zx € [a,b], c+x <y <d+x}.

Applying Fubini’s Theorem again, we obtain

//dﬂﬁldyda?
:/a( —c)dx

=(b—a)(d—c)
= pu(K).

Since det T' = 1, this settles the claim in this case.
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Now, let K be arbitrary. Invoking Lemma 5.4.5 as in Case 1, we obtain u(T(K)) <
1(K). Obtaining the reversed inequality is a little bit harder than in Cases 1 and 2 because
T~ is not of the form covered by Case 3 (in fact, it isn’t covered by any of Cases 1, 2,
3). Let S: RY — RY be defined by

S(x1,...,2j,...,oN) = (&1,...,—Tj, ..., ZN).

It follows that 7! = SoT o0 S, so that—in view of Case 1—we get

All in all, u(T(K)) = p(K) holds.
Suppose now that T is arbitrary. Then there are linear maps T1,...,T,: RY — RV
such that T'=Tj o--- 0T, and each Tj is of one of the forms discussed in Cases 1, 2, and

3. We therefore obtain eventually
w(T(K)) = p(Ti(- - Tu(K) -+ +))
= |det Th|pu(To(- - Tp(K)---)) == |det Th| - - - | det Ty, |u(K) = | det T'|u( K).
This completes the proof. ]
Next, we move from linear maps to C'-maps:

Lemma 5.4.7. Let U C RY be open, let r > 0 be such that K = [—7, T]N c U, and
let ¢ € CHU,RYN) be such that det Jy(z) # 0 for all x € U. Furthermore, suppose that
a € (0, LN> is such that ||p(x) — z|| < a||z|| for v € K. Then

1(o(K))
(1-aVN)N < “w) S (1+avVN)N

holds.

Proof. Let x € K. Then
lp(x) — 2|l < allz|| < aVNr

holds and, consequently,
(65 ()] < Jajl + [|g(z) — 2] < (1 +aVN)r
for j =1,...,N. This means that

P(K) C [-(1+aVN)r, (1+avVN)rV. (5.14)
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Let = (z1,...,2n) € 0K, so that |z;| = r for some j € {1,..., N}. Consequently,
r=lz;| <z <VNr

holds and thus
|6 ()| > |aj] = ||z = ()] > (1 — av/N)r.

Since 0¢(K) C ¢(0OK) by Lemma 5.4.3, this means that
0p(K) € ¢p(0K) c RN\ (=(1 — av/N)r, (1 — aV/N)r)N

and thus

(—(1 —aVN)r, (1 — aVN)r)VN c RV \ 9¢(K).
Let U := int ¢(K) and V := int (RY \ ¢(K)). Then U and V are open, disjoint,

non-empty, and satisfy

UUV =R\ 0¢(K).

Since (—(1 — a/N)r, (1 — av/N)r)Y is connected, this means that it is contained either

in U or in V because otherwise {U, V'} would be a disconnection for it. Since
[(O) [} = 1[#(0) = 0l < 0] = O,
it follows that 0 € (—(1 — av/N)r, (1 — a/N)r)N¥ N U and thus
(—(1 = aVN)r,(1 = aVN)r )N cU c ¢(K). (5.15)
From (5.14) and (5.15), we conclude that

(1 —aVN)V(2r)Y < u(é(K)) < (1+aVN)¥(2r)".

Division by u(K) = (2r)" yields the claim. O
For # = (21,...,zx) € RY and r > 0, we denote by
Klz,r]:=[x1 —r,x1+ 7] X -+ X [Ny — 1y 2N + 7]

the cube with center x and side length 2r.

Proposition 5.4.8. Let @ # U C RY be open, and let ¢ € C*(U,RN) be such that
det Jy(x) # 0 for all x € U. Then, for each compact set @ # K C U and for each
€ (0,1), there is re > 0 such that K[x,r] C U and

det (o)1~ 9 < MR < et )1+ "

for all x € K and for all r € (0,7¢).
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Proof. Let C' > 0 be such that
176(2) 7 €]l < Cléll
for all z € K and ¢ € RY, and choose r. > 0 such that K[z + &, 7] C U and
6w +8) = o(w) = Tolwel < =il
for all z € K and £ € K[0,7]. Fix x € K, and define
»(€) = Jy(2) " (d(x + &) — ¢()).

For r € (0,7¢), we thus have
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1) =&l = [1Js(2) ™ (p(a+€) = ¢(2) = Jp(2)§) | < Cllp(z+E) — ) — Js(2)€]| < LNHfII

for £ € K[0,r]. From Lemma 5.4.7 (with o = \/Lﬁ), we conclude that

N _ a0, )

— € GN.
U= N <0

Since
D(K[0,7]) = Jy(2) " (K [z, 1]) — Jy(2) (),
Proposition 5.4.6 yields that

P (K[0,7])) = u(Jp(x) " ¢(K[z,7])) = | det ()~ |u(¢(K [z,7])).

Since p(K[0,7]) = p(Kz,r]), multiplying (5.16) with |det J4(x)| we obtain

p(o(Klz, r]))

| det Jy(2)|(1 — ) < 1(K[z, 7))

< |det Jy(x)|(1+ )N,
as claimed.

We can now prove:

(5.16)

Theorem 5.4.9. Let @ # U C RY be open, let @ # K C U be compact with content, let
¢ € CHU,RY) be injective on K and such that det Jy(x) # 0 for all z € K. Then ¢(K)

has content and

/Mf /f 6) det J|

holds for all continuous functions f: ¢(U) — RM.

(5.17)
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Proof. Let f: ¢(U) — RM be continuous. By Proposition 5.4.4, ¢(K) has content. Hence,
both integrals in (5.17) exist, and we are left with showing that they are equal.
Suppose without loss of generality that M = 1. Since
1 1
F =50+ =500 - 1),

J/

>0 >0

we can also suppose that f > 0.
For each = € K, choose U, C U open with with z € U, and det J4(y) # 0 for all
y € U,. Since {U, : x € K} is an open cover of K, there are z1,...,2; € K with

K CUyg,U---UU,,.

Replacing U by Uy, U--- U Uy, we can thus suppose that det J4(x) # 0 for all x € U.
Let € € (0,1), and choose compact intervals I, ..., I, C U with the following proper-

ties:

(a) for j # k, the intervals I; and I} have only boundary points in common, and we

have K c Uj_, I; C U;

(b) if m < nis such that [;NOK # @ if and only if j € {1,...,m}, then 3770 | u(I;) <e
holds (this is possible because pu(0K) = 0);

(¢’) for any choice of &j,m; € I; for j =1,...,n we have

n

/K(f o ¢)|det Jy| — D (f 0 9)(&)ldet Js(n;)|n(L)] < e

=1

(see Exercise 3 below). Arguing as in the proof of Lemma 5.4.2, we can suppose that
I,...,I, are actually cubes with centers x1,...,x,, respectively. From (c’), we then
obtain

()

n

/K (f 0 )| det Jy| — S(f 0 6)(&)| det o) ()| < e

=1

for any choice of §; € I for j =1,...,n (see again Exercise 3 below).

Making our cubes even smaller, we can also suppose that

(d)
| det Jy(z;)|(1 — ) < HOUD) | gt Jo()|(1 + )N
(I

forj=1,...,n.
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Let V C U be open and bounded such that

Uncvcvey,
=1
and let C := sup{|det J4(z)| : © € V}. Together, (b) and (d) yield that

S ul@(n) < 2Vce.

j=1
Let j € {m+1,...,n}, so that [; NOK = @, but I; N K # @. As in the proof of Lemma
5.4.7, the connectedness of I; yields that I; C K. Note that, thanks to the injectivity of

¢ on K, we have

K\ ¢<Ij>¢(K\ U Ij)-

Let C := sup{|f(¢(x))| : © € V}, and note that
> Lo

/ _Z/(I) N /¢(K it

< / f+2NCCe
¢(K\U;‘L:m+1 13)

< / f+2NcCe
S(UJs 1)

< 2VN*lCCe. (5.18)

S

Let j € {1,...,n}. Since the set ¢(I;) is connected, there is y; € ¢(I;) such that
f f flyj)p (qﬁ( j)); choose &; € I; such that y; = ¢(&;). It follows that

n

3 / F=3" Fupnmo) =3 FeEN@(L)). (5.19)
j=179;) j=1 j=1

Since f > 0, we obtain

> F(6(&)] det Js(a;) (1) (1 — )N (5.20)
7j=1
SZf(¢(§j)) (o(15)), by (d),

. / £, by (5.19), (5.21)

< Zf (&) det Jg ()| (L) (1 + e, again by (5.19) and (d). (5.22)
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As e — 0, both (5.20) and (5.22) converge to the right hand side of (5.17) by (c),
whereas (5.21) converges to the left hand side of (5.17) by (5.18). O

Even though Theorem 5.4.1 almost looks like the Change of Variables Theorem, it is

still not general enough to cover polar, spherical, or cylindrical coordinates.

Proof of Theorem 5.4.1. We leave showing that ¢(K) has content as an exercise (see be-
low).
Let € > 0, and let C' > 0 be such that

C = sup{|f(¢(x)) det Jy(2)|, [f(d(2))] : = € K}

Choose compact intervals Ir,...,I, C U and Ji,...,J, C RY such that o(1;) C Jj for
j=1,...,N,

n

n . n ¢ c
Z C LJllnt I, Zlu(lj) < 20 and Zlu(Jj) < Yok
j= j= j=

Let Ko := K \ U?=1 int I;. Then Ky is compact, ¢|k, is injective and det Jy(z) # 0 for
z € Ky. From Theorem 5.4.9, we conclude that

/ f= [ (Fod)dety.
d(Ko) Ko

From the choice of the intervals I;, it follows that

[ roonaesi— [ (rooac| <3

and since ¢(K) \ ¢(Ko) C J1 U---U Jy,, the choice of Jy, ..., J, yields

/¢>(K) - /¢(Ko) d

|/¢(K)f—/K(fO¢)IdetJ¢l

Since € > 0 is arbitrary, this completes the proof. O

<€
2.

We thus conclude that

< €.

Example. For R > 0, let D C R? be the upper hemisphere of the ball centered at 0 with
radius R intersected with the cylinder standing on the zy-plane, whose hull interesects

that plane in the circle given by the equation
2 2 _
z*—Rx+y”=0. (5.23)

What is the volume of D?
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First note that

R R? R?
P —Rr+yP=0 <<= 22-2=a+—+4y*="—

2 4 4

R\* , R?

Hence, (5.23) describes a circle centered at (%, 0) with radius %. It follows that

2 2
R
D:{(:c,y,z)€R3:x2+y2+22§R2,z20, (x—;%) —|—y2§4}

={(z,y,2) eR3: 2 + 2 + 22 < R%, 2> 0, 22 +y* < Rzx}.

Figure 5.5: Intersection of a ball with a cylinder

Use cylindrical coordinates, i.e.,
p:R> = R3 (r,0,2) — (rcos,rsinb, z).
Since

22 +9y? <Rr <<= r?>=r%(cosh)?+r%(sinf)? < Rrcosf

<— r < Rcos#,

it follows that D = ¢(K) with
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K
{(T,Q,z) €[0,00) X [-m, | xR: 0 € [—g,g} , 7 €[0,Rcosb], z € [O, \/m}}
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The Change of Variables Formula then yields

Rcos6 VR2—r2
/ / rdz | dr | df
0 0

Rcos@
rv/ R2 —r? dr) do

1
= / uz do
2 -3 u=R2(sin )2
1 (3
= 3/1(}2 R3|sind|?)
—2
3 3
= %7‘(— R? |sm9|3d0

We perform an auxiliary calculation. First note that

/ \81n9]3d9—2/ (sin §)3 de.
T 0

2

153
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As

%sin 3dh = sin 0) (sin 6)?

/O( 0)3 do /( 0)(sin 0)2 d
:/ (sin#)(1 — (cos 6)?) do

jus

:/2 sin€d0+/2(—sin6’)(cos0)2d9
0

0
:1+/ u? du
1

1
:1—/ u? du
0

3

[e=]

it follows that

All in all, we obtain that

Fxercises

1. An N-dimensional cube is a subset C' of RY such that
C=lr1—ryz1+r] X X[xy —r,xny + 7]

with z1,...,xzxy € Rand r > 0.
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Let @ # U C RY be open and let Z C U be compact with content zero. Show that,

for each € > 0, there are cubes Ci,...,C, C U with

ZCCiU---UC, and Y p(Cj)<e
j=1

2. Let D ¢ RY have content. Show that

holds, where the infimum on the right hand side is taken over all n € N and all

compact intervals I1,...,I, C RY such that D C [; U--- U I,.
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3. Let I ¢ RY be a compact interval, let f,g: I — R be continuous, and let € > 0.
Show that there is a partition P, of I such that, for each refinement P of P, we

have

/Ifg — > F@)gly) ()| <€,

where (I,)), is the subdivision of I corresponding to P and z,,y, € I, are arbitrary.
4. Show that:

(a) if D C R¥ has content, then so has D such that u(D) = u(D);
(b) if @ # U C RY is open, Z is a set of content zero with Z C U, and ¢: U — RY

is a C!-function, then ¢(Z) has content zero.

5. Let @ # U C RY be open, let K C U be compact with content, let ¢ € C*(U,RY),
and suppose that there is Z C K with content zero such that det J,(z) # 0 for all
x € K\ Z. Show that ¢(K) has content. (Hint: Show that ¢(K) C ¢p(Z)Up(0K).)

6. Let C be the cylinder standing perpendicularly on the xy-plane such that its inter-
section with that plane is the closed unit disc, and let P be the prism (extending
from —oo to oo along the y-axis) standing perpendicularly on the zz-plane such that
its intersection with that plane is the diamond given by |z| + |2| < 1. Compute the
content of C'N P.

7. We may identify C with R%. For 0 < p < R, let
Ar, ={2€C:p<|z| < R}.
1
Calculate fAR,p 2.

8. Let @ # K C R? be a compact body with content, and let 1: K — R be a continuous
density. The Newton potential generated by K at zg € R\ K is given (up to a

u(zp) ::/Ku(x)dx.

lzo — |

factor) by

Suppose that K = Bg[(0,0,0)] with R > 0, and that u is rotation symmetric, i.e.,
there is a continuous function fi: [0, R] — R such u(x) = fi(]|z||) for all z € K. Show

that )
ul@0) = /K“'

for all zg € R3\ K. (Hint: First, argue that we can suppose that x¢ = (0,0, ||zo]|)
without loss of generality; then use spherical coordinates.)

1r24.

9. Show that a slice of pizza of radius r > 0 and with angle o has the area 3



Chapter 6

Curve and Surface Integrals

6.1 Curves in RY

What is the circumference of a circle of radius » > 07 Of course, we “know” the answer:
27r. But how can this be proven? More generally, what is the length of a curve in the
plane, in space, or in general N-dimensional Euclidean space?

We first need a rigorous definition of a curve:

Definition 6.1.1. A curve in RY is a continuous map 7: [a,b] — RY. The set {7} :=

v([a, b]) is called the trace or line element of ~.
Examples. 1. For r > 0, let
v:[0,27] = R?, t— (rcost,rsint).
Then {7} is a circle centered at (0,0) with radius r.
2. Let c,v € RY with v # 0, and let
v:la,b) = RN, t— c+to.

Then {v} is the line segment from ¢ + av to ¢+ bv. Slightly abusing terminology,

we will also call v a line segment.

3. Let 7: [a,b] — RY be a curve, and suppose that there is a partition a =ty < t; <
-+- < t, = b such that ’Y|[tj_1,tj] is a line segment for j = 1,...,n. Then 7 is called

a polygonal path: one can think of it as a concatenation of line segments.
4. For r > 0 and s # 0, let
v:[0,6n] — R®, t > (rcost,rsint,st).

Then {7} is a helix:

156
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Figure 6.1: Helix

If v: [a,b] — RY is a line segment, it makes sense to define its length as ||y(b) —y(a)]|.
It is equally intuitive how to define the length of a polygonal path: sum up the lengths of
all the line segments it is made up of.

For more general curves, one tries to successively approximate them with polygonal

paths:

Figure 6.2: Successive approximation of a curve with polygonal paths

This motivates the following definition:
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Definition 6.1.2. A curve 7: [a,b] — RY is called rectifiable if
S tic) =)l ineN a=ty <ty < <ty,=b (6.1)
j=1

is bounded. The supremum of (6.1) is called the length of ~.

Even though this definition for the length of a curve is intuitive, it does not provide

any effective means to calculate the length of a curve (except for polygonal paths).

Lemma 6.1.3. Let : [a,b] — RY be a C'-curve. Then, for each ¢ > 0, there is § > 0
such that ‘

for all s,t € [a,b] such that 0 < |s —t|] <.

Y(t) —(s)
t—s

— fy’(t)H <e

Proof. Let € > 0, and suppose first that N = 1. Since 4’ is uniformly continuous on [a, b],
there is § > 0 such that

Y (s) =7 () <e
for s,t € [a,b] with |s —t| < J. Fix s,t € [a,b] with 0 < |s —t| < 0. By the mean value

theorem, there is £ between s and ¢ such that

It follows that
'v(t) —7(s)

PR —Vl(t)’ =) —-~([)] <e

Suppose now that N is arbitrary. By the case N = 1, there are d1,...,d0ny > 0 such
that, for j =1,..., N, we have

t—s J

@) —ls) ‘ €
[ S t < —

€ VN
for all s,t € [a, b] such that 0 < |s —¢| < ;. Since

v (t) —v5(s)

() —(s) /
_ < A
H — 7 (1) _\/sznll,?ffN P— 7;(t)
for s,t € [a,b], s # t, this yields the claim with ¢ := min;—; _ n6;. O

Theorem 6.1.4. Let : [a,b] — RN be a C'-curve. Then v is rectifiable, and its length

1s calculated as )
[ e
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Proof. Let € > 0.
There is ; > 0 such that

b n .
[ I @lde= 3 I - 6| < 5
a j=1

for each partition a =ty < t; < --- <t, =band & € [tj_1,t;] such that t; —t;_1 < &
for 5 =1,...,n. Moreover, by Lemma 6.1.3, there is o > 0 such that
() —(s)
N (
H t—s 7 () <2(b—a)
for s,t € [a,b] such that 0 < |s —t| < Ja.
Let § := min{d1,d2}, and let a =ty < t; < --- < t, = b such that max;—; _,(t; —
tj—1) < 0. First, note that

et: —t i—1
117(t) = vt = IV EDIEG = 1) < 5H——

for j =1,...,n. It follows that

n b
S () — ()l - / MOIL!

j=1

< D) = -0 = D I @) —t-1)
j=1 Jj=1

n b
S IV o) - [ @l
=1 a

< lIt) = -0l = IV @) = -0 +5
j=1

<

elizti—1
2 b—a

This yields the claim.

Let now a = sg < s1 < --- < 8, = b be any partition, and choose a partition a = tg <
t1 < --- <t, = bsuch that max;—1_ n(t; —tj—1) < d and {s0,...,Sm} C {to,...,tn}. By
the foregoing, we then obtain that

m n b
D (s =)l < D I(t-1) = ()l < / 17/ (@)l dt + €
j=1 j=1 a

and, since € > 0 is arbitrary,

m b
S Iv(si-1) = A(sy)l < / I (1)) dt.
j=1 a



CHAPTER 6. CURVE AND SURFACE INTEGRALS 160

Hence, f; I/ ()|l dt is an upper bound of the set (6.1), so that v is rectifiable. Since, for
any € >0, wecan find a =ty <t < --- < t, = b with

n b
S () — ()l - / I () dt| < e,
i=1 a

it is clear that fab I/ (¢)|| dt is even the supremum of (6.1). O

Ezamples. 1. A circle of radius r is described through the curve
v:[0,27] = R, t s (rcost,rsint).
Clearly, v is a C!-curve with
v (t) = (—rsint,rcost),

so that ||7/(¢)|| = r for t € [0,2x]. Hence, the length of ~ is

27
/ rdt = 2mr.
0

2. A cycloid is the curve on which a point on the boundary of a circle travels while the

circle is rolled along the z-axis:

Figure 6.3: Cycloid

In mathematical terms, it is described as follows:
v:[0,27] — R?, t > (t—sint,1 — cost).

Consequently,
7' (t) = (1 — cost,sint)
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holds and thus
IV (D)2 = (1 = cost)? + (sint)?
=1—2cost+ (cos t)2 + (sin t)2

t
=2-2 —
cos( —1-2)
2 £\ 2
:2—2COS< > —|—2$in<2>
o (i (! 2+. £\

= sin | = sin | =

2 2

2
:4sin<t>
2

for t € [0,27]. Therefore, v has the length

2 T
/ 2 [sin <t>‘ dt:4/ sinudu = 8.
0 2 0

3. The first example is a very natural, but not the only way to describe a circle. Here

=2 —2cost

N+ N

is another one:
v:[0,V27] = R?,  t— (rcos(t?),rsin(t?)).
Then
v (t) = (—2rtsin(t?), 2rt cos(t?)),
so that

17/ ()|| = /4r2t2 (sin(t2)2 + cos(t2)2) = 2rt
holds for ¢ € [0, /27]. Hence, we obtain as length:

V2n V27 2 t=V2r
[ o= [ o= 20l <o
0 0 t=0

which is the same as in the first example.

Theorem 6.1.5. Let 7: [a,b] — RY be a C'-curve, and let ¢: [, 3] — [a,b] be a bijective
Cl-function. Then v o ¢ is a C'-curve with the same length as 7.

Proof. First, consider the case where ¢ is increasing, i.e., ¢’ > 0. It follows that

8 8
/\(70¢)’(t)lldt=/ Iy o @) ()¢’ (1) dt

«

B8
= [l e aole a

o(B)=b ,
=/ /()] ds.
o(0)=a
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Suppose now that ¢ is decreasing, meaning that ¢’ < 0. We obtain
B / B / /
/ [(yod) @)l dt:/ (v 0 @) (&)o' ()] dt
B
—— [l eawlena

o(B)=a ,
=—/ I/(s)] ds

o(0)=b

u

b
- [Inelas
a
This completes the proof. O

The theorem and its proof extend easily to piecewise C'-curves.

Next, we turn to defining (and computing) the angle between two curves:

Definition 6.1.6. Let v: [a,b] — RY be a C'-curve. The vector '(t) is called the tangent
vector to vy at t. If v/(t) # 0, ~y is called regular at t and singular at t otherwise. If v/(t) # 0
for all ¢t € [a, b], we simply call v regular.

Definition 6.1.7. Let 71: [a1,b1] — RY and v5: [ag, ba] — RY be two C'-curves, and let
t1 € la1,b1] and t9 € [ag,be] be such that:

(a) 7 is regular at ty;

(b) 72 is regular at to;

(c) m(t1) = 12(ta)-

Then the angle between 1 and 2 at 1 (t1) = v2(t2) is the unique 6 € [0, 7] such that

cosf =

71 (t1) - 73 (t2)
(RAGYIRACE

Loosely speaking, the angle between two curves is the angle between the corresponding

tangent vectors:
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) 4 Y1 (81) =Y2(22)
GRS -

Sy
-
Ne- o~
\

v
-

Figure 6.4: Angle between two curves
Ezample. Let
y1:[0,27] = R?, ¢+ (cost,sint)

and
vo: [<1,2] = R%, t e (t,1—1).

We wish to find the angle between 71 and -y, at all points where the two curves intersect.
Since
le(®))? =262 — 2t + 1= (2t — 2)t + 1

for all t € [—1,2], it follows that |[y2(¢)[| > 1 for all ¢ € [-1,2] with ¢ > 1 or t < 0 and
lv2(@®)|| < 1 for all ¢t € (0,1), whereas v2(0) = (0,1) and 2(1) = (1,0) both have norm

one and thus lie on {7 }. Consequently, we have
{n}tn{r}= {(0, 1) =7(0)=m (g) (1,0) =12(1) = ’Yl(o)}-
Let 6 and o denote the angle between v; and 2 at (0,1) and (1,0), respectively. Since
71 (t) = (—sint, cost) and Y5(t) = (1,-1)

for all ¢ in the respective parameter intervals, we conclude that

g ME) O (L0111
1% ()12l V2 V2
and
@) ey 1
171 O) Iz (D] V2 V2’

sothat@zaz%ﬂ.
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Figure 6.5: Angles between a circle and a line

How is the angle between two curves affected if we choose a different parametrization?

To answer this question, we introduce another definition:

Definition 6.1.8. A bijective map ¢ : [a,b] — [a, 3] is called a C'-parameter transfor-
mation if both ¢ and ¢! are continuously differentiable. If ¢ is increasing, we call it

orientation preserving; if ¢ is decreasing, we call it orientation reversing.

Definition 6.1.9. Two curves 71 : [a1,b1] — RY and 7o : [ag,b2] — RN are called
equivalent if there is a C'-parameter transformation ¢: [a1,b1] — [ag, bo] such that o =

Y10 ¢.
By Theorem 6.1.5, equivalent C'-curves have the same length.

Proposition 6.1.10. Let v, : [a1,b1] — RY and 42 : [ag,ba] — RY be two regular C'-
curves, and let 0 be the angle between 1 and vy at x € RN, Moreover, let ¢1: [, B1] —
[a1,b1] and ¢2: [az, Ba] — [az, ba] be two C-parameter transformations. Then 1 o ¢1 and

Y2 © ¢g are regular Cl-curves, and the angle between vy o ¢1 and o o ¢po at T is:
(i) 0 if ¢1 and ¢ are both orientation preserving or both orientation reversing;

(ii) m — 0 if one of ¢1 and @2 is orientation preserving and the other one is orientation

TeVErsing.

Proof. 1t is easy to see—from the chain rule—that +1 o ¢1 and 79 o ¢ are regular.

We only prove (ii).
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For j = 1,2, let t; € [a;, B;] be such that v (¢1(t1)) = v2(P2(t2)) = =. Suppose that

¢1 preserves orientation and that ¢o reverses it. We obtain

(1o¢1)'(t1) - (20 92)'(t2) _  7i(S1(t1)) ¢ (t1) - 15(P2(t2)) 95 (t2)
(v 0d1) () [[l(v2 0 @2) (E2) Il 171 (@1 (t1)) @) (B[ (B2(t2)) 5 (E2) |
_ A (t)dh(t2)  m(¢1(t)) - 1a(d2(t2))
— ¢ (t1) Dy (t2) (|71 (@1 () 17 (@2(t2)) ]
Y1 (@1(t1)) - a(pa(t2)

_ ) )
71 (@1t 72 (2 (t2))]

= —cosf

= cos(m — 0),

which proves the claim. ]

FExercises

1. Let » > 0, and let ¢ # 0. Determine the length of the helix

v:la,b] = R3, s (rcost,rsint, ct).

2. Let f: [a,b] = R be a C'-function. Show that the graph of f can be parametrized

as a rectifiable curve with length
b
/ NiESTOE
a
3. (a) Let v;: [a,b] = RY and 79: [b,c] — RY be two curves such that v (b) = 72(b).
The concatenation of 1 and 79 is the curve

t), ift € |a,b],
Dy [a, ] = RN, te () 1 [ o]
Y2(t), ift e b, .

Show that v @ 72 is rectifiable provided that +; and 9 are and that
length of 1 & 2 = length of 41 4 length of ».

(b) A curve 7 : [a,b] — RY is called piecewise continuously differentiable—or
short: piecewise C'—if there is a partition a = tg < --- < t, = b such that
v = 'y|[tj717tj] is continuously differentiable for j = 1,...,n. Show that ~ is
rectifiable and that

n ts
length of v = Z / ’ |7 ()] dt.
j=1"ti-1
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4. Parametrization with respect to arclength. Let 7: [a,b] — RY be a regular C'-curve
with length L. Show that

7:la,b] = [0, L], t '—>/ 17 (s)| ds

is a C'-parameter transformation. Conclude that there is a C'-curve 7: [0, L] — RY

such that y =% o 7.

5. Let
v:R = R?, t (2 - 1,8 —t).

(a) Sketch 7|[_g -
(b) Determine all s # ¢ such that y(s) = y(¢).
(c) Calculate the angle between « and itself at all points y(s) = y(t) with s # t.

6. Show that
1t z t 1
7:[0,1] = R?,  ts (1,teos (%)), te(0,1],
(1,0),  t=0,
defines a curve that fails to be rectifiable. (Hint: Consider partitions 0 < 5= <

2n
1 1 1
T < <3z<z<Ll)

7. Show that the following are equivalent for an open set U C RY:

(i) U is connected;
(ii) U is path connected,;

(iii) any two points in U can be joined by a polygonal path in U, i.e., for any
x1,x2 € U, there are a < b and a polygonal path ~: [a,b] — U such that
v(a) = z1 and y(b) = x2.

(Hint: For (i) = (iii), fix 1 € U and consider the set of those = € U such that z;
and z can be joined by a polygonal path in U.)

6.2 Curve Integrals

Let v: R? — R3 be a force field, i.e., at each point x € R3, the force v(z) is exerted. This
force field moves a particle along a curve v: [a,b] — R3. We would like to know the work
done in the process.

If v is just a line segment and v is constant, this is easy:

work = v - (y(b) = ~(a)).
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For general v and v, choose points (t;) and ~y(t;—1) on ~ so close that v is “almost” a
line segment and that v is “almost” constant between those points. The work done by v
to move the particle from ~(¢;—1) to v(¢;) is then approximately v(n;) - (v(t;) — v(tj-1)),
for any n; on v “between” ~(t;—1) and 7(¢;). For the the total amount of work, we thus

obtain

work & Y " o(n;) - (v(t;) = y(tj-1)).
j=1

The finer we choose the partition a =ty < t1 < --- < t,, = b, the better this approximation
of the work done should become.

These considerations, motivate the following definition:

Definition 6.2.1. Let 7v: [a,b] — RY be a curve, and let f: {y} — R be a function.
Then f is said to be integrable along -, if there is I € R such that, for each € > 0, there is
d > 0 such that, for each partition a =to < t; < --- < t, = bwith maxj—1 __,(t;—tj—1) <

d, we have
I=Y " f(v(&) - (v(tg) = v(tj—1))| < e
j=1
for each choice &; € [tj_1,t;] for j =1,...,n. The number I is called the (curve) integral

of f along v and denoted by
/f-dx or /fld:r1+~-+de:vN.
gl v

Theorem 6.2.2. Let 7 : [a,b] — RY be a rectifiable curve, and let f: {y} — RN be

continuous. Then f,y f - dz exists.
We will not prove this theorem.
Proposition 6.2.3. The following properties of curve integrals hold:

(i) Lety:[a,b] = RN and f,g: {v} — RY be such that f,y f-dx and fwg~d:13 both exist,
and let o, B € R. Then fw(ozf + B g) - dx exists such that

L(af+ﬁg)'dl‘:a[/f-d:z—kﬁ/vg-dx.

(i) Let v : [a,b] — RN, vo: [b,c] — RY and f: {m} U {y%} — RY be such that
~v1(b) = v2(b) and that f% f-dx and f,yz f - dx both exist. Then f,y

such that
/ f-da::/f-dx—i— f-dx.
Y1DY2 Y1 Y2

& f - dx exists
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(iii) Let v: [a,b] — RN be rectifiable, and let f: {y} — RN be bounded such that f7 f-dx

exists. Then
/ f - de| < sup{||lF (YD) : ¢ € [a,B]} - length of
:

holds.

Proof. (Only of (iii)).
Let € > 0, and choose are partition a =ty < t; < --- < t,, = b such that

[ £2do =3 106 (18 = i) <
v j:l
It follows that

< Z FOu(5)) - (v(#5) = v (tj-1)) | + €

<ZHf DIy (E5) =~ (-1 +e

<sup{[[f(y(#)Il : ¢ € [a, b]} - ZHV (i)l +€

<sup{[[f(v(@®)Il : t € [a, b]} - 1ength of v+
Since € > 0 was arbitrary, this yields (iii). O

Theorem 6.2.4. Let : [a,b] — RN be a C'-curve, and let f: {7} — RY be continuous.

Then X
/ fodo = / v - (1) dt

Proof. Let € > 0, and choose 6; > 0 such that, for each partitiona =tg <t; < --- <t, =b
with max;—1,_n»(t; —tj—1) < 01 and for any choice &; € [t;_1,t;] for j =1,...,n, we have

holds.

N

b n
/ FO®) A 0 dt =3 FOED) A )t —t51)| <
a ,]:1

Let C' > 0 be such that C' > sup{||f(~(¢))|| : t € [a,b]}, and choose d2 > 0 such that

e
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for s,t € [a,b] with 0 < |s —t| < 2. Since 4/ is uniformly continuous, we may choose ds

so small that
€

17/(t) =+ (s)Il < 1C0h—a)

for s,t € [a, b] with |s—t| < d2. Consequently, we obtain for s, ¢, € [a,b] with 0 < t—s < dy
and for & € [s,t] that

1220 g < 1222 o]+ ) - v
< 4(1(1;— Q) " 4C(b6— a)
- s (6.2

Let § := min{d1,02}, and choose a partition a = ¢ty < t; < -+ < t, = b with
max;—1,..n(t; —tj—1) < J. From (6.2), we obtain:

1) = 2(t5-1) =7 ()t — i) < 5t (63)

for any choice of & € [tj_1,t;] for j =1,...,n. Moreover, we have

b
/f(v(t dt—Zf ()) - (v(t;) — 4t 1))
b n
< / FO@) A @ dt =3 FHED) ) — i)
a j=1

n n

D FOEN) A ENt = tim) = Y F(v(E)) - (v(ty) = A(tj-1))

j=1 j=1

; + Z [F(r(€)) - (Y (€) (5 = tj—1) = (v(t) — 7 (t5-1))]

+

N

§*+Z|!f ENNIY (€5 = ti1) = (v(t) = ¥(ti-1)l

€ tj—t;
< - +2020 b_a . by (6.3),

By the definition of a curve integral, this yields the claim. O

Of course, this theorem has an obvious extension to piecewise C'-curves.
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Example. Let
v:[0,47] = R3, t+ (cost,sint,t),

and let
f:R> =5 R (z,y,2) — (1,cos z,2y).

It follows that

/f-d(x,y,z):/1d:r+coszdy+:rydz
”

Y

4m
/ (1,cost,cost sint) - (—sint,cost,1)dt
0

/M(— sint + (cost)? + (cost)(sint)) dt
0

4m
(cost)?dt

0

Il
b
)

We next turn to how a change of parameters affects curve integrals:

170

Proposition 6.2.5. Let v: [a,b] — RY be a piecewise C'-curve, let f: {v} — RN be

continuous, and let ¢ : [a, B] — [a,b] be a C'-parameter transformation.

cdr = .d
vogbf ’ [/f )

f-dx:—/f-dm
v

orientation preserving,

holds, and
Yo
holds if ¢ is orientation reversing.

Proof. Without loss of generality, suppose that v is a C'-curve.
We only prove the assertion for orientation reversing ¢.

Simply note that

This proves the claim.

Then, if ¢ is
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We introduce new terminology:

Definition 6.2.6. Let @ # U C RY be open. We call a vector field f: U — RY
conservative with potential function F: U — R if F is partially differentiable such that
f=VF.

We previously encountered conservative vector fields under the name gradient fields.

Theorem 6.2.7 (Fundamental Theorem for Curve Integrals). Let @ # U C RY be
open, let f: U — RN be a continuous, conservative vector field with potential function

F:U — R, and let 7: [a,b] — U be a piecewise C*-curve. Then

/ f - d = F((b)) — F(1(a))
Y
holds.

Proof. Choose a =ty <t; <--- <ty =bsuch that 'y|[tj_17tj] is continuously differentiable
for 5 =1,...,n. We then obtain

/f d:n—/VF-d:c
:i/tt g:; or
5[ Lrcona

as claimed. 0

Remark. The adjective “conservative” for gradient fields derives itself from the Law of
Conservation of Energy. Suppose that N = 3 and that f moves a particle of mass m
along a curve 7: [a, b] — R3. We suppose that + is twice continuously differentiable. Then
Newton’s Second Law of Motion yields that

fy(®) =my"(t)
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for t € [a,b]. Consequently, the work carried out is computed as

Work:Lf-dx
= [ 6wy 0
—m / () at
_ m/ ()] dt

= ||7()H2 1Y (@)]1?)-

For t € [a, b], the kinetic energy at ’y(t) is

K((t) = 5 (1)

so that
work = K ((b)) — K(v(a)).

Suppose now that f is conservative with potential function F'. Then the potential energy
at (z,y,2)is P(x,y,z) = —F(x,y, 2), so that

work = [ f+dz = F((6) = Fl2(a)) = P(2(a)) = PG0))
by Theorem 6.2.7. All in all, we obtain

P(y(a)) + K(y(a)) = P(y(b)) + K(v(b)),

i.e., the Law of Conservation of Energy.

Ezample. Let
[R5 R, (2,y,2) = (232, —1,2%),

and let v: [a,b] — R3 be any piecewise C!-curve with v(a) = (=4, 6, 1) and v(b) = (3,0, 1).
Since f is the gradient of

F:R® =R, (z,y,2) — 2%z —v,
Theorem 6.2.7 yields that

/f-da::F(S,O,l)—F(—4,6,1):10—9:1.
;

Theorem 6.2.7 greatly simplifies the calculation of curve integrals of conservative vector
fields. Not every vector field, however, is conservative as we shall see very soon.

To make formulations easier, we define:
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Definition 6.2.8. A curve 7: [a,b] — R" is called closed if y(a) = y(b).

Corollary 6.2.9. Let @ # U C RY be open, and let f: U — RN be a continuous,
conservative vector field. Then f,y f-dx =0 holds for every closed, piecewise C'-curve ~y
mn U.

Ezample. Let P,Q: R%\ {(0,0)} — R be given by

y T
P(z,y) = Ry and Qz,y) = 22+ 42

for (z,y) € R?\ {(0,0)}. Consider the counterclockwise oriented unit circle
v:[0,27] — R?, t > (cost,sint);

in particular, v is a closed C'-curve. A direct evaluation yields
2
[ Pde+ay= [ (Po).Qu0) - 1) d
.
2m
= / (—sint,cost) - (—sint, cost) dt
0

27

:/ (sint)? 4 (cost)? dt
0

= 2m,

so that (P, Q) cannot be conservative.

Under certain circumstances, a converse of Corollary 6.2.9 is true:

Theorem 6.2.10. Let @ # U C RY be open and convex, and let f: U — RN be

continuous. Then the following are equivalent:
(i) f is conservative;
(ii) f7 f-dx =0 for each closed, piecewise C*-curve v in U.

Proof. (i) = (ii) is Corollary 6.2.9.
(ii) = (i): For any z,y € U, define

[z,y] ={z+tly—x):te]0,1]}.

Since U is convex, we have [z,y] C U. Clearly, [z, y] can be parametrized as a C'-curve:
0,1] = RN, ts x4ty —2).

Fix zg € U, and define

F:U—-R, x+— f-dz.

[.’Eo ,.’E]
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Let z € U, and let € > 0 be such that B.(x) C U. Let h # 0 be such that ||k < e.
We obtain

F(:L"+h)—F(x):/ f~dx—/ f-dx
[zo,z+h] [z0,]
:/ fdx/ f~da3+/ fd:n/ f-dz
[zo,z+h] [z,xz+h)] [z,z+h)] [zo,]
:/ f~dx+/ f~da3+/ f-dﬂ:+/ f-dz
[zo,z+h] [x+h,x] [z,x0] [z,xz+h]

= / f- dz:+/ f-dz
[zo,z+h]®[z+h,z])D[T,20] [z,x+h]

=0

= / f-dx.
[z,z+h]

[xg,x+h]

Figure 6.6: Integration curves in the proof of Theorem 6.2.10

It follows that

1 1
F(x+h)F(x)f(x)h|:/ fd:v/ f(z) - dz
17l 1201 z,1) [2+h]
1
= T /[ +h}(f — f(@)) - dx| <sup{|[f(y) = f(@)l| : y € [w,x +h]}. (6.4)
Since f is continuous at x, the right hand side of (6.4) tends to zero as h — 0. O

This theorem remains true for general open, connected sets: the given proof can be
adapted to this more general situation (see Exercise 5 below).
Even though Theorem 6.2.10 is important, it is of little use to determine whether or

not a given vector field is conservative. The next proposition gives a necessary condition:
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Proposition 6.2.11. Let @ # U C RY be open, and let f = (f1,...,fn): U — RY be a

conservative C-vector field. Then

f;j _ Of

3$k a 695]-

holds on U for j,k=1,...,N.

Remark. If N = 3, then (6.5) amounts to curl f = 0.

(6.5)

Proof. Let F: U — R be a potential function for f. As f is a C'-vector field, it follows

that F' is twice continuously partially differentiable. Hence, we obtain from Clairaut’s

Theorem that
of;  9*F  OF  Ofy
8$k N Ba:kaa:] N 8.%']8.%'k - (%cj

onU for j,k=1,...,N.
Alas, (6.5) need not be sufficient for a vector field to be conservative:

Ezample. Let P,Q: R%\ {(0,0)} — R be given by

y x
P(z,y) = TaZa R and  Q(z,y) = 2

for (z,y) € R?\ {(0,0)}. Then the rules of differentiation yield

or 1 N 202 —a?—yP 42y a4y
oy 224y (24922 (22+y2)2 (a2t y2)?
and
0Q 1 222 2 + % — 222 —x2 + 92

or  22+12 (224422 (@2+¢2)?  (a24y2)?

so that the vector field (P, Q) satisfies (6.5). However, as we have previously seen, (P, Q)

is not conservative.

Still, for sufficiently “nice” domains, a converse of Proposition 6.2.11 holds. To prove

it, we require some preparations.

Proposition 6.2.12. Let f: [a,b] X [c,d] — R be continuous, and define

d
F:la,b] - R, xn—>/ f(z,y) dy.
C
Then F' is continuous.

Proof. Let zg € [a,b], and let € > 0. Choose ¢ > 0 such that

) - F@y)] < =

Cc
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for all (z,y), («',y') € [a,b] X [¢,d] such that ||(z,y) — (¢/,¢')]] < . (Remember: since
[a,b] X [e,d] is compact, f is uniformly continuous.) For x € [a, b] such that |z — o] < 6,

we thus obtain

|F(z) = F(zo)| =

d d d
[ swa- | f(wo,y)dy‘é [ 18~ Sy <«
<7

which proves the claim. ]

Theorem 6.2.13. Let f: [a,b] X [c,d] — R be continuous, and suppose further that g—z

erists and is continuous throughout. Define

d
F:la,b] - R, :rr—>/f(x,y)dy

Then F' is continuously differentiable such that

L)
F'(z) = %(%?J) dy

for x € [a,b].

Proof. Let € > 0. Choose d > 0 such that

4 of v
%(fﬂ,y) - é(m7y)

€

<d—c

for all (z,y), (2/,y') € [a,b] X [¢,d] with ||(z,y) — (2/,y)|| < d. Fix z¢ € [a,b] and y € [¢, d],
and let h # 0 be such that zo+ h € [a,b] and |h| < §. By the Mean Value Theorem, there
is §, between zg and o + h such that

f(x()"i'hvy) _f(x(]’y) _ g
h ~ Ox

(Syay)'
As ||(5U0,y) - (éyvy)H < 9, we have

= ‘(%(gy’y) - &,E(x()vy)' < d— C'

h ox r0,Y

Hence, it follows for 0 < |h| < § such that zg + h € [a, b] that

d
’F(ﬂfo+h)—F($0) —/ gi(xo,y)dy

h
d
<)

oot b = Sows) 0 )y <

-~

<3

€
—c
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We conclude that
lim
h—0
h#£0

so that I is differentiable at xg with

_ d
vt Fla _ (100,

d
Feo) = [ Ftan)dy

As z¢ € U is arbitrary, we obtain from Proposition 6.2.12 that F’ is continuous as claimed.
O

Corollary 6.2.14. Let @ # U C RY be open, and let f: U x [a,b] — R be continuous
such that 887]; exists and is continuous throughout for 5 =1,...,N. Then

b
F:U — R, (ml,...,xN)»—)/f(xl,...,:nN,y)dy
a

is continuously partially differentiable such that

OF b of

il — ~J d
&Cj(w) ; Mj(w,y) y

forx e U and j=1,...,N.
This allows us to prove a converse to Proposition 6.2.11.

Theorem 6.2.15. Let @ # U C RY be open, and let f: U — RN be a C'-vector field.

Consider the following statements:

(i) f is conservative;

(ii) f satisfies (6.5).
Then (i) = (ii), and (ii) = (i) if there is zy € U such that [xo,x] C U for allx € U.
Remark. Sets satisfying the condition for (ii) = (i) to hold are called star shaped: think

of a star with x( as its geometric center. Every convex set is trivially star shaped, but it

is easy to come up with star shaped sets that are not convex (see Exercise 1.4.8).

Proof. (i) = (ii) is clear by Proposition 6.2.11.
Suppose that f satisfies (6.5) and that U is star shaped. Without loss of generality,
suppose that zg = 0. Define
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so that

7) = i (/01 fj(tx)dt) .

7j=1
for x € U. It follows for x € U and k =1,..., N that

oF
a—mk(x = <axk/fjtx dt>xj+z</ fi(tx) dt>

N af;
Z </ — (tx) dt> xj + / fr(tz) dt, by Corollary 6.2.14,
axk

=1
N
( feltz) +¢) ;‘Z(t:p)xj) dt. (6.6)
Jj=1

.

1

I
>—

Also, note that

% tfi(te) = fe(te) + tdifk(tiv)

N of:
= felte) +t>_ L(tw)z;, by (6.5), (6.7)

forz € U and k= 1,...,N. Note that (6.7) is just the integrand of (6.6), so that

1

1
@ = [ Gttt =thitt) =5

0

oF
8xk

forrelU and k=1,... k. O

Example. Let
[iRP =R (2,y,2) = (ye™, ze™, 1).

A routine calculation shows that curl f = 0, so that f is conservative. Let F': R? — R be

a potential function for f. It follows that

F(z,y,2) = /1dz =z+G(z,y).

Differentiation with respect to x and y yields
oF oG OF oG
%(:ﬁ,y) = %("L‘ay) :yezy and 7("1"’3/) = 8:1/ (l‘,y) :xexyv

so that
G(z,y) = /:L‘exy dy = e + H(x).
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Differentiating with respect to x, we obtain

oG dH
- — Ty R
(@) =y + ()

so that % =0 and H is constant. It follows that
F(z,y,z) =e" +2+C

for some constant C.

FExercises

1. Calculate fy f-dx, where f(z,y) = (zy,ye”), and ~ is the polygonal path connecting
(0,0), (2,0), (2,1), (0,1), and (0,0) (in this order).

2. Let U :={(z,y) € R? : 2 > 0}, let f = (P,Q): U — R? be given by

Plag) = "2 and Q) = 125
for (z,y) € U, and let v = y1@®72, where v = [(1,7), (13, 7)] and v2 = [(13,7), (e, 1)].
Evaluate
/ Pdz + Qdy.
2l
3. Let

f:RZ%R% (x7y)'_>(y7y_x) and g:RQ%R% (way)’_}(va_y)

Determine whether f or g are conservative. If so, determine a respective potential

function.
4. Let f = (P,Q, R) : R3 — R? be given by
P(x,y,z) = €Y%, Qx,y,z) = xze¥?, and R(z,y, z) = zye¥?
for x,y,z € R, and let
~v:[0,6m] = R, ¢~ (cost,sint, 666t).
Evaluate the curve integral

/Pdar+Qdy+Rdz.
.

5. Generalize Theorem 6.2.10 to general open and connected @ # U C RY. For (ii)
= (i), proceed as follows:



CHAPTER 6. CURVE AND SURFACE INTEGRALS 180

e Show that, if v and 7 are piecewise C!-curves in U with same initial points and
endpoints, then f,y f-dz= f& [z
e Fix xg € U. By Exercise 6.1.7, there is, for each x € U, a piecewise C'-curve

v, in U with initial point x¢y and endpoint x. Show that
F:U—R, x|—>/ f-dx

is well defined and a potential function for f.

6.3 Green’s Theorem

Definition 6.3.1. Let a < b, and let ¢1, ¢2: [a,b] — R be continuous with ¢; < ¢9. Then
{(xvy) € R2 HEVS [avb]u ¢1($) < Yy < ¢2(gj)}7 (68)

is called a normal domain in R? with respect to the x-axis if, for j = 1,2, there are aj < Bj

and strictly increasing o;: [, 5;] = R onto [a, b] such that
[ajaﬁj] _>R2¢ b= (Uj(t)v¢j(0j(t)))
are piecewise C'-curves.

Remark. Of course, a set of the form (6.8) is a normal domain with respect to the z-axis

if ¢1 and ¢9 are piecewise C'-functions.

y

Figure 6.7: A normal domain with respect to the z-axis

Ezamples. 1. A rectangle [a,b] x [c,d] is a normal domain with respect to the z-axis:
define
o1(x) =c and do(x) =d

for = € [a, b].
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2. The closed disc of radius 7 > 0 centered at (0,0) in R? is of the form (6.8) with
P1(xz) =—vr2—22 and  ¢o(x) = V1?2 —2a?

for x € [—r,r]. However, ¢; and ¢ are not differentiable at —r and r. It therefore
requires some more thought as to why B;[(0,0]) is a normal domain with respect to

the z-axis. Define
T

22
Then o1 = 09 is strictly increasing and maps [—%, g] onto [—r,r], and since cost is

01202:[ }—>R, t — rsint.

T

non-negative for ¢ € [—5, 5], the curves

T . i
2 2] SR e (030, 0503 (9) = (rsint, (~17Hrcost)
are Cl-curves.
Let K C R? be any normal domain with respect to the z-axis. Then there is a natural
parametrization of 0K:

OK =71 ®7n®v3 3%

with

”)/1<t) = (O’l(t),(ﬁl(dl(t)» for t € [al,ﬁl],

Y2(t) == (b, ¢1(D) + t(d2(b) — ¢1(b)))  for t €0,1],

73(t) := (o2(az + B2 — 1), d2(02(az + B2 — 1)) for ¢ € [az, B2],
and

v4(t) := (a, p2(a) + t(d1(a) — ¢2(a)) for t € [0, 1].

Figure 6.8: Natural parametrization of 0K

We then say that 0K is positively oriented.



CHAPTER 6. CURVE AND SURFACE INTEGRALS 182

Lemma 6.3.2. Let @ # U C R? be open, let K C U be a normal domain with respect to

the x-axis, and let P: U — R be continuous such that ‘?9—1; exists and is continuous. Then

OP /
— = — Pdx (+0d
K 0y oK (+0dy)

holds.

Proof. To simplify the bookkeeping, we only deal with the case where o; and oo are
C'-functions.
First note that

b p2(x)
/ or :/ / a—P(:c,y) dy | dz, by Fubini’s Theorem,
K Oy a ¢1(z) dy
b

— [(P(@.62(2) = Pl 1(w) o
by the Fundamental Theorem of Calculus.

As a = 01(aq) and b = 01(f1), substituting = = o1 (¢) yields

b B1
/ P, 61 (2)) da = / Plos(t), é1 (01 (1)) (1) d

1

B1
- / (P(n(£)),0) -7, (¢) dt

1

= Pdx.
Y1

Similarly, we obtain

b B2
/ P(a, o)) dz = [ P(oa(t), dalos(t))oh (1) dt

a2

- _ /sz p(02(a2 + B2 — t), ¢2(02(a2 + By — t)))U/Q(OZQ + /32 . t) dt

B2
= P(oa(ag + B2 — t), pa(o2(cg + B2 — t)))oy(a + o — ) dt

a2

B2
_— / (P(15(t)), 0) - 74 (t) dt

2

= — Pdx.
73

8P__</ de—l—/de).
K 9y ! 73
/dez/PdaczO,
Y2 Y4

It follows that

Since
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we eventually obtain

P
or = —/ Pdr =— Pdx
K 0y 71 BY2DY13 DV 0K

as claimed. 0
As for the z-axis, we can define normal domains with respect to the y-axis:

Definition 6.3.3. Let ¢ < d, and let 11,19 : [c,d] — R be continuous with 1; < 9s.
Then

{(z,y) eR*:y € [e,d], ¥1(y) < = < ha(y)},

is called a normal domain in R? with respect to the y-azis if, for j = 1,2, there are v < 0

and strictly increasing 7;: [y, 0;] — R onto [a, b] such that

[y, 03] = B2t (5(75(t)), 75(t))

are piecewise C!-curves.

Figure 6.9: A normal domain with respect to the y-axis

Ezample. Rectangles and discs are normal domains with respect to the y-axis as well.

As for normal domains with respect to the x-axis, there is a canonical parametrization
for the boundary of every normal domain in R? with respect to the z-axis. We then also
call the boundary with this parametrization positively oriented.

With an almost identical proof as for Lemma 6.3.2, we obtain:
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Lemma 6.3.4. Let @ # U C R? be open, let K C U be a normal domain with respect to

the y-axis, and let Q: U — R be continuous such that % exists and is continuous. Then

/Kgf = /(9K(de+)Qdy

Proof. As for Lemma 6.3.2. O

holds.

Definition 6.3.5. A set K C R2 is called a normal domain if it is a normal domain with

respect to both the z- and the y-axis.

Theorem 6.3.6 (Green’s Theorem). Let @ # U C R? be open, let K C U be a normal
domain, and let P,Q € C*(U,R). Then

/((9@_(%3)_ Pdr+Qdy
kK \Oz 0Oy oK

holds.
Proof. Add the identities in Lemmas 6.3.2 and 6.3.4. ]

Green’s Theorem is often useful to compute curve integrals:

Ezxamples. 1. Let K =0,2] x [1,3]. Then we obtain

2 3
/ :cydx—l—(:z2+y2)dy=/ 2x—x:/ </ xdy)da:zél.
oK K 0 1

2. Let K = B41[(0,0)]. Then we have

xy?® dx + (arctan(logy + 3) — ) dy

S

0K

:/ —1—2z2y
K
:—/ 2zy +1
K
2 1
:_/ (/ (2r2cosesin9+1)rdr> do
0 0
2 1 1
=— </ (cosH)(sinG)dG) <2/ r3dr> 277/ rdr
0 0 0

=0

= —T.

Another nice consequence of Green’s Theorem is:
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Corollary 6.3.7. Let K C R? be a normal domain. Then

1
u(K) = / rdy —ydx
2 Jox
holds.
Proof. Apply Green’s Theorem with P(z,y) = —y and Q(z,y) = x. O

Remark. Green’s Theorem remains valid for much more general domains than normal
ones. For instance, a triangle is normal if the edge facing the largest angle is parallel to
one of the coordinate axes. We can rotate any triangle A C R? suitably and obtain a

triangle A that is a normal domain:

________________________

Figure 6.10: Rotating a triangle to obtain a normal domain

As A is normal, we can apply Green’s Theorem to it. Change of Variables then yields
that Green’s Theorem holds for A as well. When dealing with a tetrangle, e.g., a rectangle,

a trapeze, or a diamond, we split it into two triangles:

y

Figure 6.11: Splitting a tetrangle into two triangles
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We can then apply Green’s Theorem to each of the two triangles. As the added bound-
ary piece is traversed twice, but in opposite directions, its contibutions to the boundary
integrals cancel each other. Hence, Green’s Theorem holds for general tetrangles. More

generally, Green’s Theorem applies to any polygon:

y

Figure 6.12: Splitting a polygon into triangles

Fxercises

1. Show that
K :={(z,y) eR* :z,y,x +y € [0,1]}

is a normal domain (with respect to both coordinate axes) and use Green’s Theorem

to compute
/ ye’dr + ze¥dy.
oK

2. Let K be the triangle with vertices (1, 8), (2,7), and (9, 3). Evaluate the line integral

/ siny dx + x cosy dy
0K
where 0K is positively oriented.

3. Let a,b > 0. Use Green’s Theorem to determine the area of the ellipse

.CI}2 y2
E::{(x,y)ERQ:(ﬂ~|—b2§1}.

4. A force field f = (P, Q) with P,Q: R? — R given by

P(z,y) = ye® — 3> + arctan z and Q(z,y) = " + 2% — ey
for x,y € R moves a particle along the curve—in counterclockwise orientation—
consisting of the line segment {(x,0) : € [~1, 1]} followed by the arc {(x,y) € R?:
2?2 +y% =1, y > 0}. Determine the work done.
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6.4 Surfaces in R?

What is the area of the surface of the Earth or—more generally—what is the surface area
of a sphere of radius r?
Before we can answer this question, we need, of course, make precise what we mean

by a surface

Definition 6.4.1. Let U C R? be open, and let @ # K C U be compact and with content.
A surface with parameter domain K is the restriction of a C!'-function ®: U — R3 to K.
The set {®} := ®(K) is called the trace or the surface element of ®.

Ezamples. 1. Let r > 0, and let
®:R2 5 R3, (s,t) — (r(coss)(cost), r(sins)(cost),rsint)

with parameter domain

K :=10,2n] x {—g,%} :

Then {®} is the sphere of radius r centered at (0,0,0).

2. Let a,b € R3, and let
d:R2 5 R3, (s,t)— sa+tb

with parameter domain K := [0,1]2. Then {®} is the paralellogram spanned by a
and b.

To motivate our definition of surface area below, we first discuss (and review) the

surface are of a parallelogram P C R? spanned by a,b € R3. In linear algebra, one defines
area of P :=||a x b||,

where a x b € R? is the cross product of @ and b.
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axb

188
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Figure 6.13: Cross product of two vectors in R?

The vector a x b is computed as follows: Let a = (a1, a2,a3) and b = (by, by, b3), then

a x b = (azbs — agby, biaz — a1bz, arby — braz)

a
by

as
b3

ay
b1

as
b3

)

(

Letting ¢ := (1,0,0), 5 := (0,1,0), and k := (0,0, 1),

a X b as a formal determinant, i.e.,

i ik
axb=|a ay a3
by by b3

al
by

az
bo

)

) |

it is often convenient to think of

that we expand with respect to its first row. We need to stress, hoever, that this deter-

minant is not “really” a determinant (even though it conveniently very much behaves like

one).

The verification of the following is elementary:

Proposition 6.4.2. The following hold for a,b,c € R® and X\ € R:

(i) axb=—-bxa;
(ii) a x a =0;
(iii) AM(axb) =Aa xb=ax \b;

(iv) ax (b+c)=axb+axc;
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(v) (a+b)xc=axc+bxec.

Moreover, we have

1 C2 C3
c-(axb)=|a1 ay a3
by by b3

Corollary 6.4.3. For a,b € R3,
a-(axb)=b-(axb)=
holds.

In geometric terms, this result means that a x b stands perpendicularly on the plane

spanned by a and b.

Definition 6.4.4. Let ® be a surface with parameter domain K, and let (s,¢) € K. Then

the normal vector to ® in ®(s,t) is defined as

0o 0P
N(s,t) = g(s,t) X a(s,t)

Example. Let a,b € R3, and let
d:RZ 5 R3, (s,t) > sa+tb
with parameter domain K := [0,1]2. It follows that
N(s,t) =a x b,

so that
surface area of ® = |la x b|| = / IN(s,t)].
K

Thinking of approximating a more general surface by braking it up in small pieces

reasonably close to parallelograms, we define:

Definition 6.4.5. Let ® be a surface with parameter domain K. Then the surface area

of ® is defined as
/HNstH—/Hst (st)H

Ezxample. Let r > 0, and let
®:R* 5 R, (s,t) — (r(coss)(cost), r(sins)(cost), rsint)

with parameter domain
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It follows that

g—f(s,t) = (—r(sins)(cost), r(cos s)(cost),0)
and 50
a(s,t) = (—r(coss)(sint), —r(sins)(sint), r cost)
and thus
N(s,t)
= gf(s,t) X aa(f(s t)
_ (‘ r(cos s)(cost) 0 _' —r(sin s)(cost) 0
—r(sins)(sint) rcost —r(coss)(sint) rcost
—r(sin s)(cost)  r(coss)(cost) |>
—r(coss)(sint) —r(sins)(sint)
= (%(cos s)(cost)?, r(sin s)(cos t)?, r%(sin s)%(cos t)(sin t) + 7 (cos s)?(cos t)(sin t))
= (r%(cos s)(cost)?, r?(sin s)(cos t)?, r*(cos t)(sin t))
= rcost ®(s,t).
Consequently,

N(s,t)|| = ||rcost ®(s,t)|| = rcost||®(s,t)|| = rcost
IN(s, )]l = |l ; ,

holds for (s,t) € K. The surface area of ® is therefore computed as

2 E us
/ | N(s,t) —/ (/ r costdt> ds—27rr2/2 costdt = 4mr?.

2 2
For r = 6366 (radius of the Earth in kilometers), this yields a surface are of approximately
509,264, 183 (square kilometers).

As for the length of a curve, we will now check what happens to the area of a surface

if the parametrization is changed:

Definition 6.4.6. Let @ # U,V C R? be open. A Cl-map ¢ : U — V is called an

admissible parameter transformation if:
(a) it is injective;
(b) det Jy(x) # 0 for all x € U and does not change signs.

Let ® be a surface with parameter domain K. Let V C R? be open such that K C V
and such that ®: V — R3 is a C'-map. Let ¢»: U — V be an admissible parameter
transformation with ¥(U) D K. Then ¥ := ® o ¢ is a surface with parameter domain

¥~ 1(K). We then say that U is obtained from ® by means of the admissible parameter

transformation 1.
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Proposition 6.4.7. Let ® and ¥ be surfaces such that ¥ is obtained from ® by means

of an admissible parameter transformation. Then ® and ¥V have the same surface area.

Proof. Let 1 denote the admissible parameter transformation in question. The chain rule

yields
ov v\ (0P 00 J
s’ ot ) \ou ov) ¥
921 091 00y 01 | 00y 0%z 0Dy Oy | 0%y O
ou’ Ov oY1 oY1 Ou 0Os v O9s° Ou Ot ov ot
_ | 90, 0%, [ 9s 0 ot ]_ 0y D1 | 0Dy Iy 0By Dby | 9Dy D2
Ou’ Ov O Oy Ou 0Os Ov Os°’ Ou Ot Oov Ot
0P3 0P3 ds ? ot OP3 01 4 OP3 O OP3 01 + OP3 O
ou ov ou Os ov 0s’ ou Ot ov Ot
Consequently, we obtain
ov " ov
Js ot
9Py 0P 991 091 091 99y
— ou ’ 0 ou ’ ] ou ? )
= | det aijg 8433 Jy |, —det L{% ais Jy | ,det ng L{% Jy
ou ov ou ov ou ov
od 09
det Jy,.
<8u v ) v
Change of variables finally yields
8@ 0P
surface area of ® = / H
v
od
:/ Hw O¢H | det Jy|
HEK)
B / H(‘?\Il 8\I/H
HK)
= surface area of W.
This was the claim. ]

FExercises

1. Let ® be a surface in R? with parameter domain K C R?, let v : [a,b] — K be

a Cl-curve, and let « := ® 0. Show that o/(t) is orthogonal to N(v(t)) for each
t € la,b].

Interpret this in geometric terms.

2. Let a < b, and let f € C'([a,b],R) such that f > 0. Viewing the graph of f as a
subset of the zy-plane in R? and rotating it about the z-axis generates a surface in

R3, a so called rotation surface. Show that the area of this surface is

o /bf(t)\/l O dt.
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What is the area of the outer hull of a cone with height h > 0 whose basis is a circle

of radius r?

3. Let @ # K C R? be a compact set with content, and let f be a real valued C!-
function defined on an open set U containing K. Then the graph of f|x can be

considered a surface, parametrized by
O:U = R3, (s,t) —si+tj+ f(st)k,
in R3. Show that this surface has the area
AN A
Jo () ()
K ox oy

4. Let R > 0. Determine the area of the part of the sphere

{(2,y.2) €R®: 2> 0,0 + 4 + 2 = R}

that lies inside the cylinder

2 2
{(x,y,z) cR3: <w—§> +y? < }2}

6.5 Surface Integrals and Stokes’ Theorem

After having defined surfaces in R? along with their areas, we now turn to defining—and

computing—integrals of (R-valued) functions and vector fields over them:

Definition 6.5.1. Let ® be a surface with parameter domain K, and let f: {®} — R be

continuous. Then the surface integral of f over ® is defined as

[p fdo = /K F(@(s,1) [N (s, 1)

It is immediate that there surface area of @ is just the integral |, ¢ 1do. Like the surface
area, the value of such an integral is invariant under admissible parameter transformations

(the proof of Proposition 6.4.7 carries over verbatim).

Definition 6.5.2. Let ® be a surface with parameter domain K, and let P,Q, R: {®} - R
be continuous. Then the surface integral of f = (P, Q, R) over ® is defined as

/de/\dz—I—de/\da:—i—Rdx/\dy::/ f(@(s,t)) - N(s,t).
® K
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Example. Let
®:R2 5 R, (s,t) — (s cost, s sint, t).

and let K :=[0,1] x [0, 27]. It follows that

oo oo
—(s,t) := (cost,sint,0 and s, t ssint, scost, 1
88 < Y ) ( ) ) ) 8t ( ) ( Y Y )7
so that
sint 0 cost 0 cost sint
N(s,t) = - ) . = (sint, — cost, )
scost 1 —ssint 1 —ssint scost

for (s,t) € K. We therefore obtain

/ydy/\dz—xdz/\d / (s sint,—s cost,0) - (sint, — cost, s)
) [0,1] % [0,27]

/ s(sint)? + s(cost)?
[0,1]x[0,27]

[0,1]x [0, 27r]

.

Proposition 6.5.3. Let ¥ and ® be surfaces such that ¥ is obtained from ® by an
admissible parameter transformation v, and let P,Q, R: {®} — R be continuous. Then

/deAdz—Fde/\dx—FRdxAdy:i/deAdz+de/\dx+Rdedy
v @

holds with “+7 if det Jy, > 0 and “=7 if det Jy, < 0.
We skip the proof, which is very similar to that of Proposition 6.4.7.

Definition 6.5.4. Let ® be a surface with parameter domain K. The normal unit vector
n(s,t) to ® in ®(s,t) is defined as

(s,)
n@w:{ﬂmn|ﬁN@®#Q

0, otherwise.

Let ® be a surface (with parameter domain K), and let f = (P,Q, R): {®} — R3 be

continuous. Then we obtain

/de/\dz—l—de/\dz—i—Rdx/\dy:/ f(®(s,t)) - N(s,t)
)

/f (5,1)) - n(s, DN (5, 1)

:Afmw.
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Theorem 6.5.5 (Stokes’ Theorem). Suppose that the following hypotheses are given:

(a) @ is a C*-surface of which the parameter domain K is a normal domain (with respect
to both axes);

(b) the positively oriented boundary 0K of K is parametrized by a piecewise C'-curve
v: [a,b] — R?;

(c) P, Q, and R are C*-functions defined on an open set containing {®}.

Then
/ Pdr+Qdy+ Rdz
Doy
B OR 0Q 0P OR 0Q OoOP
—/b(ay — 8z>dy/\dz+<8z — 8x>dZ/\dx+<6x — ay)alx/\dy

= [I)(curl f) -ndo

holds where f = (P,Q, R).

Remark. If {®} lies in the xy-plane, we recover (with additional hypotheses, of course)

Green’s Theorem.
Proof. Let ® = (X,Y, Z), and

p(s,t) = P(X(s,t),Y(s,t), Z(s,t)).

We obtain
B b d(X o)
[ pan= [0 i

b

= [ 060 (G i) + S 0onin) ) ar

0X 0X

= —ds ——dt.

7p s TP ot t

By Green’s Theorem we have

0X X o[ axX\ 0 [ 0X
e~ “a= (Z(pE)-Z(pE)). .
| Pgs Gt /K<8s (p m) ot <p as>> (6.9)

We now transform the integral on the right hand side of (6.9). First note that

0 (p@X) 8( 8X>_8p8X 9?’X  OpoX 9’X  0pdX OpoX

as\Par) "o \Pas ) "asor Posor ot os Powos  os ot ot s
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Furthermore, the Chain Rule yields that

Op 0P OX 4 oP 0P oY 4 oP 0P 0Z
ds  Ox Os dy ds | 0z Os

and

@ 0P 0X i OP oY i 0P 0Z
ot~ oz ot oy ot | 9z ot

Combining all this, we obtain

opdX OpoX

OJs Ot ot Os
_<8P8X OP oY 6P8Z)8X_<8P6X OP oY 8P8Z>8X

9x 0s "oy os 9:0s) 0t \ox ot oy ot  0sot) os
oP <aYaX 8Y6X> opP (azaX azax)

T oy \0s ot Ot 9s) 09z \0s 0t Ot Os
0X 90X 0z 0z
O | B ¢ 0z | 55 Gt
and therefore
o0X 09X 90Z 9Z
2 () -2 (%)= E || & X'
Os ot ot 0s o | 9 % 0z | & S
In view of (6.9), we thus have
0X 0X
Pd:c:/pds+pdt
Doy o Os ot
o0X 09X 90Z 9Z
:/(_ap o o |, OP) o 5‘}')
K\ | 5% 0z | G Bt
/ —dx ANdy + op dz N\dx. (6.10)
o Oy 0z
In a similar vein, we obtain
Qdy = —@d Adz +@dm/\dy (6.11)
Doy [ 0z ox
and
Rdz—/—d /\d:I:—l—a—Rdy/\dz (6.12)
Pory 8

Adding (6.10), (6.11), and (6.12) completes the proof.
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Ezample. Let v be a counterclockwise parametrization of the circle {(z,y,2) € R3 :
22422 =1, y = 0}, and let

fy )= (22 VT 10y eyt VPR 2 12),
N

:;P ::Q :ZR

We want to compute
/Pdw+Qdy+Rdz.
~

Let ® be a surface with surface element {(z,y,2) € R3: 22 +22 <1,y =0}, e.g.,
O (s,t) := (s cost,0,s sint)

for s € [0,1] and ¢ € [0, 27]. It follows that

0P . 0P .
%(s,t) = (cost,0,sint) and E(s,t) = (—ssint, 0, s cost)
and thus
N(Svt) = (Oa -5, 0)

for (s,t) € K :=[0,1] x [0,27], so that
n(s,t) = (0,—1,0)

for s € (0,1] and t € [0, 27]. It follows that

(curl f)(®(s,t)) - n(s,t) =— (?:(@(s,t)) - %ﬁj(@(s,t))) = —s%(cost)?

-
=0

for s € (0,1] and t € [0, 27]. From Stokes’ Theorem, we obtain

/Pd:c+Qdy+Rdz:/(curl f) -ndo
”

P

= / —s%(cost)?s
K

=— (/01 s ds) (/Ozﬂ(cost)2dt>

Remark. Stokes’ Theorem allows for a physical interpretation of the curl of a vector field.

Let f be a continuously partially differentiable three-dimensional vector field that
models the velocity of a fluid, and let v be a closed rectifiable curve. Then circulation
of f around ~ given by fv f-d(x,y, z) is a measurement for the tendency of the fluid to
move around . Fix any point (xo,yo, 20) in the fluid and let D, with » > 0 be a closed,
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two-dimensional disc in the fluid, centered at (xg,yo, 2z0) with radius r. As the partial

derivatives of f are continuous, we obtain for r > 0 sufficiently small that

(curl f)(z,y, 2) = (curl £)(o, Yo, 20)

for all (z,y,2) € D,. Stoke’s Theorem then yields

f-d(z,y,z) = / (curl f) - ndo

oD, Dy

%/ (curl f)(z0, 0, 20) - n(Z0, Yo, 20) do

T

= 712 (curl ) (o, Yo, 20) - n(20, Yo, 20),

so that
(curl f)(xo, %0, 20) - (0, Yo, 20) = hm/ frd(z,y,2).

—0 7r7’2

Hence, (curl f) - n can be thought of as a measurement for the rotating effect about the
axis given by n; it is largest when n and curl f are parallel.
FExercises

1. Let S be the upper hemisphere of the unit sphere in R? (parametrized in the usual
way), and let

f(z,y,2) = (L, 2z, vy)

for (x,y,z) € R3. Use Stoke’s Theorem to compute
/(curl f)-ndo.
S

2. Let ® and ¥ be C%-surfaces with parameter domain K, which is a normal region,
such that ®|sx = ¥|sx, and let f: V — R3 be continuously differentiable where
V C R? is open and contains {®} U {¥}. Show that

/curlf-nda:/curlf-nda.
® ]

6.6 Gauf}’ Theorem

Suppose that a fluid is flowing through a certain part of three dimensional space. At each
point (x,y, 2z) in that part of space, suppose that a particle in that fluid has the velocity
v(z,y,2) € R? (independent of time; this is called a stationary flow). Suppose that the
fluid has the density p(z,vy, z) at the point (z,y, z). The vector

f(mv Y, Z) = p(.’IJ,y, Z)?)(H?, Y, Z)
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is the density of the flow at (x,y, z).

Let S be a surface placed in the flow, and suppose that N # 0 throughout on S. Then
the mass passing through S in the direction of n is computed as

/Sf -ndo. (6.13)

Fix a point (zo, yo, 20), and let
f=Pi+Qj+REk.

Let (z0, Y0, 20) be the lower left corner of a box with sidelengths Az, Ay, and Az.

Z

VYivyy

(*0,¥0,20)

Figure 6.14: Fluid streaming through a box

The mass passing through the two sides of the box parallel to the yz-plane is approx-
imately given by

P(xo,y0,20) Ay Az and P(zo + Az, yo, 20) Ay Az.

As an approximation for the mass flowing out of the box in the direction of the positive
r-axis, we therefore obtain

(P(zo + Az, yo, 20) — P(x0, Yo, 20)) Ay Az

_ P(xo + Az, y0, 20) — P(z0, Y0, 20) _opP
= A AzAy Az ~ o (

Similar considerations can be made for the y- and the z-axis. We thus have

mass flowing out of the box = or + 9Q + or Az Ay Az = (div f) Az Ay Az.
or Oy 0z

If V is a three-dimensional shape in the flow, we thus have

70, Y0, 20) Ar Ay Az.

mass flowing out of V' = / div f. (6.14)
\%
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If V has the surface S, (6.13) and (6.14), yield Gaufi’s Theorem, namely

/Sf-ndaz/vdivf

Of course, this is a far cry from a mathematically acceptable argument. To prove
Gauf’ theorem rigorously, we first have to define the domains in R? over which we shall

be integrating:

Definition 6.6.1. Let U, Us C R? be open, and let & € Cl(Ul,R?’) and &5 € Cl(UQ,R3)

be surfaces with parameter domains K7 and Ko, respectively, and write
(I)V(Sa t) = XV(57 t) T+ YV(87 t)] + ZV(S7 t) k
for v =1,2 and (s,t) € U,. Suppose that the following hold:

(a) the functions
g U, = R% (s,8) = X, (s,t) 3+ Yy (s,1) §

for v = 1,2 are injective and satisfy det.J; < 0 and detJ,, > 0 on K; and K>,

respectively (except on a set of content zero);
(b) g1(K1) = g2(K2) =: K;
(c) the boundary of K is parametrized by a piecewise C!-curve;

(d) there are continuous functions ¢1, ¢2: K — R with ¢1 < ¢ such that
Zy(8,t) = o (Xu(s,t), Y, (s, 1))
for v =1,2 and (s,t) € K,.

Then
V= {<$7yvz) € Rg : (.%',y) € K? ¢1(.’L’,3j) S z < ¢2($,y>}
is called a mormal domain with respect to the xy-plane. The surfaces ®1 and P, are called

the generating surfaces of V; Sy := {®1} is called the lower lid, and Sy := {®2} the upper
lid of V.
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Figure 6.15: A normal domain with respect to the xy-plane

Ezamples. 1. Let V := [a1,a2] X [b1,b2] X [c1,¢2]. Then V is a normal domain with
respect to the zy-plane: Let K := [b1, ba] X [a1,a2] and Ks := [a1, ag] X [b1, be], and
define

Dy (s,t) :=(t,s,¢1) and Dy(s,t) := (s,t,¢2)

for (s,t) € R% For v = 1,2, let ¢, = c,.

2. Let V be the closed ball in R? centered at (0,0,0) with radius r > 0. Let K; :=

[0, 27] X [—g,O] and Ky := [0, 27] x [0, g], and define

D (s,t) := Pa(s,t) = (r coss cost,r sins cost,r sint)

for (s,t) € R2. It follows that K is the closed disc centered at (0,0) with radius r.
Letting

2-a?—y?  and  ¢o(a,y) = V12— a? —y?

for (z,y) € K, we see that V is a normal domain with respect to the xy-plane.

¢1<$,y):— r

Lemma 6.6.2. Let U C R? be open, let V. C U be a normal domain with respect to the
zy-plane, and let R € CY(U,R). Then

/8R:/ Rdm/\dy—l—/ Rdx Ady
v 0z oy Py

holds.
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Proof. First note that

<1>2(x,
| % /<¢ yaRW)=A_xywww» Rz, 61(2.9))).
1(z,y)

Furthermore, we have

/ny¢2xy :/(K (z,y, p2(x,y))
922

0X5 s, t a)% s, t
:/“m%@m‘&ég &E>

Js

In a similar vein, we obtain

/ R(z,y, ¢1(z,y)) :_/ Rdx A dy.
K o,

All in all,
OR
[ 5= [ Ry onle0) - R dr(en) = [ Rdoady+ [ Rdondy
v 0z K Py 0

holds as claimed. O

Let V C R? be a normal domain with respect to the zy-plane, and let 7: [a, b] — R?

be a piecewise C'-curve that parametrizes K. Let

Ks:={(s,t) € R? 1 s € [a,b], $1(7(s)) <t < p2(7(5))}

and
D3(s,t) :=y1(8) 1+ 72(s)J+tk = Xs(s,t)i+ Ys(s,t)j+ Z3(s,t) k

for (s,t) € K3. Then ®3 is a “generalized surface” whose surface element S := {®3} is
the vertical boundary of V.
Except for the points (s,t) € K3 such that 7 is not C! at s—which is a set of content

zero—we have

Ra(s,t) Dt || ) 0]
G (s,t) G (s,) V2(5)
It therefore makes sense to define
RdxNdy:=0
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Letting S := 57 U S5 U S35 = 9V, we define

3
/Rdw/\dy::Z/ Rdz A dy.
s v=1"%v

In view of Lemma 6.6.2, we obtain:

Corollary 6.6.3. Let U C R? be open, let V C U be a normal domain with respect to the
xy-plane with boundary S, and let R € C*(U,R). Then

/M:/Rdx/\dy
v 0z S

Normal domains in R? can, of course, be defined with respect to all coordinate planes.

holds.

If a subset of R? is a normal domain with respect to all coordinate planes, we simply

speak of a normal domain.

Theorem 6.6.4 (Gaufl’ Theorem). Let U C R? be open, let V .C U be a normal domain
with boundary S, and let f € C1(U,R3). Then

/Sf-ndo—:/vdivf

Proof. Let f =Pi1+ Qj+ Rk. By Corollary 6.6.3, we have

holds.

OR
RdxNdy= | —. 6.15
[ rdznay= [ (615)

Analogous considerations yield

/ Qdz Ndx = oQ (6.16)

s v Oy

and op
/de/\dz: —_—. (6.17)

S \% ox

Adding (6.15), (6.16), and (6.17), we obtain

/f~nd0:/de/\dz—i—de/\dx—i—Rdx/\dy
S S

_[op_oq _om
)y 0 Oy 0z

:/Vdiv f.

This proves Gauf3’ Theorem. O
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Ezamples. 1. Let

)

49
V:{(x,y,z)eRS:x2+y2+22< },
and let

. 1
— t SINY 150(92 .
f(z,y,2) <arc an(yz) + €Y log(2 + cos(zz)), T nyQ)

Then Gauf3’ Theorem yields that

/Sf-nda:/vdivf:/VO:O.

2. Let S be the closed unit sphere in R?. Then
/ 2eydy Adz —y*dz Ndx + 23 de A dy = /(Qxy, —y2, 2% n(z,y, 2)do
S S

is difficult—if not impossible—to compute just using the definition of a surface

integral. With Gau’ Theorem, however, the task becomes relatively easy. Let
flw,y, 2) = 2ay, —y* 2°)
for (z,y,z) € R3, so that
(div f)(z,y, z) = 2y — 2y + 32% = 322,
By Gauf’ theorem, we have

/Sf-nda—/vdivf—i%/sz,

where V is the closed unit ball in R3. Passing to spherical coordinates and applying

Fubini’s Theorem, we obtain
/ 22 = / r(sin 0)?(cos o)
1% [0,1]x[0,27]x [~ F, 5]
1 s
—27r/ 7“4/
0 —
1 1
:271'/ r4</ u2du>dr
0 -1
1
2
= 27r/ —rtdr
0 3

_47r
15

4
/f-ndaz/divf:?)/zQ:ﬂ_
s 1% % 5

N

(sino)?(cos o) da) dr

[NIE

It follows that
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Fxercises

1. Let S be the surface of the ball centered at (0,0,0) with radius » > 0. Compute

/q:3dyAdz+y3dz/\da:+z3dx/\dy.
s

2. Let V be the closed unit ball in R?, and let S := V. Compute

/ (2.’L'y, _y27 23) : n(:c, Y, Z) dU7
S

where n is the outward pointing unit normal vector on S, and do denotes integration

with respect to surface area.

3. Let V be a normal domain with boundary S such that N # 0 on S throughout, and

let f and g be R-valued C2-functions on an open set containing V.

(a) Prove Green’s First Formula:

V) (V Ag = D, gdo.
J@n- o+ [ ra9= [ 0.0
(b) Prove Green’s Second Formula:
[ tag=9ap) = [(1Dug—gDus)do
14 S

(Hint for (a): Apply Gaul’ Theorem to the vector field fVg.)

4. Let @ # U C R? be open, and suppose that f € C2(U,R) is harmonic, i.e., satisfies
Af=0. Let V CU, S and n be as in the previous problem. Show that

/Sanda:O and /Sfanda:/VHVfHQ.



Chapter 7

Stokes’ Theorem for Differential

Forms

7.1 Alternating Multilinear Forms

Definition 7.1.1. Let r € N. A map w: (RY)" — R is called an r-linear form if, for each

j=1...,r,and all 1,...,2j_1,Tj41,...,7r € RY | the map
R—-R, z—w@,...,25-1,2,Tj11,...,2,)
is linear.
Example. Let wy,...,w,: RY = R be linear. Then
RV SR, (z1,...,2,) = wi(x1) - we(z)

is an r-linear form.
Definition 7.1.2. Let » € N. An r-linear form w: (RV)" — R is called alternating if
W1y ey Tjyee ey Ty e ey Tp) = —W(T1y e oy Thy ooy Ty ooy Tp)
holds for all z1,...,2, ¢ RN and 1 <j <k < N.
We note the following:
1. If » = 1, then every linear map from RY to R is alternating.
2. If r > N, then zero is the only alternating, r-linear form.
3. If we identify My (R) with (RY)™, then det is an alternating, N-linear form.

Definition 7.1.3. Let » € N. Then &, denotes the collection of all permutations of

{1,...,7}, i.e., the set of all bijective maps from {1,...,r} into itself.

205
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Remarks. 1. The set &, is a group under composition of maps.

2. A permutation of {1,...,7} is called a transposition if there are j < k such that
7(j) =k, 7(k)=jand 7(l) =l for L € {1,...,7}\ {j, k}.

Proposition 7.1.4. Letr € N, and let 0 € &,.. Then there are transpositions 11, ..., T, €

S, such thatc =T 0---0Ty,.

Proof. We use induction on r.

The case r = 1 is clear: in this case, the identity is the only element of &,, which is
a—empty—product of transpositions.

Suppose that the claim is true for all elements of &,., and let 0 € &,.1.

Case 1: o(r+1)=r+1.

Then o({1,...,7}) C {1,...,7}, so that ol ,3 € &,. By the induction hypothesis,
there are 71, ..., 7, € &, such that o[(; 3 = 710- - -07,. Define transpositions 7, ..., 7, €
&y41 by letting 75[qy,.. .3 = 7 and 7j(r +1) =r+1for j =1,...,n. It is then clear that
O =T10":0Tp.

Case 2: o(r+1) #r+1.

Let 7 € &,41 be such that 7(o(r+1)) =r+1, 7(r+1) = o(r+1),and 7(k) = kfor k €
{1,...,r,r4+1}\{r+1,0(r+1)}. It follows that Too € &,1; with (roo)(r+1) =r+1. By
Case 1, this means that there are transpositions 71, ...,7, € G, with Too = Tj0- -0y,

sothat c =7 lor o o7, 0

Definition 7.1.5. Let r € N. Then the sign of ¢ € &, is defined as

o(k)—o(j
[ <=0

sgno = -

1<j<k<r

Proposition 7.1.6. Let r € N. Then:
(i) sgno € {—1,1} for all o € &,;

(ii) sgn: &, — {—1,1} is a group homomorphism where {—1,1} is equipped with multi-

plication;
(iii) if w is an alternating, r-linear form, then
w(xcr(l)v v 7'7;(7(7“)) = (Sgn O')O.J(:El, R mr)

foralloc € &, and x1, ...,z € RV,
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Proof. For (i) note that

o= [ 280U

: k—j
1<j<k<r
R GGG s EIORLE)
. k—j . k—j
1<j<k<r 1<j<k<r
o(j)<o(k) o(j)>o (k)
. 1 ) 1
= H (o(k) —a(j)) H A H (o(k) —a(j)) H A
1<j<k<r 1<j<k<r T i<jensr 1<j<k<r J
o(j)<o(k) o(§)<a(k) o(j)>o(k) o(j)>a(k)
. 1 . 1
= Il G- II 7= II G-» Il =
1<j<k<r 1<j<k<r I 1<ilrar 1<j<k<r J
o(j)<o(k) a(j)<o(k) o(j)>o(k) a(j)>o (k)
=1 =(=n"
= ("

where n is the number of pairs (j, k) with 1 < j <k < N and o(j) > o(k).
To prove (ii), let 0,7 € &,., and note that

o(r(k)) —o(r(j
11 (7(k)) —a((5))

(sgn)(o o) =

1<j<k<r k — j
— o(r(k)) —o(r(4)) (k) - 7))
_ ISEST k) = 70) 1§j1:[k§r -7
= o(r(k) —o(7(j) .
) (1<J];J’:f<r (k) —7(j) ) (sgn 7).

1<j<k<r (k) = 7() 1<j<k<r 7(k) = 7(5) 1<j<k<r 7(k) = 7(7)
o ()< (k) m(7)>7(k)
_ o(7(k)) = o(7(4)) a(7(4)) — o(r(k))
- Al == 1l —0=®
(G)<r(k) 7(G)>7(k)
B o(k) - o(j)
19'1:[1@ —J
= sgno,

so that sgn(o o7) = (sgno)(sgn7) as claimed.
Finally, let w be an alternating, r-linear form, and let ¢ € &,.. If ¢ is a transposition,
Definition 7.1.2 immediately yields that

W(Zo(1ys -3 To(ry) = —wW(T1,. ., 7)) = (sgno)w(T1, ..., Tr)
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for all 1,...,x, € RY. Suppose that o € &, is arbitrary. Then, by Proposition 7.1.4,

there are transpositions 7, ...,7, € &, such that ¢ = 7 o--- o 7,. It follows that
w(xa(l)a ce 7530(7")) = w(x(no-~~o7-n)(1)7 ) m(’TlO-"OTn)(T))

= w(xﬁ (T20-:070) (1))« - 7x71(720~~~o7'n)(r)))

= (Sgn Tl)w(x(TQO---OTn)(1)7 s 71.(720---07'”)(1“)))

= (Sgn Tl) T (Sgn Tn)w(‘rla s 71'7")

= (sgno)w(zy,...,z,)
for all x1,...,z, € RY, which proves (iii). O
Example. Let wy,...,wy: RN — R be linear. Then

Wi A Awps (]RN)T - R, (x1,...,27) — Z (sgno’)wl(xa(l)) .- -wr(xU(T))
UEGT

is obviously an r-linear form. We claim that it is alternating. To see this, let 7 € &,., and
note that

(W1 A AW @1y, s Tr(r) = D (580 0)w1 (To(r(1)) -+ @r(To(r(ry)

geS,
= (sgn 7)™ Y sgn(0 0 1w (T(gor) 1) - Wr(T(gor)(r)
—sgnr 7€6r
= (sgn7) Y _ (sgno)wi(2y()) - wr(To(r)
€S,

= (sgn7) (w1 A Awp) (X1, .., 2p)
for all zq,...,z, € RN,
Definition 7.1.7. For r € Ny, let A"(RV) := R if » = 0, and
A"(RY) := {w: (RY)" — R : w is an alternating r-linear form}
if r>1.
It is immediate that A"(R") is a vector space over R for all 7 € Ny.

Theorem 7.1.8. For j=1,...,N, let

e;f:RN—HR, (1,...,ZN) = xj.
Then, forr € N,
{ej, A€ 1< ji<-- <j. <N} (7.1)

is a basis for A"(RN).
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Proof. For j =1,...,N, let e; the 7' canonical unit vector of RV i.e., the j* coordinate
of e; is one and all the others are zero.

Let w € A"(RY), and let 21,...,2, € RN, For k =1,...,rand j = 1,..., N, let
Ak,j € R be such that xj = Zjvzl Ak jej. It follows that

w(xy,...

N N
w E )\17]'6]',...,5 )\m-ej

j=1

N N
Z Z Lji " Arge (eju'”?ejr)

J1

Jr

=1
N
Z Lji " Arge (ej17""ejr)
j :
N
= Z )‘le ce )\mrw (ejl, ey ejr)

. jlz"'?jT':l
Jv # ju forv#p

= Z Z )\17]0(1 o 7]0'(7‘) (ej0(1)7 ey ejo'('r))

1<j1<+<jr <N 0€6,

= Z Z Moy " ,Jm)(sgna)w (€j,---,€j.)

1<j1<--<jr<N 0€G,

= Z Z Aoty " Aot (sgno)w(ej,...,€j,)

1S]1< <jr<N 0'667‘

(€5, N---Nej)(ej,. .. ej)

J1
= Z w(ej,...,ej.) Z Aoy " Ao (S81.0)
1<j1<<jr<N oEG,
(5, N---Nej) (e, ej)
= Z w (ejl’ te ’ej’r) Z )\17]’0(1) T A"nvjo'(r)
1<j1<<jr <N oES,

* *
(5, N Nej) (ejg(l), e ,eja(r))

= Y wlej,. o ep) (€ A A ) (1, 2)

1<ji<<gr<N

Consequently, (7.1) spans A"(RY). It is easy to see that the elements of (7.1) are linearly
independent and therefore form a basis of A"(RY). O
Corollary 7.1.9. For all v € Ny, we have dim A"(RY) = (]X)

Corollary 7.1.10. AV(RY) = R det.

We now define the wedge product of alternating multilinear forms:
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Definition 7.1.11. Let r,s € N. The the wedge product of €] N---Ne} € A"(RN) and

e;H ANRRRIVA €;+S € A*(RY) in A™5(RY) is defined via

(e, Ao Nef)N(ef A ANes, (@1, Ty

= > Y. (sgno)ej , (w1)---€f . (Tr+s)

1<51<<Gr4s<N 0€G; 4
for z1,..., 2,45 € RN,

Given r,s € N, w € A"(RY), and ¢ € A*(RY), we can use Theorem 7.1.8 to define
wA ¢ € A" (RN) by means of linearity.
We record:

Proposition 7.1.12. Let r,5,t € N, let A € R, and let w € A"(RY), ¢ € AS(RY), and
Y € AYRYN). Then:

(i) WA AY=wA(PAD);

(i) MwA @) = (Aw) A =wA(Ap);
(ili) W+ A =wAY+PAY;
(iv) WA (@ +Y) =wAd+wAr;
(v) wAg=(-1)"pAw.

The verification is routine.

FExercises

1. Argue that the number n in Proposition 7.1.4 can be chosen to be less than or equal

tor —1.

7.2 Differential Forms

Let @ # U C RY be open, and let ,p € Ny. By Corollary 7.1.9, we can canonically
N
identify the vector spaces A"(RY) and R(). Hence, it makes sense to speak of p-times

continuously partially differentiable maps from U to A”(RY).

Definition 7.2.1. Let @ # U C RY be open, and let r,p € Ng. A differential r-form—or
short: r-form—of class CP on U is a CP-function from U to A"(RY). The space of all
r-forms of class C? is denoted by A"(CP(U)).

Remarks. 1. A zero-form of class CP is simply a CP-function with values in R.
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2. Let w € A"(CP(U)). Then there are unique f;, ;. € CP(U) for 1 < j; <--- < jp <
N such that

w@)= Y, fres @€ A Ne, (7.2)

1< <-<jr<N
for all x € U: this is immediate from Theorem 7.1.8. It is customary, for j =

1,..., N, to use the symbol dz; instead of e;. Hence, (7.2) becomes

wa)= " Y S @) dey A N,
1<j1 <+ <jr<N

for all x € U. We therefore write

w = Z fjl;--~7j7" dl‘jl A A d$jr' (73)

1<j1<+<jr<N
We call (7.3) the standard representation of w.

Definition 7.2.2. Let @ # U C R" be open, let r,5,p € Ny, and let w € A"(CP(V)),
» € A*(CP(U)), and f € CP(U). Then w A ¢ € A"5(CP(U)) and fw € A"(CP(U)) are
defined for z € U as:

(8) (wA)(@) = wlz) Adla) if r,s € N:
(b) (@A 9)(a) == w(@)p(a) if r =0 or s =0
(©) (fo)(@) = fla)w(a).

With an eye on Proposition 7.1.12, we obtain:

Proposition 7.2.3. Let @ # U C RN be open, let r,s,t,p € Ng, and let w € A"(CP(U)),
¢ € AN(CP(U)), v € AY(CP(U)), and f € CP(U). Then:

(i) WAP)AY=wA(dAD);

(i) flone) = (fw)ANdp=wA(f);
(iii) (W+ ) AY=wAp+oAY;
(iv) WA (@+ ) =wAd+wAY;
(V) whd=(~1) "¢ Aw.
Ezample. Consider

w = xy® de Ady—z dy Ndz € A*(C°(R?)) and ¢ :=xdr+ydy+zdz € A'(CO(R?))
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In view of Proposition 7.2.3, we obtain for w A ¢ € A3(C°(R?)) that

wA ¢ =2%y? de Ady Adz+zy® de A dy A dy+zyPzde Ady A dz
=0 =0
—zzdy ANdz ANdx —yz dy ANdz Ady —2% dy A dz A dz
—— —

=0 =0

= ay?zde ANdy Ndz — zzdy A dz A dx
= (2y*z — x2) dx A dy A dz.

Definition 7.2.4. Let @ # U C RY be open. Then:

(a) the differential of f € C*(U) is defined as

= of
Za—d:r] e AL (CO(U));

(b) the outer differential of w € A"(C'(U)) with r € N in standard representation (7.3) is
defined as

)
dw = > Z fﬁ’ It g Adag, A - Adxg, € NTH(COU)). (7.4)
1<j1<-<jr<N j=1

Remark. In view of the properties of A, (7.4) is

do= " Y dfjg Adag A Ada,

1<j1<<jr<N
Ezamples. 1. Let @ # U C R?, and let w := Pdx + Qdy € A*(C*(U)). Then

dw =dP Ndx+dQ Ndy
= a—de—i-a—de ANdz + a—de—i-a—Qdy A dy
x Yy Ox Jy
oP

oQ
(‘Tyd y A\dx +8—dx/\dy

_[(0Q OP
= <8$ — 8y> dx N dy.
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2. Let @ # U CR3, and let w := Pdx + Qdy + Rdz € A*Y(C*(U)). Then

dw = dP A dx +dQ Ady + dR A d»
<8de + 92 +ad>/\d:c+<an + 994, +de>/\dy

0 dy 0 0 dy 0
+<§Rd +?)Rd +(2Rdz>Adz
g];d A dx +?3d /\dx—i—dem/\dy—i—({;de/\dy
+?)Rd /\dz+f;RdyAdz
:<‘?;;_?§>dyAdz+<?j—?%>dzAd +<Z§—gy>diﬂ\dﬂ-

3. Let @ #U CR?, and let w := Pdy Adz+ Qdz Adx+ Rdx Ady € A*>(C1(U)). Then

do=dP NdyANdz+dQ NdzANdx + dR N dx N dy

oP oP oP

+ an + 99 o nde+ 29 02 Az nda

Ox oy 0z
OR OR OR
:a—de/\dy/\dz—i—a—Qdy/\dz/\dx—i-a—Rdz/\dx/\dy

ox oy 0z
oP 0@ OR
<a$+ay+az>dm/\dy/\dz

The following holds:

Proposition 7.2.5. Let @ # U C RN be open, let r,s € Ny, let w € A"(CH(U)) and
¢ € A5(CH(U)), and let A € R. Then:

(i) dlw+ ¢) = dw+d¢ if r = s;
(i) d(Aw) = Adw;
(ili) dlw A @) =dw AP+ (—1)"w A do.

Proof. (i) and (ii) are routine.
For (iii), only consider the case where r, s € N—the case where » =0 or s = 0 is very

similar. In view of Proposition 7.2.3, we can suppose without loss of generality that

w= fdxj N---Ndzj, and ¢ =gdzxy, N--- Ndzp,
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with f,g € Cl({U)and 1 <j1 <---<j, < Nand 1<k <---<ks <N. It follows that

wA@=fgdxy N --Ndxj Ndxg, A---Ndzy,,
= =

so that
dwAn¢)=d(fg) NaAp
=gdf N\aANB+ fdgNhaNp, because d(fg) = gdf + f dg,
= (df Na) N (gB) +dg A fanp
=(df Na) A (gB) + (=1)"(fa) A (dg A B), by Proposition 7.2.3(v),
=dwNo+ (=1)"wAdo.

This proves the claim. O

Theorem 7.2.6. Let @ # U C RY be open, let r € Ny, and let w € A"(C?(U)). Then
d(dw) =

Proof. Suppose first that 7 = 0, i.e., w = f € C?(U). Then

0% f 0% f
a Z <al‘kal‘] B 8x38xk> d$k A d.CC]

by Clairaut’s Theorem.
Let 7 € N. Without loss of generality, we can suppose that

w=fdxj N---Ndzj,
—a

with f € C2(U) and 1 < j; < --- < j < N. From Proposition 7.2.5(iii), we conclude that
d(dw) = d(df N ) = d(df) N o — df A da.

As d(df) = 0 by the foregoing and da = 0 for trivial reasons, we obtain d(dw) = 0. O
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Definition 7.2.7. Let @ # V C RM and @ # U Cc RN beopen, let T = (t1,...,ty): V —
U be of class C!, let r € Ny, and let w € A™(CO(U)). Then the T-pullback wr € A"(C°(V))

of w is defined as follows:
(a) if r =0, ie., w=f€CU), then wr = fr = foT;

(b) if r € N and w is in standard form (7.3), then

wr = Z (fjlw-,jr oT) dtj, \--- Ndt,
1< <-<jr<N
where u
ot
k=1
forj=1,...,N.

Proposition 7.2.8. Let @ # V C RM and @ # U C RY be open, let T = (t,...,tN):
V — U be of class C', let r,s € Ny, and let w € A"(CO(U)) and ¢ € A*(C°(U)). Then:

(i) (w+¢>)T:wT—i—¢T if r=s;
(ii) (w A\ qb)T =wr N ¢r;
(iii) dwr = (dw)r if w € A"(CY(U)) and T € C*(V,RN).

Proof. (i) and (ii) are routine.Llimfxxtox0
For (iii), suppose first that w = f € C}(U). Then

M

O(foT)
afp =S AL g,
jZ; (%cj J
M /N
-3 (S (2or) o) s
=1 \k=1 \YYk t
N M
k=1 Yk = 9t

i1 \OUk
= (df)Tv
so that the claim is settled in this case. %(wo)

For the case where r € N, we suppose again that

w=fdxj N---Ndzj,

~~
=
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with f € C}(U) and 1 < j; < --- < j, < N. We note that ar = dtj A--- A dt; and
therefore dar = 0 by Exercise 7.2.6. It follows that

dwr = dfr N ar + frdar =dftr N ap = (df)T Nap = (df VAN a)T = (dw)T,
which proves the claim. ]

Proposition 7.2.9. Let @ # W Cc RX, @ £V Cc RM, and @ # U C RY be open,
let T = (t1,...,tpr) : W — V oand S = (s1,...,sn): V. = U, let r € Ny, and let
w € A"(CO(U)). Then (ws)r = wsor-

Proof. The claim is obvious for » = 0. For r € N, we can suppose without loss of generality
that w = dz; with j € {1,..., N'}: this follows from the standard representation (7.3) of
w and Proposition 7.2.8. In this case, by definition,

0s;
(dzj)s = dsj = ; O dyx,
and, consequently,
M
((dZ])S)T = Z <] o T) dtk
i1 \OUk
M K
68]' > 8tk
= Z —=oT Z dz,
k=1 (83/’“ o= O
K /M
= Z <Z <gsj oT) gtk> dl’,,.
=1 \im1 \OYR Ty

o
=
=+
=
D
Q
=
=
D
]
=
o
=
~
o
=
<
oy
e
z
m
)
=
o
@
=+
=
5
@)
)
)
=
=
=
&
=
D
=¥
=
Q
=
[}
=)
0
Q
=h
W
(@]
.
—
=
@
=

so that ((dzj)s)r = (dzj)sor- =

Ezxercises
1. Let
w = sin(xy)dr + e** dy — zx dz and ¢ :=xyzdxr Ndz + coszdx A dy.

Compute w A ¢ and d(w A ¢), expressing both differential forms in their respective

standard representations.
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2. Let @ # U C RY be open, let 7,5 € Ng, and let w € A"(C%(U)) amd ¢ € A*(C3(U)).
Compute
d(dw N ¢ —w A dp).
3. Let @ # U C RY be open, and let f = (fi,..., fn) € CL(U,RY). Show that

df1/\-~'/\di:detde:El/\~~/\d$N.

4. Let @ # U C RN be open, and let r € Ng. Then w € A"(C(U)) is called closed if
dw = 0. Show that:

(a) each w € AN(CH(U)) is closed;
(b) w= Zjvzl fjdz; € AY(CH(U)) is closed if and only if
Ofi _ Ofk

8xkiax]‘
onU forall j,k=1,...,N.

5. Let @ # U C R be open, let , s € Ny, and let w € A”(C(U)) and ¢ € A*(C1(U)) be
closed. Show that w A ¢ is closed.

6. Let @ # U C RN be open, and let fi,..., f, € C*3(U). Show that df; A --- A df, is

closed. (Hint: Induction on n.)

7. Let @ # U C RY be open, and let 7 € N. Then w € A"(C°(U)) is called exact if
there is ¢ € A"~1(C1(U)) such that w = d¢. Show that:

(a) if w € A™(CH(U)) is exact, then it is closed;
(b) if U is star shaped and w € AY(CH(U)) is closed, then w is exact.

7.3 Integration of Differential Forms

Definition 7.3.1. Let U C R" be open, and let @ # K C U be compact and with
content. An r-surface ® of class CP in RN with parameter domain K is the restriction of
a CP-function ®: U — RY to K. The set K is called the parameter domain of ®, and
{®} := ®(K) is called the trace or the surface element of ®.

Definition 7.3.2. Let r € N, let ® = (¢1,...,¢xn) be an r-surface of class C' in R with
parameter domain K, and let w be an r-form of class C° on a neighborhood of {®} with

a unique representation as in (7.3). Then the suface integral of w over ® is defined as

8qul 8¢j1
w = (f; yeeesdr © D)
/ > G

oxry1 > " oz,
1<j1 < <jr <N 995, 0;,.
oxry1 > " oz,
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Examples. 1. Let N be arbitrary, and let r = 1. Then w is of the form
w= fidxy+---+ fydzrn.

Let a < b, and let v = (y1,...,7n) : [a,b] — RY be a Cl-curve. Let ¢ > 0. For
j=1,...,N, define

7§(G)7 a—e<t<a,
Viila—eb+e) >R, teq (), a<t<b,
Vi), b<t<bte

Then ;{, ...,y are continuous and extend ~/,...,7y. It follows that, for j =
1,..., N, the functions

o
i (a—€,b+€) =R, t'—>7j(a)+/’y§»(3)ds

are of class C! and extend 71, . .., yn, respectively. Set U := (a—¢,b+€), K := [a, b],
and define
O:U—-RY, t (F1,...,9N).

Then ® is a C'-curve v, and

N b
/ w=>_ fj(V(t))V}(t)dtZ/f1d$1+“'+de$N,
K j=174a o
i.e., the curve integral of the vector field (f1,..., fn) along the curve v as described

in Theorem 6.2.4 is a special case of Definition 7.3.2.

2. Let N =3, and let r = 2, i.e., ® is a surface in the sense of Definition 6.4.1. The

normal vector to ® at ®(s,t) with (s,t) in the parameter domain K of ® is

N(s,t)
0 0 0 0 0 16)

(| e B | | Ben Gen | | Gen G

- o 1o ) O 0 ) O o :
92 (s,t) 983 (s,t) 1(s,t) Sa(s,t) |7 Br(s,t) S2(s,t)

Given a continuous vector field f = (P, @, R) defined on a neighborhood of {®} the

surface integral of f over ® in the sense of Definition 6.5.2 is

/de/\dz+de/\da:+Rdx/\dy
®

~ [(oe)-n
K
G B T o G g
:/K(PO‘I’) d0s ot | T (@O®) | a8 o4 | (RO 55 ag
ot ot ot ot ot ot

:Aw
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with the last integral being in the sense of Definition 7.3.2 where
w:=PdyNdz—QdxNdz+ Rdrx Ndy = Pdy Ndz+ Qdz Ndx + Rdx A dy.

So, the meanings assigned to the symbol

/de/\dz—i—@dz/\dx—i—Rdw/\dy
@
by Definitions 7.3.2 and 6.5.2 are identical.

The following is straightforward:

Lemma 7.3.3. Let ® be an r-surface of class C' with parameter domain K, and let wy

and wy be r-forms of class C® on an open neighborhood of {®}, and let A1, Ao € R. Then

/)\1W1+AQWQ=A1/W1+A2/W2.
[ [ <]

Lemma 7.3.4. Letr € N, let @ # U C RY be open, let w € A"(CO(U)), ® = (¢1,...,9n)
be an r-surface of class C' in RN with parameter domain K such that {®} C U, and let
W be the restriction of the identity map on R" to K. Then

o f

Proof. In view of Lemma 7.3.3, we can limit ourselves to the case where
w= fdxj N\---Ndzj,,
with f € CO(U) and 1 < j; < --- < j < N, so that

we = (f o @)dpj, A--- Ndpj,

a¢j1 8¢j1

dz1 2 "t day S1dotsSny@
=(fo®) : ©o|ldzy AN Nday

a(bjr 8¢]"r

ox1 '’ "'  Oxp

with the last equality being due to Exercise 7.2.3. Consequently, we obtain

ad’h 8¢j1
oxy1 '’ "' Oxp
/w<1>=/<fo<1>> L |doi A nday
v v 8¢jr 8¢j'r
ox1 '’ "'  Oxp
8<75]'1 8¢j1
oxr1 > " oz,
Z/(foé) ot lda A Aday
K a¢jr ad)jr
oxr1 > " oz,

:/w’
1]

which proves the claim. ]
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Theorem 7.3.5. Let @ # V. C RM and @ # U C RY be open, let r € N, let w €
AT(CO(V)), let @ be an r-surface of class C* with {®} C V, and let T € CY(V,RN) with

T(V)CcU. Then
/ w:/wT.
Tod @

Proof. Let ¥ be as in Lemma 7.3.4, so that by that lemma

/ w:/wTo@ and /wT:/(wT)q,.
Tod " [ "

As (wr)e = wroa by Proposition 7.2.9, this proves the claim. O

7.4 Simplices and Chains

Definition 7.4.1. The unit simplex in RY is defined as
N
Yy =L (z1,...,zn) €ERY s ay, ... 2N >0, ij <1
j=1
Ezamples. 1. ¥; =[0,1].
2. X9 is the triangle with vertices 0, ¢ and j.
3. X3 is the tetrahedron with vertices 0, ¢, 7, and k.

Definition 7.4.2. Let r € N, and let (zg, 21,...,2,) € (RV)""!. Then the oriented affine

r-simplex [xo,x1,...,x,] is the r-surface in RY with parameter domain ¥, given by
[zo, 21,..., 2] : R" — RV, (t1,... tr) = 2o+ t1(z1 — 20) + -+ - + tr(2r — o).
The points xg, x1, ..., x, are called the vertices of [xg,x1,...,x,].

Remark. Note that the unit simplex in RY is not an oriented affine simplex in the sense

of Definition 7.4.2: the former is a set, the latter a (restriction of a) map.

Definition 7.4.3. Let » € N. Then we call ¢ € &, even if sgnog = 1 and odd if

sgno = —1.

Definition 7.4.4. Let (zg,z1,...,2.), (Y0, %1, ..,¥yr) € RY. Then we call [zq, z1,...,2,]
and [yo, Y1, ..., Yr] equivalent—in symbols: [zg,x1, ..., 2] ~ [yo,y1, ..., yr]—if there is an

even 0 € 6,41 such that y; = z,(; for j =0,1,...,r. We set

[[ﬂfo,.Tl,.. '7xTﬂ = {[y07yla° . 'ayr] : [930)'7;1;' . 'ax’r‘} ~ [y05y17° . 'ayr]}
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Remarks. 1. Definition 7.4.4 partitions {[%(0), To(1),-- > To(r)] : 0 € &py1} into two
equivalence classes, namely [xg,z1,...,2,] and
—Hl‘o, T1,... ,xr]] = {[750(0)’ To(1)s-- - ,:UU(T)] ro0€6,q,0 Odd}.
2. For convenience, if ¥ = [zg, z1,...,z,], we write [X] for [zg,z1,...,z,] and —[X]
for —[zo,x1,...,z,].

So far, oriented affine r-simplices were defined only for » € N. For formal reasons, we

now define:

Definition 7.4.5. An oriented affine 0-simplez in RY is a pair (e, 1) with e € {—1,1}
and zo € RY. We write

[o] := (1, z0), —[zo] := (=1, ), and [xo] := [zo]-

Definition 7.4.6. Let 7 € Ng. An affine r-chain in RY is a formal sum [$1] @ - @ [Zn]

where ¥1,...,%,, are oriented affine r-simplices in R¥.
Remarks. 1. Somewhat abusing notation, we will also write [£;®- - -®%,,] for oriented
affine r-simplices £1,..., %, in RY oreven 1 & --- & X,,.
2. Given oriented affine r-simplices ¥1,...,%,, in RY and e1,...,e, € {—1,1}, we

convene that £131 @ - -+ @ £, %, denotes e1[X1] ® -+ B e [Xin]-

Definition 7.4.7. Let r € N, and let ¥ := [z, 1, ..., 2,] be an oriented affine r-simplex
in RY. Then the oriented boundary of ¥ is defined as

T

oY = @(-1)j[.%‘0, sy L1, i1y - - 7‘7;7‘]'
=0

Remark. Obviously, 0% is an affine r-chain.

Ezamples. 1. If ¥ = [xg, x1], then 0¥ = [21] & (—[x0]).

2. If ¥ = [xg, x1, 22, so that {[x,z1,x2]}, is the triangle with vertices g, x1, and xo,
then

OX = [z1, 22] ® (—[20, 22]) & [m0, 21] = [m0, 21] & [71, 22] & [22, 0],
i.e., the topological boundary of that triangle in counterclockwise orientation.

Definition 7.4.8. Let r € N. An oriented r-simplez in RY is an r-surface ® of the form
T o X such that:

(a) X is an oriented affine r-simplex in RY;
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(b) T is a C*>-map defined on an open neighborhood of {3}.

Remarks. 1. If &; and ®, are two oriented r-simplices of the form 7T o X1 and T o X,
respectively, we define

D~ Dy = X~ 3y
and denote the corresponding equivalence class by [®1].

2. As for oriented affine r-simplices, we have—given an oriented r-simplex ® = T o ¥—

there are two equivalence classes denoted by [®] and —[®].
3. We write T o [X] for [T o X]: this is clearly well defined.

Definition 7.4.9. An oriented 0-simplex in RY is a pair (¢,T(xg)) with e € {—1,1},
o € RM and T is a C?>-map into RY defined on a neighborhood of zy. We write

T o [xo] := (1,x0), =T o [zg] := (=1, x0), and [T o xo] :==T o [xo].

Definition 7.4.10. Let 7 € Nyg. An r-chain in RY is a formal sum [®1] @ --- @ [®,,]
where @1, ..., ®,, are oriented r-simplices in R"V of the form 7 o Y forj=1,...,m where
Y1,..., %, are oriented affine r-simplices in RM and T is a C?>-map defined on an open
neighborhood of {¥1}U---U{3,,}. The trace or surface element of [®1] @ --- ® [®,] is
defined as

{[21] @ @[]} = {21} U U{Pp}.
Remark. Given &1 =T o Xy and &1 =T o Xy, we write [®1] = —[P2] if [X1] = —[X2]
Definition 7.4.11. Let » € N. Then:

(a) if ® is an oriented r-simplex ® = T'o ¥ in RY | the oriented boundary of ® is defined
as the (r — 1)-chain

T

8‘13 = @(*1)]1—' 9] [330, ey L1, Ljg1y - - - ,ZL‘T}.
7=0

(b) if ®1,...,®,, are oriented r-simplices in RY, then the oriented boundary of ® :=
P DD Dy, is defined as

0P : =001 P --- B 0Dy,.

Remark. We convene that, whenever in an expression ®; & --- & ®,,, there are 1 < j <
k < m with &, = —®;, then ®; and ®; cancel each other. Aloso, we agree to omit ®;
whenever ®; = 0.
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Ezamples. 1. Consider the 3-chain [xg, 21, 22] @ [z1, 3, 22] in RY with xq, 21, 20,23 €

RY: its trace is the convex hull of zg, x1, z2, and 3. Then
I([zo, 1, 2] B [71, T3, 72])
= 0[xg, x1, x2] ® O[x1, T3, T2]
= [z, 21] ® [x1, x2] B [w2, 2] B [x1, 23] B |23, 2] B [22, 1],
by the second Example after Definition 7.4.7,
= [20, 21] @ [71, 22] D [22, 20] ® [71, T3] D [23, 22] © (—[71, 72]),
= [z, z1] ® [z1, 23] B [23, T2] B [T2, 0]
as intuition suggests.

2. Let R >0, let

R
0

R
2

o - — N xTr1 =

0 0
, To 1= , T3 1= ,
2 0 s 21

so that {[zo,z1, 2] ® [z1, 23, 22]} = [0, R] x [0, 27] by the previous example. Let

T:R? 5 R%,  (p,6) — (pcosb, psinb), (7.5)

and set ® := T o [xg, z1,22] ® T o [z1,x3, 2], so that {®} = Br[(0,0)]. It follows

that
0 =T o [xg,z1) BT o[x1,x3] ®T o[x3,22] BT o[22, 0] (7.6)
We have
[ R cos(27t)
T o |xg,x1])(t) = ,
(e fzo, 21 (®) | Rsin(27t) ]
[ (1-tR
olenzshiy = |
[0
(T o [w3, 3])(t) = 0 ] ,
and
tR
(T o [z2, zo])(t) = 0
for ¢t € [0,1]. This means, in particular, that T o [x9,z9] = —T o [z, 3], so that

0% =T o [z, x1], i.e., 0BR[(0,0)] in counterclockwise orientation.
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T T
, To 1= , T3 = ,
2 0 s 21

so that {[xg,x1,x2] @ [x1, 23, 22]} = [r, R] x [0,27]. Let T be as in (7.5), so that {®}
is the annulus Bg[(0,0)]\ B-((0,0)). Then 0® is computated as in (7.6). This time,

however, we have

3. Let 0 < r < R, let

R
0

R

o - —
2

’ €y =

B I R cos(27t)
(T o [xg, x1])(t) = I Rsin(27t) ] ’
(T o [z, z3])(t) = ! _t)ORthT ’
B : TCOS<27T<1 _t))
(T o [x3,22))(t) = i rsin(27(1 — t)) ] ’

and

(T o [xo, x0])(t) = i (01 b ]

for t € [0, 1], so that
0P =T oxg,x1] T o[xs, 2],

i.e., 0BR[(0,0)] U0B,[(0,0)] with “the outer boundary” dBg[(0,0)] oriented coun-

terclockwise and “the inner boundary” 9B, [(0,0)] oriented clockwise.

Figure 7.1: Oriented boundary of Bg[(0,0)]\ B;(0,0)
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We note:
Proposition 7.4.12. Let r € N, let ¥ = [z9,x1,...,x,] be an oriented affine r-simplez,
let 0 € Gp11, and set X, = [xa(0)>$a(1)7 .. .,xa(r)]. Then, for any r-form w of class C°

on an open neighborhood of {X} = {¥,}, we have

/Uw: (sgna)/zw. (7.7)

Proof. We can suppose without loss of generality that
w= fdx; N---Ndxj,

for a continuous function f: {¥} — R. Furthermore, in view of of Propositions 7.1.4 and

7.1.6(ii), it is enough to prove (7.7) in the case where o is a transposition, in which case

(7.8) becomes
/Uw:—/zw. (7.8)

Suppose therefore that o is a transposition.
Case 1: 0(0) = 0. Note that then

.
St .te) = | 1= | @0+ taws + - + teay
j=1

and

.
Yo(ty,...,tr) = | 1 - Z o+ hTer) + -+ bTo()
=

for (t1,...,t,) € R". Define

(p:]RT—)RTv (tl,...,tr)H(ta—(l),-'wto'(r)))

so that
(X)) =%, Y =3,09, and det Jp = 1. (7.9)
Let ¥51,...,Y, N denote the coordinate functions of ¥,. It is obvious that
8Eg’j1 820,]-1
ory > " oz,
: . : =c
035 j, 035 4,
ory > "~ oz,

for some ¢ € R. From (7.5), we obtain therefore that

wy, =c(foXs)dty A--- Ndt,.

o



CHAPTER 7. STOKES’ THEOREM FOR DIFFERENTIAL FORMS 226

Viewing & is an r-surface with parameter domain X, we eventually get

> so0d
:/wEJ
(]

:c/(foEg)dtl/\---/\dtr
(]
:c/ (f 05y 0 ®) det Jo

:—c/ foX,o®|det Jg|
s,

__c/b(zr)fozg
_—/Tc(foEU)
:_/an,

which proves (7.8) in this case.
Case 2: o(0) # 0.
Suppose first that o(0) = 1. Define

T
RS R, (. t) e [ 1=ttt
j=1

Then @ also satisfies (7.9), and the same argument as in Case 2 proves (7.8). If o(0) =
k ¢ {0,1}, let 7 € &,41 be the permutation that interchanges k& and 1. Then T oo o7 is
a transposition that interchanges 0 and 1, so that (7.8) holds with 7 oo o o en lieu of o.
On the other hand, 7(0) = 0, so that Case 1 applies to 7 en lieu of o. It follows that

EO' ETOTOUOTOT ((ZT)TOUOT)T (ET)TOUOT ZT Z

so that (7.8) holds in this case, too. O
In view of Lemma 7.3.4, we conclude:

Corollary 7.4.13. Let r € N, let ¥ = [xg,x1,...,2,] be an oriented affine r-simplex, let
0 € &1, and set ¥y := [To(0), To(1)s - - - To(r))- Then, for any map T of class C? defined
on an open neighborhood of {X} = {X,}, and for any r-form w of class C° on an open
neighborhood of {T o ¥} = {T o ¥,}, we have

/ w = (sgn 0)/ w.
ToX s ToX
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In Definition 7.3.2, we defined the integral of an r-form for » € N. We now define it

for r =0:

Definition 7.4.14. Let o € RY, and let f be a zero form defined on an open neighbor-

hood of zg. We define
[ 5=t
*[zo]

Finally, we define:

Definition 7.4.15. Let r € Ny, and let @ := [®1] @ - - - & [®,,,] be an oriented r-chain in
RV, and let w be an r-form of class C on an open neighborhood of {®}. Then

/w::/ w—l—---—i—/ w
@ @1 ¢77L

Exercises

1. Let r € N, and let (zg,1,...,2,) € (RY)". Show that

{[zo,z1,.. ., 2]} = < Soxo + s121 + -+ + Sp&p 1 S0, 81, -+, 8 >0, Zsj:
2. Let r > 0, let

0 2T 2
xo 1= , 1= , Ty = , and T3 =
[ 0 ] 0 ] [ 2 ] [

let K be the rectangle in R? with the vertices xg, z1, z2, and x3, and let

R O
1

®:R? — R?  (s,t) = r(coss)(cost)d + r(sins)(cost) j +rsintk

be the surface in R? with parameter domain K. Set X1 := [zg, 21, 72] and Xy :=
[0, 22, 23], let @ := P o Xy for k = 1,2, and let ¥ := &y & $y. Determine {¥} in

geometric terms.

7.5 Stokes’ Theorem

Lemma 7.5.1. Let r € N, let ey,...,e, be the canonical unit vectors of R", and let

Y :=[0,e1,...,e.]. Then, for any (r—1)-form of class C* defined on an open neighborhood

of {X}, we have
/Edw = /82(,0. (7.10)
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Proof. Set
20 = [61,...&«], 21 = [0,62,...,er], ,27» = [0,61,...,e7~_1]

so that

T

0% = P(-1)x;.

=0
First, consider the case where r = 1. In this case, ¥; = [0,1], 0¥ = [1] & (—[0]), and
w is a continuously differentiable function f defined on (a neighborhood of) [0,1]. We

[ o= [ Fwa=im-s0= [ o

Let now r > 2. Suppose without loss of generality that

obtain

w= fdxo N ---Ndz,

with f being continuously differentiable on an open neighborhood of ¥,. For an (r — 1)-

tuple (t1,...,t,—1) € Xp_1, we have

r—1
So(t1, ... tro1) = 1—215]' el +tieg+---+1t,_1ep,
j=1

Si(t1, ..o tro1) =tiea +taez + - +t_1ep,
So(t1, ... tr—1) = tie1 +trez +--- +t._1ep,

and

Sp(ty, ... tr—1) =tie1 +taea + -+t _1ep_ 1.

For j=0,1,...,7, let 3; = (6j1,...,0,,). Then

0002 0o, r 0012 oo,
oty > " ot1 oty > ot1
. . . _ . . . -1
00,2 000, r 0012 oo,
Otr—1’ "7 Otr—1 Otr—17 """ Otr—1
and
80'3'12 8aj,r
oty ot1
. . . —0
60'3'12 8aj,r

Otr—17 """ Otr—1
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for j =2,...,r. It follows that

12> 3o 31

/ foZO—f021
Yo

= %1’ 7tr 1>0 —t1— = t’r‘—lytlv v 7t7‘—1) - f(07t17 cee 7t7’—1)) dtl co dtr—l
“ly<a
= Lo P =t =t to, ) = F(O by, 1)) dty - by
Z;‘:ztjgl
(7.11)

We now consider the left hand side of (7.10). We have

dw = (gfd:cl—i--~+8af dxr>/\dx2/\-~/\dxr—aafdxl/\dacg/\---/\d:cr

1 T, T

and therefore

af(t, ... tr)
Joa [ g e

I—ta=—te 9 f (41, ... 1)
— G0t g N dty - dt,
fiin (. G dn )

2j=ati=1
- /t%_ﬂwo Pty — o — tystoeee ) — F(O b b)) dby - iy,
Z;:Q ;<1
which equals the right hand side of (7.11). O

Theorem 7.5.2 (Stokes’ Theorem for Differential Forms over r-Chains). Let ® be an

r-chain, and let w be an (r — 1)-form of class C' on an open neighborhood of {®}. Then

/dw:/ w
[ o

Proof. Without loss of generality suppose that ® is an oriented r-simplex. Let X be an
oriented affine r-simplex, and let 7" be a map of class C? defined on an open neighborhood

of {¥}. We can suppose without loss of generality that ¥ = [0, ey,...,e,]. We obtain

/dw:/ dw
) ToX

= / (dw)r, by Theorem 7.3.5,
5

= / dwr, by Proposition 7.2.8(iii),
b

/ wr, by Lemma 7.5.1,
0%

/ w, by Theorem 7.3.5 again,
o
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which proves the theorem. O

We now look at Stokes’ Theorem for particular values of N and 7:

Ezxamples. 1. Let N =3 and r =1, so that
w=Pdr+Qdy+ Rdz.
It follows that

/ Pdx+Qdy+ Rdz
o

:/w

0P

:/dw
P

_ [ ("o or _oR 0Q _op
—A(ay 8z)dyAdZ+<8z 8x>d2/\dx+(8x 8y>dm/\dy,

i.e., we obtain Stokes’ Theorem in its classical form.
2. Let N =2 and r =1, so that
w= Pdx+ Qdy,

and let ® be the identity map on R? with a suitable parameter domain K. We

00 oP 200 oP
Pdr+Qd :/<—>d Ad :/ (-)
oL QA= [ Gy gy ) = [ By

We therefore obtain Green’s Theorem.

obtain

3. Let N=3 and r =2, i.e.,
w=PdyNndz+QdzNdy+ Rdx N dy

and oP 90 OR
dw=|—+——+—
v (&m * y * 0z
and let ® be the identity on R3 with a suitable parameter domain K. Letting
f=Pi+Qj+ REk, we obtain

>d:v/\dy/\dz,

f-ndo= Pdyndz+QdzANdy+ Rdx Ndy
o o0

oP 0Q OR
= —+ ——+—— |deANdyANd
A<8x+8y+82) TAayhaz

This is—in essence—Gaufl’ Theorem (see Exercise 7.5. below).
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4. Let N be arbitrary and let 7 = 0, i.e., ® is a C'-curve 7: [a,b] — RY, which we can
extend to an open set containing [a,b]. For a continuously partially differentiable

function F' defined on an open neighborhood of {v}, we therefore obtain

oF oF
/VF-dx_/dx1+---+de— F=F(y()) — F(v(a)),
. o 011 Oxn 80

i.e., we have recovered the Fundamental Theorem for Curve Integrals.

5. Let N=1and r =0, i.e., ® = [a,b]. We obtain for for a C!-function f: [a,b] — R
that

b
/ f(x) de = / Fayde= [ f=70) - f(a).
a b PoLid

This is the Fundamental Theorem of Calculus.

Exercises

1. Work out Example 3 in this section, i.e., derive (a reasonable version) of Gauf’

Theorem from Stokes’s Theorem for differential forms.



Chapter 8

Infinite Series and Improper

Integrals

8.1 Infinite Series

Consider

00 . I-D+(1—=1)+--- = 0,
7;)(_1) _{1+(—1+1)+(—1+1)+~- = 1

Which value is correct?

Definition 8.1.1. Let (a,)S2; be a sequence in R. Then the sequence (s,)o2; with
Sp = Y p_q ax for n € N is called an (infinite) series and denoted by > > | ay,; the terms
sp, of that sequence are called the partial sums of >~>° | a,. We say that the series Y 7 | ap,

converges if lim,, o S, exists; this limit is then also denoted by Zzozl an.-

Hence, the symbol Y >° | a, stands both for the sequence (s,)52; as well as—if that
sequence converges—for its limit.
Since infinite series are nothing but particular sequences, all we know about sequences

can be applied to series. For example:

Proposition 8.1.2. Let > >°, a, and Y 2| by, be convergent series, and let o, € R.
Then Y 2 | (aay, + Bby) converges and satsifies

Z(aan + Bb,) = az an, + B Z by,.
n=1 n=1

n=1

232
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Proof. The limit laws yield
o oo n n
@Y an+BY bp=alim Y ap+p lim Y b
n=1 n=1 k=1 k=1
n

= lim Z(aak + Bbg)

n—oo
k=1
o0
= Z(aan + Sby).
n=1
This proves the claim. O
Here are a few examples:
Ezamples. 1. The Harmonic series. For n € N, let a,, := %, so that
2n 2n
1 1 1
O S YR
k=n-+1 k=n+1

Hence, (s,)52, is not a Cauchy sequence, so that » 2 | % diverges.

2. Geometric series. Let 8 # 1, and let a, := 0" for n € Nyg. We obtain for n € Ny

that
n+1

Sy — 05y, ::zz:ek___EE:0k+l::jzzek__jzzak:: 1__9n+1
k=0 k=0 k=0 k=1
ie.,
(1—0)s, =1—6"H!

and therefore
1—gnt!

1-6
Hence, >°0° 0™ diverges if |f] > 1, whereas Y 00 (6" = 25 if [§] < 1.

Sp —

Proposition 8.1.3. Let (a,)52, be a sequence of non-negative reals. Then » 7 ap

converges if and only if (sn)52 is a bounded sequence.

Proof. Since a,, > 0 for n € N, we have s,11 = S5, + apt1 > sp. It follows that (s,,)02; is

an increasing sequence, which is convergent if and only if it is bounded. O

%) . . . . o0 . .
If (an);2; is a sequence of non-negative reals, we write >, a, < oo if the series

converges and > > | a, = 0o otherwise.

Ezamples. 1. As we have just seen, » | % = oo holds.
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2. We claim that )7, # < 0o. To see this, let a, := m for n € N, so that
1 1
G = — —
" n n+1
It follows that . N
1 1 1
()
— — ko k+1 n+1

so that Y 7 | a, < co. Since

n 1 n 1 n 1 n—1

— =1 — <1 — - =1
Zkz T2 @St k(k—1) +Zak’
k=1 k=2 k=2 k=1

this means that 5 | 25 < oc.

The following is an immediate consequence of the Cauchy Criterion for convergent

sequences:

Theorem 8.1.4 (Cauchy Criterion). The infinite series Y .- | an converges if, for each
€ > 0, there is n. € N such that, for all n,m € N with n > m > n., we have

n

DL

k=m+1

< €.

Corollary 8.1.5. Suppose that the infinite series y -, a, converges. Then lim, o an =
0 holds.

Proof. Let € > 0, and let n. € N be as in the Cauchy Criterion. It follows that

n+1

> o

k=n+1

lant1| = <e

for all n > n.. O]
Ezamples. 1. The series Y 2 /(—1)™ diverges.

2. The series >, % also diverges even though lim,, % = 0.
Definition 8.1.6. A series > 7 | ay is said to be absolutely convergent if Y | |a,| < oo.
Ezample. For § € (—1,1), the geometric series ) > 0™ converges absolutely.

Proposition 8.1.7. Let Y 7, a, be an absolutely convergent series. Then Y >~ a, con-

verges.
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Proof. Let € > 0. The Cauchy Criterion for Y, |ay| yields n. € N such that

n

> al <e

k=m-+1

for n > m > n.. Since
n

>

k=m+1

n

< Z |ak|<€

k=m+1

for n > m > n,, the convergence of > >° ; a, follows from the Cauchy Criterion (this time
applied to > 07 | an). O

Proposition 8.1.8. Let Y >7  an and Y ;> b, be absolutely convergent series, and let
a,B €R. Then Yo" (aan + Bby) is also absolutely convergent.

Proof. Since both ">° | a, and Y .7 | b, converge absolutely, we have for n € N that

n

n n o0 o
> laak + Bbel < ol > larl + 181D bkl < lal Y lakl + 181D [bxl-
P h=1 h—1 =1

k=1

Hence, the increasing sequence (3_)_; |oay, + Bbi|),~, is bounded and therefore conver-

gent. O
Is the converse also true?

Theorem 8.1.9 (Alternating Series Test). Let (an)22, be a decreasing sequence of non-

negative reals such that lim, . a, = 0. Then Zfbozl(—l)”*lan converges.

Proof. For n € N, let

It follows that

Son42 — Sop = —Q2p42 + a2py1 >0

for n € N, i.e., the sequence (s2,)5; increases. In a similar way, we obtain that the

sequence (Son—1),— decreases. Since
n=1
Sop = Sop—1 — A2p < S2p—1

for n € N, we see that the sequences (s2,)5%; and (s2,—1)52, both converge.
Let s := limy,, o0 Son—1. We will show that s = fo:l(—l)”_lan.
Let € > 0. Then there is ny € N such that

2n—1
< €
2
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for all n > ny. Since lim, ;o a, = 0, there is ny € N such that |a,| < § for all n > ny.
Let n, := max{2n1,n2}, and let n > n..

Case 1: n is odd, i.e., n = 2m — 1 with m € N. Since n > 2n1, it follows that m > nq,
so that

€
lsn, — 8| = [s2m—1 — 8| < 5 < e.

Case 2: n is even, i.e., n = 2m with m € N, so that necessarily m > n;. We obtain

lsn, — 8| = [s2m—1 — an — 8| < |Som—1 — 8|+ |an| < e.
—_——

< <

[SI)
[SI)

This completes the proof. O

Example. The alternating harmonic series Zzozl(—l)"_1% is convergent by the Alternat-

ing Series Test, but it is not absolutely convergent.

Theorem 8.1.10 (Comparison Test). Let (a,,)2 and (by,)52 be sequences in R such that
bn, >0 for alln € N.

(i) Suppose that "7 | by, < 0o and that there is ng € N such that |a,| < b, for n > ny.

Then Y .2 | an converges absolutely.

(i) Suppose that > > | by, = oo and that there is ng € N such that an, > by, for n > ny.
Then Y .7 | an diverges.

Proof. (i): Let n > ng, and note that

n no—1 n no—1 no—1
D lal =3 larl + 3 el < Z ol + Y b < Z |ak|+zbk
k=1 k=1 k=no k=no

Hence, the sequence (}_)_; |ag|);, is bounded, i.e., Y7, a, converges absolutely.
(ii): Let n > ng, and note that

no—1 no—1

Zak—Zak+Zak> Za;ﬁ—Zbk

k=ng k=mno

Since Y o, by, = oo, it follows that that (3;_; ax) —, is unbounded and thus divergent.
O

Ezxamples. 1. Let p € R. Then

i 1 { diverges if p < 1,
= "’ | converges if p > 2.
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2. Since
1

— 3n?

sin(n2022)

4n? + cos(e'?)

TL2022)

. co 1 . 00 sin(
for n € N, and since )7 | 55 < oo, it follows that » 7, I toon(en Sy COTVETgeS

absolutely.

Corollary 8.1.11 (Limit Comparison Test). Let (a,)% and (b,)52; be sequences in R
such that by, > 0 for all n € N.

(i) Suppose that y o2 b, < oo and that limnﬁm% exists (and is finite). Then

> o0 | an converges absolutely.

(ii) Suppose that > 7 | by = 0o and that lim, s 32 exists and is strictly positive (pos-

sibly infinite). Then > o7 | a, diverges.

Proof. (i): There are C' > 0 and ng € N such that |Z—:‘ < C for all n > no, i.e., |a,| < Cby,.
The claim then follows from the Comparison Test.
(ii): Let np € N and § > 0 be such that ‘g—: > ¢§ for n > ng, i.e., a, > db,. The claim

follows again from the Comparison Test. O

Ezamples. 1. Let
dn +1

= — d by ==
6n2 + Tn an "

ap, :

Phillrr for n € N. Since
an an? +n _>2>0
b, 6n2+7Tn 3 ’

and since Y °° | 1 = oo, it follows that > 5, 6i§i%n diverges.

2. Let 17 .
ncos(n) and by = -

QAp -

T +49n2 —16n+7

for n € N. Since
lan| 17n3] cos(n)|

= — 0,
by, nt4+49n? —16n + 7

and since Y 7, # < 00, it follows that >">7 17n.cos(n)

ne1 7IT40n2—16nT7 COnverges absolutely.

Theorem 8.1.12 (Ratio Test). Let (an)0>; be a sequence in R.

(i) Suppose that there are ng € N and 6 € (0,1) such that a,, # 0 and % < 6 for

+
Qn
n > ng. Then Y o2 | an converges absolutely.

(ii) Suppose that there are ng € N and 6 > 1 such that a, # 0 and % >0 forn > ng.

+
an

Then Y .7 | an diverges.
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Proof. (i): Since |ap+1| < |an|@ for n > ng, it follows by induction that
|an] < 0" an,|

for those n. Since 6 € (0, 1), the series 7 [any|0" " converges. The Comparison Test

yields the convergence of 3% |a,| and thus of Y72 | |ay|.

+ — —
’ ”’ >— Hn no‘ ”O’ >— ’ano‘ > 0

for those n. Consequently, (a,)22; does not converge to zero, so that Y o | a, diverges.
O

Corollary 8.1.13 (Limit Ratio Test). Let (a)32, be a sequence in R such that a, # 0
for all but finitely many n € N.

(i) Then Yy .| a, converges absolutely if limy,_ oo % <1.

(i) Then > 07 ayn diverges if limy, o0 |a|’;:|1| > 1.

Ezample. Let x € R\ {0}, and let a,, := %r: for n € N. It follows that

+1 |
Api1 z™ n! T
ntl == =0.

an  (n+Dlazm  n

Consequently, Y > %,L converges absolutely for all z € R.

If lim,, o0 % = 1, nothing can be said about the convergence of Y 7 | ap:

o if a, ::%fornGN, then

a n
ntl -1,
an n+1

and > 0%, L diverges;
o if a, := 7712 for n € N, then
2
a n
ntl —1,
an (n+1)2

and > 7, % converges.
Theorem 8.1.14 (Root Test). Let (a,)5>; be a sequence in R.

(i) Suppose that there are ng € N and 6 € (0,1) such that {/|a,| < 0 for n > ng. Then

> oo0 | an converges absolutely.

(ii) Suppose that there are ng € N and 6 > 1 such that {/|an| > 6 for n > ng. Then

o :
Yooy ap diverges.
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Proof. (i): This follows immediately from the Comparison Test because |a,| < 6" for
n > ng.
(ii): This is also clear because |a,| > 6" for n > ng, so that a, 4 0. O

Corollary 8.1.15 (Limit Root Test). Let (a,)5%, be a sequence in R.
(i) Then ) 2| a, converges absolutely if limy, o0 {/|an| < 1.
(i) Then > 07 an diverges if lim, o0 {/]an| > 1.

Ezample. For n € N, let

2+ (—=1)"
Qp ‘— W
It follows that
ang1 24 (-1t oonmt o 12— (- [ 1) if nis even,
an on 24 (-1 224 (=D | 2, ifnisodd.
Hence, the Ratio Test is inconclusive. However, we have
. W22+ (1)) V6 1
Van=\ = =5 73
24+(—1)"

Hence, there is ng € N such that /a, < % for n > ng. Hence, 22021 on—T— converges
absolutely by the Root Test.

Theorem 8.1.16. Let > 7 a, be absolutely convergent. Then Y ., Ag(n) cONVErges
absolutely for each bijective o: N — N such that Y02 | an = Y07 | Gg(n)-

Proof. Let € > 0, and choose ng € N such that >°7° “la,| < §. Set x := 3% a,. It
follows that

no—1 00 00 c
T — E an| = g an| < E lan| < 3
n=1 n=ngo n=ngo

Let 0 : N — N be bijective. Choose n. € N large enough, so that {1,...,n9 — 1} C

{o(1),...,0(ne)}. For m > n,, we then have

m m no—1 no—1 0o c
Zaa(n)—xg Zag(n)—Zan+ Zan—x§2|an|+§<e.
n=1 n=1 n=1 n=1 n=ng

Consequently, > >, ag(n) converges to x as well. The same argument, applied to the

series % | |an|, yields the absolute convergence of Y 2 | a,(y)- O

Theorem 8.1.17 (Riemann’s Rearrangement Theorem). Let 7 | a,, be convergent, but

not absolutely convergent, and let x € R. Then there is a bijective map 0: N — N such
that 307 | ag(ny = T
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Proof. We need find a rearrangement of ai,as,as,... such that the rearranged series
converges to x.

Let by, by, bs, ... denote the non-negative terms of (a,)5° ;, and let ¢y, ¢, c3, ... be the

n=1»

strictly negative ones. We claim that Y 2 | b, = co. Otherwise,
oo o0 oo
D=2 an=) bn
n=1 n=1 n=1

would converge as would, consequently,

00 [e's) 00
> lanl =3 ba = en.
n=1 n=1 n=1

This would contradict the hypothesis that )7, a, does not converge absolutely. Simi-
larly, one sees that > 7 | ¢, = —00.

Choose n1 € N minimal such that
ni
Z b > .
k=1
Then choose m1 € N minimal such that
ni mi
Z b + Z cp <.
k=1 k=1
Now choose ny € N, ng > n; minimal such that

Z b + Z cr + Z b > .
k=n1+1
Then choose msy € N, msg > m7 minimal such that
Zb +ch+ Z b, + Z cr < .
k=nq1+1 k=m1+1

Continuing in this fashion, we obtain a rearrangement

bl, e ,bnl,cl, SN 7Cm17bn1+17 .. .bn2,6m1+1, N .Cm2,bn2+1, e 7bn370m2+17 e

of ai,a9,as, .. ..
For N € N, let sy denote the N partial sum of the rearranged series. Then sy is of

one of the following forms for some v € N:

Zbk+20k+ Y b (8.1)
k=1

k=n,+1
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with n < n,4q or

ny my Nyt1
b+ ekt > bt Z (8.2)
k=1 k=1 k=n,+1 k=m,+1

with m < my41.

Suppose that sy is of the form (8.1). Then the minimality of n,,1 yields that
‘Z‘ - SN’ < bny+17

if n =ny41 and
|z — Sn| < —em,
if n < ny41. Similarly, if sy is of the form (8.2), we see that
’.1‘ - SN‘ < “Cmyq1s

if m = my41 and
’.CC — SN‘ S bnu

if m < myy1. All in all

|l‘ - SN| < max{bnwrlv —Cmy, _Cmu+1vbnu}

holds.

We note:

As Zn a, converges, lim,, .o, a, = 0 holds and therefore lim,, o0 by, = lim,, oo ¢, =
0 as well. It follows that x = limy_s0 SN ]
Remark. We can choose o such that Y 2 o(n) = 00 as well. To see this pick n; € N
such that

n1
Z b > 1.
k=1

Then pick no > n; such that

Zbk+cl+ Z b, > 2,

k=n1+1

then n3g > ngy such that

Zbk+01+ Z b + ca + Z b > 3,

k=n1+1 k=no+1

and so on. This way, we obtain a rearrangement

bl,.. . 7bn1701;bn1+17--~7bn27627bn2+1;-- . 7bn37637~--

of a1,a9,as, ... such that the rearranged series tends to oo. Similarly, we can choose o
such that 3 > | a,(m) = —00.
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Theorem 8.1.18 (Cauchy Product Formula). Suppose that Y >~ qan, and > 2 by con-
verge absolutely. Then Y o7 oS 1 agbn_k converges absolutely such that

n=0 k=0

Proof. For notational simplicity, let
n
Cp = Z apby_k and Cy = Ck
k=0
for n € Ny; moreover, define
(0. o0
A= Zak and B := Zbk.
k=0 k=0
We first claim that lim,, ., C,, = AB. To see this, define for n € Ny,

e (£1) ()

so that lim,, oo D, = AB. It is therefore sufficient to show that lim, (D, — Cy) = 0.
First note that, for n € Ny,

n k
Cn: E ajbk,j = Z albj
k=0 j=0 0<j,l
JHi<n
and
D, = Z aib;,
0<y,l<n
so that

Dp—Cn= > ab

0<g,l<n
j+Hi>n

The absolute convergence of > > ja, and > ° by, yields the convergence of (P,)r.
Let € > 0, and choose n, € N such that |P, — P, | < € for n > n.. Let n > 2n,; it follows

For n € Ny, let
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|Dn — Cp| < Z |agb;]
0<j,l<n
j+li>n

< Y bl

0<y5,l<n
JHI>2n,

< S by

0<4,l<n
J>neorl>ne

:PTL_PTLe

< €.

Hence, we obtain lim,, (D, — C,) = 0.

243

To show that ) 7 |cn| < o0, let &, := > p_,|axbp—k|. An argument analogous to

the first part of the proof yields the convergence of 2 ¢,. The absolute convergence

of 3", ¢ then follows from the Comparison Test.

Example. For x € R, define

n

oo
x
exp(e) = Y

n=0

O

we know that exp(z) converges absolutely for all x € R. Let x,y € R. From the Cauchy

Product Formula we obtain

This identity has interesting consequence.

For instance, since

1 = exp(0) = exp(xz — x) = exp(z) exp(—2x)

for all z € R, it follows that exp(z) # 0 for all x € R with exp(x)~! = exp(—z). Moreover,

we have

r T\ 2
exp(z) = exp (5 + 5) = exp (5) >0
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for all x € R. Induction on n shows that
exp(n) = exp(1)"

for all n € Ny. It follows that
exp(q) = exp(1)?
for all ¢ € Q.

FExercises

1. Determine whether or not each of the following series converges or converges abso-

lutely.

Wy —t
4= cos(n) + 7’
. cos(mn)

(b) ;
; n+4

(@ 3 F ey
n=1

2. Let (an)22, be a decreasing sequence of non-negative real numbers. Show that

oo . : oo
> meq Gn converges if and only if )7 2"asn converges.

What can you conclude about the convergence of > °° for p € R?

n=1 nP
3. Prove or give a counterexample to the following generalization of the Alternating

Series Test:

Let (an)72, be a sequence of non-negative reals such that limy,_ o an = 0.

Then S22 (—1)""ta, converges.
IREN
4. Test the following series for convergence and absolute convergence:

(a) 22, ()7

oo w2 cos(202207
(b) 202 W%

(Hint: Try a, =

)k
(C) Zk 4log f+10gk)

(d) Yooy m where p > 0.
5. Let (an)52; be a decreasing sequence of non-negative real numbers. Show with the

help of the Cauchy Criterion for infinite series that lim, ., na, = 0 if Zzozl an

converges. Does the converse also hold?
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6. Let p be a polynomial, and let # € (—1,1). Show that the series > 2 | p(n)0"

converges absolutely.

7. Let Y 7, an be an absolutely convergent series, and let (\,)32; be a bounded

sequence in R. Show that Y 7 | Anay is absolutely convergent as well.

If >°>° | a, is merely supposed to converge, does then » >, Ana, necessarily con-

verge as well?

8. Let p and g be polynomials, let v be the degree of p, and let u be the degree of
q. Suppose that ng is such that g(n) # 0 for all n > ng. Show that the series
S p(n) converges if and only if p — v > 2.

n=no q(n)

9. For n € Ny let a,, := b, := E/_;—I; and
n
Cp i — Z an,kbk.
k=0

Show that "7 ja, and ) 7 b, converge whereas y .~ ¢, diverges.
10. The number e is defined as e := lim,,_,o (1 + %)n In this problem, you are asked

to identify e as exp(1) as defined in class. Proceed as follows:

LY et
n - k!

k=0

(a) Show that

for n € N.
(b) Show that

1 m
m
1)1 1 2 -1\ 1
S1+l4+(1-—) o4t (1-=)(1=-=). - (1-Z —
m ) 2! m m m n!
for all n,m € N with m > n.

(c) Conclude from (a) and (b) that e = > 00 ;-5

n!*

8.2 Improper Riemann Integrals

What is
[
— dx?
0 VT



CHAPTER 8. INFINITE SERIES AND IMPROPER INTEGRALS 246

Since %2\/5 = ﬁ, it is tempting to argue that

1
1 1
—dr = 2z| =2.
/0 NG o

However:

° ﬁ is not defined at 0;

e L is unbounded on (0,1] and thus cannot be extended to [0,1] as a Riemann-

Vz

integrable function.

Hence, the fundamental theorem of calculus is not applicable.

What can be done?

Let € € (0,1]. Since % is continuous on [e, 1], the Fundamental Theorem yields
(correctly) that

1 1 B 1 B -
/Eﬁdx_Q\/a?L_m Ve).

It therefore makes sense to define

1 'l
/ — dx :=lim —dx = 2.
0 \/.5 el0 J, T
Definition 8.2.1. (a) Let a € R, let b € RU {oo} such that a < b, and suppose that

f:[a,b) — R is Riemann integrable on [a, c| for each ¢ € [a,b). Then the improper

Riemann integral of f over [a,b] is defined as

/abf(a;) dar = li /acf(x) da

if the limit exists.

(b) Let a € RU {—oc0}, let b € R such that a < b, and suppose that f: (a,b] — R is
Riemann integrable on [c, b] for each ¢ € (a,b]. Then the improper Riemann integral

of f over [a,b] is defined as

/abf(:c) de = T /be(x) da

if the limit exists.

(c) Let a € RU{—o00}, let b € RU {00} such that a < b, and suppose that f: (a,b) - R
is Riemann integrable on [c,d] for each ¢,d € (a,b) with ¢ < d. Then the improper

Riemann integral of f over [a,b] is defined as

/abf(x)dx = /acf(m)d:z—i—/cbf(a:)dx (8.3)

with ¢ € (a, b) if the integrals on the right hand side of (8.3) both exists in the sense
of (a) and (b).
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Remarks. 1. Suppose that f: [a,b] — R is Riemann integrable. Then the original
meaning of f; f(z) dx and the one from Definition 8.2.1 coincide (see Exercise 8.2.3
below).

2. When any of the three different situations in Definition 8.2.1 overlap, the resulting

improper integrals coincide.

3. The definition of ff f(z)dz in Definition 8.2.1(c) is independent of the choice of
c € (a,b).

4. Since fFR sin(z) dz = 0 for all R > 0, the limit limp_,~ ff”R sin(z) dz exists (and

equals zero). However, since the limit of
R
/ sin(z) der = — cos(x)\g = —cos(R) + 1
0

does not exist for R — oo, the improper integral ffooo sin(z) dz does not exist.

In the sequel, we will focus on the case covered by Definition 8.2.1(a): The other cases
can be treated analoguously.

As for infinite series, there is a Cauchy Criterion for improper integrals:

Theorem 8.2.2 (Cauchy Criterion). Let a € R, let b € RU {oo} such that a < b, and
suppose that f : [a,b) — R is Riemann integrable on |a,c| for each ¢ € [a,b). Then
f: f(z) dx exists if and only if, for each € > 0, there is c. € [a,b) such that

/CCI f(z)dx

<€

for allc < withce <c<d <b.
And, as for infinite series, there is a notion of absolute convergence:

Definition 8.2.3. Let a € R, let b € R U {oo} such that a < b, and suppose that
f:]a,b) = R is Riemann integrable on [a, | for each ¢ € [a,b). Then f; f(x) dx is said to
be absolutely convergent if ff |f(x)| dx exists.

Theorem 8.2.4. Let a € R, let b € RU {oco} such that a < b, and suppose that f :
[a,b) — R is Riemann integrable on |a,c| for each ¢ € [a,b). Then f; f(z)dx exists if it

1s absolutely convergent.

Proof. Let € > 0. By the Cauchy Criterion, there is ¢, € [a, b) such that

/

| 1@l <
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for all ¢ < ¢ with ¢, < ¢ < < b. For any such ¢ and ¢/, we thus have

/CCI f(z)dx

Hence, ff f(x) dx exists by the Cauchy criterion. O

/

S/C |f(z)]dx < e.

The following are also proven as the corresponding statements about infinite series:

Proposition 8.2.5. Let a € R, let b € RU{oo} such that a < b, and let f: [a,b) — [0, 00)
be Riemann integrable on |a,c| for each c € [a,b). Then fab f(z)dx exists if and only if

[a,b) — [0, 00), cH/ (@) da
s bounded.

Theorem 8.2.6 (Comparison Test). Let a € R, let b € RU {oo} such that a < b, and
suppose that f,g: [a,b) — R are Riemann integrable on [a,c| for each c € |a,b).

(i) Suppose that |f(z)| < g(x) for x € [a,b) and that ffg(x) dx exists. Then f(ff(:z:) dz

converges absolutely.

(i) Suppose that 0 < g(x) < f(z) for x € [a,b) and that f;g(x) dx does not exist. Then
fab f(z)dx doex not exist.

Ezxamples. 1. We want to find out if fooo Sig‘” dx exists or even converges absolutely.
Fix ¢ > 0, and let R > c. Integration by parts yields

Rging cosz |R R cosx
dr = + 3 dx.
c x X c c X

Clearly,

holds, so that fcoo :712 dx exists. Since ‘M‘ < x% for all z > 0, the Comparison Test

2
€T
o . .
shows that fc 3¢ dx exists. Since

cosz|B  cosR cosSc Ruso COSC
% —_

c R c c’

X

it follows that fcoo Sh;x dx exists. Define

sin17 T ?é 0’

110, ¢ — R, — x
f:10.¢] B { 1, x=0.
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sin x

= 1, the function f is continuous and therefore Riemann integrable.

Consequently,

“sinx “sinx ¢ ¢
dr =i dr =i dx = d
/0 ——dz 61&)1 = x 61&)1/E f(z)dx /0 f(x)dx

exists. All in all, the improper integral f 0 SILE 10 exists.

sin x

However, fo dx does not converge absolutely. To see this, let n € N, and note

that

"“]sma;\ | sin z| ) 2 -1
/0 Z P dx >Z ]smm\d:c:ﬂ;k.

| sin z| dx
x

Since the harmonic series diverges, it follows that the improper integral fooo

does not exist.

2. We claim that the integral ffooo e~ d exists.

Let R>1. As
R
1 1
/ e tdr = —67‘%‘? =
1 e €

and since e~ < e ® for x > 1, it follows that floo e~ dx and, consequently,
fooo e~ dz exist. Similarly, we see that f?oo e~ dz exists. Hence, f_oooo e~ dx

exists.

We shall now evaluate it. First, note that

o0 2 R 2
e ¥ dr= lim e ¥ dx.
R—o0 —-R

— 00

2
We shall evaluate limpg_, ( f?R e’ d:c) instead and then take roots.

Let R > 0, and note that

R 2 2 R 2 R 2
(/ e " dac) = (/ e ” d:1:> (/ e Y dy)
-R -R
/ / @*49%) do dy = / e~ (@ +y?)
[_R7R]2

by Fubini’s Theorem. Passing to polar coordinates, we obtain

2,2 2 rR 2 e "
/ e~ (@ HyT) — / / re " drdd =2n | —
Br[(0,0)] o Jo 2

and, mutatis mutantis,

/ e~ (@ +y?) — 7r(—e_2R2 +1) Roeo
B /35[(0,0)]

2 R

0
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As Bg[(0,0)] C [-R, R]* C B 55[(0,0)], we have

m(—e B 4+ 1) :/ e~ (@+y?) < / o @ +y?)
Br[(0,0)] [-R,R]?

< / 67(12+y2) _ 7.‘.(_6721%2 + 1)7
B 5[(0,0)]

so that
lim e

R 2
2,2 . 22
7)) = lim e Vdr) =m.
R—o0 [—-R,R]2 R—o0 -R

It follows that

The many parallels between infinite series and improper integrals must not be used

to jump to (false) conclusions: there are functions f for which fooo f(x) dx exists, even
Tr—00

though f(z) #4 O:

Ezxample. For n € N, define

n, x€ [n—l,(n—l)—l—ir),

n—1,n) >R, x+—
Ju: ) { 0, otherwise,

T—00

and define f: [0,00) — R by letting f(x) := fu(x) if x € [n — 1,n). Clearly, f(z) # 0.
Let R > 0, and choose n € N such that n > R. It follows that

R n n k L [eS) 1
| o< [Crwae=Y [ pr =3 <>

Hence, [,° f(z) dx exists.

The parallels between infinite series and improper integrals are put to use in the

following convergence test:

Theorem 8.2.7 (Integral Comparison Test). Let f: [1,00) — [0,00) be a decreasing
function such that f is Riemann-integrable on [1, R] for each R > 1. Then the following

are equivalent:
(i) >onzy f(n) < oo;
(i) [° f(z)dx emists.

Proof. (i) = (ii): Let R > 1 and choose n € N such that n > R. We obtain that

[ s [ rwa —nZl/k“f( d <nZl/k“f<k>d S
1 N 1’k ok k=1 .

Since Y72, f(k) < oo, it follows that [ f(z)dx exists.
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Let f: [a,b] — R be Riemann-integrable. Show that

/abf(x) da = lcig}/:f(x) da.

(ii) = (i): Let n € N, and note that
n n k
S st =+ [ s
k=1 k=2 k1
noork
<fO+Y | fla)de
k=2 k=1

— f)+ / " {2 da
< f)+ / " fa) de.

Hence, > 72, f(k) converges. O

Examples. 1. Let p > 0and R > 1, so that

/Rldx: log R, p=1
C T L 1) p AL

It follows that floo mip dx exists if and only if p > 1. Consequently, 32°° | -L converges

n=1 npP

if and only if p > 1.

2. Let R > 2. Then change of variables yields that

R 1 log R log R
/ dx = / —du = log u|lg§2 = log(log R) — log(log 2).
2 1

xlogx 0g2 U

Consequentl *° _L_ dz does not exist, and S°°° ., —L— diverges.
q Y> Jo zlog x ’ n=2 nlogn

3. Does the series > 7, 1‘;?2" converge?

Let
f:[l,o0) = R, z~ lc;ng'
It follows that
Flz) = x—Zailoga: <0

x
for x > 3. Hence, f is decreasing on [3,00): this is sufficient for the integral

comparison test to be applicable. Let R > 1, and note that

R log z | B R
[ L L PR
1 1 1 T

2 T

o0 .

Hence logz 1o exists, and S°° , 1981 converges.
v J1 2 ) n=1 n
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4. For which 6 > 0 does S°°° | (V/6 — 1) converge?
Let
fi[1,00) = R, x5 — 1.
First consider the case where 6 > 1. Since

f’(m) _ _IOgQGH% < 0,
T

and f(x) > 0 for z > 1, the integral comparison test is applicable. For any = > 1,
there is & € (0, i) such that

1
Oz —1
T = 0% 1og 6 > log 0,
X
so that log 8
gr —1> 28
x

for 2 > 1. Since [;° % dx does not exist, the comparison test yields that [~ f(z) dx
does not exist either unless § = 1. Consequently, if § > 1, the series 20, (V6 — 1)

converges only if § = 1.

Consider now the case where § < 1, the same argument with — f instead of f shows
that >°°°  (¥/6 — 1) converges only if § = 1.

All in all, for 6 > 0, the infinite series >.°° | (/6 — 1) converges if and only if § = 1.

Fxercises

1. Determine whether or not the improper integral

/OO e~ cos(fx) dx
0

exists for a > 0, and evaluate it if possible.

2. Determine whether or not the improper integral

1
1
=
-1 1-— $2
exists, and evaluate it if possible.

3. Let f:[a,b] — R be Riemann-integrable. Show that

/abf(m) dz = 101%1[]0@) da.

4. Determine whether or not the following improper integrals exist:
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(Hint for (c): Substitute x = y/u.)

5. Show that the improper integral

* cosw
/ dx
0 1 ‘I— T
exists, but does not converge absolutely.

6. For a € R and b € RU {oo} with a < b, let f,g: [a,b) — R be such that such that:

(a) f and g are both Riemann integrable on [a, ¢ for each ¢ € [a, b);
(b) [ ; f(z) dz converges absolutely;
(c) g is bounded.

Show that f; f(x)g(x) dz converges absolutely.
If f; f(z)dz is only required to converge, does then fab f(z)g(x) dx necessarily con-

verge?

7. Let a € R, let b € RU {oo} with b > a, and let f: [a,b) — R be such that f is
Riemann integrable on [a, ¢] for each ¢ € (a,b). Define f, f~: [a,b) — R by letting

@) ::{ f@, F@z0 e ::{ _f(x), f(x) <0,

0, otherwise 0, otherwise
for z € [a,b). Show that fab f(z)dx is absolutely convergent if and only if both
fab ft(x)dz and f(f [~ (z) dz exist.

1
log n)(log(logn))P

8. Determine those p > 0 for which the series Y 7, " converges.

9. The Gamma Function.

(a) Show that, for all > 0, the improper integral

I'(z) ::/ t* et dt
0

exists. (Hint: Show that t*~le=f < t% for sufficiently large t.)
(b) Show that
xzl(z) =T(x +1) (x > 0).
(Hint: Integration by parts.)
(¢) Conclude that I'(n 4+ 1) = n! for n € Ny.



Chapter 9

Sequences and Series of Functions

9.1 Uniform Convergence

Definition 9.1.1. Let @ # D C RY, and let f, f1, fa,... be R-valued functions on D.

oo

o, is said to converge pointwise to f on D if

Then the sequence (f;,)

lim f,(x) = f(x)

n—oo

holds for each z € D.

Ezample. For n € N, let
fni[0,1] = R,z 2",

so that
) 0, z€][0,1),
ngglofn(w)—{ L oe—1.
Let
0, zel0,1),
f:10,1] = R, xr—>{ v [1 )
, x=1.

It follows that f,, — f pointwise on [0, 1].

The example shows one problem with the notion of pointwise convergence: all the f,’s
are continuous whereas f clearly isn’t. To find a better notion of convergence, let us first

rephrase the definition of pointwise convergence:

(fn)22, converges pointwise to f if, for each € D and each € > 0, there is
nge € N such that |f,(x) — f(z)| < e for all n > ngy .

The index n, . depends both on x € D and on € > 0.
The key to a better notion of convergence to functions is to remove the dependence of

the index ng . on x:

254
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Definition 9.1.2. Let @ # D C RV, and let f, f1, fa,... be R-valued functions on D.
Then the sequence (f,)2; is said to converge uniformly to f on D if, for each € > 0,
there is n. € N such that |f,(z) — f(z)| < € for all n > n. and for all xz € D.

Ezample. For n € N, let
[ RoR, e sin(nmx)
n- I *

n

Since

sin(nmx) 1
-~ 7 S —
n

n

for all x € R and n € N, it follows that f, — 0 uniformly on R.

Theorem 9.1.3. Let @ # D C RY, and let f, f1, fo,... be functions on D such that
fn — f uniformly on D and such that f1, fo,... are continuous. Then f is continuous.
Proof. Let € > 0, and let g € D. Choose n. € N such that

€

fula) = f@)] < &

for all n > n, and for all x € D. Since f,, is continuous, there is 6 > 0 such that
| fne(x) = fn.(w0)| < § for all z € D with ||z — x0]| <. Fox any such 2 we obtain:

[f(@) = f(@o)| < [f(x) = fu ()] + | fnc (@) = fn (x0)| + | fn (x0) — f(x0)] <€

<

< <

wlm
wlm
wlm

Hence, f is continuous at xg. Since zy € D was arbitrary, f is continuos on all of D. [

Corollary 9.1.4. Let @ # D C RYN have content, and let (f,)>, be a sequence of

continuous functions on D that converges uniformly on D to f: D — R. Then f is

/ f= lim fn-
D n—oo D
Proof. Let € > 0. Choose n. € N such that

continuous, and we have

€

|fu(z) = f(2)] < WD)+ 1

for all x € D and n > n.. For any n > n,, we thus obtain:
ep(D)

Joio= J21= == |y = iy <

This proves the claim. O

Unlike integration, differentiation does not switch with uniform limits:
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Ezample. For n € N let

n

fn:[0,1] — R, a:r—>x—,
n

so that f, — 0 uniformly on [0, 1]. Nevertheless, since

fi(@) = 2
for z € [0,1] and n € N, it follows that f], /4 0 (not even pointwise).

Theorem 9.1.5. Let a < b, and let (f,)>2, be a sequence of continuously differentiable

functions on [a,b] such that:
(a) (fn(zo))p2, converges for some xg € [a,b];
(b) (f})22, is uniformly convergent.

Then there is a continuously differentiable function f: [a,b] — R such that f, — f and
L= f" uniformly on [a,b].

Proof. Let g: [a,b] — R be such that lim,_, f, = ¢ uniformly on [a,b], and let yo :=

limy, 00 fn(z0). Define

fila,b] = R, x»—>yo+/xg(t)dt.

z0

It follows that f’ = g, so that f/, — f’ uniformly on [a, b].
Let € > 0, and choose ne € N such that |f; (z) — g(z)] < 5 3= for all z € [a, b] and
n > ne and | fn(20) — yo| < 5. For any n > n. and x € [a, ], we then obtain

fuleo)+ [ - [ :gu)dt\

< |fn(@0) — yol + / St dt—/xg(t)dt'

/ £4(8) = g(t)| d

€lx — x|

2(b—a)

(@) = f2)] =

<

[Q\l"\

+

<;+

NSNS N CR e )

DN

=e.
This proves that f,, — f uniformly on [a, b]. O

Definition 9.1.6. Let @ # D C RY. A sequence (f,)°; of R-valued functions on D
is called a uniform Cauchy sequence on D if, for each ¢ > 0, there is n. € N such that
|fr(x) — fm(x)| < € for all x € D and all n,m > n,.
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Theorem 9.1.7. Let @ # D C RY | and let (£,)%; be a sequence of R-valued functions

on D. Then the following are equivalent:
(i) there is a function f: D — R such that f, — f uniformly on D;
(ii) (fn)o2y is a uniform Cauchy sequence on D.

Proof. (i) = (ii): Let € > 0 and choose n. € N such that

fala) = fl@)| < 5

for all z € D and n > n.. For x € D and n,m > ne, we thus obtain:
€ €
fa(@) = fn(@)] < [fal2) = f@)| +1f(2) = fm(2)| < 5 + 5 =€

This proves (ii).
(ii) = (i): For each x € D, the sequence (fn(x))22 in R is a Cauchy sequence and

therefore convergent. Define
f:D—=R, zw— lim f,(z).
n— oo
Let € > 0 and choose n. € N such that

(@) = fml@)] < 5

for all z € D and all n,m > n.. Fix x € D and n > n.. We obtain that

[Fal@) = F@)] = lim_|fu(@) = f(@)| < 5 <

Hence, (f,)5; converges to f not only pointwise, but uniformly. O

Theorem 9.1.8 (Weierstral M-Test). Let @ # D C RY, let (£,)5%, be a sequence of
R-valued functions on D, and suppose that, for each n € N, there is M, > 0 such that
|fn(x)| < M, for x € D and such thaty .- | M,, < 0o. Theny o> | fn converges uniformly
and absolutely on D.

Proof. Let € > 0 and choose n, € N such that

for all n > m > n.. For all such n and m and for all x € D, we obtain that

Y@ =Y f@| < D @< Y My<e
k=1 k=1 k=m+1 k=m+1

Hence, the sequence (3 _p_; fk)zozl is uniformly Cauchy on D and thus uniformly conver-

gent. It is easy to see that the convergence is even absolute. O
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Ezample. Let R > 0, and note that

$n

n!

R’n
< —
— n!

for all n € Ny and z € [~R, R]. Since >.°° &% < oo, it follows from the M-test that

n=0 nl
S0 o L converges uniformly on [—R, R]. From Theorem 9.1.3, we conclude that exp
is continuous on [—R, R]. Since R > 0 was arbitrary, we obtain the continuity of exp
on all of R. Let # € R be arbitrary. Then there is a sequence (g,)22; in Q such that
x = limy, 00 g Since exp(q) = e? for all ¢ € Q, and since both exp and the exponential
function are continuous, we obtain

exp(z) = nh_{rgo exp(qn) = nh_}rgo efn = e”.

Theorem 9.1.9 (Dini’s Lemma). Let @ # K C RY be compact and let (f,)°% a sequence
of continuous functions on K that decreases pointwise to a continuous function f: K — R.

Then (fn)52, converges to f uniformly on K.
Proof. Let € > 0. For each n € N, let
Vi i={x e K: fu(x) — f(x) <€}

Since each f, — f is continuous, there is an open set U,, C RN such that U, N K = V.
Let x € K. Since lim,,_,o fn(x) = f(x), there is ng € N such that f,,(z) — f(z) <€, ie.
x € Vp,. It follows that

K= [_lenC QIUH.

Since K is compact, there are ni,...,n; € N such that K C U,, U---UU,, and hence
K=V, U---UV,,. Let nc := max{ny,...,nx}. Since (f,)72, is a decreasing sequence,

the sequence (V,)0° is an increasing sequence of sets. Hence, we have for n > n, that
Vi D Vi, D Vi,

for j =1,...,k, and thus V, = K. For n > n. and ¢ € K, we thus have x € V,, and

therefore
|fu(z) = f(2)] = falz) — f(z) <e

Hence, we have uniform convergence. O

FExercises

1. Let @ # D Cc RN, and let f, f1, fa,...: D — R. The sequence (f,)%; is said to
converge to f locally uniformly on D if, for each x € D, there is a neighborhood U
of x such that (f,,)2, converges to f uniformly on U N D.
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Let @ # K C RY be compact, and let f, f1, f2,...: K — R be such that (f,,)%,
converges to f locally uniformly on K. Show that (f,)>2, converges to f uniformly
on K.

2. Let @ # K C RY and @ # L C R be compact, let F': K x L — R be continuous,
and let (y,)52; be a sequence in L. For n € N, Let

fa: K =R, z— F(z,y,).
Show that ()52 ; has a subsequence that converges uniformly on K.

3. For n € N, let

r _=z
fn:]0,00) = R, T e

Show that f, — 0 uniformly on [0, c0), but that

e}

lim fn($) dx = 1.

n—oo 0
Why doesn’t this contradict Corollary 9.1.47

4. Show that the series Y %T does not uniformly converge to e* on all of R.

5. Let @ # D C RY, and let (f,,)%; be a sequence of R-valued functions on D that
converges to f: D — R uniformly on D. Show that, if g: R — R is uniformly

continuous, then (g o f,)5; converges to g o f uniformly on D.

6. Let @ # D C R¥ have content, and let (f,,)>>; be a sequence of Riemann-integrable
functions on D that converges uniformly to a function f: D — R. Show that f is

Riemann-integrable as well such that

/ f = lim fn-
D n—ro0 D
Give an example of a sequence of Riemann-integrable functions on [0, 1] that con-

verges pointwise to a bounded, but not Riemann-integrable function.

9.2 Power Series

Power series can be thought of as “polynomials of infinite degree”:

Definition 9.2.1. Let zg € R, and let ag, a1, as, ... € R. The power series about zy with

coefficients ag, a1, az, . .. is the infinite series of functions > 7 5 an(x — xo)".

This definitions makes no assertion whatsoever about convergence of the series. Whe-
ther or not Y a,(z—x0)" converges depends, of course, on z, and the natural question

that comes up immediately is: Which are the € R for which >~>° j ay(x—x0)™ converges?
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Examples. 1. Trivially, each power series Y >~ an(z — z0)" converges for z = xo.
2. The power series Y "%T,L converges for all x € R.
3. The power series ) 7 (n"(x — 7)™ converges only for x = 7.
4. The power series ) -7 z" converges if and only if x € (—1,1).

Theorem 9.2.2. Let zg € R, let ag,a1,a2,... € R, and let R > 0 be such that the

sequence (a, R™)22 is bounded. Then the power series

o (o.9]
Z an(x — xo)" and Z nay (z — o)
n=0 n=1

converge uniformly and absolutely on [xg — r,x9 + 7] for each r € (0, R).

Proof. Let C' > 0 such that |a,|R" < C for all n € Nyg. Let r € (0,R), and let x €
[xo — r,x0 + 7]. It follows that

n—1 n—1 r
nlany ||z — xo|" " < nlay|r :n<—>

R

()

Since 1 € (0,1), the series > 72 | n (%)nil converges. By the Weierstral M-Test, the

power series Y o0 | nay,(x — x0)" !

converges uniformly and absolutely on [zg — 7, o + 7].

The corresponding claim for >">° j an(x — x0)" is proven analogously. O

Definition 9.2.3. Let ) 7 an(x — o)™ be a power series. The radius of convergence of

Yoot o an(z — o)™ is defined as
R:=sup{r>0: (a,r")y—y is bounded},
where possibly R = oo (in case (an7™)72 is bounded for all r» > 0).

If °°an(x — zo)™ has radius of convergence R, then it converges uniformly on
[0 — r,xo + 7] for each r € [0, R), but diverges for each x € R with |z — zg| > R: this

is an immediate consequence of Theorem 9.2.2 and the fact that (a,r™)72, converges to
zero—and thus is bounded—whenever Y °  a,r" converges.

And more is true:

Corollary 9.2.4. Let Y ° an(z — xo)" be a power series with radius of convergence
R > 0. Then Y an(x — xo)" converges, for each r € (0, R), uniformly and absolutely
on [xg — r,x0 + 7] to a Cl-function f: (vo — R,z + R) — R of which the first derivative

s given by

f(z) = Z nay, (z — o)
n=1
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for xz € (xg — R,z9 + R). Moreover, F: (xvg — R,x0 + R) — R given by

[o.¢]
a
F(z):= E n—:l(w — x0)" !
n=0

for xz € (xg — R, zo + R) is an antiderivative of f.
Proof. Just combine Theorems 9.2.2 and 9.1.5. ]

In short, Corollary 9.2.4 asserts that power series can be differentiated and integrated

term by term.

Ezamples. 1. For x € (—1,1), we have

d o0
=r— Z x", by Corollary 9.2.4,

2. For z € (—1,1), we have

o0

1 1
22+1 1- (—x2) - Z(_l)nx%'

n=0

Corollary 9.2.4 yields C € R such that

x2n+1

o
t C= -1
arctan x + ngo( ) 1

for all x € (—1,1). Letting x = 0, we see that C' = 0, so that

o0 p2nt+l
t = -nH"
arctan x HZ:O( ) 1

for x € (—1,1).

3. For z € (0,2), we have

N N I
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By Corollary 9.2.4, there is C' € R such that

10g1‘+02i( )n(x_l)n-l—l:i(_l?inl(x_l)n
n=0

-1
n+1 ot

for z € (0,2). Letting =z = 1, we obtain that C' = 0, so that

X 1\yn—1
logx = Z (17)1(95 -1n"
n=1

for z € (0,2).
Proposition 9.2.5 (Cauchy-Hadamard Formula). The radius of convergence R of the

n

power series y oo o an(z — o)™ is given by

1

limsup,, ., V/]an|

where the convention applies that % = o0 and é =0.

R =

Proof. Let
R : !

o lim sup,,_,~ \”/|an|‘

Let € R\ {xo} be such that |z — z¢| < R, so that

1
limsup V/|an| <

n—00 |$ - 330|

Let 0 € (lim SUD;, 500 V|Gn], m) From the definition of lim sup, we obtain ng € N

such that
Vlan| < 6

for n > ng and therefore

Vlan|lx — o™ < Olz —x0| < 1

for n > ng. Hence, by the root test, Y 7 an(x — xo)" converges, so that R’ < R.
Let z € R such that |z — zo| > R/, i.e.,

limsup V/|an| > Tl

1
n—o0 [z — 0
By Proposition B.1.5, there is a subsequence (an, )72, of (an)se, such that we have
lim sup,, W = limy 00 "m . Without loss of generality, we may suppose that

| > —

14 I

Mt |z — w0

"§/|ank||x—xo\”k >1

for k € N. Consequently, (a,(z—x¢)")5%, does not converge to zero, so that Y > ; a, (z—
x0)™ has to diverge. It follows that R < R’. O

for all £ € N and thus
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Examples. 1. Consider the power series,
o n2
Z 1
n
n=1
so that

e oe2)

for n € N. It follows from the Cauchy—Hadamard Formula that

1 n
lim ¥a, = lim <1 + > =e,
n n

n—oo — 00
so that % is the radius of convergence of the power series.

2. We will now use the Cauchy-Hadamard formula to prove that lim, . ¥/n = 1.

Since Y02, na™ converges for |z| < 1 and diverges for |z| > 1, the radius of conver-

gence R of that series must equal 1. By the Cauchy-Hadamard formula, this means

o0
n=1*

that limsup,,_, . ¥/n = 1. Hence, 1 is the largest accumulation point of ({/n)
Since, trivially, {/n > 1 for all n € N, all accumulation points of the sequence must
be greater or equal to 1. Hence, ({/n)2%; has only one accumulation point, namely

1, and therefore converges to 1.

Definition 9.2.6. We say that a function f has a series expansion about zg € R if
f(x) =300 an(z — z0)™ for some power series > o an(x — 29)™ and all  in some open

interval centered at x.
From Corollary 9.2.4, we obtain immediately:

Corollary 9.2.7. Let f be a function with a power series expansion o an(x — zo)"
about xg € R. Then f is infinitely often differentiable on an open interval about x¢ such

that

S (x0)
ap = ——=
n!

holds for all n € Ny. In particular, the power series expansion of f about xq is unique.

Let f be a function that is infinitely often differentiable on some neighborhood of
zo € R. Then the Taylor series of f at g is the power series Y ° %(m — x0)".
Corollary 9.2.7 asserts that, whenever f has a power series expansion about xg, then the
corresponding power series must be the function’s Taylor series. We thus may also speak
of the Taylor expansion of f about xg.

Does every infintely often differentiable function have a Taylor expansion?
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Example. Let F be the collection of all functions f: R — R of the following form: There

is a polynomial p such that
1) o322
~)e <2, x#0,
sy =1 P . (9.1)
0, z =0,

for all z € R. It is clear that each f € F is continuous on R\ {0}, and from de I'Hospital’s
Rule, it follows that each f € F is also continuous at x = 0.

We claim that each f € F is differentiable such that f’ € F.

Let f € F be as in (9.1). It is easy to see that f is differentiable at each x # 0 with

o= () o (3) ()
1 ,/1 2 (1 _a
(o (5) -2 (5)

so that

for such z, where
a(y) == —y°p' (y) — 24°p(y)
for all y € R. Let r(y) := yp(y) for y € R, so that r is a polynomial. Since functions in

JF are continuous at x = 0, we see that

lim M = lim 1p <1) e_h% =limr (1> e_f%2 = 0.

h—0 h h—0 h h h—0 h
h+£0 h+£0 h£0
This proves the claim.
Consider
2 x#0
FIRoR, zed &7 ’
0, z =0,

so that f € F. By the claim just proven, it follows that f is a infinitely often differentiable
with (" € F for all n € N. In particular, f(™(0) = 0 holds for all n € N. The Taylor
series of f thus converges (to 0) on all of R, but f does not have a Taylor expansion about
0.

Theorem 9.2.8. Let xp € R, let R > 0, and let f: [xo0 — R,z0 + R] — R be infinitely
often differentiable such that the set

{|f(")(:n)|:xe[xo—R,xo+R],n€NO} (9.2)
is bounded. Then .
fy =3 T e
n=0 ’

holds for all x € [xo — R, xo + R] with uniform convergence on [vo — R,z + R|
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Proof. Let C' > 0 be an upper bound for (9.2), and let x € [xg — R,z¢ + R]. For each
n € N, Taylor’s Theorem yields £ € [zg — R, xo + R] such that

= P (o) D A (3) nt1
f(ﬂf)—g X (z — o) +m(ﬂf—$o) )
so that
— ") (o) el (S n+l R
_ _ — _ < .
f@) kzo gl = Py | el = Oy
Since limy,_, o % = 0, this completes the proof. O
Ezample. For all x € R,
) o " :L.Qn—i-l e . xQn
sinx = Z(—l) 2t and cosx = Z(—l) )l

n=0

holds.

Let > 7 g an(z —x)™ be a power series with radius of convergence R. What happens
ifx =29+ R?

In general, nothing can be said.

Theorem 9.2.9 (Abel’s Theorem). Suppose that the series > an converges. Then the

power series y 2 o ap,x’ converges pointwise on (—1,1] to a continuous function.

Proof. For z € (—1,1], define
f(x) = Z anz™.
n=0

Since > > | anx™ converges uniformly on all compact subsets of (—1,1), it is clear that

f is continuous on (—1,1). What remains to be shown is that f is continuous at 1, i.e.,

limgyy f(2) = f(1).

For n € Z withn > —1, define r,, := ZZin+1 ag. It follows that r—1 = f(1), rp—rp_1 =
—ay, for all n € Ny, and lim,, oo 7, = 0. Since (r,)52 _; is bounded, the series ) rpz”
and "7 jrp,—12™ converge for € (—1,1). We obtain for z € (—1,1) that

oo (o) o
(1—2x) Z rpr’” = Z rpa’” — Z rpatl
n=0 n=0 n=0
o0 o
= Z rpx’t — Z 12" +7_1
n=0 n=0

— Z(Tn — Tn_l)wn +r_1
n=0
)
= - Z anz" +f(1)7
n=1
=f(z)
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ie.,
[e.e]

FO) = f@) = L —2) 3 raa

n=0
Let € > 0 and let C' > 0 be such that |r,| < C for n > —1. Choose n. € N such that
[T < § for n > ne, and set 6 := m Let z € (0,1) such that 1 —z < §. It follows
that

oo
F(1) = fl@)] < (L —2) ) |ralz"
n=0
ne—1 0o
=(1-=x Z Irnlz™ + (1 — x) Z |7 |2™
n=0 Nn=ne
€ o0
<(1-2)Cne+(1-2)5 > an
N=nNe
€ € —
n=0
——
-
e
202
= 67
so that f is indeed continuous at 1. O
Ezamples. 1. For x € (—1,1), the identity
= (-1t
1 1) = n 9.3
og(z+1) = - (9.3)

n=1

holds. By Abel’s Theorem, the right hand side of (9.3) defines a continuous function
on all of (—1,1]. Since the left hand side of (9.3) is also continuous on (—1,1], it
follows that (9.3) holds for all x € (—1, 1]. Letting = 1, we obtain that

iﬂ = log 2.

n=1 "
2. Since -
2n+1
x
tanz =Y (—1)"
arctan x g( ) o T 1

holds for all x € (—1,1), a similar argument as in the previous example yields that

this identity holds for all € (—1,1]. In particular, letting = = 1 yields

o
—_1)»
Z:arctanlzz()

o 2n+1
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Ezxercises
1. Determine the radii of convergence for the following power series:
2
(a) 2nzo ()™
n
(b) 2a(-1)" (353)" (a — 2022)

2. For the power series
x n
>
n=1 n
determine the following:
(a) its radius of convergence;

(b) the set of those = for which it converges;

(c) its value for all such x.

3. Let (an)22, be a sequence in R such that R := lim,_, |a|ai|1| exists. Show that R,

for any xp € R, is the radius of convergence of the power series Y °  an(z — z0)".

4. Show that the power series > 7, n?z™ has radius of convergence 1 and that

. n2xn _ IIZ(]I—i—l)
B

for z € (—1,1).
5. For any @ € R and n € Ny, let

()=

j=1

You may use without proving it that
a—1 a—1 o
= 9.4
(") 6o =) 00

a) Show that the binomial series > oo o (%)x™ converges on (—1,1) to a differen-
n=0 \n

for n € N.

tiable function f.
(b) Show that (1 + z)f'(z) = af(z) for z € (—1,1) .
Hint: Use (9.4).
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(c) Conclude that
= [«

n — 1 (03
Z (n) 2" =(14+x)

for x € (—1,1).
Hint: Let g(z) := (1 + x)®, consider f(z)/g(z), and differentiate.

6. Although the theory of power series was developed in class only for real variables,

it all works perfectly well over C as well. We can thus extend exp, sin, and cos to C

by defining

. x n o o0 LRt . o0 22
e’ = nz::) o sin z 1= nz_:o(—l) ZFk and Cos z 1= 7;)(—1) on)
for z € C.
Show that

e”¥ =cosz+isinz

holds for all z € C, and derive Euler’s Identity: ¢/™ +1 = 0.

9.3 Fourier Series

The theory of Fourier series is about approximating periodic functions through terms

involving sine and cosine.

Definition 9.3.1. Let w > 0, and let PC,(R) denote the collection of all functions
f: R — R with the following properties:

(a) f(x+w)= f(x) for z € R.

(b) there is a partition —%§ =tg <t <--- <t, =5 of [—%, %] such that f is continuous
on (tj_1,t;) for j = 1,...,n and such that limsy, f(t) exists for j = 1,...,n and

limy ), f(t) exists for j =0,...,n — 1.
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NN N\
f \tz % x

Figure 9.1: A function in PC,(R)

2|8 A

We will focus on the case where w = 2.
Ezample. The functions sin and cos belong to PCar(R).
How can we approximate arbitrary f € PCar(R) by linear combinations of sin and

cos?

Definition 9.3.2. For f € PCa,(R), the Fourier coefficients ag, a1, as,...,b1,ba,... of f

are defined as

1 s
ap = — f(t) cos(nt) dt
7T —T
for n € Ny and
1 ™
by == — f(t)sin(nt) dt
T

for n € N. The infinite series % + > ">, (ay, cos(nx) + by, sin(nx)) is called the Fourier

series of f. We write
flz) ~— + Z a, cos(nx) + by, sin(nx)).

The fact that
~ 24 Z (ap cos(nx) + by, sin(nz))

does not mean that we have convergence—not even pointwise.

Example. Let
-1, z € (—m0),

f:(=m, 7] =R, xr—>{ L e
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Extend f to a function in PCor(z) (using Definition 9.3.2(a)). For n € Ny, we obtain

ap = 1/ f(t) cos(nt) dt
T™J-xm
1 0 "
g </ cos(nt) dt +/ cos(nt) dt)
T - 0
1 i "
S (—/ cos(nt) dt +/ cos(nt) dt)
™ 0 0
= 0.
For n € N, we have
1 [7 .
b, = / f(t)sin(nt) dt
s
1 0 "
= - < / sin(nt) dt+/ sin(nt) dt>
T 0
o n sl n Jo i
1 ™m
- — (cost\ — cost|; )
1
= %(1 — cos(mn) — cos(nm) + 1)

2 —2cos(mn)

™
_ 0, n even,
B %, n odd.
It follows that
4 1.
f(z) ~ - 7;) o1 sin((2n + 1)z).

The Fourier series converges to zero whenever x is an integer multiple of =, i.e., it does

not converge to f for such x.

In general, it is too much to expect pointwise convergence. Suppose that f € PCor(R)
has a Fourier series that converges pointwise to f. Let g: R — R be another function in
PCa2-(R) obtained from f by altering f at finitely many points in (—m, 7). Then f and ¢
have the same Fourier series, but at those points where f differs from g, the series cannot
converge pointwise to g.

We need a different type of convergence.

Definition 9.3.3. For f € PCa,(R), define

=/ !f(t)\2dt);
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Proposition 9.3.4. Let f,g € PCax(R), and let A € R. Then we have:

(@) [Ifll2 = 0;
(i) [Afllz = AL ll2;
(i) [[f +gllz < [[fll2 + llgll2-

Proof. (i) and (ii) are obvious.

For (iii), we first claim that

/ " g de < 1 Fl2lgl (9.5)

-7
Let € > 0, and choose a partition —m =ty < --- < t,, = 7 and support points &; € (t;_1,1;)
for j =1,...,n such that

JC \dt—erfj )| <

([ vora) - (szj | >)

(SIS

and

M

([ ot ‘2dt> (Zg@ » )) <

We therefore obtain

[ iaoiar < 1@t — o +

—Tr

—Zlf (L — 1) |g(€)] (L — tj1)% + e

<(Zf t_t] 1) (Zgé-j t_t] 1)) T 6
7j=1

by the Cauchy—Schwarz Inequality,

< ((/]f(t)rzdt); +e> ((/ |g<t>|2dt)%+e) re

Since € > 0 is arbitrary, this yields (9.5).
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Since
1 +gl3 = / (R + 2£(0)g(t) + g(0)?) di
= [wpderz [ wgmas [ jgpa
< I3 +2 / F(®)g(®)]dt + |93
< IFIZ+20Flallglls + 913 by (9.5),
— (1712 + llgll2)>
this proves (iii). O

One cannot improve Proposition 9.3.4(i) to || f||2 > 0 for non-zero f: Any function f

that is different from zero only in finitely many points provides a counterexample.

Definition 9.3.5. Let ag, a1,...,an, 581, .., 8, € R. A function of the form
Tn(z) = % + Z(ak cos(kx) + Py sin(kx)) (9.6)
=1

for x € R is called a trigonometric polynomial of degree n.
Is is obvious that trigonometric polynomials belong to PCar(R).
Lemma 9.3.6. Let f € PCor(R) have the Fourier coefficients ag, a1, ag ...,b1,ba, ..., and
let T), be a trigonometric polynomial of degree n € N as in (9.6). Then we have
If = Tall3

=|IflI5—m ( + Y (a} +b}) > (;(ao —ag)® + > (e — ar)® + (B — bk)2)> :
k=1

Proof. First note that

1P -Tlp = [ foPde-2 [ somodes [T

—Tr —Tr —Tr

—_——
=[71I3

Then, observe that

" F@Ta () di

_ @ f dt-l-ZOék f t) cos(kt dt+25k f(t) sin(kt) dt

2 —m -

=7 (O;an + Z(akak + ﬂkbk)) ,

k=1
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and, moreover, that

n

a? ao 4
:27TZO+? <ak/ cos(kt) dt +ﬁk/ sin(kt) dt>

=1 —Tr

=0

n kg

+ <akoz]/ cos(kt) cos(jt) dt+2akﬁj/ cos(kt) sin(jt) dt

s

+ BrpB; /7r sin(kt) sin(jit) dt)

—T

2 n e T
= 77% + (ai / cos(kt)? dt + (7 / sin(kt)? dt>
k=1 -T -7
0‘3 - 2 2
) + > (o +B5) |-
k=1
We thus obtain
If = Tnll3
n 2 n

= £+ ( (g — 2avpaq) +Z 7 — 20par + B} —25kbk)>

||f||2+7r<1 @ — ao) +Z oy, — ar)’ (ﬁk—bk)g)—;a%—Z(Gieri))

k=1

This proves the claim. ]

Proposition 9.3.7. For f € PCar(R) with the Fourier coefficients ag,ai,ay ..., b1,ba, ...
and n € N, let Sp(f) € PCar(R) be given by

Sp(f)(x) = 204 Z(ak cos(kx) + by sin(kz))
2 k=1
for x € R. Then S, (f) is the unique trigonometric polynomial T,, of degree n for which

| f — Thll2 becomes minimal. In fact, we have

2 n
£ = Sa(HIF = 1713 (; +) +bi>> -

k=1
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Corollary 9.3.8 (Bessel’s Inequality). Let f € PCaor(R) have the Fourier coefficients
ag,a1,as...,b1,ba,.... Then we have the inequality

CL
°+Za +02) < fllfllg

In particular, lim,_ o a, = lim,, o b, = 0 holds.
Definition 9.3.9. Let n € Ng. The n-th Dirichlet kernel is defined on [—m, 7] by letting
i 1
sin((n+3)0) o < < o,
Dp(t) :={  2sin(3t)
n 4+ %, t=0.

Lemma 9.3.10. Let f € PCar(R). Then

S,(1@ == [ fla+ D) d
for alln € Ny and x € [—m,7].
Proof. Let n € Ny and let « € [—7, w]. We have
Su(f)(x) = % faydit / (cos(kz) cos(kt) + sin(kz) sin(kt)) dt
T k=1
1

_ = /7r £() <; + Z(Cos(k‘x) cos(—kt) — sin(kzx) sin(—kt))) dt
k=1

- i/ﬂ () <; + Zcos(k(m — t))) dt
- k=1

T+ n
— 71r/ flz+s) (; + Zcos(ks)) ds

—T—X _

T n

:% f(a:+s)<;+

—T

cos(ks)) ds.
1

k=

1 n
=3 + Z cos(ks)
k=1
holds for all s € [—7,x]. First note that, for any s € R and k € Z, the identity

peostirsn (1) = (1)) ~sn (5 2) ).

Hence, we obtain for s € [—m, 7] and n € Ny that

(1) o= o ((0+1)) - ((-2))

k=1

(1)) ()

‘We now claim that
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and thus, for s # 0,

for s = 0, the left and the right hand side of the previous equation also coincide as is

checked immediately. O

Lemma 9.3.11 (Riemann—Lebesgue Lemma). For f € PCor(R), we have that

nh_>nolo i f(t)sin <<n + ;) t> dt = 0.

Proof. Note that, for n € N, we have

(o))
_ /_ 7; £(6) <cos <;t> sin(nt) + sin (;) cos(nt)> dt
_ % /_ 7; <7r F(t) cos <;t>> sin(nt) dt

+ i/_z <7rf( ) sin (; >) cos(nt) dt.

Since  [™ (wf(t)cos (5t))sin(nt)dt and L [T (7 f(t)sin (3t)) cos(nt) dt are Fourier co-

efficients, it follows from Bessel’s Inequality that

nlggojr/_: (ﬂf( ) cos (; )) sm(nt)dt:ggoi/_: <7rf( ) sin (; ))cos(nt)dt:O.

This proves the claim. O
Definition 9.3.12. Let f: R — R, and let x € R. We say that:

(a) f has a right hand derivative at x if

i 1) — T
h10 h

exists, where f(zT) :=limy o f(x + h) is supposed to exist.
(b) f has a left hand derivative at x if

i fx+h)— f(z7)
h10 h

exists, where f(z7) := limpyo f(2 + h) is supposed to exist.
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Theorem 9.3.13. Let f € PCar(R) and suppose that f has left and right hand derivatives
at x € R. Then

a—zo + ) (an cos(na) + by sin(nz)) = %(f(iﬁ) +f(z7))

n=1

holds.

Proof. In the proof of Lemma 9.3.10, we saw that

% + Zn: cos(kt) = Dy (t)
k=1

holds for all ¢ € [—m, 7] and n € Ny, so that

1 (" 1
e ROV EE TR

3|

and similarly

for n € N. It follows that

sn<f><x>—§<f< )+ 7))
b 0
N s, 1/ Fa)Da®) dt— = [ Fa~)Da(t) dt
L ™ Jo ™ J—m

_7T - 251n S
fx—i—t f(z )sm<< 1>t>dt
2sm 2

holds for n € N. Define g: (—m, 7] — R by letting

0 0, t e (—m0),
g(t) == fla+t)—f@=t)
W, te (0,71']

Since

o JEED = f@) L far) =St f ) = o)

£10 2sin (5¢) £10 t 2sin (5t) 0 t

exists, it follows that g € PCar(R). From the Riemann-Lebesgue Lemma, it follows that

1 T 1
lim f:v—i—t )sin<<n—|—> t) dt = lim g(t)sin((n—i—) t) dt =0
n—00 251n 2 n—oo J__ 2
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and, analogously,

lim fx_'_t Iz )sin<<n—|—1>t>dt:0.
n—00 251n ) 2

This completes the proof. ]

Ezample. Let
-1, z € (—m0),
1, ze€]0,7].

It follows that

4 1 )
fla)=— > T sin((2n 4 1))
n=0
for all = that are not integer multiples of .
Given a < b, we call a function f: [a,b] — R:

o piecewise differentiable if there is a partition a = tg < t; < --- < t, = b such that
flit;1.¢;) 1s differentiable for j =1,....n;

o piecewise differentiable if there is a partition a = tg < t; < .-+ < t, = b such that

f |[t]-_1,t]-] is continuously differentiable for j =1,...,n;

e piccewise linear if there is a partition a = t3 < t; < --- < t, = b such that, for
j=1,...,n, the graph of f[j;,_, ; is the line segment connecting (¢;—1, f(¢;-1)) and
(t;, f (tj))~

The following is immediate from Theorem 9.3.13:
Corollary 9.3.14. Let f € PCar(R) be continuous and piecewise differentiable on [—m, ].
Then

?0 iancos nx) + by, sin(nz)) = f(x)

holds for all x € R.

Theorem 9.3.15. Let f € PCar(R) be continuous and piecewise continuously differen-

tiable on [—m,m|. Then

% + Z(an cos(nx) + by sin(nx)) = f(x) (9.7)

n=1

holds for all x € R with uniform convergence on R.
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Proof. Let —m =1ty < t; < --- < t;, = 7 be such that f is continuously differentiable
on [tj_i,t;] for j = 1,...,m. Then f'(t) exists for ¢ € [—m, 7] —except possibly for
t € {to,...,tp}—and thus gives rise to a function in PCs,(R), which we shall denote by
f! for the sake of simplicity.
Let a(, a}, ab, ..., b, b, ... be the Fourier coefficients of f’. For n € N, we obtain that
, 1

ap = — i f'(t) cos(nt) dt

:li v f'(t) cos(nt) dt
7rj=1 tj—1
_l 3 os(n s n v in(n
= ﬂ; (f(t)c s(nt)ly_, + /tj_lf(t)s ( t)dt)
:% i f(t)sin(nt) dt

= nby,

and, in a similar vein,

/
b,, = —nan.

From Bessel’s Inequality, we know that Y °° | (b/,)? < oo, and from the Cauchy-Schwarz

Inequality , we conclude that

nz:l |an| = nZn\bH < (Z nQ>

=1 n=1

D=

(i(bﬁ) 5 < 00;

n=1

analogously, we see that > "7 |b,| < 0o as well.
Since

|an, cos(nz) + by sin(nx)| < |an| + |bn|

for all z € R, the Weierstrafl M-Test yields that the Fourier series %+, (a, cos(nx) +
by, sin(nx)) converges uniformly on R. Since the identity (9.7) holds pointwise by Corollary

9.3.14, the uniform limit of the Fourier series must be f. O

Ezample. Let f € PCar(R) be given by f(x) := 22 for z € (—x, 7. It is easy to see that
b, = 0 for all n € N.

We have 5
1 (7 1/t

aO:/ tht:<

T ) T\ 3
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For n € N, we compute

3=

an =

3=

_ ) -
—/ tsin(nt)dt>
—x )z
s

12
< — sin(nt)
2
=—— tsin(nt) dt

/ t2 cos(nt) dt
n
2 T 1 (7
+/ cos(nt) dt>
—T n —T

-2 <—tcos(nt)

™n n

=3 cos(mn)

= (-1)" .

Hence, we have the identity
ﬂ' [ee]
(x) = 3 + ng_l —5 cos(nz)

with uniform convergence on all of R.

Letting x = 0, we obtain

7T o0
:?—1'2 n2’
n=1

so that
SIS
12 n?
n=1
Letting © = 7 yields
2 00 2 00
9o T 4 . 4
= ot Z(—U"ﬁ(—l)" =5+ > -
n=1 n=1
and thus
==
=n 6

For our last two theorems, we require the following lemmas:

Lemma 9.3.16. Let a < b, let f: [a,b] — R be continuous, and let ¢ > 0. Then there is
a continuous, piecewise linear function g: [a,b] — R such that g(a) = f(a), g(b) = f(b),
and | f(t) — g(t)| < € for all t € [a,].

Proof. As [a,b] is compact and f is continuous, f is uniformly continuous. Choose ¢ > 0
such that |f(s) — f(t)| < § for s,t € [a,b] with |s —t| < 0. Let a =tg <t1 <--- <t, =0



CHAPTER 9. SEQUENCES AND SERIES OF FUNCTIONS 280

be a partition of [a,b] with max;—1,__ ., [t; —tj—1| < 6. Define g: [a,b] — R as follows: if
te [tjfl,tj] with j € {1, e ,n}, let

1
g(t) == ———((t; =) f(tj—1) — (tj—1 — ) f(t)))-
ti—tj 1
Then g is a piecewise linear, continuous function with g(t;) = f(¢;) for j = 0,1,...,n.

Let t € [a,b], and let j € {1,...,n} be such that t € [t;_1,t;]. We obtain

- 0 f () — (e t)f(tj))‘

((t =) f () = (tj—2 — ) (1))

1
tj — tj_l

tj — tj_l
() = O F (1) — (1 — t)f(tj))’
< I = £+ Lt — 1) — FE)])

tj — tj_l
tj — tj_l

i, (PO = 10+ 150 = 1)
= f(t) = f(t;—)|+ () — f(t;)]

€
<5 <

ol

< €.

Figure 9.2: The functions f and g

This proves the claim. ]

Theorem 9.3.17 (Weierstral’ Approximation Theorem). Let a < b, let f: [a,b] — R be
continuous, and let ¢ > 0. Then there is a polynomial p such that |f(t) — p(t)| < € for

t € [a,b]. In particular, there is a sequence of polynomials that converges to f uniformly

on [a,b).
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Proof. Without loss of generality that a = —7 and b = 7.

Consider first the case where f(—m) =0 = f(m). We can then extend f to a continuous
function in PCar(R) (likewise denoted by f). By Lemma 9.3.16, there is a continuous,
piecewiese linear function g: [—, 7] — R such that g(—m) = g(7) = 0 and |f(t) —g(t)| < §
for t € [-m,m]. Extend g to a function in PCs,(R) (also denoted by g). As g is, in
particular, piecewise continuously differentiable, Theorem 9.3.15 yields n. € N such that
l9(t)—Sn(9)(t)] < § foralln > n.and allt € [-7,7|. Fork =1,...,ne, the Taylor series of
cos(kt) and sin(kt) converge uniformly to those functions on [—7, 7]. Cutting these series
off after sufficiently many summands, we obtain a polynomial p with |S,, (¢)(t) —p(t)| < §
for all t € [—m, 7]. Consequently,

9

£ () —p()] < [f() — g()| + |9(t) = Sn.(9)(£)| +[Sn (9) () — p(t)] < €

< < <

wim
olm

holds for all ¢t € [—m, 7].
Suppose now that f is arbitrary. Define

helomm] SR, tes f(t) — %((w O f (=) + () f ().

Then h is continuous with A(—m) = 0 = h(w). By the first part of the proof, there is a
polynomial ¢ such that |h(t) — ¢(t)| < € for t € [-m,7]. Let

p(t) = e ((m — ) f(—m) + (¢ + 7) [ (7)) + a(t)

:271'

for t € R. Then p is a polynomial such that [f(t) — p(t)| = |h(t) — q(t)] < € for t €
[—7, 7). O

Theorem 9.3.18. Let f € PCorx(R). Then lim, o0 ||f — Sn(f)|l2 — 0 holds.

Proof. Let ¢ > 0, and choose a partition —m = t) < t; < --- < t,, = 7 such that f is

continuous on (tj_1,t;) for j =1,...,m. Choose 6 > 0 so small that the intervals
[, to+ 0], [t1 — 0, t1 + 6], ..., [tm—1 — O, tm—1 + 3], [t — 0, 7] (9.8)

are pairwise disjoint. Define g: [—7, 7] — R as follows:

e g(t) = f(t) for all t in the complement of [—7,tg+ ) U (t1 — 0,61 +0)U--- U (tm—1 —
O, tm—1+0) U (tm — 6, 7];

e g linearly connects its values at the endpoints of the intervals (9.8) on those intervals.
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Figure 9.3: The functions f and g

Let C' > 0 be such that |f(t)] < C for t € [—m,nw|. Then g is continuous such that

lg(t)| < C for t € [—m, 7] as well and extends to a continuous function in PCa,(R), which
is likewise denoted by g.

We have
If = gll3

S NCECR

to+0 t +(§ s
=/ () - Pw+§j/ )Pﬁ+/ () — g(0) dt
. _,_/ %,_/ by e
<402 <4C?2

<402

< 64C? + (m — 1)68C? 4 64C?
= md8C?2.

Making § > 0 small enough, we can thus suppose that || f — g2 < %.
Invoking Lemma 9.3.16, we obtain a continous, piecewise linear function h: [-m, 7] —
R such that
l9(t) = h(t)] < =

for t € [—m,n] and h(—n) = h(w) = 0. Theorem 9.3.15, there is n. € N such that

h(t) = Sn(h)(t)] <

| ™
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for n > n¢ and t € R. For n > n., we thus obtain

1f = Su(P)ll2 < 1f = gll2 4+ llg = Rll2 + [[h = Sn(R)]]2
<§-+¢Z%amﬂg@)—hun:te[—mwn
+ V27 sup{|h(t) — Sp(h)(t)] : t € [-m, 7]}
< - + 3§ + 3§

= €.

Since S, (h) is a trigonometric polynomial of degree n, we obtain from Proposition 9.3.7
that

1f = Su(Hll2 < If = Sn(h)]l2 <€

for n > ne. ]

Corollary 9.3.19 (Parseval’s Identity). Let f € PCar(R) have the Fourier coefficients
ap,a1,as...,b1,ba,.... Then the identity

@ =
o+ D (an+0)) = ﬂw%
n=1
holds.
Exercises
1. Let f € PCarx(R) have the Fourier coefficients ag, a1, as,...,b1,b2,.... Show that
ag=a;1=az=---=0if fisodd and by = by =--- =0 if f is even.

2. For n € Z, the n-th complex Fourier coefficient of f € PCar(R) is defined as

1

o |t

Cn =

Express the complex Fourier coeffients of f in terms of its real Fourier coefficients

ap,a1,0a9, ... and bl,bg, e

3. Let f € PCar(R), and let F: R — R be an antiderivative of f. Show that F €
PCax(R) if and only if
F(t)dt = 0.

—T

4. Let f € PC2r(R) be given by
f:(—m, 7] =R, z— .

Determine the Fourier series 4 + >">" , (an cos(nx) + by sin(nx)) of f.
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5. Let f € PCar(R) be given by

for t € (—m, 7). Show that the Fourier series of f converges pointwise on R, but not

uniformly.
6. Let f € PCar(R) be given by
fi(—m7m] =R, x|zl

Determine the Fourier series of f and argue that it converges to f uniformly on R.

Conclude that
2

> 1
e
8 = (2n+1)
7. Let f, F € PCar(R), let ag, a1, az,...,b1,ba,... be the Fourier coefficients of f, and

let Ag, A1, Aa, ..., B1, Bs,... be the Fourier coefficients of F'. Show that

1 FOF(t)dt = aofo > (andn + baBy).
n=1

™) 2

(Hint: Apply Parseval’s Identity to f + F'.)

8. Let a < b, let f: [a,b] — R be continuous, let a < t; < to < -+ < t, < b, and let
€ > 0. Show that there is a polynomial p with | f(t)—p(t)| < efort € [a,b] and p(t;) =
f(t;) for j =1,...,n. (Hint: First, treat the case where f(t;) = --- = f(t,) = 0,
then apply this to the auxiliary function [a,b] > t — f(t) — > p_; f(tr) H?;i %)

J



Appendix A

Linear Algebra

A.1 Linear Maps and Matrices

Definition A.1.1. A map 7: RY — RM is called linear if
T(Az 4 py) = AT(x) + pT (y)

holds for all z,y € RY and A, u € R.

Example. Let A be an M x N-matrix, i.e.,

a1,1, ceey aLN

aM1, ---5 QMN

Then we obtain a linear map T4 : RY — RM by letting T4 (z) = Ax for € RV, i.e., for

x = (z1,...,xN), we have

41,101+ -+ a1 NTN
TA(x) = Az =

apix1+---+apm,NTN
Theorem A.1.2. The following are equivalent for a map T: RN — RM:
(i) T is linear;
(ii) there is a (necessarily unique) M x N-matriz A such that T = Ty.

Proof. (i) = (ii) is clear in view of the example.
(ii) = (i): For j =1,..., N let e; be the j-th canonical basis vector of RV, i.e.,

ej:=(0,...,0,1,0,...,0),

285
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where the 1 stands in the j-th coordinate. For j = 1,..., N, there are ayj,...,ap; € R
such that
ai
T(ej) =
an,;
Let
a1, ..., GIN
A=
ami, ---» GMN
In order to see that Ty =T, let © = (z1,...,2N) € RY. Then we obtain

T(x) =T(r1€e1+ - zNen)
= xlT(el) + -+ .CI?NT(BN)

al 1 a1,N
=1 : o tay
ap,1 ap,N

1,171+ -+ a1 NTN

apmi1x1+---+apm,NTN

= Ax.
This completes the proof. O
Corollary A.1.3. Let T: RN — RM be linear. Then T is continuous.

We will henceforth not strictly distinguish anymore between linear maps and their

matrix representations.

Lemma A.1.4. Let A: RY — RM be q linear map. Then {||Az| : z € RN, ||lz| < 1} s
bounded.

Proof. Assume otherwise. Then, for each n € N, there is z,, € RY such that [|z,|| <1
such that ||Az,|| > n. Let y, := %=, so that y,, — 0. However,

1 1
[Aynll = —||Azn[| = —n =1
n n
holds for all n € N, so that Ay, # 0. This contradicts the continuity of A. O

Definition A.1.5. Let A: RY — RM be a linear map. Then the operator norm of A is
defined as
I1A]]] := sup{[|Az[| : = € RY, ||| < 1}.
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Theorem A.1.6. Let A, B: RV — RM and C: RM — RX be linear maps, and let X € R.

Then the following are true:
@ [MAlll=0 <= A=0;
(i) [IIAANT = [ATIAT;
(iii) [I[A+ Bl < [IA[ll + [[IBIll;
i) [lICAlll < e Al
(v) |||A]|| is the smallest number v > 0 such that ||Az|| < v|z| for all x € RV,

Proof. (i) and (ii) are straightforward.
(iii): Let 2 € RN such that ||«|| < 1. Then we have

1(A+ B)z|| < [|Az| + || Bx| < [l|A[l| + |l Bl
and consequently
114+ Bl|| = sup{||(A + B)z| : & € RY, ||z|| < 1} < [||All| + ||| Bl

We prove (v) before (iv): Let # € RV \ {0}. Then

4 (i) | < man

holds, so that ||Az|| < |||A]||||z||. On the other and let v > 0, be any number such that
||[Az|| < 7||lz|| for all z € RY. Tt then is immediate that

I1Alll = sup{[| Az : & € RY, ||z]| < 1} < sup{yllz] : x € RY, [|z]| < 1} = .

This completes the proof.
(iv): Let 2 € RY, then applying (v) twice yields

[CAz|| < [lIC][ | Az < [[[CI[ [l 1],

so that [[[CA[|| < [[[C[[[[|Al, by (v) again. O
Corollary A.1.7. Let A: RV — RM be q linear map. Then A is uniformly continuous.

Proof. Let € > 0, and let 2,y € RV, Then we have

Az — Ayl = [[A(z — y)l| < [[|All[llz — yl|
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A.2 Determinants

There is some interdependence between this section and the following one (on eigenvalues).
For N € N, let & denote the permutations of {1,..., N}, i.e., the bijective maps from
{1,..., N} into itself. There are N! such permutations. The sign sgno of a permutation

o € Gy is —1 to the number of times o reverses the order in {1,..., N}, i.e.,
— o(k) —o(j)
sgno = H P
1<j<k<N

Definition A.2.1. The determinant of an N x N-matrix

ari, ..., Q1N
e (A1)
ana, ---, OQGN,N
with entries from C is defined as
det A := Z (sgn 0)ay (1) - AN,o(N)- (A.2)
ceGn
Exzample.
b
det[a ]:ad—bc.
c d

To actually compute the determinant of larger matrices, the formula (A.2) is of little

use. However, it allows some insight into the properties of the determinant:

(A) if we multiply one column of a matrix A with a scalar A, then the determinant of

that new matrix is Adet A4, i.e.,

aii, ceey )\al,ja sy Q1 N
det

ani, ---, AANj, ...y QAN,N

CL171, ey CLL]‘, ceny aLN
=Adet | o s

CL]\],l7 ey CLN,]', “eey aN7N
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(B) the determinant respects addition in a fixed column, i.e.,

arl, -, Gj+biy, ..., aN
det :
ani, -.-, anj+bngj, ..., ann
aii, ceey aLj, ey aLN
=det | .t |+
aN1, ---, CLNJ', ...y QGN N
aii, .., big, ..., ain
det : : : ;
G,N71, ey bN,j7 “eey aN,N

(C) switching two columns of a matrix changes the sign of the determinant, i.e., for j < k,

aii, ceey @15, .., A1k, ..., Q1N
det
AN 1y v+ CLN’]', -evy AN ..., ANN
al’l, ey al,k, ceey al’j, ey aLN
=—det | 1. b b n
anNi, ---, ONk, ---5 AN ..., ANN
(D) det Iy = 1.

These properties have several consequences:

e If a matrix has two identical columns, its determinant is zero (by (C)).

e More generally, if the columns of a matrix are linearly dependent, the matrix’s
determinant is zero (by (A), (B), and (C)).

e Adding one column to another one, does not change the value of the determinant
(by (B) and (D)).
More importantly, properties (A), (B), (C), and (D), characterize the determinant:

Theorem A.2.2. The determinant is the only map from My (C) to C such that (A), (B),
(C), and (D) hold.

Given a square matrix as in (A.1), its transpose is defined as

ail, ---5, OGN
Al =
aiN;, -.--5 QNN
We have:
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Corollary A.2.3. Let A be an N x N-matriz. Then det A = det A holds.

Proof. The map
Mp(C) = C, A det A

satisfies (A), (B), (C), and (D). O

Remark. In particular, all operations on columns of a matrix can be performed on the

rows as well and affect the determinant in the same way.

Given A € My(C) and j,k € {1,...,N}, the (N — 1) x (N — 1)-matrix AGF) is
obtained from A by deleting the j-th row and the k-th column.

Theorem A.2.4. For any N x N-matriz A, we have
N . .
det A= "(=1)"*a;; det AUK)
k=1
forallj=1,...,N as well as
N
det A = Z(—l)]+kaj,k det AUF)
j=1

forallk=1,... N.

Proof. The right hand sides of both equations satisfy (A), (B), (C), and (D). O
Example.
3 -2 [ 1 —2 ]
det | 2 4 8 =2det| 1 2 4
—5 0 -5 1 |
(1 3 -2 ]
=2det [ 0 -1 6
0 -5 1 |
[ 1
= 2det 0
-5 1
= 2[—1 + 30]
= 58.

Corollary A.2.5. Let T = [t;i]jr=1,..n be a triangular N x N-matriz. Then

N
detT = H thj
j=1

holds.
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Proof. We use induction on N. The claim is clear for N = 1. Let N > 1, and suppose the

claim has been proven for N — 1. Since 711

from Theorem A.2.4 that

is again a triangular matrix, we conclude

detT = t1,1 det T(l’l)

N
=t H tij, by the induction hypothesis,
j=2

=11%J

j=1
This proves the claim. O
Lemma A.2.6. Let A,B € My(C). Then det(AB) = (det A)(det B) holds.

For the notion of eigenvalue, see the next section in this appendix.

Theorem A.2.7. Let A be an N x N-matriz with eigenvalues A1, ..., AN (counted with
multiplicities). Then

N
det A =[x
j=1
holds.

Proof. By the Jordan Normal Form Theorem, there are a triangular matrix 1" with ¢; ; =
Aj for j =1,..., N and an invertible matrix S such that A = STS~'. With Lemma A.2.6
and Corollary A.2.5, it follows that

det A = det(STS™)
= (det S)(det T)(det S~1)
= (det SS ) det T
=detT

N
=[]
j=1

This completes the proof. O

A.3 Eigenvalues

In analogy with My (R), we denote by My (C) the N x N matrices with complex entries.

Definition A.3.1. Let A € My (C). Then A € C is called an eigenvalue of A if there is
x € CV\ {0} —an eigenvector of A—such that Az = \x.
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Definition A.3.2. Let A € My(C). Then the characteristic polynomial x4 of A is
defined as x4(\) := det(AIy — A).
Theorem A.3.3. The following are equivalent for A € My(C) and A € C:

(i) A is an eigenvalue of A;

(i) xa(\) =0,

Proof. Note that:

A is an eigenvalue of A <= there is z € CV \ {0} such that Az = \z
<= there is € CV \ {0} such that Az — Az =0
<= Ay — A has rank strictly less than NV
< det(AMly —A)=0.

This proves (i) <= (ii). O
Ezxamples. 1. Let
3 7T —4
A=10 1 2
0 -1 -2
It follows that
[ A-3 -7 4
xa(A) = det 0 Xx—1 -2
0 1 A+2
A—1 —2
= (A —3)det
1 A+2

=A=3)(V+A-2+2)
= A+ 1)(A—3).

Hence, 0, —1, and 3 are the eigenvalues of A.

A:[ 0 1]’
10

so that x4(\) = A2 + 1. Hence, i and —i are the eigenvalues of A.
X

2. Let

This last examples shows that a real matrix, need not have real eigenvalues in general.

Theorem A.3.4 (Spectral Theorem for Symmetric Matrices). Let A € Myn(R) be sym-
metric, i.e., A= A! where A® is the transpose of A. Then:
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(i) all eigenvalues of A are real;

(ii) there is an orthonormal basis of RY consisting of eigenvectors of A, i.e., there are
&1y-.,EN € R such that:

(a) &1,...,&N are eigenvectors of A;
(b) &l =1 forj=1,...,N;
(c) & & =0 for j #k.
Definition A.3.5. Let A € My(R) be symmetric. Then A is called:
(a) positive definite if all eigenvalues of A are (strictly) positive;
(b) negativ definite if all eigenvalues of A are (strictly) negative;
(c) indefinite if A has both positive and negative eigenvalues.
Remark. Note that
A is positive definite <= —A is negative definite.
Theorem A.3.6. The following are equivalent for a symmetric matric A € My(R):
(i) A is positive definite;
(ii) Az -2 >0 for all z € RV \ {0}.

Proof. (ii) = (i): Let A € R be an eigenvalue of A, and let 2 € R be a corresponding

eigenvector. It follows that

0< Az -z =Mz -z =\|z|?

so that A > 0.
(i) = (ii): Let z € RY \ {0}. By Theorem A.3.4, RY has an orthonormal basis
&1, ..., &N of eigenvectors of A. Hence, there aretq,...,txy € R—not all of them zero—such

that v = t1&§ + - - +tnEn. For j =1,..., N, let \; denote the eigenvalue corresponding

to the eigenvector §;. Hence, we have

Ax -z = thtkAgj . gk

7.k

= titedi(& - &)
i,k

=Dt
j=1

> 0,

which proves (i). O
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Corollary A.3.7. The following are equivalent for a symmetric matric A € My (R):
(i) A is negative definite;
(ii) Az -z <0 for all x € RN \ {0}.

If A e My(R) is positive definite, then det A > 0 whereas the converse is clearly false.
Still, the following is true:

Theorem A.3.8 (Hurwitz’ Theorem). A symmetric matric A € My (R) as in (A.1) is
positive definite if and only if

ail, .-, Q1K
det : : >0
aK1, ---, OKK

forall K=1,...,N.

Corollary A.3.9. A symmetric matric A € My (R) is negative definite if and only if
aii, -5 QLK
(D)% et | 1 e <0
aK1, ---, OKK

forall K=1,...,N.

Example. Let
A=

a b
c d

e A is positive definite if and only if a > 0 and ad — b* > 0;

be symmetric, i.e., b = ¢. Then we have:

e A is negative definite if and only if a < 0 and ad — b > 0;

e A is indefinite if and only if ad — b < 0.

Fxercises

1. Prove the “only if” part of Theorem A.3.8.

2. Let [¢5] € My(R) be such that a > 0 and ad — b* > 0. Show that A is positive
definite. (Hint: Take a look at y (M) from two different perspectives.)
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Limit Superior and Limit Inferior

B.1 The Limit Superior

Definition B.1.1. A number a € R is called an accumulation point of a sequence (a,)2 4
if there is a subsequence (an, )5 ; of (a,)22; such that limy_, apn, = a.

oo

oo, is convergent with limit a, then a is the only accumulation point of

Clearly, (ay)

(an)2%,. It is possible that (a,)22; has only one accumulation point, but nevertheless

does not converge: for n € N| let

{ n, n odd,
ap 1=

0, n even.

o

21, even though the sequence is unbounded

Then 0 is the only accumulation point of (ay,)

and thus not convergent. On the other hand, we have:

Proposition B.1.2. Let (a,)02; be a bounded sequence in R which only one accumulation

[e.9]

o 1 15 convergent with limit a.

point, say a. Then (a,)

Proof. Assume otherwise. Then there is ¢y > 0 and a subsequence (a,, )3 of (an);e; with

|an, —al > €g. Since (an, )72 is bounded, it has—Dby the Bolzano-Weierstrafl Theorem—
[e.9]

a convergent subsequence ank]) ~ with limit o’. Since |a — d’| > €y, we have a’ # a.
. -

On the other hand, (ankj)' is also a subsequence of (a,)5%,, so that o’ is also an

accumulation point of (a,)5° . Since a’ # a, this is a contradiction. O

Proposition B.1.3. Let (a,)22, be a bounded sequence in R. Then the set of accumula-

tion points of (an), is non-empty and bounded.

Proof. By the Bolzano—Weierstrafl Theorem, (a, )5 ; has at least one accumulation point.
Let a be any accumulation point of (a,)22, and let C' > 0 be such that |a,| < C for
n € N. Let (an,)72, be a subsequence of (ay);2; such that a = limy_,oc an,. It follows

that |a| = limg_y00 |an, | < C. O

295



APPENDIX B. LIMIT SUPERIOR AND LIMIT INFERIOR 296

Definition B.1.4. Let (a,)2; be bounded below. If (a,)22  is bounded, define the limit

superior imsup,,_, . an, of (an)22, by letting

limsup a,, := sup{a € R : a is an accumulation point of (a,)pe;};
n—oo

otherwise, let lim sup,, ., a, := oc.
Of course, if (a,)52; converges, we have limsup,, o @, = limy,_,o0 Gp.

Proposition B.1.5. Let (a,)22, be bounded below. Then there is a subsequence (an, )5,

of (an)2; such that imsup,,_, an = limg_o0 @y, .

Proof. 1f limsup,,_,., an = 00, the claim is clear (since (a,)5%; is not bounded above,
there has to be a subsequence converging to co)
Suppose that a := limsup,,_, . a, < co. There is an accumulation point p; of (a,)22,

such that |a — p1| < 5. From the definition of an accumulation point, we can find n; € N

such that |p1 — an,| < 1, so that
@ —an,| < |la—pi| + p1 —an, | < 1.

Suppose now that ny < --- < ny have already been found such that
la —an;| < !
T
for j = 1,...,k. Let pgt1 be an accumulation point of (a,)52; such that |a — pg+1]| <
By the definition of an accumulation point, there is ngy1 > ng such that |pgy1 —
so that

(k+1)
gy | < 2(k+1)
1
E+1
Inductively, we thus obtain a subsequence (an, )7 of (an);e; such that a = limy_o0 Gy, -
O

la — ank+1| <la = prs1| + [pr+1 — ank+1| <

Ezample. It is easy to see that
1 n
limsupn(l+ (-1)") = oo and limsup(—1)" <1 + > —e.
n—o00 n—00 n

The following is easily checked:
Proposition B.1.6. Let (a,)22 and (b,)22 be bounded below, and let A\, > 0. Then

lim sup(Aa,, + pby,) < Alimsup a,, + plimsup by,

n—oo n—oo n—o0

holds.

The scalars in this proposition have to be non-negative, and in general, we cannot
expect equality:
0 =limsup ((-1)" + (—1)”_1) < 2 = limsup(—1)" 4 limsup(—1)""1.

n—oo n—oo n—o0
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B.2 The Limit Inferior

Paralell to the limit superior, there is a limit inferior:

Definition B.2.1. Let (a,)22; be bounded above. If (a,)22 is bounded, define the limit
inferior liminf,,_, . a, of (a,); by letting

liminf a,, := inf{a € R : a is an accumulation point of (a,)o"};
n—oo

otherwise, let liminf, .., a, := —o0.

As for the limit superior, we have that, if (a,)22; converges, we have liminf,,_, a, =
limy,— oo A,

Also, as for the limit superior, we have:

Proposition B.2.2. Let (ay,);2; be bounded above. Then there is a subsequence (an, )72,

of (an)$; such that iminf, o a, = limg_,o0 ap, .

If (an)2

o 1 is bounded, then limsup,,_,,, a, and liminf, . a, both exist. Then, by

definition,

liminf a,, < limsup a,
n—00 n—00

holds with equality if and only if (@) ; converges.

Furthermore, if (a,)52; is bounded below, then

liminf(—a,) = —limsupa,
n—o0 n—00

holds, as is straightforwardly verified. (An analoguous statement holds for (a, )5 ; boun-
ded above.)
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absolutely convergent upper, 6
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affine r-chain, 221 bounded
alternating sequence, 40
r-linear form, 205 set, 6, 27
harmonic series, 236 above, 6
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angle between two curves, 162

0_ .
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1
Archimedean field, 7 C-
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Baby Inverse Function Theorem, 128 Cantor’s Diagonal Argument, 16
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binomial series, 267 sequence, 44
Bolzano—Weierstrafl Theorem, 27 uniform, 256
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Cauchy—Schwarz Inequality, 19
Cavalieri’s Principle, 110
Chain Rule, 58, 72
Change of Variables, 113, 141
in one variable, 104
characteristic polynomial, 292
Clairaut’s Theorem, 63
closed
ball, 20
curve, 173
differential form, 217
interval, 9
set, 25
closure of a set, 31
cluster point, 27
co-domain, 13
commutativity, 1
compact
N-dimensional interval, 87
partition of, 90
subdivision of, 90
set, 32
Comparison Test
for improper Riemann integrals, 248
for infinite series, 236
Limit, 237
concatenation of two curves, 165
connected set, 35
conservative vector field, 171
content, 97
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87
set with, 97
zero, 87
continuous function, 49
at xg, 47
continuously partially differentiable func-
tion, 63
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twice, 63
convergence
locally uniform, 259
pointwise, 254
uniform, 255
convergent
sequence, 39
series, 232
convex set, 20
coordinates, 17
cylindrical, 118
polar, 116
spherical, 117
countable set, 15
CP-function, 123
cross product, 187
cube, 142
with center x and side length 2r, 147
curl, 66
curve, 156
Cl-, 158
piecewise, 165
closed, 173
integral
properties of, 167
integral of a vector field, 167
length of, 158
level, 127
line element of, 156
piecewiese continuously differentiable,
165
rectifiable, 158
regular, 162
regular at a point, 162
singular at a point, 162
tangent vector to, 162
trace of, 156
cycloid, 160
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cylindrical coordinates, 118

decreasing sequence, 42
derivative
first, 56
left hand, 275
partial
first, 60
higher order, 62
second, 62
right hand, 275
determinant, 288
differentiable function, 58
at xg, 69
differential
r-form, see differential form
form, 210
closed, 217
exact, 217
of class CP, 210
outer differential of, 212
pullback of, 215
standard representation of, 211
surface integral of, 217
of a Cl-function, 212
of a totally differentiable function, 70
outer
of a differential form, 212
Dini’s Lemma, 258
directional derivative, 73
Dirichlet kernel, 274
disconnected set, 35
disconnection of a set, 35
discrete set, 53
distributivity, 1
divergence, 66
divergent sequence, 39
domain, 13
dot product, 17

300

eigenvalue, 291
eigenvector, 291
elements
inverse
existence of, 1
uniqueness of, 3
neutral
existence of, 1
uniqueness of, 3
equation
heat, 68
potential, 67
wave, 67
Euclidean
norm, 18
space, 17
Fuler’s Identity, 268
exact differential form, 217
existence
of inverse elements, 1
of neutral elements, 1
extremum
local, 58, 62
under the constraint ¢(z) =0, 135

field, 1
Archimedean, 7
axioms, 1
ordered, 4
complete, 7
finite intersection property, 37
first
derivative, 56
partial, 60
First Derivative Test, 62
form
r-linear, 205
alternating, 205

Fourier
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coefficients, 269 Second Formula, 204
complex, 283 Theorem, 184
series, 269
harmonic

Fubini’s Theorem, 106

. function, 67
function, see map

CY-. 123 series, 233
con’tinuous 49 alternating, 236
at x 47’ heat equation, 68
0,
CP-. 123 Heine—Borel Theorem, 34
differentiable, 58 Hessian of f, 80
at zo. 69 higher order partial derivative, 62
0,

harmonic, 67 Hurwitz” Theorem, 294

indicator, 98 image, 13

limit for 2 — x of, 46 Implicit Function Theorem, 130

Lipschitz continuous, 55 improper Riemann integral, 246

locally injective, 123
of class C°, 123

absolutely convergent, 247

increasing sequence, 42

of class CP, 123 indefinite matrix, 82, 293
partially differentiable, 62 indicator function, 98

at xp, 60 inequality

continuously, 63 Cauchy—Schwarz, 19
piecewise triangle, 19

continuously differentiable, 277
differentiable, 277
linear, 277

Riemann integrable, 92, 97

infimum, 7
injective map, 13
integrable function, see Riemann integrable

function

uniformly continuous, 53 integral, see Riemann integral

Fundamental Theorem of a vector field along a curve, 167

for Curve Integrals, 171
of Calculus, 103

Integral Comparison Test, 250
Integration by Parts, 105

Gamma Function, 253 interior
Gaufl’ Theorem, 202 of a set, 31
point, 31

geometric series, 233

Geometric versus Arithmetic Mean, 18 Intermediate Value Theorem, 51

gradient, 61 interval
field, 66, 171 closed, 9
Green’s compact N-dimensional, 87

First Formula, 204 content of, 87
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partition of, 90 local
subdivision of, 90 extremum, 58, 62
open, 9 under the constraint ¢(z) =0, 135
inverse maximum, 58, 62
elements under the constraint ¢(z) = 0, 135
existence of, 1 minimum, 58, 62
uniqueness of, 3 under the constraint ¢(z) =0, 135
image, 13 locally injective function, 123
map, 14 lower bound, 6

Inverse Function Theorem, 130
Baby, 128
isolated point, 53

map, 13

bijective, 14

inverse of, 14

Jacobian matrix, 70 co-domain of, 13
Jordan content, see content domain of, 13
injective, 13
linear, 285
range of, 13

Lagrange
multiplier, 135
Multiplier Theorem, 135

surjective, 14
Laplace operator, 67

mapping, see map
Law of Conservation of Energy, 171

left hand derivative, 275

matrix

indefinite, 82, 293

length, 158 Jacobian, 70
level curve, 127 negative definite, 82, 293
Limit

positive definite, 82, 293

Comparison Test, 237 symmetric, 292

Ratio Test, 238

maximum
‘ .Root Test, 239 global, 86
limit local, 58, 62

inferior, 297 under the constraint ¢(z) =0, 135

of a function for x — xg, 46 Mean Value Theorem, 59

of a sequence as n — oo, 39

‘ minimum
' .superlor, 296 global, 85
Limit Rules, 41 local, 58, 62

line under the constraint ¢(z) =0, 135

element, 156
monotone sequence, 42

segment, 156 multiindex, 78
linear map, 285

Lipschitz continuous function, 55 negative definite matrix, 82, 293
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neighborhood, 23
Nested Interval Property, 10, 22
neutral elements
existence of, 1
uniqueness of, 3
norm
Euclidean, 18
operator, 286
normal
domain in R?, 184
with respect to the z-axis, 180
with respect to the y-axis, 183
domain in R3, 202
with respect to the xy-plane, 199
vector, 189
unit, 193

open
ball, 20
cover, 32
interval, 9
set, 24
operator norm, 286
order axioms, 4
ordered field, 4
complete, 7
oriented
r-simplex, 221, 222
affine r-simplex, 220, 221
boundary
of an affine oriented r-simplex, 221
of an oriented r-simplex, 222
origin, 17
orthonormal basis, 293
outer differential, 212

parameter domain
of a surface
in R3, 187

303

in RN, 217
parameter transformation
admissible, 190
Parseval’s Identity, 283
partial derivative, 60
first, 60
higher order, 62
second, 62
partial sums of a series, 232
partially differentiable function, 62
at xg, 60
partition, 90
refinement of, 91
subdivision generated by, 90
path connected set, 52
permutation, 205, 288
even, 220
odd, 220
sign of, 288
piecewise
Cl-curve, 165
continuously differentiable function,
277
differentiable function, 277
linear function, 277
point, 17
coordinates of, 17
stationary, 81
pointwise convergence, 254
polar coordinates, 116
polygonal path, 156
positive definite matrix, 82, 293
positively oriented boundary, 181, 183
potential
equation, 67
function, 171
power series, 259

power set, 16
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pullback of a differential form, 215 scalar, 17
Second Derivative Test, 77, 83

r-chain, 222 in one variable, 77

trace of, 222

r-form, see differential form

second partial derivative, 62
sequence, 39

bounded, 40

Cauchy, 44

converget, 39

r-linear form, 205
alternating, 205
r-simplex
equivalent, 222
oriented, 221, 222
oriented boundary of, 222
oriented affine, 220, 221
equivalent, 220

decreasing, 42
divergent, 39
increasing, 42
monotone, 42
subsequence of, 41
oriented boundary of, 221 series, 232
vertices of, 220
r-surface in RY, 217

radius of convergence, 260

absolutely convergent, 234
binomial, 267

convergent, 232

range, 13 expansion, 263

ranl.i, 124 Fourier, 269

Ratio Test, 237 geometric, 233
Limit, 238

harmonic, 233

real numbers, 1 alternating, 236

rectifiable curve, 158 partial sums of, 232

refinement, 91 power, 259

common, 92 Taylor, 263

Riemann
set

integrable function, 92, 97 bounded, 6, 27

integral, 92

above, 6
improper, 246 below, 6
sum, 91 closed, 25

Riemann’s Rearrangement Theorem, 239
closure of, 31

Riemann-Lebesgue Lemma, 275
right hand derivative, 275
Rolle’s Theorem, 59
Root Test, 238

Limit, 239
Rules of Differentiation, 57

compact, 32
connected, 35
convex, 20
countable, 15
disconnected, 35
discrete, 53

saddle point, 81 open, 24



INDEX

path connected, 52
star shaped, 37, 177
with content, 97
with content zero, 87
sign of a permutation, 206, 288
Spectral Theorem for Symmetric Matri-
ces, 292
sphere, 29
spherical coordinates, 117
standard representation of a differential
form, 211
star shaped set, 37, 177
stationary point, 81
Stokes’ Theorem, 194
for differential forms, 229
subdivision, 90
subsequence of a sequence, 41
supremum, 7
surface
area, 189
element
in R3, 187
in RN, 217
of an r-chain, 222
in R3, 187
parameter domain of, 187
in RN
parameter domain of, 217
integral
of a differential form, 217
of a function, 192
of a vector field, 192
surjective map, 14

symmetric matrix, 292

tangent vector, 162
Taylor
expansion, 263

series, 263
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Taylor’s Theorem, 79

in one variable, 77
trace

of a curve, 156

of a surface in R3, 187

of a surface in RY, 217

of an r-chain, 222
transpose, 292
transposition, 206
triangle inequality, 10, 19
trigonometric polynomial, 272
twice continuously partially differentiable

function, 63

uniform
Cauchy sequence, 256
continuity, 53
convergence, 255
local, 259
uniformly continuous function, 53
uniqueness
of inverse elements, 3
of neutral elements, 3
of the limit, 39
unit
simplex, 220
vector, 73

upper bound, 6

vector
coordinates of, 17
field, 66
conservative, 171
space, 17

zero, 17

wave equation, 67

wedge product
of alternating multilinear forms, 210
of differential forms, 211
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Weierstrafl
M-Test, 257
Approximation Theorem, 280

zero vector, 17



