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ABSTRACT

This thesis is devoted to a study of two related problems

concerning the second order nonlinear ordinary differential equation

2"+ q()E(x) = 0 (1)

with q(t) > 0 and continuous on [0,») and £(x) continuous for all

real x and satisfying xf(x) > 0 for x # 0 .

The first of these problems is to determine necessary and/or
sufficient conditions that the equation (1) admit both oscillatory and
nonoscillatory solutions. For such an equation, which we call a "mixed"
equation, our second and related problem is to obtain information about
the nature of those initial conditions x(0), x'(0) for which the
corresponding solution is oscillatory (respectively nonoscillatory) and,
in particular, to obtain bounds on the set of those initial conditions

for which the corresponding solution never vanishes on [0,) .

Our main results regarding the first problem include an
extension to equation (1) of a theorem of Jasny and Kurzweil giving
sufficient conditions for the existence of an oscillatory solution.
Using this extension and known sufficient conditions for the existence
of nonoscillatory solutions to equation (1), we obtain both necessary
conditions and sufficient conditions on q(t) for equation (1) to be

mixed.

With regard to the second problem, we show that under certain

conditions on f£f(x) a solution to (1) satisfying the initial conditions



(11)

x(0) =a, x'(0) =b (2)

can be forced to vanish arbitrarily often on a.closed interval [0,T]

by choosing a2 + b2 sufficiently large. It is also shown, under
certain conditions on £(x) , that the set of values of a for

which a solution of (1)-(2) does not vanish on [0,®) is of the form

§ = [~a,0) v (0,8] where a,8 > 0, and that for each a ¢ § s the set
of initial slopes b for which the corresponding solution never vanishes
is a subset of a closed interval not containing zero. Finally, for a
well known special case of equation (1), f(y) = y2n+1 » Wwe obtain

certain inequalities involving the coefficient function q(t) and

the initial conditions a,b corresponding to non-vanishing solutions.
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CHAPTER 1

§1.1 Introduction

During the past fifty years the theory of nonlinear oscillations
has acquired special importance and has drawn increased interest from
many researchers in mathematics, mechanics and physics. Among the family
of differential equations forming the subject of this interest, perhaps
the most widely studied has been the second order ordinary differential

equation
x" + £(t,x,x') =0 (1.1)
in the real domain.

The question of oscillation of extendable solutions to equation
(1.1) has been of primary concern to some researchers. By this is meant
the resolution of the following problems for equation (1.1): singling
out those equations which have at least one oscillatory (respectively
nonéscillatory) solution; singling out those equations which have all
solutions oscillatory (respectively nonoscillatory); establishing
conditions for the existence of bounded (unbounded) oscillatory (non-
oscillatory) solutions; establishing conditions for the existence of
solutions with decreasing amplitudes; estimating the amplitude, the
number of zeros on a given interval, the distance between consecutive
zeros, and so on, of a solution to equation (1.1). Here, an extendable
solution is called oscillatory if it exists on the interval [o,»®) and
has infinitely many zeros accumulating at « , otherwise it is called

nonoscillatory.



More recently there has developed an interest in obtaining
methods for solving the following problem for that class of equations
for which not all solutions can be oscillatory (nonoscillatory): to
determine, for a given equilibrium state x_ , the set {(x(to),x'(to))}
of initial values corresponding to oscillatory solutions of the equation
with respect to X s that is, solutions for which the function x(t)-xr

has an infinite number of zeros accumulating at « .

The results so far obtained from research into the above.
questions have not as yet provided complete answers to all of them, but
nevertheless have practical significance in that they are concerned with
the properties of equations that are often encountered in various areas
of natural science and applications. We shall cite as examples certain
equations, fully referenced by V.N. Shevyelo [20] for which a knowledge

of their oscillatory properties is of practical interest.
The equation

L8+t - (1.2)

is encountered in astrophysics in the form of Emden's equation, in atomic
physics in the form of the Fermi-Thomas equation, and in fluid mechanics
in the form of the equation

d

4 (g2 du
dr

28y + f) =0, A>0, r>0. (1.3)

A series of works studies the properties of particular cases
of equation (1.2). The results of the investigations of R. Fowler,

published during the period 1915-1931, are summarized in the monograph of



R. Bellman [2], (Chapter 7). M. Chimino [6] showed that in one special
case of equation (1.3), the zeros of the solution, u(r) , correspond

to certain equilibrium states of a fluid.

In relativistic mechanics the following equation, introduced

by N.S. Kalitsin (c.f. Shevyelo [20]) is encountered:

>

d m(t) v J u dm(t) _ 3
e = = . (1.4)
dt [(1_v2/ )1/2 (1-u2/c )1/2 dt

The equation (1.4) can describe the movement of certain radioactive
particles having a velocity close to the velocity of light. The work of
V.N. Shevyelo and V.G. Shtelik [21] is devoted to a study of the oscillatory

properties of solutions to certain particular cases of equation (1.4).

Equations of Lane-Emden type of the form

2

[«

AN

X, —§—+ £(x) = 0 (1.5)

N X

dt

were probably first studied by Emden [8] in examining the thermal
behaviour of spherical clouds of gases acting in gravitational equilibrium
and subject to the laws of thermodynamics. A more recent treatment of

the case with f£f(x) = % is available in Chandrasekhar [3]

The phase motion of charged particles in a synchrocyclotron is

described by the equation

E

d (s d¢
dt dt

> +—sin¢ —9—sin by (1.6)
1T
wSK

where Es’ wes K, e and V are certain given parameters.



Physicists have called attention to the fact that equation (1.6) coin-
cides with the equation of motion of a pendulum of variable length and
mass moving under the influence of the force of gravity and a constant
rotational moment of magnitude such that the position of stable equilib-
rium of the pendulum is changed from ¢ =0 to ¢ = ¢S + The equation

(1.6) is a particular case of the equation

I meP) + £ @) =0, (1.7)

where
u'(y) = %% = sin ¢ [cos (¢ +w) - cos ¢ ] .

Equation (1.7) describes the phase motion of charged particles in the
electromagnetic field of those accelerators whose operation satisfies

the principle of phase stability, that is, accelerators which are designed
to pass the charged-particle beam through each successive accelerating
gap at the same equilibrium phase of the accelerating field. 1In the
theory of accelerators there arises the important question of determining
the '"region of capture' - the set of initial conditions corresponding to
solutions of equation (1.7) that are oscillatory with respect to the
equilibrium position ¢ = ¢s . Knowledge of the region of capture is
necessary for the determination of the fraction of injected particles
which are trapped in the synchronous regime of the accelerator and
consequently reach an energy very close to the theoretically calculated

energy.

For a more detailed account of applications of second order



nonlinear oscillation one may refer to the survey article by Shevyelo [20]

where a complete bibliography up to 1963 is given.

A particular case of equation (1.1), for which the question of

oscillation of solutions has been thoroughly studied, is the equation
x" + £(t,x) =0 - (1.8)

where £(t,x) is a continuous function of the variables t > 0 and

|x|] < = . Theorems on oscillation and nonoscillation of solutions to
(1.8), together with a comprehensive survey of current literature in

this area, may be found in the survey by Wong [25] in which the Shevyelo
bibliography is updated to the year 1967. The paper of Wong, and indeed
a considerable portion of recent research articles dealing with equations
of the type (1.8), was inspired by a well known paper of Atkinson [1]

which deals with the special case of equation (1.8),

2n+l -

x" + q(t) x 0, n=1,2,3,... (1.9)

Although Atkinson's work was later extended, e.g. by Waltman [23], Macki
and Wong [15], Das [7], Nehari [17], Moore and Nehari [16] and others,
there can be little doubt that it provided the stimulus for subsequent
investigations by numerous authors into the qualitative theory of second
order nonlinear oscillation, which includes the resolution of those

problems referred to in the second paragraph of this section.

§1.2 Statement of the problem

It is not the purpose of this presentation to attempt any further



extension of results relating to the broad question of oscillation of
solutions to equation (1.1). We shall be concerned rather with the
following two related problems as they pertain to a specific case of

equation (1.1), namely the equation
X"+ q(t)E(x) =0, (1.10)

where q(t) is non-negative and continuous for to < t<w, vyhile

£(x) is "strictly nonlinear", continuous for |x| < = , and satisfies
xf(x) >0 for x#0.

These two problems are:

A. to determine necessary and/or sufficient conditions for equation
(1.10) to admit both oscillatory and nonoscillatory solutions; and

B. given an equation of the type (1.10) which admits both
oscillatory and nonoscillatory solutions, to determine the set of initial
conditions {(x(to),x'(to))} corresponding to oscillatory (nonoscillatory)

solutions.

Problems A and B have been previously considered by Moore and
Nehari [16], Nehari [17] and Hinton [11l] . Moore and Nehari have
demonstrated examples of equation (1.10) having both oscillatory and
nonoscillatory (in fact, zero-free) solutions, while Hinton has exhibited

a bound L = L(to,q(t)) such that any solution to (1.9) satisfying
Ix(to)| > L

is oscillatory on [to,w) , providing that q(t) satisfies certain

differentiability and integrability conditioms.



It would appear reasonable that any attempt to obtain a complete
solution to problem B should proceed as an extension to the solution of
problem A, and that in the absence of conditions which are both necessary
and sufficient for equation (1.10) to admit oscillatory and nonoscillatory
solutions, one can expect to provide, at best, a limited solution to
problem B. In the following chapters, therefore, we shall be concerned
with both problems, sometimes individually, at other times jointly.
Chapter II will include some new results and a summary of known results
pertaining to problem A, as well as a complete discussion of problem B

as it relates to a particular equation

n+2.-1 2n+l
1 " x =

x" + [4(t+1) 0. (1.11)

Chapter III will deal almost exclusively with problem A and contains
new results which place further restrictions on the class of functions

q(t) for whichﬂequation (1.9) or (1.10) can admit both oscillatory and

nonoscillatory solutions. In Chapter IV we shall show, motivated by
example (1.11), that the set of initial conditions generating certain
types of solutions will, for the general equation (1.10), satisfy the
same properties as it does in the case of the example (1.11). We do not,
however, succeed in characterizing the set of initial conditions generat-

ing oscillatory solutions to (1.10).



CHAPTER II

§2.1 Existence, uniqueness and extendability of solutions.

Consider the second order ordinary differential equation

2n+l -

X" + q(t)x 0, n apositive integer, (2.1)

and its generalization
x" + q(e)f(x) =0, (2.2)
where it is assumed that

q(t) is positive and continuous on [0,=) , (2.3)

f(x) is continuous for x in (-»,©) and (2.4)

xf(x) >0 for x#0 ,
and

solutions to initial value problems for (2.5)

(2.2) are unique.

(In what follows, additional conditions will occasionally be placed on
f(x) in order to genmeralize to equation (2.2) certain results which
hold for (2.1).)

By assumption (2.5), for any real numbers a and b , the
equation (2.2) has, on some interval I, 0 e I < [0,0) , a unique
solution x = x(t;a,b) satisfying

x(0) = a , x'() =b , (2.6)
and this solution can be extended uniquely to a maximal interval of



existence J c [0,) .

One is immediately concerned with determining conditions which
will guarantee that J = [0,®) . The fact that this is not always the
case has been demonstrated by Coffman and Ullrich [5] with an example

of the equation
" 3
x" + q(t)x” =0 (2.7)

in which q(t) is locally of bounded variation everywhere on [0,~)

with the exception of one point to , and such that at least one solution
of (2.7) has [O,to) as its maximal interval of existence in [0,x) .
Tbis example shows that global existence of solutions of (2.1) can be
destroyed by a pathology of the coefficient at a single point, and in

fact even when the coefficient differs from a constant by an arbitrarily

small amount.

It is observed by Coffman and Ullrich that a solution of (2.1)
on an interval [O,to) can fail to have a continuation to the right of
t, only if the solution changes sign infinitely often as t approaches
ty from the left. The same remains true for equation (2.2). Indeed,
since a solution x(t) of (2.2) always satisfies xx" <0, an
elementary argument shows that for a solution x(t) defined on the
interval [O,to) and having only finitely many zeros there, both x

and x' possess finite limits as t >t .

The following theorem, which is a generalization of a theorem
of Coffman and Ullrich, gives conditions sufficient to guarantee that

all solutions of (2.2)-(2.6) exist on [0,») .
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Theorem 2.1

Let (2.3), (2.4) and (2.5) be satisfied, and assume, in addition,

that
q(t) 4is locally of bounded variation on [0,*) . (2.8)

Then for any real numbers a and b , the initial value problem (2.2) -

(2.6) has a unique solution which exists on [0,®) .

Proof.

Let t; > 0 and choose m > 0 such that q(t) >m> 0 on
[O,tl] . It ig possible to approximate q(t) uniformly on [O,tl] by
a sequence of functions {pk(t)} where each pk(t) is of class C'

%
on [O,tl] and satisifes

. pk(t) >m on [0,t1] (2.9)
and
£
[ Ipi(®)ae < T (2.10)
)

where T 1is the total variation of q(t) on [O,tl] . For each

k =1,2,3,... let xk(t) be the solution of
x" + pk(t)f(x) =0
which satisfies
xk(O) =a, xé(O) =b .

Suppose xk(t) exists on an interval [O,tz) where 0 < t, < t1 .

*
See Appendix
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Define

xk(t)
¢, (t) = (xl'c(t))2+2pk(t)fo f(u)du , (2.11)

for 0<tc<t Then ¢k(t) is of class C' on [O,tz) and it

2 .

follows from (2.9) and (2.4) that ¢k(t) > 0 . Moreover
x, (t)

¢1'<(t) = 2p1'((t) fo f(uydu , 0<t<t,.

It follows from (2.9) that

REINO] .
and therefore
|p1'¢(t)| ) xk(t)
$p(t) < ——— [x[ ()" + 2p, () | £(u)du]
o
or
' lpp (0 |
¢y (£) < ——— ¢k(t) ;3 0<t<t, . (2.13)

Integrating the inequality (2.13) yields

t [p)(s)|ds

4. (E) 2 $,(0) exp (fo ) ; 0st<t

m

which, in view of (2.12), implies

¢ (£) < ¢, (0) exp ('_1]1:1')-; 0<t<t,.

It therefore follows from (2.11) that xﬂ(t) is bounded on [O,tz) and
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thus lxk(t)l < sup |xi(t)| -t on [O,tz) . But this implies that
sty
the solution xk(t) can be continued to the right of t, and, since

t, € (O,tl)v was arbitrary, it follows that the solution xk(t) exists

on [0,t1] for each finite t, > 0 .

1
The sequence xk(t) has a subsequence which converges uniformly

on [0,t1] to a solution x(t) of (2.2)-(2.6) (Hartman [10], page 14,

Theorem 3.2). This shows that (2.2)-(2.6) has a solution on [O,tl) for

arbitrary ¢t 0 , and this solution is unique by (2.5).

1>

§2.2 Results pertaining to problem A

Agssume conditions (2.1) through (2.5) are satisfied. Let F
be the set of those functions q(t) satisfying (2.3) for which tﬁe
conclusion of Theorem 2.1 holds for the equation (2.1), and let F' be the
set of those functions q(t) satisfying (2.3) for which the conclusion of
Theorem 2.1 holds for the equation (2.2). We shall say that qe¢ O c F
(respectively q ¢ 0' < F') if all non-trivial solutions of (2.1) (respec-
tively (2.2)) are oscillatory; that q € ¥ ¢ F (respectively q e N' c F')
if all non-trivial solutions of (2.1) (respectively (2.2)) are nonoscillatory
finally, that q € ¥ ¢ F (respectively q ¢ M' c F') 1if the equation (2.1)
(respectively (2.2)) admits both non-trivial oscillatory solutions and non-
trivial nonoscillatory solutions. For a given q € F (respectively q ¢ F')
we shall say that equation (2.1) (respectively (2.2)) is oscillatory, non-
~ oscillatory, or mixed, according as q e 0, q € N, or qeM (respec-

tively qe 0', qe N', or q e M').

It is well known that each of the above defined sets 1s non-~
empty. One may refer to the Wong paper [25] for a summary of the known

sufficient conditions for membership of a function q(t) in each. The
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following important results are reproduced here because of their direct

bearing on our later work.

Theorem 2.2 (Atkinson [1])

A necessary and sufficient condition that q ¢ 0 1is

0

[ tqe)dt = + = , (2.14)
(o]

If qe C'[0,0) with q'(t) > O then

(-4
[ 2 (tyat < + o (2.15)

(s}

is a sufiicient condition that q ¢ ¥V .

Theorem 2.3 (Wong [25])

Let f(x) be such that for some p > 1,

1im inf A£G

> 0. (2.16)
|x| = |x|P

Then (2.14) is a necessary and sufficient condition that q e 0' .

In the paper [25] Wong speculated that Theorem 2.3 remains
valid if (2.16) is replaced by the weaker conditions that for some

a>0,

< o |, (2.17)

It was shown by Macki [14], however, that in the absence of (2.16) condition
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(2.17) is not sufficient for q € 0' . Whether it is necessary is still
an open question. In a joint paper of Macki and Wong [15] it is shown
that Theorem 2.3 does remain valid under the additional condition that
f(x) 1s nondecreasing (or that £(x) 1is bracketed between two non-

decreasing functions that satisfy (2.17)). Thus

Theorem 2.4 (Macki and Wong [14])

If (2.17) is satisfied and if
feC'(-w» with £'(x) >0 (2.18)

then (2.14) is necessary and sufficient that q € o' .

Theorem 2.5 (Nehari [18])

If

q(t) (t log t)n+2 is non-increasing (2.19)
for t>T>0, :

then q e NV .

Theorem 2.6 (Jasny [12])

If q(t) is absolutely continuous on each finite interval

[tl,tz] s ty>a, and if

-

(n+2)q(t) + tq'(t) > 0 a.e. for t > t s . (2.20)
o o o _ 2ntl

e [ qt){[ duf q(s)ds} 2 gt <M (2.21)
t t u

for t > to s Wwhere M = constant,
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then q ¢ N (i.e., (2.1) admits an oscillatory solution).

Theorem 2.6 of Jasny was later improved by Kurzweil [13] as

follows:

Theorem 2.7 (Kurzweil [13])

If

tn+2q(t) is positive and (2.22)

non-decreasing for t 2t
then ¢ * N .

The improvement effected by Kurzweil consisted primarily in
showing that unless q belonged to class 0 , (in which case the theorem
holds trivially) condition (2.20) implies (2.21). Furthermore, since
(2.20) is required only almost everywhere, the restriction of absolute
continuity on q can be dropped when (2.22) is required in place of
(2.20). We now show that Theorem 2.6 can be generalized to equation

(2.2).

§2.3 Generalization of a theorem of Jasny.

Let (2.3), (2.4) and (2.5) hold, and assume the conclusion

of Theorem 2.1. Suppose further that

J - S (2.23)

and let the conditions (2.18) and (2.17) for all a > 0 be satisfied.

Then, according to Theorem 2.4 either q ¢ 0' or f tq(t)dt < » ,
o
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and in the latter case the function

p(t) = f ds f q(t)dr (2.24)
t s

is well defined and exists on [0,%) . Moreover (2.17) and (2.23)

-+
imply that the function H(u) = f ?%ﬁf is defined and strictly
u

decreasing for u ¢ (0,2) , and satisfies

lim + H(u) = 4+ o , lim H(u) = 0 .

u-=>o U > ®
-

Therefore H has an inverse function h defined on (0,») satisfying

lim h(t) =0, lim + h(t) = +
t > t-+o

and h(t) 1s strictly decreasing on (0,®) . Let tq(t) e C'[0,»)

and define

u
F(t,u) = 2(tq(t))' [ £(1)dt + q(t)uf(u) . (2.25)
(o] N

Theorem 2.8

Under the above assumptions, let

(a) [ q(t)f(at)dt =+« for any o > 0 .

(b) F(t,u) >0 for t> t, > all real u ,

() vt [ q(s)f(h(¢(s)))ds < M = const. for t 2t .
t
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Then q ¢ N (i.e., (2.2) has an oscillatory solution).

Before beginning the proof, we remark that Theorem 2.8 is a
generalization of Theorem 2.6 for the case of tq(t) € C'[0,»). When applied
to equation (2.1), the condition (c¢) of Theorem 2.8 reduces to (2.21)
and condition (b) reduces to (2.20). In the case of equation (2.1)

condition (a) follows from (b) (see Jasny [12]).

The proof of the theorem depends on the following lemma.

Lemma ., If x(t) is a solution to (2.2) such that x(t) is monotone

and of one sign for t z-to , and if 1lim x'(t) = 0 then
t > o

|x'(£)]| < f q(s)E(h(¢(s)))ds , t > t, -
t

Proof of lemma

It may be assumed that x(t) >0 for t > t, (fox, if not,
then an identical argument can be applied to the function y(t) = -x(t)
which satisfies the equation y" + q(t)g(y) = 0, where g(y) = -f(-y)

and g also satisfies our hypotheses). Let s > t > t_ and we have

o)
from (2.2)

S
x'(t) - x"(8) = [ q(r)£(x(1))dr
t
from which

x'(t) = [ q(o)E(x(t))dr . (2.26)
t
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Now x is strictly increasing in t , so it follows from (2.18) that

f(x(t)) > £(x(t)) for 1t > t . Therefore

x'(t) 3
Ty J awar

Integrating the last inequality over [t,») ,

f ds q(r)dr < f Mds=f <
¢ fs ¢ £(x(s)) x(t) £(t)

where 1lim x(t) =L <+ » , Therefore
t > o

f ds f q(t)dt < H(x(t)) .
t S

Since h is strictly decreasing, it follows that

h{H(x(t))] < h [f ds | q(r)dt] = h(¢(t))
t

-]

or
x(t) < h(¢(t)) .

Thus, from (2.26) we have

(o}

' (6)| <[ q(Em@)TINAT , t>t
t

which is the conclusion of the lemma.

Proof of Theorem 2.8,

Let the solution =x(t) of (2.2) have initial conditions
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x(to) =0, x'(to) =K .

We will show that if K > 0 is sufficiently large then the solution
oscillates. Suppose, on the contrary, that x(t) is positive for

t>t, . Then x(t) must satisfy 1lim x'(t) = 0 . For if not,
t > o

then 1lim x'(t) = B where' 0 < B < ., Since x'(t) is decreasing,
t + o=

given ¢ > 0O there exists T > t, such that B < x'(t) < B+ e for

t>T, and there exists a , 0 < a < 8 such that
x(t) > x(T) + B(t-T) >at , t>T .

But then we have from (2.2)
t
x"(T) = x"(t) + [ q(s)f(x(s))ds >
T

t
>x'"(t) + [ q(s)f(as)ds .
T

Letting t + » we obtain a contradiction of hypothesis (a) of the

theorem. Thereore lim x'(t) = 0 . Now choose K so large that
t> e
K=x"(t)>—n (2.27)
o] /q

From the lemma and the fact that x'(t) 1is continuous, there exists

a point t, > t_  such that x(tl) = 0 . Define

9 x(t)
V(t) = t(x"(t)" + 2q(t) [  £(1)d1) - x(B)x'(t) .
o

Then
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x(t)
V'(t) = 2(tq(t))’ [ £(1)dt + q(t)x(t)£(x(t))
o

V'(t) = F(t,x(t)) >0 for t > to .

Therefore V(t) 1is non-decreasing, and

0 < V(e - V() = ex'(e)? - £ x' (e )P .

Thus
2 2
1] 1]
tlx (tl) > tox (to)

and it follows from (2.27) that at the point t, we also have

1

t
' _o° ' M
| x (tl)l > _J N | (to)l > —

t

Again, by the lemma, there exists a point t, > t1 such that x(t2) =0,
Continuing in this manner we establish the existence of an infinite
sequence {tk} of points such that x(tk) =0, k=0,1,2,...,

contradicting the supposition that x(t) is eventually monotone.

§2.4 An example

As a result of the theorems of §2.2 one can construct
infinitely many coefficients q(t) belonging to each of the classes

O, M and N. In fact if one defines the set

A = {q(t) = (t+1)_Y/y is real} < F

then
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(@) Ac0 for y <2
(b) AcM for 2 <y < nmnt2

(c) AchN for nt2 <y

Statement (a) follows from Theorem 2.2, statement (b) from Theorems 2.2

and 2.7 while statement (c) follows from Theorem 2.5.

One might be tempted, on the basis of Theorem 2.2, to speculate
that if both.(2.14) and (2.15) fail, then q(t) belongs to class M .
This, of course, is not true, for in the case mn+2 < y < 2nt+2 both (2.14)
and (2.15) fail for the function q(t) = (t+1)”' , yet q(t) ¢ N as

asserted in (¢) above.

Once it is established that a certain function q(t) falls in
class M' it becomes natural to ask the question
"does the set {(x(0),x'(0))} of inital conditions

which generate oscillatory (nonoscillatory) solutions

possess certain topological properties?”

Moore and Nehari [16] give an example of a function q(t) € M
which serves to illustrate that the set of initial conditions which generate
oscillatory solutions is not always a closed set. Their example is
deserving of comment at this point because it serves to indicate certain
directions for research into the question of the dependence of oscillation

(nonoscillation) on initial conditiomns.

Their example involves the equation

<" +% (e+1) 520 _ o (2.28)

Equation (2.28) has, as its general solution,
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x(t) = (t+1)22 ul1og (+1)] (2.29)

where u(t) 1is the general solution of

4u" + u2n+1 -u=0, (2.30)

All solutions of (2.30) are solutions of

-1 2n+2 2
u - u

4u)? + (o) = A (2.31)

where
A= @2+ @D w02 - 402 . (2.32)

It is shown by Moore and Nehari that:
(1) If A =0 then all solutions of (2.31) are given by + u(t+t)
for any Tt , where u = u(t) has the asympotic behaviour

1/2n

() = (1) expl-(t-£.) (241) "1 (240 (1))

as t+®, and y >0, t, > 0 . All such solutions are of constant
sign.

(i1) If A > 0, u(t) has an infinite number of zeros in [0,») and
is in fact periodic.

(11i1) If A <0, wu(t) is periodic, and u(t) oscillates infinitely

often about the line u =1 or u = -1 without intersecting the horizontal

axis.

It is clear from (i) and (iii) that if A < 0 then the solution
(2.29) of (2.28) is nonoscillatory, and from (ii) that if A > 0 then it

is oscillatory.
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Suppose a solution x(t) of (2.29) is required to satisfy the
initial conditionms
x(0) = a , x'(0) =b . (2.33)
Then
u(0) =a , u'(@) =b - %-a
and therefore
2n+2

_ _2a2 _ a _ a2
A=40 2) + =7 a” . (2.34)

Thus the oscillation or nonoscillation of x(t) depends on whether A > 0

or A <0 respectively. We consider each of the three possible cases.

It follows from (2.34) that the case A < 0 corresponds to

2ny1/2
a Ial a 1/2
b -3 <45 (1 -5 , 0<]a] < (m1)™°,
while the case A = 0 corresponds to
2ny1/2n
a a a 1/2n
[b-—z'l =J—2'|'(l—'n_Tl , |a|i(n+l) .

In the real plane, R2 = {(a,b) /a,b are real} , the case A =0
corresponds to the set Vo of points (a,b) which lie on the smooth
curve illustrated in figure 1 below, while the case A < 0 corresponds to
the set V_ of points (a,b) 1lying in the interior of the region bounded

by Vo .
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FIGURE I

The curve consisting of the points in Vo is symmetric with respect to the

origin. It intersects the line b =% at the origin and at + (n+l)]'/2n s
and assumes its maximum vertical deviation from the line b = 2 at the
points + (-%%) 1/2n Thus it fails to be symmetric with respect to

the line b =% .

The case A > 0 corresponds to the inequalities

2n \1/2
a a a 1/2n
|b——2-|<-l—2-|-(1-m , for 0 < |a|] < (n+l) ;
all (a,b) , for (n+1)]'/2n < lal

In figure 1 the case A > 0 corresponds to the set of points V+ lying

in the exterior of the closed region bounded by Vo .

oo
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Thus the solution x(t) of (2.28) satisfying the initial con-
ditions (2.33) is nonoscillatory if (a,b) ¢ V_u V° and is oscillatory
if (a,b) € V+ . For (a,b) e V_ U-Vo , x(t) 1is always negative if
a<0, b<O0 and is always positive if a >0, b > 0 . Thus all
nonoscillatory non-trivial solutions of (2.28) are free of zeros in
[0,2) . It is not yet known whether there exists a function q(t) € M
for which equation (2.1) has both zero-free nonoscillatory solutions and

nonoscillatory solutions with a finite positive number of zeros.

Our comment, above, that the set of initial conditions generat-
ing oscillatory solutions is not always a closed set is made evident by
figure 1. The figure also demonstrates that for a given initial value
a = x(0) , the set of initial slopes b = x'(0) which yield oscillatory
solutions is not always a connected set. In fact, for certain values of
a , there exists a positive number ¢ = 6(a) with the property that if

b € (~»,8) then the solution of (2.28)-(2.33) oscillates, while if

m

b = 6(a) the solution is free of zeros on [0,») , whereas if b is
sufficiently large the solution again oscillates. We will show in a later
chapter that under rather general conditions of f£(x) , 1if equation (2.2)
admits any zero-free solutions, then the set of initial values which

generate these solutions is bounded in a manner somevhat similar to that

in the above example.



CHAPTER III

§3.1 Properties of a mixed equation

Any consideration of the manmer in which oscillation or non-
oscillation of solutions is determined by the initial conditions must
proceed on the assumption that the equation under consideration admits
solutions of both types. It is therefore adviseable at this point to

consider further the question of the existence of both types of solutions.

For the equation

£+ q)xl - o (2.1)

and its generalization
x" + q(e)f(x) = 0 (2.2)

let q(t) and f£f(x) satisfy the conditions (2.3), (2.4) and (2.5) of §2.1
and assume the conclusion of Theorem 2.1. The following results of Moore
and Nehari [16] can be applied to obtain further information regarding

certain properties of an equation of mixed type.

Lemma 3.1 (Moore and Nehari [16])

Let £(t,x) be continuous for 0 < t < and -*» < x <® and

let solutions to initial value problems for
x" + £(t,x) = 0 (3.1)

be unique. Let u, v and w be solutions to (3.1). If
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u(t) < v(t) < w(t)

in an interval [tl,t2] , O St <t <w, and if f(t,x) 1is a

convex function of x for minu < X <max w and any fixed t > 0 ,

then
$(t) = (w=v)(v'-u') - (v-u)(w'-v') (3.2)

is a strictly increasing function in [tl,tz] except when (3.1) is linear.

Proof

Making use of the fact that u, v and w are solutions of (3.1)

it follows from (3.2) that
¢'(t) = (v=u)[£(t,w)~-£(t,v)] - (w-v)[£(t,v)~£(t,u)] .

Since solutions to initial value problems for (3.1) are unique it follows

that u <v <w in (tl,tz), and since f£(t,x) is convex in x

f(t,v)-f(t,u) flt,w)-£(t,v)
v-u W=V,

IA

for t in (tl’tz) » with equality only if the points (u,f(t,u)) ,

(v,f(t,v)) and (w,f(t,w)) 1lie on a straight line. If lie in

81 < 8

[t then ¢'(t) is strictly positive in (51’52) unless f(t,x) 1is

l’tz]
linear in x , and therefore ¢(sz)> ¢(sl) .

Lemma 3.2

Let £(t,x) satisfy the hypotheses of Lemma 3.1. If wu(t),

v(t), w(t) are solutions of (3.1) such that u(t) < w(t) and v(t) < w(t)
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for t in (tl,tz) , O 2t < ty <®, then the curves y = u(t) and
y = v(t) cannot intersect in [tl,t2] more than once, except when (3.1)

is linear.

Proof.

Suppose there are two points 81 < s, in [tl,tz] such that
u(sl) = v(sl) and u(sz) = v(sz) with u(t) < v(t) for t in (sl,sz)

Then v'(sl) > u'(sl) and v'(sz) < u'(s2) » hence by (3.2),

$(sy) = [w(s)=v(s ) 1lv' (s,)-u'(s))] > O
9(s,) = [w(s,)-v(s,)1[v'(s,))-u'(s,)] < 0
which contradicts Lemma 3.1.

It should be pointed out that the above lemmas apply to equation
(2.2) under our conditions only if u, v, w are non-negative in [tl,t2] .

Let us assume that

£f(x) is convex for x> 0 (3.3)

and concave for x < 0 .

Then if v(t) is a solution of (2.2) with v(tl) = v(tz) =0 and

v(t) >0 on (tl’tz) and w(t) is a solution of (2.2) with w(t) > 0 on
[tl’tZ] , it follows from Lemma 3.2 and the fact that u =0 1is a
solution of (2.2), that there must exist a point t, in (tl’tz) such
that v(to) > w(to) . One thus concludes that if a nonoscillatory solution
w(t) of (2.2) is postive for t > T and v(t) is an oscillatory solution

of (2.2), then on any interval I to the right of T on which v(t)
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describes a positive arch, there exists a point to € I such that

v(to) > w(to) . We therefore have

Theorem 3.3

Assume (3.3) is satisfied and assume further that one of the

H is true:

following hypotheses Hl, 2

H : (2.16) holds for some p > 1 .

H, : (2.17) holds for some a > 0, and (2.18).

Then

co

(i) if f tq(t)dt < » then every oscillatory solution to
)

(2.2) is unbounded.

(ii) If (2.2) admits a non-trivial solution x(t) such that

lim x(t) = 0 then q € O' .

t >

(iii) 1If all solutions of (2.2) are bounded then q € N' if and

only if f tq(t)dt < = ,
o

Proof.

(i) It was shown by Atkinson [1] for equation (2.1) and by

-]

Wong [24] for equation (2.2) that the condition f tq(t)dt < =
o
implies for any a > 0 , the existence of a solution ya(t) satisfying

lim ya(t) =0 |, lim y&(t) =0

t > o t >

which is clearly nonoscillatory. In view of Lemma 3.2 every oscillatory
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solution x(ﬁg of (2.2) must satisfy x(tk) > ya(tk) on an infinite
sequence of points t, > Since a > 0 1is arbitrary it then follows

that lim sup x(t) = +« for any oscillatory solution x(t) of (2.2).
t > o

(ii) Since a nonoscillatory solution of (2.2) must be either even-
tually positive and non-decreasing or eventually negative and non-increasing,

a solution x(t) can satisfy 1lim =x(t) = 0 only if =x(t) is oscillatory.

t > o
-]

Such a solution is necessarily bounded, and hence [ tq(t)dt =+« as
o

a result of part (i) above. But this implies that q ¢ 0' .

-]

(iii) Suppose all solutions of (2.2) are bounded. If [ tq(t)dt <o
o

then no oscillatory solutions exist by part (i) , whereas if q ¢ N'

then the integral is finite by Theorems 2,3 and 2.4,

Theorem 3.3 (iii) provides various necessary and sufficient
conditions that all solutions of (2.2) be nonoscillatory. The result
is not as strong as one would wish, since it requires the knowledge that
all solutions of (2.2) be bounded, a most restrictive condition on the
differential equatioﬁ. The theorem of Atkinson, (Theorem 2.2 above)
giving sufficient conditions that all solutions of (2.1) be nonoscillatory,
does not impose such a restriction and, moreover, applies even in cases

when unbounded solutions exist. As an example, consider the equation

-t 2n+l
e x =

x" + o . (3.4)

It follows from Theorem 2.2 that all solutions of (3.4) are nonoscillatory.
On the other hand, the following theorem of Moore and Nehari shows that

(3.4) admits unbounded solutions:
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Theorem 3.4 (Moore and Nehari [16])

Equatioﬁ (2.1) has solutions for which

lim el 0 (3.5)
t > »
if and only if
- -]
[ 2 qe)dt < 4w .
o

It is clear from the above that a mixed equation of the form
(2.1), (i.e., one for which q € M), must admit unbounded solutions.

In any equation of the form (2.1), all of whose solutions are bounded,

-]

q(t) belongs to class 0 or N according as the integral f tq(t)dt
o

is infinite or finite. (The two preceeding statements also apply to
equation (2.2) providing one assumes condition (3.3) and one of the

hypotheses H HZ') One of the most general criteria known for

1,
boundedness of all solutions to (2.2) is the following theorem of Petty

and Leitman [ . The hypotheses of the theorem will include the follow-

ing assumptions and notation:

(i) the function f(x) is continuous on the open interval

I, =(aB8) 3 o,8>0, and xf(x) >0 for xel The interval

1 .

I1 need not necessarily be bounded and o or B may be + = .

T
(11) let F(1) =2 [ f(¥dx, 7tel .
o

and we may define F(-a) , F(B) by limits.

Because of (i), F(t) > 0

(iii) we set M = min (F(-a),F(B)] , where M may be + . Then
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the interval I(y) = {T € I, | F(1) <y} dis compact if 0 <y <M ;

(iv) the functions b(t), c(t) are assumed to be continuous on the
half open interval I, = [to,T) where T > t, and T may be + o
It is further assumed that c¢(t) is positive and absolutely continuous on

every compact interval contained in Io H

)
(v) the function g(t) = min [2b(t), - EE%%% is then summable on
t

every compact interval in I and a(t) = c(t) exp (f g(s)ds) is ncn-
t

increasing with increasing t on IO H °

(vi) we define the constants k, K by

lim a(t) = k

t>T

t
inf exp | [ g(s)ds) =K .
te Io t,

Theorem 3.5 (Petty and Leitmann [19])

Let the above hypotheses (i)-(vi) be satisfied and let 'x(t)

be a solution to x" + b(t)x' + c(t)f(x) = 0 , not necessarily unique,

satisfying the initial conditions x(to) X x'(to) = x; where

(o]

2
= '
X € I1 . If k>0 and A0 c(to)F(xo) + (xo) < kM , then the

solution x(t) may be continued to all ¢t e I and x(t) lies in the
compact interval I(Aok—l) for all ¢t ¢ Io . In addition, if K > 0

1/2

then |x'(t)|.§ (AOK_l) for all ¢t ¢ Io

In the special case of equation (2.2), where q(t), £(x)
satisfy the conditions of §2.1 and q(t) 1is absolutely continuous on every

compact subinterval of [0,®) , we have
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I = (=) 5 M=+o; I, = [0,®) ;
g'(t
g(t) = ( q(t))
£ q'(s)
'(S
K= 1inf exp (SL———- ds
t € [0,%) a(s)
with
T
F(T) = 2f f(x)dax , T e (-w»,»)
(o]
and
I(y) = {t | F(1) <y}

Theorem 3.5 then asserts that if k > 0O then the solution x(t) of (2.2)

with initial values =x(0) = a, x'(0)

b , lies in the compact interval
I(Ak-l) for all t > 0, where A = q(0)F(a) + b2 . In addition, if K > 0

then |x'(t)| i(AK-'J‘)l/2 for all t >0 .

Now, suppose the hypotheses of Theorem 3.3 are true. Then
equation (2.2) can be of mixed type only if all oscillatory solutions are
unbounded. A necessary condition for the existence of unbounded solutions
is that the constant k in Theorem 3.5 satisfy k = 0 , which implies
that either

lim q(t) =0 (3.7)

t > o

or

]
+
8

(3.8)

f ( q(s)
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We have therefore proved:

Theorem 3.6

A necessary condition that q ¢ M is that either (3.7) or (3.8)
hold. If f£(x) satisfies the hypotheses of Theorem 3.3 then a necessary

condition that q € M' is that either (3.7) or (3.8) hold.

The following known results are consequences of Theorem 3.5.

Theorem 3.7 (Utz [22])

If q(t) is differentiable and q'(t) <0 for t > T with

lim q(t) > 0 then all solutions of (2.1) are bounded (and, in fact,
t > >

oscillatory).

Theorem 3.8 (Waltman [23])

If q(t) 4is differentiable and q'(t) >0 for t>T then all

solutions of (2.1) are bounded (and, in fact, oscillatory).

In addition to the results of Theorem 3.6, it is also known that

o]

[ tq(t)dt < = (3.9)
(o]

is a necessary condition that q e€ ¥ (or that q ¢ M' if £(x) satisfies
the conditions of Theorem 3.3). Moreover, if q is differentiable and
q'(t) <0 for t > T then

[ 2™ G(oydt = + o (3.10)

o
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is a necessary condition for q ¢ ¥ . (For conditions analogous to (3.10)

pertaining to equation (2.2) see Theorem 2 of Macki-Wong [15]).

It is seen, therefore, that a considerable number of restrictions

must be placed on q(t) 1in order that it might belong to class M or M' .

We conclude this section with an additional comment on non-

oscillatory solutions of (2.1).

It is well known that the nonoscillatory character of a non-
linear equation of the form (2.1) is something very different from the

corresponding property for a linear equation. In fact,

Theorem 3.9 (Moore and Nehari [16])

For any ts ty such that 0 < t, <ty <=, and for any
non-negative integer m , there exists a solution of (2.1) which vanishes

at t=t, and t= t, and has precisely m zeros in (tl,tz) .

It should be remarked that if q € M the solution exhibited
by Theorem 3.9 may very well be an oscillatory solution, as is the case
for equation (2.28) discussed earlier, which has the property that a
solution with one zero must oscillate. However, even if qe VN,
solutions with arbitrarily large numbers of zeros will exist, by
Theorem 3.9. The situation exhibited by equation (2.28), wherein a
solution having one zero is oscillatory, indicates that we can separate
the class M into two subclasses characterized by the conditions (i)
nonoscillatory solutions are free of zeros, and (ii) there exist non-

oscillatory solutions having a finite positive number of zeros. Although
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equation (2.28) provides an example of a function q(t) belonging to the
subclass determined by (i), it is not presently known whether or not the

class (ii) is empty.

§3.2 Dependence on initial conditions of the number of zeros of a

solution on an interval.

Returning now to a consideration of the second question posed
in Chapter I, that is, an investigation of the manner in which the
behaviour of solutions is dependent upon initial conditions, consider

again the equation

x" + q(t)E(x) = 0, q(t) > 0, (2.2)

where q(t) i1s continuous on [0,») , £(x) is continuous for X € (—o,°)

xf(x) >0 for x# 0 . It is assumed throughout this section that for
any t_ >0, aeR, beR, the solution of (2.2) satisfying
= ' =
x(to) a, X (to) b

is unique and exists on [0,») .

For the purposes of this section we may, without loss of
generality, restrict our attention to the case in which the initial
value a is non-negative. Indeed, if a solution =x(t) of (2.2)

satisfies initial conditions
= ' =
x(to) a<0, X (to) b

then the function y(t) = -x(t) is a sclution of
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y'+ q(t)g@y) =0
y(to) =-a>0, y'(to) = ~b

where g(u) = -f(-u) and satisfies all the assumptions made for f(x)

at the beginning of this section.

Lemma 3.10
Assume that

£(x)

- is non-decreasing for x >0 and (3.11)

non~-increasing for x < 0 ,

£(x)
X

lim =+ ® | (3.12)

X++ow
and let 0 < T <« , Given to € (0,T) and Rl > 0 , there exists
R, = Ro(Rl,to) such if 0 % x(t) solves (2.2) and at some To € [O,to)

2.1/2 .

we have p = p(T ) = [x(T )2 + x'(T)) R, then x(t) has at
0 o o o o

least one zero in (TO,T) , and if T, € (Tc’T) is the first such zero

1

of x(t) then |x'(Tl)| >Ry .

Theorem 3.11

Assume the hypotheses of Lemma 3.10. Given B > 0 and a

positive integer p | there exists A = A(m,B) such that for any a, b

satisfying

o = a2+ pyl2,

o A,

the solution x(t) of equation (2.2) for which
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x(0) = a , x'(0) =b

will have at least m zeros on (0,B) . (We use an argument suggested

by the proof of an unpublished theorem of J. Mallet-Paret.)

Proof of Lemma 3.10

As was pointed out above, we may assume that x(To) >0.
Since q(t) is positive and continuous, there exist constants o, B

such that 0 <o < q(t) <B for t ¢ [0,T] . Define the sets

Q = {(u,v)/u > 0, v > 0}

Q, = {(u,v)/u<0, v>o0}.

Since we have assumed x(T ) > 0 and have discarded the trivial initial
conditions, then either x(To) =0, x'(To) < 0, or the point
(x'(To),x(To)) lies in the subset M = Ql 0] Q2 of the real plane. If
x(To) = 0, x'(To) < 0 then we may, as above, consider the function

y(t) = -x(t) for which (y'(TO),y(To)) does lie in the set M . Thus
we need prove the lemma only for (x'(To),x(To)) belonging to M , that

is, lying in the open upper half plane plus the positive semi-axis.
Define the functions p(t) > 0 and 6(t) dimplicitly by

x(t) = p(t) sin 6(t)

(3.13)
x'(t) = p(t) cos 6(t)

x(T )
where eo = e(To) = arctan ET?TET is prescribed so that

0 < 6 < lzr‘ if (x'(TO)’x(TO)) € Ql

F26 <m  if (x'(T)),x(T)) € Q,
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and 6(t) dis defined so as to be continuous for t > To - Differentiating
each of the equalities (3.13) and making use of (3.13) and (2.2) gives

8'(t) = q(t) sig(gft) f(x(t)) + cos2 8(t)

(3.14)

p'(t) = (x(t) - q(t))£(x(t)) cos 8(t)

Since p(t) > 0 and uf(u) >0 for u # 0 it follows from (3.14) that

8'(t) >0 for all t, for

E‘is—ef(x) + cos® 9E_Q%—ef(}<) =%xf(x) >0.
P
Define
2 z(t)
P1(8) = (x'(£))" + 20 £(u) du |
[o]
9 X(t) (3.15)
Pp(t) = (x"(e))" + 28 [  f(u)du
[o]
Then
p1(t) = 2x'£(x) (a-q)
(3.16)
Po(t) = 2x'£(x) (B~q)
Therefore

p1(t) > 0 in Qs py(E) <0 in Q

pé(t) 2 0 in Ql ’ pé(t) < 0 in Q2

and, on Q v Q, we have pi(t) and pé(t) are non-zero except when

either x(t) =0 or x'(t) =0 .
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Case (i)

in Q , then 8_ < 6(t) <%

Initial values lying in Q1

8'(t) 3_cos2 8(t) and thus

as long as 0 < 8(t) < 7

Choose

By (3.18) the function 6(t)

£

so ¢t

Now

if and

> T
o

and sin 6(t) > 0 .

o(t)
__jyt__ > t - T
6 cos2 ¢ - °
o
I Thus

tan 6(t) — tan 8 >t -T .
o )

1

tan 6

Then

tan 6(t;) - tan 6 > t; - T

must satisfy

pi(t).i 0 in

only if =x(t) =0

p,(t) £ 0,(T)

1

T
6, in (903 2) such that

t -
o)

Q1 and

. Thus for t>T

= (x'(To))z + 20 f

A

- € ——
tan 60 A

T
o

takes on the value

(o]

)
x(To)

o

From (3.14)

40.

< %-. As long as (x'(t),x(t)) remains

(3.17)

(3.18)

6 at some point

1

pi(t) =0 din Ql

f(u)du

(3.19)
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as long as (x'(t),x(t)) remains in Q1 . Let

1 if x(To) =0 3

we

1 20, X(To)
max {1, 3 f f(u)du}l ; if x(To) >0 .
x(To) o

Then

o (8) <o (T) <Kol 1f  x'(8),x(D) € Qp -

Similarly, pé(t) >0 in Q and pé(t) =0 in Q if and only if

x(t) =0 . Thus for ¢t Z.To

2 x(To)
Pz(t) 3_92(T°) = (x'(To)) + 28 f f(u)du
o
as long as (x'(t),x(t)) remains in Q - Let
1; if x(To) =03
0 < K2 <
28 x(To)
min {1, 3 f f(u)du} ; if x(T.) > 0 .
x(T )" o °
o
Then

0,(8) 2 0 (T ) > Koo 1 (x'(£),x(D)) € Qy

Continuing from our observation that 8(t) takes on the value 61 at

some point tl > T° , in which case (3.19) holds, we let Xy = x(tl)

cos O xl
1 - = o=
and x (tl) = p(tl) cos 61 = p(tl) sin 61 <in 6 tan 61 + Then
x2 X
p,(t,) = —L 28 f 1 f(u)du > K p2 (3.20)
271 2 20 ° ‘

tan el o]
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But the function

u

u
+28 [ f(o)do

tan 61 o

is an increasing function of u , and thus it follows from (3.20) that

X 2> 0 where y solves

2 Y
~—L—+ 28 [ f(o)do = szg
tan 91

and y = y(po) satisfies lim Y(po)
Po > ®

we have x(t) 2% 27> 0 for t > t (x'(t),x(t)) e Q1 . Moreover,

+ ® ., Since x'(t) > 0 in Q1

in Ql we have from (3.13) p(t) = —x(t) _ for t > t, and thus, from

sin 6(t) 1
(3.13) follows
f(x,)
2. £(x(t)) oty 2
) ———t ————
8'(t) > q(t) sin’® x> % sin“e .
Therefore
8 (t) af(x,)
f dg kd xl (t—tl) s
61 sin™¢ 1
af(xl)
- cot 6 + cot 6, > (t-t.) ,
1-— X, 1
af (x.)
- cot 6 > % (t—tl) - cot 61
for t, <t<T and 6, j_e(t)_i-% Thus it cannot be true that
t:o " To v to - To m
6(T, + =) 25 for all P, - Indeed, if G(To +———) <3 for

all o then
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to - To af(xl) to - To
0> =-cot o(T + 7) > % (T, + — - tl) - cot 8, >
af(x,) t ~-T
1 o 0
2 %] ( 5 - (tl-To)) - cot eo .

9y - cot 6, - (3.21)

But X 2 v > 0 and lim y(po) = 4+, Thusg X >® as p -+

po > @
f(xl)
and hence ol g which gives a contradiction of (3.21). Thus
1 t -T
there exists N = N(to) such that if Py > N then e(To +-—275—£b > %-.

t -T
0 o
Now let t2 be chosen such that To < tl < t2 < To + — < T with

with e(tz) ='% . Let x(tz) =n >0, Since x'(t) >0 in Q1 for

T, <t<t then  x(t,) 3_x(tl) =%, 2y and hence n >y . Therefore

2’
lim n(pp ) =+ =« , (3.22)
)

p+oo

o
We have show that for a solution =x(t) having initial conditions
(x'(To),x(To)) lying in the first quadrant Q; » it is possible to force
(x'(t),x(t)) dinto the second quadrant Q2 within an interval

t - T°
]

(2
[To, To + 3

large, and this can be done in such a way as to make |x(t2)| arbitrarily

by taking pz = x'(T )2 + x(T )2 sufficiently
y o ) o

large at the first zero, t, » of x'(t) . There remains to show that
solutions with sufficiently iarge initial conditions can be forced into
the third quadrant within the t interval (To,to) in such a way as.
will result in Ix'(Tl)I being’arbitrarily large at the first zero, Ty »

of x(t) in (To,to) ; which is, clearly, equivalent to proving the
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lemma under case (ii), that is, the case in which the initial values

belong to the set Q2 .

T (to B To)
Choose 63 in E < 63 < m such that tan 93 > - 7z

Then, as long as |x(t)]| > 6§ > 0 we have from (3.14)

2 f(x) 2 af (x)
X

6' = q sin"6 —==+ cos 6 > sinze .

For (x'(t),x(t)) € Q, » x'(t) <0 so x(t) is non-increasing. Thus

0 <8 < x(t) < x(tz) in Q, as long as t < t* where x(t*) = § .

£(x(t,))
Therefore x(tz) > f(:gg) > f(g) > 0 as long as x(t) > 6 ,
8'(t) > af(G) sin e(t) for x(t) > 6 .

Now 9, = e(tz) =% and thus

o(t) t
dgz > f aféd) ds = afé&) (t-tz)
62 sin ¢ t2

or

af(8)
5 (t

- cot B(t) > tz)

t -T
as long as %< 6(t) <7, =x(t) > 8§ . Suppose e(t2 + =2 A °-) < 93-'< (s

' L __29°
for any choice of x (To) 39 . Since t, <T_ + 5 <t <T
t -T 3(e, - T)

we have t, + 2>—2<T +—2 2 <t <T and, since
2 4 o 4 o

t -T t -T

———2) <05 <7 then x(t,) > x(t) > x(t, + =) > 0

b1
E—<- 6(t2+

for t in the initerval 1I = [tz,'l'] s, T=1¢t_ +
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' > of [x(1) ] sinze , tel

- x(7) i

from which follows

t -T
- cot o(r) » EED] 0 o)

Define

q(t) 3 0<t<T
g, (t) =
q(T) ; Tx

A
et
L]

Then all solutions of
y"' + q(B)E(y) =0 (3.23)

are oscillatory beyond T . (Theorem 2.2). Let x(t) be the solution
of (3.23) satisfying ;(To) = x(To) , X' (To) = x'(To) . Then

x(t) = x(t) for t in [0,T) and x(t) is oscillatory beyond T .
Let p(t), o(t), El(t) and ;z(t) respectively be defined for x(t)
by (3.13) and (3.15). Since x(t) 1is oscillatory, there exists some
ty > t, such that 3(1:3) =65 . (It might be true, however, that
ty3 > T . It is shown below that for sufficiently large x' (To) > tg
is, in fact, less than t, .) Since 6(t) is continuous and increasing
in [tz,t3] and x'(t) < 0 in [tz,t3] we have ;(tz) 3;(1) 1;(1:3) .
§(t3)

-, _
Now x (t3) tan 63

so it follows from the definitions (3.15) (with

Pys X replaced by 31, x) that

_ 3?2(1:3) x(ty)
pl(t3) = 5— + 20 f f(u)du
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But Eizo in Q, » so ?)-l(t3) isl(tz) , hence

_ ;2(t3) ;(t3) _ n
pl(t3) = 5 + 20 f f(u)du > pl(tz) = 2a fo f(u)du

tan 63 o

gsince n = x(tz) ;(tz) because x(t) = x(t) on [0,T) . As Py ™% s
n + « and hence ;1(t3) + o , which implies 1lim ;(t3) = o , Since
(o] > o
o
;(t3) _<_;('r) it follows that lim x(t) =« . But
p. >
o

af [x(1)] (to ; To)

x(71)

- cot (1) >

and therefore cot 3(1:) + - ®.3g po + o , hence

o(t) + 1 as Py > (3.24)
t, - T, 3(tO -T) _
But T =t, +—p— < T, +———— and thus o(t) = 6(t) at
t = To
t, + - Thus (3.24) is a contradiction of the supposition that
t -T

e(t2 + —0—4-—0) < 63 < 7 for any choice of x'(To) > 0 . Therefore for

any 6, <7, it is possible to choose x'(To) so large that

t -T
0 0 _ = -
e(t2 + ———Z—-—o > 8y = 6(t3) 6(t3)

Thus

t - To 3(to - To)

3% 4 < Iyt 4

and ;(t;) = x(t) on [0,t3) . Now for 63_<_3 < % we have 0' > cos )

since sin 6(t) and f(x(t)) have the same algebraic sign. Therefore
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B(t)

4 e .
0 cosz¢ - 3
3
Let Tl be chosen such that BYTl) =7 ., (This is possible because x(t)

is oscillatory. It may happen that T1 > T but this will be ruled out

in what follows.) Then

tan e(Tl) - tan 6(ty) = - tan 8, > T, - t4
3(t° - To)
—tan63>T1-(To+———4—-—) .
(t - To)
But tan 63 > - __Q—Z—___ and therefore
3(to - To) t, - To
T, - (T, + A ) < 3
Tl<t°.

But 6(t) = 6(t) on [0,T] and therefore for sufficiently large P, We
have e(to) > % and x(t) has a zero at T1 in (To,to) , since

6(T1) =0 .

In Q2 > Py increases so pl(Tl) 3-pl(t2) . Therefore

x'z(T ) > x'z(t ) + 20 fn f(u)du > 2a fn f(u)du
= 2 2 ‘
o o

But n~+= as p +« and therefore so does |x'(T1)| . Thus, there
exists R =R (R,,t ) such that if p_ > R_ then x(t) has a zero in
o o 1’0 0 o
|
(To,to) and |x (Tl)l >R, if T, is the first zero of x(t) in (To’to) .

The proof of Lemma 3.10 is complete.
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Proof of Theorem 3.11

Let R.m be a given positive number. Making use of Lemma 3.10,

there exists R 1= R _1(R »B) such that if =x(t) solves (2.2) and at some

1
point 7t € (0,B - ——-9 we have [x(r)z + x'(1) )]l/2 then there

m-1
- 1
exists a point Tm € (1,B) such that x(Tm) 0 and Ix (Tm)l > R.m .

Suppose R R 1,...,R.m K+l have been chosen for some k , l<k<ml.
Then, by Lemma 3.10 there exists Rm—k m k( ek ? B) such that if
x(t) solves (2.2) and at some point Tt ¢ (0, $+§ B) we have

2 ' 1/2 m-k
[x(t)" + x"(1)7) R _ then there exists a point T i1 € (r, e B)
such that x(Tm_k+1) =0 and |[x' (T k+l)| >R 41 - Let the numbers

{R _ i

exists a number A = A(Rl,B) such that if =x(t) solves (2.2) and

} 3=1,2,...,m-1 be so chosen. Then again by Lemma 3.10 there

[x(O)2 + x'(0) ]l/2 > A there exists a point Tl in (0, E%i? such that

x(Tl) =0 . Now, let the solution =x(t) of (2.2) satisfy

[x(O)2 + x'(0) ]1/2 , and let To = 0 . Then there exists a point
T, € (0,;;3? such that x(Tl) =0 and |x'(T1)| >Ry . But

2 2.1 2 . 2B.
[x(Tl) + x'(T )71 / > x'(Tl) > R1 so there exists a point T2 € (Tl, ;;E)

such that x(T,) = 0 and |x'(T2)| >R Continuing in this manmer,

2 .

suppose, for some 0 < k <m , we have points T j=0,1,...,k,

j H
1 )
with Tj € (TJ 1’ m+l) such that x(T ) =0 and |x (Tj)l > Rj s
j=0,1,...,k . Then, since [x(Tk) + x'(Tk) ]l/2 >Ry » it follows
k1l
that there exists a point Lo (Tk, e~y B) such that x(Tk+l) =0

\
and [x (Tk+l)| > Riyp + Therefore =x(t) has a squence of m distinct

zeros Tl’TZ""’Tm in (0,B) which completeé the proof of Theorem 3.11.

We should point out that subject only to the assumptions of this
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section and the hypotheses of Lemma 3.10, the conclusions of Lemma 3.10
and Theorem 3.1l are valid regardless of whether the equation (2.2) is
oscillatory, mixed, or nonoscillatory. In the event that equation (2.2)
is mixed, however, we know of no criterion by which one might rule out
the possibility that solutions having arbitrarily large numbers of zeros

on an interval [0,B), B < «» , may, in fact, be oscillatory on [0,») .



CHAPTER IV

§4.1 On initial conditions which generate non-vanishing solutions

Throughout this section we again consider the equation
x" 4 q(t)f(x) =0 , q(t) >0, (4.1)

where q(t) 1is continuous on [0,») , f£(x) is continuous for
X € (-mo,0) , xf(x) >0 for x#0 . It is also assumed that for any

t >0, aeR, beR, the solution of (4.1) satisfying
x(to) =a, x'(to) =b (4.2)
is unique and exists on [0,=) .

We shall, on occasion, refer to the fact that if a < 0 in

(4.2) then the function y(t) = —x(t) is a solution of

y" + q(t)g(y) = 0
(4.3)
y(0) = -a, y'(0) = -b

where g(u) = -f(-u) also satisfies the above assumptions made for £(x),

and for which the initial value y(0) is positive.

We shall also, on occasion, wish to make one or more of the

following assumptions on £(x) ,

f(:) is non-decreasing for x > 0 and
non-increasing for x > 0 , (4.4)
A ET S 4¢.0 R (4.5)

X > 4 o X
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For each pair of real numbers a, b, we define the (extended)
real number N(a,b) to be the number of zeros on [0,2) of the solution
x(tza,b) of (4.1)-(4.2) for t, = 0 . For each non-negative integer k ,

we then define
Sk(a) = {b/N(a,b) < k} . (4.6)

Clearly SO(O) = ¢ and Sk(a)_g Sk+l(a) for k= 0,1,2,... .

Theorem 4.1

Let (4.4) and (4.5) be satisfied. Then
(1) 0 ¢ S,(a) and S,(a) is closed.
(i1) 0 ¢ $,(0) and {0} v 5,(0) is closed for all k .

(iii) If a # 0 then Sk(a) is closed for all k .

Proof:

The assertion (i) is clearly true for a = 0 since SO(O) =¢ .
Let a > 0 and assume So(a) # ¢ . Suppose x(t) solves (4.1) and

satisfies x(0) = a, x'(0) =0 . From (4.1) follows

t
x'(t) = -f q(s)f(x(s))ds , t >0 . (4.7)
(o]

If x(t) >0 for all t themn x'(t) <0 and x"(t) <0 for t> 0.
Thus the graph of =x(t) 1is convex downwards with negative slope to the
right of zero, which is a contradiction. Therefore x(t) must have a
zero at some finite value t, > 0, proving that 0 ¢ So(a) for a>0.

The proof for a < 0 follows from the above argument by considering
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y(t) = -x(t) and the observations concerning equation (4.3) above.

That So(a) is closed for a # 0 will follow from our proof

of (iii).

For the proof of (ii) we first observe that since the initial
conditions x(0) = 0 = x'(0) generate the identically zero solution of
(4.1), then clearly 0 é Sk(O) . Moreover, it follows from Theorem 3.11
that Sk(O) is bounded above and below, since the solution =x(t) of
(4.1) satisfying x(0) = 0, x'(0) = b can be forced to vanish arbitrarily
often on any compact set simply by choosing |b| sufficiently large.
Finally we may assume Sk(O) is non-empty otherwise there is nothing

to prove.

Let {bj}j=l

b , which is necessarily finite. We wish to show that either b = 0

be a sequence in Sk(O) converging to a point

or b belongs to Sk(O) .

3=1

to (4.1) satisfying xj(O) =0, xé(O) = bj and let x(t) be the

solution satisfying x(0) =0, x'(0) =b . We must show =x(t) has

Suppose b # 0 . Let {xj(t)} be a sequence of solutions

not more than k 2zeros on [0,®) .
Suppose x(t) has more than k zeros on [0,®) and let

O0=1¢t, <t,<t, < ... <t, <t

1 2 3 k k+1

be the first k+l zeros of x(t) . Because solutions to (4.1) are unique,
x(t) changes sign at each of the points tys tgs «.vs t., - Choose

T>¢t such that x'(t) is of one sign on (tk+1,T] . Then x(t)

k+1
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has exactly k sign changes on (0,T] .

Using a standard theorem (Theorem 3.2, page 14 of Hartman [10D),
we can extract subsequences {b, } and {x, (t)} such that {x, (£)}

i 3 3

n n
converges uniformly to x(t) on [0,T] . Let

i=1,2,...,k,

|x(Ci)| = max |x(t) |

and choose

o = min {min Ix(Ci)l , =]} .
1<i<k

There exists a positive integer N such that if n> N, |x(t)—xj (t)| < %
n

for all t € [0,T] . In particular |x(Ci)--xj (Ci)| <% for all
N
i=1,2,3,...,k , and |x('1‘)-xj (T)| <'%-. Therefore
N

sign x, (t) = sign x(t)
In

at least once on each of the intervals (ti’ti+1) , 1=1,2,...,k , and

(tk+1,T] , and hence x, (t) has at least k sign changes on (0,T] ,

k|
N
and thus has at least k+1 zeros on [0,T] , (recall xj (0) = 0) . But
N
this contradicts the fact that bj € Sk(O) , and therefore x(t) has
N
not more than k zeros on [0,) . Therefore either b = 0 or be Sk(O)

so {0} u Sk(O) is a closed set.

In proving (iii) we may assume that a > 0 . Again it follows
from Theorem 3.11 that Sk(a) is bounded above and below. Let {bj}; 1
be a sequence in Sk(a) which converges to the (finite) point b . Let

{xj(t)};_l and x(t) be solutions to (4.1) satisfying
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xj(O) =a, x5(0) 3

x(0) =a , x'(0) =

]
o

|
o

We must show that x(t) has not more than k zeros on [0,®) . Suppose

x(t) has more than k 2zeros, and let

0<t<t <oo-<t

1° %2 <t

k k+l

be the first k+l 2zeros of x(t) . Choosing T > t such that x'(t)

k+1
is of one sign on (tk+l,T] and proceeding as in the proof of (ii) above,

(t)

one arrives at the existence of a positive integer N such that xj
N
has at least k+l =zeros on [0,T] , which is a contradiction. Thus

b e Sk(a) proving that Sk(a) is closed, which completes the proof.

An immediate consequence of part (i) of Theorem 4.1 is the
fact that the complement of So(a) is an open set containing zero, and,
since So(a) is bounded, its complement is non-empty. Thus if a > 0 ,
there exists a positive number & = §(a) such that the open interval
(- »,8) 1is contained in So(a)C . In particular, if a > 0 and
b ¢ (- »,6) then the solution x(t) of (4.1) satisfying x(0) = a ,
x'(0) = b must vanish at least once on (0,») . (Recall a similar
situation in the case of equation (2.28) above.) If a = 0 however,
it may happen that for all sufficiently small b > 0 the solution of
(4.1) satisfying x(0) =0, x'(0) =b will fail to vanish again on
(0,») , as indicated by the following result which is essentially due

to Moore and Nehari [16].

Theorem 4.2

Suppose f tY+1q(t)dt < o yhere y > 0 . Then for all
)
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sufficiently small b > O the solution x(t) of x" + q(t)xY+l =

0
satisfying x(0) =0, x'(0) =b is positive on (0,°) and satisfies
lim x'(t) >0 .

t>ro

Proof.

Choose b > 0 so small that

bY [ qeyae <1 .
o
Suppose x(t) has a first zero on (0,») at the point t, > 0 with
x(t) >0 for ¢t ¢ (O,to) + Since x"(t) = -q(t)xYH'(t) then x(t)

is concave on (O,to) and it follows that 0 < x(t) < bt for

t e [O,to) . Thus

¢ +1
b=x"(t) +[ qs)x " (s)ds , 0<t<t
o

and therefore if ¢t ¢ [O,to) s

£ oy
0 <b < x'(t) +b[bY [ " q(s)ds) ,
o

-]

0 <b<x'(e) +blbY [ s lq(s)ds] < x'(t) + b . (4.8)
)
Therefore 0 <b < x'(t) +b for ¢t e [O,to) from which it follows that
x'(t)> 0 on [O,to) » contradicting the fact that x(to) = 0 . There-
for x(t) >0 on (0,) . To complete the proof we observe that since

x'(t) is monotonically decreasing and since, by (4.8),
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') >b[1 -b" [ " g(e)as] > 0
o

then

dm x'(t) > b[1-b" [ s"*q(s)ds] > 0 .
t > o (o)

If So(a) # ¢ for some value of a then according to lemma 3.10
and the comments preceeding Theorem 4.2, the set So(a) is bounded above

and below by positive numbers depending on a . Moreover, since So(a)

is closed then either So(a) ¢ or the numbers

0 < ¢(a)

inf {b/b ¢ So(a)}
and

Y(a) = sup {b/b € So(a)}
both exist and belong to So(a)

In the example of equation (2.28) discussed earlier, it was
shown that for each a satisfying 0 < lal_ﬁ (n+l)l/2n » the set So(a)

was non-void and, in fact, So(a) consisted of the closed interval

‘ 2n 31/5
{b/|b - %I 5-’%’—(1 - % ) '} . We have shown above that for the

equation (4.1), subject to (4.4) and (4.5), if So(a) # ¢ for some

a >0 then

§,(a) c [¢(a), y(a)] .

It remains an open question whether in general set equality holds in the

above statement.
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It was also shown above that for equation (2.28) the sets So(a)

1/2n . We now wish

are non-empty for all a satisfying 0 < |a| < (n+l)
to show that for equation (4.1), if (4.4) and (4.5) are satisfied, then
under certain additional conditions on f£(x) , the set of those initial

values a > 0 for which So(a) is non-empty is either void or consists

of a half closed interval of the form (O,A*] for some A* >0 .

Suppose (4.4) and (4.5) are satisfied, and let T > O be chosen.
By lemma 3.10 there exists a constant M > 0 such that if either |a| > M
or |b| > M then the solution x(t) satisfying (4.1) and the initial

conditions
x(0) =a, x'(0) =b (4.9)

will have a zero at some point Tl € (0,T) . Therefore, So(a) = ¢
for |a] > M . Thus either $,(a) = ¢ for every a (i.e., (4.1) fails

to admit zero-free solutions) or for some M > 0 ,

So(a) # ¢ implies O < |a| <M, (4.10)
and in this case

b e S (a) implies 0 < || <M . (4.11)

If, therefore, there exists some a > 0 for which So(a) # ¢ , then the

is bounded above by M and below by zero. Similarly, if there exists

some a < 0 for which So(a) # ¢ , then the set
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So = 1a < 0/S_(a) # ¢} (4.13)

is bounded below by -M and above by zero. Moreover, it follows from
(4.11) that if So(a) # ¢ for some a > 0 then v(a) < M, while if
So(a) # ¢ for some a <0 then [¢(a)f <M . One concludes, there-
fore, that if zero-free solutions to equation (4.1) exist, then the set
of those initial conditions (a,b) for which the solution of (4.1)-(4.9)
is free of zeros, is a subset of [-M,M] x [-M,M] in R2 for some
constant M . Finally, if S: # ¢ (respectively if S; # ¢) then
there exists a number A (respectively A ) such that

0 < inf S:_i sup S: = A" (respectively A = inf S; < sup So_i 0)

Theorem 4.3

Let (4.4) and (4.5) hold and assume that S: # ¢ . Then (i)

Af € S: . If, in addition,

£'(u) 1is continuous for |u| < , and

monotone for 0 < u < & (4.14)
then (ii) ) = (0,A"] , (therefore inf st = 0).
Proof.
(1) 1If S: is a finite set then A = sup S: = max S: € S: . We

may therefore assume that S: is not finite. 1If Af is an isolated
point of S: then clearly A+ € S: . Thus we need consider only the
case in which A* is a limit point of S: « In this case, there exists
a sequence {en} of positire numbers, strictly decreasing to zero, such

that A% - is an element of S: for each n =1,2,3,... . Then
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+ +
So(A - en) # ¢ for each n , so there exists bn € SO(A - en) . Since
+ +
0<¢(A-en)5bnitp(A-en)<M,

the sequence {bn} is bounded above and below, and therefore admits a

convergent subsequence, which for simplicity we denote by {b,} , whose

3

limit b = 1lim b, satisfies 0 <b <M . Let x,(t) and x(t) solve

> d

(4.1) and satisfy

3

+
x,(0) = A - ej . x&(O) = bj :

k|
+ 1
x(0) = A, x'(0) = b, respectively,
We shall show that =x(t) does not vanish on [0,=) , (which implies
b > 0) , in which case we may conclude that b e SO(Af) and hence that
A% € S: . The proof that S: contains any given cluster point is

similar.

Suppose x(t) has a zero at some point t; >0, with x(t) >0
on (O,tl) . Choose T > t, such that x'(t) <0 on (tl,T] . Then
(by Theorem 3.2, page 14 of Hartman [10]) there exists a subsequence of
{xj(t)} which converges uniformly on [0,T] to x(t) . But each

function in the subsequence is strictly positive on [0,x) , whereas

x(t) is negative 2t T , which is a contradiction.
For the proof of (i1i) we make use of the following theorem of

Erbe.

Theorem 4.4 (Erbe [9], Theorem 4.6 and Corollary 4.7)

Consider the differential equation
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x" = £(t,x) (4.15)

where £(t,x) and fx(t,x) are continuous on [a,b] X R . Assume there

exist C(z)

[a,b] functions a(t), B(t) such that a" > f(t,a) ,
B" < £(t,R) and a(t) < B(t) on [a,b] . Assume further that fy(t,y)
is monotone in y for min a(t) <y < max B(t) . Then for any

a(a) <c <B(a) , a(b) <d < B(b) there is a solution xo(t) of (4.15)

satisfying xo(a) =c, xb(b) =d and a(t) < xo(t) < B(t) on [a,b] .

For the equation (4.1) x" = -q(t)f(x) our assumptions on q(t)
and (4.14) imply that -q(t)f'(y) is continuous for all y and that
-q(t)f'(y) is monotone in y for 0 Sy <« . Moreover, by Theorem
4.3 (1) the strictly increasing solution %, (t) of (4.1) satisfying
the initial conditions x,(0) = At s> x.(0) = ¢(A+) » and the
identically zero soluticn of (4.1) satisfy the requirements on B(t)
and o(t) respectively of Theorem 4.4 on any compact interval [0,T]

Now let the number a be chosen in 0 < a < AT . By Theorem 4.4 there

exists a solution xn(t) of (4.1) satisfying

x,(n) - A%

xn(O) =a, xn(n) =x (n) - m
(4.16)
0 < xn(t) < x, () ; t € [0,n] .
Because 0 < xn(t) <x(t) for t in [O,n] , then, in fact
0<a j_xn(t) <x,(t) for t imn [O,n] |, (4.17)

otherwise, since x;(t) <0 for xn(t) >0, x;(t) would have to be-

come negative at some point in (0,n) forcing xn(t) to vanish at least
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twice in that interval, contradicting Theorem 4.4. Moreover, the functions
xn(t) are solutions of (4.1) on the entire interval [0,») . Let

In = [0,n] .

On the interval I, » each solution xn(t) is positive,
increasing in t , bounded above by x,(t) and satisfies x;(t) <0.

Thus x;(t)_i x&(O) on I, and, by lemma 3.10, there exists R, = Rl(l)

1
= {x_(£))

1

such that x;(o) < Rl for all n . Therefore the family F

is uniformly bounded and equicontinuous on Ilz

1

t
2

|x () - x (t)] < ft lx;l(t) lat < Ry (ty-t))
1

xn(t) j_xn(O) + x;(O)t.g_a + R t e [0,1] .

1 ’

Thus, by the Ascoli lemma (Coddington and Levinson [4], p. 5), F
1

a subsequence Fl

1 contains

= {xél)(t)} which is uniformly convergent on I, to

1
) D),
a continuous function x ~’(t) satisfying x ' (0) = a and, by (4.17),

a< x(l)(t) 2 x,(t) on I, - Now 0 < x;(O) < R, for all n so also

1
n’ 1)
0 < X 0) < R, for all n . Thus {xn (0)} has a subsequence

{xii)'(O)}: L such that

1
1n V') = (4.18)
k +
for some b € [0,R1] . But the subsequence xil)(t) also converges

k

uniformly to x(l)(t) on Il . Now on Il

1 t [s
xr(11)(t) =a+ xr(11) ot - f {} q(u)f(xr(ll) (u))du} ds . (4.19)
ol o
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But f is uniformly continuous on [a,x*(l)] and therefore
f(xii)(t)) > f(x(l)(t)) uniformly on I1 . Replacing iil) by x(l)

e

in (4.19) and taking the limit, we then have

t s
P =a+be - [ 51 qwea® w)ae] de (4.20)
o (o}

and therefore x(l)(t) is a solution of (4.1). But 0 < a=< x(l)(t) 2 x,(t)

on I1 and therefore b > 0 . Moreover, since on I1

' ' t
xr(ll) (t) = xr(ll) o - f q(s)f(xr(ll)(s))ds (4.21)
(o]

then for ¢t ¢ Il R

lim x(l)'(t)

nk-)-oo

t '
b= [ a@iaP e =xP'w . 4.
[o]

' '
Since xnk (t) >0 on Il » then also x (t) >0 on I1 . Thus

the subsequence F(l) = {x(l)(t)}°° c {x (£)}" converges uniformly
o k=1 n n=1

on I, to a solution x(l)(t) of equation (4.1) which satisfies:

x(l)(O) =a, x(l)'

(0) =b >0
a<xPw <x v, el
x(l)'(t).i o , tel,

Consider the family F(l) . On the interval 12 = [0,2] ,

each member of the family F(l) is bounded in absolute value by

B, = max {x,(2), max le(t)l} (in fact Ixn(t)l < x%,(2) for n > 2

t e 12
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while possibly xl(t) > x,(2) 1in (1,2]), while the derivative of each
(1)

member of F is bounded in absolute value by the number

C, = max {R,, max [x!(t)|} where R, =R, (2) is an upper bound for
2 2 tel 1 2 2
2

the set {xé(O)/n = 2,3,4,...} which exists, by lemma 3.10, as a result
of the fact that the solutions xn(t), n=2,3,... are free of zeros

(D

on I2 . Therefore F is uniformly bounded and equicontinuous on

I2 s S0, as in the above argument, F(l)

contains a subsequence
F(Z) = {x§2)(t)}:—1 which converges uniformly on I, to a solution

x(z)(t) of (4.1) which, by (4.18) and since F(z) c F(l) » must satisfy

x(z)(O) =3, x(z)'(O) =b >0

a < x(z)(t) < x. (), tel,
]

x(z) (t) >0 , tel,

and therefore x(z)(t) = x(l)(t) by uniqueness of solutions to initial

value problems for (4.1).

Continuing in this manner, for each positive integer k we obtain
a subsequence F(k) = {xik)(t)T 1 c F(k_l) which converges uniformly on
n=

I, to a solution x(k)(t) of (4.1) satisfying

®y=a, @0 =rso0;

a< x(k)(t)_g x*(t) R tel

' >0 tel 3

and therefore x

(t) by the uniqueness of solutions

to initial-value problems. Thus for every positive integer k , x(l)(t)
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L) ,ny _ @' -
is a solution to (4.1) on Ik and satisfies x "7(0) =a, x 0 =b,

L

a<x T(t) £x,(t), tel Letting k + » , we conclude that

k .
(1) _ (L

x 7(t) solves (4.1)-(4.9) and a 2x(E) < x,(t) on [0,0) . There-

fore a € s: and, since a was chosen arbitrarily in (O,Af) it follows

that S: = (O,Af] and hence inf S: = 0 , which completes the proof.

One immediately observes in the preceeding proof that if
¢(A%) < w(Af) then the proof of Theorem 4.3 (ii) can as well be carried
out by making use, in (4.16), of the solution y(t) of (4.1) satisfying
initial conditions y(0) = Af s y'(0) = w(A*) instead of the solution
x;(t) satisfying x,(0) = at s x,(0) = ¢(Af) - One may also conclude
from the same proof that the existence of one solution x(a)(t) of (4.1)

satisfying
@0 =a> o0 , @) >0 on [0,) (4.23)

implies, for each a ¢ (0,a] , the existence of a solution xéa)(t) of

(4.1) satisfying
xéa)(O) =a , xéa)(t) >0 on [0,®) (4.24)

such that the family {xéa)(t)/a € (0,a]} has the property
if 050, € (0,a] with @) <o, then

o, < x§a>(t) < xo(‘a)(t)_< <@ ) on ©.°) . (6.25)
2

1 1

In the example of equation (2.28) discussed above, any family of solutions
{X§a)(t)} for 0<ax< (n+1)l/2n which has property (4.25) also satisfies

the condition
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]
lim inf x® 0) =0 (4.26)
a>ot &

that is, a sequence {xéa)(t)} of such solutions converges to the trivial
n
solution. x = 0 as e > 0.

2n+l -

§4.2 On non-vanishing solutions of x" + q(t)x 0
Consider the equation
"+ gz oo q>0 (4.27)

where n is a positive integer and q(t) is continuous on [0,») and
éuch that solutions of (4.27) exist on [0,0) . Then, as in the previous
section, for each a > 0 either So(a) = ¢ or there exist numbers

¢(a) > 0 and y(a) > ¢(a) such that So(a)‘g [¢Ca),p(a)] . The results
of this section provide certain estimates on these numbers in terms of the

coefficient function q(t) .

Lemma 4.5
Let x(t) be the solution of (4.27) satisfying the initial
conditions

x(0) =a>0, x'"(0)=»0. (4.28)

If x'"(t) >0 on ([0,7) then

T
b > a2n+1 f

q(s)ds .
)
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Proof.

Since x'(t) > 0 on [0,7) it follows directly from (4.27)

that

n+l

T T T
b=x"(1) + [ q(s)x2 (s)ds > q(s)x2n+1(s)ds > 20t [ a(s)ds .
o o

o

Corollary 4.6

If, for a> 0,

a2n+l f

b < q(s)ds

0

then b ¢ So(a) . Therefore, if So(a) #¢ for a >0 then

$(a) 3_a2n+l [ a(s)ds .
o

Proof.
If b <0 then clearly b é So(a) . We may therefore suppose
that
o
0<b < a2n+1 f q(s)ds .
)
t
Since f q(s)ds is a continuous and increasing function of t , there
)
exists a number T < © such that
2n+l '
b=a | a(s)ds .
)

Thus, by lemma 4.5, the solution x(t) of (4.27)-(4.28) satisfies

x'(to) = 0 for some t0 € (0,7] , and hence x(t) must vanish at least
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once on (0,®) . Thus b ¢ So(a) . It therefore follows that

Bia2n+lf q(s)ds
o
for any B ¢ So(a) » and thus
20+l
o(a) > a“™ [ q(e)ds .
)

Theorem 4.7

Suppose q(t) is non-increasing. If, for a > 0 » there

exists to > 0 such that

b
Tl S £a(Ey) (4.29)

then b * So(a) + In particular, for each a ¢ (O,A+] ,

¢(a) > a2n+l sup tq(t) .

(0,=)
Proof.

[ <]

If [ tq(t)dt = = then all solutions oscillate. and hence

[o] .
b ¢ So(a) for all a, b . Therefore, we may assume without loss of

(-]

generality that f tq(t)dt < « ,
)
Let a > 0 and suppose b ¢ So(a) . Then the solution
x(t) of (4.27)-(4.28) is positive for all ¢t . Using Holder's inequality

for integrals we obtain, for t > 0 ,

2o 1 2n 1
t t |2n+l [ t 2ntl = t | 2n+1
[ x(s)ds < (f ds f x2n+l(s)ds = ¢2ntl ‘f x2n+1(s)ds . (4.30)
o ) ) o
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Therefore

2n+l
s t>0.

t L S
) x2n+l(s)ds 3_t-2n (f x(s)ds
o o

Since x'(t) > 0 for all t -, then

t t
b =x"(t) + f q(s)x2n+1(s)ds > f q(s)x2n+1(s)ds
) )
and, since q(t) is non-increasing, then
t 2n+l
b>q(t) [ x (s)ds . (4.31)
)
Making use of (4.30) in (4.31) gives the result
-2 t 2n+l
b>t “qe) | [ =x(s)ds , t>0
o
and, since x(t) is strictly increasing,
t 2n+1
b > t_znq(t) (f x(0)ds = a2n+1tq(t) s t>0.
o

Since the above inequality holds for all positive t , we have a con-
tradiction of (4.29). Therefore, since ¢(a) ¢ So(a) whenever So(a) #¢,

we have

¢(a) > a2n+1 sup tq(t) , ace (O,A%] s
[0,)

which completes the proof.

We remark that each of the results of this section has a

corresponding analogue for the case in which the initial value is negative.
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They follow directly from the observation that x(t) solves (4.27) if

and only if -x(t) 1is also a solution.



APPENDIX

In the proof of Theorem 2.1 reference is made to the following

lemma:

Lemma

Let q(t) be positive and continuous on [0,®) , and of bounded
variation on compact sets. Let t, > 0 be chosen, and let m > 0 be

such that q(t) >m on [0,t1] . Finally, let T be the total variation

of q(t) on- [0,T] . Then there exists a sequence of functions
pk(t) € C(l)[O,tll such that
(1) m < pk(t) ’ t e [0, tl]
1

) [ Ipi(e)jae s T,
(o]

(iii) pk(t) converges to q(t) uniformly on [0,t1]

Proof.

We extend q(t) to a function f£f(t) ¢ C(- »,») be defining

> q(0) ;3 -e<t<0
£(t) = q(t) 3 0<tzty
l a(ty) tpJit<e

Then the total variation of f on (- »,») ig equal to T, i.e.,

f € BV(- »,®) . For each positive integer n define

A exp (-[(nt)z-l]-l) ; |t] :_n_l

K (t) =
n 0 ; lt] > o7t
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where A.n 1s chosen such that

1
Aad n
[ x(vyar = [ K (t)dt = 1 .

- 00

=N

Then Kn(t) is differentiable everywhere on (- »,») . Define

-]

p,(t) = / K (t-s)f(s)ds .

-0

Then, since Kn(t-s) =0 for |t-s| >-% and f e BV(~ »,») (and thus
f 1is differentiable a.e. in (- ®,»)) it follows that pn(t) is
differentiable everywhere, and

(-] [~

pl(t) = [ w RI(t-s)E(s)ds = [ K (t-s)df(s) .

- - 00

Thus
t]. . tl t]_ ©
v, pn(t) - fo Ipr'l(t)ldt = fo | f-w Kn(t—s)df(s)ldt <
1 e o &
< f [k (t-8)|af(s)| dt = [ [az(s)]| [ K_(t-s)dt <
o -c0 -00 (o]
oo © oo tl
< [ lag)| [ R (t-s)dt = [ |af(s)| = [ |df(s)| < T,
-0 - 00 - 00 o)

which establishes (ii). Moreover f£(t) >m for all t, hence

«©

p,(t) = f K (t-s)f(s)ds > m / Kn(t—s)ds =m ,

- 00 - 00

which proves (i).
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Now f is uniformly continuous on  [-1,t,+1] - Given € > 0 ,
there exists § = 6(¢) > 0 such that if X)X, € [-l,tl+1] with
1
le—le < § then If(xl)-f(xz)l <€ . Choose N > . Then, for any

t e [0,t1] sy if n > N we have

lp (0)-£C0)| = | [ K (t-s)f(s)ds - £(t)| =

-]

= | [ K (t-s)f(s)ds - [ K (t-s)£(t)ds| <

. t +
f K (t-s)|£(s)-£(t)|ds = [ K (t-s) |£(s)-£(t) |ds .

- 00

| A
B |=

Bl

t -

1 1 1
But t -—<s<t+— implies |s-t| <5< § . Therefore
t +

|Pn(t)-f(t)| <€ f Kn(t—s)ds =€ .
t -

Sl

=R

Thefore (iii) is proved.
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