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Abstract We consider an one-dimensional nonlocal hyperbolic model for group for-

mation with application to self-organizing collectives of animals in homogeneous envi-

ronments. Previous studies have shown that this model displays at least four complex

spatial and spatiotemporal group patterns. Here, we use weakly nonlinear analysis

to better understand the mechanisms involved in the formation of two of these pat-

terns, namely stationary pulses and traveling trains. We show that both patterns arise

through subcritical bifurcations from spatially homogeneous steady states. We then

use these results to investigate the effect of two social interactions (attraction and

alignment) on the structure of stationary and moving animal groups. While attraction

makes the groups more compact, alignment has a dual effect, depending on whether

the groups are stationary or moving. More precisely, increasing alignment makes the
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stationary groups compact, and the moving groups more elongated. Also, the results

show the existence of a threshold for the total group density, above which, coordinated

behaviors described by stationary and moving groups persist for a long time.

Keywords Nonlocal hyperbolic system · Animal group formation · Weakly-nonlinear

analysis

1 Introduction

The study of animal aggregations (such as schools of fish, swarms of insects, etc.) has

become a topic of recent interest [15,19,31,35,40]. One of the most studied aspects

of these aggregations is the spatial and spatiotemporal patterns they form. Examples

of such patterns range from stationary aggregations formed by resting animals, to

zigzagging flocks of birds or milling schools of fish. To gain insight into how different

mechanisms influence pattern formation, scientists use mathematical models motivated

by biologically-based hypotheses. The models are either individual-based models [9,11,

12,16,23,34,39,40,46,47] or continuum models [3,13,14,26,30,31,37,44,45].

The majority of the individual-based models investigate numerically the phase tran-

sitions between different behaviors [1,11,12,47]. For example, Czirók et. al. [11] derived

a one-dimensional model that exhibits a transition from a disordered random behavior

to a semizigzag behavior, which, for large time, evolves into a moving pulse. The au-

thors also derived a continuum model which shows similar behavior [11]. However, for

individual-based models there are no analytical techniques to understand such transi-

tions. This lack of techniques causes difficulties in understanding the structure of these

transitions, as well as which parameters determine these transitions: density [9], noise

[11], or a combination of multiple parameters [18]. An illustrative example is the model
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by Vicsek et. al. [47], which, without an analytical framework, was initially thought to

exhibit a continuous transition from disordered to ordered motion (implying a super-

critical bifurcation). Later, this transition has been shown to actually be discontinuous

[18] (implying a subcritical bifurcation). Further results showed that the transition

can be either continuous or discontinuous, depending on the way in which the noise is

introduced [1]. However, the applicability of the results presented in [1] to the Vicsek

model continues to be debated [7].

While the individual-based approach lacks a framework to analyze these transi-

tions, for continuum models one can employ well-established analytical techniques to

investigate them. In spite of these tools, there are not many articles investigating the

various spatial and spatiotemporal patterns displayed by different continuum models

that study animal aggregations. In particular, there are almost no results concerning

the effects of the density and different model parameters on the structure of these group

patterns. One exception is the model introduced in [45], which discusses the effect of

the population size on the amplitude of stationary pulses.

This article attempts to address this lack of results. In particular, we will use an-

alytical and numerical techniques to investigate some of the patterns exhibited by a

nonlocal hyperbolic model for group formation that has been proposed in our previ-

ous work [13,14]. The model introduces a general framework to incorporate different

communication mechanisms to study the formation of animal groups. In particular,

these communication mechanisms influence the social interactions between individu-

als, namely attraction towards other members of the group that are far away, repulsion

from those that are nearby, and a tendency to align with those neighbors that are at in-

termediate distances. The resulting model, which actually comprises many submodels,

is very rich in spatial and spatiotemporal patterns. Numerical simulations have shown
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at least 10 different patterns, including stationary and traveling pulses, traveling trains,

zigzag pulses, breathers, ripples, and a new pattern we called feathers. However, an

analytical investigation of the patterns near bifurcation points is lacking. We begin to

address this issue in the following.

For simplicity, we focus here only on one of the submodels introduced in [13]. The

analysis in this article complements the work done in [14], which analyzes a similar

submodel. More precisely, we will assume that for attractive and repulsive interac-

tions, information received from all neighbors is used, whereas for alignment, only the

information received from those neighbors moving towards an individual is used. It

has been previously observed that this particular model displays at least four differ-

ent spatial and spatiotemporal patterns: stationary pulses, traveling trains, semi-zigzag

pulses, and traveling pulses [13]. Here, we will investigate the emergence of two of these

patterns: stationary pulses and traveling trains. Both patterns occur near bifurcation

points of the spatially homogeneous steady states.

Because of the nonlocal interactions, it is difficult to understand this model intu-

itively. One way to understand the obtained patterns is by a combination of numerical

analysis, linear and weakly nonlinear analysis, and symmetry theory. Here we focus on

numerical, linear, and weakly nonlinear analysis to investigate the stationary pulses

and the traveling trains.

Note that a similar model was briefly analyzed in [14], where the authors investi-

gated it via linear stability analysis. The linear stability analysis gives only information

about the wavenumber that is most likely to emerge, and the parameter space where

this will happen. However, the patterns observed during the numerical simulations are

the result of the interactions between the nonlocal terms. Therefore, to better under-

stand these patterns and, in particular, to reveal the complex structure of the possible



5

attractors, we investigate the effect of these nonlinear terms. We use this analysis to an-

swer the following biological questions: (1) How does the transition between disordered

and ordered behaviors depend on the population density, or on social interactions? (2)

Does this transition exhibit hysteresis, as observed in some individual-based models

(see for example, [1,5])? (3) What is the effect of the alignment interactions on the

structure of the animal groups?

We should mention that some of these questions can be somewhat answered by

intensive numerical simulations. For example, it was observed in [14] that the transition

between different types of ordered behavior can be explained in terms of the magnitude

of the social interaction (e.g., attraction). However, the role of the population density

on these transitions, as well as on the transition from disorder to ordered behavior,

has not been investigated yet. Also, it should be mentioned that the results of the

numerical simulations do not always offer a clear understanding of the mechanisms

that govern such transitions, as shown by some individual-based models [1,18,47].

In the following, we will use the classical Landau-Stuart stability theory [28,43] to

analytically investigate the effects of the nonlocal interactions on the structure of two

types of patterns: stationary pulses and traveling trains. We derive amplitude equations

that govern the behavior of the solutions for large time, and investigate the stability of

these solutions. The results show that both stationary pulses and traveling trains arise

through subcritical bifurcations. We should mention here that the symmetries of the

system can restrict the form of the solutions, as well as the amplitude equations (for

example, real versus complex amplitude equations) [17]. However, understanding the

stability of the new bifurcating solutions depends on the values of the coefficients that

appear in these equations, which necessitates detailed calculations. We then compare

the analytical results for the amplitude of the solutions with the numerical results.
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Using the bifurcation diagrams for these amplitudes, we answer the biological questions

we mentioned previously. In particular, we show that while increasing attraction leads

to denser groups, increasing alignment has a dual effect, depending on whether the

groups are stationary or moving. More precisely, increasing the alignment interaction

makes the stationary groups more compact, and the moving groups more elongated.

Moreover, we show the existence of a threshold for the total group density, above

which coordinated behaviors, described by stationary and moving groups, are possible

and persist for a very long time. In other words, groups that have the initial density

below this threshold will disperse, while groups with densities above the threshold

will become more dense, and persist for a long time. The analytical results also show

that there is competition between the turning behavior and the magnitude of the

alignment interaction that leads to the formation of stable aggregations. More precisely,

in case of high turning rates, increasing alignment decreases the amplitude of the

perturbations required to destabilize the homogeneous solution. In case of low turning

rates, the situation is opposite: increasing alignment increases the amplitude of the

required perturbations.

The paper is organized as follows. In Section 2, we briefly describe the nonlocal

hyperbolic model that we will analyze, and discuss the existence of solutions. In Section

3, we investigate the spatially homogeneous steady states and their stability via a linear

stability analysis. In Section 4, we use weakly nonlinear analysis to study the amplitude

of spatially and spatiotemporally heterogeneous solutions near bifurcation points. We

conclude with a general discussion in Section 5. In an Appendix, we briefly introduce

a two-dimensional analogue to the one-dimensional model introduced in [14].
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2 Hyperbolic model and the existence of solutions

In [13,14] the authors introduced the following one-dimensional hyperbolic model to

describe the evolution of densities of right-moving (u+) and left-moving (u−) individ-

uals:

∂tu
+(x, t) + ∂x(γu+(x, t)) = −λ+(u+, u−)u+(x, t) + λ−(u+, u−)u−(x, t),

∂tu
−(x, t) − ∂x(γu−(x, t)) = λ+(u+, u−)u+(x, t) − λ−(u+, u−)u−(x, t),

u±(x, 0) = u±
0 (x), x ∈ R, (1)

with the turning rates defined as

λ±(u+, u−) = λ1 + λ2h(y±[u+, u−]). (2)

Here γ is the constant speed, while the two constants λ1 and λ2 represent a “base-

line” turning rate and a bias turning rate, respectively. For a biologically realistic case,

the turning function h should be a positive, increasing, and bounded functional that

depends on the signals perceived from neighbors: y±. These signals are emitted by

neighbors moving to the right (u+) and to the left (u−):

y±[u+, u−] = ±qr

∫ ∞

0

Kr(s) (u(x ± s, t) − u(x ∓ s, t)) ds

∓ qa

∫ ∞

0
Ka(s) (u(x ± s, t) − u(x ∓ s, t)) ds

± qal

∫ ∞

0

Kal(s)
(

u∓(x ± s, t) − u±(x ∓ s, t)
)

ds. (3)

We define the total density as u(x, t) = u+(x, t) + u−(x, t). The constants qr, qa, and

qal represent the magnitudes of three social interactions: repulsion, attraction, and
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alignment, respectively. In equation (3), we assume that, for attractive and repulsive

interactions, information received from all neighbors (u(x+s, t) and u(x−s, t)) is used.

For alignment interactions, on the other hand, only the information received from those

neighbors moving towards a particular individual (u−(x+s, t) and u+(x−s, t)) is used.

A more detailed description of these equations can be found in [14].

Throughout this paper, the interaction kernels Kj , j = r, al, a, are described by:

Kj(s) =
1

√

2πm2
j

exp
(

−(s − sj)
2/(2m2

j )
)

, j = r, al, a. (4)

Here sj , j = r, al, a, define the spatial regions for repulsive, alignment, and attractive

interactions, while mj = sj/8 define the width of these regions. We choose the constants

mj such that the support of more than 98% of the mass of the kernels is inside the

interval [0,∞). Note that in [14], the kernels had overlapping ranges. The translated

Gaussian kernels (4) we use in this article have quite distinct ranges, which allows for

better comparison with individual-based models. In Sections 3 and 4, we investigate a

specific case where the positive, bounded, and increasing turning functions are defined

by

h(y±[u+, u−]) = 0.5 + 0.5 tanh(y±[u+, u−] − y0). (5)

Note that there are many other possible choices for the turning functions (e.g., piecewise

linear functions). However, it is beyond the scope of this paper to investigate them.

The constant y0 is chosen such that for y±[v] = 0 (that is, no signals), the value of

λ±(0) is determined only by λ1.

It should be mentioned that the full system (1)-(4) has 14 parameters. Since the

nondimensionalization does not significantly reduce the number of parameters (we still
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have 10 parameters), we simply work with the dimensional system.

A first result refers to the existence of weak solutions of system (1). In the math-

ematical literature, there are results for the existence and uniqueness of solutions for

hyperbolic systems of the form (1), with local turning rates defined as λ+(u+, u−) =

λ−(u−, u+) (see [25]), or λ± = λ±(s, sx), where s is an external stimulus that depends

on u± (see [22]). In contrast to these cases, the model discussed here has nonlocal

turning rates.

If we assume that the initial data is u±
0 ∈ L∞(R), the turning rates are locally

Lipschitz continuous as functions of the signals y±, and the kernels Kj ∈ L1(R), j =

a, r, al, then we can prove that there exists a unique mild solution u± ∈ L∞ (R × [ 0,∞) ).

A sketch of the proof is presented in Appendix 2. Note that if the initial data u±
0 (x)

is periodic, then the solution u± is periodic (see also [21,25]). Therefore, this result is

valid on a bounded domain with periodic boundary conditions.

3 Spatially homogeneous steady states and linear analysis

It has been previously shown [13] that system (1) with kernels defined by (4) exhibits at

least four types of spatial patterns: stationary pulses, traveling trains, traveling pulses,

and semi-zigzag pulses. To understand the origin of these patterns, we will first study

the behavior of small perturbations of the spatially homogeneous steady states, that

is, the states that have both right-moving and left-moving individuals evenly spread

over the domain. The growth of these perturbations gives us the first conditions on

the parameters that determine when these steady states become linearly unstable and

form spatial and spatiotemporal patterns (i.e., spatially heterogeneous solutions).
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Note that a similar analysis of the number and stability of the steady state solutions

of system (1) has been carried out in [14]. In the following, we will briefly summarize

these results since they are particularly important for the weakly nonlinear analysis

shown in Section 4.

As mentioned in Introduction, the turning function we use is described by (5).

Moreover, we assume that system (1)-(4) is defined on a bounded domain [0, L] with

wrap-around boundary conditions for the nonlocal interaction terms (see [14] for further

discussion). This leads to a discrete set of unstable modes that will give rise to spatial

and spatiotemporal patterns. Let us define the total population density to be A =

1
L

∫ L

0
(u++u−)(x, t)dx. The spatially homogeneous steady states of (1) are the solutions

(u+, u−) = (u∗, A − u∗) of the steady-state equation

0 = H(u∗; qal, λ, A) := −u∗ (λ1 + λ20.5 + λ20.5 tanh(Aqal − 2u∗qal − y0)
)

+

(A − u∗)
(

λ1 + λ20.5 + λ20.5 tanh(−Aqal + 2u∗qal − y0)
)

.(6)

Note that equation (6) is similar to the one obtained in [14], where the attractive and

repulsive interactions were described by odd kernels. The reason for this is that the

interactions are defined in terms of the total density u = u+ + u− (see equation (3)),

and therefore, equation (6) depends only on the alignment coefficient qal, and not on

qa and qr.

When attraction and repulsion are the only possible social interactions (i.e., qal =

0), the only spatially homogeneous steady state is (u+, u−) = (A/2, A/2) (Figure 1

(a)). However, when alignment plays a role in the social interactions (i.e., qal &= 0),

equation (6) can have one, three, or five solutions, as shown in Figure 1 (b) and (c). We

will denote these five solutions by u∗
i , i = 1..5. Therefore, the spatially homogeneous
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Fig. 1 Bifurcation diagrams for the steady-state equation. (a) Zero alignment (qal = 0); the
only steady state is u∗

3 = A/2. (b) Nonzero alignment (qal != 0); (u∗
3, u∗

3) = (A/2, A/2)
is always a steady state; at the critical value qal = Q∗, four new steady states ap-
pear through a saddle-node bifurcation. These states can be any of the following pairs:
(u∗

1, u∗
5), (u∗

5 , u∗
1), (u∗

2, u∗
4), (u∗

4, u∗
2). At a second critical value of the alignment parameter,

qal = Q∗∗, two of these spatially homogeneous steady states (u∗
2 and u∗

4) disappear through a
subcritical pitchfork bifurcation. (c) A particular case of (b), obtained for a different parameter
space. In all three cases, the solid lines denote the stable solution, while the dashed lines denote
the unstable solution (with respect to spatial perturbations). Shown here is the stability of the
steady states to small spatial perturbations when: (a) qal = 0, qr = 2.2, λ1 = 0.2, λ2 = 0.9,
γ = 0.1, A = 2; here qa is the bifurcation parameter; at qa = q0

a there is a real bifurcation; (b)
qa = qr = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, A = 2; (u∗

3, u∗
3) undergoes a real bifurcation

at qal = q0
al

, while (u∗
1, u∗

5) undergoes an imaginary bifurcation at qal = q1
al

; (c) qa = qr = 0,
λ1 = 2.0, λ2 = 9.0; at qal = q0

al
there is an imaginary bifurcation

steady states generically denoted by (u∗, u∗∗) = (u∗, A−u∗) can be any of the following

pairs: (u∗
1, u∗

5), (u∗
5, u∗

1), (u∗
2, u∗

4), (u∗
4, u∗

2), or (u∗
3, u∗

3) = (A/2, A/2).

The stability of these solutions depends on the parameter space. To investigate this

stability, we consider small perturbations caused by spatially nonhomogeneous terms:

u+(x, t) = u∗ + up(x, t) and u−(x, t) = u∗∗ + um(x, t). Let up,m(x, t) ∝ eσt+ikx ,

with the wave number k and the growth rate σ. Note that the wrap-around boundary

conditions require that the wave number k attains only discrete values kn = 2nπ/L,

n ∈ N. Because of the conservation of the total density, k0 = 0 is not an allowable

wave number and hence, n ∈ N+. If we substitute the expressions for u±(x, t) into
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system (1), we obtain the dispersion relation

σ2 + σC(k) + D(k) = 0, (7)

where

C(k) = L1 + L2 − M5qal(K̂
+
al(k) + K̂−

al(k)),

D(k) = γ2k2 + γik
(

L2 − L1 + M5qal(K̂
−
al(k) − K̂+

al(k))
)

−2M5γik
(

qr(K̂+
r − K̂−

r ) − qa(K̂+
a − K̂−

a )
)

,

L1 = λ1 + λ20.5 + λ20.5 tanh(M1 − y0),

L2 = λ1 + λ20.5 + λ20.5 tanh(−M1 − y0),

P1 = λ20.5(1 + tanh2(M1 − y0)),

P2 = λ20.5(1 + tanh2(−M1 − y0)),

M1 = qal(u
∗∗ − u∗),

M5 = P1u∗ + P2u∗∗. (8)

Here, K̂j , j ∈ {a, r, al}, are the Fourier transforms of the interaction kernels (4):

K̂±
j (k) =

∫ ∞

−∞
Kj(s)e

±iksj ds = exp(±isjk − k2m2
j/2). (9)

Note that these integrals are defined on the entire real line, whereas equations (3)

are defined on [0,∞). Since the constants mj , j = r, al, a were chosen such that the

support of more than 98% of the mass of the kernels is inside the interval [0,∞), we can

approximate the integrals defined on [0,∞) by integrals on (−∞,∞) (see also [14]).
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Equations (7)-(8) say that the steady state (u+, u−) = (u∗, u∗∗) is unstable, that

is ((σ(k)) > 0, when C(k) < 0 or D(k) < 0. The first term, C(k), is negative when

λ2 is large. Similar to the case discussed in [14], the term D(k) is negative when (a)

λ2 is large, or when (b) attraction is larger than repulsion : qa

(

K̂+
a (k) − K̂−

a (k)
)

>

qr

(

K̂+
r (k) − K̂−

r (k)
)

. When λ2 is large, the unstable modes are those with large k.

When attraction is larger than repulsion, the modes with small k are unstable. We will

come back to this result in Section 4, when we will investigate the contribution of the

nonlinear terms to the final pattern.

Figure 1 shows three types of bifurcation diagrams obtained for system (1). Since

these bifurcations are the starting point for the weakly nonlinear analysis discussed

in Section 4, we will discuss them in detail. In Figure 1(a), there is a critical value of

attraction qa = q0
a such that the steady state u∗

3 is stable for qa < q0
a, and unstable

otherwise. In Figure 1 (b) and (c), the bifurcation parameter is qal. Figure 1(b) shows

that, in some parameter space, there exists a critical value q0
al < Q∗ such that for

qal < q0
al, the solution u∗

3 is stable, while for qal > q0
al it is unstable. The relative

position of the bifurcation point depends on the parameter space. Such an example is

shown in Figure 1(c) where the bifurcation point at which u∗
3 changes stability coincides

with Q∗∗. Actually, for qal > Q∗∗, u∗
3 is always unstable, independent of the parameter

space. Also, there exists a critical value of alignment q0
al such that the steady states

u∗
1 and u∗

5 are unstable for qal < q0
al and stable otherwise, as seen in Figures 1(c).

In Figure 1(b), this critical value of alignment is denoted q1
al. The other two steady

states, u∗
2 and u∗

4, are always unstable. Moreover, numerical simulations suggest that

the solutions perturbed from u∗
2 and u∗

4 go to the same attractor as the solutions

perturbed from the other three steady states (u∗
1, u∗

3, and u∗
5). For this reason, we will

ignore u∗
2 and u∗

4 for the rest of the paper.
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It should be noted that, when u∗ &= u∗∗, equation (7) is complex. However, for

u∗ = u∗∗, it is real. This has implications on the type of the eigenvalues of system (1).

For the first case, all eigenvalues are complex. For the second case, the eigenvalues can

be real or complex, depending on the values of the parameters.

The spatially homogeneous solutions that become unstable when ((σ(k)) > 0 are

eventually bounded by nonlinear terms. In the following section, we will take into

consideration these nonlinear terms and use them to derive amplitude equations that

govern the behavior of the solutions for large time.

4 Nonlinear analysis

The previous linear stability analysis is only valid for small time and infinitesimal

perturbations. For large time, the nonlinear terms dominate the growth of the unstable

modes. To study the influence of these nonlinear terms on the final heterogeneous

pattern, we will employ the classical method of weakly nonlinear analysis (see [28,43]).

The method uses separate time scales to study how the amplitude of the heterogeneous

solution varies with time. More precisely, there is a fast time scale and a slow time scale.

The fast time scale is represented by the initial time region (t) where the solution starts

to develop. This is the time scale where the linear stability analysis is valid. The slow

time scale is represented by a second time region (T = ε2t) where the effects of the

nonlinear terms become important. Here, the amplitude of these heterogeneous patterns

varies slowly. The two time variables t and T are considered to be independent as ε

approaches zero.

In this section, we study the patterns that bifurcate from the spatially homoge-

neous steady state (u∗, u∗∗). Figure 2 shows two patterns that emerge through a real
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Fig. 2 Patterns exhibited by system (1). Shown is the total density u(x, t) = u+(x, t) +
u−(x, t). (a) Stationary pulses; qa = 0.93, qr = 2.2, qal = 0, λ1 = 0.2, λ2 = 0.9, γ = 0.1. (b)
Stationary pulses; qr = qa = 0, qal = 0.85, λ1 = 2.0, λ2 = 9.0, γ = 0.1. (c) Traveling train;
qa = 1.0, qr = 0.1, qal = 2.45, λ1 = 0.2, λ2 = 0.9. (c) Traveling trains; qa = qr = 0, qal = 2.08,
λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1.

bifurcation (cases (a) and (b)), and two patterns that emerge through an imaginary

bifurcation (cases (c) and (d)). Figure 2(a) describes a single stationary pulse obtained

for large attractive interactions (qa). Figure 2(b) describes multiple stationary pulses

which are obtained for large turning rates (λ2). Figure 2(c) describes a traveling train

formed of one peak, obtained for large attraction. Figure 2(d) describes a traveling

train formed of 17 peaks, and obtained for large turning rates. We should note here

that we define a traveling train to be a pattern that doubles the number of its peaks as
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we double the domain size. A traveling pulse, on the other hand, has the same number

of peaks as we double the domain size. By this definition, the pattern shown in Figure

2(c) is a traveling train, since doubling the domain size leads to the formation of two

moving groups. It has been observed numerically [13] that the hyperbolic system (1)

exhibits two more patterns, namely traveling pulses and semi-zigzag pulses. Since both

patterns occur far from the bifurcation point, we will not discuss them in this paper.

In Sections 4.1 and 4.2, we focus on the situation when the bifurcation occurs at

a real eigenvalue. As previously mentioned, the spatially homogeneous steady state is

(u∗, u∗∗) = (u∗
3, u∗

3). We first analyze system (1) when only attractive and repulsive

interactions are present (that is, qr , qa &= 0, qal = 0). In this case, previous results [14]

have shown that it is possible to obtain stationary heterogeneous patterns, such as the

single stationary pulse shown in Figure 2(a). At the end of Section 4.2, we will briefly

discuss the case when qa = qr = 0 and qal &= 0. In this case it is possible to obtain

multiple stationary pulses, such as those shown in Figure 2(b). In Sections 4.3 and 4.4,

we will study a bifurcation that occurs at a purely imaginary eigenvalue. The focus

will be on the steady state (u∗, u∗∗) = (u∗
1, u∗

5). To keep the results tractable, we will

consider the situation when alignment is the only social interaction (that is, qal &= 0,

qa = qr = 0). In this case, we obtain spatiotemporal patterns described by traveling

trains, as shown in Figure 2(d). At the end of Section 4.4, we will briefly discuss the

situation when we include repulsive and attractive interactions. The traveling train

pattern that results in this case is shown in Figure 2(c).
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4.1 Weakly nonlinear analysis in the neighborhood of a real bifurcation

In this section, we will consider only attractive and repulsive social interactions (that

is, qal = 0). As mentioned, the only spatially homogeneous steady state is (u∗, u∗∗) =

(A/2, A/2). We are interested in the stability of this steady state as we increase the

magnitude of attraction (qa). Let us denote by q0
a the critical value of qa for which

the dispersion relation satisfies σ(q0
a, kc) = 0 (the case is depicted in Figure 1(a)). Let

k = kc be the critical wave number. A solution of (1) near the bifurcation point is

given by

u±(x, t) ∝ eσt+ikcx + c.c., (10)

where “c.c.” stands for “complex conjugate”. We perform a perturbation analysis in a

neighborhood of the critical value (q0
a):

qa = q0
a + νε2, 0 < ε ) 1, ν = ±1. (11)

Writing the dispersion relation in a power series about q0
a, namely

σ(qa, kc) = σ(q0
a, kc) +

∂σ(q0
a, kc)

∂qa
ε2ν + O(ε4), (12)

and substituting it into (10) gives us

eσ(qa,kc)t+ikcx = eikcx+
dσ(q0

a,kc)

dqa
νε2t ≈ eikcxα(ε2t). (13)
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The amplitude α depends on the slow time ε2t. This suggests we introduce a new time

variable T = ε2t and consider fast and slow time scales, t∗ and T , respectively:

t → t∗ + T. (14)

In the limit ε → 0 we treat these two time scales as being independent [32]. We denote

ũ±(x, t∗, ε, T ) = u±(x, t). For notational simplicity, we drop the asterisk and the tilde,

and assume the following formal expansion

u+(x, t, ε, T ) = u∗ + εu+
1 + ε2u+

2 + ε3u+
3 + O(ε4),

u−(x, t, ε, T ) = u∗∗ + εu−
1 + ε2u−

2 + ε3u−
3 + O(ε4). (15)

We then expand the nonlinear function tanh(y±[u+, u−] − y0) = tanh(y±[u∗, u∗∗] +

∑

j εjy±[u+
j , u−

j ]− y0) in a Taylor series about y±[u∗, u∗∗]. The turning functions (2)

and (5) can therefore be written as

λ± = L1,2 + P1,2

∑

j

εjy±[u+
j , u−

j ] + S1,2(
∑

j

εjy±[u+
j , u−

j ])2 +

T1,2(ε
j
∑

j

y±[u+
j , u−

j ])3 + O(ε4), j = 1, 2, 3..., (16)

with L1,2 and P1,2 defined by (8), and

S1 =
λ2

2
tanh(M1 − y0)

(

1 − tanh2(M1 − y0)
)

,

S2 =
λ2

2
tanh(−M1 − y0)

(

1 − tanh2(−M1 − y0)
)

,

T1 =
λ2

12

(

−(1 − tanh(M1 − y0)
2)2 + 4 tanh(M1 − y0)

2(1 − tanh(M1 − y0)
2)
)

,

T2 =
λ2

12

(

−(1 − tanh(−M1 − y0)
2)2 + 4 tanh(−M1 − y0)

2(1 − tanh(−M1 − y0)
2)
)

.
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Since we consider qal = 0, this implies that M1 = 0, L1 = L2, P1 = P2, S1 = S2, and

T1 = T2.

The nonlinear system (1) can be written as

N(u) = 0, (17)

with u = (u+, u−)T . Substituting expressions (15)-(16) into this equation leads to

N(
∑

j=1 εjuj)=
∑

j Nj(uj)ε
j . At each O(εj), we can write Nj(uj) = L(uj)−Nj−Ej .

Here L(uj) represents the linear part of the system (1), Nj contains the nonlinear terms

formed of u±
j−1, u±

j−2, etc., and Ej contains the slow time derivatives ∂T u±
j−2, (j ≥ 3)

and the terms multiplied by ν. The linear operator L is the same at each O(εj) step,

whereas Nj and Ej have to be calculated every time. Therefore, Nj(uj) = 0 reduces

to

L(uj) = Nj + Ej , j = 1, 2, 3, .... (18)

Since the eigenvalues are real, the spatially homogeneous steady state becomes linearly

unstable to spatial patterns, and therefore, the linear operator L is defined as

L(u) =







γ∂x + L1 + M5K ∗ · −L1 + M5K ∗ ·

−L1 − M5K ∗ · −γ∂x + L1 − M5K ∗ ·













u+

u−







, (19)

where the convolution K ∗ · is defined by

K ∗ u± = qr

(

K̃r ∗ u± − Kr ∗ u±)− q0
a

(

K̃a ∗ u± − Ka ∗ u±) , (20)

with K̃r,a(s) = Kr,a(−s), and (Kr,a ∗ u±)(x) =
∫∞
−∞

Kr,a(s)u±(x− s)ds. Throughout

the analysis, we will use the operator Lkc
, which is obtained by applying L to solutions
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of the form eikcx:

Lkc
=







γikc + L1 + M5K̂+(kc) −L1 + M5K̂+(kc)

−L1 − M5K̂+(kc) −γikc + L1 − M5K̂+(kc)







. (21)

Here we define K̂+(kc) = qr

(

ˆ̃K
+

r (kc) − K̂−
r (kc)

)

− q0
a

(

ˆ̃K
+

a (kc) − K̂−
a (kc)

)

, where

K̂±
j , j = r, a are the Fourier transforms (9). Later, we will also use K̂−(kc) = −K̂+(kc),

K̂+(2kc), and K̂−(2kc) = −K̂+(2kc). At O(ε1), the nonlinear terms are N1 = E1 = 0,

and therefore equation (17) reduces to solving

L(u) = 0. (22)

This linear equation has a nontrivial solution. Therefore, for O(εj), j ≥ 2, the nonlinear

equation (18) has a solution if and only if Nj + Ej satisfies the Fredholm alternative

[24]. However, to be able to apply the Fredholm alternative, one has to investigate

whether the linear operator L is compact.

Throughout this section, we consider the Hilbert space

Y = {v(x, τ )|(x, τ ) ∈ [0, L] × [0,∞), s.t. lim
T→∞

1
T

∫ T

0

∫ L

0
|v|2dxdτ < ∞}, (23)

with the inner product

〈v,w〉 = lim
T→∞

1
T

∫ T

0

∫ L= 2π
kc

0

(v1w̄1 + v2w̄2)dxdτ, (24)

where v = (v1, v2)T , w = (w1, w2)T . Moreover, we will assume that u± satisfy periodic

boundary conditions.

Note that since u± are bounded on L∞([0, L]× [0, T ]) (see Appendix 2), they are also
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bounded on L2([0, L]×[0, T ]) ([41]). Therefore, the limit limT→∞
1
T ‖ v ‖2

L2([0,L]×[0,T ])

is finite.

Let us now rewrite the linear operator L = γLd + L0, where Ld is the differential

operator

Ld(u) =







∂x 0

0 −∂x













u+

u−







, (25)

and L0 is described by

L0(u) =







L1 + M5K ∗ · −L1 + M5K ∗ ·

−L1 − M5K ∗ · L1 − M5K ∗ ·













u+

u−







. (26)

Note that the operator L0 is compact (since the integral operator K is compact (see

for example [41], Section 3.4)). The problem is caused by the differential operator

Ld which is not bounded [41]. This issue can be addressed following the approach

shown in [27], where the differential operator is interpreted as a distribution in a

Sobolev subspace of Y , which requires the derivatives to be also in Y . This way, the

distributional interpretation defines the operator on a closed domain in Y . In a similar

manner, we can restrict the definition of the linear operator L to act on the Sobolev

subspace. The adjoint of this linear operator, L∗, acts on elements of Y in the following

manner:

L∗(u) =







−γ∂x + L1 + M5K̂∗ ∗ · −L1 − M5K̂∗ ∗ ·

−L1 + M5K̂∗ ∗ · γ∂x + L1 − M5K̂∗ ∗ ·













u+

u−







, (27)

where K∗ describes the adjoint integral operator.

Following similar steps as in [27], it can be shown that the kernel of the above re-

stricted operator is finite-dimensional, and its range is closed. Therefore, the Fredholm
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alternative can be applied, which means that Nj + Ej has to be orthogonal to the

bounded solution of the adjoint homogeneous problem

L∗(û) = 0. (28)

Let us consider this solution û = (û+, û−)T to be defined by

û = β1(T )Weikcx + β2(T )W̄e−ikcx. (29)

Then equation (28) results in

L̄T
kc

(û) = 0, (30)

with the adjoint operator defined as

L̄T
kc

=







−γikc + L1 + M5K̂−(kc) −L1 − M5K̂−(kc)

−L1 + M5K̂−(kc) γikc + L1 − M5K̂−(kc)






. (31)

The orthogonality condition reads

〈û, (Nj + Ej)〉 = 0. (32)

We are interested only in those terms of Ni +Ei that contain e±ikcx since these terms

give rise to secular solutions. For the particular case we study here, the secular terms

appear at O(ε3). The nonlinear interactions N3 + E3 are described by

N3 + E3 =
∂α
∂T

eikcxR(3) +
∂ᾱ
∂T

e−ikcxR̄(3) + αeikcxνR(2) + ᾱe−ikcxνR̄(2) +

α|α|2eikcxR(1) + ᾱ|α|2e−ikcxR̄(1) + other terms, (33)
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where “other terms” describe those terms of the form e±2ikcx, e±3ikcx, etc. The coeffi-

cients R(1), R(2), and R(3) are given in Appendix 3. Substituting this expression into

the orthogonality condition leads to the following amplitude equation:

dα
dT

= −ναY − α|α|2X, (34)

where

Y =
W̄ · R(2)

W̄ · R(3)
, X =

W̄ · R(1)

W̄ · R(3)
. (35)

We can verify that

Y =
dσ
dqa

=
γikM5(K̂+

a − K̂−
a )

L1
. (36)

Therefore the linear approximation of this amplitude equation agrees with the linear

prediction given by the dispersion relation (equation (12)).

The amplitude equation (34) is complex. To obtain a real equation, let us define

α(T ) = R(T )eiθ(T ), with real terms R(T ) = |α| and θ(T ). Thus, equation (34) can be

rewritten as

dR
dT

= −νR((Y ) − R3((X), (37)

dθ
dT

= −ν1(Y ) − R21(X), (38)

with ( and 1 denoting the real and imaginary parts of the two coefficients X and Y .

The two steady-state solutions of (37) are R = 0 and R =
√

−ν((Y )/((X). To study

the stability of these solutions, we write R = R0 + Rδ, where R0 is the steady state

and Rδ is a small perturbation. Equation (37) then becomes

dRδ

dT
= Rδ

(

−ν((Y ) − 2R2
0((X)

)

. (39)
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We can observe that the trivial state R0 = 0 is stable if ν((Y ) > 0, and unstable

otherwise. The nontrivial state R0 =
√

−ν((Y )/((X) is unstable if ν((Y ) > 0, and

stable otherwise.

Figure 3 shows the variation of the amplitude for the stationary pulses described

in Figure 2(a). For u∗
3 = A/2 = 1, qr = 2.2, qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9,

the bifurcation to spatial patterns occurs at q0
a = 1.008. The coefficients that appear

in the amplitude equation (34) are both negative: ((X) < 0, ((Y ) < 0. Therefore,

when ν = −1, the curve |α|2 = −ν((Y )/((X) > 0 is unstable, while |α| = 0 is stable.

Hence, the nonzero amplitude (the dashed line) bifurcates subcritically to the left. The

analytical formula for amplitude (max(u)-min(u)) is given in Appendix 3. In the next

section, we perform numerical simulations to verify these analytical results.

Note that in this section, we have chosen the parameters to have different order of

magnitudes (see, for example, qa and qr). It is in this parameter regime that solutions

become unstable, as predicted by the linear stability analysis.

4.2 Numerical results for a real bifurcation

To verify the results of this weakly nonlinear analysis, we perform numerical simula-

tions. The numerical scheme we use is a second-order McCormack scheme [20]. The ini-

tial conditions are perturbations of the spatially homogeneous steady states (u∗, u∗∗).

The amplitude of these perturbations is given by 0.02 cos(kcπx), x ∈ [0, L]. Note that

similar results can be obtained if we use random perturbations. For the parameter

values specified in the previous section, the final heterogeneous pattern is similar to

the one described in Figure 2(a). Figure 3 shows the amplitude of the total density, as

determined by max(u+ + u−) − min(u+ + u−). The solid circles represent the stable
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Fig. 3 The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t) + u−(x, t) as
we perturb the magnitude of attraction qa. The dashed curves represent the unstable branch
obtained using the weakly nonlinear analysis. The solid circles represent the stable branch
obtained numerically, whereas the open circles represent the unstable branch obtained numer-
ically. The critical value of qa is q0

a = 1.008. The other parameters are: λ1 = 0.2, λ2 = 0.9,
γ = 0.1, qr = 2.2, qal = 0, y0 = 2. For qa < q0

a, the zero amplitude branch (corresponding
to |α2| = 0) is stable (continuous line). For qa > q0

a it becomes unstable (dashed line). When
qa < q0

a, the curve formed by the open circles marks the boundary of the stability region,
as determined numerically. Perturbations with amplitude on or above this curve grow to the
upper branch (solid circles), while perturbations with amplitude below this curve decay to
zero.

numerical solution, while the open circles represent the unstable numerical solution.

For qa > q0
a, the spatially homogeneous steady state (|α| = 0) bifurcates numerically

to a large amplitude solution (solid circles). However, as we decrease qa, we observe

hysteresis behavior: the solution does not return to the spatially homogeneous steady

state when qa = q0
a. It will eventually return to this steady state for some qa < q0

a.

This is consistent with the previous analytical results regarding the existence of an

unstable amplitude that bifurcates subcritically. We checked numerically the existence

of this branch by choosing the initial conditions to be perturbations of the spatially

homogeneous steady states with terms of the form Â cos(kcπx), where Â is the variable
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amplitude. For qa < q0
a, the curve formed of open circles represents the unstable branch.

This curve represents a threshold: perturbations with amplitude Â on or above this

curve grow until the solution reaches the upper stable branch, whereas perturbations

with amplitude below this curve decay to zero. Since the spatially homogeneous steady

state is (u∗
3, u∗

3) = (1, 1), imposing the condition that the initial solution is positive,

forces us to use Â ≤ 2. This happens for qa ∈ [0.915, 1.008].

There are two remarks regarding Figure 3. First, it is known that for subcritical

bifurcations, the cubic amplitude equation (34) can give only a qualitative description

of the behavior of the solutions [10]. However, this qualitative behavior is enough for

the biological questions we want to address in this paper. We note here that for qa < q0
a,

the two unstable curves (the analytical and the numerical one) agree acceptably well,

especially near the bifurcation point. Second, the high-amplitude solution drops to

zero far from the bifurcation point (i.e., at qa = 0.83). However, the weakly-nonlinear

analysis does not hold near the point where the solution drops to zero. Therefore, we

do not expect here the stable high-amplitude curve and the unstable analytical curve

to match. To study the behavior of the solution far from the bifurcation point, one can

derive “phase equations” [33].

Figure 3 can be used to investigate the effect of attraction on the structure of sta-

tionary groups. Since the bifurcation is subcritical, the stable high-amplitude solution

gives us the effect of the attractive interactions. More precisely, we notice that increas-

ing the strength of the attraction (qa) leads to larger amplitudes for the total density

u. This means more compact groups. Moreover, for attraction less than q0
a, solutions

with amplitude less than
√

−ν((Y )/((X) will decay. This suggests that groups that

have a density less than a certain threshold will eventually disperse. Of course, this

threshold depends not only on qa, but also on all other parameters.
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Note that the linear analysis predicted that the spatially homogeneous solution

(i.e., the solution with zero amplitude) is stable for all qa < q0
a. The weakly nonlinear

analysis, on the other hand, shows that it is only locally stable. The solution can be

destabilized by perturbations with amplitudes larger than a certain threshold.

If we now consider qr = qa = 0 and large turning rates (λ1, λ2), we obtain similar

results. However, in this case, the bifurcation parameter is the magnitude of alignment

qal. The final heterogeneous pattern is described in Figure 2(b). Figure 4 shows the am-

plitude of the stationary pattern that bifurcates subcritically to the left at q0
al = 0.845.

Therefore, when the individual turning rates are very large, but at the same time

organisms align with their neighbors, increasing the strength of alignment leads to

higher amplitude solutions. Again, this means that the groups become more compact.

Moreover, there is a similar threshold for the total density below which the groups

will disperse. The existence of this threshold suggests that when individuals turn very

frequently (i.e., λ1,2 are large), the amplitude of the perturbations required to desta-

bilize the spatially homogeneous solution decreases as alignment increases. Therefore,

it seems that in this case, alignment is enough to cause aggregative behavior.

4.3 Weakly nonlinear analysis in the neighborhood of an imaginary bifurcation

In the following, we consider the case when the bifurcation to spatial heterogeneous

patterns occurs at an imaginary eigenvalue. To keep the results tractable, we will

assume that alignment is the only social interaction (that is, qa = qr = 0). This

corresponds to the pattern shown in Figure 3(d). Consequently, we will fix all other

parameters and assume that the bifurcation to spatially nonhomogeneous patterns

occurs as qal passes through a critical value q0
al. At the critical point (q0

al, kc), the two
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Fig. 4 The amplitude of the spatially heterogeneous solution u(x, t) = u+(x, t)+u−(x, t) as we
perturb the magnitude of alignment qal. The solid circles represent the stable branch obtained
numerically, while the open circles represent the unstable branch obtained numerically. The
dashed curve represents the unstable branch obtained using weakly nonlinear analysis. For
qal < q0

al
, the zero amplitude branch (corresponding to |α2| = 0) is stable (the continuous

curve). For qa > q0
a it becomes unstable (the dashed curve). The parameters are: q0

al
= 0.845,

kc = k14 = 8.867, λ1 = 2.0, λ2 = 9.0, γ = 0.1, qr = 0, qa = 0, y0 = 0.

eigenvalues of the dispersion relation (7) are σ1(q
0
al, kc) = iω, and σ2(q

0
al, kc) = ω0+iω,

with ω0 < 0. As mentioned before, this happens when the spatially homogeneous

steady state is any of the pairs (u∗
1, u∗

5), or (u∗
5, u∗

1). Throughout this subsection, we

will assume that (u∗, u∗∗) = (u∗
1, u∗

5) and study what happens in this case. Since the

second eigenvalue has always a negative real part, we ignore it and focus only on the

first eigenvalue. A solution of system (1) near the bifurcation point (q0
al, kc) has the

form

u±(x, t) ∝ eiωt+ikcx + c.c. (40)
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As before, we perturb qal away from the critical value q0
al,

qal = q0
al + ε2ν, 0 < ε ) 1, ν = ±1. (41)

Note that the spatially homogeneous steady state (u∗
3, u∗

3), which we discussed in the

previous section, does not depend on the bifurcation parameter. However, as shown in

Figure 1 (b) and (c), the spatially homogeneous steady state (u∗
1, u∗

5) does depend on

the magnitude of alignment (qal): as we increase qal, u∗ increases while u∗∗ decreases.

Therefore, in this case, a perturbation of qal will induce a perturbation of these steady

states:

u∗ = u∗
0 − ε2ν|

du∗(q0
al)

dqal
|, u∗∗ = u∗∗

0 + ε2ν|
du∗(q0

al)

dqal
|, (42)

where

∂u∗(q0
al)

∂qal
= −

M5(u∗∗ − u∗)

L1 + L2 − 2q0
alM5

, (43)

and the constants L1, L2 and M5 are given by (8). For notational simplicity, we will

drop the index “0” from the spatially homogeneous steady states u∗
0 and u∗∗

0 . Therefore,

the left- and right-moving densities can be written as

u+(x, t, ε, T ) = u∗ − ε2ν|
du∗(q0

al)

dqal
| + εu+

1 + ε2u+
2 + ε3u+

3 + O(ε4),

u−(x, t, ε, T ) = u∗∗ + ε2ν|
du∗(q0

al)

dqal
| + εu−

1 + ε2u−
2 + ε3u−

3 + O(ε4). (44)

Expanding the dispersion relation in power series leads to

σ(qal, kc) = σ(q0
al, kc) +

∂σ(q0
al, kc)

∂qal
ε2ν + O(ε4). (45)
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To calculate the O(ε2) term that appears in equation (45), we use equation (7):

∂σ(q0
al, kc)

∂qal
=

−iω
∂C(q0

al,kc,u∗)
∂qal

−
∂D(q0

al,kc,u∗)
∂qal

2iω + C(q0
al, kc, u∗)

. (46)

Because u∗ and u∗∗ = A−u∗ depend on qal, the terms ∂C
∂qal

and ∂D
∂qal

are given in terms

of the derivative of u∗ with respect to qal. Hence, when σ(q0
al, kc) = iω, we obtain

∂σ
∂qal

=
−(u∗∗ − u∗)P − M7∆ −

2q0
al(u

∗∗−u∗)M5

L1+L2−2q0
al

M5

(

P + ∆(P1 − P2 − 4q0
al(u

∗S1 − u∗∗S2))
)

2iω + L1 + L2 − M5q0
al(K̂

+
al + K̂−

al)
,

(47)

where

P = P1(iω − γikc) − P2(iω + γikc),

∆ = K̂+
al(iω + γikc) + K̂−

al(iω − γikc),

M7 = M5 + 2q0
al(u

∗∗ − u∗)(u∗S1 − u∗∗S2), (48)

while the rest of the constants are given by (8).

Since the eigenvalues are imaginary, the spatially homogeneous steady states be-

come unstable to spatiotemporal patterns, and therefore, the linear operator associated

to system (1) is given by

L(u) =















∂t + γ∂x + L1 + M5q0
alKal ∗ · −L2 + M5q0

alKal ∗ ·

−L1 − M5q0
alKal ∗ · ∂t − γ∂x + L2 − M5q0

alKal ∗ ·





















u+

u−







.

(49)
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However, throughout the analysis, we will use Lω,kc
which is obtained by applying the

operator L to solutions of the form (eiωt+ikcx):

Lω,kc
=















iω + γikc + L1 − M5q0
alK̂

−
al −L2 + M5q0

alK̂
+
al

−L1 + M5q0
alK̂

−
al iω − γikc + L2 − M5q0

alK̂
+
al















. (50)

The corresponding adjoint operator L̄T
ω,kc

is given in Appendix 4. Following the same

steps as before, at O(ε3) we have to impose the condition that the solution verifies the

Fredholm Alternative. This leads to a similar amplitude equation,

dα
dT

= −ναY − α|α|2X, (51)

where

Y =
V̄ · R(2)

V̄ · R(3)
, X =

V̄ · R(1)

V̄ · R(3)
. (52)

After some lengthy computations, we can verify that

Y =
dσ(q0

al)

dqal
, (53)

with dσ
dqal

given by equation (47). Therefore the linear approximation of this amplitude

equation agrees with the linear prediction given by the dispersion relation (equation

(45)).

Similar to the results in Section 4.2, the steady-state solutions for the magnitude

of the amplitude equation are given by

|α| = 0, |α| =
√

−ν((Y )/((X). (54)
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The zero state |α| = 0 is stable if ν((Y ) > 0, and unstable otherwise. The state

|α| =
√

−ν((Y )/((X) is unstable if ν((Y ) > 0, and stable otherwise.

For qr = qa = 0, λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, and kc = k17 = 10.55,

the two coefficients that appear in equation (54) are ((Y ) > 0 and ((X) < 0. Hence

|α|2 = −ν '(Y )
'(X) > 0 if ν > 0, which means that solution bifurcates to the right.

Moreover, since ν((Y ) > 0, the zero-amplitude steady state is stable, whereas the

nonzero-amplitude solution is unstable. Figure 5 shows this bifurcation. The continuous

curve represents the stable solution, whereas the dashed curve represents the unstable

solution obtained using weakly nonlinear analysis.
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Fig. 5 Amplitude of the spatially heterogeneous solution as we perturb the magnitude of
alignment qal. The solid circles represent the stable numerical solution, while the open circles
represent the unstable numerical solution. The continuous curve represents the stable analytical
solution, while the dashed curve represents the unstable analytical solution. The critical value of
qal is q0

al
= 2.088. The other parameters are: λ1 = 0.2/0.7, λ2 = 0.9/0.7, γ = 0.1, qr = qa = 0,

L = 10.12, kc = 10.55, y0 = 2.
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4.4 Numerical results for the imaginary bifurcation

To confirm the validity of these results, we perform numerical simulations. Again, the

initial conditions are perturbations of the spatially homogeneous steady states with

terms of the form Â cos(kcπx). Figure 5 shows the amplitude of the spatiotemporal

solutions as we perturb the magnitude of alignment qal. As before, the spatial homo-

geneous solution bifurcates subcritically to spatial heterogeneous solutions represented

by the traveling trains (seen in Figure 3(d)). The solid circles represent the stable

numerical solution, while the open circles represent the unstable numerical solution.

For qal ≥ q0
al, the branch described by the open circles represents a threshold: per-

turbations with amplitude below this curve decay to zero, while perturbations with

amplitude on or above this curve grow to the upper branch. Therefore, the numerical

results are consistent with the analytical results.

We notice that increasing the magnitude of alignment leads to a slight decrease

in the amplitude of the solutions. This suggests that moving groups become more

elongated, as alignment is increased. This is opposite to the effect observed in the

case of stationary groups. There, the alignment makes the group more compact. As

before, there is a certain threshold for the total density, corresponding to |α|2=−ν '(Y )
'(X) .

Groups with total density greater than this threshold will become more dense and

persist for a long time, while groups with the density below this threshold will disperse.

Moreover, the existence of this threshold suggests that when individuals do not turn

very frequently (i.e., λ1,2 are small), the amplitude of the perturbations required to

destabilize the homogeneous solution increases as alignment increases. This is opposite

to the case discussed in Section 4.2. Here, alignment is not enough to cause aggregative
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behavior. It requires a certain amount of noise (i.e., perturbations), which combined

with alignment, would lead to the formation of groups.

As mentioned in Section 3, introducing attractive and repulsive interactions leads

to the emergence of the first wave number, k1, as shown in Figure 2(c). In this case, the

result is a traveling train formed only of one group (see Figure 2(c)). Figure 6 shows

the subcritical bifurcation obtained in this case. The stable high-amplitude branch (the

solid circles) corresponds to the solution shown in Figure 2(c). The effect of alignment

on the moving group is similar to the previous case.
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Fig. 6 The amplitude of the spatially heterogeneous solution as we perturb the magnitude
of alignment qal, while taking into consideration the attractive and repulsive interactions.
The solid circles represent the stable numerical solution, while the open circles represent the
unstable numerical solution. The dashed curves represent the unstable analytical solution. The
critical value of qal is q0

al
= 2.472. The other parameters are: λ1 = 0.2, λ2 = 0.9, γ = 0.1,

qr = 0.1, qa = 1.0, L = 10, kc = 0.628, y0 = 2.
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5 Discussion

In this article, we have analyzed two spatial and spatiotemporal patterns displayed by a

hyperbolic model used to study animal group formation. The investigated patterns are

stationary pulses and traveling trains. Using a weakly nonlinear analysis, we show that

the stationary pulses arise through a real bifurcation from the spatially homogeneous

steady state (u∗
3, u∗

3). The traveling trains arise through an imaginary bifurcation from

a different steady state, namely (u∗
1, u∗

5). In both cases, the bifurcations are subcritical.

It should be mentioned that while the steady state (u∗
3, u∗

3) is constant, the steady state

(u∗
1, u∗

5) depends on the bifurcation parameter.

Note that the linear stability analysis predicts that in some parameter spaces, the

spatially homogeneous steady states are stable to infinitesimal disturbances (see for

example Figure 4, for qal < q0
al). However, the weakly nonlinear theory shows that

these steady states can actually become unstable to disturbances whose amplitudes

are greater than a threshold which corresponds to |α|2=−ν '(Y )
'(X) . Moreover, the weakly

nonlinear analysis helps us understand some aspects of the complex structure of the

attractors of the system. Figure 5, for example, shows that for qal ∈ (2.088, 2.15)

there is a locally stable spatially homogeneous steady state (u∗
1, u∗

5), surrounded by

an unstable limit cycle. This unstable limit cycle is then surrounded by another stable

limit cycle. It is precisely this stable limit cycle which attracts the solutions obtained by

perturbing the steady states (u∗
2, u∗

4). Moreover, this limit cycle attracts large amplitude

perturbations of the locally-stable spatially homogeneous steady states (u∗
3, u∗

3) (see

Figure 1 (c)).

In Section 4, we mentioned that the traveling pulses which can be observed in

this hyperbolic system, occur far from the bifurcation point. They are actually sec-
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ondary bifurcations which arise from traveling trains when alignment (qal) and the

inter-individual attraction (qa) are sufficiently large. The semi-zigzag pulses are a tran-

sient pattern determined by secondary symmetry-breaking bifurcations which cause a

transition from traveling trains to stationary pulses. They occur in a parameter space

far from the bifurcation point, when two adjacent wave numbers interact with each

other. The investigation of these patterns is a subject for further research.

Note that there are other symmetries involved in the emergence of different pat-

terns, and which correspond to particular parameter subspaces. For example, when

qa = qr = 0, the time-independent solutions (i.e., u±
t = 0) are invariant under

the transformation (u+(x), u−(x)) → (u−(−x), u+(−x)). When qal = 0, the time-

independent solutions are invariant under the transformation (u+(x), u−(x)) →

(−u−(−x),−u+(−x)). Moreover, in different parameter spaces it is possible to have

mode interactions (not discussed here): steady-state/Hopf interactions, and Hopf/Hopf

interactions. The complexity of all these symmetries suggests that, even if the weakly

nonlinear results are very useful, we are still far from thoroughly understanding all

these patterns.

Before discussing the biological implications of the weakly nonlinear results, we

should stress the fact that the one-dimensional patterns investigated in the previ-

ous sections can approximate the behavior of animal groups that move through a

domain which is much longer than wide. Therefore, the biological insights obtained

using weakly nonlinear analysis are valid only under these assumptions. However, in

nature, the majority of the aggregations are in two and three dimensions. The rigor-

ous analysis of the social interactions that lead to the formation of these aggregations

requires a model which is two- or three-dimensional. A two-dimensional analogue of

system (1) can be derived using a velocity-jump process (see for example [36,38]). We
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briefly describe such a model in Appendix 1. A detailed description and analysis of this

two-dimensional model is beyond the scope of this paper. However, we would expect

more spatial and spatiotemporal patterns compared to the one-dimensional case. The

patterns are determined by the symmetries of the system, and in particular of the in-

teraction kernels, and they can be described in terms of the competition between odd

and even wave numbers (see also [3,4] for the treatment of a nonlocal two-dimensional

problem).

Note that for the one-dimensional model, as well as for the two-dimensional ana-

logue, the symmetries of the system can restrict the form of the solutions, and the

amplitude equations (see for example [17] for a general discussion on the subject, and

[8] for the description of ten generic instabilities of a one-dimensional model).

Returning now to the results obtained through weakly nonlinear analysis, it is

known that for subcritical bifurcations, the unstable branch obtained using a cubic

amplitude equation gives only qualitative information about the solution [10]. A more

accurate result can be obtained by adding higher-order terms to obtain a quintic am-

plitude equation. Moreover, far from the bifurcation point, one can only derive “phase

equations” to study the behavior of the solution. However, due to the complexity of

our system, as well as the type of questions we are addressing (that is, the effect of

the social interactions on the amplitude of spatial and spatiotemporal patterns), it is

sufficient to derive a cubic amplitude equation.

We used the bifurcation diagrams for the amplitude of the solutions to study the

effect of social interactions on the structure of the aggregations. As expected, increas-

ing inter-individual attraction leads to more compact stationary groups. This kind of

behavior can be observed in schools of fish [6,42], when a nearby predator leads to

increased attraction towards neighbors which causes the group to form very tight sta-



38

tionary aggregations. Alignment on the other hand, has dual effects, depending on

whether the group is stationary or moving. We have seen that in the case of stationary

groups with high individual turning rates, alignment has an aggregative effect, with the

groups becoming more dense. However, in case of moving groups, the effect of align-

ment is opposite: the density decreases as the groups become more elongated. When

alignment becomes very large, the groups disintegrate. Similar results regarding this

effect of alignment on moving groups were obtained with individual based models [29].

Moreover, the bifurcation diagrams show that there is a competition between the

turning behavior and the magnitude of the alignment interaction that leads to the for-

mation of stable aggregations. For example, in case of high turning rates the amplitude

of the perturbation required to destabilize the homogeneous solution decreases as align-

ment increases. In case of low turning rates, the situation is opposite: the amplitude of

the required perturbations increases as alignment increases.

The subcritical bifurcation suggests that there is a threshold group density, such

that groups with densities below this threshold will disperse, while groups with densities

above this threshold will become even more dense and persist for a longer time. This

transition between the disordered behavior represented here by the homogeneous so-

lution, and the ordered behavior represented by the high-density stationary or moving

groups, is particularly important for the area of animal group formation and move-

ment. It is known that some insect species (such as ants [2], or locusts [5]) exhibit

transitions between disordered and ordered activity behaviors, and these transitions

depend on animal density. For example, Buhl et. al. [5] have shown experimentally

and numerically (using an individual-based model) that as the density of locusts in

a group increases, there is a transition from disordered movement to collective mo-
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tion of aligned groups. Understanding such transitions has potential applications to

understanding and controlling the outbreaks of different insect pests, such as locusts.

In this paper, we have analyzed the patterns displayed by only one of the five

submodels described in [13]. It is possible that other patterns, corresponding to the

other four submodels, arise through supercritical bifurcations. However, this aspect has

not yet been investigated. Still, we can conclude that the subcritical bifurcations seem

to play an important role in the understanding of the effects of biological parameters to

the formation and persistence of certain animal groups (such as insects). A supercritical

bifurcation (i.e., bifurcation to a small, stable, amplitude solution) would suggest that

increasing a certain parameter would lead to the formation of denser, well coordinated

groups. This may be the case for some animal groups, but not necessarily for insects

like locusts or ants. A subcritical bifurcation, on the other hand, suggests the existence

of a density threshold below which well coordinated groups cannot persist. Moreover,

this type of bifurcation helps us connect the threshold for the total animal density

to different behaviors. More precisely, this threshold depends on different parameter

values which characterize different group behaviors.

To summarize, the results presented in this article are a first attempt to understand

the effects of the nonlocal social interactions on the resulting group patterns. Due to the

complexity of this model, we are still far from completely understanding the dynamics

of this hyperbolic system.
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Appendix 1: Model extension in two dimensions

A two-dimensional analogue of system (1) can be derived using a velocity-jump process

(see for example [36,38]):

∂tu + γeiφ∇xu = −λ(x,φ, t)u +

∫

λ(x,φ′, t)T (φ,φ′)u(x, φ′, t)dφ′. (55)

Here u is the total density, λ(x,φ, t) is the probability that a reorientation occurs at

(x, φ, t), and T (φ,φ′) is the probability of choosing φ′ the new direction, provided that

a reorientation occurs. These last two terms, λ(x,φ, t), and T (φ, φ′), are determined by

the assumptions we make about the communication mechanisms. Following the same

procedure as in [38], we can define

λ(x, φ, t) = λ1 + λ2h

(

∫ 2π

0

∫

‖s−x‖≤sr

Kr(Dφ(s − x), θ − φ)dsdθ+

∫ 2π

0

∫

‖s−x‖≤sa

Ka(Dφ(s − x), θ − φ)dsdθ +

∫ 2π

0

∫

‖s−x‖≤sal

Kal(Dφ(s − x), θ − φ)dsdθ

)

, (56)

and

T (φ,φ′) =

∫ 2π

0

∫

‖s−x‖≤sr

K̄r(Dφ(s − x), θ − φ, φ′ − φ)dsdθ +

∫ 2π

0

∫

‖s−x‖≤sa

K̄a(Dφ(s − x), θ − φ, φ′ − φ)dsdθ +

∫ 2π

0

∫

‖s−x‖≤sal

K̄al(Dφ(s − x), θ − φ,φ′ − φ)dsdθ +

T0(φ
′ − φ) (57)
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Here Dφ denotes the matrix

Dφ =







cos(φ) sin(φ)

− sin(φ) cos(φ)







, (58)

The kernels Ki(Dφ(s−x), θ−φ) > 0, i = r, a, al, with
∫

D
Ki(Dφ(s−x), θ−φ)dθ = 1,

describe the repulsive, attractive, and alignment interactions that trigger the turning.

The kernels K̄i(Dφ(s−x), θ−φ, φ′−φ) > 0, i = r, a, al, describe the social interactions

that lead to the probability of choosing the new direction φ′. If there are no individuals

within the perception range, the new direction is given by T0(φ
′ − φ). The kernels K̄i

and T0 satisfy
∫ 2π

0

K̄i(·, ·, φ)dφ = 0,

∫ 2π

0

T0(φ)dφ = 1. (59)

The definition of these kernels depends on the assumptions we make about the different

communication mechanisms that take place in two dimensions.

To reduce this model to the previous one-dimensional case, we choose φ = ± π
2 . In

this case, the turning rates can be written as

Λ+ = h

(

∫

‖x̄−x‖
Kr(Dπ

2
(s − x), 0)u(s,

π
2

, t) − Kr(Dπ
2
(s − x),−π)u(s,−

π
2

, t)ds+

∫

‖x̄−x‖
Ka(Dπ

2
(s − x), 0)u(s,

π
2

, t) − Ka(Dπ
2
(s − x),−π)u(s,−

π
2

, t)ds +

∫

‖x̄−x‖

Kal(Dπ
2
(s − x), 0)u(s,

π
2

, t) − Kal(Dπ
2
(s − x),−π)u(s,−

π
2

, t)ds

)

, (60)

Λ− = h

(

∫

‖x̄−x‖
Kr(D−π

2
(s − x),−π)u(s,−

π
2

, t) − Kr(D−π
2
(s − x), 0)u(s,

π
2

, t)ds+

∫

‖x̄−x‖
Ka(D−π

2
(s − x),−π)u(s,−

π
2

, t) − Ka(D−π
2
(s − x), 0)u(s,

π
2

, t)ds +

∫

‖x̄−x‖

Kal(D−π
2
(s − x),−π)u(s,−

π
2

, t) − Kal(D−π
2
(s − x), 0)u(s,

π
2

, t)ds

)

.(61)
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Let u+(s, t) = u(s, π
2 , t), and u−(s, t) = u(s,−π

2 , t). Depending on the assumptions we

make about the kernels Ki, i = r, a, al, we can recover the different communication

mechanisms introduced in [13]. For example, if Ki(y, 0) = 0, Ki(y,−π) = −Ki(y,π),

K̄i ≡ 0, and T0(±
π
2 ) = 1, we can recover the communication mechanism corresponding

to model M5. If Ki(y, 0) = Ki(y,−π) &= 0, K̄i ≡ 0, and T0(±
π
2 ) = 1, we can recover

the mechanism corresponding to model M4.

This reduction of the model suggests that some of the solutions of the one-dimensional

system can be thought as special solutions of the two-dimensional model. However, a

detailed description and analysis of this two-dimensional model is the subject of future

research.

Appendix 2: Existence of solutions for the hyperbolic system

The proof for the existence of solutions of system (1) uses the characteristic equations

of the hyperbolic system (1):

dζ+

ds
= γ,

dζ−

ds
= −γ. (62)

We denote ζ± = Ξ±(s;x, t) as the solution of this ODE system, passing through the

point (x, t). If we set U±(s) = u(Ξ±(s; x, t), s), we can rewrite the hyperbolic system

(1) as:

dU+

dt
(s; x, t) = −λ+(U+(s), U−(s))U+(s) + λ−(U+(s), U−(s))U−(s),

dU−

dt
(s; x, t) = λ+(U+(s), U−(s))U+(s) − λ−(U+(s), U−(s))U−(s). (63)
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Integrating (63) along the characteristics gives

U+(ζ+) = U+(ζ0) +

∫ ζ+

ζ0

(

−λ+(U+, U−)U+ + λ+(U+, U−)U−) (y)dy, (64)

U−(ζ−) = U−(ζ0) +

∫ ζ−

ζ0

(

λ+(U+, U−)U+ − λ−(U+, U−)U−) (y)dy. (65)

Note that, a pair of functions (u+, u−) which satisfies equations (64)-(65) is called a

mild solution of system (1).

We define the operator G(U+, U−) = (G1(U
+, U−), G2(U

+, U−)), where G1 and

G2 are described by the two expressions on the right hand side of equations (64), and

(65), respectively. Then, finding a unique mild solution of (1) reduces to finding a fixed

point of the map (U+, U−) 5→ G(U+, U−).

To prove the existence of a unique weak solution u± ∈ L∞(R × [0,∞)) of system

(1), let us consider the Banach spaces X := L∞(R × [ 0, t0) ) with norm ‖u‖X :=

sup ‖u(·, t)‖∞, and X̄ := L∞(R). On X × X we have the norm ‖(u, v)‖X×X :=

max(‖u‖X , ‖v‖X ). We also define B = B(R, X) := {u ∈ X : ‖u(x, t)‖X ≤ R}.

Following the same steps as in [22,25], for all ω ∈ X, with ω±(0, ·) = u±
0 ∈ L∞(R),

we consider the Cauchy problem

u+
t + γu+

x = −λ+(ω+, ω−)ω+ + λ−(ω+, ω−)ω−,

u−
t − γu−

x = λ+(ω+, ω−)ω+ − λ−(ω+, ω−)ω−,

u±(0, x) = u±
0 (x). (66)

We prove that the operator G defined by equations (64)–(65) is a contraction:

1. G : XR × XR 5→ XR × XR (where XR is a closed subset of Banach space X)
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2. For (ω+, ω−), (θ+, θ−) ∈ XR × XR, and 0 < ε < 1,

‖G(ω+, ω−) − G(θ+, θ−)‖XR×XR
≤ ε‖(ω+, ω−) − (θ+, θ−)‖XR×XR

.

To prove that G maps a closed subset of a Banach space into itself, we only have to

assume that u±
0 is bounded in ‖.‖XR

by a constant M∗. We then choose R ≥ M∗ + ε1,

for some ε1 > 0. For (ω+, ω−) ∈ B, with ω±(0, ·) = U±
0 , we have

‖G1(ω+, ω−)‖X ≤ ‖U±
0 ‖X̄ +

∫ ζ+

ζ0

‖
(

−λ+(ω+, ω−)ω+ + λ−(ω+, ω−)ω−) (y)‖
X

dy

≤ M∗ + γt0R
(

supBλ+(ω+, ω−) + supBλ−(ω+, ω−)
)

.

Let K = supBλ+(ω+, ω−) + supBλ−(ω+, ω−), and choose t0 ≤ ε1
γRK = T1 to obtain

the bound ‖G1(ω+, ω−)‖X ≤ M∗ + ε1 ≤ R. A similar result holds for G2.

To prove the contraction condition, let us consider (ω+, ω−), (θ+, θ−) ∈ B, with

ω±(0, ·) = θ±(0, ·) = U±
0 . Then,

‖G1(ω
+, ω−) − G1(θ+, θ−)‖X×X = ‖

∫ ζ+

ζ0

(

λ+(θ+, θ−)θ+ − λ+(ω+, ω−)ω+

+λ−(ω+, ω−)ω− − λ−(θ+, θ−)θ−
)

(y)dy‖X

=
1
2
‖ −

∫ ζ+

ζ0

(

λ+(ω+, ω−) + λ+(θ+, θ−)
)

(ω+ − θ+)(y, t)dy

+

∫ ζ+

ζ0

(

λ−(ω+, ω−) + λ−(θ+, θ−)
)

(ω− − θ−)(y, t)dy

+

∫ ζ+

ζ0

(

λ+(θ+, θ−) − λ+(ω+, ω−)
)

(ω+ + θ+)(y, t)dy

−

∫ ζ+

ζ0

(

λ−(θ+, θ−) − λ−(ω+, ω−)
)

(ω− + θ−)(y, t)dy‖
X

. (67)
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We assumed that the turning rates are locally Lipschitz continuous as functions of y±.

Let L± be the Lipschitz constants. Using equations (2), we obtain

‖λ±(ω+, ω−) − λ±(θ+, θ−)‖X×X = ‖h(y±(ω+, ω−)) − h(y±(θ+, θ−))‖X×X

≤ L±(R)‖y±(ω+, ω−) − y±(θ+, θ−)‖X×X

= L±(R)‖

∫ ∞

0

(±qrKr(s) ∓ qaKa(s)) (ω(x ± s, t) − θ(x ± s, t) − ω(x ∓ s, t)

+ θ(x ∓ s, t)) ds ±

∫ ∞

0

qalKal(s)
(

ω−(x + s, t) − θ−(x + s, t) − ω+(x − s)

+ θ+(x − s)
)

ds‖X

≤ L1,2(R)max(‖ω+ − θ+‖X , ‖ω− − θ−‖X)

= L1,2(R)‖(ω+, ω−) − (θ+, θ−)‖X×X . (68)

Here L1,2(R) = L±(R)C(qr, qa, qal), where C(qr, qa, qal) is a constant that depends on

the magnitudes of the social interactions. Hence, λ± are locally Lipschitz continuous

as functions of ω±, θ±, with L1(R) and L2(R) the Lipschitz constants. We therefore

have

‖G1(ω+, ω−) − G1(θ
+, θ−)‖X×X ≤

1
2

∣

∣ζ+ − ζ0
∣

∣ 2supBλ+(ω+, ω−)‖ω+ − θ+‖X

+
1
2

∣

∣ζ+ − ζ0
∣

∣ 2supBλ−(ω+, ω−)‖ω− − θ−‖X

+
1
2

∣

∣ζ+ − ζ0
∣

∣ ‖ω+ + θ+‖XL1(R)max(‖θ+ − ω+‖X , ‖θ− − ω−‖X)

+
1
2

∣

∣ζ+ − ζ0
∣

∣ ‖ω− + θ−‖XL2(R)max(‖θ+ − ω+‖X , ‖θ− − ω−‖X). (69)

Since ‖ω± + θ±‖X ≤ 2R, we obtain

‖G1(ω+, ω−) − G1(θ
+, θ−)‖X×X ≤ γt0 (K + L1(R)R
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+ L2(R)R) ‖(ω+, ω−) − (θ+, θ−)‖X×X . (70)

Let us define T2 = ε2
γ(K+L1(R)R+L2(R)R) , for some ε2 > 0, and choose t0 ≤ T2. We

then obtain

‖G1(ω+, ω−) − G1(θ
+, θ−)‖X×X ≤ ε2‖(ω

+, ω−) − (θ+, θ−)‖X×X . (71)

A similar estimate holds for G2. Then, for t0 ≤ min(T1, T2) we have

‖G(ω+, ω−) − G(θ+, θ−)‖X×X ≤ ε‖(ω+, ω−) − (θ+, θ−)‖X×X , (72)

which implies that G is a contraction. Therefore, G has a unique fixed point (u+, u−) ∈

X × X. Replacing ω± in (64)–(65) with U± results in:

‖U+(ζ+)‖X ≤ ‖U+(ζ0)‖X̄ + ‖

∫ ζ+

ζ0

(

−λ+(U+, U−)U+ + λ−(U+, U−)U−) (y)dy‖
X

,

‖U−(ζ−)‖X ≤ ‖U−(ζ0)‖X̄ + ‖

∫ ζ−

ζ0

(

λ+(U+, U−)U+ − λ−(U+, U−)U−) (y)dy‖
X

,

and therefore,

‖U+‖X + ‖U−‖X ≤ ‖u+
0 ‖X̄ + ‖u−

0 ‖X̄ + 2γt0 (K + (L1(R) + L2(R))R)
(

‖U+‖X+

+ ‖U−‖X

)

. (73)

Hence

‖U+‖X + ‖U−‖X ≤
1

1 − ε
(‖U+

0 ‖X̄ + ‖U−
0 ‖X̄), (74)
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which implies that u± ∈ L∞(R × [0, t0 )).

To prove the solution is defined for all time, it is enough to show that ‖U±‖X are

bounded on any bounded interval [0, T ]:

d
ds

‖U±(s, ·)‖L∞(R) ≤ ‖
d
ds

U±(s, ·)‖
L∞(R)

≤ ‖λ+(U+, U−)U+‖L∞(R) + ‖λ−(U+, U−)U−‖L∞(R)

≤ M2(‖U+‖L∞(R) + ‖U−‖L∞(R)), (75)

where M2 is the upper bound for λ±. Therefore

‖U+‖L∞(R) + ‖U−‖L∞(R) ≤ (‖U+
0 ‖L∞(R) + ‖U−

0 ‖L∞(R))e
M2s. (76)

Since U±(t, ·) are bounded on any bounded interval [0, T ], the solution exists for all

time. ♣

Note that on a bounded domain Ω = [0, L], if we assume that the initial data u±
0 (x)

is periodic, then the mild solution u±(x, t) ∈ L∞(Ω × [0,∞)) is periodic.

We should also mention that since d
dt

∫∞
−∞

(u+(x, t) + u−(x, t))dx = 0, it follows

that if the initial condition satisfies u±
0 ∈ L1(R), then u± ∈ L1(R).
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Appendix 3: Detailed calculations for the weakly nonlinear analysis in the

neighborhood of a real bifurcation

At O(ε), we calculate u+
1 and u−

1 from

L(u1) = 0, (77)

where u1 = (u+
1 , u−

1 )T =α(T )veikcx + c.c., with v = (v1, v2)
T , and “c.c.” denoting the

complex conjugate terms. The components v1 and v2 are given by:

v1 =
L1 − M5K̂+

γik + L1 + M5K̂+
, v2 = 1. (78)

Here E1 = N1 = 0. At O(ε2), the nonlinear terms are E2 = 0, and

N2 =







u+
1 P1K ∗ u1 + u−

1 P1K ∗ u1

−u+
1 P1K ∗ u1 − u−

1 P1K ∗ u1,







, (79)

where K = qr(K̃r − Kr) − q0
a(K̃a − Ka), and K̃r,a(s) = Kr,a(−s). Actually, N2 can

be rewritten as

N2 = α2(T )e2ikcxQ(1) + |α|2Q(2) + c.c., (80)

with Q(1) = (Q
(1)
1 , Q

(1)
2 )T and Q(2) = (Q

(2)
1 , Q

(2)
2 )T . Equation L(u2) + N2 = 0 is

then solved for u2 = (u+
2 , u−

2 )T , where

u2 = α1(T )v0eikcx + α2(T )v(1)e2ikcx + |α|2v(2) + c.c., (81)
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with v(1) = (v
(1)
1 , v

(1)
2 )T , and v(2) = (v

(2)
1 , v

(2)
2 )T satisfying the following two equa-

tions

L2kc
(v(1)) + Q(1) = 0, (82)

L0(v(2)) + Q(2) = 0. (83)

Solving system (82) gives us

v
(1)
1 =

−Q
(1)
1

2γik + 2M5K̂+
2

, v
(1)
2 = v

(1)
1 . (84)

Here we define K̂+
2 = qr( ˆ̃K

+

r (2kc) − K̂−
r (2kc)) − q0

a( ˆ̃K
+

a (2kc) − K̂−
a (2kc)). System

(83) reduces to one equation in two unknowns. To solve it for v
(2)
1 and v

(2)
2 , we have

to impose the conservation of the total density on the interval [0, L] = [0, 2π
kc

]. This

condition requires that v
(2)
2 = −v

(2)
1 . We therefore have

v
(2)
1 =

−Q
(2)
1

2L1
, v

(2)
2 = −v

(2)
1 . (85)

At O(ε3), the nonlinear terms are given by

E3 =







du+
1

dT − (u∗ + u∗∗)P1ν
(

(K̃a − Ka) ∗ u1
)

du−

1
dT + (u∗ + u∗∗)P1ν

(

(K̃a − Ka) ∗ u1
)







, (86)

and

N3 =







P1(K ∗ u1)u2 + P1(K ∗ u2)u1 + S1(u+
1 − u−

1 )(K ∗ u1)2 + T1A(K ∗ u1)3

−P1(K ∗ u1)u2 − P1(K ∗ u2)u1 − S1(u
+
1 − u−

1 )(K ∗ u1)2 − T1A(K ∗ u1)3







,

(87)
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where u1 = u+
1 + u−

1 , and u2 = u+
2 + u−

2 . At this step, secular terms can arise if

N3 + E3 contains terms of the form e±ikcx. To eliminate these secular terms, we

impose the orthogonality condition (32). The solution W of the adjoint equation (30)

is given by

W1 = 1, W2 =
γik − L1 − M5K̂−(kc)

−L1 − M5K̂−(kc)
. (88)

Then, the orthogonality condition can be written as

lim
T̂→∞

1

T̂

∫ T̂

0

∫ 2π
kc

0
(β1(T )Weikcx + β2(T )W̄e−ikcx)

(

R(1)α|α|2eikcx + R̄(1)ᾱ|α|2e−ikcx

+R(2)α eikcxν + R̄(2)ᾱe−ikcxν + R(3) dα
dT

eikcx + R̄(3) dᾱ
dT

e−ikcx
)

dxdT = 0.

The coefficients R(j), j = 1, 2, 3, are described by

R
(1)
1 = P1v̄v(1)K̂− + P1vv(2)K̂+ + P1v̄v(1)K̂+

2 + S1(v̄1 − v̄2)v
2(K̂+)2 +

2S1v̄v(v1 − v2)K̂+K̂− + 3T1Av̂v2K̂−(K̂+)2,

R
(1)
2 = −R

(1)
1 ,

R
(2)
1 = −M5v( ˆ̃Ka − K̂+

a )(kc),

R
(2)
2 = −R

(2)
1 ,

R
(3)
1 = v1,

R
(3)
2 = v2. (89)

We define here v = v1 +v2, and v(1) = v
(1)
1 +v

(1)
2 . Since

∫

2π
kc

0 e∓2ikcxdx = 0, we obtain

W̄ · R(1)α|α|2 + W̄ · R(2)αν + W̄ · R(3) dα
dT

= 0, (90)
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and its complex-conjugate

W · R̄(1)ᾱ|α|2 + W · R̄(2)ᾱν + W · R̄(3) dᾱ
dT

= 0. (91)

Equation (90) can be rewritten as

1
2

dα
dT

= −νY α − Xα|α|2, (92)

with

X =
W̄ · R(1)

W̄ · R(3)
Y =

W̄ · R(2)

W̄ · R(3)
. (93)

The two steady-state solutions of this equation are |α|2 = 0 or |α|2 = −ν '(Y )
'(X) (see

equation (39)). To compare the results of the nonlinear analysis with the numerical

results, we substitute α into the expressions for u±
1 and derive a formula for the actual

amplitude of the spatial patterns:

max(u) − min(u) = ε(max(u+
1 + u−

1 ) − min(u+
1 + u−

1 )) = ε4((α(v1 + v2)). (94)

Appendix 4: Detailed calculations for the weakly nonlinear analysis in the

neighborhood of an imaginary bifurcation

The derivation of the amplitude equation for the case when the bifurcation of the

unstable occurs through an imaginary eigenvalue follows the same steps as before.

Here we consider only the case qr = qa = 0. The case when attraction and repulsion

are nonzero is similar, but the equations are more complicated. At O(ε) we have

u1 = αveiωt+ikcx + c.c. (95)
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where u1 = (u+
1 , u−

1 )T , v = (v1, v2)
T , and α = α(T ). At O(ε2), E2 = 0 and

N2 =





(u+
1 P1 + u−

1 P2)q0
al

Kal ∗ (u−
1 − u+

1 ) + (u∗S1 − u∗∗S2)(q0
al

)2(Kal ∗ (u−
1 − u+

1 ))2

−(u+
1 P1 + u−

1 P2)q0
al

Kal ∗ (u−
1 − u+

1 ) − (u∗S1 − u∗∗S2)(q0
al

)2(Kal ∗ (u−
1 − u+

1 ))2



 .

After some calculations we can rewrite the nonlinear terms N2 + E2 as

N2 + E2 = α2e2iωt+2ikcxQ(1) + ᾱ2e−2iωt−2ikcxQ(2) + |α|2Q(3). (96)

Therefore, the solution of the nonlinear problem L(u2) = N2 + E2 can be written as

u2 = α1v0eiωt+ikcx + α2e2iωt+2ikcxG
(1)
0 + ᾱ2e−2iωt−2ikcxG

(2)
0 + |α|2G

(3)
0 .

The constants G
(j)
0 , j = 1, 2, 3, are calculated by requiring them to verify the following equa-

tions:

L2ω,2kc
G(1)

0 = −Q(1), L−2ω,−2kc
G(2)

0 = −Q(2), L0,0G
(3)
0 = −Q(3). (97)

The solution does not contain terms of the form e±iωt±ikcx and therefore the Fredholm Alter-

native is satisfied. However, at O(ε3) we have to impose the orthogonality condition L∗(û) = 0.

Let us define the solution of the adjoint homogeneous problem to be û= β1(T )Veiωt+ikcx+c.c..

Then, the orthogonality condition becomes L̄T
kc

(û) = 0, where

L̄T
kc

(u) =











−iω − γikc + L1 + M5q0
al

K+
al

−L1 − M5q0
al

K+
al

−L2 + M5q0
al

K−

al
−iω + γikc + L2 − M5q0

al
K−

al











(98)

This leads to the amplitude equation (51), with the vector V given by

V1 = 1, V2 =
iω + γikc − L1 + M5q0

al
K̂+

al

−L1 + M5q0
al

K̂+
al

. (99)
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At O(ε3), we obtain the amplitude equation (51). The coefficients R(j), j = 1, 2, 3, that appear

in this equation are given by

R
(1)
1 = v1,

R(1)
2 = v2,

R
(2)
1 = (M5 + 2q0

al(u
∗∗ − u∗)(u∗S1 − u∗∗S2))b1 + (u∗∗ − u∗)e1 + 2q0

ale1 + q0
alJ11b1 −

q0
al(P1 − P2 − 4q0

al(u
∗S1 − u∗∗S2)b1),

R
(2)
2 = −R

(2)
1 ,

R(3)
1 = 2(u∗S1 − u∗∗S2)(q0

al)
2(b1G(3)

0 + b̄1G(1)
0 ) + 3(u∗T1 + u∗∗T2)(q0

al)
3(b1)2 b̄1 +

q0
al(e1G

(3)
0 + ē1G

(1)
0 ) + (q0

al)
2(f̄1(b1)2 + 2f1b1 b̄1) + q0

al(J1 b̄1 + J9b1),

R(3)
2 = −R(3)

1 . (100)

We define here

b1 = K̂+
al

v2 − K̂−

al
v1, e1 = P1v1 + P2v2, f1 = S1v1 − S2v2,

Jj = G(j)
1 P1 + G(j)

2 P2, j = 1..10,

G
(1)
0 = G

(1)
02

K̂+
al

(2kc) − G
(1)
01

K̂−

al
(2kc), G

(2)
0 = G

(2)
02

K̂−

al
(2kc) − G

(2)
01

K̂+
al

(2kc),

G(3)
0 = G(3)

02
− G(3)

01
. (101)
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