Supporting Information

for

Annealing Induced Structural Evolution in Feldspar Dental Glass-Ceramics Investigated by Solid-State NMR Spectroscopy

Amit Bhattacharya ^a, Yu Qiu ^a, Guy M. Bernard ^a, Sheila Butler ^b, Arthur Mar ^a, and Vladimir K. Michaelis ^{a,*}

^a Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

^b Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A

5*C*1

* Corresponding author: vladimir.michaelis@ualberta.ca

Sample	Annealing temp (°C)	a (Å)	<i>b</i> (Å)	c (Å)	α(°)	$eta(\circ)$	γ(°)	$V(Å^3)$
Commercial	800	8.412(1)	12.760(2)	7.091(1)	89.90(1)	116.21(1)	89.18(8)	682.8(2)
Commercial	850	8.417(1)	12.773(2)	7.102(2)	89.90(1)	116.17(1)	89.21(1)	685.2(2)
Commercial	900	8.457(1)	12.817(2)	7.130(1)	89.94(1)	116.2(1)	89.15(1)	693.3(2)
Commercial	950	8.508(2)	12.975(2)	7.138(1)	90.16(2)	115.94(1)	89.84(2)	708.6(3)
Lab-grade	900	8.334(1)	12.828(1)	7.095(1)	89.94(1)	116.14(1)	89.69(1)	680.9(2)
Ga-doped	900	8.413(1)	12.896(1)	7.083(1)	89.96(1)	115.95(1)	89.74(1)	690.9(1)
B-doped	900	8.435(2)	12.893(2)	7.093(1)	90.29(2)	115.99(1)	89.80(2)	693.4(2)

Table S1. Cell parameters for commercial and lab-grade dental ceramics.^a

^a Refined in triclinic (pseudo-monoclinic) lattices. The standard uncertainties are shown in parentheses.

Table S2. Amorphous and crystalline phase fractions obtained by fitting ²³Na NMR spectra of commercial dental ceramics annealed at various temperatures.^a

Annealing temperature (°C)	Amorphous (%)	Crystalline (%)
800	82	18
850	71	29
900	87	13
950	98	2

^a Relative errors are 3%.

Figure S1. Silicon-29 MAS NMR spectra ($B_0 = 7.05$ T; $\omega_r/2\pi = 5$ kHz; short tip angle of ~10°) of VITA VM9 dental ceramic (annealed at 900 °C) with varying recycle delays.

Figure S2. SEM images of the commercial dental ceramics annealed at different temperatures (a) RT, (b) 600 °C, (c) 800 °C, (d) 900 °C and (e) 1100 °C.

Figure S3. Sodium-23 MAS NMR spectra ($B_0 = 21.1 \text{ T}$; $\omega_r/2\pi = 31.25 \text{ kHz}$) of the VITA VM9 dental ceramic with annealing temperatures between 800 and 950 °C. The central transition was fit using a Gaussian lineshape considering amorphous (Green) and crystalline (Red) contributions. The cumulative fit is shown in blue.

Figure S4. Comparison of the experimental ²⁷Al NMR spectrum for $Na_{0.5}K_{0.5}AlSi_3O_8$ (middle) with simulated spectra for $NaAlSi_3O_8$ (top) and $KAlSi_3O_8$ (bottom) at 21.1 T. Simulations were performed using parameters given in reference 15 of the manuscript.

Figure S5. Comparison of experimental ²³Na MAS NMR spectrum for Na_{0.5}K_{0.5}AlSi₃O₈ glass-ceramic with simulated spectra for crystalline NaAlSi₃O₈, Na_{0.5}K_{0.5}AlSi₃O₈, and Na_{0.2}K_{0.8}AlSi₃O₈ at 21.1 T. Simulations were performed using parameters given in reference 15 of the manuscript.

Figure S6. Projections along the isotropic dimension of triple quantum (3Q) (a) ²⁷Al and (b) ²³Na MAS NMR spectra ($B_0 = 21.1 \text{ T}$; $\omega_r/2\pi = 31.25 \text{ kHz}$) of VITA VM9 dental ceramic at 25 °C (bulk powder, no heat treatment), 900 °C (glass-ceramic), and 1100 °C (melt/quench).

Figure S7. Powder XRD patterns of the commercial dental ceramic in comparison with lab-grade (Na_{0.5}K_{0.5}AlSi₃O₈), Ga-doped (Na_{0.5}K_{0.5}Al_{0.9}Ga_{0.1}Si₃O₈), and B-doped ceramics (Na_{0.5}K_{0.5}Al_{0.9}B_{0.1}Si₃O₈).

Figure S8. Overlay of the ²⁷Al MAS NMR spectra for the commercial VITA VM9 (black) and Ga-doped (red, Na_{0.5}K_{0.5}Al_{0.9}Ga_{0.1}Si₃O₈) glass ceramics.

Figure S9. Aluminum-27 MAS NMR spectra of the group 13 synthetic glass-ceramic feldspar compounds $(Na_{0.5}K_{0.5}Al_{0.9}B_{0.1}Si_3O_8, Na_{0.5}K_{0.5}AlSi_3O_8, and Na_{0.5}K_{0.5}Al_{0.9}Ga_{0.1}Si_3O_8)$. The spectra reveal the presence of both ^[4]Al (~40 to 70 ppm) and ^[6]Al (~10 to 20 ppm).

Figure S10. Sodium-23 MAS NMR spectra ($B_0 = 14.1$ T) of Na_{0.5}K_{0.5}Al_{0.9}B_{0.1}Si₃O₈ fit using a two-site Gaussian model.