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Abstract

This research project includes the development of power system models and
the design of control strategies to enhance power system stability. The research areas
of this thesis include power system models, control and small-signal stability study.
A major concern to electric power engineers is the small-signal stability of a power
system, particularly the inter-area oscillation problem.

A small-signal stability program was developed in this thesis as one of basic
analytical tools for investigating low frequerncy inter-area oscillations. The basic
concepts, mathematical models and system state space model formulation that
underlie this program are described, along with an illustration of its application to a
small-scale hypothetical system. The computer program was used to do an eigenvalue
analysis and to identify the various oscillation modes of the study system. The power
system is characterized by a local mode and an inter-area mode. The results of the
study shows that Power Sysiern Stabilizers (PSSs) can increase the damping of inter-
area oscillations. PSSs based on pole placement techniques and other control
techniques are also designed in the thesis to enhance the overall system stability.
Comprehensive simulation studies were conducted to evaluate the performance of
PSSs under various system conditions and disturbances. The small-signal stability
program was applied to ensure there are no adverse effects on the other modes.

Results are presented to show a comparison between the various design approaches.
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Chapter 1

Introduction

1.1 Power System Stability

Power system stability was first recognized as an important protlem in the
1920s. Since then, power system stability has obtained a much broader perspective
and become an independent discipline. Power system stability may be dzscribed as
that property of a power system that enables it to remain in a state of operating
equilibrium under normal operating conditions and to regain an acceptable operating
state following perturbations [4,35,54]. Since eclectrical power is generated
exclusively by synchronous generators, maintenance of synchronism among the
generating units is one of the basic conditions for a stable electrical power supply
[45]. Under disturbed conditions, the change in electrical torque of a synchronous

machine can be composed of two components:

VT,-TV8-T Ve (1.1)

where,
T, is the synchronizing torque coefficient,

T,V3 is called the synchronizing torque component,



T}, is the damping torque coefficient,

TpVw represents the damping torque component.
It can be seen that systen stability is determined by both components of torque for
each of the synchronous machines. Lack of sufficient synchronizing torque resulis
in instability through an aperiodic drift in rotor angle, while lack of sufficient
damping torque results in oscillatory instability [35].

Note that in a more complex system involving DC line or asynchronous
operation, loss of synchronism by slipping of a pole by a machine may or may not be
an acceptable state depending on the circumstances and operating criteria [41, 56].

The system may also become unstable because of the collapse of load voltage.

1.2 Non-linear Characteristics of Power System

An electrical power system is inherently nonlinear due to saturation, limits in
excitation and governor-prime mover systems, and power-angle relation. During a
major disturbance, such as a severe fault, and up to about 3 seconds following the
disturbance, the power system behaves in a nonlinear way and a nonlinear mode! fo:
simulation is required. After the first 3 seconds or in response to a small disturbance
the system behaves in a linear or quasi-linear way and a linearized model of the
power system for analysis is valid. When in the linear state, the response of the

system is composed of the natural modes of the system, which are defined by the



dynamic characteristics of the system. These modes can have an exponential or
sinusoidal form. Their magnitude may decay or increase. An:+ cystem which exhibits
a non-decaying mode is deemed unstable [35].

The stability of a linear system is completely independent of the input. In
contrast, the stability of a nonlinear system depends on the type and magnitude of
input, and the initial state. These factors have to be taken into account in defining the
stability of a nonlinear system. For a nonlinear model, solutions cannot be obtained
in analytical form. Instead, time is broken down into steps and the difference
equations solved "step-by-step.” A numerical method has to be utilized which is

essentially a digital simulation technique.

1.3 Transient Stability and Small Signal Stability

It has been common practice to classify power system stability into two
categories: small signal stability (or small disturbance stability) and transient stability
(or large disturbance stability). A detailed classification of power system stability
is listed by Kundur in reference 35. Som¢ good historical summaries of power system
stability are contained in the references 35, 54 and 56. Small-signal stability is the
ability of a power system to maintain synchronism under small disturbances and is
a fundamental requirement for normal operation of a power system. Such
disturbances occur continually in power systems due to small variations in loads and

generation [24,36]. Under a small disturbance, nonlinear equations describing the

3



dynarnics of a power system can be linearized. The solution can be obtained either
in the time domain or in the frequency domain. Transient stability is the ability of
a4 power system to maintain synchronism under a severe disturbance and is related to
the transient period. Stability is determined by both the initial operating state of the
system and the severity of the disturbance. Linearization is not valid in this case and
hence, the mathematical model is a set of nonlinear differential equations with or
without algebraic constraints [56]. A solution to the nonlinear problem may be

obtained in the time domain.

1.3.1 Statement of the Problem

Until now, much of the effort and interest related to power system stability has
been focused on transient stability, and the system is designed and operated so as to
meet a set of reliability criteria concerning transient stability. The analysis of small-
signal stability is not as widespread as transient stability analysis. There are no
standard study procedures or commonly accepted performance criteria with regard to
the small signal stability. The small-signal stability has been revealed largely by
transient programs. This is mainly because, in the past, a system that remained stable
for the first few seconds after a severe disturbance was sure to remain stable for small
perturbations. However, it may not be true for present systems [24,38]. The
complexity of a power system with long EHV transmission lines, large generating

units and fast excitation capabilities has made stability and control problems more

4



difficult than ever [38]. In some cases small-signal stability is more limiting than
transient stability and power transfers across major interferences are being curtailed
owing to the stability of inter-area oscillations. The deterioration in the stability of
the inter-area modes may be a result of the power system being operated at higher
stress levels due to an increase in inter-utility power transfer to compensate for delays
in the addition of new transmission and generation facilities. High-response exciters,
while improving transient stability, adversely effect small-signal stability associated
with local plant modes of oscillations by introducing negative damping.

It has been recognized that normal operation of a bulk electric power systern
1s characterized, in part, by generator speed variations, or oscillations. Most
oscillations between generator rotors are positively damped, but in some
circumstances, these oscillations may persist, or increase in magnitude, with time.
Unstable oscillations may represent interaction among a few generators and have
mainly local effects, or they may represent interaction among large groups of
generators and have widespread effects. The latter are usually hard to analyze and
remedy. These potentially unstable oscillations may lead to a serious disruption of
service. In today's practical power systems, small-signal stability is largely a problem
of insufficient damping of oscillations. These oscillations can be divided into the
following four modes:

(1) Local modes are associated with the swinging of units at a generating

station with respect to the rest of the power system. The term local is used because

5



the oscillations are localized at one station or a small part of the power system.

(2) Inter-area modes are the swinging of many machines in one part of the
system against machines in other parts. They occur when two or more groups of
closely coupled machines are interconnected by weak ties.

(3) Control medes are related to the generating unit and other control devices.
They may be caused by poorly tuned exciters, speed governors, HVDC converters or
static var. compensators.

(4) Torsional modes are related to the turbine- generator shaft system
rotational components. These modes are often caused by interaction with excitation
controls, speed governors, HVDC controls and series-capacitor-compensated lines

[24.35].

1.3.2 Approaches to Small Signal Stability

Theoretically, any methods applicable to linear systems may be utilized in the
study of the small signal stability of power systems. Methods used in conventional
lincar conirol theory, such as Routh and Nyquist criteria, have been adopted for
assessing dynamic stability of power systems. These methods are restiicted to the
analysis of small systems, such as a single machine connected to an infinite system.
They are also of limited value in the analysis of system having a wide range in

frequencies of oscillations [9, 40]. However, eigenvalue analysis has been shown to



be very effective for analysis of multi-machine systems in particular. It illuminates
the behavior of the system for any mode of oscillation.

The eigenvalues of the system are indicative of system performance. The real
part is a measure of the amount of damping: negative parts are damped, but positive
ones represent unstable conditions that may lead to catastrophic consequences. The
imaginary part is related to the damped natural frequency of oscillation of the
corresponding mode. In general, system eigenvalues are functions of all control and
design parameters. They may be sensitive to changes in the system design or
operation. An eigenvector includes the relative magnitudes and phases of all
generator speed deviations for that mode of oscillation. This close relationship
between mathematical results and the physical system is very useful in determining
how to improve inadequate damping [11, 12, 59].

Evaluation of the small signal stability of a power system requires the
computation of the eigenvalues of a very large unsymmetrical and sparse matrix.
Though conventional eigenvalue programs are robust and converge fast, for example,
the MASS (Multi-Area Small signal Stability) program uses QR methods [23], such
programs do not exploit sparsity of the system matrix and demand a large amount of
computational memory storage and CPU time. As a result, their application is limited
to relatively small power systems [36]. On the other hand, for a bulk power system
with thousands of state variables, often only a specific set of eigenvalues with certain

features of interest, such as local mechanical models, and their corresponding inter-
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area modes need to be calculated [74].

To overcome the limitation of conventional eigenvalue programs, a number
of special methods have been developed with three basic properties:

(1) Sparsity oriented techniques can be utilized,

(2) A specific set of eigenvalues can be handled efficiently,

(3) Good convergence and numerical stability [71].
These methods focus on evaluating a selected subset of eigenvalues associated with
complete system responses. The AESOPS (Analysis of Essentially Spontaneous
Oscillations in Power Systems) program is one such technique [24]. Two sparsity-
based eigenvalue techniques: simultaneous iterations and modified Arnoldi method,
and their application to the small signal stability analysis of large power systems, are
described by Wang and Semlyen {71]. The PEALS (Program for Eigenvalue Analysis
of Large Systems) incorporates these techniques [24,36]. This is an efficieut
program capable of simulating systems havirg up to 12,000 buses and 1,000
machines. It is mainly aimed at computation of slow inter-area oscillatory modes.
The S-method introduced by Udida and Nagao is more efficient for finding the
unstable modes |66]. The SMA (Selective Modal Analysis) calculates eigenvalues
associated with selected modes of interest by using sensitivity based techniques [69].
It first identifies variables that are significant to the selected modes, and then forms
areduced order model that involves only the significant variables.

Each method mentioned above is developed only for a particular type of

8



application. However. none of these techniques satisfy all the requirements of
analyzing the small signal stability of power systems. The best approach, therefore,
is to apply several techniques in a complementary manner [36]. The following
sum:marizes the measures taken to improve damping and enhance stability.

- Readjustment of generator control,

- Addition of stabilizing controls to generating units,

- Modulation of DC links,

- Imposition of operating restrictions,

- Reinforcement of the transmission system,

- Control of reactive power [12].

1.3.3 Inter-Area Oscillations

When electric power systems are interconnected through ties of relatively
small capacity, low frequency inter-area oscillations can cause problems to normal
operating conditions. There also exist local, lightly damped, higher frequency mode
of oscillations. These oscillations must be considered in planning, designing and
operating a large power system. Unstable inter-area electromechanical oscillations
have been encountered in the last 30 years by electric power utilities throughout the
world [12]. For example, in December 1959, unstable oscillations of approximately
0.25 Hz occurred between the interconnected power system of Michigan, Ontario and

Quebec. More recently, between the period of August 1987 to May 1988, the power
9



systems of south and southeast Brazil experienced low frequency inter-area
oscillations. In recent years, the stability of inter-area oscillations has become a
concern for many power pools in North America, and a number of research projects
have been conducted [12]. The following briefly summarizes the results and
observations by researchers.

Inter-area oscillations are inherent to interconnected power systems. These
oscillations are associated with weak transmission links and heavy power transfer.
Their frequencies range from 0.2 to 0.8 Hz. Inter-area oscillations can be
spontaneous, that is, initiated by a small disturbance such as a change in load or
generation. These types of disturbances occur continually in a power system, and
thus a power system with an unstable inter-area mode is impossible to operate. Inter-
area oscillations can also be excited by a large disturbance, and if they are unstable
or poorly damped, they dominate ihe response of the system starting from 2 to 3
seconds following the disturbance. In addition, because inter-area oscillations are
due to a natural mode of the system. they cannot be eliminated. However, their
damping and frequency magnitude can be modified. The factors that effect the
damping of low frequency oscillations are complex. In many cases low damping is
due to a combination of many factors. Load characteristics have some major effects
on the stability of inter-area modes. Other factors include increased stress of the weak
interconnections between oscillating groups of generators, the type and location of

system loads, the strength of voltage regulation in the system, and the type of

10



generator excitation control [12].

1.3.4 Tools for Inter-Area Oscillations

The commonly used tools for analysis of inter-area oscillation problems
include a load-flow program, a transient stability program and a small-signal stability
program. Load-flow is used to initialize the transient and small signal stability
programs. It must be capable of producing good post-fault conditions for use with the
small signal stability program. The transient stability program is the workhorse of
stability analysis. Its nonlinear models and step-by-step time simulation accurately
analyze the system behavior following severe faults. Small-signal stability programs
use a linearized power system model and apply modal analysis techniques. Using
these techniques, generators that may experience an oscillation, or may be candidates
for stability controls can be identified. The small signal stability program can be used
as the fundamental tool for designing power system damping controls.

Controls for damping inter-area oscillations may be accomplished by Power
System Stabilizers (PSS), Static Var Compensator (SVC) modulation, HVDC link
modulation, or Flexible AC Transmission System (FACTS) modulation. Of these
controls, the most cost-effective one is the power system stabilizer, which is an
auxiliary control applied through the exciter of a generator. To be effective, power
system stabilizers must be placed on a generator with a strong participation in the

mode to be controlled [12].

11



1.4 Objectives of Project

In this study, the major concern is the small-signal stability problem,
particularly the inter-area oscillation problem. The objectives of this research are to
study the fundamentals of low frequency inter-area oscillations, to study inethods for
designing controls to remedy the local and inter-area low-frequency oscillations, and
to define methods and demonstrate analytical tools for studying these oscillations.
The project will formulate models for the study of the small-signal stability of multi-
machine power systems and compute the eigenvalues, eigenvectors and sensitivities
of the system. In addition, Power System Stabilizers will be designed by using pole
placement and sensitivity techniques. The goal of this project is to provide

quantitative information on system oscillatory behaviours.

1.5 Outline of Thesis

A basic review of the fundamental thecry for small-signal stability is given in
Chapter 2. Various basic concepts, such as state space model and representation,
eigenvalues and eigenvectors, participation factor, controllability and observability
as well as linearization are covered. Modal analysis, eigenvalue analysis and
sensitivity analysis are briefly discussed. Lyapunov's stability theorem, one of most
important stability theorems, is presented. Thus, this chapter provides the basic
analytic tools to be used in the following chapters.

Chapter 3 presents the formulation of the mathematical model of a multi-

12



machine power system. A computer package for small-signal stability study is
developed. The basic ideas and mathematical models that underlie this program are
described, such as the principle steps of modeling, the model structure, the reference
frame transformation, generator models, turbine/governor models, excitation system
models, load models, network models and the system model formulation of an
interconnected system.

Chapter 4 deals with Power System Stabilizers design techniques. The basic
functions of a PSS and general design procedures are discussed. A review of various
PSSs based on different control theories is presented. Pole placement and linear
optimal control techniques re described in some detail. A case study is also presented
in Chapter 4. With a small-signal stability program developed for this thesis, an
eigenvalue analysis was carried out to identify the various oscillation modes of a
small hypothetical power system. The system is characterized by a local and an inter-
area oscillations. Pole placement techniques are used in design PSSs to enhance the
damping of overall systern. Comprehensive simulation studies were conducted to
evaluate the performance of these PSSs. Though the study system is very simple
compared to a modern power system, it does help to understand how to implement
a small-signal stability analysis and how to design a PSS to remedy the iocal and
inter-area oscillations.

Chapter 5 gives the main results of the study and lists some topics for further

investigation.
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Chapter 2

Fundamental Theory for
Small-Signal Stability Study

2.1 State Space Concepts

The state of a dynamic system is the smallest set of system variables that,
together with the inputs, totally determines the system behavior. By this definition,
the state of the system contains sufficient information about the processes occurring
in this system prior to some initial instant, such that all processes following this
instant could be computed from them.  State variables are those variables that
determine the system state. All the state variables of a dynamic system are elements
of avector called a state vector. If a system can be compleicly described by n state
variables, the n-dimensional space whose n coordinate axes represent the n state

variables is referred to as a state space [56, 57, 58].

2.2 Linear State Space Model Representation

A multi-input and multi-output (MIMO) linear dynamic system, such as a

power system, may be represented by the following forms,
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¥=Ax+Bu (2.1)

y=-Cx+Du (2.2)

where,

X is a state vector of n-dimension,

y is an output vector of m-dimension,

u is an input vector of r-dimension,

A, B, C, D are compatible matrices.
Eq. (2.1) is referred to as the state equation, while (2.2) is called the output equation.
Egs. (2.1) and (2.2) together compose a state space representation in the time domain.
A particular set {A, B, C, D} is designated as a system representation. If one or
more of these parameters vary with time, the system is defined as a time-varying state
model. By contrast, if these parameters remain unchanged during system operation,
the system is called a time invariant system. So far, time invariant models have
been used in most cases for small signal stability of a power system. In this study,
we assume the systems under study are time invariant systems. The state equations

can be represented by a block diagram as shown in Figure 2.1.
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Figure 2.1 Block diagram of state Space representation

Note that, the system representation is not unique. A system described by {A. B, C,

D}, i.e., Egs. (2.1) and (2.2), can assume a transformation given by,

x=1z (2.3)

where,
T is a non-singular square matrix.

Eq.(2.1) can be transformed as,

%-T7-ATz+Bu (2.4)

Rewriting Eq. (2.4) yields,

Z=T'ATz.T'By (2.5)
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Similarly, Eq.(2.2) can be transformed as,

y=Cx+Du-CTz+Du (2.6)

If Eqs. (2.1) and (2.2) are replaced by Egs. (2.5) and (2.6), i.e., to choose a state
vector z instead of x to represent the system, the input output relationship of the
system does not change. Thus, the state variables can be chosen freely. For instance,
in modeling a synchronous machine, state variables may be chosen from voltages.
currents and flux linkage. However, the number of state variables will be the same
in all cases. and is equal to the order of the model, and the eigenvalues will be

independent of the choice made [36].

2.3 Transfer Function

p

’ A s-domuin transfer function is an algebraic representation of the relationship
between the input and output variables of a system. It is typically obtained by taking
the Laplace transform of the system differential equation with zero initial conditions.
A transfer function totally determines boti dynamic and steady state behavior of the
process output when the input signal is specified. Given state space equations of a
system, the transfer function of the system can be easily obtained and vice versa.
Taking the Laplace transform of Egs. (2.1) and (2.2), with zero initial conditions

gives,
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sX(s)-AX(s)+-Bu(s) (2.7)

and,

Y(s)-CX(s)+Du(s) (2.8)

Solving for Y(s) yields,

Y(s)-|C(sI-A) ' B-Dlu(s) (2.9)

By definition, the transfer function is then,

1)
u(s)

G(s)-—"2-C(sl-A)'B:-D (2.10)

where,

G(s) is referred to as a transfer function matrix.

2.4 Solution of the State Space Equation
The solution of the state equations can be obtained in different ways. Taking
the Laplace transforms of Eqs. (2.1) and (2.2), yields the state equations in the

frequency domain. The equations are given by,

sX(s)-X(0)-AX(s)+Bu(s) (2.11)
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and,

Y(5)-CX{(s)+Du(s) (2.12)

X{s) can be solved as,

X(s)=(sI—A)‘l[X(O)+Bu(s)]

"~ det(s IA)
and Y(s) as,
adj(sI-A) . .
Yey-C2 = oL A)[X(O) Bu(s)}-Du(s) (2.14)

The Laplace transforms ot X(s) and Y(s) are seen to have two components. One is
dependent on the initial conditions and the other on the inputs. These are the Laplace
transforms of free and zero-state components of the state and output vectors. By
taking the inverse of Laplace transform of X(s) and Y(s). solutions in the time

domain can be obtained as,

x(1)-e "% (t)f e “Bu(t)dx (2.15)

)
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and,

t
Y()-Ce " “x(t )+C (e 4 Bu(t)dr-Du(?)
0 (2.16)

fo

2.5 Solution of Transfer Function

The transfer function of a system having n distinct eigenvalues may be written

Y (s-2,)(s-2,) ... (s-7,)
u

(S‘Pl)(S-Pz) o ($-p,) (2.17)

where,
k is the transfer function gain,
z; 1S the system zero,
p; 1is the system pole,
with m<n.

Using the partial fraction expansion, the transfer function can also be written in terms

of the residues. The general form is given by,

y 4 6 Cn

<+

u (sp) p) o)

(2.18)
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where,
¢; is called the residue of G(s) at pole p, .
The transfer function residues can also be computed by left and right eigenvectors

[35]. The residue is given by,

c=y.BCo, (2.19)

The frequency response of the transfer function may be obtained by setting s=jw in
the transfer function and varying w, the frequency in rad/s, over the frequency range
of interest. The solution of G(s) in the time domain can be obtained by inverting the
Laplace transform of Eq.(2.18) as the sum of modes,

Dyt
2,

: +cnep"t (2.20)

Dyt
g(D-ce"t+cye

2.6 Eigenvalue and Eigenvector
The values of s that satisfy the characteristic equation of matrix A are

known as eigenvalues and are given by,

det(sl-4)-0 (2.21)

The general eigenvalue can be expressed as,

he0jo (2.22)



Associated with each eigenvalue (A4;) of A are the right eigenvector and left

eigenvectors. The right eigenvector is defined by,

Adrp, i-1,2,-n (2.23)

where,
d)i:(d)li d’2:' o ‘bni)T (2.24)

Similarly, the left eigenvector is determined by,

\l]l.A=)-‘-l|Ii i=1929'"9n (2.25)

where,
A S (2.26)

From the above definition, it follows that if the eigenvalues are distinct, the left and
right eigenvectors corresponding to different eigenvalues are orthogonal. The results

can be represented by,

V-0 (2.27)

and,
Wid)fc,- (228)
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Usually the eigenvectors are normalized to one, i.e.,

w,‘(b,':l

It follows that,

q’d):]: ‘U:d)-l

where,
cb:[d)p(bz:---,(bn]
W=[W{,W2Ta-.-,W;{]T
Therefore,

Ad-dA

Or rewriting the above equation as,

A-¢'4d

(2.29)

(2.30)

(2.31a)

(2.31b)

(2.32)

(2.33)

Obviously. A is a diagonal matrix, with the eigenvalues as diagonal elements.



2.7 Modal 4d Eigenvalue Analysis

IntrodUcing 3 new State vector z, related to the original state vector x by the

transformation, x=¢g, the Eqs. (2.1) and (2.2) can be expressed as

Z«d ' 4dpz-d ' Bu (2.34)

and,

y=-Céz+Du (2.35)

Substituting Eq.(2.33) into Eq.(2.34) yields,

Z=Az+¢"'By (2.36)

The dynamic €quations are decoupled Since A is diagonal and the resulting equations

may be solved separately. The solution is of the form.
At
z(t)-ce ""+0 (1) (2.37)

For simplicity» 0; represents zero-state components of the state, the same as the

second term of Eq.(2.16). Since,

x-dz,  x-Y. bz, (2.38)
il



then substituting for z; using Eq.(2.37) results in,

x(0-Y blce Moo 01 (2.39)

where,

n is the number of the states,

At |
c,e * s called a mode of the system.

Every system variable can be expressed as a linear combination of dynamic modes.
The value of ¢; may be determined by using the orthogonal property of the left and

right eigenvectors. Pre-multiplying Eq.(2.38) by y,,
n
bd Wbz (2.40)

It the initial condition of the state vector is given by x(0), then,
2,(0)- x(0) (2.41)
and for simplicity. assuming that zero-state component in Eq. (2.37) is zero yields,
Z,'(O)=C,' (242)
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therefore,

=Y x(0) (2.43)

The scalar product (C;) represents the magnitude of excitation of the ith mode
resulting from the initial condition. The time dependent characteristicof a mode

corresponding to an eigenvalue A, is given by,
At
e (2.44)

Therefore, the stability of the system is determined by the eigenvalues. Analysis of
the eigen-properties of matrix A provides complete information regarding the stability
characteristics of the system. If matrix A is real, complex eigenvalues always occur
in conjugate pairs, and each pair corresponds to an oscillatory mode, which has the

form,

e ""sin(wt+6) (2.45)

Eq.(2.45) represents a damped sinusoid for negative «. The imaginary component
of the eigenvalue determines the frequency of oscillation. The frequency in Hz can

te computed by,
w
Fo (2.46)
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A real eigenvalue corresponds to a non-oscillatory mode. A negative real eigenvalue
represents a decaying mode. The amplitude of mode z; decays with time, the larger
its magnitude, the faster the decay. This type of mode is said to be asymptotically
stable. When the real part is positive, the amplitude of the mode increases with time.
Obviously, the system is aperiodic unstable. Therefore, the real component of the
eigenvalue provides the damping contribution. From the above analysis, it can be
seen that every solution representing a free response depends on three quantities:

(1) aneigenvalue determines the decay/growth rate of the response,

(2) aneigenvector determines the shape of the response,

(3) initial condition determines the degree to which each mode will

participate in the free response [S].

The damping ratio is calculated by,
- (2.47)

Since the damping ratio determines the rate of decay of the amplitude of the
oscillation. it is a quantitative measure of the degree of system damping. An absolute
stability limit ({=0) is of theoretical interest only. For satisfactory operation of the
system each mode must have a certain minimum value of damping ratio. The
minimum acceptable value of damping ratio is not clear. However, situations with

damping ratio of less than 0.03 must be accepted with caution [38].



2.8 Lyapunov's Stability Theory

The most general conceyis and theorems of stability still used today are due
to Lyapunov, who in 1892 set forth the general framework for the solution of such
problems [54]. Lyapunov's stability theory can be applied to both linear and
nonlinear systems. He outlined two approaches to the problem of stability, popularly
known as "Lyapunov's first method" and the "Lyapunov's second method" or the
"direct” method. The distinction is based on the fact that the “first method" depends
on finding an approximate solution to the differential equations, thereas in the
“second method,” no such knowledge is necessary. The stability criterion of the
“first method” is given by the explicit solution of a nonlinear differential equation,
i.e., by eigenvalues of matrix A, for small-signal stability. A negative real part
represents a damped oscillation, and the system is stable, whereas, a positive real part
represents an oscillation of increasing amplitude, and the system is unstable. If the
real part is zero, the mode will oscillate with a constant amplitude. The effect of

eigenvalues on system behavior is summarized in the Table 2.1.

Table 2.1 Effect of eigenvalues on system behavior

A=a £ jw Real part («) imaginary part (w)

Effect on o0 unstable w=0 not oscillatory

stable w+#0 oscillatory

svstem
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2.9 Lyapunov's Second Method

Lyapunov's second method can be best explained by using an energy concept.
The energy of an object is always positive. If the derivative of the energy is always
negative, the energy of the object will become zero. In other words, the object will
go into a static state. For a purely mathematical system, a fiction energy function,
called the Lyapunov's function, denoted by V(x), or V(x,, X, ... X,) is constructed.
If V(x) isalways positive, and its derivative is always negative, then the system
state must approach zero, which means that the system is asymptotically stable.
Construction of Lyapunov's function is very important, and is sometime very

difficult. Assuming a linear time-invariant system represented by,

X=Ax (2.48)
If the Lyapunov function V(x) is chosen as the following quadratic form,
V(x)-x TPx (2.49)

where,
P is a real symmetrical positive definite matrix.

then its derivative is,
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P(x)-% TPxx TPx
=x T4 TPx+wx TPAx (2.50)
=x T(4 TP+PA)x
Eq.(2.50) can be simplified as,
V(x)=-x TOx (2.51)
Asymptotic stability requires that Q must be positively definite, or,

_0-A TP.PA (2.52)

The implication of this equation must be clearly understood. For example, if Q is a
positive definite matrix, Q=I, then if the equation has no solution or more than one
solution, the origin is not asymptotically stable. On the other hand, if the unigue
solution is such that P is positive definite, then the crigin is asymptotically stable in

the large [54].

2.10 Eigenvalue Sensitivity and Participation Factor
To predict the system performance under different parameter settings,
cigenvalues can be recalculated for every parameter selection with the aid of

sensitivities to determine a suitable step size. However, for a large system,
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recalculating the eigenvalues can be time consuming and costly [77]. An alternative
approach is to use eigenvalue sensitivities and eigenvalue tracking. The advantages
of using sensitivities have been shown by many researchers [24,77].  The sensitivity
analysis has been used to identify different system modes, to choose suitable model
precision, such as PSSs setting and tuning, and to estimate the required accuracy of
field measurement for simulation studies [77].

Left and right eigenvectors may be used to determine the eigenvalue

sensitivity of changes in the system state matrix. Consider a change in A,
(ADA)(bAD)-(A ALY GAD)  (2.53)
Neglecting products of small quantities yields,

Ad)i+AA¢i+AA¢i=Ai¢i+A)\'id)i+)“iA¢i (2.54)

(A-ADAbAAD-AL D, (2.55)
Recall that,
Ad-Ab, (2.56)

and hence multiplying Eq.(2.55) by y, gives,
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V(A-ADAGY,AAD WAL DALY, (2.57)

Since,

Y, (4-2.,0)-0 (2.58)

and,

V-1 (2.59)

the result is,

Ar-Y,A40, (2.60)

and it follows that,

"'=wk,-4>,-,- (2.61)

Aa,g

AA is chosen to be zero except for a change in Ay; {(as @, ), thus, the sensitivity
of the eigenvalue A; to the element &, of the state matrix is equal to the product of
the left eigenvector element ¥, and the right eigenvector element d,. The
participation factor is defined as,
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pla;d)ki‘pik (262)

with,

;Pkfl (2.63)

By comparing Eq.(2.61) with (2.62), we see that the participation factor Py; is
actually equal to the sensitivity of the eigenvalue A, to the diagonal element a, of

the state matrix A, i.e.,

oA,
P (2.64)

oa,,

The speed participation, corresponding to a generator rotor, provides the sensitivity
of the eigenvalue to a change in the direct mechanical damping at the shaft of that
generator. A positive real part of the speed participation will provide damping for
a torque proportional to the negative of the speed of the generator. Conversely, a
negative real part of the participation will reduce the damping of the mode for a
torque proportional to the negative of the speed. When the speed participation is
zero, the eigenvalue is not influenced by the generator. The speed participation is

thus a good indicator of the effect that a power system stabilizer, fitted to the
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generator, will have on damping a particular mode. The imaginary part of the
participation vector indicates the effect of changes in the state matrix diagonal entries

on the frequency of the mode.

2.11 Controllability and Observability

Controllability and observability are inyportant indicators for the assessment
of system output signals to be used for damping oscillations and the location of the
controller input. The coupling between the input and the state determines whether
any state can be controlled by a particular input? This is a controllability problem.
The relationship between the state and the output provides the information about
the state that can be observed from the ourput.  This is the observability problem.

If the eigenvalues of the system matrix A in Eq.(2.1) are distinct, the system
of Egs. (2.1) and (2.2) can be diagonalized by x=¢z (see section 2.7). Rewriting

Eq.(2.35) and (2.36), results in,

#-Az-Bu (2.65)

and,

y=Cdz-Du (2.66)

Apparently if one row in ¢B is zero, the corresponding state variable cannot be
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changed by the input. In other words, for a linear system, with distinct eigenvalues,
the system is completely controllable if and only if no row of yB has all zero
elements. Similarly, if any column in C¢ is zero, then no information about a
corresponding state variable can be provided from the output This means, for a
linear system with distinct eigenvalues, the system is completely observable if and
cnly if no column of C¢ has all zero elements. These results can be simply stated
as,

(1) ihe system described by Egs. (2.1) and (2.2) is controllable if and only if,

rank co - ranklB AB - A™B] - n

(2) the system represented by Egs. (2.1) and (2.2) is observable if and only if,

rank ob - ranklCT A7CT .. 4TY'CT] - n

2.12 Linearization of State Equations

It has been mentioned that a power system is inherently nonlinear. Thus, it
may be inappropriate to apply the above mentioned linear state space concepts for a
small-signal stability study of power system. Fortunately, within the limits of normal
engineering accuracy requirements, under a small disturbance, nonlinear equations

describing the dynamics of a power system may be linearized by applying small-



perturbation theory. Such a system is supposed to be linear over a reasonably wide

range of operation, i.e., the following superposition properties hold,

if yfix), then cy-fcx) (2.67)

and,
yff(xl‘”xz):ﬂxl)*j(xz) (268)

For example, given a time-invariant system described by the following state

equation,

Xfx,u) (2.69)

and an output equation,

y-g(x,u) (2.70)

where,
X is a state variable vector,

u 1is an input vector,

f(.,.) and g(.,.) are assumed to have continuous partial derivatives of

all orders.
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An expansion of Eq.(2.69) into a Taylor series about (x,, u,) yields the small-signal,

the equilibrium point (operational point) is then done. For small perturbations Ax

and Au, it follows that,

X=X+ Ax, u=u+Au (2.71)

and.

x0=ﬂxoau0)> x'=j[(x0+Ax),(u0+Au)] (2.72)

The state equation can then be written as,

of

o e

af .
S, u)=f(xq,u,) + ) }xo,qu u+higher order term (2.73)
Since (X-Xp) is very small, all terms of order two and higher can be neglected. This

vields,

Ax-x—x -——[

of
Ax+—L Au
o 'xo,"o 34 lxm”o (2.74)

and similarly,

o
Ax2E | Au (2.75)

ox |x° oo gy Mot
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Therefore, the state equation and output equation become,

Ax=AAx+BAu

Ay-CAx+DAu

Where, A, B, C and D matrices are determined by,

A A A
ox, axn aul ou,

A=l - : f, B i .
, S, , o,
\ axl axn ) \ au1 ou, )

and,
(% %) (2% o
axl axn aul au,
C- , D-

g, g, °g,  0g,
\ axl axn } \ aul ou, )
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Chapter 3

Mathematical Models of
Multi-Machine Power Systems

3.1 Introduction

A preliminary step for the analysis of the small-signal stability of a power system is
to represent the power system by a state space model. Formulation of a state space model
of a multi-machine power system is quite detailed and complex, even though the problem
may be considered to have been solved at some levels, since the models of all major devices
in power systems have been studied extensively and standard models for these devices ha.e
been proposed [12, 55). Power systems are composed of many kinds of devices, such as
transmission lines. transformers, static and dynamic loads, steam or hydraulic turbines.
boilers. generators, exciters, governors and power system stabilizers, The respective models
of cach of these devices are represented by a set of differential and algebraic equations.
Usually, these differential equations are nonlinear and may be linearized at the system
operating point of interest by Taylor series expansion. These equations are then integrated
into a single system state modei. An understanding of each device's characteristics anc
acrrate modeling of its dynamic performance are very important in the study of power

system stabihity. This chapter will introduce some of the models used in this thesis without
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involving excessive detail.

Power system models are often conveniently defined in terms of the major subsystemns
of equipment that are active in determining the system performance, such as synchronous
generators, interconnecting transmission network, loads and control systems. Figure 3.1

shows a structure of the complete power system for small-signal stability analysis.

machine reference frame : d-q Common refereace frame: D-Q

Algebraic Equations

v/ Differential Equations

Figure 3.1 Structure of power system model adapted from [35] and [3]
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3.2 Basic Considerations for Modeling a Power System

The basic requirements for a properly designed and operated power system are that
the system must be able to meet the continually changing load demands and that the power
supply must maintain both a constant frequency and voltage with high reliability. Three
factors should be considered when formulating a model: accuracy, practical implementation
and computation difficulties [16]. A bulk power system may consist of hundreds of
generators and thousands of buses. A complete description of the power system may need
a very large number of equations. For example, modeling a typical modern power system
would require more than several thousand differential and algebraic equations. If the full
power system model were to be utilized for design purposes ih:en the controller would require
hundreds or even thousands of variables from across the power system to be measured and
fed back for a single stabilizer signal. This approach is totally unrealistic. The dynamic
model is required to represent all the important system dynamics for the design, while
remaining as simple as possible. Generally, only reduced order models are used in the
design, such as a single machine infinite bus model using output feedback control model

[73]).

3.3 Synchronous Generator Model
f.ynchronous machines may be modeled in varying degrees of complexity, depending
on the purpose of the model usage and the needed accuracy of results. In a small-signal

stability study, usually a detailed model is used for the generators under investigation, and
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the classical models are used for rest of the system. Generator models are exclusively
represented by Park's equations developed by Park in the 192Cs. In Park's equations the
terminal voltages and currents are transformed, from the actual voltage and currents, to a
reference frame fixed in the rotor, i.e., each generator model is expressed in its own direct
axis-quadrature (d-q) reference frame. Park's equations for detailed and classical models
are included. References 35,23 and 24 contain commonly used models and details of

derivation.

3.3.1 Detailed Model
The detailed model which is commonly used in power system stability analysis
inciudes one d-axis amortisseur and two g-axis amortisseurs. The equivalent circuits are

shown in Figure 3.2.

ST f A= Ty
o /V[vv . Ié’m = LR i?;?“'
e Vue ;g‘f" f W Z, 9 |
LT s 3 [
; ‘ . | T3
cf | | | f

(a) d-axis (b) g-axis

Figure 3.2 Synchronous generator equivalent circuits

42



3.3.1.1 Stator Equations

The d-axis stator voltage is given by,

. 1 n
Vg = Py X, v By (3.1)
where,
y v
" " lllq 2q
E; - _wLaq(L .; ) (3.2)
lq 29
§ = flux linkages
iy = d-axis stator current
i, = g-axis stator current
r, = stator winding resistance
X," = g-axis subtransient reactance
The g-axis stator voltage is represented by,
v o= -ri - xji,« E' 3.3
qg aq dd q ( . )

where,

) (3.4)
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3.3.1.2 Rotor Equations

The field flux linkage equation is,

wR, E R
PV, 7 id” Dol
adu

and the d-axis damper winding flux linage equation is,
PY - 00R
while the g-axis damper winding flux linkage equations are,

pwlquOqullq

where, the rotor currents are given by,

|
Zf,{" —L_(wfd- wad)
fd

: 1
llf“f‘(wld'q’ad)

1d

: 1
’1q='IT(W1q“I"ad)
q
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(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)



2q L (qJZq ad) (312)

The d-and g-axis mutual flux linkages are given by,

Vu ¥y,
e L, L,
n" . w] wz
‘lfa =La s(_l r—as q) (314)
q ags: g qu qu
where,
" 1
L
11 (3.15)
Lads Lfd Lla'
L, - 1
BN (3.16)
L L L

3.3.1.3 Saturation Effects

Both x,, and x,, are assumed to vary due to magnetic path saturation. The effects of

d-ax s magnetic saturation may be considered by the following equations,

Loy Koal o (3.17)
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and,
Lads(incr)=st(incr)Ladu (3 | 8)
where,

K, is the d-axis total saturation factor;

Ksynery 18 the d-axis incremental saturation factor, which is associated with the

perturbed value of flux linkages and currents and can be calculated by,

1
I+B e Bcat(wata-wfl) (3 * 1 9)

sar ~sat

sd(incr)”

The distinction between incremental and total saturation can be shown by Figure 3.3.

I ifd

Figure 3.3 Incremental and total saturation

A similar treatment applies to g-axis saturation.
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3.3.1.4 Electro-Mechanical Rotor Equations

The acceleration equations are,

1
pA ‘*’=§‘I(Tm‘Te‘K HLAw) (3.20)

pé-wAw (3.21)
The air-gap torque is determined by,
Te= wadiq_ waqid (3 22)
where,
K, is the damping iactor,
H is the inertia constant.
The above differential-algebraic equations constitute the detailed model of the synchronous
machine. For small signal stability studies these equations are linearized about a steady state
operating point. - State variables are usually chosen to be the change in the fluxes, Y4, 2%

Yo and Y4 in speed. w, and load angle, 8, of the generator.

3.3.1.5 Reference Frame Transformation

For the solution of interconnecting network equations, all voltages and currents must
be expressed in a common (D-Q) reference frame. Usually a reference frame rotating at
synchronous speed is used as the common reference. Axis transformation equations are used

to transform between the individual machine (d-q) and network (D-Q) reference frames

47



given by Eq. (3.23),

Vp cosd -sind Vi

= (3.23)
ind ]
Vo sind cosd Y,
Where & is defined as the angle, by which the generator g-axis leads the D-axis as shown

in Figure 3.4. The relationship between generator(d-q) and network (D-Q) reference can

also be illustrated by figure 3.4.

Figure 3.4 Reference frame transformation

After linearization, the operating points are obtained from a load flow program, and
after eliminating changes in stator flux linkage and rotor currents by application of the

incremental versions of equations, Park's equations may be represented in the state space

form, as,

XA X B AY (3.24)
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and,

Ai=Cp Y Av (3.25)
where,
X¢ = the perturbed value of the individual device state variables,
Ay = devices state matrix,
Ai, = represents the change in terminal! current at the device bus injected into
the AC network,
B, = control bus input matrix,
Av = represents the change in the terminal voltage at the device bus,
Y, = device admittance matrix.

3.3.2 Classical Generator and Infinite Bus
The classical generator model assumes that a generator with constant voltage behind
X4 18 connected through a reactance x, to an infinite bus as shown in Figure 3.5, where & is

the angle by which E' leads the infinite bus voltage V.

Els . ~———-> B i 2 N Vaéof’

Figure 3.5 Classical generator and infinite bus
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For this reduced model, amortisseurs are neglected. Thzre is only one field winding

in the model. The equivalent circuit is represented in Figure 3.6.

re L Fo L
"J\/\.'/\’_C ¢ = 4 i j—"\/\/\/‘*’—*’ﬁj‘“—
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o ! vl : o : \:_
d - axis g - axis

Figure 3.6 Equivalent circuit of a single machine infinite bus

3.3.2.1 Stator Equations
For the corresponding circuits shown in Figures 3.5 and 3.6, the d-q axis stator
voltages are given by,
Va _raid—w =_raid+(Lli —waq) (326)
Vo alg W oty L,y (3.27)

where,

L
VoLt L pad g+ L (wfd V.0 (3.28)
VoL, (3.29)
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3.3.2.2 Rotor Equations
Since there is only one field winding in the rotor, the rotor equation becomes very

simple as shown in Eq. (3.5),

moRde R
P‘l’f{'T ‘i ol (3.30)
adu

3.3.2.3 Swing Equations
The electro-mechanical rotor equations are the same as Egs. (3.20) and (3.21). Tke

corresponding equations may be represented by the block diagram shown in Figure 3.7.

Fignre 3.7 Block diagram of swing equations

where.
K, is the damping factor,
H is inertia constant,

wy 1s the rated speed,



K, is the synchronizing torque coefficieut given by,

E'V,

cosd, (3.31)

/
xd+x

\

-4

3.3.2.4 System Block Diagram

A complete block diagram for 2 single machine infinite bus (SMIB) with excitation

system, turbine/governor and power system stabilizer is shown in Figure 3.8.
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Figure 3. 8 Block diagram of complete system
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3.4 Turbine/Governor Model

The basic function of a governor is to control speed and/or generator loading. The
primary speed/load control function involves feeding back speed error to control the gate

position of a hydro unit or steam valves of a fossil-fired unit. A block diagram for

urbine/governor is depicted in Figure 3.9. Other types of governors can found in [24, 32].
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D A o T — L
) Te // [
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Figure 3.9

Block diagram and analog wiring diagram of hydraulic turbine and
mechanical hydraulic governor {79)

The differential equations for the governor block diagram are given by,
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S DR
Xy = '7(0* Xyt ?xz * 'fug (3.32)
: S _ 1 o
20 T TR (3.350

b 3 X —g—x’ ¢
3"}c 1 T (3.34)

and.

ug = (A)r + (l)d' - W (3.35)

2.5 Excitation Model

The basic function of an excitation system is to orovide direct current to the
synchronous generator field winding. In addition, the excitation system performs, control and
protective functions essential to the satisfactory perfcrmance of a power system by
controlling the field voltage and thereby the field currents. The performance requirements
of excitati-'n systems are determined by considering the synchronous generator as well as the
power system. Excitation systems are of many different designs, and there is no single
mathematical model that is adequate for all types. Based on performance, they can be

classified into linear and nonlinear. Based on the excitation power system used, ihey can be
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divided into DC, AC and Static types. Mocdels for stability studies are given in [33 ].

Consider a simple static exciter represented by the block diagram in Figure 3.10.

Vstab !:
- Kstab meax
Vref Ao ; Ef
e B \- ; e
Y
A o
Vt Vimin
Vstab T
s > T2 .
Y Tb
I Kstab .
} +dinax
Vref /v:, 1 i I"\\\\ N x4 «j;>\ IN»—I_(—;% ) \\ X< / }__
> ) G >
T Tb _: '/ / N I Te > /// 1 ;
) | Vfmin
Vit - ; » {
O
= T

Figure 3.10 Block diagram of a simple exciter [79]

Differential equations for this exciter can be written directly from the analog wiring diagram.

These are given by,

T
_x.4 = -__!.._.x4 + i(l - _ﬂ)u (3 36)
I, " 1, i, '



Ke 1 KeT .
Xe = —X, - —X. +
5 Te 4 Te 5 TeTb e (3.37)
and,
U,s Vresttab Vstab_ Vt (338)

3.6 Power System Stabilizer Model

The simple power system stabilizer used in this thesis is represented by the block
diagram as shown in Figure 3.11. Models of PSSs are contained in {32]. The application
of stabilizers to control generator excitation systems is the most cost-effective method of
enhancing the small-signal stability of power systems. The basic function of a PSS is to add
damping to the generator rotor oscillations by modulating the generator excitation to develop
a component of electrical torque in phase with rotor specd deviations. The design techniques

of a PSS are described in chapter 4 of this thesis.
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Figure 3.11 Block diagram of simple PSS

‘The corresponding differential equations as deduced froin the PSS block diagram a:e given
by

T ¢ T 7 (3.39)

O Y (3.40
’ TZ TZ TZ TZ T2 i .

with,



UK A0 (3.41)

3.7 Load Model
The electric power consumed by different types of loads is determined by the terminal
voltage and frequency. The dependence of active and reactive consuraption on voltage

and/or frequency is generally described in the following mathematical forms:

P V™ ™y
== —) z (3.42)

QL_ Vv nv( JAR >
—=- —V-) £ (3.43)

where.

Py, = initial value of the active component of load,
1e = initial value of the reactive component of load,
V, = initial value of the bus voltage magnitude,
m,, mg, n, and n, = parameters determined by the load.
Load models are traditionally classified into two broad categories: static models and dynamic

models. Static loads are relatively unaffected by frequency changes [6,18). They can be
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classified as linear (constant impedance) and nonlinear loads. Loads are usually assumed

to be linear ( constant impedance). In this study, linear loads are represented by,

Bj—-— (3.44)

Vo
P
Lo
G -— (3.45)
Vo
w hile nonlinear loads are described as,
P, V\ "
= = (3.46)
PLO VO}

O v|" .
—= _I;';) (3.47

These equations must be linearized. Linearization of Eqs.(3.46 ) and (3.47 ) vields,

A i,)) Gop Boo|[ Avp
E (3.48)
Aiy) \ By Gyl AV,

where,
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(3.49)

(3.50)

(3.51)

(3.52)

The effect of terminal voltage has always been taken into account in stability studies, but the
effect of frequency change has only been considered in recent years. More and more
attention has been given to adequate modeling of consumer behavior because it may have a

marked influence on the accuracy and reliability of stability investigations [56].

In power systern stability analysis, the electromagnetic wansient processes of
network elements are generally neglected [56]. The transmission, and/or interconnection
lines, are assumed to be represented by linear lumped parameter systems Similarly, the

transformers are represented by their steady equivalent circuit in algebraic equations. As a



result, the network is described by algebraic equations. The network equations in terms of

node admittance matrix can be written as,

FYU (3.53)

where,
Y is the nodal admittance matrix.

This equation may be written in partitioned form as,

IN YNN YNL VN
. : (3.54)
LI\ Y, v\ 7,
£q.(3.54 ) can be written as,
]M" /}VNVN+YNLVL (3.55)
1YV Y Vs (5.56)
Rewriting E£q.(3.56) as,
-1 |
VYl YV (3.57)
and substituting it into Eq.(3.55), results in.
-1y, r 7-1
LV Vo Y Y )V Yy, 1ty (3.58)
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If loads are represented by constaii unpedances, i, =0, then Eq.(2.58) becomes,

IJ\/:(YMWYNLY;YLN)VN (3-59)

which can be simplified as,

LYV y (3.60)

3.9 Formulation of System State Space Matrix

The state equations for each generator described by Egs.(3.24) and (3.25) may be put

into mat:ix equation form,

XA x+B, AV (% 01)
ALC x-Y AV (3.62)

For the interconnecting transmission network, with the load represented by a constant

impedance, the node admittance matrix may be represented by,

AIl { Yo Yoz |l AV

: 3.63
o)1, r,/\a7, (3.63)

where,
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AI=[Ai1,Ai2, Ain]T is the collection of all changes in the current

injected by the devices into the network,

A V=[Av1,Av2 Avn]T is the collection of all the device terminal

voltage changes,

A VL=[Av1,Av2 AvL]T 1s the collection of all the load bus voltage

changes.

By eliminating the load bus voltage changes, Eq.(3.63) may be reduced to,
ALY AV (3.64)
It follows that,
. -1
Yo=Y Ya ) (3.65)
Substituting Eq.(3.64) into Eq.(3.62) yields,
rxy ® -1
AV-(YyrYp) 'Cox (3.66)

The state equation for the overall system representation may be obtained by sub tituting

Eqs.(3.66) and (3.64) into Eq.(3.61). The result is,

$=(A B (YY) C o) (3.67)
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or,

X= (3.68)

where,

A is the state matrix of the complete system and is given by,
. -1
A=-(A+B (Yo V) 'Cp) (3.69)

The program developed in this thesis was based on the above models and computing methods
and is illustrated by Figure 3.12. The program was written as a Matlab M-file. The program
was first tested on a benchmark model, which has been used to study the fundamental nature
of interarea oscillations by other reseachers [34]. The system consists of two similar areas
¢t »~cted by a weak tie. Each area consists of two coupled units, each having of 900 MV A

and 20 KV. Generators are modeled by detailed models.
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Figure 3.12 Conceptual overview of a smail signal program structure
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Chapter 4

Design of Power System Stabilizers

4.1 Iniroduction

The science of applying power system stabilizers has dev- oped rapidly since
the 1960s. The use of PSS is one of the common remedies for inadequate dampir-
where oscillazions have been particularly troublesome. The basic function ot
stabilizer is to extend stability limits by modulating generat~ - excitation to enhance
damping of the electric power system during low frecucnc:  scillations. The
controller contributes positive damping to an electromechanicai oscillation by
producing a component of electrical iorque on the rotor that is in phase . th t'c speed
variation. A comprehensive summaiy on the thecry and applications of a PSS can
be found in [40].

A power system stabilizr- is basically a linear controller [12]. It consists of
a gain, a washout, and two or three stages of compensation viocks, normally in the
form of first order lead/lag blocks. Rotor speed, bus frequency, electrical power, or
a combination of electrical power and sieed or frequency are most commonly used
as input signals to PSSs, and the output of a stabilizer is added to the AVR input

summing junction. The design of a PSS controller inciudes the determinaiion of
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appropriate settings for the a-justable parameters, i.e., gain and time constants in the
washout and lead/lag stages' blocks. The principle steps of the design process are
follows.

-vine the PSS location using participation factors calculated by a

-
[
A
v—

sm . i<nal stability program;
(" Design the compensation by applying lin.ear cesign techniques;
(3) Evaluate tiie performance of the PSS under various system conditions
and disturbances by utilizing loac “ow and transient programs;
(4) Ensure that there are no adverse eficct~ on ke ather modes by using
igenvalue analysis [12].
In this chapter, basic design theories for poie placement tecliniques are
presented. These include pole placement via conventional contr.1, pole placement
via state feedback and linear optimal con:.l. A case study is carri=d vut, which

utilized modeling, stability and contro! techi: ; jues introduced in this thesis.

4.2 Pole Placement Techinique via Conventional Control Theory

For a single-input single-output time invariant system. pole placement
techniques can he used to shift a pair of domirant poles to a newly assigned location
in the s-plane. The proximity to instability can be defined by phase and gain margins
between the plant open loop response and the (-1+j0) point. These are used to design

a compensator that causes the response specifications to be met  Note that in phase
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compensation techniques, the adverse effects o1 other modes can be taken into
account right at tiie beginning. whereas, in the case ¢” pole-placement techniques such
eifects are checked after the initial design, and possibly reduced by trial and error.
Moreover, the former is more suitable when two or :10re modes are to be controlled
by the same compensator. Consider a simple feedback centrol system .. shown in

Figure 4.1.

Figure 4.1 Afe.  :k control system
where,
Gfs) is the transfer function of open-loop plant,
H(s; is the transfer function of the controller.

The closed-loop transfer function of the compensated plant may be represented by,

G(s)

SRR 1)
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where 1+G(s)H(s) is called the characteristic equation of the closed-ioop sysiem.
Suppose that a system eigenvalue is t~ e moved to & new location in the s-plane

denoted by ".,. A, is subjected to the characteristic equation of the closed-loop

system, ...
-1

Ho G0y
0

(4.2)
This can be written in terms of magnitude and phase as,

1
H(A ) |-

and,

arg(H(A))-180-arg(G(A,)) (4.4)
Obviously, the magnitude and phase of the compensator at Ay can be compuied from
the magnitude and phase of the plant at A,. A, is chosen to satisfy the specified
damping ratio. The compensator generally consists ¢ a washout and a series of lead/

lag functions as shown below.

------ 2""1
1+STw 1+ST2 1+.‘»'T2n (45)

J sTw 1+ST1 1+sT.

. sT, . . .
The washout, __—*_ _is intended to eliminate the DC and to attenuate very low
1.sT
w

frequency componcnts of the measured signal. Each lead or lag block
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) 1+sT. : . .
compensation 21 js used to improve the system performance. "The decision
1.sT.
2

to use phase-lead rather than phase-lag is arbitrary. In general, phase-lead

increases the bandwidth of the closed-loop transfer function and hence the system
will respond faster to set-point adjustments. Phase-lag tends to 'slow’ the system
down. Phase-lead tends to inicrease the noise input to the process and this limits the
amount oi phase-lead that can be contributed by the compensator [8]." Phase-lead

is limited 1o a maximum of 60° for practical purpose related to noise amplification
and phase-lag can provide more than 40° for practical reasons. The angle, §) m that

the i" block can provide is determined by,

singf,=—— (4.6)

where,

2i
o 4.7)

2i-1

The frequency at which this maximum angle occurs is given by,

oo

m \/OC_iTz,-_l (48)

which is usually chosen to be near the frequency of A,. Finally, the gain K is chosen
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to meet the magnitude equation. This technique guarantees an eigenvalue at A,. but

does not guarantee that the poorly damped eigenvalue will shift to A,,.

4.3 Pole Placement via Sicte Space Feedback

For a system with state space representation, state space fee lack is
commonly used to obtain a suitab.e closed-loop poie location. A number of polc
placement techniques based on this theory have been applied in tiie design of PSS.
These include full state feedback [58], a full order observer [28], output feedback
[16]. alow ordu: dynamic compensater designed by the projective method {15} as
well as eigenstructure assignmeri by decentralized feedback contro} [44]. Of these
five methods somewhat more attention is paid to the Inst three methods with emphasis
on the usage of the iecn.. ques rather than on rigorous theory. Suppose that a

controllable linear time invariant system defined by,

X-AX -Bu (4.9)

F-CX (4.10)

where.
X= state vector nx1,

u=control signal mxl1,
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Y =output vector rx1,

A, B, C= constant matrices

Wonham [28,58] showed that a controllable system is always pole-assignable
by an appropriate state feedback. By substituting the control law into Eq.(4.9), the
closed loop system matrix 1is given by,

4-BX 4.11)

The poles of the closed loop system are determined by the characteristic equation

sI-(4-BK))| (4.12)

A block diagrara of full state feedback control system: is shown in Figurs 4.2,

Voo e e Y
s PR | S ) FE ) [ B R
’”@ TETTG ] e e

Figure 4.2 Full s:ate feedback system

Design steps for multi-input cases described below is taken from references [39. 52,
58].

Step 1. Check whether the pair (A,B) is controllable by
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Step 2.

Step 3.

Step 4.

Step 3.

rank Q = rank[B AB - A”‘IB] =N (4.13)

If it is not, the.* convert to the Kalman canonical form.
Randomly choose suitable dimensions F,. If A has repeated eigenvalues,

then define

Ay-A-BF, (4.14)

until A, has distinct einenvalues.

Randomly pick u, which has suitable dimensions, then define

B-Bu (4.15)

until (Ag. By) is cc 7. Mable.

Assign the desired pefes A by a suitable choice of state feedback

-

F such that

S\ Ad
o(4, B F)-A (4.16)
The feedback control law F i< found by,

F-FyuF (4.17)

Then check whether the closed loop matrix has the required poles.
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A-BF (4.18)

From a practical view, the necessity of full state feedback is undesirable.
This is obvious when considering large order systems and the cost of measuring and
feeding back each state variable. Output feedback is more attractiv* because it
requires fewer measured variables. Davison [16] indicated that if the system is
controllable and observable and if rank [B]=m and rank [C] = r, then max{in, 1)

eigenvalues are assignable almost arbitrarily. The eigenvalues of the closed loop

system are determined by,

sI-(-BFC)| (4.19)

A block diagram for the output feedback control system is :hown in 4.3.

VA p— e Y
> B e [ s C -
| | |
: J o |
[ _4: A L( :
T

Figure 4.3 Output feedback system
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4.4 Linear Optimal Designs

The desigr: 01 @ "“near optimal stabilizer i ~ommonly formulated as a linear

aptimal (time invariant) regulator problem [75,7.:). The design theory for the linear
cptimal stabilizer is very simple.

Consider a linearized power system model
described by,

X - AX + Bu (4.20)
where,

A and B are system matrices,

» and u are the state variable vector and control signal vector. respectively

An optimal control signal u can be found from minimization of & chosen quadratic
performance index:

J-= . X OXu ‘Ru)dt

(1.21)
JO

o ) -

subject to the system dynamics constraint (4.20). The optir. cc .tre’ ‘¢ a linear

function in terms of the system state variables X as

u--KX--R'B 'PX (4.22)
where,

Q and R are the weighting matrices,

K is ihe fe« dback gain matrix,
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P is the solution of Riccati equ «iion,

Thi Hicc ot equation is the key to the design of the iine~r optimal control system and

is given by,

A TP.PA-PBR B TP.Q-0 (4.23)

Once Q and R are known, the matrix P can be obtained by solving equation (4.23).
T'hen the optimal control signal u can be calculaied by equation (4.22). With u

determined, the closed-loop system equation becomes

X-Ax-BKx=(A-BK)x-GX (4.24)

where,

G-4 - BR'B'P (4.25)

Therefore, the eigenvalues of the closed-loop system G depend upon the selection Q
and R for the cost function.

A very important and difficult problem that ckillenges the designer is how
to select the weighting matrir» s ¢ and R. Different matrices pairs (Q;, R,) determine
a different feedback gain K|, which results in different dynamic performance for the
closed-loop system. Large portions of the literature have been written for this

problem. The traditiviial way tc seleci (Q,R) is to aprly a triai and error method.
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Many simulation studies have to be done in the time domain with different weigating
matrices to choose the one that provides the desired performance [12].

Yu et al [75,76] have proposed a new method to determine Q and R in
conjunction with the dominant eigenvalus shift of the closed-loop system to the left
of the complex plane as far as the practical controller permits. However, Vaahedi
[68] has pointed out that this approach may not give the "best" response as may be
judged by inspection of load angle swing following a fault in the simulation studics,
because the generator is essentially Hnlinear and some of the varables and controls
have reached maximum values.

It is more "realistic” if only Ad and A w are used as feedback. This has

becn referred to as suboptimal control in the literature.
K <{k,.k,,0,-,0] (4.26)

where k. k, are obtained from optimal controller gain matrix.

Comments

The design procedure for PSS via conventional control i¢ based on a trial-
and-error approach, while the design of PSS by state space method enables engineers
to design a controller having the desired closed loop roots. State space methods

enable engineers to avoid the burden of tedious computations by using computers.
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The application of conventional control is readily applied to linear time invariant
system having a single input and a single output [51]. Conventional PSSs are
generally designed with the paraneter settings fixed to their optimal values under a
specific operating condition [43]. TJsually only one stabiiizing signal, rotor speed,
AC bus frequency or electrical power, is injected into each excitation control loop.
As aresult, the interactions be:ween generators cannot be considered easily and this
may result in one or more modes of oscillation being left undamped.

In the 1980s attention vas directed towards a multi-input multi-output
‘MIMO) solucion with the constraint that local control is applied {31, 75]. Various
PSSs based on different control theories, such as state space feedback, linear optimal
control theory. adaptive control theory, artificial neural netw. k (ANN), have been
proposed for the multi-machine power systems with multi-mode oscillaions |78].
The - -sons are that modern control theory enables engineers to design a control
system having the desired closed-lcrp poles or optimal control system with respect
to given performance indexes. Also, modern control theory enables the designer to
include initial conditions. State-space methods are particularly well suited for di gital
computer comnutations because of their time-domain representation. This enables a
designer to avoid the burden of tedious manual computations. Furthermore, it is not
necessary that state variables represent physical quantities of the actual system. Those
variables that are neither measurable nor observable may be chosen as state variables.

However, design by modein control theory requires an accurate mathematical
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description of system -lynamics [39,52].

Pole placement methods select closed-loop poles without regard to the
control effort required to achieve that response. On the other hand, optimal control
can select poles that result in some balance between systern errors and control effort.
These two methods require that every controller have access to all the measurements
taken from the system. For large scale systems, like a power system, this
requirement presents a need for long-distance communication that in most cases is

impractical anu areconomical.

4.5 Case Studv

Consider a two-machine infinite-bus power system as shown in Figure 4.4.
Tﬁe generators are mutually coupled and radially connected to an infinite bus. Each
plant can be described by a fourth-order synchronous model ecuipped with a second
order exciter. Each generator unit has six state variables, i.e.. A8, Aw, Ay, Ay,
X, X2 Loads are modeled as constant impedance. The system parameters are listed

in appendix B.
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Figure 4.4 Two-machine infinite-bus power system

4.5.1 Eigenvalue Analysis

The system state A matrix, eigenvalues, participation factors, damped
frequencies and damping ratios can be calculated by the computer program
develeped in this thesis. The load flow program initializes the small-signal stability
program and computes the operating points of the system. The initial operating point

1s given in Table 4.1.
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Table 4.1 Initial operating points

Bus No. MW (P) MVR(Q) Voltage (V) | Angle (5)

G#1 180.00 200.0C 0.998 38.21
G#2 850.00 40.00 1.01 39.51
G#3 -646.00 611.00 1.00 0.00
(Infinite bus)
4 0.00 0.00 1.00 38.86

The system matrix A (no PSS) at this operating point is calculated by the

cornputer program and listed in Eq.(4.27).

Figure 3.12.

The program structure is illustrated in

State space model formulation described in this thesis is easy to

implement as compared to the sub-matrix approach by Undrill [67]. Once the state

space matrix A is formulated, an eigenvalue program is appliec to calculate the

eigenvalues, damping ratios, damped frequencies, eigenvectors and participation

iactors.
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-2.239
2687.3
-0.0006
0
-0.0014
-0.0008
-0.0000
-0.0759

0 0 0
0 0 4
02405 0 0.0001
0 0 0
-0.8333 o 0
2000 -200 0O
0 0 -1875
0 0 377
0 0 0
0 0 0
0 0 0
0 0 0
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0.0055 0.0127
0 0
0.0177 -0.0001
0.0001 0.0126
0.0000 0.0011
-0.0168 -12761
-0.1292 -14.512
0 0
-03859 141.09
-0.1539 4.5717
0.0009 -0.8743
14760 -1360.0

~0.0004 0 0

0 0 0

0 0 0
-0.0005 0 0
0.0000 0 0
-0.0199 0 0
-0.3558 0 0

0 0 0
6.7328 0 0.2498
-2.0353 0 0
-0.924% -0.1000 0
-1438.8 14000 -20.0 |

(4.27)



Eigenvalues are calculated and shown in Table 4.2. It can be seen that the system
is stable with two oscillatory modes and eight non-oscillaiory modes.  The
frequencies of these two oscillatcry modes are 1.254 and 0.875 Hz. They are lightly

damped with damping ratios 0.098 and 0.0626.

Table 4.2 Eigenvalues, damped frequency and dampmg ratio of the system

l Exgenvaluc - Dampcd frcqucncxes Dampmg rauo
(A) (f) 0)

-145.70

2 -137.79

3 -23.36

4 -11.84

5,6 -0.78+7.88i 1.254 0.098
7 -5.59

-0.34 £5.50i
-0.66
-1.77

[ -1.51

ne participation factors are listed in Table 4.3. Only the magnitudes of the

participation factors are shown in the table since the angle does not provide any
useful information [35]. It can be shown that the oscillatory mode of 1.254 Hz is
associated primarily with the rotor angle and speed of generator #1, and the 0.875 Hz
mode is primarily determined by those of generator #2. The eight non-oscillatory
modes are associated with the field and damping winding and AVR. The
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participation factors indicated that each generator should have a PSS to enhance the

system damping for this case.

Table 4.3 The system participation factor matrix

W
N ho Ay An
Aw, | 00002 0.0000 0.0000 0.0376 0.5144 0.5144 0.0130 0.0000 0.0000 0.0011 0.0000 0.0000
A8, | 0.0002 0.0000 0.0000 0.0341 05123 0.5123 0.0104 0.0000 0.0000 0.0000 0.0007 0.0000
Ay | 0.9654 0.0000 0.0000 0.1064 0.0087 0.0087 0.0886 0.0000 0.0000 0.0000 0.0004 0.0000
Ay, | 0.0012 0.0000 0.0000 0.6448 0.0737 00737 17279 0.0000 0.0000 0.0634 0.0000 0.0000
Ax,; | 0.0000 0.0000 0.0000 0.0180 0.0025 0.00250.0755 C.0000 0.0000 0.9376 0.0000 0.0000
Ax;, | 0.0355 0.0000 0.0000 1.6280 0.442 0.0442 07382 0.0000 0.0000 0.0002 0.0000 0.0000
Aw, | 0.0000 0.0008 0.0038 0.0000 0.0002 0.0002 0.0000 0.4975 04975 0.0000 0.0627 01207
A3, | 0.0000 60008 0.0035 0.0000 0.0001 0.0001 0.0000 0.5154 0.515¢ 0.0000 0.0039 6.0301
By | 0.0000 1.0209 0.0304 0.0000 0.0000 0.0000 0.0000 0.0111 0.0111 0.0000 G.0092 0.0053
AY,q | 0.0000 0.0025 0.0222 0.0000 0.0000 0.0000 0,0000 0.1210 0.1210 0.0000 6.2001 5.1739
Axy | 0.0000 0.0001 0.005% 0.0000 0.0000 0.0000 0.0000 0.0387 0.0387 0.0000 4.7623 58424

| 0.0000 0.0259 1.0215 0.0000 0.0000 0.0000 0.0000 0:0642 G612 0000 03698 Oadca

Note that a high participation factor is a necessary, but not a sufficient

condition for a PSS at the generator unit to effectively damp interarea oscillations.

For a large power system, following the initial screening based on participation

factors, evaluations using frequency response methods should be applied to decide

appropriate locations for the stabilizers [35]. By adjusting the gain of ihe PSS of

one generator, while setting the gain of PSS of the other generator at zero, it can be
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seen that the damping of the generator with adjusted gain changes primarily as

shown in Table 4.4.

Table 4.4 System modes and K,

. " m
Kawr | Kavz | 0scillation modes || Kq,; | Ko, | oscillatory modes
0 0 -0.78+7.81 0 0 -0.78+7.8i
-0.34%5.5i -0.34+5.5i
-0.8617.73i -22.9+2.66
1 0 -0.34+5.51 0 1 -0.78+7.88i
-0.4315.45i
-1.3246.95i -22.316.06i
5 0 -6.23+1.87i 0 5 -0.78+7.88i
-0.34£5.51 -0.77£5.26i
-1.89+0.141
-0.3415.51 -20.41£12.71i
-0.34+5.5i -0.78+7.86i
15 0 -0.7320.16i 0 15 -1.7£3.86i
-1.9940.35i
-0.34+5.51 -0.78+7.8i
-5 0 -0.7+8.51 0 -5 0.1+5.71
-0.57+0.33i
L T

The eigenvalues, damping ratio, damped frequency and dominant states
obtained from the participation factor of the whole system (generator, AVR,
turbine/governor and PSS) are listed in Table 4.5. After including the
turbine/governor, the system order increases to 22. There are two oscillatory modes

with damped frequencies of 1.3 and 0.9 Hz. These two oscillatory modes are well-
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damped with damping ratios 0.16 and 0.30. Table 4.5 also shows the dominant and

significant states of every eigenvalue, which provides the useful informati »n for the

poles.
Table 4.5 Eigenvalues, participation factor of the whole system
Modes Eigenvalucs Damped Damping Dominant States Significant states
Frequency Ratio
1 -141.31 Ay of Gl
2 -140.75 Ay of G2
3 -28.61 PSS of G#1
4 -19.63 AVR of G#1
5 -22.73 PSS of G#2
6 -20.03 AVR of G#2
7.8 -1.35£8.16i 1.298 0.1633 Aw,A80fGH1 | A, of Gi1
9 -10.08 GOV of G#1
10, 11 -1.845.67i 0.902 0.3032 Aw,Ad of G#2 A \qu of Git2
12 -5.01 PSS of G#1
13 -1.97 GOV of G#2
14 -0.61 A‘p]q of G#1 AVR of G#1
15 -0.14 AVR of G#2
16 -0.47 A, of G#2 A of G#2
17 -0.85 GOV of G#1 AVR of G#1
18 -1.01 GOV of G#2 A‘qu of G#2
19 -1 Aq,,q of G#1 AVR,GOV of G#1
20 -1 PSS of G#2
21,22 | -04 GOV of G#1
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4.5.2 Pole Placement via Conventional Control

Conventional design methods described in section 4.2 are appilied to
determine the gain and time constant of the PSS. One set of parameters for the
PS8s, using conventional methods, are listed below:

Generator #1: T,= 1.1, T,=0.27, T,=0.035, K_,=0.5;

Generator #2: T,= 11, T\=0.115, T,=0.044, K_,,=0.1.

With the addition of the PSSs (delta-omega type), the damping of the
oscillatery modes has been enhanced as the real parts of the eigenvalues increased
significantly. The damped frequencies changed slightly, but the damping ratios
changed considerably. The eigenvalues, damped frequencies and damping ratios are
listed in the Table 4.6.

Table 4.6 Eigenvalues of the system with AVR and PSS

Eigenvalue/(Frequency in Hz, Damping Ratio)

-141.22 -140.76 | -1.41+8.18i -19.78 |-22.73 {-20.01
f,=1.30, ¢=0.1695

-1.84%5.75i -0.61 | -0.91+0.09 -0.11 [-055 |-0.09

©04=0.92, £=0.3049 £,=0.01, ¢ =0.9951

The system performance with PSS included can be analyzed by observing

the transient responses following a step disturbance either in load or the reference
voltage. Only disturbances applied in the reference voltage are used in the following

system performance evaluations. The transient responses of systems with and without
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PSSs are shown in Figure 4.5 and 4.6 respectively. It can be seen that the dynamic

characteristic of the system with PSSs is much better than that of the system without

PSSs.

4.5.3 Full State Feedback

Since the system is completely controllable, without consigering the control
effort and measurement problem, poles of the system can be assigned arbitrarily. If

the goal is to achieve high damping, the desired poles can be assigned as shown in

Table 4.7.
Table 4.7 Desired eigenvalues
Desired eigenvalues
-145 -7.847.8i -137 -23 -12
-5.5+5.5i -5.6 -1.77 -1.51 -0.66

The gain matrix K can be found as shown in Eq.(4.28). It can be seen that

the value of each component of the gain matrix is very high. This implies that a
great effort is required. The step simulation results are shown in Figure 4.7. The
dynamic characteristic is better than that of conventional PSS as it take less time to

steady state and less overshoot.

66.9 88 5.0 25.1 -4.8 -0.1 -1001.4 67 101.8 89 984 13

Ky (4.28)
144 1.9 01 54 -1.0 -00 -2152 14 21.9 19 211 03
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4.5.4 Linear Optimal Control

Suppose all the state variables are measurable, so that optimal control can
be applied to enhance the damping of the system. For simplicity, assume the
weighting matrices Q and R are unit diagonal matrices. Following the method

described in this chapter, the optimal controller gain matrix K is obtained as,

7.3376 -0.0485 6.8161 10.1943 0.9559 0.8971 00114 0.0000 -0.0036¢ -0.0018 0.0002 0.0000 429)
*’l0.0063 -0.0002 0.0055 0.0004 -0.0000 0.0000 -24.2347 -0.0943 -1.7273 -3.2775 7.5860 0.8656 (

It can be seen that the value of each component of gain matrix is smaller than that
of pole placement. If R decreases, the value of each component of the gain matrix,
K may be increased because it needs more control effort. The closed-loop
eigenvalues are listed in Table 4.8. The system has 4 pairs of complex eigenvalues.
These modes are stable and three of them are well damped. The simulation results
are shown in Figure 4. 8. It can be seen that the dynamic characteristic is better than
that of conventional PSS because it takes less time to steady state and has less

overshoot.

Table 4.8 Eigenvalues for system with optimal controller

Eigenvalues/ damping ratios

-177.58 -140.6+14.19i -132.86 -19.9+5.81i
¢=0.324 {=0.1714

-1.06 -0.8940.04i -0.66

~14248.19i . 8920, .
2=0.999 £=0.995
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4.5.5 Suboptimal Control

Rotor speed and angle of a generator are generally considered as
measurable. Assume only these two variables can be taken from the system. In this
case, it is better to use suboptimal control as described in this chapter. The

suboptimal controller gain matrix can be found easily from the optimal controller gain

matrix,

7.3376 00485 0 O O O 0.0114 0000 0 0 0 O

K- (4.30)
0.0063 -0.0002 0 O 0 O -24.2347 -00943 0 O 0 o

The eigenvalues of the closed-loop system are listed in the Table 4.9. The
system has two oscillatory modes. The damping ratios of these two modes are 0.138
and 0.37. The step simulation results are better than that of conventional PSS as

shown in figure 4.9 as it takes less time to steady state.

Table 4.9 Eigenvalues for the system with suboptimal controller

Eigenvalues/Damping ratios

-145.77 -138.56 -18.36 -0.1105 -1.1114£7.98i
¢=0.138
-2.47 £6.15 | -5.66 -0.65 -1.75 -1.5
=0.37
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

Under certain conditions, large electric power systems show a tendency toward
spontaneous low-frequency oscillations. These slow oscillations disrupt the normal,
smooth operation of the system and may lead to a serious operating problem [24].
These oscillations must be considered in planning, designing and operating a large
power system. Low-frequency oscillations are an inherent phenomena of
interconnected AC power systems and one source is related to a relatively weak
interconnection between groups of strongly coupled generators [12].

To investigate low frequency oscillations, several tools are required, such as
a load flow program, a transient stability program and a small-signal stability
program. The load flow program is used to initialize the transient and small-signal
stability programs. The transient stability program simulates the system behavior
following severe faults, while the small-signal stability program is used to identify
the generators that may experience an oscillation, or may be candidates for stability
control. A small-signal stability program was developed in this thesis as a basic
analytical tool for studying low frequency inter-area oscillations. The program can

be used to determine the dynamic stability or instability of power systems under
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different operating conditions. It can be used to calculate the associated eigenvalues
and eigenvectors, participation factor, natural and damped frequencies, and damping
ratio. The program was first tested on a benchmark model developed by other
researchers, then used to study the small signal stability of a two-machine infinite bus
power system. The main results of the investigation have been presented in Chapter
4,

The state space model formulation described in this thesis is easier to
implement than the sub-matrix approach by Undrill (67]. The procedure is illustrated
in Figure 3.12. The synchronous generators, controllers, loads, and network are
represented by differential or algebraic equations. These equations are then
linearized at an operating point. Through a suitable reference transformation, these
linearized equations are integrated as a system state-space model. The dynamic
model is required to represent all the important dynamics of the system accurately,
while remaining as simple as possible. The Park's equation provides a mathematical
model for synchronous generators and has high practical value particularly in the
analysis of generator dynamic characteristics. A synchronous machine can be
modeled in varying degrees of complexity depending on the purpose of the mode! and
the required accuracy of results. A detailed sixth order model and a simple classic
model are described in this thesis. The detailed model is used for the small-signal
stability study, while the classical model is used to represent a remote generator to

keep the whole system model simple. A fourth-order generator model is used in
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the case study in chapter 4.

Eigenvalue techniques are well suited for dynamic stability analysis of multi-
machine power systems. Modes of generator rotor oscillations, which tend to be
mixed with each other, may be separated and identified by eigenvalue analysis. The
eigenvalues associated with each mode give a clear and precise indication of
oscillation frequency and damping. Factors associated with each eigenvalue are
revealed by participation factors ( from a sensitivity study). This provides valuable
information to enhance damping of a system and to determine the location of a PSS.
In the case study, it is shown that the two-machine infinite bus power system has two
oscillation modes, with frequencies at 1.25 and 0.875 Hz, slightly damped with
damping ratios 0.098 and 0.063. The oscillation modes are primarily associated
with the rotor speed and angle of generators. Each generator requires a PSS to
enhance the damping of the overall system according to the participation factors of
the system.

A power system stabilizer is a very cost effective supplementary control
device to enhance the damping of the electric power system during low frequency
oscillations.  The conventional PSSs usually use only one stabilizing signal, rotor
speed, AC bus frequency or electrical power, which is injected into each excitation
control loop. As a resuli, the interactions among generators cannot be ~onsidered
easily and this results in one or more modes of oscillation being left undamped. The

design of conventional PSSs is usually conducted using transfer functions, together
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with graphical techniques, such as root-locus and bode plots. The design of the
control system is based on a trial-and-error procedure that in general, will not yield
optimal control of the system. The conventional design method was carried out in the
base case study to determine the gain and time constants of a given PSS. This is
described in Chapter 4. After the newly-designed PSSs are installed, the damping
ratio was increased from 0.063 and 0.098 to 0.17 and 0.30 respectively.

Much effort has been made to develop a multi-machine stabilizer using multi-
input multi-output concepts. One approach is to construct an asymptotically stable
closed-loop system by specifying the desired locations for the closed-loop poles,
then, determine the feedback gain matrix K such that the system will have the desired
closed loop characteristic equation. This is called pole placement or eigenvalue
assignment. Another approach isto design a controller K such that a quadratic
performance index is minimized. This formulation to determine the optimal control
law is often termed the quadratic optimal control problem. The pole placement,
optimal and sub-optimal are used to design PSSs in this thesis.

The pole placement methods select closed-loop poles without regard to the
effect on the control effort required to achieve the pre-specified response. On the
other hand, optimal control can select poles that result in some balance between
system errors and control effort. These two methods assume that the complete state
x(t) of the plant can be accurately measured at all times and is available for feedback.

This is an unrealistic assumption for a large scale power system because it presents
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a need for long distance communication that can be impractical and uneconomical.
As shown in chapter 4, the closed loop eigenvalues may be assigned to desired
locations but may require unrealistic effort and time to realize.

Linear optimal PSS design problems are commonly considered as a linear-
quadratic design problem, The design theory is simple. However, how to choose a
cost function (weighting matrices Q and R) is still a problem for designers.
Considerable research has been done on this problem. The main results can be found
in references [13, 47, 48, 75]. The prevalent idea is to move dominan: eigenvalues
of the closed loop system to pre-specified locations. These controls are based on
state space models, which enable the engineer to design a control system having
desired closed-loop poles or optimal control system with respect to a given
performance index. Also, modern control theory enables the designer to include
initial conditions. The state space methods are particularly suited for digital computer
computations because of their time-domain approach. This enables a designer to
avoid the burden of tedious computations. The elements of the gain matrix K
obtained from optimal control are much smaller than those obtained from full state
feedback as shown in Chapter 4.

Most of the dynamic performance evaluation has been carried out by transient
response in the literature. In this thesis both transient response and eigenvalues are

used to evaluate the system performance.
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5.2 Future Research

(1) The power system under study in this thesis is relatively simple. in o1der
to further explore the factors influencing the performance of a PSS, an extension to
a multi-area power system is necessary.

(2) Application of new design techniques for PSS design, such as H_ methods
offer considerable promise. The latest development in feedback control desi gnis H,
optimization, which was developed by Zames in 1982 [12]. Reference 12 provides
a detailed design procedure. H.. approach is a frequency domain technique. Thus,
most design specification used in phase compensation technique can be easily adopted
in the new design method. The technique is used to design a feedback controller with
two objectives. One is to reduce the effect of a disturbance on the plant output,
subject to a closed-loop stability constraint. The other is to design a controller that

performs satisfactorily under a wide range of system operating conditions.
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Appendix A

One Damper Winding Model

Reference Frame Transformation

From the reference transformation equation:

v, -cosd sind Vp
v ) sind cosd v

q o

Incremental form,

Avgl [coss sind }[AVp]| [ sind coss VDOAG
Avq ) sind cosd AvQ ’ cosd sind Vo,

Avd -cosd sind || Avp Vao
o + Ad
Avq sind cosd AvQ V4,

or,

Rewriting,

Av p-cos 6AvD~sin6Aonvq0A 6

Avq--sin SA VoS 6AvQ-vdaA S
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Similarly,

Aiyl [-cosd sind |[Alp) [sind coss) [ D,
ai 1 sns sl ail’ s sl | AS (6)
lq sin [V 4 ‘Q cOSs sin ‘Qo
or,
Aid -cosd sind A"p iqo
N7 sns e AB (7
Azq sin cos & A:Q -ido

Stator Equations

5 7, ’
Vg Thgrxg. s Ey (8)
. 7, 7 .
vq - -ra'q T XFEg Eq (9)
where.
, ¥ ¥
Ego-0Lly—2% | E . oL~
1q Lfd
' 1 ’ 1
L ,
“1 1 T
Lad Lfd Laq qu
Therefore,
. 7, ! vl
vd--rax{quq-mLaq—i (]0)
qu
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SRR ’ tfd
vq--raxq-x‘a{mL“L—-
'fd

Rewriting these two equations as

-1

) / ©Lgg
('d] T, X4 (vd) qu
- +
I3
g V=g -] [\ oL’ AL

Incremental form,

Note that,

!
-r x t, X,

/ 2 1 !
x4 -r, ra*Xxo\ x4 -r,

Rewriting Eq.(13) as,

A"]q o A"fd

; 1 ! ’
Aip P -raAv{quvq-mrnqu ; swx L,
raoxdrq ]q

and,
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, 1 ' Iyt A"xq ! A*ﬁ
Alq- 7 div{rgAv‘{udeaq 7 vmrdl,d 7 (16)
raox‘,tq 1g fd
Substituting Av, and Av, into Egs.(15) und (16) and rearranging,
AifmlAvDomzAvQ~m3A6om4A¢ﬂom5Avlq 17
Aiq-nlAvDonzAonn3A6on‘AtﬁonSAth (18)
where,
1 ‘.
ml- 2 /(racosb-xqsmﬁ) (19)
raoxdxq )
LY 2_ ; ,(rasinbvx;cosb) (20)
Fa*X g
mye—— ~(-rgv ’quvdo) 1)
ratXgky
m 1 'L
NN ad 22
(ra'x;rq)l‘fd ( )
m -1 /
s® 2 /o aq 23
(’a’xd"q)qu (23)
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-1

r
ra*X&,

(x o 8+r sind)

nl-

1
Naw
Ty ’
Fa*Xs%q

(x sin&-r cos &)

1 ’
n3- 2 ) (xlvqo’ravlﬂ)
Fa*X X,

1 '
n —r

4 2 7
(r,'x;cq,)l.ﬁ

ng——t 31!

5 2 1 aq
(ra’xéxq)l‘lq
Egs.(17 ) and Eq(18 ) and (7) vield,
Ao
Aip) [cosd -sing [0 my-iy my mgll A
Aij, | -sin® 058 /10 myeiyy n, ngf| B¥y
Ay,

(cos& -ma) m Mz)(AVD)
-sin8 -cos$ n, n, AvQ

The d-and g-axis mutual flux linkages are given by,

113

29)

(25)

(26)

(27)

(28)

(29)



,  J
*.an{ -i.rL—’"] (30)

'fd

where,

A
Av,,-zéa{ Big "‘) 31
Lﬁ

substituting Aiy into Eq(31),

12 A W d\|
Awad-Lad‘( '(mlA"D”"zAVQ”"zA 8em A vﬁomsA 1’1:,-)’ L (32)
1d
A jprkm \Av el A v polam 1A 8 vkm A Vyopkm Ay, (33)
where,
km ye-m Log, o bomgmmoL oy, komgeemiLo,
' 1 ’
ke g=-L g, (m y=——) . Jom g=-m sL ads
Ly
4 . vlq
Vorlagl -ig (34)
qu
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Ay

1 1¢

A vﬂq.Lﬂq{ ‘Aiq‘Tl-—-)
9

substituting Ai, into Eq.(35),

Ay,
A %;La'q{ ~(m AV Avoen A S en A Y on A, ) - 9)
lg

AV, ok | Avpekn A vorhn A 8k A Vv,
where,

!

/ 7
knl--nlLaq, , b’z""zLaqx . lax3--n3Laq,

’ ' 1
’m4'-n4[‘aqt ’ b’s"Laq;("s'L_’)

g

The air-gap torque is determined by

Tc'*adiq'vaqid

A T'-W adOA iq’iqﬂA Vo aqOA ifidUA vaq

Substituting Aij, Aig, Ay, AY,, into Eq.(39),
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AT ok Avprk,Av ook, A ok A ¥ ook A Y (40)

where,
Ey=¥ 010?14 oM (¥ g -1 gfm | (41)
Ky ¥ a2 o 38 oM g (42)
Ey=¥ ggft3oi gofom 3= o om =i yofon 43)
Ey=¥ 010/t 421 gfm ¥ oo 47 g (44)
k¥ ot 5ol gohm g o om i yogm (45)

State space matrix formulation

Electro-Mechamical Rotor Equations

PO (T, T, K o) (46)

Where,
Ky, is the damping factor or coefficient in pu.
H is inertia constant.

pAow .-ZIE(A T, -AT,-KpAow) (47)

Substituting AT, into, and AT, =0, yields,
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aop Ko K
Wog ° "oy » "Wy
S e R
Wog * Cuwy o tutp
If AT_#O0, then,
AT
byy- -
2H
For including turbine/governor
2 Pba;g 2 Pbau
s T T T
2H 100 2H 100
PAb-0 A

where,
w211,

ayn=o2Ify , by uby0

Rotor Equations

Ry ,
P¥ur——"EurolRedy
adu
where,
.1
'ffL_“’f{i’ ad)
'fd
therefore,
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,R 1
AV~ f‘AEf.rwoRﬁL—(A VAV, (52)
d

adu e

substituting Ay, into the Eq.(52), assume AE,,=0,

QORfd woRfd moRfd
ay0 , aye by, aye (bm -1) ,  ay, I bms
374 fd e
© Ry ©oRpy
by I kn, b32' I "’”2
fd 1
if AE;;#0, then,
© ©
634- ORfd sy @39 OF G34n ORﬁ
L., Lo
P‘qu"moquixq (53)
. 1
x,q-L—(vlq-V,d) (54)
lq
Therefore,
1
pPAY lq"wO‘qur(A v lq_A wﬂd) (55)
lq
where,
©R, @Ry
a0 , ay- Ty 943~ T
qu qu
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mGqu

ay (ng-1)
1qg
® ©
b41' Oqub’x ’ b42' Oqub’z
L L
1g 1q
Therefore,
Ao ("u 912 93 Ayl Aw
AS | |ay ap ay ayl| A
A"’fd 331 A3y 33 dyy A"fd
B¥1g) \an ay ay ay AV
(56)
bn blz b13 0
by byl(Avy| 0 o (AT,,,]
by byl Avp) | 0 b, || AE,
b41 b42) 0 0
Note that,
A 2 A Pba.w
AEﬁfos , T,-2(Ax;-Ax,) 100
Turbine/Governor Model
x -i(oob)x + -l—x + —u
1 T, 1 T, 2 T, (57)
with,
ug-wromd-m (58)

Assuming w,, wy =0,
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incremental form of Eq.(57),



1 1 1
Ax e-—Aw-—(6+8)Ax,+—Ax
1 T T 1 T 2

2 o x

where,

a5 1 I T

1 4 s £

Incremental form,

A;Ez-iAxl-lAJ:2
T
r r
where,
a 6 1
e . g...
65 66 T,
r
b4 3 x 2x
k ST R
T\' TW
A£3-~3—Axl-—2—Ax3
T T
w w
where.
a 3 a 2
5T rral
Ty Ty

(39)

(60)

(61)

(62)

(63)



Excitation Model

X K'x 1 X K;-Ta
s % Y4 Xt U,
Tc Ta c’ b
with,
UV, ViV,

assuming AV, AV,=0, u,=-AV, then,

v v
d0 q0

A ve—A vye——A v,
Vo Voo

since,

Avd--raAifL,Aiq-A LI

and,
Avq--raAi{L,Ai{A vaq

Substituting Ai,, Al Ay,g AW, into Eq.(67) and rearranging results in,
Avpke \Avprkeydvooke \Aboke AW oke A
where,

ke a0 L yo®l L
1 (rmyeLpy- De——Crpy-Lm vk )
Yio Yio
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ke 0 n
2":‘("' oL iyl ) "

ke 20 fn
s (r gyl py-kn ).

ke

Vg0

(-r oL myekam )
0 0

Vo

Veo Veo

(-r 13-L m yokm 3)

1% v
4':‘{—0(" Melpgkn) 2r Sl pln )

0 Veo

Vo Va0
ke s"v_("a”’ s*Lpis-kn ) o—=(-r ng-L gn +kom )

where,

ag, or aS'I-O

10 Veo

11 T,
X m-—x,-—(1 --}—)[(ke 18 vprke A onke ;43
b

Ty " Ty

ke AV ke A ¥, ) ]

- T
L —e
b Tb

au or aS.Z.

-1 . q
ag or 05,3'}—(1-}—)/\24 . agq or 05'4-T—(1-_‘)kes ,

b & b

b,. orb .;1_(1--T—“)ke b, orb .iu_.T_a)k,
8,1 s, T T 1 8,2 52 T T 2

b

b b b
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-1 .
by, ar b =—(1-—2)
83 53

Ty, T,

if including v, then,

1 a1 -1 T, T,
agy or agy=—(1-—=)—K, ., , ag)o OF Ggpp—(1-—)— ,
agy; O “s,s'l(l'—a)
Tb Tb
where,
4 1 kT
: L e a
Xg = -T—x4 - T—xs - P f(kelAvD.kezAvQ
©oe (77)
oke 3B ke AV coke A v ]
T, T,
vt--_KltdbA Q-}—A xsoA x7 (78)
2 2
k Take k'T"ke
ag, or ag e 3 » dg3 OF Ggq=- .
b T.T,
kT kT,
Q93 OT 06'3--T T"ke4 )y g4 OF a6".-T 7 ke
LR e b
a,, or a f—'— a,, Or a kil
58 O Gest v o5 7 degp
kT
by, or b —22
9,3 6,3
rr,

If including v,, then,
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kaTn TIK ktTa Tl kzra
89y OF d¢,~ Naap v 9910 OF Qg g 0 don OF Qg
T[T, T, TT,T, TT,

kT, kT

key , by, or bye- ke,
T T, T T,

b9.1 or ba_l--

Power System Stabilizer

The corresponding differential equations are

.1 1
X mm—X_ ¢ u
Sr,%r,* @9
, 1.1 1 1.1
Ege—(—-1 )"'6'—"7'—(—'1 )u}7 (80)
with UK 48 ©
Ax ___I_Ax L1( Aw
oy AT K 81)

where,

Ayon o7 A —Kgoy s 0,00 OF dq g

w TW’
For Pe feedback, since,
PrT,0 (82)

therefore,

AP,-A 0T, A T @, (83)

124



Substituting Eq.(40) into yields,

AP A OT 0k AV yAv ok A Bk A ¥ oA W)

1 .. 1
Qi1 OF @71 —Kg 10T,y » Q1o OF @pp=——Kg 0k,
Ty Ty

) - 1
Q13 O a3 —Kg 00k, G104 OF Ay 2K g0k
Ty Ty

a OF g, m-—
10,10 7,7 ’
TW

1 . 1
by, or b7.1';."1‘s:ab°o"1 » bygy or bv,z'}‘Ks:ab“’okz
4 w

Ag] Tll 1,,.1.0 ©
"7"T—(T—' YAxg-— xr—(T—'l) sabd ©

2 72 2 2 72

where,

1 1 1 1
Ay oF dgp-(—-DKg,, @y, 0r agpr—(—-1)
2 42 2 Ty

11,11 OF Ggg=-T

12

For Pe feedback, since,
P‘-T‘w

therefore,
AP.-A 0T 4 T‘mo

Substituting Eq.(40) into yields,
APt-A "’T.o""o(klA VD’kZA VQ+k3A 6~k4A vf{‘ksA ¥ lq)
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Generator #1 Generator #2

Appendix B

System Parameters

Table B.1 Generator parameters

MVA 175 900

I, 0.0032 0.0032
X, 0.22 0.24
Xy 0.74 0.74
X4 0.27 0.27
X, 0.45 0.48
X, 0.40 0.44

H 3.91 4

K, 8.5 15
Ar 0.0003 0.0003

B, 6.0 6.0

Table B.2 Excitation system parameters

T 1 1

1.2

10

0.05

0.05

K. 10 70
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Table B.3 Turbine/generator parameters

Ty 0.2 1
T, 0.3 0.3
T, 10.3 10.3
P, 0.1 0.05
Ty 0.4 0.4
L~

Table B.4 Power system stabilizer parameters

M

T, 0.27 0.115
T, 0.035 0.044
T, 1.1 11

Ko 1 0.5

Table B.5

Initial generator terminal condition

Generator MW (P) MVR(Q) Voltage (V) | Angle (§)
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G#1 180 200 0.981 38.94
G#2 850 40 0.992 40.43
G#3 -646 611 1 0

(Infinite bus)




