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Abstract— Modern vehicles are equipped with Advanced 

Driver Assistance Systems (ADAS) that rely heavily on a 

variety of sensors such as LiDAR, RADAR, SONAR, and 

camera to capture surrounding traffic data. Sensor performance 

has been observed to degrade during adverse weather 

conditions as the signals are attenuated due to soiling on the 

external surfaces of the sensor. This poses huge risks to both 

occupants and pedestrians. In order to improve the safety of 

ADAS, it is essential to understand and quantify the effects of 

soiling on sensor signals. This paper investigates driving-in-rain 

scenarios, which are some of the most ubiquitous but hazardous 

weather conditions that cause accidents every year due to 

reduced driver and sensor vision. Rain was simulated in a 

controlled environment onto an automotive external camera and 

a single-point LiDAR in a wind tunnel. Perceived soiling 

characteristics when the vehicle is moving at different speeds 

under different natural rain intensities are considered and 

measured, including impact, intensity, velocity, and droplet size 

distribution. Sensor performance is evaluated based on image 

processing techniques and statistical analysis on signal data. 

The results show that camera image degrades with both 

increasing rain intensity and driving speed, whereas LiDAR 

signal only worsens during heavier rain conditions. However, 

driving faster when perceived rain intensity is kept constant 

improves the perception with faster signal recovery.  

Keywords-LiDAR; camera; sensor performance; rain simulation; 

perceived characteristics; autonomous vehicle; image processing; 

soiling quantification 

I.  INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) are 
increasingly being found in modern vehicles which offer various 
automated features, such as adaptive cruise control, emergency 
braking, blind-spot warning, and lane-keeping. The use of 
ADAS is believed to be the future of autonomous vehicles with 
higher level of autonomy.  

ADAS consists of different types of sensors to perform 
ranging and imaging of the surrounding environment. Fig. 1 
shows the ADAS components and their respective functions in 
a vehicle. A vision camera is a type of optical sensor that works 
in the visible light region, thus providing live images of 

perceptions comparable to human eyes. On the other hand, Light 
Detection and Ranging (LiDAR) utilizes laser and the time-of-
flight (TOF) principle to detect the distance between an object 
and the vehicle. Using both camera and LiDAR together is 
suitable for short range operations to obtain the view and depth 
of obstacles during vehicle navigation [1]. Other typical sensors 
include RADAR, SONAR, and infrared camera that are also 
used in ADAS, but are not the focus of this study, and are thus, 
not discussed in this paper. 

It is known that sensors degrade in performance in adverse 
weather conditions, as precipitation and wet ground contribute 
to primary and secondary soiling. Typical examples of sensor 
performance degradation are having false detections that cause 
warning and malfunction such as sudden braking, request for 
human inputs, etc. These situations hinder the advancement of 
the autonomous vehicle technology and the subsequent adoption 
of autonomous vehicles. 

This paper focuses on rain, which is a common precipitation 
condition around the world, it also accounts for 50% of weather-
related road accidents [2]. Furthermore, the quantifiable effect 
of soiling on automotive sensor performance is not very well 
understood, most studies in the literature lack realistic testing 
conditions and only simulate for natural rain characteristics, 
which ignore the perceived rain (the fact that the frontal area of 
a moving vehicle experiences more rain with increasing driving 
speed). This paper fills the literature gap with realistic perceived 
conditions reflecting what sensors see during vehicle operation 
in rain. We also propose various evaluation methods to quantify 
the amount of soiling and the resulting sensor performances. 
These are the data that are useful for further developments on 
soiling mitigation, signal correction, and the validation of 
numerical models.  

 

Figure 1.  Sensors used in autonomous vehicles and example of their 

respective functions. 



   

The objectives of this paper are to simulate realistic and 
controlled wind-driven rain conditions that represent what a 
moving vehicle experiences, as well as to study how rain 
intensities and driving speeds affect frontal camera and LiDAR 
performances. The study consists of two groups of conditions: 
{1} driving at the same speed but experiencing different 
perceived rain intensities, and {2} driving at different speeds but 
experiencing the same perceived rain intensities. 

II. LITERATURE REVIEW 

A. Perceived Rain Characteristics of a Moving Vehicle 

Natural rain conditions are categorized based on intensity 
and droplet size distribution. Other perceived rain 
characteristics of a moving vehicle include impact angle and 
energy. Rain angle can be explained with analogy to the light 
aberration phenomenon [3] for which the apparent rain impact 
angle depends on the moving velocity of the vehicle, such that 
a driver and frontal sensors would see the rain tilts and falls 
behind when driving forward.  

Droplet size distribution is the end product of various events 
before raindrops impact, namely breakup, collision, and 
coalescence [4]. Droplet size distribution is independent of 
driving speeds as droplet dynamics are assumed to be 
unaffected by the movement of the vehicle. However, the 
frontal area of a moving vehicle experiences more raindrops per 
unit time at higher driving speeds due to increase in flux as 
suggested by Bocci [5], hence higher perceived rain intensity as 
compared to the intensity that is experienced by a stationary 
vehicle.   

B. Camera Performance in Rain 

When the outer surface of the camera is exposed to 
raindrops, where the surface may be a protective cover or the 
camera lens itself, the image is blurry or distorted. In severe 
cases, the objects in the image frame can be overlapped by rain 
droplet. The mentioned problems directly result in performance 
degradation of the ability to accurately detect and identify 
distanced objects when driving in rain [6]. 

The behavior of light refraction through a raindrop was 
studied and modeled by Roser, et al. [7]. The focus quality of 
an image under the influence of raindrops depends on the 
thickness of the droplet at the respective location. With 
reference to the blur map of an image caused by a single droplet, 
attempt was made by Parov, et al. to restore an image under the 
influence of rain [8]. The influence of an image frame captured 
by optical camera can be generalized and categorized into two 
parts – raindrops in mid-air, and droplets adhering to camera 
outer surface. However, Parov and Roser both were using 
simulated droplets through controlled experiments or computer 
simulations; hence the droplet behavior does not coincide with 
realistic driving-in-rain observations. Both stated the need to 
recreate realistic, yet controlled rain intensity and droplet 
distribution.  

A more detailed investigation on the magnitude of rain 
intensity at various driving conditions is much needed. In 
driving-in-rain conditions where optical camera outer surface is 
bombarded by raindrops at a high frequency, the ability to 

detect and predict object and its movement decreases 
significantly. Presence of droplets at the camera surface results 
in combinations of blurriness, distortion, and blockage of 
objects in the image frame [9]. 

Currently, to combat blurriness of an image frame, 
autofocus systems are commonly built into camera hardware 
based on various algorithm methods. However, the frequency 
and variability of droplets present on the camera outer surface 
exceed the capability of existing passive autofocusing 
algorithms [10]. Subbarao, et al. investigated different methods 
to optimize image focus measure for isolated-image passive 
autofocus systems [11]. The study of Subbarao deduced that the 
focus quality of the image, in conjunction with the autofocusing 
error, is highly dependent on the grayscale level noise and the 
image content. When droplet is present at the outer surface of 
camera in rain, the image content is altered due to the fact that 
those droplets are considered to be at the foreground of the 
respective image frame. If the focus level of the camera is fixed 
to the background environment, the grayscale noise intensity 
increases, reducing the focus quality of the image. 

The ability to detect object and predict object movement in 
real time were studied by Guan, et al. [12]. Live object tracking 
presents even greater difficulty compared to isolated image 
passive autofocusing because of the constant unpredictable 
changes in image focus quality due to rain droplets. The 
accuracy and the predictability in object detection are highly 
dependent on the focus quality of each image frame. Camera 
performance degrades dramatically in heavy rain conditions, 
most current live object detection algorithms do not have the 
ability to provide object detection and tracking. Therefore, it is 
important to understand the effects of different driving-in-rain 
conditions on camera focus quality, such that adequate 
algorithms can be developed.  

C. LiDAR Performance in Rain 

LiDAR works via an echo time-of-flight principle, as stated 
in (1), where D, c, and t represent distance, speed of light, and 
time, respectively. The sensor emitter sends out short-pulsed 
laser beam of known wavelength and energy, and measures the 
power and time it takes for the return beam to reach the receiver. 
The relationship between laser signal power, P, and range of 
detected object, Z, is stated in (2) [13], where the return signal 
strength is inversely proportional to the square of range. 

𝐷 = 𝑐 ⋅ 𝑡/2       (1) 

𝑃𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑  ∝  𝑃𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 ⋅
1

𝑍2 (2) 

Rain studies for LiDAR are on the rise with increasing 
interest in autonomous technology. Filgueira, et al. investigated 
the effects of rain on a 3D scanning LiDAR. Using an outdoor 
stationary LiDAR setup, it was found that detected range was 
stable with only up to about 10% fluctuation for all six targets of 
different materials, but the measured intensity and number of 
points were reduced with increasing rain intensity [14]. 

The major reason for sensor performance degradation in rain 
is due to signal attenuation, resulting in inaccurate ranging. 



   

Laser that passes through a raindrop in air may result in total 
deflection and false detection [15]. The relationship between 
rainfall rate and atmospheric attenuation coefficient, 𝛼, follows 
a power law, as shown in (3) [13, 16]. The return power is 
affected by the attenuation coefficient as stated by (4), and the 
constant values c1 and c2 are determined experimentally and are 
dependent on LiDAR parameters. 

𝛼 = 𝑐1𝑅𝑐2        (3) 

𝑃𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑  ∝  𝑒−2𝛼𝑍 (4) 

Equation (3) and (4) only assume LiDAR sensing through a 
homogeneous and uniform scattering medium, meaning there 
are no considerations of droplets that appear on the sensor 
surface close to the laser aperture. In this situation, power 
intensity is altered in the return signal [15]; this is a realistic 
scenario that cannot be neglected when a moving vehicle hits 
through a volume of rain. 

Zhang, et al. investigated on board LiDAR performance at a 
2 km route with pre-built scanning map [17]. The number of 
reconstructed space points in the point-cloud reduces 
significantly with increasing rain intensity. However, they only 
performed low speed experiments up to 35 km/hr. In order to 
establish a complete driving-in-rain model for automotive 
LiDAR, more on-board and controlled lab test datasets are 
needed, which is currently lacking in the literature. 

III. EXPERIMENTAL 

A small-scale wind tunnel was employed for simulation of 
wind-driven rain. The effects of three different perceived rain 
intensities and driving speeds were studied, leading to a 3 by 3 
matrix of 9 conditions in total. Rain characteristics for each case 
were quantified and the same conditions were simulated onto a 
camera and a LiDAR. Control measurements were taken without 
rain and wind for 30 seconds. Each condition was run for 2 min 
when a steady state of wind and rain was reached. Each 
condition was repeated to ensure repeatability via flow rate 
control. Analysis was performed on the average of the extracted 
quantitative values from the sensor signal data. 

A. Wind Tunnel 

This is an open-circuit push-down type wind tunnel that uses 
a centrifugal fan. This type of wind tunnel is suitable for soiling 
testing where contaminants are not sucked into the fan. The 
dimensions of the test section are 0.4 m (H) x 0.5 m (W) x 1.1 m 
(L).  

Flow collector was in place at the top and the two sides were 
open to the atmosphere. This setup selection was to 
accommodate the rain system and the rain measurement 
equipment to minimize aerodynamic blockage effect. The 
sensors were placed side-by-side inside a waterproof container 
which has a frontal area 12% of the test section cross-sectional 
area. The container was mounted onto the bottom board and at 
the end of the test section. The setup is depicted by Fig. 2A. 
Since the study focuses on frontal soiling of sensors, the 
aerodynamics of the container is ignored. 

B. Rain Conditions 

Rain conditions were simulated based on the concept of 
Pao’s numerical work [4] where water was dispensed from an 
elevated height, the wind then induced further breakups and 
deflected the droplets towards the sensors. 

Perceived intensities and volume mean droplet size (D30) 
that were simulated for different driving speeds and natural rain 
conditions are presented in Table 1 and Table 2, respectively. 
These rain characteristics were measured using the Thies laser 
precipitation monitor, shown in Fig. 2B, capable of tracing each 
droplet that passes through the disdrometer laser beam which has 
a detection area of 4560 mm2. Droplet that passes through the 
laser beam causes a reduction in amplitude in the receiving 
signal which correlates to droplet size. The duration of the 
diminished signal is used to calculate speed [18]. 

The perceived intensities increase in two directions - driving 
faster or increasing natural rain intensity. The ratio between 
perceived and natural rain intensity at different driving speeds 
are 1.4, 4.0, and 10.0 for 50, 75, and 100 km/hr, respectively. 
The selected driving speeds represent city, sub-urban, and 
highway speeds. For comparison, the target intensity moving 
along the diagonal of Table 1 from bottom left to top right was 
set to be the same. 

 

Figure 2.  Wind tunnel setups for (a) sensors and (b) disdrometer. 

TABLE I.  PERCEIVED RAIN INTENSITIES SIMULATED FOR DIFFERENT 

DRIVING-IN-RAIN CONDITIONS 

Rain Category 
Simulated Rain Intensities (mm/hr)a 

50 km/hr 75 km/hr 100 km/hr 

Light 5.7 15.2 33.5 

Moderate 17.4 33.1 106.5 

Heavy 32.7 107.6 194.4 

a. Rain intensities were experimentally measured, within ± 2 mm/hr from targeted intensities. 

TABLE II.  VOLUME MEAN DROPLET SIZE SIMULATED FOR DIFFERENT 

DRIVING-IN-RAIN CONDITIONS 

Rain Category 
Simulated Volume Mean Droplet Size (mm)b 

50 km/hr 75 km/hr 100 km/hr 

Light 0.67 0.78 0.79 

Moderate 0.68 0.79 1.17 

Heavy 0.79 1.18 1.46 

b. D30 droplet sizes were experimentally measured. 



   

The D30 droplet size increases with increasing rain 

intensities, due to the increased probability of events such as 

breakup, collision, and coalescence. The trend was evident by 

noting the smallest size found for 50 km/hr light rain condition, 

and largest size found for 100 km/hr heavy rain condition. The 

impact angle selected for all cases lied within 70o – 75o. The 

mean droplet velocities measured reflect the terminal velocity 

of droplets between 25-32 km/hr, this is a limitation of wind-

driven rain, which cannot simulate for a vehicle driving into the 

raindrop at its driving speed. 

C. Sensors 

Short-range sensors were selected for this study, including a 
generic automotive external camera and a single-point LiDAR. 
The camera has a field-of-view (FOV) of 140° and resolution of 
640 x 480 pixels at 20 frames-per-second. The LiDAR emits 
pulsed laser beam at 850 nm wavelength and has a FOV of 2°. It 
measures for distance and signal strength at 100 Hz. The LiDAR 
has an operation range between 0.2 - 8 m, with ± 2% accuracy 
at over 3 m distance. The simplicity and non-point-cloud based 
nature of this LiDAR is suitable for fundamental studies on laser 
interactions with raindrops. 

A 1 mm thick extruded transparent acrylic cover was placed 
in front of the sensors without a gap, such that the sensors were 
not directly exposed to raindrops, but had a protective cover. The 
cover was used as received without coating treatments, the water 
contact angle (WCA) was measured to be 62° and is considered 
to be hydrophilic (WCA < 90°). The control frames were taken 
with the cover installed, thus the optical properties of the cover 
can be neglected. 

1) Camera performance evaluation: Image processing 

techniques were employed to objectively quantify the accuracy 

and clarity of camera during various driving-in-rain conditions. 

The optical camera footage was converted into 16-bit grayscale 

snapshots. A method of Microscope Image Focus Quality 

(MFQ), developed by Yang’s team, evaluates the focus quality 

of the image snapshot [10]. The image was subdivided into 9 by 

7 independent grids to be examined by the method using an 

open source image processing package, Fiji [19]. The method 

employs pre-trained deep neural network to predict image 

snapshots in isolation. Analyzing optical camera footages using 

the MFQ method resulted in a difference in the overall level of 

in-focus grid segment between various perceived rain 

conditions. 
2) LiDAR performance evaluation: Rain effects on signal 

strength were not investigated in this paper. Each experiment 
collected 12000 data points over 2 minutes. LiDAR was 
evaluated based on its ability to determine the distance to a 
target of a known position under various driving-in-rain 
conditions. The data was plotted against measured distances. 
Any fluctuation of measured distances from the known target 
distance indicates LiDAR is being affected by raindrops. The 
distance errors were divided into 10 groups of distance 
differences from the known target distance, each group is 
accounted for 10% increment. Error counts for less than 2% 
were ignored as that lied within the accuracy of the studied 
LiDAR. The raw data was sorted according to the 10 groups and 

the error frequencies were recorded. The overall performance 
of the LiDAR is reflected in the relative area under the error 
intensity curve. The area indicates the extent of the LiDAR 
being affected by raindrops, a lower value would mean less 
errors and better performances. 

IV. RESULTS AND DISCUSSIONS 

A. Camera Performance in Rain 

The raw image, 16-bit grayscale, MFQ, and gamma 
corrected examples are shown in Fig. 3. The gamma correction 
factor was set to be 0.6 for viewing purpose in the figure. The 
color scheme of the box layouts indicates the focus quality of 
that respective region, with red being in-focus, and blue being 
the most out-of-focus. The MFQ data was processed in raw 
form prior to gamma correction. 

The MFQ of control frame and three examples including 50 
km/hr light rain, 75 km/hr moderate rain, and 100 km/hr heavy 
rain are shown in Fig. 4. As seen in Fig. 4A, the control frame 
post-processed result shows the image as completely in-focus 
with a high level of confidence. As the perceived rain intensity 
increases from 50 km/hr light rain to 100 km/hr heavy rain, 
more and more boxes indicate a shift towards blue on the RGB 
spectrum – meaning out-of-focus.  

The examples in Fig. 4 capture the increase in both 
perceived rain intensity and driving speed. The examples also 
represent the best, median, and worst cases among the nine 
conditions. In a light rain and low driving speed condition, the 
camera was affected to a lower extent with the majority of boxes 
still indicating red. When both perceived intensity and driving 
speed were at the extreme high ends, the camera lost complete 
visibility with only little areas being in-focus as evident by the 
majority of boxes having non-red colors. 

Another observation made through the post-processing of 
the MFQ method is that as droplet diameter increases, the 
magnitude of blurriness (out-of-focus) also increases 
proportionally. When smaller droplets are present at a higher 
density, which blurs a larger area of the image, this scenario 
would result in lower contrast across the image as compared to 
a scenario having fewer but larger droplets. 

It is suspected that although driving faster caused droplets 
to translate faster across the cover in different directions, a 
camera has wide FOV, the translation of droplets per video 
frame on a hydrophilic surface was relatively small compared 
to the FOV. The worsening effect was dominated by the 
increase in perceived rain intensity when there were more 
droplets present on the cover, causing more light deflections. 

Quantification of the MFQ data was performed by 
identifying the color scheme of the boxes based on its RGB 
value. A metric of evaluation was created to benchmark the 
result from every experimental case. In-focus percentage for all 
investigated conditions are plotted in Fig. 5. If the analyzed box 
indicates any shift towards the blue end of the RGB spectrum, 
then it is considered to be out-of-focus. The level of overall 
image focus quality is based solely on the number of in-focus 
boxes. The magnitude of blurriness is investigated at a lesser 
extent due to the fact that it is highly application  



   

 

Figure 3.  (a) Raw, (b) 16-bit grayscale, (c) MFQ, and (d) Gamma corrected 

of the same camera image frame. 

 

Figure 4.  MFQ of (a) control frame; selected frames from (b) 50 km/hr light 

rain, (c) 75 km/hr moderate rain, and (d) 100 km/hr heavy rain. 

 

Figure 5.  Percent in focus for different driving in rain conditions. 

dependent. An example can be given by comparing Fig. 4C and 
4D. In Fig. 4C, larger droplets are present, indicating a greater 
magnitude of blurriness, yet due to its reduced droplet density, 
there are still in-focus areas. In Fig. 4D, although the smaller 
droplet size shows a reduced magnitude of blurriness, its high 
droplet density caused an increase in the affected area. 
Depending on the method to predict realistic environmental 
information to provide accurate and reliable road information, 
it is not possible to clearly state which of the example cases is 
worse than the other. Therefore, only the in-focus quality is 
quantified in this analysis. 

B. LiDAR performance in Rain 

LiDAR signal was affected when a droplet passes through 
the laser point on the protective cover. The presence of droplets 
in close proximity to the LiDAR resulted in inaccuracy of 
ranging, which deviates from the reference distance.  

Fig. 6 shows the plots of detected distance for control, 50 
km/hr light rain, 75 km/hr moderate rain, and 100 km/hr heavy 
rain; representing increase in both perceived rain intensity and 
driving speed. The higher frequency in distance fluctuations 
implies the effect of raindrops on LiDAR signal was more 
severe. The amount of up and down transitions was 
significantly higher during 100 km/hr heavy rain condition (Fig. 
6D) as compared to 50 km/hr light rain condition (Fig. 6A). 
Steeper troughs with lower magnitude suggest that droplets 
were moving across the laser point quickly, evident in the 100 
km/hr condition where droplets had higher kinetic energy. On 
the other hand, wider troughs seen in the 50 km/hr condition 
demonstrated the opposite for which droplets had higher 
adhesion at the contact interface with the cover surface.  

Ultra-low distance (zero’s) recorded may be contributed by 
a shorter time for the signal to return; in this case, it is 
hypothesized that a droplet was detected, and the droplet had a 
larger diameter such that all the signal was backscattered. 
Optical events such as reflection and refraction may have 
happened along the laser’s path, the non-zero but lower than 
reference distances were consequences of two possible 
scenarios. First reason is due to detection of in-mid-air droplets. 
Another reason may be attributed to partial penetration of laser 
beam through a smaller droplet, and the cone-shaped beam with 
2o FOV detected a second object, such that a distance between 
the first and second detected objects was recorded.  

Relative area under the curve of error count and error 
intensity was calculated for equally weighted increments, and 
the results for all investigated conditions are reported in Figure 
7. The area determines the overall signal degradation of LiDAR. 
The bars represent the study group of perceived rain intensity. 
The LiDAR performance degraded when exposed to more 
raindrops. The arrows represent the study group of driving 
speed. Improvement was observed when driving faster, it was 
consistent for all three different perceived intensities. This was 
likely due to the narrow FOV of a single-point LiDAR, since a 
faster moving droplet would have a lower impact on signal 
accuracy. 



   

 

Figure 6.  LiDAR distance measurements for (a) control, (b) 50 km/hr light 

rain, (c) 75 km/hr moderate rain, and (d) 100 km/hr heavy rain. 

 

Figure 7.  Relative area under the error frequency and intensity curve. 

V. CONCLUSIONS 

Realistic driving-in-rain conditions were simulated in a 
model wind tunnel. Two groups of conditions were studied – {1} 
driving at the same speed but experiencing different perceived 
rain intensities, and {2} driving at different speeds but 
experiencing the same perceived rain intensities. The effects of 
rain intensity and driving speed on signals of a generic 
automotive external camera and a single-point LiDAR were 
investigated and quantified via image processing and statistical 
analysis. The following conclusions were made:  

● The camera performance degraded in terms of focus 
quality in both groups of conditions when rain intensity and 
driving speed increased.    

● The LiDAR performance degraded with inaccurate 
ranging in group {1} conditions but showed opposite trend in 
group {2} conditions. 

This paper serves as a baseline understanding for sensor 
behaviors when driving-in-rain, one of the most hazardous 
weather conditions, with several proposed methods to 
quantitatively analyze the effects of raindrops on sensor 
performances. The data analysis in this paper applies to the 

presented setup; whereas different setups may result in different 
conclusions. It is recommended to perform lab testing on signal 
strength to further understand other parameters such as droplet 
size and droplet shape. These studies can be used for future 
designs of soiling mitigation and signal enhancement strategies. 
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