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Asymptotic behavior of U-statistics based on realizations of various types of weakly
dependent processes has been investigated for many years but only up to absolute
regularity condition, with very few results in the strong mixing case. The object of this
thesis is to study the limiting behavior of U- statistics for strong mixing processes. First
we study the asymptotic behavior of a special class of U- statistics possessing a
“decomposable structure” , which includes some ordinary estimators like moment
estimators, and derive for such statistics central limit theorems and function central limit
theorems for their corresponding partial sum processes. Then we extend this class to a
larger one satisfying certain strong and weak consistency properties: Under some broad
conditions on strong mixing processes we prove that Un—0(a.s.) if h is bounded and a.e.
continuous, but for unbounded h under these conditions, we are able to prove only that

Un—0(in prob.) if h is a.c. continuous.



ACKNOWLEDGMENTS

I am greatly indebted to my supervisor, Professor K.L. Mchra for introducing me to

the problem and for the considerable time and effort that he has spent in assisting me in my

work and in preparing this thesis.

I am also grateful to Professor M.S. Rao for many valuable suggestions.

Finally, I would like to thank Dr. R. Karunamuni and Professor H.I. Freedman for their

concerns about my thesis.



TABLE OF CONTENTS

CHAPTER PAGE

I ASYMPTOTIC BEHAVIOR OF U-STATISTICS IN THE LLD. CASE 1

1.1 Preliminanies
1.2 Definition of U-statistics
1.3 Projection of U-statistics
1.4 Main results

I ASYMPTOTIC BEHAVIOR OF U-STATISTICS IN THE ABSOLUTELY REGULAR CASE 13

2.1 Definitions of weakly dependent processes 13
2.2 Central limit theorems for strong mixing processes 17
2.3 U-statistics based on absolutely regular processcs 18
2.4 The absolute regularity property of linear processes 24

I11 CENTRAL LIMIT THEOREMS FOR A SPECIAL CLASS OF U-STATISTICS FOR STRONG

MIXING PROCESSES 30

3.1 Main results 30
3.2 Proofs 4

IV STRONG AND WEAK CONSISTENCY OF U-ST ATISTICS FOR STRONG MIXING
42

4.1 Strong consistency of U-statistics 42
4.2 Proofs of Propositions 46
4.3 The weak consistency of U-statistics for strong mixing processes 51
4.4 Proofs 53

PROCESSES



CHAPTER I

ASYMPTOTIC BEHAVIOR OF U=-STATISTICS

IN THE LLD. CASE

1.1: PRELIMINARIES

Large-sample theory considers a sample X= (Xj,....Xqn) for fixed n =1,2,..., and
assesses the performance of statistical procedures, sequences of estimators €tc. based
on X asn — eo. Mathematically, the results are illuminating and useful limit theorems
which are needed for statistical applications. Consider the simplest situation: Estimate
the mean value EX) when Xj,...Xp are i.i.d. (independent and identically distributed)
with 62=Var (X)<es . It follows from the classical central limit theorem and strong law
of large numbers that the estimator X converges to EX) with probability 1 and m(xX -
EX)) converges weakly to N(0, 62). So the problem arises: How to extend the above

results to more general statistics and non i.i.d. sequences (Xp: n=12,..}?

In recent years, a great deal of work has been devoted to the above two
aspects of the problem: Firstly, the extension of the limit theorems from X to statistics
such as U-statistics, V-statistics, or L-statistics; and the other to the extension of the
limit theorems from the i.i.d. case to the case of weakly dependent sequences such as
m-dependent processes, s—mixing processes, uniformly mixing processes, absolutely

regular processes , Of Strong mixing processes.

The first important contribution to the first aspect is Hoffeding's

work{13)(1948). He established the limit theory of U-statistics in the i.i.d. case, which



are sums of identically distributed random variables. In 1958, Chemotf and Savage (4]
class of linear rank-order statistics in the i.i.d. case . Later, using the projection method,
which is a very strong and useful tool to study limiting behavior, Hajek extended their

work [10)(1968) to the non i.i.d. case.

On the second aspect, Rosenblatt is the first to put forward the concept of
strong mixing processes and prove a central limit theorem for X [17)(1957) .After that,
many authors such as Ibragimov [13], Philipp [16], Serfling [22] , and many others
have contributed to the limiting behavior of X based on mixing processes.

Recently , combining the two aspects, many authors have studied the limiting
behavior of U-statistics,V-statistics and L-statistics based on various weakly
dependent processes. In particular, for U-statistics under weak dependence Sen [21]
(1972 ) considered *—mixing processes and derived a central limit theorem and a law of
the iterated logarithm. Fears and Mechra [9] (1974) proved the Chermoff-Savage

sequences of observations which satisfy the ¢-mixing dependence. Later, Mehra
(16)(1975) established similar results for the onc-sample linear rank statistics under ¢-
mixing. Yoshihara [29] (1976) established the weak convergence of U- and V-
statistics for stationary absolutely regular processes. Later Yoshihara [30) (1978) also
proved the weak convergence of onc sample rank order statistics under similar
conditions. Denker and Keller [7] (1983) extended these results and proved central
limit theorems and their rates of convergence, functional central limit theorems and a.s.
approximation by a Brownian motion. Harel and Puri [12] (1989) extended some of
Yoshihara's results to nonstationary case.



Since in general onc has the following implicatiuns: *—mixing => uniform mixing
in both directions of time = uniform mixing = absolutely regular => strong mixing, so
the extension of above mentioned results under "strong mixing " are of great
importance. But even after nearly fifteen years, extension of above mentioned results
on U-statistics to the strong mixing case has not been available. This fact somehow

implies that the last extension is very difficult.

The main object of this thesis is to study the limiting behavior of U- and V-
statistics based on strong mixing processes. In Chapter 1 we introduce U- and V-
statistics in the i.i.d. case and explain the method of projection. In order to exhibit the
beautiful structure and limiting behavior of U-statistics, we summarize the main results
about U-statistics. In Chapter 2 we introduce various weakly dependent processes and
the central limit theorems in the strong mixing case , and review some basic results
about the limiting behavior of U- and V-statistics based on absolutely regular
processes, especially Yoshihara's work . By examining the conditions for absolutely
regular processes, we prove that the linear processes described in (10] and (28] are
absolutely regular. : urthermore,we point out that the main difficulty in the strong
mixing case lies in the fact that the "fundamental” approximation lemma of Yoshihara
(29], which plays a key role in proving the weak convergence of U- and V-siatistics,

does not seem to extend 1o the strong mixing case.

In order 10 get a similar approximation lemma, we have cenfined our attention
to a special class of U- and V-statistics possessing a "decomposable structure” , which
includes some ordinary estimators like moment estimators. So in Chapter 3 we study
the limiting behavior of such a class of U- and V-satistics and prove central limit
theorems and their rates of convergence, functional central limit thcorems and a.s.
OWMMIBMMMMﬁECMBf U- and V-statistics stated in
Chapter 3 is not large cnough to include many intcresting statistics ,we have atiempted



to extend this class to larger one satisfying certain consistency results. However, we
are not able to prove for this larger class properties such as central limit theorems.

Chapter 4 is devoted to the strong and weak consistency results: Under some

case. We mention the concepts of U- and V-statistics, introduce the method of
projection, exhibit the martingale structure of U- and V-statistics, and present the

main results on the limiting behavior of U- and V-statistics. The ideas and the write-up

are mostly as in [26)(Serfling).
1.2: DEFINITION OF U-STATISTICS

Let X1, X2.... be independent observations from a distribution F. Consider a
"parametric function” 0=0(F) for which there is an unbiased estimator. That is, O(F)
may be represented as

OF) = Er(h(X1.... Xm)) = Joo (X1 xem)F(x1)...dF (Xm), )

for some function h = h(xy.....xm) called a "kemel”. Without loss of generality, we may
assume that h is symmetric in the arguments. For, if not, it may be replaced by the
symmetric kernel
1
1 2 h(xi .. Xigy)
P
where Xy denotcs summation over the m! permutations (i,-...im) of (1,....m).

Definition 1: For any kemel h, the corresponding U-statistic for estimation of
© on the basis of a sample Xj.....Xq of size n 2 m is obtained by averaging the kemel h

symmetrically over the observations:



1
n
m

Un = U(X1....Xn) = ﬁZ Wi - Xigy): (2)
c
where Y.c denotes summation over the ( :‘ ) combinations of m distinct clements
(i1seeeimi from {1,...,n}. Clearly, Uy, is unbiased estimate of 8.
Examples. (i) Let 6(F) = mean of F = u(F) =fx dF(x) with the kemel h(x) =
x, the comresponding U-statistic is
1 < =
U(X1,-.Xn) =;;xa=x,
ne
the sample mean.
(i) Let O(F) = p2(F) = (/ x dF(x))2. For the kemel h(x).x2) = x1x2, the

corresponding U-statistic is

1
. 2_ 3 xx
UK. Xo) = 5 Ty | &0 2%

(iii) Let O(F) = variance of F = f (x - p)2 dF(x) which can be written as 0 %
[ | (x1 - x2)2dF(x)dF(x2) . For the kernel

.1, ,
h(x1,x2) = 3 (x1-x2)2,
the corresponding U-statistic is

U1 Xe) = 5005 lsg,i b 06X



the sample vanance.
(iv) Let 8(F) = F() = ]DdF(x) = Pr(X15S tg). For the kernel h(x)=I(x}s to),

the corresponding U-statistic is

R —
U(Xy,Xn) =T Z I(xjStg) =Fn(10),
"=l

where F, denotes the sample distribution function.
(v) Let 6(F) = Eg | X, - X2 |=[] | xy=x2 | dF(x)dF(x2), a measure of spread.

For the kernel h(xy,x2)= lirlz | . the corresponding U-statistic is

U(x!!u-@xﬁ) n(n l) lgléjslnxl xj

the statistic known as"Gini's mean difference.”
(vi) The Wilcoxon one-sample statistic. For estimation of O(F) = PR(X+X>2s

0) .the kemel is given by h(x}.x2)= I(x1+x2< 0) and the corresponding U-statistic is

UKt Xe) = 5T lsgj 106 +X;<0).

Definition 2 : Corresponding to a U-statistic

- o ) l — N 7
Un = U(X!.ﬁ-,xn) s-(n—)z h(xl!r__'xlm)
c

m

for estimation of O(F) = Eg(h), the associated von Mises statistic

vn‘r i 2 h(xlp Jlm) (3)



= 0(Fn)
is called V-statistic, where Fp denotes the standard sample distribution function.

The extension to the case of several samples is straightforward. Consider k

independent collections of independent observations (xﬁ".xy’ ....),....{xﬁ"’.xé"’ e}

taken from distributions F(1),... F() respectively. Let 6 = o(F(1,...,F(K) ) denote a

parametric function for which there is an unbiased estimator. That is ,

1 1
6 = E(ho... X, xq. @)

wrere h is assumed, without loss of generality, to be symmetric within cach of its k

blocks of arguments.

Definition 3 : Corresponding to the kemel” h and assuming nj2 my,....Nk2 Mk,

the U-statistic for estimation of 0 is defined as

1 ) mn . J® &) .
ﬂ - , h(xin.""'xilml;""xikl""'xikmk)' (5)
(mj ¢

j=

here (ijl""ijmj, denotes a set of m; distinct clements of the set (1,2,...nj), 1 S jSk,and
Y. denotes summation over all such combinations.

Many statistics of interest arc of k-sample U-statistic type ; for example, the

Wilcoxon 2-sample statistic. Let IX|.....X.,|) and lY|.....Y,.2_L be independent

observations from continuous distributions F and G, respectively. Then, for 8(F.G) =
| GdF = P(X < Y), an unbiased estimator is

n
1
U-nmi ’Z IX; S Y-



Definition 4 : We call a kernel h degencrate if for any xj € (1S i S m) and
je (1,...,.m),

Eph(x{,....Xj-1.XjsXj+ 15---Xm) = 0. (6)

Definition § : A U-statistic (or a V-statistic) is called degenerate if the
corresponding kernel h is degenerate.
1.3: PROJECTION OF U-STATISTICS

Consider a symmetric kernel h satisfying Erlh | < . We define the
associated functions

hc(X]....,Xc) = EFh("I-m-xc-lvxc»xcﬂ---»xm) (7)
for each c=1,...,m-1 and put hyy = h.

We now ‘et
he = he — 8(F) (8)

and
g,(x1) = hi(x1),
g,(x1.x2) = ha(x1.x2) - g, (x1) - 8, (x2),
83(x1.x2,x3) = h3(xy.x2.x3) - i g, (xi) - ) By(xinx;) »

i=] 1Si<js3

gm(x1.....Xm) = hem(X],....Xm) = 2 8 (xi) - )X 8,(xiy.Xis)
i=1 1Si<i2Sm



(9)

- z gm(xlp--u’fi,i]) .

(1Si1<,...,im-15mM)

Clearly, the gc's are symmetric in their arguments. Also, it is readily scen that gc's are
degencrate. According to Hoeffding's projection method,every U-statistic can be written
as a finite weighted sum of degenerate ones, namely,
Un-0= f(’é‘)u‘; (10)
c=1

where U ° denotes the U-statistic obtained from the degenerate kernel gc ,that is

LD Y an
(“ 15115,....icSn)
c
Further, for each ¢ =1,...,
(12)

where
i k\ ¢
Sck = (C)Jk B

Thus .with % =0(X1,....Xk ). the sequence (Scn, Falnxcis a forward martingale

Now the projection of the U-statistic Uy is defined as

(13)
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and the remainder of Uy, is defined as

Rp = ﬁ(’:)uﬁ (14)

c=2

Hence

Up—-0=Un+Ry. (15)

In fact Ry is also a U-statistic with a degenerate kernel H(see Serfling [24]) , that is,

R, (H)= f, HOX e X i) (16)

n i<
m |<lm

where

HX; oo X d=h (X oo Xpnd-B1(X1) e ~h1(X )0 (17)

1.4: MAIN RESULTS

First we treat the remainder Ry .We have the following theorems.

Theorem A :[26] Let v be an cven positive integer. If EFhY < ee then

ER(Rp)Y =O(n7v),as n = e=. (18)

Theorem B : [26] Let v be even positive integer. If EphV < o= then,for any 5>

1/v,with probability 1
Rp = o{n~1(log n)5) ,as n = e

Thus, the classical limit theorems for X can be genenalized to U-statistics using
Theorem A , the martingale property of Us and the decomposition (15) above.

Theorem C: [26] If ER |h | < oo, then Uy = 0 (wpl), as n— = .

Theorem D: [26] If Eph2 < « and {; = Var(hy) >0 ,then



liMn—ee (2m2(; log logn)!/2 WP (19)

Theorem E: [26] If Eph2 < oe and {1 = Var(h1) >0 | then

nl2@u_ - 8) - NOm2Ly).

Theorem F: [26] If v = Ef | h |3< e« and §; = Var(h1) >0, then

12w, -0 L )
SUP-co<t<oo | P(%;‘E—)E t] o) | s cvimaty y3nnin, (20)

L™

where C is an absolute constant.

For the corresponding sequence of U- statistics, {Un)nzm. Wwe consider two
associated sequences of stochastic processes on the unit interval [0,1]. The process
pertaining to the future , {Zn(t), 0<t<1), is defined by

Zy(0) = 0;

Var(Uk)
Za(ta k) = W k2n, where tpk = Var(Un)

Zy()

Zp(ta k) » tnke1< <ln k-
Theorem G : [26] Za(t) converges weakly in D[0,1] to the standard Wiener
measure W.
This result generalizes Theorem E and provides additional information such as
the following
Corollary : For x>0,
limp—eeP(supx2a(Uk- 0)2x(var( Ua)2)

= P(suposisi W2 x) = 2(1-(x)) (21)
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The process pertaining to the past, { Ya(t), 0st<1), is defined by

Y(0) = 0, ns:sr%l;

77 k=mm+l,...n;

Y o(t) defined elsewhere, 0st<1, by linear interpolation.

Theorem H : [26] Yqa(1) converges weakly in D[0,1] to the standard Wiener
measure W.
The similar results hold for V-statistics from the following Lemma.
Lemma : [26] Let r be a positive integer. Suppose that
Ek | h(X j) von X i) | F < o, all 1 SiijecimS 1.
Then
E|Un- Val* = 0. (22)



CHAPTER I

ASYMPTOTIC BEHAVIOR OF U-STATISTICS

IN THE ABSOLUTELY REGULAR CASE

In this chapter ,we first define various weakly dependent processes and state
certain central limit theorems based on realizations of such processes.. Then we focus,
in particular, on the absolutely regular processes. We mention the "fundamental lemma”
and the main theorems of Yoshihara[29], Denker and Keller{7], and discuss some
conditions for absolutely regular processes. Using these conditions we improve upon
the results of [10 ] by proving that the strong mixing process described in [10 ] is also
an absolutely regular process. Furthermore, we point out why it seems impossible to
extend the "fundamental lemma" of Yoshihara [29] to strong mixing processes.

2.1 DEFINITIONS OF WEAKLY DEPENDENT PROCESSES

Let X1, X2, ... be a strictly stationary stochastic process of random variables on
a measurable space (X,%). The past history of the process X, is described by the -
algebra Q!iis , the future by the o—-algebra 5(:3 ,where "2 is the c—algebra generated

by (X;|a St <b). It may be that these G-algebras are independent , in the sense that,
for all Ae Sf' BE ﬂf;‘ .

P(AB) - P(A)P(B} = 0.

13



In the general case , the magnitude of the left-hand side measures the dependence
between past and future, and it is practical and useful sometimes to assume this to be

small, in some sense. This idea is captured in the following definitions:

¢*(m) = sup( mlﬂ,«a) ~P(APB)[}>0 asm—o e, (1)
where the supremum extends overn€ N, A € M'; and B € M:‘*“ .

uniformly mixing, that is,

¢*(m) = sup max( | P(A |B) = P(A) |, IP(BIA)-P(B)|} 0 asm— =, (2)

where the supremum extends overn€ N, A € ﬂl;mdse sq:_m

(uniformly mixing) if

om) = sup IPB|A) -P(B)| 5 0 asm— o, (3)
where the supremum extends overn€ N, A € :I(?miBE :lq:ﬁ

Definition 4 : [22)(Rozanov)(1961) A stationary process (X ) is said to be
absolutely regular if

B(m):supE(sup(|P(B|9(?)—P(B)|IBE :iq;_m]];t() asm—r e, (4)

14



Definition S: [19](Rosenblatt) A stationary process (X, } is said to be strong
mixing (completely regular) if

a(m) = sup | P(AB) ~P(A)P(B)| 20 asm— =, (5)

where the supremum extends over n € N.Ae ’{l‘ and B € M:wn'

Since ¢°(m) < ¢*(m) S ¢(m) S B(m) < a(m), it follows that *-mixing =
uniform mixing in both directions of time = uniform mixing => absolutely regular =

strong mixing . But the converse implications are not true.

There arc a number of results in literature conceming the strong mixing
processes. Rosenblatt [20) gave necessary and sufficient conditions for a process to be
strong mixing. He established that a stationary Markov process is strong mixing if and
only if it is uniformly pure non-deterministic. He also gave equivalent conditions for
strong mixing in terms of transition operator and the invariant probability measure.
Kolmogorov and Rozanov [15) showed that for stationary Gaussian sequences, a(m) S
p(m) < 2x a(m). With the aid of this result Ibragimov and Linnik [14] established that
a stationary Gaussian sequences is strong mixing if it has a continuous spectral density
that is bounded away from O. Billingsley (2] showed that if Y is a Markov chain
satisfying Doeblin's condition(see Doob(8] p.192) then Xq = f(Ya) is strong mixing.
Chanda (3] and Whithers [28] considered strong mixing properties of the process Yo =
T Wit where (ea) are i.i.d. random variables. Under some conditions they proved
that Yy, is strong mixing. Athreya and Pantula [1) showed that Y, is strong mixing
where Yq is Harris-recurrent Markov chain, provided there exists a stationary

probability distribution x (.) for Yg .

13



Examples. (i) [27)(Stout) Continued fraction expansions of real numbers
when viewed properly provide an interesting example of a *-mixing sequence. Let the
mapping T : (0,1) = (0,1) be defined by

Tx=x"1—-[x1]

where [y] denotes the largest integer S y. Let a(x) = [x-1] and ag4+1(x) = 21(T"x) for
n21 and each x € (0,1). Here T" is the nth iterate of T. Then (a)(x),a2(x),...) is referred
to as the continued fraction expansion of x. This is sometimes written as
_ 1 _
X = = i -
0200 + 35300 + ..

Let = (0,1), A be any Borel set, and P be defined by
P(A)= lug"ll(lﬂ)-l dx .
| v

Then,analysis shows that {aj,a2,...) is *-mixing sequence with ¢(m) = Kq for
some K<es and O<q<!.

(ii) [1] Let Yy be an autoregressive series given by Yo = p Yar+ea n=12..,
where |pl< 1and ( eq ) are i.i.d. random variables independent of Yo .Assume that

@) El{log le1])*)1< =

(b) for some no 2 1, Uno = Z;2pJej has a non-trivial absolutely continuous

uniformly mixing iff there exists a finite constant ¢ such that leyl<c.

16



In this section we mention some central limit theorems for strong mixing
processes.
Theorem A:[14]( Ibragimov)Let the process {X;) be centered and strong

mixing with E 1 X1 2*8 < es for some 5> 0. If

§ am¥2*d <, (6)

n=1

then
. 2
o2 = E(Xg )+ 2 21 E(XgXj) <. )
n=l

and if ¢ # 0 ,then

lim P{o"! n"1/2 i X; <z) = ®().
1

Theorem B : [14]( Ibragimov)Let the process (X;}) be bounded, centered and
strong mixing with
2 a(n) <ee; (8)
n=1

then
o2 &
uzmxomngl E(XgX)) <=,
and if 6 » 0 then
lim P{o”} 012 2 X; <z) = 0(2).
j=1

2.3 ;: U-STATISTICS OF ABSOLUTELY REGULAR PROCESSES

17



Suppose that (X;) is a strictly stationary,absolutely regular process . Let i

<iz<...<iy be arbitrary integers. For any j (0s js k-1), put

and

p‘gk)(g(k)) = P(X; ...X; Je E®),

where E() is a Borel setinRi .
Fundamental lemma : [29](Yoshihara) For any j (0% j< k-1), let h(xy,....xx)

be a Borel function such that

[ o] It | 1980R s M

for some §>0 . Then

1 o] Inxrm 11930880 - . | Ih(x,..,..xk)llﬁdgi‘k’ l

< AMV(1+8)BY1+8)(ijy - i) . (10)

The proof is simply based on a Rozanov and Volkonskiis' result in [22] and
further,we will use their result to explain why it seems that it is impossible to extend
this lemma to the strong mixing case. In 1961, Rozanov and Volkonskii found that

Bn) = 5 V(ow. an

18



where @n = Pon - P1n is 2 signed measure, Pon is the measure induced by the

process (Xn) on the c-algebra Mo “uﬂf: , Pin is the measure defined for A € 5(: B

€ M? « DY the equality
P1n(AB) = Pon(A)Pon(B) ,

and V(@n) is the total variation of @n on the whole space and is defined as in [31] (pp.
35 -37)

V(®n) = V (@n) + Y(Pn),

where

V (9n) = sup (n(B) | B € 3rud)
Vign) =inf (gn(B) |B e 2l 0 ).
A well known fact [31)(pp.35-37) about V(@p) is that

Vign = supifisi |] fopa(an| (12)
where supremum runs over all such f(x) which are M? ﬂuﬂ:—m:;smble ,with bound
1. According to this fact and B(n) = % V(Qn) , We obtain that
1 I N
By = 5 supinst 1] foea@n| .

In fact , there exists such fao(x) that (see [31] pp.35-37)

B = 3 ] tocoentan|.

19
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Replacing @qn with Pék)i Fj(k) and letting fjo(x) = lhj(xxim.n) | , we have

(k) |7

Bijer-ip= 3 1f..] I nj0xtnoni 1aRSY = [ J Ihjxa.xi0 0P, (13)

restrict the class of h and pay attention to the structure of h. In next chapter we will deal
with this situation.
According to the fundamental lemma Yoshihara [29] obtained the convergence

rates of E(Rp)2 where Ry, is defined as before (see (14) or (16) in [1.2]).

Proposition 1 : Let (Xp) is absolutely regular. If for some >0 and >0 holds
B(n)Y(2+8) = O(n-2+¢), then
E(Rp)? = O(n"2+¢),
If we assume that for some 8 >0 I B(n)¥(2+8)< oo, then

E(Rp)2 = O(n'1).

Set

or (hy= :{)': iltxa)} (14)

i=l

and

oxh) = EM(X1? + 22, EMQXDh(X). (15)
>

Since Up =8 = Un + Rp where 0 and Up are defined as before (see (1) and (13) in
(1.2)), using this proposition and Theorem A [2.2] and noting B(n)< a(n), one has



Theorem A : [29](Yoshihara) Let h be a non-degenerate kernel. Then
N o oy @ s N/
moa(h) (Up (h) = 6) = N(0,1),
provided the following condition (*) is satisfied :
(*) (Xa) is absolutely regular with coefficients B(n)¥(2+8) = O(n-2+¢) for
some 5>0 ,0se<1,62(h) > 0 and

sup E | h(Xi1,....Xim) |248< 0,
where the supremum is over all choices of 1€ i1<i2<...<im .

The same statement holds for V-statistics when the above supremum is

replaced by the supremum over all choices of 15 i; (15jS m).
Using Proposition 1 and Theorem 1 (b) in (6] (Dehling) one has the following
theorems.

Theorem B : [7)(Denker and Keller)Let h be a non-degenerate kemnel, then

X
oo | fin=0262 |7 Jonf ) 100

where 1;%‘ under the following condition (*):

(*) (Xa) is absolutcly regular with coefficients B(n) satisfying B(n)¥2+8) =
O(n-2+¢) for for some 0 <6<1,0< £<1,062(h) > 0 and

sup E | h(Xip,...Xim) | 248< oo,

where the supremum is over all choices of 1S ij< i2<..<im,



The same statement holds for V-statistics when the supremum is replaced by

the supremum over all choices of 1< i; (1S iS m).

Denote by
(P, Q) =inf (e>0 | P(A)< Q(A®)+€ for all closed A< R} (16)

the Prohorov distance of two distributions P and Q on R, where A® = (xe R | dist(x,A)

<g}).
Theorem C : [7)(Denker and Keller)If the conditions of Theorem B ,0ld, then
o= *{LiomgyUn®) NO.D) =0,
_(1-8)8
where A= 44

In order to formulate the functional central limit theorem one defines the

D[0.1]-valued random functions Ea by

En (V= VA mroriy Wing -0)  (0S1<D), (16)
where [nt] denotes the greatest integer not exceeding nt.

Using the basic lemma and Proposition 1, Denker and Keller (1983) obtained
the following proposition.

Proposition 2 :[7)(Denker and Keller) Let {Xn) be absolutely regular with
coefficients B(n) satisfying B(n)32+8) = O(n~2¢¢) for some 8,¢ > 0, then

Ro= O(n-34+¢/2(logn)3) a.s.

and

P(maxjgicn ilRnl2cn) = O(n'ﬂﬂe’%(iogn)ii)



for any sequence cj€ R*.

So the following theorems can be deduced from Theorem 1 in [S](Dehling) and
Theorem 3 in [6)(Dehling) together with Proposition 2.

Theorem D : [7) (Denker)Let h be a non-degenerate kernel, then En
converges weakly in D[0,1] to the standard Wiener measure, if the following condition
(*) is satisfied:

(*) (Xa) is absolutely regular with coefficients B(n) satisfying B(n)¥(2+d) =
O(n-2+¢) for for some 0 <8< 1,0s¢e<l, 62(h) > 0 and

sup E | h(Xip,....Xim) | 249< e,
where the supremum is over all choices of 1S ij<i2<...<im .

The same statement holds for V-statistics when the supremum is replaced by the

supremum over all choices of 1<ij (1S jsm).

Theorem E : [7](Denker) Let h be a non-degenerate kernel. Under the
following condition (*), then one can redefine {Xqa) without changing its distribution on a
richer probability space together with a standard Brownian motion B(t) such that

%(Un -9) - B(n) = O(n1/2-}) as. for some A>0 :
(*) (Xa) is absolutely regular with coefficients B(n) satisfying B(n)B(2+5) =

O(n-2+¢) for for some 0 <8< 1, 0<e<1/2, 62(h) >0 and

sup E | h(Xit,.... Xim) | 248< o=,

where the supremum is over all choices of 1€ ij< i2<...<im .
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The same statement holds for V-statistics when the supremum is replaced by

the supremum over all choices of 1< i; (1S jS m).
2.4 THE ABSOLUTE REGULARITY PROPERTY OF LINEAR PROCESSES

Since the results in [2.3] exhibit the good limiting behavior of U- and V-
statistics on absolutely regular processes, it is valuable to examine conditions for
absolutely regular processes. Chanda [3) ,Gorodetskii [10] and Withers [28] discussed
the conditions for linear processes to be strong-mixing. By examining their proofs, we

find that these conditions also guarantee that the linecar processes are absolutely

regular.

Let Z; ; i = 0,1, £2,..., be a sequence of independent random variables with
characteristic functions @; and probability densities pi(x), and let {gx}, k = 0,1,2,....be a

certain sequence of numbers: go # 0. Define
[ d
Xj= X.8iZi,
i=0

where the identity is to be understood in the sense of convergence in distribution. Use

the notation

si® = X 1g;18,
J=

Br(k) = D(Si(B)NV(1+D) if §<2,
imk

=( Y max(Si@)V(1+d) , 5i2)[log S, if§22.
i=k

24



i) [ Ipitx) - pix+w) | dxs €1 lal:

i) E | Z; |8 < Ca< » for some 5>0; if 82 1, then we assume that EZ; = 0,
and if 822 that VarZ; = 1;

(iii) g = Y uk#0for |zls1;
k=0

@iv) B*(0) <.

Under the above conditions, ¢ - -detskii [10] proved that (X;) is strong mixing with
a(k) S MP*(k), where M is a certain constant. We will prove that under the same

conditions, {X;) is absolutely regular with B(k) < MB*(k), where M is a certain

constant.
Theorem F: If (i),(ii).(iii).and (iv) hold , then {X;} is absolutely regular with
B(k) < MB*(k), where M is a certain constant.
Lemma : Fori=1.2,..,let Aje af_':., Bie M:+m where :Ml_n « i5 the O-algebra
induced by
(Xj|-eo5j < m)
and M:+m is the c-algebra induced by

(X;| n+msj S o).

2 | P(AB)) - P(ADP(B}) | S B*(n)

i=1
for any integer r>0 and a sequence {B*(n), n=1,2,...}, where
AiNAj=0, it]).

25



and

B*(n) 5 0, asn S oo,
Then {X;} is absolutely regular with coefficient B*(n).
PROOF. Since
1
B(n) = 3 V(@a) J(seec (11) [2.3])

where

on(AiBj) = P(AiB;)- P(A))P(B)),
we need to prove
V(@n) < B*(n).

Since
Vion = supinst 1] fo0en@n) | | (see (12) 2.31)
taking simple function

f(x)= 2 Cil[AiBi](X).
i=1

where

leil <1, 1sisr,

we have
|| fx)pntdx) | < B*(n) .

Since any f(x) with bound 1, which is &(e.U, = - measurable, can be approximated

by such simple functions, we get
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supin<t 1] f00on(dn) | B+,

PROOF OF THEOREM F.
Let A; (15 i S 1) be any (p+1)-dimensional Borel set in the space of X.p.....X0
and B; (1si<r) be any m-dimensional Borel set in the space of Xi,....Xk+m-1 and
ANAj=0, i#]
Write
X= (x-ps-a--xb)i

Y = (Xk,....Xk+m-1)

W= _i',g,-z..j , ks t<k+m-1,
j=0

Vi=X;- W = Z.Ejztij-

J=t
Let

V = (Vi Viem-1)
W = (W,...Wkem-1),

so that Y = W + V, x,y,v,w are the values taken by the random vectors X,Y,V,W and
C=(v: lv] gny ks 1S kem-1).

Then

P((X Y)e iimnn
1=

- 3 P(XeA; YeB)
i=1

= i(P(XE A; W + VeB Ve C)+P(Xe A W + VeB;, Ve (C9)).
=l
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Since W is independent of X and V,
P(XeA; W + Ve B;Ve(C)
- Aii P(We B, -VdF(v).
where F(x,v) is the joint distribution function of (X,V).
Let
x1 = infyec P(We Bj-v),
x2 = supvec P(We Bj-v),
thus
P(XeA; .YeB))
2 11 P(Xe Aj, Ve C%)+P(Xe A W + Ve B;,Ve C°)
=x1P(Xe Aj)- 11P(Xe Ai{C)+P(Xe A; W + Ve B, Ve C°)
2x1P(Xe Aj)- P(Xe A, Ve C¥)
and
P(XeA; ,YeB))
S x2 PXeA;) +P(Xe A; W + VeB;,Ve C°)
SxaP(Xe Aj)+P(Xe A;, Ve C*),
that is,

x1P(Xe Aj)- P(X€ Aj, Ve C°)sP(Xe A ,Ye B)) sx2P(Xe Aj)+P(Xe Aj, Ve C). (18)

Take A to be the entire space of (X.p.....X0o) so that (18) leads to
x1— P( Ve C°) sP(YeBj)sxa+ P( Ve Ce).
So
x1P(Xe Aj)-P(Xe APP( Ve C°)
SP(Ye B)P(Xe A))
S x2P(X€ Aj)+P(Xe Aj)P( Ve C°).



29
It follows that
P(Xe A; ,YeB))-P(YeB)P(Xe Aj)
Sx2P(Xe Aj)-x1P(Xe A)+P(X€ A)P( Ve C%)+P(Xe A;, Ve C°),
P(Xe A;,YeB)-P(YeB)P(X& A))
2 x1P(Xe A)—x2P(X€ A~ P(Xe A;, Ve C)+P(Xe ADP( Ve C))
2-{(x2-01)P(Xe A)+P(Xe A, Ve C)+P(Xe AP Ve C%)),
that is,
|P(Xe A; YeBj)-P(Ye BpP(Xe A) |
S(x2-x1)P(Xe A+ P(Xe A, Ve CS)+P(Xe Aj)P( Ve C*))
Ssupvec | P(We B; - v)-P(We B))|P(Xe A))
+{ P(Xe Aj, Ve Co)+P(Xe ADP( Ve C*)).
So

i |P(Xe A; ,YeB;)-P(Ye B)P(X&A)) |
i=1

<supveC | P(We B;— v)-P(We Byl i.l‘(xé Aj)

i=1
+ 2 ( P(Xe€ A;, Ve Co)+P(Xe A)P( Ve Co))
j=1
<supvec| P(We Bj - v)-P(We B)|+P(VeC®).
Since Gorodetskii has showed (10 that
supvec | P(We Bj— v)-P(We B) | +P( Ve Co)s MB(k),

where M is independent of B;, So the result B(k) < MB*(k) follows from the above



This chapter is devoted to the weak convergence of U-statistics on strong
mixing processes. A special class of U-statistics with "decomposable” kernels is
introduced. For this class, central limit theorems and their rate of convergence,
functional central limit theorems and a.s. approximation by a Brownian motion are

established.

3.1 : MAIN RESULTS
A kemnel h is called "decomposable” if h possesses the following form:

R(X 1y Xm) = Zl Z 81 el (61 i) (1)
1!; i
T ST < (m-1 (m-1),
+t(--li|z='l 21:1"‘“‘“" i e T B O )
+.
*2 Z 2i$;(xc),
T i=]

where i;)m mmmwdie(mml) combinations of m-1 distinct
M- S

ctements (1™ 1,V from (1,...m), ... T, denotes summation over the (7 )
4

combinations of 1 distinct elements (t.}) from (1....m) and



2 Z | 8iy.igy | ~ = » (2)

2’ ,,,i,' sy <=

z, |8||§ﬂ

Theorem A : Let the process (Xqn) be strong mixing and h be a bounded non-

degenerate kernel . Suppose that h is "decomposable” and

supiglf} | <= (),

supiyj| I;J |< e (ae)

supi | i | <o (ace). 3)

If a(n) = D(n‘z*?‘) for 0sy<1, and o(h)>0 (see (15) [2.3])then

mﬂ(h) —==Up(h)-0) = N(0,1). 4)

When h is unbounded, a central limit theorem can still be proved for general m
without any real difficulty in spirit, but we have to add some moment conditions about
fi(;)(lsjsin) and impose further conditions on the convergence rate of a(n). For
simplicity, we only present a theorem in the case m=2. In this case, if h is
"decomposable” then h can be expressed with a slight change in notation in the

following form:
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h(x1.x2) = 3, 2, 8 jfi(x1)gj(x2) + Zl 2i(9i(x1) + $i(x2)) (5)
i=1 js] i=
where
) Zl‘iJl<“-Z‘ |2l <. (6)
im] ju=1 -

Theorem B : Let the process (X,) be strong mixing and h be a non-

degenerate kernel with E|h2+u|<~ for some p26/2 (0<8). Suppose that h is

"decomposable” and
supiE | f; | 4+8< o, supjE | g; |4+8< oo, )

supiE | ¢i | < o
If o(n)3/(4+8) =O(n-2+Y) for 0Sy<1, and o(h)>0 then

nl2
3oy (Un M) -0) = N(O.D). (8)

Example 3.1:

Obviously, when h(xi,....xm) is a symmetric polynomial about xi,...,xm , it is
"decomposable” . For example, the kemel h(x},x2)= %(m-—xz)2 is "decomposable”
and the corresponding U-statistic is the sample variance S2( see 1.1 ). So, if

E | X | r<eo(r>4) then

ni2
(a0 ¢ $2- 6)— N(0,1),
where jiq = EX4 and 8 = Var(X).

Theorem C : If the conditions of theorem B are satisfied and a(n)¥(4+3) =
O(n—2+Y) with 0 < y<1 and 0<3<2 ,then

Aq = supy ll’(mc:(h) a-O)Sx)-—\,;-; Iexp(-g')dt |= o %)



) 5(1-v) L
where 1%(3_% and op(h) is defined as (14) [2.3].

Theorem D : If the conditions of theorem B are satisfied and a(n)¥/(4+3) =

O(n-2+Y) with 0 < y<1 and 0<3<2 ,then

Ya= :(L(ﬁ(un-m) N(o.n) = 0(n %)

where 1%% and x is the Prohorov Distance (see (16)(2.3])) .

In order to formulate the functional central limit thecorem let us define the

D[0,1]-valued random functions £, by
P L. A , o
En (D)= 20(h) WUy -9) (0sts1)
where [nt] denotes the greatest integer not exceeding nt.

Theorem E : If the conditions of theorem B are satisfied and a(n)8/(4+3) =
O(n-2+Y)) with 0::7-:%. then Eq(t) converges weakly in D[0,1] to the standard Wiener

measure.

Theorem F : If the conditions of theorem E are satisfied, then we can redefine
(Xq) without changing its distribution on a richer probability space together with a

%(U" - @ )- B(n) = o{(nloglogn)!?) a.s. .

Proposition 1 : Let h be a bounded non-degenerate kernel . Suppose that h is
"decomposable”™ and

supi,| !,? <o @o),

3



supi.jlgi?)l-ﬁ— (a.e),
supilcpgl{ﬂ (a.e).
If a(n)=0(n-2+Y) with O<y<l, then
If a(n) = 0 as n—ee, then
E(Rp)2 —0.
Proposition 2 : Let h be a non-degencrate kernel. Suppose that h is
"decomposablc” and
supiElﬁ | 4+8< oe, supjE | 4] | 448< o,
supiE|¢i | < oo,
for some 850. If a(n)d/(4+8) = O(n-2+Y) with O<y<1, then
E(Rp)? S n-247C.
3.2 : PROOFS
In order to prove the above propositions we need the following lemma. For
simplicity, we use C as a generic constant.
Lemma 1: [13) If §is ] - measurable and 1 is 3¢, . -measurable, then
@  |E&n-EEEn| S 12 a(m)IkEVA|E|sEWS|q (b,
where %#%*%! 1.(ii) Especially, when |&|< Cy and [n]s C2 we have
|E&n - BEEn | < 16C1Ca20(m).
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PROOF OF PROPOSITION 1 : Suppose a(n)=0(n=2+M). For simplicity, we
only consider the case m=2. The proof for general m is analogeas and so is omitted.
Since

00

h(x1.x2) = 2 ): a; jfi(x1)gj(x2) + 2} a;(9i(x1) + 9i(x2))
=1 J,:] 1=

and

o0
laijl <. X lail <o,

M
s

T

L

so we have (see (7)-(8)[1.3))

hix1) = 2, 2 aijfi(x1)Egj + Zl ai(0i(x1) +Eoi), (1)
i=1] J=| 1=

hi(x1)= hi(x1)- 8 = hy(x1)- Eiu

Y a; jfi(x1)(Egj-Efi )+ ZI 2i(®i(x1) -Eo), (12)
1 J:] 1=

’MS

and (see (17) {1.3])

H = h(x1,x2) - - hi(x1)- hy(x2)

=Y Y aijilx1)- Ef)gj(x2) -Egj). (13)
i=1 j=1

Thus (see (16) {1.3]))

LY ¥ 3 ashsXi- Ef)(a(X)) -Ego). (14)

Rn-(;—)kj S &

Js 0. v((1,i2).G142))

Put
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= aggay vEl(fs(Xi1)- Efs)(@i(Xi2) -Egu )(fu(Xj1)- Efu)(gv(X;2) -Egy )l

So, we have

u=1 v=1 s=1 =1i1<i2 j1<j2

1 © v v X . )
E(Rp)? = TJz Y XYY XY X kGG (15)
3

Thus, from the preceding Lemma part (ii) we have the following inequalities:
(i) If 1<i<izSji<jasn and j2-j12iz-iy, then
3 cun(Gini2dGri2) |

= lEas.tau,v(fs(xil)’ Efs)(gt(xiz) -Eg Xfu(le)‘ Efu)(gv(sz) -Egy )I

< | Eag auvEn l
<l ag auy | Cagiz-j1) (17)
where
€ =(fs(Xi,)- Efs)(8(Xiy)—Egi )(fu(Xj, ) Efy) (18)
and
n = (gv(Xj,)—-Egv ). (19)
Similarly, if 1<i)<i2Sj1<j2<n and i2-i12 j2-j1, then
| 3.0, v((i1,i2).G1.2)) | |agauy | Caia-iy). (20)

So,

| Y JesGrinGrio |
1<i<izSji<jasn

s )} | 30 tCinsi).Grion |
1€ <izSji<jasn and ir-i12 j2-ji



D |35 (G i), Grio) |
1<i)<izSj1<j2sn and j2-j12 i2-h

< | 85,8y | Cn2 2 (k+1)ak) = agayy | On 2+7). (21)
k=1
(ii) Similarly, we have

l, } z ,jS-Lu.V((ilriZ)r(ihji))l
1sij<jySiz<jasn

s 3 D)
18i1<j1Si2<jzsn and ji-i12 j2-12
. X g gustGrinGrin |
1<i)<jysiz<josn and j2-122 J1-11
s Iisi;ﬂnivic(ﬂ 2+Y), (22)

Y GG
1sij<ji<jo<iasn

s X | Iggun(GrinnGrio |
1siy<ji<ja<izsn and ji-i12 1232

+ ) l?s;i,u.v((iniig)i(jhiz))l
1<i)<ji<jo<dizsn and i2-J22 )1-11

< |agauvlOm2+7), (23)

1<i) j1sn ix=1

< ﬁ 2 JpranGrinGin | +2 %, 2 | Jsun(Grin)Grian |
i1=1 ig=l 1Sij<jisn  iz=l

< | agyagy]Cn21 + I:il a(k))= O(n2), 24)
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and

I, Z 2 Jai:‘uy((il.iz);(il.jz))|E'D(ni)a (25)
15i2 j2sn ij=1
Since
S 3 lagauyl<os, (26)
t=1

=1

M

3

=
i
-
—
L)

hence from (21)-(26) and (15), we have (10). If o(n) =0 as n—ee, similarly we can
obtain
PROOF OF PROPOSITION 2 : The proof is the same as the above proof , if
we note that when 1<ij<i2Sj1<j25n and j2-ji12i2-ij, we have
| Js.tu(Giri2)Grio) |
= IE!i.t!u.v[(fi(xil)* Efg)(gi(Xi2) -Egt Xfu(Xj1)- Efu)l[(gv(Xj2) -Egy )]I
=| Baggauvin | (sce (18)~(19)
<| aggay,v | Cali-j)e+9), @7
using Lemma 1 part (i) in (4.2).
PROOF OF THEOREM A : From Theorem B in [2.2] we have
nl2 Uy

1 = N
mo(h) - n7Zo(h) i hy(X;) = N(O,1).
- ) 7 )

Since Up — 0.+ Up + Ry ,thus the result follows from




PROOF OF THEOREM B : Recall the definition of hy (see (7)-(8) [1.2]) anu

E|h2#4 | <oo . s0 E| Ty |24 E|h-0] 241< oo, Since 2, ai(n)8/(4+8) <o, Y, a(n)w/2em)
1 1

< oo for p28/2. Thus we have

ﬂlgﬁn N 1 iﬁ' F N . N

moh) =m{glh!(xi) - N(0,1)
from Theorem A [2.2]. Since Up— 6= lj,. + Ry, ,thus the result follows from Proposition
2.

PROOF OF THEOREM D: The result can be deduced from Theorem 1 (a) in
(6] together with Proposition 2.

PROOF OF THEOREM C: The result follows from Theorem D.

In order to prove Theorem E and Theorem F, we need the following
proposition.

Proposition 3: Let h be a non-degencrate kernel. Suppose that h is
"decomposable” and

supiB | f; | 4+8< oo, sup;E lg | 448 oo,

supiE | ¢i | < ee,
for some 0<8. If a(n)3/(4+3) = O(n-2+) with 0<y<1, then

Ry= O(n-(/41¥2(logn)3) a.s.
and

e | w, -2
P(maxisicai | Ra | 2 ca) = O (logn)?)

for any sequence cj€ R*.

ha&:mmhwmmSwneedﬂ:foumﬂg ma
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Lemma 2 : Let

s (o

Then under the conditions of Proposition 3, we have
E(Z(p.q))2= O(q(p+a)3/2*").

PROOF: The proof is similar to the proof in [7]. If q>p, it follows from
Proposition 2 that
E(Z(p.q))%S (E[(Z(0,p)2]12 + E[(Z(0,p+q))?]'/2)?2
=0((p+q)2*1)=0@q(p+)!*.
If p2q2p!/2 we obtain similarly
E(Z(p.q))2=0((p+q)2*N=0(q(p+q)3/2*7.

Now, if g<p1/2 we have
E(Z(p.9))2= E( 2, Z(p+k.1)%s { i [E(Z(p+k,1))2]'/2)2.
k=0 k=0

Using the same technique as the proof of Proposition 2, we can prove
E(Z(p+k.1))2= O((p+)!*"),

thus

q- -
léo [E(Z(P+k.l))2l‘”l2=§oo((p+q)“7)= 0(q2(p+q) 1 +N=0(q(p+q)32*Y).

This finishes the proof.

PROOF OF PROPOSITION 3 : Using Lemma 2 we can prove the result just
like the proof of proposition 3of [7].

PROOF OF THEOREM E : Write

lﬂt ”~
&a(0= 3gay Utaa +Ria)
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ﬂlle [ ].. nilz
(h) o) hl XS) + zg(h) R[m]

12 (@l
By Theorem 1 in (5}, ?:(h; " hi(xs) converges weakly in D[0,1] to the standard

Wiener measure. The maximal mequallt‘y of Proposition 3 shows that

P(maxogglz E(h) |R[m] | 2 £)< P(maxop<isiint] |R[m] | 26(h)en1/2)= O(n-(1/2)+e),

Hence the result follows.

PROOF OF THEOREM F : The result can be deduced from Theorem 4 in [6]

together with Proposition 3 just as before.



CHAPTER 1V

STRONG AND WEAK CONSISTENCY OF U-STATISTICS

FOR STRONG MIXING PROCESSES

This chapter is devoted to the weak and strong consistency of U-statistics for
strong mixing processes. As we have pointed out in Chapter 2 there is much difficulty in
extending the central limit theorem to strong mixing processes because the basic
approximation lemma of Yoshihara [29] for absolutely regular processes is no longer
valid. This is why in Chapter 3 we were able to obtain the central limit theorem for only
a special class of U-statistics . But when considering the consistency properties of U-
statistics, we find that these properties hold for rather big classes of U-statistics. To
the best of our knowledge, our results derived below are new. Our main result is that
Lebesgue measure on R™ , and (ii) the distribution F of X, is absolutely continuous
w.r.to Lebesgue measure m on R, and the probability of the closed hull of non-continuity
set of h is zero. For unbounded kemels h, however, we are able to prove only weak
consistency under similar conditions.

4.1 STRONG CONSISTENCY OF U-STATISTICS

In this chapter we use C as a generic constant and Pp as the "independent”
measure corresponding to P, i.c.,generated by (X;) with i.id. r.v.'s Xi i=1,2,-.



Lemma 1 : If h is a bounded continuous kernel on R™M, then for any given

(e,) 10, as t—0e, and a compact set {i{?’ } in RM there exists a symmetric bounded

function gy, which is continuous on K:ﬂ and "decomposable” (see (1) in (3.1)), such that
m| go-hn | <
supxeK, | B(X)-h(x)1s ev/4.
PROOF : From the Weierstrass's approximation theorem (17)(pp.33 ) there
exists a polynomial py such that
m| px)-h(x) | < ey
supxeK; | p(x)-h(x) | S ev4.
Define
L XX ) for X xme K (1
gt(X15--Xm) = 7 Z Pi(XippiXipy) fOr X =(x1,...Xm)€ K )
e

gi(X1.Xm) = 0 for xe (K,

where 3 denotes summation over the m! permutations (i1,....im) Of (1,....m). Since h is
symmetric, SUPxe x:" |pg(xiP.__,xim)-h(xh“..xm) | € ey4. Thus we get the g just what

we need .
Lemma 2:If h is an a.c bounded variable with Eh(Xy) = 0 and ig(i)
i=1
=O(n!-A) (0<A<1) ,then E(Sn)* S Cn3-* where Sy = f, h(X;).
i=1
PROOF : The result follows from the fact that E(Sq)* S Cn2 i, a(i) [see
i=]

Ibragimov and Linnik{14] or Billingsley([2]].

Recall from [1.2]

Up(h)-8= Un(h)+R(H)
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where

Ry(H)= ﬁ i HX jy e X i)

n ige,. d.
m n J!-ﬂ,m

and

H(Xy o o Xp)=h (X e X -h1(X)) <o ~h1(X ),

we have the following results.

Proposition 1 : If h is a bounded and continuous kernel on R™ with E| X | < oo
and

a(n) =0(n~(1+M) (0<¥<l1) ,
then

Rp(H)— 0 (ass.).

The proof of Proposition 1 is given below.

Theorem A : If the conditions of proposition 1 hold, then Up(h)-6— 0 (a.s.).

PROOF : Since Uy(h)-8= Un(h)+Rp(H) , the result follows from Proposition 1
and the well-known fact that Gﬁ(h)sio (a.s.) in view of the strong law of large numbers
for strong mixing sequences(see Ibragimov, I. A. and Linnik, Yu. V. [14)).

Proposition 2 : Let h be a.c bounded and a.e continuous w.r. to Lebesgue
measure on R™ with its non-continuity set denoted by D. Let F be absolutely
continuous w.r.to Lebesgue measureon R , Elxll-:— and

a(n) =O(n—(1+7) (0<<l) .

If for any (e 0, as t—res, there exist an integer iy >0 and Lebesgue measurable sets
B), in R (1SS, 15jSm) t=1,2,....5uch that



m .M
tx.uxB sy = DNA,

1

] | n M
with AT = [T (xil Ixils 0, A - OBy

B;nt a closed set, and
i=1 s=1 '

. i m__
Po( UBS tx...st t)S £,
s=1
then

Rp(H)= 0 (a.s.).
The proof of Proposition 2 is given below.
Theorem B : If the conditions of proposition 2 hold, then U,(h)-6— 0 (as.).

PROOF : Since Up(h)-8= Un(h)+Ry(H) , the result follows from Proposition 2
and ﬁn(h)aﬂ) (a.s.) as for Theorem A.

Corollary : Let h be a.c bounded and a.c continuous w.r.to Lebesgue measure
on RM with its non-continuity set D. Let F be absolutely continuous w.r.to Lebesgue
measure on R, E|x1|¢— and

a(n) =O(n—(1+7) (0<y<1) .

If the probability of the closed hull of D is zero, then Up(h)-6— O (a.s.). In particular, if
D is a closed set ,then Uy(h)-6- 0 (a.3.).

For example, the kernel h(x1,x2) of Wilcoxon one-sample statistic.[2.1] is

I(x)+x250), 50D = ((x1,x2) | x1 +x2 =0}, thus Disa closed set.

PROOF : inviewafm&“m!yngdmvgﬁfythecmﬂiﬁmsof
Proposition 2 . Without loss of generality we may assume D is a closed set, thus



Dr"\A:n is a closed set too. It is obvious that for any given §; there exists an open set
Gy > DAA]" such that

m( Gy )- m(DAA{" )= m( Gy )S 8y .
Since Pp << m ( Lebesgue measure), for any given g we can choose such §; to

guarantee Po( Gy ) S €; . Thus for any x =(x1,...,.Xm)€ G there exists an open

o, _ - ] 1 m, — .
neighborhood with form Blt(xi)x'.., :-:Bn:(xm) such that B’t(:ﬂxm 'x:Bn:(xm) SGi.In
this way we get an open covering (B t(1!;1):u<... xB t(xm) ' X =(x1,...xm)€ Gi) of DNA,
. Since DﬁArtn is a bounded closed set, according to the finite covering theorem, there
are r, <eo such that

It 1 -m .M
uBs Byt 2DMA, .
s=1

Noting B; tx...B;ﬂt S Gy and Po( Gy) S e, we have

) LU m
Po( UBgx.Bgse .
s=1

Thus the conditions of Proposition 2 are satisfied from which the proof follows.

PROOF OF PROPOSITION 1 : For simplicity we consider m=2. Since
E|X; | < for any given (e ) O there exists t so that

Pol(AxA( FIS . )

According to lemma 1, there exists a symmetric, bounded, and continuous function g on
R® with the form (1){4.1] such that
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Supxe Af | gex)-H(x) | < €0 /4. (3)

Now we consider Rn(gy). recall E(Rq(gy))? S n-2+YC from Proposition 1 in [3.1], we

have Rp(g)—0 (a.s.) for fixed t, as n—ee by using the Borel Cantelli lemma. Since
Rn(H)= Rp(gy + Ra(H- g0

(see Lemma 2 [4.1] for H), If we can prove that for any given (g }1 0, as t—res,
P(fimn-se | Ra(H- g0 | S €L/2)= 1,

then we would have
P (fimn s« | Ra(H) | s€0=1,

that is ,
Rp(H)—0 (as.).

*
Denote H- g, by H ,then

t t H: Xi.Xj)

. i=li<j
)

L *
Without loss of generality, we assume that |I=lt | < 1. (since if IHT_ | s M, we can
.
consider Rp( l-ltIM) ). Define
Y; =1 (Xi, Xj)e (AxA)F

8 = Po(Y{j=1) .

and



Y;-ﬁ 2\(;]..

i=1 i<j

. ) Eq
Noting H, (Xi.X ;)< e/4 when (Xi,Xj)e (AxA¢) (see (3) in [4.2]) and 6 S Eé (see

(2) in [4.2]) , thus

E

* .
(IRa(H; ) >e02) S Yp >Q) SIS Yy 00 Q) 125 ).

If we can show

2 P 1Y 0 |2 Q) 1<,
n=

then

2 P{ |R,.( H: )| >E/2} < oo,

n=}
Therefore from the Borel Cantelli lemma, we would have

— *
P(limg_see | Ra(H, ) S € /2)= 1.

Define
t
Y
n
U =—.
n
)
Since

(ArxA = ApxAT U Af XAQUA] XAy ,

U} is a U-statistic with kernel

b (xy) = lzeAglye A + Lyeapline AD + Lxe Apliye Ay,

4)
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and
0,= Eght (X1,X2). (5)

Thus

t ~t t
Un - 0= Un + Rﬂ
Now we have (using Markov inequality)

PUIY.- 0 (p 125 D))

1. E
=p(| Uy -8 /2§)

=p(| T} + R, |25

~t E Lt €
<p(| T} 1255) + PU Ryl253)

Recall from [1.2]
At 29T,
U, -;i h1 (X5,
i=1
50 it follows from Lemma 2 [4.1]that
- C
B(Up H s

Since the kemel ht possess the "decomposable " structwe , in light of Proposition 1 of
[3.1], we obtain

c
E(Rp?S Ty
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Thus

PUIY,- 0. 25D s o

and it follows that

2. Pl Y;- 0, 124 D)) < 2 T
n= n=l]

The proof is complete.

PROOF OF PROPOSITION 2 : The proof is analogous to the proof of
proposition 1. The only difference is that here Y: j is defined

I 1 "
Yiml (i Xpel LBy xBg, NAXADIMAXAL X
s=1
t , , LN | 2
Yl ]-0 (Xi, XJ)E (AgXA; ) - \;-;Bs IKBS t ¢
s=1]
Thus U:I is a U-statistic with kernel
1 2 a a s
ht (x,y) = I{[ UBS t)<Bs t AAXADIV(AXA F . (6)
s=1|

Without loss of generality, we may assume that ht (x,y) is symmetric. For, if not, it may

be replaced by the symmetric kemel
1 t
3 2. ht (xiy Xip)
P

where X p denotes summation over the 2! permutations (iy,i2) of (1,2). It is easy to
check that ht (x,y) also possess the "decomposable” structure. Noting



o t 1
(AxAy)— By xB
s=]

st

is a compact set, so by letting

- n
Ki=(AxA)- U
s=1

1 _2
By xBgy »

we have
supxe K, | 8¢0)-h(x) | S ey/4.
Hence we can get the proof without any difficulty since it is now verbatim the same as
for Proposition 1.
4.3 : THE WEAK CONSISTENCY OF U-STATISTICS FOR STRONG MIXING PROCESSES
For the case that h is unbounded, we are not able to extend the above a.s.
convergence results because our method used in the proof of Proposition 1 is no longer
valid. However, by confining our attention to weak consistency of U-statistics, we are

able to make some progress.

In this section we shall consider a martingale approximation instead of uniform

approximation as a tool to achieve the following results;
Theorem C : Lethbe a kernel with

’“p(ii.m.im)E | h(xi!....,xim) |2<ee.

If h is continuous ,then

Theorem D : Let h be a kernel with



sup(ilmim,)sIhon:il....,:rcim)l2 <o

If h is a.c. continuous about Lebesgue measure on R™ and F is absolutely continuous
w.r.to Lebesgue measure on R, then
Ugp -0 (in prob.).
. o* ) ! ) .
Put A"J'[i'flle) when -k2K < js(k-1)2¥,
A k1= (oo K ),
and
Ag (x-1)25+1 =[k.) .

Let Fi be the o—algebra generated by

d1 Agp) | -K2%-185i S QD2
i=1

Denote F=V K and Hy=Eo(H | % ). Then
k=1
k-1)2%+1 ,
Hy= .Y Hij (AxixAxjs (7
-k2k-1

where I(Ax jxAg,j) is the indicator function of A ixAx,jand

. Eo{HI(Ak i XAk )]
Hij =" po(Ax Ay (8)

It is obvious that F 2 Q:(Bl B is any Borel set in R™},s0His F.measurable .Since
Eo|H| <« , by martingale conve
Hy—Eo(H | FH, as k—ee. (2. Po)

ence theorem we have

Denote
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Hk-HﬁHb 9)
thus

*
Hy —0 (as.Pp). 10)

44: PROOFS

For simplicity, we consider m=2 .

Lemma 3 : If h is a.c. continuous on R™ and F is absolutely continuous w.r.to
Lebesgue measure on R, then there exists an{e;) 10 as s —eo and not dependent on k
such that

, = < | i <

Ex(es) = {(x1,x2) | | Hy(x1, x2) | <€) (11)
is a Pg —continuity set.

PROOF: First we consider h is continuous. Since
‘ - =
Hy(x1, x2) = H(x1, x2) = Hi(x1, X2 ) (see (5)-(7) in [4.3])
and H(x1, x2 ) is continuous, H(x1, x2 )-Hi j is continuous on Ak ixAg j. Thus

9Ex(e) & LI{(x1.x2) | |H(xy, x2 )-Hij| = € YU 3{ Ak ixAk ).
ij

Now in view of continuity of H there exists an {eg} 10 as s—eo which is independent of
i and j such that

Po{(x1.x2) | Hix1, x2 )= Higt € } = 0.
Noticing

Po@{Ax Ak} = 0,
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Po@Ex(es) = {(x1,x2) | Hy(x1, x2) |=es}=0.
This completes the proof for h continuous.

When h is a.e continuous , denote the set of all non-continuous points by D,
then the result can be derived from

9Ex(e) & A{(x1,x2) | | H(x1, x2 -Hij | = & }U 3{ Ak ixAk j}UD). (12)

ij

The proof is complete.

Proposition 3 : Let h be a bounded kernel; if h is a.c. continuous w.r.to

Lebesgue measure on R™ and F is absolutely continuous w.r.to Lebesgue measure on

R, then there exists a ng corresponding k such that

| .
supn2ny E |Rq (Hyp) | 1> 0 ,when k—peo.

PROOF: Since

i
Ra(Hy) =773 (xl » Xiy )
llﬁzé r2

,—-\‘d
"»._J

1 = ' , ,
n) ZHk(xili Xij+t

"
~—
w2

using the stationarity of the strong mixing process {Xn}

- *
E|RaHy) | S -—sﬂ— Y. 3 ElH (i Xipst) |
(z)ls'ljs‘nt i

C la®
ST ?mpnsns.EIHkm,. Xiyet)!
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C
ey g |Hk(xllixll-ﬂ.)|

Since h is bounded , it follows that

C ¥ olu’ iy
; ; E |Hk(}(“. xil-ﬂ )'

)t: (eP( | H Xi. Xipst )| S €}

W .
+P( IHk(xilixirH )| >e}}

sCe+ T 2 PuEx(e))

=0
- ‘ME

<ce+ S T Po(Er(er)+ £ X PulExe)F) - Po(Ex(e)))
n t St

< Ce+ CPo(Ex(eX)+ S X (P{Ex(e)) - Po(Ex@F)) (13)
t
Since P, weakly converge to Po (by strong mixing property),
PEx(eX) > Po(Ex(e)F), 1=

in view of the above lemma (sce the definition of weak cnnvcrgence in Billingsely [2])
Thusthelmmaf(li{)-rowhen n —» =, Noticing Hk — 0 (a.s. Pg )as k—ree (sce

(10) in [4.3]), we have Po(Ex(€)°)— 0 when k —» . Hence it follows from (13) that

supazniE | Ry (HP)| 15 0

when k—see, The proof is complete.



PROOF OF THEOREM D : At first we consider h is bounded. Since
U,y (h)-0= Up(h)+Ry(H)
= Ga®) + Ry(Hi) + Ro (Hy)
and (as in the proof of Theorem A [4.1])
Un(h)— O(in Prob.),
we only need to consider the last two terms. Using

E'Rn(HK)F’_’ 0
(see Proposition 1[3.1] Jas n — e for each fixed k, and (see Proposition 3 in [4.4])

supn2n,E | Rn (H:)| ]2 0ask = e,
we get
Ry(Hx) + Ry (H;)!P 0 (in Prob.) as n — ee

So
Up(h)-86— 0 (in Prob.) as n — o=

Now we consider h is unbounded. Define Hy as
H: (x1,x2)= H(x},x2) when | xil < k (i=1,2),
Hy (x1,x2)= 0  otherwise.

Since, setting H:‘ =H- H: '

Up(h)-0= Un(h)+Ry(H)

= Ga) + Ra(HY ) + Ry (H )
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and for h unbounded

ﬁn(h) — 0 (in Prob.) as n — oo,
. + + . . +,
we now consider Ry(Hy )yand R, (Hk ). It is obvious that Hy is a.s. bounded for each
k and a.e. continuous w.r. to Lebesgue measure on R™ ,so R,,(H: )= 0 (in Prob.) as n
—» oo for each fixed k. Also we will show below that

supnemyE | Ro(Hy * )| = 0 (in Prob.) as k — ==

Then combining the last result with the preceding assertion, the proof would be
complete. Now Denote Ex by

By = {ix2) | [Hx, x2) IS K, (14)
then JEx(e) & ((xl,xz)| | H(x1, x2 )|== k JUD, thus there exists {k) T e such that Ex

is a Pg —continuity set. Since, again in view of stationarity of {Xn) and the finite moment

condition,

EIRaH) )| < (‘“— 15};‘92'5'" Kip Xigst)|
2) 1St

=|n

p supls.lsnﬁh'l Kip Xig+t )l
t

] [@)

S EIH," iy, Xige)|
t

=l|0

; EIHX, Xigot) | HEY )

% 2“_ P{ES P2 (EMH(Xiy, Xig et 1212
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"
= ]n

= Y P{EL}"
S

UU\

s

3 i\ﬂ

e S 3 (PUEG) 2 - Po(EG1 2]

c
—*k
t

- 2. Po
t
s CPo(ES )12+ S T [PUES) 12 - Po(E) 1) (15)

ot

Since P; weakly converge to Py (by strong mixing property),
_C. - C .

PUEL) PolEy),  t— e
Thus the last term of (15)— 0 when n — o, Noticing Eg | h | <es ,we have Po(Ei]% 0
when k — oo, Hence it follows from (15) that

- & ,

supnan,E | Ry (H ) 120,

The proof is complete.

PROOF OF THEOREM C : From the proof of theorem A we know that U, -

06— O(in prob.) for a bounded function h. Note that when h is unbounded but continuous
we can define a continuous and bounded function Hy for each k such that

H: (x1,x2)= H(x1,x2) when |xi|<k (i=1.2). (16)
Thus, by using the fact that H: is bounded and continuous we can finish the proof in the

same way as the unbounded part of Theorem D.
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