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ABSTRACT

The isomorphisia types of simple componcins of group algebras of fulte
groups over fields of characteristic ze1o ate investigated. The main objective of
iterest s to determine the isomorpshisin type of the division algebra part of the
simple component, or at least the Schur index, given a knowledge of the group
and the field up to isomorphism.

After a variety of background in Chapter One, a constructive approach to
Clifford Theory is given in Chapter Two. Specific restrictions ou the structare
of groups that are terminal objects with respect to these reductions are given.
It is shown that these terminal objects must be metabelian in the case where
the original group is either supersolvable or nilpotent.

In Chapter Three, after restricting to algebraic number fields, it is shown that
precise sections of the group determines the division algebra part of the simple
component of a group algebra after Clifford Theory reductions, as long as the
original group satisfics a certain character-theoretic condition. These sections
are given preciscly, one for each prime number that divides the Schur index.
This is a constructive Brauer-Witt Theorem for groups that Clifford reduce
to ones satisfying this condition. This result is then extended to show that
Schur indices of division zlgebras occurring in simple components of the group
algebras of nilpotent-by-abelian groups are determined by the same sections as
those satisfying the condition mentioned above.

In Chapter Fonr, a censtructive algorithm is given for computing the Schur
index of a simple component of the group algebra of any group occurring as a
result of the reductions of Chapter Three. Examples are given to acquaint the

reader with the type of computations involved.
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Introduction

Occasionally in the field of algebra one is able to find new ways to view past
problems. Often this leads to new studies or even new arcas of rescarch by
giving new proofs of old theorems through new perspectives.

The intention of this work is to look at a classical existence theorem, the
Brauer-Witt theorem, in the study of representations of finite groups over the
rational numbers, and try to find an explicit means of reaching the conchu-
sion of that theorem. This amounts to presenting a constructive algorithm
for reducing a simple component of the group algebra of a finite group over
the rational numbers to its division algebra part. This thesis is an attempt to
improve upon existing methods of doing this. The hope is that a new under-
standing of how group structure generates non-trivial division algebra parts in
the simple components of rational group algebras will result, thus leading to an
improved understanding of the structure of these algebras, allowing for progress
on unsolved problems in the study of group algebras.

The study of abstract groups originated with Galois in 1824, whose 1deas
made possible one of the first proofs that the roots of general quintic equations
cannot be found by algebraic means. The mathematicians of the late 1800’s
recognized the applicability of the theory of groups to other arcas mathemat-
ics, a movement which attracted quite a bit of attention. At the turn of the
century, Frobenius published the first study of representations of finite groups
on vector spaces, the subject which we are still interested in almost 100 years
later. Frobenius’ study was of representations of finite groups over the field of
complex numbers, a study which his student, Schur, extended to study rep-
resentations of finite groups over subfields of the complex numbers, especially
the rational numbers. One important observation of Schur was that certain ir-
reducible representations over the complex numbers could not be realized over
the rational numbers, but that a finite multiple of the irreducible representation



conld always be realized. The number associated with this multiple represen-
tation came to be called the Schur indez. In the carly 1900°s, the appearance
of the Artin-Wedderburn theorem showed that the questions of rational repre-
sentations of a finite groups G could he thought of as questions of the algebraic
stractiure of the rational group algebra QG. The simple two-sided ideals of
QC, which we will call the sanple components were known to be matrix rings
over division algebras that were finite-dimensional over Q, with the square root
of this dimension bear | exactly the Schur index of the associated irreducible
representation over the rationals. In that time, Schur indices could not be com-
puted in general. However, Brauer’s characterization of the character rings of
finite groups led, in the caily 1950’s, to a reduction theorem, the Brauer-Witt
theorem, that demonstrated the existence of a subgroup of the finite group G
of a certain type that could be used to find the Schur index associated to a
simple component of QG. An algorithm for computing Schur indices associated
to groups of this type was achieved by Yamada in the late 1960’s using the
theory of crossed product algebras over local fields and several deep theorems
of algebraic number theory. This has remained the state of methods for com-
puting the Schur index associated to an irreducible rational representation of a
finite group up to now, except for certain improvements to restrictions on the
Schur index imposed by group structure that have continued to appear in the

literature.

This work began with a study of my supervisor’s attempts to find more
explicit structural information on the structure of simple components of the
group algebras of finite metabelian groups over arbitrary fields of characteristic
zero [Sh]. The motivation for this was to determine how group structure is
arranged in a simple component of a group algebra over an arbitrary field. This
was achicved by finding certain characteristic subgroups of the finite metabelian
group G that determine the center and the matrix degree to a large extent in
the case where the group is faithfully represented in the simple component.
This study led to the realization that an explicit version of the Brauer-Witt
theorem was available for finite metabelian groups [H]. The main problem for
this thesis is to find an explicit version of the Brauer-Witt theorem for a larger
class of groups, thus giving improvements to methods for computing Schur
indices associated to the simple components of rational group algebras, and to
the study of the algebraic structure of these simple components.

In order to explain our main results, fix QGay, to mean a simple component of
the rational group algebra QG. Let D be a division algebra, finite-dimensional
over (), such that QGa,, is isomorphic to a matrix ring over D. The problem of
tinding an explicit means of computing the Schur index of D will be attacked



by looking for a a precise subgroup H of the group G depending ona prive p
dividing the order of G. that can be used to divectly compute largest p power
divisor of the Schur index of D, This ditfers from the DBraver Wite theorem
in that the choice of H will be precisely stated. and that H ocan be fouad
quite casily using our knowledge of the multiplicative strueture of 470 The
classical Brauer-Wict theorem only indicates the existence of subgroups with
the properties of this H, but does Iittle that leads to a procedure for tiuding
such a subgroup starting with a general fimte group G.

The first step in this (Chapter 2) is to reduce QGa, as much as possible using,
Clifford theory. This means that we can assume that any subalgebra Q. Va, of
Qay, generated by a normal subgroup N of G is simple. Because this condition
is (possibly) stronger than the condition that every normal abelian subgroup of
G is cyclic, we use the known structure of groups that have every normal abelian
subgroup cyclic as the starting point for our investigation. The structure of such
a group G is determined tc a large extent by the structure of its characternistic
subgroups F = Cp)(®(F(G))), U = Z(F), and C = Cg(U), where F(G)
denotes the Fitting subgroup of G, the maximal normal nilpotent subgroup
of G. In particular, U is a maximal normal abelian subgroup of G (hence
cyclic), F/U is elementary abelian, G/C is abelian, and C/F is isomorphic to
a subgroup of the automorphism group of F/U that preserves the commutator
relations of F. (Thus C/F is the ouly section of G that is not under control.)

Under the assumption that QGa,, cannot be reduced further using Clifford
theory (and hence we have the subgroups F, U, and C as indicated above), we
attain our goal of finding a constructive version of the Brauer-Witt theorem i
case QFa,, = QCay. (Theorem 3.4 (iii) and Corollary 3.4.1)

Main Result. Suppose QGa, is a simple component of QG such that Ga, ™
G. Assume that every subalgebra of QGa, of the form QNa, for N < G is
simple. Let F = Cr)(2(F(G))), U = Z(F), and C = C¢;(U), where F(G)
denotes the Fitting subgroup of G. Let k be a field isomorphic to the center of
QGa,, and let p be a prime integer dividing the order i G

Then whenever QFa, = QCa,, the p-part of the Schur index of QGay is
equal to the Schur index of a simple component of kH, where H = UP, for an
arbitrary Sylow p-subgroup P of G.

As an application of the main result, we prove (pages 45 49) that the re
duction given applies to finite nilpotent-by-abelian groups onee certain units of
finite order have been added to the group.



Ter complete the demonstration of how to compute the Schur index of the
simple component QGa, . an algorithm 1s presented in Chapter 4 that demon-
airates how to compnutc the index in the case of a group that is the extension
of & eyelie group by a p-group, for a fixed prime integer p. (This is exactly the
structure of the group H of the main theorem.) The algorithm is based on the
comptation of local indices at all primes of the center, and is valid only in the
case where the center of the algebra is an algebraic number field. Such algo-
Fithins have been known to exist for several years-however, the algorithm that
we present is accessible to a wide audience because it dees not use homological
algebra and a minimal background to algebraic number theory.

The steps in the algorithm are to first reduce the algebra QGa, by localiz-
ing at a prime ¢. This means we will compute the Schur index of the algebra
Q,Gay. We again carry out all Clifford theory reductions, which means we may
assume the group G has a cyclic maximal abelian normal subgroup C, with G/C
isomorphic to the Galois group of a cyclotomic extension of the center kg of
Q,Gay. In the case that ¢ is a real prime, there is a fairly straightforward
to determine whether the simple component is a matrix algebra over the real
quaternions, an argument that is only necessary when p = 2. Under the as-
sumption that ¢ is an odd prime not equal to p, we can reduce to the case where
G is the semi-direct product of a cyclic ¢-group with a cyclic p-group. If the
order of the cyclic p-group is p®, then we give a formula (Theorem 4.4) for the
Schur index that depends only on the number of p-th power roots of unity of
the center of QGay,.

Schur Index formula (tame case). Suppose G & Cyqe % Cpa. Then a simple
component of @,Gay of QG that satisfies Gay = G has Schur index p™, where
m = max{d — £,0}, where £ is the highest p-th power of a root of unity in the

center of QGay .

In the casc ¢ = 2 we may also assume p = 2. The Schur index in this case
is at most two. The computation in this case is too complicated to describe at
this stage, and so we refer the interested reader to Theorem 4.5.



Chapter 1: Simple Components of Group Algebras

This chapter is an overview of the background information that is needed
for an understanding of the following chapters. It is assumed that the reader is
already familiar with the basic theory of groups, rings, and modules, especially
the notions of subgroup, normal subgroup, ideal, ficld, galois extensions of fields,
vector spaces, and an algebra over a field. The reader is also assumed to be
familiar with the terms homomorphism, isomorphism, and automorphism, in
cither a group-theoretic, ring-theorctic, or module-theoretic setting. Any of
this basic terminology is available in any contemporary introductory text for
abstract algebra. The main references used for this chapter will be Curtis and

Reiner [CR], Reiner [R], and Isaacs [I].
§1. Representation Theory of Finite Groups

In practical applications, groups are usually identified with interactive sets
of symmetries on an object. In physical applications, this object is usually
geometric, like an icosahedron or & cube, whereas in mathermatical applications
the object is usually a vector space. Usually there are mathematical models
available that can alter the interpretation of a physical application so that we
can interpret the action of the group as being a mathematical group acting on
a vector space. We will develop the theory from this point of view.

Let F be an arbitrary field, G be a finite group. We will think of the group
operation in G as being a multiplication. By a representation of G over F we
will mean a homomorphism of multiplicative groups &' : G — Autg(V), the
F-automorphisms of V, where V is a finite-dimensiona!l vector space over F. In
this case we say that G acts on V, or that V' is a G-moduie. The dimension of
V over F is referred to as the degree of the representation.

Let
FG = {Z agg: a4 € F}

g€G



be the natural vector space over F that has G as a free basis. There is a natural
nmltiplication on the space FG that extends the multiplication on the group
and on the ficld, being given by

(3" oga)(D_Buh) =Y > agbugh

geG heG geG heG

=YY abia)e

T€G g€G

This multiplication makes FG into a ring, and thus into an algebra over F,
called the group algebra of G over F. The central copy of F in FG is F 1, where
1 is the group identity in G.

Any representation X’ of G extends naturally to an algebra homomorphism
X :FG — Endp(V).

As before, we will refer to V as an FG-module in this case. (If we are to interpret
the endomorphisms of V as being written on the left of elements of V, then we
can avoid any confusion by calling V a left FG-module. There is no significant
difference in the theory for left modules and the theory for right modules, but
once we have fixed the convention to be used, we must stick to it.) Existence of
this extension homomorphism means that any representation of a group G over
F gives rise to an aigebra representation of the group algebra FG. By restricting
X to G, the reverse of this statement is easily seen to hold also. This means
that we can investigate the representations of the group G cver F' by examining
the representations of FG.

In order to understand a representation of FG, it is enough to understand its
“smallest” parts. We call an FG-module V' simple if the only FG-submodules
of V are 0 and V. In this case, the representation of G associated to V is called
irreducible. The endomorphism algebra Endg(V) of a simple FG-module V has
a subalgebra of an interesting type.

Schur’s Lemma [CR, 3.17] Every element of Endpg(V) is either 0 or is in-
vertible.

A ring that has every non-zero element invertible is called a division ring.
When the division ring is also an algebra over a central subfield F, it is called
a division algebra over F.



For many group algebras, every FG-module is semisimple, that is, it can be
written as a direct sumn of simple FG-modules.

Maschke’s Theorem [CR, 3.14| Every left FG-module is semisimple, as long
as the order of the finite group G is relatively prime to p whenever the field F
has positive characteristic p.

The study of representations of group algebras satisfying the conditicns of
Maschke’s Theorem is called ordinary representation theory. The other situ-
ation, when the characteristic of F is positive aud divides thie order of G, is
referred to as modular representation theory. We will be interested only in the
case where the characteristic of the field F is zero, because that is the only case
where non-trivial division algebras can cccur in simple components of the group
algebras of finite groups (I, Theorem 9.21(b)].

When the algebra FG is semisimple, then it can be decomposed into the
direct sum of two-sided ideals by the Artin-Wedderburn Theorem.

Artin-Wedderburn Theorem. [R, 7.1 and 7.4] Suppose that A is a finite-
dimensional semisimple F-algebra over a field F. Then

A=A10- 0 Ay,

where the A; are the unique minimal two-sided ideals of A. Each A; is equal
to Ae;, for a central idempotert e; of A. Each A; is isomorphic to a ring of
matrices over a division algebra D over F. This D is isomorphic to the opposite
ring for End 4(L), where L is a minimal left ideal of A that is contained in Ai.

The set {e1,...,en} of central idempotents indicated in the above theorem
is obtained by writing
l=er 4 +en

for elements e; € Ai. These elemnts e; will satisfy e;e; = 0 for z # 7, and
e;? = e, for all , because e; Zj e; = e and eje; € A; N A;. A maximal sct
of central idempotents satisfying these conditions and summing to 1 is called a
full set of centrally primitive orthogonal idempotents of A.

We call the minimal two-sided ideals of a semisimple algebra A the simple
components of A. The goal of this work is to obtain results that relate the
structure of G to the structure of a simple component FGe of FG, where ¢
is a centrally primitive idempotent of FG, for a given field F of characteristic

7



zero. In vrder to proceed, we will first need to examine some of what is known
about matrix rings over division algebras that are finite-dimensional algebras

over their centers.
42. Central Simple Algebras and the Schur index

For any field F, a finite dimensional central simple algebra over F is a matrix
ring over a division algebra with center precisely F. By the Artin-Wedderburn
Theorem, we know that in characteristic zero every simple component of FG
is a central simple algebra over its center. The dimension of a division algebra
over i%s center is an important structural invariant.

Theorem. [R, 7.15] Suppose D is a finite dimensional division algebra over a
feld F with center K. Then every maximal subfield E of D contains K and

IE@IKDE ]mem,

where m = |E : K|. The dimension of E over K is the same integer m for every
maximal subfield E of D, and |D : K| = m?.

This integer m is called the Schur index of the division algebra D. Although
it docs not determine the division algebra up to isomorphism, it “almost” does
in the case of simple components of group algebras of finite groups over local
ficlds. (We will outline this in the next section.)

A maximal subfield of the division algebra D is an example of a splitting
ficld. A finite extension E of the center K of D is called a splitting field for D
if the central simple E-algebra E ®g D = E™*™. Thus the non-commutative
division algebra part of I) vanishes under tensoring with E. (This is usually
referred to as a splitting of D.) It is known that an extension of K is a splitting
field exactly when it is isomorphic to a maximal subfield of some matrix ring
over D, and that the Schur index always divides the dimension of a splitting

field over K [R,28.5].

The Brauer Group is an algebraic object that classifies central simple algebras
up to the isomorphism classes of their division algebra parts. The elements of
the Brauer Group Br(K) of a field K are equivalence classes in which all finite
dimensional central simple algebras over K with isomorphic division algebra
parts are identified [R, 28.2]. Br(K) is an abelian group, with group operation

[4][B] = [A ®k B],

8



in which [4] and [B] are the equivalence classes determined by the central simple
K-algebras A and B, respectively. The identity clement of Br(K) i the class
[K]. Each element of Br(K) has finite order which divides the Schur index of
any central simple algebra in its class [R, 29.22]. The order of [4] € Br(K) ix
called the ezponent of A and is denoted by carp(A4). cap(Ad) is a divisor of the
Schur index of A in general.

The subset of Br(K) consisting of classes cortaining an algebra that occurs
as a simple component of KG for some finite group G forms a subgroup of
Br(K) called the Schur subgroup of K. For arbitrary ficlds of characteristic
zero, the Schur subgroup has not received much attention in the literature.
This is because representations of finite groups are always realizable in fields
that possess enough roots of unity, and so the non-trivial division algebras that
can occur will always be closely related to ones whose center is a finite extension
of the rational numbers Q. In the case where K is an algebraic number field,
that is, a finite extension field of Q, the Schur subgroup has been shown to
be the subgroup of Br(K) whose elements are classes containing cyclotomic
crossed product algebras [Y, Corollary 3.10].

A crossed product algebra is an algebra that can be constructed as follows:
Let E be a fini.e galois extension of a field K, with galois group G. Construct
a vector space over E

(E/K, f) = D Eu,
LAY
that is indexed by representatives u, of the elements of G. Define a multiplica-
tion on this space by setting

uga = a’ug, for all a € E,
and letting
uotr = f(o,T)uor,
for all 0,7 € G, for some f(o,7) € EX. In order for this multiplication to be
associative we need the map

f:GxG—EX

to be a cocycle [R, 29.2]. When f is a cocycle, it is known that (E/K, f) is a
central simple K-algebra [R, 29.6]. We call a crossed product algebra (E/K, f)
cyclotomic when E is contained in a cyclotomic extension of K and the values
of the cocycle f are all roots of unity in E.



A special type of crossed product algebra is one in which Gal(E/K) is a cyclic
group, in which case we call (E/K, f) a cyclic algebra. A cyclic algebra can be

written as
n—I

(E/K, f) = P Eu,.
1=0
whenever Gal(E/K) = (o) has order n. This cyclic algebra is always isomorphic
to one i which the values of f are completely determined by (uq)" = ¢ in K
[R, 30.3]. Thus it is customary to use the notation (E/K, ¢, () to denote a cyclic
algebra of the above form. Of course, a cyclic algebra is a cyclotomic algebra
exactly when it is possible for ¢ to be a root of unity.

Cyclic algebras are important to us because it is possible to retrieve some
information concerning their division algebra part directly from the element C.

Theorem [R, 30.4(iii) and 30.7]. Suppose that 4 = (E/K, o, ¢) is a cyclic alge-
bra. Then exp(A) is the least positive integer e such that (¢ lies in Ngw (EX).
(Ng/k(E*) is the set of norms from E to K, i.e. the elements a € K that are
of the form
n .
o= Ilﬂ”‘, for some 3 € EX.)
=0
This thcorem gives a lower bound for Schur indices of cyclic algebras in
general. In the case where K is an algebraic number field, it is a fact that the
values of the exponent and Schur index coincide. This fact is a consequence of
the localization results presented in the next section. When K is an arbitrary
field of characteristic zero, then it is known that the exponent and the Schur
index can be vastly different [N], and so the above result is not always effective
for calculating Schur indices.

§3 Localization.

In order to make sense of the equality of the exponent and the Schur index
for algebraic number fields, we have to develop the theory of local number fields.

Let p be a prime integer. By writing each integer z € Z as z = pFn, for some
n € Z that is relatively prime to p, we can define a p-adic absolute vaiue |.|; on
Z by setting

|Z|p = P-k
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for z # 0 and |0, = 0. This absolute value makes Z into a compact topological
space, with |z|, < 1 for all = € Z. The completion of Z with respect to this
topology is the ring of p-adic integers Z,. Non-zero clements of Z, can be

o
Z (Y,'pi

1=0

expressed as infinite sums

with each a; € Z/pZ = F,. The absolute value of such a sum is » % whenever
k is the least integer for which ax # 0. Z, is an integral domain, and its field of
quotients is called the p-adic number field Q. It is known that the completion
of the algebraic closure of Q, is a field that is algebraically isomorphic to the
field of complex numbers C. For this reason, it is sometimes customary to
think of Q, as being a subfield of C, even though the topologies on the two are
completely unrelated. Elements of Q, can be written in the form

©0 .
Z a;p'

i=n
for some o; € F, satisfying an # 0, for some n € Z.

It is also possible to do this construction starting with an algebraic number
field F. The ring of integers O in IF is the set of all clements of F that are
integral over Z, that is, are roots of monic polynomials in Z[X]. If p is a prime
ideal of Op, then we can define an absolute value ||, on Of by ja|, == the least
power of the ideal p that lies in the principal ideal aOF [R, page 52]. Completing
with respect to this topology results in an integral domain, and so forming the
field of fractions gives us a field, which we call F,. (Sometimes the prime idcal
p will be referred to as a prime of F. This terminology also refers to inclusions
of F into the field of complex numbers for algebraic number theory reasons.)
We can view F in a natural way as & subfield of F,. Elements of F, can all b(-
written as infinite sums

[ole]

= .
:5.4 O','ﬂ" )

i=zn

with all a; € Op/p, an # 0, for some n € Z, and 7 an element which generates
the unique maximal ideal in the topological completion of Op. We call such an
element 7 a uniformizer of F,. If p lies above the prime ideal pZ, then Oy /pisa
finite extension of the finite field IF,. We call Of/p the residue cluss field of Fy.
It is also always possible to choose the topology on F, so that there is an integer
e so that m© generates the completion of pOy, and so we can view the ficld Fy

as being a finite extension of @p. (It is also true that any finite extension of
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Q, is a field of the above type.) The degree of the extension |Fp : Qp] is the
product of two parts, the residue degree f = |Op/p : Fp| and the ramification
indez ¢, which is the least integer so that |7¢[, = |plp. An extension of fields
whose degree is precisely f is called unramified. An extension whose degree
equals ¢ is called totally ramified. A totally ramified extension of degree prime
to p is called tamely ramified, and if its degree is a power of p then it is called

wildly ramafied.

By a local field we will mean either a finite extension of some p-adic number
field Qp (a p-adic local field) or the field of real numbers R. (There are also
some fields of prime characteristic that are commonly referred to as local fields,
but these will not be needed here.) Most of the facts we need about p-adic local
ficlds concern cvclotomic extensions of Q,, which we now list.

Theorem. Let (n be a fixed primitive complex n-th root of unity, for each
integern 2 1.

(i) Qp(¢px) for k > 1 is totally ramified over Q, of degree pF=1(p — 1), with
uniformizer (1 — (yx).

(ii) Ifn is relatively prime to p, then Qp((y) is unramified over Qp, and Qp(¢n) =
Qp(Cpr—1), where f is the order of n modulo p. (f is the residue class degree
for this extension.)

If A is a simple algebra whose center is an algebraic number field F, then
we can also speak of localizing A. This will mean that we take a local field Fp
obtained by localizing at a prime of F (possibly F, =R when F is a subfield of
the recals), and form the tensor product

This new algebra can be viewed as a central simple algebra over F,. The Schur
index m(A,) is called the p-local indez of A.

The advantage of localizing the algebra is that division algebras over F), are
much more restricted than those over F. Each division algebra over a local field
is determined by an interaction between two maximal subfields [We]. Each such
division algebra contains maximal subfields that are unramified over the center
F,. These maximal subfields will be isomorphic to Fp (Cps —1), for some root of
unity Cps_; satisfying |Fy((pr—y) : Fy| = m, where m is the Schur index. There
are also a maximal subfields of the division algebra that are totally ramified
over F,. One of these totally ramified maximal subfields F, () can be chosen

12



so that its primitive clement 7 is a uniformizer of Fy (7). and 7 normaiizes the
cyclic group (Cpr—1). In particular,

(Cpr )™ = Cpr o1

for some integer b. The isomorphism class of the algebra is determned by the
power of the Frobenius automorphism

Cpr =1 = (Cpr 1)

on the extension F, ((ps—1)/Fp that corresponds to conjugation by m. If this
power is t, then the fraction - is a lowest terms fraction lying in the interval
(0,1]. This fraction is called the Hasse invariant for the division algebra, and
determines a divisicn algebra over a local field up to isomorphism. (In fact,
the isomorphism class of a division algebra over an algebraic number field is
precisely determined by the collection of all the Hasse invariants over all pos-
sible primes of the center. This means that these are much more complicated
algebraically than th-ir localizations are.)

The information we get from the localized algebras has implications for the
structure of the algebra A as given by the next result. This result is a conse-
quence of the Hasse Norm Theorem, the Hasse-Brauer-Noether-Albert Theo-
rem, and the Grunwald-Wang Theorem in algebraic number theory.

Theorem. [R, 32.17 and 32.19] Suppose that A is a central simple algebra
over an algebraic number field Then

m(A) = ezp(A) = L.C.M.{m(Ap)},

where {Ap} is the set of ail possible localizations of the algebra A, including
R ®f A if F is real.

In the case that A is a cyclotomic cressed product algebra over an aigebraic
number field, Benard [B] has shown that for any two primes py, p; of the central
field F lying over the same rational prime p of Q, the Schur indices of A, aud
Ap, will be the same. However, the Hasse invariants of the localized algebras
can be different, and in fact when p runs through all primes of the center lying
over p, every fraction ﬁ with (t,m) = 1 occurs equally often as a Hasse invariant
of the algebra A, [BS, Corollary 1]. Thus the actual isomorphism class of a
particular localization Fy Ge is determined only by the particular prime p chosen
to lie over p. This result indicates that if F is an algebraic number field and G
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is a iinite group, then determining the Schur index of a simple component FGe
also determines the set of isomorphism classes of the simple components of the
localized algebras that occur over each rational prime. However, once the Schur
index is known, the actual isomorphism class of a partienlar FC'e depends on
a subtle interplay between the field arithmetic and the group operation. This

what we mean when we say that the Schur index "almost™ determines the
isomorphism class of the division algebra part of FGe.

The problem of classifying finite subgroups of division algebras has been
completely solved [Am] (see also [SW]), and has been extended to a classification
of finite subgroups of 2 x 2 matrices over a division algebra [Ban]. The groups
that appear in this classification will be all those groups whose group algebra
over some field has a simple component that is either a division algebra all
by itself or a 2 x 2 matrix ring over a division algebra. These do not form a
complete list of the division algebras that occur in simple components of group
algebras over finite groups, however. For example, suppose p and g are odd
primes such that g — 1 is exactly divisible by p", for an integer n 2> 2. Define a

group G by
G = Cy % Cpn-1(g-1) = (@) @ (z)

where x acts with order ¢ — 1 on (a). (See §5 for an explanation of this nota-
tion.) Then there is a simple component QGe of the group algebra QG that is
isomorphic to the cyclic algebra

(Q(qu"—l )/Q(Cp"—l )a T, mq—l = Cp""l)'

(We will sce in Chapter 4 how this is done.) The only primes of the center
Q(¢pn-1) for which the local index is non-trivial will be the ones lying over the
prime ¢, and there norm calculations will yield an index of p®~!. This means
the matrix degree for this simple component is at least p. However, a theorem of
Pendergrass [Pen, Corollary 2] indicates that the smallest matrix degree possible
for a simple component of a group algebra of any finite group to have this
particular division algebra part is 4= > p. Therefore, the simple component
indicated by the above cyclic algebra is one for which its division algebra part
occurs with minimal matrix degree. (This example is based on {Sh, Example
3.7). At this point it is still unknown how to extract a presentation for this
division algebra as a cyclic algebra from the above cyclic algebra presentation.
Such presentations are known to be possible by [R, 32.20], but in this case the
factor set will not consist of roots of unity.)
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84. Character Theory.

In this section we will outline the basie results in the character theory of
finite groups that we will need in subsequent chapters. The advantage of us
ing character theory for us will be that it is quite casy to keep track of the
relationships between an jrreducible representation of G with the restriction of
that representation to its subgroups. The difliculties of doing character theory
over non-algebraically closed fields will be avoided we will always work with
complex characters.

Let G be a finite group, and suppose that ¥ is an n-dimensional CG-module,
with associated representation

A :CG — Endc(V)=C' "
The character afforded by A’ (or V) is the map
x:G—C

defined by
x(g) == tr(X(g)), for all g € G.

It is easy to see that x(1) = n, and x Is constant on conjugacy classes of G.
The most important property of characters is that whenever two complex G-
modules are G-isomorphic, then their characters are exactly the same. Thus
the set of irreducible complex G-modules is in bijective correspondence with
the set of characters afforded by these modules. We call a character afforded
by an irreducible complex G-module an irreducible character, and denote the
set of irreducible characters of G by Irr(G).

Because any complex representation of G can be decomposed into a sum of
irreducible representations, any character of G can be decomposed into a sum
of positive integer multiples of elements of Ir7(G). The most useful example of
this is when we decompose CG as a G-module. We have

CG = CGe; @ - - ® CGey

where {e; : 1 < i < k} is a full set of centrally primitive orthogonal idem-
potents of CG, and each simple component CGe; is the opposite ring for the
endomorphism ring of a simple CG-module V;. Thus the dimension of cach
simple component CGe; is the square of the dimension of V;. As cach sitple
coniponent is the sum of dim(V;) G-isomorphic simple modules, the character



afforded by CGe, is xi(1)x:, whenever V; affords the character x; € Irr(G).

The character
b= 3 a(y
YEIrr{()

afforded by the G-module CG is called the regular character of G.

The irreducible characters of G not only determine the isomorphism classes
of simple CG-modules, they also determine the idempotents ¢; as well. Given
x € Irr(G), the centrally primitive idempotent for the simple component of
CG determined by a simple G-module affording x is [I, 2.12]

1 -1
Cx = %Il > x(g™g.

geG

It is a fact that the values x(g) are all algebraic over Z [I, 3.6]. Because G is
finite this implies that all x(g) are contained in a finite extension of Q. We
define the field of character values Q(x) to be Q({x(g) : ¢ € G}). This field
will always be a galois extension of Q because it can be shown to lie in the
cyclotomic extension Q(.), with e being the exponent of the group G.

The idempotent e, always lies in the subalgebra Q(x)G of CG. This means
that Q(x)Ge, must be a simple component of Q(x)G, because otherwise ey
would decompose as a sum of central idempotents in the smaller algebra. If k
is a subfield of Q(x), then there is a unique cenirally primitive idempotent for
kG that is not orthogonal to e,. This idempotent is given by

_ o
ax—E:ex,

o€G

with G = Gal(Q(x)/k). (We extend the action of G on Q(x) to Q(x)G by
acting trivially on elements of G.) That ay is a central idempotent of kG
follows from all of the e, ?’s being central idempotents of Q(x)G. It is primitive
in kG because the sum of galois conjugates of e, is the minimal sum of centrally
primitive idempotents of Q(x} that can lie in kG. (Note that the notation ay
depends on the particular field k chosen. Also, replacing Q by an arbitrary
subfield F of C would not make much difference for this. The idempotents
would be the e,’s as long as Q(v) C F, and otherwise we can use a,’s that are
similarly defined sums of galois conjugates.)

So given a subfield F of C and a finite group G, each x € Irr(G) defines a
unique simple component FGa,, of FG. (The same FGa, will be associated to
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more than one \ when F # F(y).) The Schur index of the simple component
FGay we will denote by mp(x). It is well known that the center of FGa, is
always isomorphic to the field of character values F(y). and that there is an
isomorphism of the simple components

FGa, = F(\)Gc\

Y, Propositions 1.4 and 1.8]. This means that we always have mp(y) =
miy) (1)

The rest of what we need from character theory is considered quite standard.
If H is a subgroup of the group G and x is a character of G, then we can de hm
the restriction x,, of x to H by x,(h) = x(h), for all h € H. Of course, \,, 1
the character of H afforded by the restriction of a G-representation aﬁ'mding
x to H. Conversely, given an H-module V over C, we can define the induced
G-module from V by

V= @rer(V ®1)

where T is a right transversal of H in G. (A transversal is a set of coset
representatives that contains the element 1.) If g € G, then by writing g =
hgtg, for h € H, t € T, we get an action of G on V@ by letting ¢g.(v ® t) =
hyh(tg,t).v@t(ty,t), where tyt = h(ty,t)t (tg,t) for h(ty,t) € H and t(t,,t) € T.
The character afforded by VG is denoted by ¥€ whenever 9 is the ch(u acter of
H afforded by V. We call 1 the induced character. The formula for caleulating
the values of %€ from those of ¢ is

Gg) =D 4°(t7gt),
teT

where

P(g), ifge H

0, otherwise.

¥°(g) = {

Induction and restriction are related by Frobenius reciprocity, which we will
now explain. If we consider the abstract character ring

ZIrr(@)]={ D 2zxx: allz €Z}
x€Irr(G)

then we can define an inner product (-, -) on this ring by extending the following
orthogonality relation on the irreducible characters bilinearly to all of Z{Irr(G)].
The orthogonality relation is

EG
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which is known to have the properties (x, x) = 1 and (x, ) = 0 whenever ¢ €
Irr(G) is distinet from x [I, 2.13]. If ¢ is any character of G, and x € Irr(G),
then (@, x) is the multiplicity to which the irreducible representation affording

x occurs in a representation affording ¢. When (¢, x) is non-zero, then we call
x an irreducible constituent of .

A natural relation between induced and restricted characters is given in terms

of the inner products on Z[Irr(H)] and Z[Irr(G)}.

Frobenius Reciprocity [I, 5.2] Let H be a subgroup of G, x be a character
of G, and ¢ be a charactes of H. Then

(%) = (Xu» ¥)-

Given an irreducible character x of G, and a subgroup H of G, the restricted
character x, always decomposes as

X}I = Z (Xuad’)d)a

yelrr(H)
so that only the irreducible constituents of ¢ appear in the sum.

When H is a normal subgroup of G, then there is an action of G on Irr(H )
that is given by ¥9(h) = P(ghg™!), for all h € H, 5 € G. (Of course, Pt =1
for all h € H because characters are constant on the conjugacy classes of H )
In this case, we call ¢ a G-conjugate of 1. We can use this to make x, even
simpler when H is a normal subgroup of G. ’

Clifford’s Theorem [I, 6.2] Let H be a normal subgroup of G and let x €
Irr(G). Let 9,...,9% be all of the G-conjugates of 1. Then ¢9%,...,9¥%

are all of the irreducible constituents of x,,, and

k

XH :eZd’gi-

1=1

(Thus the multiplicity of 9 in x, is the same integer e for every G-conjugates
of ¥.)

The situations where we obtain the most information occur when either
an irreducible character on a normal subgroup H induces to an irreducible
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character of G, or when an irreducible character of G restricts to an irreducible
character of H.

Proposition. Suppose that H is a normal subgroup of the finite group G.
(i) If & € Irr(H) and v¢ = x € Irr(G), then

Xy = D V'

teT

for a transversal T of H in G.

(ii) (Gallagher, (1, 6.17)) If x € Irr(G) and x,; = ¢ € Irr(H), then the charac-
ters ya for a € Itr(G/H) are distinct irreducible characters of G, and are
all of the irreducible constituents of .

(By xo we mean the pointwise product of the characters x and a. This will
also be a character of G. We consider each a as an element of Irr(G) by using
the fact that a representation of G/H affording a has H in its kernel, and thus
can be interpreted as being a representation of G that maps elements of H to
the identity.)

In the situation where H is a normal subgroup of G and x € Irr(G) is induced
from H, it follows from the formula for induced characters that x(g) = 0, for
all g € G\ H. A character of G that has this property with respect to some
subgroup N is said to vanish off N.

In the situations of the above proposition, something can also be said about
the relation of the Schur index mg(x) to mg(%).

Proposition. [I, Problem 10.1] Suppose that H is a normal subgroup of the
finite group G. Let F be a subfield of C.
(i) If x € Irr(G) is such that x, = € Irr(H), then
mr(x) < me() < [G : Hlmg(x)-
(ii) If ¢ € Irr(H) is such that © = x € Irr(G), then

mp(y) < mp(x) < [G : Hlmg().
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45. Group Theory

Quite a bit of familiarity with standard group theory will be needed for an
appreciation of this work. Here we will give all of the relevant definitions and

background results.

A cyclic group is a group in which every element is a power of some fixed
clement. We denote a cyclic group of order n by Cp, and the cyclic group
generated by the element a by (a). An abelian group is a group that has
a commutative group operation. Otherwise, the group is called non-abelian.
The Fundamental Theorem of Abelian Groups states that every finite abelian
group can be written as the direct product of cyclic groups. A group is called
elementary abelian if it is the direct product of cyclic groups all having prime

order.

A group G that has order a power of the prime number p is called a p-group.
If the order of a finite group is divisible by a prime number p, then G always
has subgroups that have order the maximal power of p dividing the order of the
group, called Sylow p-subgroups.

In chapter 2, certain types of non-abelian 2-groups will come to our attention.
A dihedral 2-group Djn (n > 3) is a group that has an abstract presentation of
the form
(XY : X =1,Y?2=1,XY =YX}).

(This means that the group Dz~ consists of all possible combinations of the
abstract generators X and Y, subject to the relations indicated. In particular,
the first two relations indicate that the elements represented by X and Y have
finite order. The last is a rule that shows how to shuffle X’s and Y’s past
one another, because it indicates that XY = Y X~!. This implies that the
subgroup (X) is normal in D3n, and every element of D2~ can be expressed as
YiXJ, withi=0,1and j=0,...,2"71 - 1))

A generalized quaternion group @z~ (n > 3) has presentation of the form
(XY : X =1, 72 =X""7 XY =YX).
A semi-dihedral group SD;n (n > 4) has presentation of the form
X,V : X' =L,V =X"T Xy =YX,
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A group G is called nilpotent if it is the direct product of its Sylow subgroups.
The Fitting Subgroup F(G) of a group G is the unique maximal nilpotent normal
subgroup of G. The Frattini subgroup ®(G) of a group G 1s the intersection of
all of the maximal proper subgroups of G. For finite groups G. ¢(G) is always a
nilpotent normal subgroup of G, and F(G)/®(G) is always clementary abelian.

The center Z(G) of a finite group G is the subgroup of G consisting of all
elements that commute with every element of G. Z(G) is always an abelian
normal (and characteristic) subgroup of G. Nilpotent groups always have non-
trivial centers. If we consider the series of normal subgroups Z; of G defined
by Z, = Z(G), Zi/Zi-x = Z(G/Z;-1) for 1 > 1, we see that for nilpotent
groups G, Z, = G for some n. The smallest n for which this holds is called the
nilpotency class of the nilpotent group G. Groups of nilpotency class 1 are of
course abelian. Certain characters of a group of nilpotency class 2 have special
properties.

Proposition. [I, 2.31] Suppose G is a group of nilpotency class 2. Suppose
x € Irr(G) is a faithful irreducible character of G. (Faithful means that the
kernel of a representation affording x is 1.)

Then x vanishes off Z(G) and x(1)* = [G : Z(G)).

The commutator subgroup (or derived subgroup) G’ of a group G is the
subgroup of G generated by all commutators [z,y] = z 'y lry, z,y € G. The
factor group G/G’ is always abelian, and in fact if G/H is abclian for some
normal subgroup H of G, then G’ C H. A group is called solvable when the
series of derived subgroups G = G/, G = (GU~VY for ¢ > 1 terminates
with G(™ = 1 for some n.

A section of a group G is a factor group of the form H/K, where H, K are
subgroups of G and K is a normal subgroup of the group H. We call a section
H/K of G a chief factor of G when both H and K are normal subgroups of
G and there is no normal subgroup of G that lies properly between H and K.
Finite solvable groups are preciscly the finite groups whose chief factors are all
abelian. When a group is not solvable, it has a chief factor that contains a non-
abelian simple group. A simple group is a group that has no normal subgroups
other than 1 and itself.

When G is solvable, the least integer n with G{™ = 1 is called the derived
length of G. Groups of derived length 1 are again abelian groups. Groups
of derived length 2 are called metabelian. Metabelian groups also have a nice
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character-theoretic property in that any faithful irreducible character has to be
induced from a maximal abelian subgroup.

In chapter 3, we will come to be interested in nilpotent-by-abelian groups.
These are finite groups G that satisfy G’ € F(G), or alternatively, finite groups
G that have a nilpotent normal subgroup N with G/N abelian. In general, to
call a group (something)-by-(something) means that there is a normal subgroup
N of G such that the group N satisfies the first property and G/N satisfies the
second. Whenever G has a normal subgroup N, we say that G ezstends N.
When G extends N and G has subgroup H such that G = NH and NNH =1,
then we call G the split extension of N by H, and write G = N x H. The split
extension of a cyclic group by another cyclic group is called a metacyclic group.

Finally, we will need to be familiar with the structure and the character
theory of the extraspecial p-groups that we will encounter in Chapters 2 and 3.

A p-group E is esztraspecial if
E'=Z(E)=®(E)=C,.

In this case, we have that E/Z(E) is the direct product of cyclic groups of order
p because E/®(E) is elementary abelian. This means that the exponent of E
has to be either p or p?. Extraspecial p-groups always have order greater than
or equal to p3, because groups of order p? are always abelian. When p = 2, the
extraspecial 2-groups of order 8 are just Dg and Qs, both of exponent 4. For odd
primes p, the extraspecial p-groups of order p* have either of the presentations

[G, Theorem 5.1]

(X,Y,Z:XP=YP=2°=1,[X,Z]=[V,Z] = L,[X,Y] = Z)

or

(X,Y : XP =y?P=1,XY = xrt).

The first of these is a presentation of a group having exponent p, the other will
give a group of exponent p.

A central product of two groups G;, G, having isomorphic centers is a homo-
morphic image of the direct product of the two groups with the homomorphism
having kernel {z7¢(z) : z € Z(G1)} with ¢ : Z(G1) — Z(G2) a fixed isomor-
phism. It is known that any extraspecial p-group E of order p?"t1 is the central
product of r extraspecial p-groups of order p® [G, Theorem 5.2]. If p = 2, then
E will either be the central product of 7 dihedral groups or the central product
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of r — 1 copies of Dy with one copy of Qz. If p is odd and E has exponent p,
then E is the direct product of » extraspecial groups of order p? and exponent
p. If E has odd exponent p?, then E is the central product of 7 - 1 groups of
exponent p with one of exponent p* [Hup, §1II, 13.7 and 13.8].

The extraspecial p-groups that we will encounter will all have exponent
or odd exponent p. For these groups, the simple components of their rational
group algebras are quite well known.

Proposition. [G, Theorems 5.4 and 5.5] Let E be an extraspecial p-group of
order p*"t1. Then there are p — 1 faithful irreducible characters x € Irr(E).
and for each such ¥,

(i) x(1) =p";

(ii) Xz, = P" A, for a faithful linear character A of Z(E);

(iii) Q) = QG);

(iv) mo(x) = 1 unless p =2 and E is the central product of r —1 dihedral groups

of order 8 with a quaternion group of order 8, in which case mg(x) = 2.

The property (ii) above indicates that each of thesc faithful characters is fully
ramified with respect to the subgroup Z(E) [I, Problem 6.3]. In this situation,
ME = p"x also holds.

Let F be a subfield of C, H be a normal subgroup of G, and x € Irr(G). We
say that FGa,, is a crossed product over its subalgebra FHay by G/ H whenever

where T is a transversal of H in G. When x is fully ramified with respect to

H, this is an example of this situation. For a proof of this and other instances
of FGa, being a crossed product algebra, we refer the reader to Theorem 2.3.
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Chapter 2: Clifford Theory and its Consequences

Clifford Theory is a description of how induction and restriction of modules
with respect to a finite group G behave with respect to normal subgroups of G.
In this chapter we give a version of Clifford’s Theorem in terms of idempotents
and simple components of group algebras. We will use this to establish an
isomorphism from a simple compcnent of the group algebra QG to a matrix
ring over a simple component of the group algebra of a subgroup of G. The
division algebra parts of these two simple components will be the same, and
so we can interpret this as a reduction of the division algebra problem for a
character of G to the division algebra problem for a character of a subgroup
of G. We conclude the chapter with a partial characterization of the types of
groups that occur as the end results of non-trivial reductions of this type, based

on [MW,Section 1].

Let G be a finite group and let x € Irr(G) be a fixed irreducible complex
character of G. We might as well assume that x is a faithful character of G.
Let k = Q(x) be the field of character values of x. Let

ex = )%lll > x(g7M)g

geG

denote the centrally primitive idempotent of kG determined by x. The simple
component kGe, is a G-module affording the character x(1)x because the mul-
tiplicity of x as a constituent of the regular character of G is x(1). Since k is
the centre of kGe,, this is another way to say that the dimension of kGey over

kis x(1)2.

Suppose that N is a normal subgroup of G. Consider the subalgebra k Ne, of
kGe, that is generated by N. kNe, is semisimple because it is a homomorphic
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image of the semisimple algebra kN. Thus we can decompose kN e, as a direct
sum of simple algebras
kNey, = @2 kNey,

where the ¢; are a full set of centrally primitive orthogoual idempotents of
kNe,. These ¢, can in fact be determined from the characters of N. Let {ax}
be a full set of centrally primitive orthogonal idempotents of k/N. Since

kNexy=( %

A€lrr(N)

kNay)ey,

and e, is the multiplicative identity in k(fey, the only simple components k Na
of kN that will be non-zero after multiplication by e, are those for which

axey # 0.

When this happens, the algebra kNaye, has to be isomorphic to the simple
algebra kNay. Thus e; = ay,e, for scme A; € Irr(N), for alli = 1,...,m.
The next result shows that {\; : i = 1,...,m} is exactly the set of irreducible
characters of N for which (xy,A) #0. :

Proposition 2.1. If A € Irr(N) then ayey, # 0 if and only if (x,A) # 0.

Proof: If axe, # 0, then kGayey is a non-zero left ideal of kGe,. Thus kGayey,
is a sum of minimal left ideals of kGe,, all of which afford the character x as
a G-module, so kGaye, affords a multiple nx of x. Since kNay affords the
character |k()) : k|A\(1)X as an N-module, we know thai kGaye, will afford
the induced character |k()) : k|A(1)A® as a G-module. A comparison of these
characters shows that (A%, x) # 0, and so Frobenius reciprocity implies that
(A xx) # 0, as required.

On the other hand, if (x5,)) # 0, then (A%, x) # 0. Since kGa, affords
the induced character [k(}) : K|A(1)A® as a G-module, kGay must contain a
minimal left ideal affording the character x. Since multiplication by e, will not
annihilate this ideal, we see that kGe,ay # 0, and hence eyax # 0. W

Fix a constituent A of x,, and put e; := axey. Identify G with the set
Ge, = {gey : g € G}. Because G is a set of units in kGe, and N is a normal
subgroup of G, each ay%e, is another centrally primitive idempotent of k Ne,.
Let Cg(e1) be the centralizer of this idempotent, and let T be a transversal of
Cc(e1) in G. The element

Z a,\te,<

teT
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will be a central idetupotent of the algebra kGey, and so must be equal to e,.
Since {€; : i = 1...m} is a full set of centrally primitive orthogonal idempotents

of kNe,, we have
m

§ €y = €y,

=1
and no proper subset of these e;’s can sum to the identity ey. This forces G to
act transitively on the set {e; : 7 = 1,...,m}, and hence on the simple compo-
nents k Naye, of the subalgebra k/Ney. In particular, each simple component
k Nayey has the same dimension |k(A) : k|A(1)? over k and affords a character
that is G-conjugate to |k(A) : k|A(1)A. When ¢, is not central in G, the next re-
sult applies to give a reduction of the problem of computing the Schur index of
kGe, to that of computing the Schur index of a simple component of kCs(er).

Proposition 2.2 Let T = {t; : i =1,...,m} be a transversal of Cg(e1) in G.

(i) The set of elements
{t;_leltj :1<14,7 <m}

is a set of matrix units in the algebra kGe,,.
(i) e is a centrally primitive idempotent of kCg(e1)-
(i) kGey = (kCg(e1)er)™ ™, with m = |G : Cg(e1)|-

Proof: Because the action of G on the set of conjugates of axe, is well-defined,

we see that the the number of G-conjugates of €; is the index of Cg(e;) =
Cg(ay) in G. To prove (i), we need to show that for any ¢,5,k,€ € {1,...,m},

ti—leltla -‘f] = k,

ti lertity tegte =
' ™ ! 0 otherwise

and

Y tilerti =ey.

=1

Both of these properties are consequences of the set {ax'ey : t € T'} being a full
set of centrally primitive orthogonal idempotents of k Ne,. We have

ti Yertjti Yerte =t Mt (€1 )Y (e1) * tx T e,

which is 0 unless j = k, in which case this becomes ¢;"'e;t¢. Also, we know
that 3 cre1’ = Y e ar‘ex = ey, the multiplicative identity of k«Ne,.
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A well-known result (see [P, Lemma 6.1.6]) concerning the existence of matrix
units of the type described in (1) gives a natural isomorphism

kGey = (e1kGeyer)™ ™.
The algebra e;kGe, € 1s generated over k := ke by the set of elements {¢gey :
g € G». Bowever, for any g € G, writing g = ct for some ¢ € Cg(¢y) and t € T
gives
€1ge = Clct(’] = C€1t6] = (‘tl.’"lf('l =)
unless t = 1 and g € Cg(e3). Thus
e1kGeyer =kCaqley)en,

provirig (iii). Simplicity of kGey and the above isomorphism implies that
kCq(e1)er is also simple, and so e; must be a centrally primitive idempotent
of kCr(eqr). B

1n fact, more can be said concerning the idempotent e; than is done in
Proposition 2.2. Orie of the consequences of (lifford’s Theorem for characters is
that y is induced by a unique irreducible character lying over A of the stabilizer
Ig()) of X in G [I, Theorem 6.11]. Because Ig(A) is also the stabilizer of ¢, in
the action of G by conjugation in CG, Ig(A) naturally lies inside the stabilizer
of ay. 'Thus x is induced from Cg(ay), and for this induction we can take a
character ¢ € Irr(Cg(ay)) that lies over ). Since x = %%, from the formula for
induced characters i% follows that x vanishes off Cg(ay), and so ey € kCg(ay,).
Thus e, is the sum of centrally primitive idempotents of kCg(ay,, one of which
has to be ay, the idempotent of kCg(ay) determined by 9. In fact, x = A

implies that

€x = Z el/lt’

teT

because each non-identity ¢ € T cannot stabilize e, and so this has to be the
primitive central idempotent of CG determined by the idempotent ey. Also, as
ay is a central idempotent in CCq(ay), we know that ay is a sum of centrally
primitive idempotents of CCg(ay). By Proposition 2.1 one of these idempotents
will be ey,. Because multiplication by ey annihilates all of the other idempotents
in this sum, we have ayey = ey. Furthermore,

)€y = a) Z e,/,t

teT

= a)‘Zewe

teT
=ayey +0

= ew,
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beeinse the characters %! do not lie over A, for t # 1. As both of ax and ey
belong to kG, this proves that ey € kG, and hence k(¢) = k. (In particular,
ay = ¢, with respect to the field k).

Thus part (iii) of the above proposition can be made more precise. 'There is

an isomorphism

kGe, = (lkC(;((l)‘)(.’d,)mxm,
where m = |G : Cglay)l, for any ¥ € Irr(Cg(an)) for which (¥, ) # 0.

This gives a non-trivial reduction of the Schur index problem for the faithful
character x of G to a Schur index problem for a faithful character ¥ of a section
Ce(ay)/(ker ) of G, whenever the subalgebra kNe, of kGe, is not simple. We
will call a reduction of this type a Clifford Theory reduction.

Starting with G and its faithful character x, we can iterate Clifford Theory
reductions as follows: if we find a normal subgroup N of G for which kNey is
not simple, then choose a constituent A € Irr(N) of x. We know that kGey
is a matrix ring over kCg(ax)ey, ¥ as above, with the matrix degree being
|G : Ci(ay)| > 1. Interpret ¥ as being a faithful character of

N = Colar)/(ker ).

Then the division algebra part of kGe, is the same as that of kNey, where ey, =
ay is now the centrally primitive idempotent of kN determined by ¢ € Irr(N).
Now replace N by G, ¢ by x, and continue. This process of Clifford Theory
reductions stops when we reach a group G and faithful character x € I rr(G)
for which kNe, is simple for every normal subgroup N of G.

Before proceeding to an algebra that will be the limit of Clifford theory
reductions, we should indicate that it is sometimes evident from character-
theoretic information that kGe, is a crossed product over its subalgebra kNey
by G/N, when N is a normal subgroup of G. Such siniple criteria for crossed
product results are sometimes useful.

Theorem 2.3 Suppose that G is a finite group, x € Irr(G), N is a normal
subgroup of G, and F is a subfield of the complex numbers.
(i) If x is fully ramified with respect to N, then FGay is a crossed product over
FNa, by G/N.
(i) If x = ¢S, for some p € Irr(N), then FGay is a crossed product over FNa,
by G/N.
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(iii) If Xy = ¥, for some v € Irr(N). then FGa, = FNa, Spey F(V). i
particular, FGa, is a crossed product over FNa, by G/N exactly when

(G : N} = |F(x) : F(¥)].

Proof. (i). When y is fully ramified with respect to .V, we have \ = ey,
for some ¥ € Irr(N), and the integer ¢ satisfies ¢@ = |G+ N|. Furthermore,
the character y vanishes off N, so F(v») = F(\). This means that a, = ay as
elements of FG.
We always have that
FGa, = Z FNa,t,
teT

for any transversal T of N in G. Thus
|[FGay : FNa,| < [G: N].

However, when x is fully ramified over N,

. _ [FGay - F(x)|
|FGay : FNay| FNa, - F(Y)
_ x(1)?
P(1)?
=[G : NJ].

(ii). First, we will prove this in the case where F = C. When x = P, we
know that x(1) = [G : N]¢(1). Thus the dimension of CGey over C is equal to
[G : NJ?%(1)%. Since x vanishes off N, we know that ey is an clement of CN.
Since the G-conjugates ¥ for t € T are all distinct, and are the only irreducible
constituents of x, , by Proposition 2.1 we must have

€x = Z(:‘#,t = E(e./,)l.

teT teT

Therefore,
CNe, = ®ter(CNey)".

Now we have

CGey = Z(CNex)u
ueT

=D (Brer(CNey)' Ju
ueT
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and so the dimension count implies that the first sum must also be direct.
If F is any subfield of C containing Q(%), the above proof will work with F
replacing C. Otherwise, we use the isomorphism

FGa, = F(x)Gey
to assume that F = F(x). In this case, we know that
FNey = Gyes(FNay)?

where S is a transversal of the stabilizer Cg(ay) of the idempotent ay in G.
Then
FGey = Y (@ses(CNay)*)t,
teT

50

x(1)? < [G: NJ[G : Co(ay)lb(1)*|F(¥) : Fl.

The result then follows because |F(3) : F| = [Cg(ay) : N] when x is induced
from the normal subgroup N.

(iii). The assumption x,y € Irr(N) implies that restricting an irreducible
representation affording x to N gives an irreducible representation of N over C.
Thus CNe, is simple, and so F(x)Ney must also be simple. Since x(1) = (1),
the algebras F(x)Gey and F(3)Ney, have the same dimen: on over their centers.
However, xy = 3 implies that F(p) C F(x), and exey = ey, so F(x)Ney =
F(x)Ne,. This forces

F(x)Gex = F(x)Ney

because both algebras have the same dimension over their central copy of F(x).
Since F(x)Ney is a scalar extension of the simple algebra F(:))Ney, we have
an isomorphism

F(x)Gex = F(y)Ney ®ry) Flx)-

Now the isomorphisras F(1))Ney = FNay and F(x)Gay = FGa, complete the
proof of (iii). H

We will now proceed by giving a partial classification of the groups that
have no non-trivial Clifford Theory reductions on one of their faithful charac-
ters. This is achieved using a known classification of groups with the property
that every normal abelian subgroup is cyclic [MW, Section 1]. If we have a
group G and character x that has been obtained as the terminal point of possi-
ble Clifford Theory reductions, then G can be seen to possess this property. (If
N is an abelian normal subgroup of G, kNe, being simple implies that kNe,
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is commutative and simple, hence is a field. Thus N = Ney is a finite nlt
plicative subgroup of this field, and so N has te be cyelic.) We should remark
that, however, the property that every abelian normal subgroup of G is cyclic
does not seem to characterize completely those groups that do not allow any
non-trivial Clifford Theory reductions with respect to some faithful irreducible
character-although the author has been unable to offer an example to illustrate
this possible discrepancy. For our purposes in future chapters we must imsist
that this stronger condition be assumed.

Assume that G is a finite group, not necessarily solvable, heving the property
that all of its normal abelian subgroups are cyclic. Let I{£7) be the Fitting
Subgroup of &, the maximal nilpotent normal subgroup of G. Our assump-
tion about G implies that every characteristic abelian subgroup of F(G) is
cyclic. Since F((G) is nilpotent, F(G) is the direct product of Sylow subgroaps
P,,..., P, all of which will be characteristic in both G and F(G). (k>0
whenever G # 1.) These Sylow subgroups must also have the property that
all of their characteristic abelian subgroups are cyclic. Our main theorem on
the structure of G relies heavily on the classification of p-groups possessing this
property.

Theorem 2.4 Let p be a prime integer. Suppose that P is a nou-trivial finite
p-group possessing the property that all of the characteristic abelian subgroups
of P are cyclic. Then there exist normal subgroups E and T of P such that
(i) P=ET,T=Cp(E),and ENT = Z(E);
(ii) E is an extraspecial p-group of exponent p; and
(iii) T is cyclic when p is odd, and T is either cyclic, dihedral, quaternion, or
semi-dihedral when p = 2.
Furthermore, when T is not cyclic, we can choose E, T so that |T| > 8. This
implies that P has a characteristic cyclic subgroup U of index 2in T whenever
T is not cyclic.

Proof. The first three assertions are a theorem due to Philip Hall. A proof
can be found in [Hup, I11.13.10], or in [G, 5.4.9]. The final statement is part
(iv) of [MW, Theorem 1.2]. (The characteristic cyclic subgroup U of P that
has index at most 2 in T is identified there as Z(Cp(®(P))), where ®(P) is the
Frattini subgroup of P, i.e. th- intersection of all maximal subgroupsof P.) @

With our assumption on G, the structure of F(G) is determined by the
structure given by the above theorem for its Sylow subgroups. We have

F(G)=P x -+ x Py,

J1



with eachi P, a central product of characteristic subgroups E; and T;, E; an
extraspecial p,-group of prime exponent p;, and T; either a cyclic group or a
non-abelian 2-group of the above types, for each 7 = 1,..., k. If any P, is equal

to T,, just set E; to be the central subgroup of T; of order p;. If we let

E - El ’ - Ek, and
T . = - Tk,

then E and T are normal subgroups of F(G) suchi ihat F(G) = ET and ENT
is cyelic of order py ... pi. For cach i with Ty cyclic, we have T; = Z(P;), soin
this case T} is characteristic in both F(G) and in G. If all of the T;’s are cyclic
groups, then F = F(G) is metabelian with T = Z(F). If some T; is not cyclic,
say Ty, then P; has a characteristic subgroup Uy = Z(Cp,(®(P1))) of index 2
in Ty. Therefore, when T is not cyclic, T contains a characteristic subgroup

U=U; xTp x--- x Ty,

of F(G) such that |7 : U| = 2. In this case, F(G) has a characteristic subgroup
F = EU of index 2 in F(G) such that U = Z(F). This characteristic subgroup
can be identified using the following: it follows from [Sc, 7.3.7] that

B(F(G)) = B(P;) x ... ®(P%).

Each ®(P;) C Z(P;) when T; = Z(P;) because P;/T; is elementary abelian.
Thus Cp,(®(P;)) = P; when Tj is cyclic. When Tj is not cyclic, then ®(P,) C Uy
because Py /U, is elementary abelian. Because U, is a cyclic 2-group the index
of ®(P,) in U, is 2. Since U; has order wt least 8, Cp,(®(F1)) cannot be
all of P; because an element of T} that lies outside U; will not centralize an
clement of order 4. Since E;U; centralizes U; and has index 2 in Py, this
forces EyUy = Cp,(®(P;)). Thus we can identify F as Cp(g)(®(F(G)), when
F # F(G). (When all of the T;’s are cyclic, this definition will still work,
but F = F(G) is less complicated.) In either of these definitions of F, F'is a
characteristic metabelian subgroup of G and F/Z(F) = E/Z(E) is elementary
abelian. We have shown the following:

Proposition 2.5. Suppose that G is a finite group with every normal abelian
subgroup cyclic. Then F(G) has a characteristic metabelian subgroup F of

index at most 2. If U = Z(F), then F/U is elementary abelian. Always, we
have F = C[.((;)((P(F(G)))

The next observations will be useful in case G is solvable.
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Lemma 2.6. Assume that a solvable group G has onlyv cyclic normal abelian
subgroups, and let F be as in Proposition 2.5. Then Z ') = C(F).

Proof. Let U = Z(F). If F = F!G), then since Cg(F(G)) C F(G) when G is

solvable [Sc, 7.4.7], we must have
U= C(;(F) NE= C(;(F),

and we are done.

If F has index 2 in F(G), then note that the Fitting subgroup of C¢(F)
must be F N Cg(F) = U, because the Fitting subgroup of Cg(F) is a normal
nilpotent subgroup of G and hence lies inside F.

Suppose Cg(F) properly contains U. Let X/U be a chief factor of G with
X C Cg(F). Because G is solvable, X/U is a non-trivial p-group, for some
prime p. Since U is the Fitting subgroup of Cg(F), U is also the Fitting
subgroup of X, and so X cannot centralize U. This contradicts the assumption
that X centralizes F', and so we conclude that U = Cg(F). R

Lemma 2.7. Assume that every normal abelian subgroup of a finite group G is
cyclic, and let F and U be as in Proposition 2.5. Assume that any extraspecial
2-subgroup of F is the central product of dihedral groups of order 8. Then
every chief section of the group G that lies between U and F has square prime
power order.

Proof. Because F is a nilpotent normal subgroup of G, every chief factor of G
that is a section of F' must have order a power of some prime. Because F/U is
elementary abelian, we can write

FIU=F/U x---x Fp /U

as the direct product of chief sections Fy/U,...,F,/U of G. If any F;/U has
odd prime order, then F; is an abelian normal subgroup of G having exponent
the same as that of U. But then F; would be non-cyclic, a contradiction. If
any F; had order that is an odd power of an odd prime, then Z(F;) would
have to properly contain U because F; is a section of an extraspecial p-group
of exponent p, for some odd prime p. Again, the existence of this group leads
to a contradiction. If F;/U had order an odd power of 2, then again F; must
have a central element that lies outside U. If the subgroup generated by U and
this element is not cyclic, we get a contradiction because Z(F;) is a non-cyclic
normal subgroup of G. If Z(F;) is cyclic, then the assumption that extraspecial
2-subgroups of F are always central products of dihedral groups implies that F

33



has an element of order 2 that inverts the 2-part of Z(F;). The smallest normal
subgroup generated by U and this element will be abelian and non-cyclic, and
so we get another contradiction. @

We will now let G, F, and U be as in Proposition 2.5, and examine the maps
of G into Aut(F) and Aut(U) that are induced by conjugation.

First of all, let 0 : G — Aut(U) be defined by
w9 = g7lug,

for all w € U, for all g € G. Clearly, o is a well-defined group homomorphism,
and kero = Cg(U). As U centralizes F, we have FF C Cg(U). Denote Ca(U)
by C. Because U is a cyclic group, Aut(U) is abelian, and hence G/C is also
abelian. (Further information on G/C, such as possible prime divisors, can be
inferred from th~ order of U.)

Since F is a normal subgroup of C, the the action of C on F' by conjugation
defines a homomornhism

¢ : C — Aut(F),
by f¥€) = ¢ 1fc, forall f € F,c€ C. Now,
Inn(F) = F/U,

so ¢ restricts to an isomorphism of F/U with Inn(F). Of course, by the above
we know that F/U is elementary abelian of square integer order, and every
prime divisor of |F : U| also divides [U]. If we let K = Cc(F) be the kernel of
¢, then we must have FK/K = F/U. Also, ¢ factors to an injection of C /FK
into Out(F), or more precisely, into Coyy(r)(U). Of course, when G is solvable,
Lemma 2.6 implies that K = U, so in this case C/F is isomorphic to a solvable
subgroup of Coyy(3)(U). In particular, if G is solvable, then C' = F whenever
F = U. This observation leads us to the following results.

Proposition 2.8. [Fon, Lemme 3.3] Suppose that G is a supersolvable group
and let x € Irr(G). Suppose that kGe, has been fully reduced using Clifford

theory. Then G is metabelian.

Proof. Assume that kGe, has been fully reduced using Clifford theory, and let
F, U, and C be as in Proposition 2.5. Note that if F' = U, then our observation
says that F = C, and so it would follow that G is metabelian because G/C is

always abelian.
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Suppose F # U. We know that every chief section of G contammed i F/U
has to have prime order. From the proof of Lemma 2.6, we see that this forces
F = QgU, for a normal Qg-subgroup of G. The section C/F of G has to
be isomorphic to a subgroup of Coup(U) = Out(Qg) = Si. However, if the
normal Qg-subgroup of G is generated by clements x and y so that (r)/U and
(y)/U are chief sections of G, then the outer automorphisms of Qx will not
stabilize these sections. This implies that C = F when G is supersolvable.

Let A be a maximal cyclic normal subgroup of G coutaining U. We have
that |F : A] = 2 and Cp(A) = A. Since U C A, C;(A) C Cu(U) = C = F.
Thus A is self-centralizing in G. Since A is cyclic, G/A 1s abelian, and so we
conclude that G is metabelian. @

Proposition 2.9 Suppose G is a finite nilpotent ¢ oup and x € Irr(G). Then
kGe, Clifford reduces to a simple component of the group algebra kH, where
H is either cyclic, or H is the direct product of an odd order cyclic group with
either a quaternion group of order > 8, or a dihedral or semi-dihedral group of
order at least 16.

Proof. Assume kGe, has been fully Clifford reduced, and let F, U, and C be as
above. Because nilpotent groups are supersolvable, we must have F = U = C.
Thus G = F(G) has a cyclic subgroup of index at most 2. When G is not cyclic,
then we are in the case where |F(G) : F| = 2, and the Sylow 2-subgroup of
G is non-abelian. Thus the Sylow 2-subgroup of G is either @g, or a dihedral,
quaternion, or semi-dihedral group of order at least 16 by Theorem 2.4. B

(Roquette’s Theorem states that simple components of the rational group
algebra of a nilpotent group have Schur index at most 2 [I, 10.14]. Note that
Roquette’s Theorem follows directly from the above proposition.)

The factor C/F is the most complicated part of the group G. In MW,
Theorem 1.9], a complicated induction argument is used to show that E and
T are normal subgroups of G. The ensuing homomorphism of C to Aut(E)
can be used to show that when G is solvable, C/F is a solvable subgroup of
the direct product of symplectic groups over finite fields of prime power order
[MW, Corollary 1.10(ix)]. This leads to an approach to several problems in the
representation theory of solvable groups using the study of solvable subgroups of
symplectic groups of this type. It should also be remarked that finite primitive
solvable linear groups have the same structure as our group C [Sup, Chapter
I]. It would be interesting to know if C is always primitive when G has no
non-trivial Clifford Theory reductions.



Chapter 3:

Reducing to a p-quasi-elementary Subgroup for Certain Solvable
Groups

This chapter is concerned with finding a new reduction for the Schur index
problem once a group algebra has been reduced as much as possible using Clif-
ford theory. Our main result gives a constructive reduction under the condition
that a certain character on a subgroup extends as far as it can. We then show
that for nilpotent-by-abelian groups, each prime part of the Schur index can be
computed using a p-elementary group that can be constructively determined

from our original group.

Let p be a fixed prime number. Let x be a faithful irreducible character of
a finite group G, and let k be an algebraic number field for which k = k(x).
Suppose the reductions of the previous chapter are all triviai on G, so that for
every normal subgroup N of G, we have that kNe, is a simple k-algebra. The
following definition will make it easier to state our results.

Definition 3.1. Let p be a fixed prime number. Let x be a faithful irreducible
character of a finite group G, and let k be an algebraic number field for which
k = k(x). Let e = ezp(G). The p'-splitting field of kGe, over k is the unique
subextension K of k((.) containing k such that

[k(¢.) : K] is a power of p, and

[K : K] is relatively prime to p.
Because cyclotomic extensions are always abelian Galois extensions when the
base field has characteristic zero, it follows that the K defined above is the field

fixed by the unique Sylow p-subgroup of Gal(k((.)/k), and so K is unique.
The rationale for calling K the p’-splitting field comes from Brauer’s Splitting
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Field Theorem [CR, 15.18], which says that k((.) is always a splitting field for
a group of exponent e. This indicates that the division algebra part of

KGe, = K ®, kG,

is split by an extension of degree a power of p. It follows from (I, 10.2(g)] that
K Ge,, has Schur index mg(x)p because the splitting field k(¢,) has dimension
over K a power of p, and the index of k in A is relatively prime to p. Thus
K has split the p/-part of the division algebra part of kGe,, but has left the
p-part intact.

The best result to date on reducing Schur index problems for irreducible
characters cf general finite groups to Schur index problems for smaller grour:
is the Brauer-Witt Theorem [W]. (See also [Y, Theorem 3.8].) In order to state
this theorem we need the following definition.

Definition 3.2 A finite group is called p-quasi-elementary if it is isomorphic
to the split extension of a cyclic group of order relatively prime to p by a finite

p-group.

Theorem (Brauer-Witt) Let x be an irreducible character of a finite group
G. Let k be an algebraic number field satisfying k(x) = k. Let K be the
p'-splitting field for kGey over k.

Then there exists a p-quasi-elementary section H of G and a character £ €
Irr(H) such that
mi(€) = (ma(x))p-

Proofs of the Brauer-Witt Theorem are based on Brauer’s Induction Theorem
[CR, 15.9], which is used to establish the existence of the section H of the correct
type and the desired character £ [Y, Chapter 3]. This approach does not lead
by itself to an algorithmic method of finding such a section H from a knowledge
of the subgroup structure of G, and thus has limited practical applications.

The objective of this chapter is to find conditions on the group G for which
the Brauer-Witt Theorem can be made constructive. Given G and x € Irr(G),
we will present an algorithmic method of determining a p-quasi-clementary
group that can be used to find the p-part of the Schur index of kGe,, whenever
G satisfies our conditions.

With this objective in mind, fix a prime integer p. Let x be a faithful
irreducible character of a finite group G, and let k be an algebraic number field
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for which k = k(x). Let i be the p'-splitting field for kGe, over k. Since the
p part of the Sehur index of kGey is exactly the Schur index of KGey, we may
replace k by K.

The first step is to re-do the Clifford Theory reductions of the previous chap-
ter with respeet to the new field A, Assume we have completed this process, so
that for every normal subgroup N of G, K Ney is a simple algebra. In partic-
ular, every normal abelian subgroup of G is cyclic, so G has normal subgroups
F, U, and C satisfying the following conditions of Chapter 2:

(1) Fis a characteristic nilpotent subgroup of G having index at most 2 in F(G);

(2) U = Z(F)is cyclic, and F/U is elementary abelian;

(3) Fis the central product of a group E with U, where E is a direct product of
extraspecial g-groups having exponent ¢ (or 4 when g is 2), for some prime
integers ¢; and

(4) C = C¢(U).

We now establish various character identities for irreducible characters of the

above subgroups of G.

Proposition 3.3 Let K be the p'-splitting field for the simple algebra kGe,,.
Suppose that KGe, has been fully reduced using Clifford theory, and let F, U,
and C be the subgroups of G defined above. Let S be a transversal of C in G.

Then
(i) xo = kY ,esA®, for some faithful irreducible character A of U and some
integer k > 0;
(ii) G/C = Gal(K())/K);
(iii) x = ¢©, for some ¥ € Irr(C);
(iv) X = dY,cs9®, for some faithful irreducible character ¢ of F, and some
integer d > 0.
(v) ¢ and ¢ may be chosen so that o, = f), with f? =[F:Uj, and ¥, = dyp;
(vi) K(\) = K(p) = K(¢) = K((y), where u = |U|.

Proof: Since U < G, the algebra KUe,, is simple under our assumptions. Thus
Xo =kY A,
L34

where A is some irreducible character of U, G = Gal(K(A)/K), and k is some
positive integer. Because all of the characters A% lying under x are Galois
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conjugate, all of their kernels are the sa:ne. Thus

ker A = ﬂ ker A =kery, =UNkery =0 N1-= 1.
{3

s0 A is a faithful irreducible character of U. Since X is a faithful linear character,
the stabilizer of A in G must be the centralizer in GG of the cychie group U
namely, C. The character-theoretic version of Clifford’s Theorem gives the

decomposition
o =k A
s€S

where S is a transversal of C in G. This proves (i). (iii) also follows because y
is always induced from the stabilizer in this situation (I, 6.11].

Mapping G onto permutations on the set {}° : 0 € G} gives a natural
isomorphism of G/C with G, namely gC — o(g), where o(g) is defined by
M = X\?(9), This proves (ii).

Similarly, F < G implies that

Xe=d Y ¢,

TEH

where ¢ is some irreducible character of F, X = Gal(K(p)/K), and d is some
positive integer. As above, we can show that ¢ is faithful. Because F is nilpotent
of class 2, it follows from [I, 2.31] that any faithful character of F vanishes off
Z(F) = U. Thus we can choose ¢ € Irr(F) so that ¢, = fA, with f* = [F': U|.
Since ¢ must vanish off U, we have that I.{p) = K(A), and the stabilizer of
¢ is exactly C. In particular, the Galois groups G and H are isomorphic. (iv)
now follows by applying the same argument as in the proof of (i).

G (x)
¢ w
Il*’ (¢)
llf (A)
i

Figure 1: Table of subgroups and associated characters for Proposition 3.1.
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Since C = Ce(U) is the stabilizer of ¥ when ¢ = x, we can use the fact
that C <1 G to use the above arguments again. This time we find that

X = Zz/)"'. and

§€S

= Z C

BseB

with B = Gal(K(4)/K). (The positive integer in front must be 1 because x
is induced by .) Again, there is an isomorphism of G/C with Gal(K (¢)/K).
Since C is also the stabilizer of ¢, we can replace ¥ by one of its Galois conju-
gates to get, ¥, = dp. This integer d is the same one as before because

Xr = dzws = (Xc )F = Z(z/)F)g

s€S 3ES

This finishes the proof of (v).

Since ¥, = dy implies that K(p) C K(¢), the equality of |G : C| with both
|K (%) : K] and |K () : K| implics that these fields are equal. (vi) follows. &

One final remark is needed before the proof of the main result of this sec-
tion. From our assumption concerning K, we sce that by part (i) of the above
proposition, G/C must be a p-group. Thus for any Sylow p-subgroup of G, we
have G = CP. Since non-identity elements of a transversal of C in G must lie
outside C, we can choose the transversal S such that S C P, for any previously

chosen Sylow p-subgroup P.

Theorem 3.4. Let K be the p'-splitting field for the simple algebra kGey.
Suppose that K Ge, has been fully reduced using Clifford theory, and let F, U,
and C be the subgroups of G defined above. Let P be a Sylow p-subgroup of
G for the fixed prime p. Suppose that

H=UP=Up xP,

where Uy is the p-complement of the cyclic group U.
Then
(i) H is a p-quasi-elementary subgroup of G;
(ii) If ¢, = dy, with (d,p) = 1, then there exists a £ € Irr(H) such that
(\;-€) Z0 mod p.
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(iii) If v, = . then there exists a £ € Irr(H) such that (\,,§) # 0 mod p and
K(¢) =K.

Proof. (i) is clear, since U is a cyclic normal subgroup of G.

To prove (ii), we let @ be the normal subgroup H N F of G, and we compare
expressions for the characters (x, ), and (\,,),. Suppose that we have chosen
a transversal S of C in G so that S C P. Then we have that

I-)Q :dZ(‘r )

46'5'

e

for some 6 € Irr(Q) that is fully ramified with respect to U and lies over A
On the other hand, suppose
,
Xy = Z c;i&i,
i=1
for some positive integers ci,. .., ¢y, and irreducible characters &y, ...,&r of Q.
Since the Galois conjugates of 8 are the only irreducible characters of Q lying
under x, they are also the only irreducible characters of @} that lic under any
of the characters &,...,&,. Since {6° : s € S} is exactly the set of Galois
conjugates of 8, and each s € H, we conclude that for each i = 1,...,7r, we

have
(€i)g =D ) 6",
SES
for some integer k; > 0. Therefore
(X )Q = Z Ci(fi)q >
i=1
=S (e ) 6%)
1=1 8€S
= Z apti () 6°).
=1 seS

Comparing the two expressions for x, = (x,)e = (Xy )g» We conclude that
Yt =
- Vel
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By our assumption that d is relatively prime to p, the right hand side has
to be relatively prime to p. This implies that at least one of the numbers
e.p¥ in the sum on the left has to be relatively prime to p. Without loss of
generality, assume ¢;p*! is relatively prime to p. Then we must have k; = 0
and ¢; = (€;,x,) Z 0 mod p. This £ = & is the irreducible character of H
required for (ii). (Note that we have also shown that for this character ¢,

£e=>_0")

€S

To prove (iii), note that the assumption that ¥, = ¢ is equivalent to
KFa, = KCay,

since K (1) = K (p) and both algebras have dimension ¥(1)? = ¢(1)? over their
centers. Our assumption on G then gives K Fe, = KCey, and so

KCeyNKHey, = KFey N KHe,.

The subalgebra K He,, need not be simple because H need not be normal in G.
However, we know from x,, = >_; ¢ié; that

KHe, = ®iKHag,ey,

because K Hey is a homomorphic image of KH as an algebra. (The simple
components of K H that occur in this sum will be exactly those whose associated
irreducible characters are constituents of x,.) Let 8 € Irr(Q) be as above.
Since § vanishes off U, it follows that Iy(8) = HNC. Let R = HNC, and note

that FR/F is a Sylow p-subgro: p of C/F.
Now let ¢ € Irr(H) be the character found in the proof of part (ii). From

the remark that
be =)0,

sE€S

and R = Iy(8) it follows that there is a character n7 € Irr(R) such that £ = n¥

and n, = 6.
Consider the subalgebra K Re,. We have that KRe, € KCe,, so there are

algebra inclusions
KQey € KRe, C KFe,.

Since ¢, = f0 with f = /|F : Q|, we know that
[KFey: KQey] = |F: Q|
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is relatively prime to p. Thus the index of KQey in the subalgebra K Re
of KFe, has to be relatively prime to p. But R/Q is a p-group. and K is
the p’-splitting field, so [A Rey @ AQe,] mmst be a power of p. This forces
KRe, = KQe,.

Figure 2: Table of subgroups and associated characters for Theorem 3.4.

Note that each of the characters &; occurring in the above sum is faithful
on @ by the formula (&), = p* 3" 60°. Since KQey is a simple subalgebra
of K He,, this means that each of the maps KQey — KQag ey has to be an
isomorphism. (Here we can interpret the inclusion

KQCX — @,’I\’Hafl- €x

as a diagonal embedding.) Since KRe, = KQe,, we have that K Ragey =
KQage, is isomorphic to the simple component K Ra, of KR. The center of
K Ra, is an isomorphic copy of K(n), and so since KQey = KQa¢ey = K Ray,
-we conclude that K(6) = K(n).

Finally, note that since ¢ is induced from [y (6) = R, € vanishes off R. Since
H/R acts as galois automorphisms on the subfield K(8) = KUagey, H/R acts
as galois automorphisms on K(n) = Z(K Raye,). Thus K(§) = Z(K Hagey) is
the subfield of K(6) fixed by H/R. Of course, this is exactly K, as required. B

Corollary 3.4.1. Under the conditions of Theorem 3.4, if we have i, = o,
then (mx(x))p = ma(€).
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Proof: By |Y, Corollary 3.8], if ¢ is a character of a subgroup H of G with
K(€) = K and (x,, .£) relatively prime to a prime integer p, then the p-parts of
the division algebra components of K Ge, and K Heg are isomorphic. Under the
assumption ¢, = . these conditions are satisfied for the subgroup H and its
character € by Theorem 3.4, Because H is a p-elementary group, its irreducible
characters all have degrees a power of p, and so mg(€) is a power of p. Since
|K : k| is relatively prime to p, myg(€) is the same as mg(£). Since mp(€) is
cqual to iy (x) by the above, the assumption that K is the p’-splitting field
gives (my(x))p = mx(x), which finishes the proof of the corollary. @

We are now motivated to find conditions for the group G that ensure that
the character ¢ of F extends to its stabilizer C once G has been reduced using
Clifford theory. Exact conditions for this seem to be unknown. On the other
hand, if C/F is cyclic, then it is well known that ¢ extends to C [1, 11.24].

We conclude this section by showing that if G is a nilpotent-by-abelian group,
then the same p-quasi-elementary group H as in Theorem 3.4 can be used to
compute the Schur index of x. Janusz has shown in [J2] that in the case where
N is a normal subgroup of G such that G/N is abelian and the particular
irreducible character of N that we are interested in is invariant in G, then there
is a method of decomposing kGey into the tensor product of simple components
of two twisted group algebras generated by N and G/N over k. In the case where
N is nilpotent, this would lead to a method of computing Schur indices of simple
comnponents of nilpotent-by-abelian groups. The methods demonstrated in this
work are interesting in that this can be done without using any of the projective
representation theory that is usually associated with representations that are
invariant on a normal subgroup.

From the structure results in Chapter 2, we first note that the following holds
for nilpotent-by-abelian groups.

Proposition 3.5. Suppose that G is a fivite nilpotent-by-abelian group and
x € Irr(G). Then kGey Clifford reduces to a simple component of the group
algebra kG, where G is a nilpotent-by-abelian group of derived length at most
3.

Proof. Assume that kGe, has been fully reduced using Clifford theory, and let
the subgroups F, U, and C be as above. Since the class of nilpotent-by-abelian
groups is closed under taking sections, we still have that G is nilpotent-by-
abelian. We know that F = F(G) N C and G/C is abelian, so our assumption
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that G/F(G) is abelian implies that
G' CFG)NC =F,

and so G/F is abelian. The proposition follows because F is a nilpotent group
of class at most 2. W

(We should note that if G is any solvable group, the Clifford theory reductions
on QGa, end in a simple component of the group algebra of a group having
derived length at most the derived length of G/F(G) plus 3.)

Suppose that G is a finite nilpotent-by-abelian group, with faithful irre-
ducible character x. Let K be the p'-splitting field for Q(x )G, and suppose
that KGe, has been fully reduced using Clifford Theory. Let F, U, and ¢ be
the characteristic subgroups of G determined in Chapter 2, and let ¢ € Irr(F),
A € Irr(U), and ¢ € Irr(C) satisfy the conclusions of Proposition 3.3. By
Proposition 3.5 we know that G/F is abelian.

Lemma 3.6 Under the assumptions of the preceding paragraph, there exists a
norm.al subgroup B and an irreducible character f3 of B such that

(i) FCBCC;
(i) x = B%, ¢ =, and
(iii) Bp = ¢.

Proof. Because G/F is abelian, G is a relative M-group with respect to F I,
6.22), which means that for every character X, € Itr(G), there is a subgroup
B, containing F and a 8, € Irr(B,) such that 8,6 = x, and B, € Irr(F).
Assuming B and §3 satisfy this for the character x, we sce that x = 4. Since
G/F is abelian, B has to be a normal subgroup of G. The assumption that
KGe, is fully reduced using Clifford theory then implies that K Be, is sunple,
hence K Be, = KBag. Since x = BC, B is the stabilizer of 8 in G, and so

G/B = Gal(K(8)/K).

Since the G-conjugates of ) are the only irreducible characters of F lying under
x, we must have 8, = @9, for some g € G. This ¢? is thus invariant in B.
Since C is the stabilizer of every @9 in G, this implies that B C €. As [7'9—1
also induces Y, replacing 3 by ﬁ-"_l gives us the condition . = ¢. Since AR
irreducible and lies over ¢, we get that B¢ = 1 because P € Irr(C) is unique
with this property. All three conclusions have now been shown. B
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Assume that B is the subgroup of G found in Lemma 3.6. Since B is a normal
subgroup of G, its subgroups F(B) and Z{B) are also normal subgroups of G.
Thus F(B) is a nilpotent normal subgroup of B, and so F(B) € F(G)NB C
F 7)nC = F. But F is a nilpotent normal subgroup of B, hence F(B) =F.
Aiso, the inclusions F € B C C imply that U = Z(C') € Z(B) € Z(F)=U,
so Z(B) = U. Furthermore, the assumption that K is the p'-splitting field of
Q(x)Ga, implies that G/B = Gal(K(B)/K) is a »-group.

In the case that the character field K (f3) is a cyclotomic field, we can “inflate”

the group G in order to apply Theorem 3.4 directly. Let = Le a root of unity in
the center of K Bey so that

Z(KBe,) = K(z).

Let G be the finite subgroup of U(K Bey) generated by z and G. Then it is
casy to sce that KGey = K Ge,. Also, every normal abelian subgroup of Gis
cyclic, and the subgroups ot G corresponding to the previous F, U, and C are
(z,F), (z), and (z,B). The character on (z,F) extends to (z,B), so we can
apply Theorem 3.4 to show that the division algebra part of KGe, is obtained
as the division algebra part of a simple component of K (z, H).

In fact, we can show that this is the only method required for computing
Schur indices, because we can always show that K(f) will be a cyclotomic
extension of K. The first step in doing this is to reduce to a group having a

normal p-complement.

Lemma 3.7 Suppose that G is a nilpotent-by-abelian group with faithful irre-
ducible character x. Assume K Ge,, has been fully reduced using Clifford theory,
where K is the p'-splitting field of Q(x)Gey. Let M be a subgroup of G so that
M/F is the Sylow p-subgroup of G/F, F as above. Then KMe, = KGe,.

Proof. Let B be the subgroup of G found in Lemma 3.6. Since G/B =
Gal(K(8)/K), G/B is a p-group, and so we can choose a transversal X of B
in G consisting of elements of M. Since ¢ extends to 8 € Irr(B), we see that

KBe, = KFe, ® k() K(8),

because B(1) = p(1). Let D be the subgroup of B for which D/F is a Sylow
p-subgroup of B/F. Note that K De, must be simple because D < G. Since ¢
extends to D, the same reasoning as above shows that

KDey = KFey ® k(oK {3).
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Now we sce that [K Be, : KDe\] = [K(f) : K(8,)], which is a power of p
by our assumption on K. However, [K Be, : K De,] divides |[B @ D|, so it is
relatively prime to p. We conclude that K Dey = KBey. Since 39 -\, we
have

KGe, = GrexKBeyr
= Prex A Deyr
=KMe,,

since X is also a transversal of D in M. B

Lemma 3.7 shows that we may assume G/F is a p-group by replacing G by
M if necessary. If P is a Sylow p-subgroup of G, then we have that G = FP,
and so since the p’-part of F' is normal in G, G can be written as

G=N xP,
with the order of N being relatively prime to P.
We now use this to prove that the field K () is a cyclotomic extension of K.

Theorem 3.8. Suppose that B is a finite nilpotent-by-abelian groap. Let [3
be a faithful irreducible character of B, and let K be any subfield of C. Assume
that K Bag is fully reduced using Clifford theory, and let F, U, and C be the
subgroups of B described above. Suppose further that B/F is a p-group, for a
fixed prime p, and that 3 extends a faithful irreducible character ¢ of F. Then
there exists a subgroup R of B such that RNF = U and RF = B. Furthermore,
K(B) = K((s), for some primitive root of unity ¢y € C.

Proof. The existence of a subgroup R of B such that RNF =U and RF = B
follows from [MW, Lemma 1.11], which only requires that B is solvable and
Z(B) = U. (Our assumptions imply that C = B.)

Now, because F is a nilpotent group, the simple algebra K Fag is isomorphic
to K(p)f*f, except possibly in the case where the extraspecial 2-subgroup of
F is the central product of some dihedral groups of order 8 with a single copy
of Qg. In this exceptional case we will have

KFag = (H(K(¢))) #*%,

where H(K (¢)) denotes the quaternion algebra .~ &(y), which is split if and
only if K(y) is a splitting field for the rational quaternion algebra.
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Whenever K Fag is a split algebra, we know that

KBag = KFag @ Z(KFap) K(f)
= KFa, @k, K(B)
> K () @xp) K(B)
= K(B)!*/,

where f2 = |[F : U|. If K Fa, has Schur index 2, then the same reasoning shows
that
x$

KBag = (H(K(A)))*

which could be a split algebra if K () splits the quaternions.

On the other hand, if S is a transversal of F in B contained in R, we have

KBag =Y KFags
s€S
=% (K(p)™*7)s
s€S
=N ((KUag)?*7)s
s€S
~ (KUag)'*! ®kvap KRag

& (KRag) ™/,

using the fact that Z(KFag) & KUag = K(p), and that R is the subgroup
generated in B by U and S. We cenclude that K Rag is simple, and K(f) =
K Rag.

Since U is central in R and R/U is an abelian p-group, we know that R
is a nilpotent group of class at most 2. As faithful irreducible characters of
nilpotent groups of class 2 vanish off of their centers, we have that the center
of the simple algebra K Rag gencrated by R is the ficld of character values of
a linear character of Z(8) = {r € R||A(r)| = B(1)}. Thus K(B) must be a
cyclotomic extension of the field K, as required.
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In the exceptional case,

KBag =Y KFags
s€S

= I\’(UQs)ag OKUag (I\'U(lﬂ)li‘_xé NP KRay

~ K(UQs)as ®kua, (KHag)5%5.

Again, the simplicity of K Bag implies the simplicity of K Rag, and the Schur
index of K Bag can be determined from the Schur index of KRag. (The Schur
index of K Bag will be twice that of K Rag when the Schur index of the latter
is odd, and half that of K Rag when the latter has even index. Furthermore,
the same reasoning as above shows that R is a nilpotent group of class 2, so
the center of K Rag, which is isomorphic to K(f), is a cyclotomic extension of
K, completing the proof of the theorem. B

Thus we have found that the p-part of the simple algebra kGey is gencrated
by a simple component of the group algebra K H, where K is the p -splitting
field of kGe, and H is any subgroup of the group of units of KGey generated
by U, a Sylow p-subgroup of G, and a central root of unity of maximal order in
the subalgebra K Be,. Furthermore, this group H is p-quasi-elementary. This
completes the reduction for a nilpotent-by-abelian group.

The class of nilpotent-by-abelian groups includes the classes of center- by-
metabelian groups and all p-quasi-elementary groups, for any prime p. Super-
solvable groups are also known to be nilpotent-by-abelian [Sc, 7.2.13].

Although the class of nilpotent-by-abelian groups is an improvement on the
class of metabelian groups, for which the constructive reduction was explained
previously in [H], it falls short of the class of all solvable groups. For example,
let F e an extraspecial group of order 27 and exponent 3. The outer auto-
morphisms of E that fix the center of E form a group isomorphic to SL(2,3)
[Win]. Let G be the finite subgroup of C®*3 generated by the matrices

1 [1 ¢ 1 ¢ 1 1 1
= — 2 d b= — 2
RS “ A BV P
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where ¢ denotes a fixed cube root of unity in C. G is a group of order 648
in which F(G) = E, G/F(G) = SL(2,3), and G/F(G) acts as the full group
of outer automorphisms on F(G). An examination of the character table of
G yields that the irreducible characters of G which lie over a fixed faithful
irreducible character ¢ of E are in one-to-one correspondence with characters
of SL(2,3), and all of these characters are all faithful on G. (All of this can be
casily verified using the computer program GAP [Scho].) Simple components
of Q((3 )G corresponding to these characters do not reduce using Clifford theory,
in fact, E = F and G = C in the above notation. There are three characters
of G that extend ¢, corresponding to the linear characters of SL(2,3). For
these characters xy, ¢ = 1,2,3, a reduction as in Corollary 3.1.1 is possible,
and it shows that the 2- and 3-parts of mgy,)(xi) are Schur indices of simple
compounents of rational group algebras over subgroups of G of the forms C3 x Qs
and E x C3, respectively. (These subgroups are exactly the groups H defined in
Theorem 3.4, one for each of these two primes.) Since the quaternion component
of C3 x Qs is not the one in question, and E x C3 is a 3-group, we must have
mg(xi) = 1 for i = 1,2,3. On the other hand, for the three characters of G lying
over o that satisfy (x4), = 20, (xs5)r = 2¢, and (x6)r = 3, the reduction
fails because the hypothesis is not satisfied. Of course the group H can be
computed, but we cannot guarantee the existence of a £ € Irr(H) that will

have the right Schur index.

For general finite groups, the gap between C and F can be large, and very
arbitrary. We remark that Theorem 3.4 will hold regardless of whether or not
the group G is solvable. The only condition is that the character ¢ of F" extends
to C in the case of the particular character x of G chosen.
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Chapter 4:

Computing Schur Indices of characters of p-quasi-elementary groups

The goal of this section is to give a precise algorithmic means of calculating
the Schur index of a simple component of the rational group algebra of a p-
quasi-elementary group, for a fixed prime number p. We will assume that H
is a p-quasi-elementary group, with faithful irreducible character £, and that
this H and £ have been obtained from a larger group using the reductions of
Chapters 2 and 3. In particular, H has a normal cyclic subgroup U, of index a
power of p. If we let R = Cy(U), then we have that

H/R = Gal(k())/k),
where k = Q(£), and X is some faithful irreducible character of U.

The main idea of this chapter is that the simple algebra kHe, will Clifford
reduce to a simple component of the rational group algebra of a metabelian
group with a cyclic maximal abelian subgroup. Then we will give a constructive
algorithm for determining the Schur index of a simple algebra generated by the
latter type of group that only requires a knowledge of the raultiplication in the

group.

Proposition 4.1. Let H be a p-elementary group with maximai cyclic normal
subgroup U and faithful irreducible character § € Irr(H).

Then QHa, Clifford reduces to some QGa,, where G is a metabclian group
with character .

Proof: By repeated application of Clifford Theory reductions, we may assume
that kH e is fully reduced using Clifford Theory. Thus H has a characteristic

nilpotent subgroup F that is the central product of extraspecial groups with
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a cyclic group as in Chapter 2. Since the Sylow subgroups of H are cyclic for
every prime except p, we know that F/Z(F) is an elementary abelian p-group.
Note that prior to Clifford reduction, H had a cyclic normal p-complement Up,
and so H retains this property after Clifford reduction. If N is the cyclic normal
p-eomplement of H, then it is easy to see that F(H) = Cy(N). So even when
F has index 2 in F(H), we know that N C Z(F). Thus F/Z(F) is a p-section
of the p-group H/Z(F).

Assume that F # Z(F). Because chief sections of p-groups all have order
exactly p, there is a normal subgroup A of H such that Z(F) C A C F, and
|A : Z(F)| = p. Since Z(F) centralizes A, A is an abelian normal subgroup
of H. When p is odd, the known facts about the structure of F force A to
be non-cyclic, contradicting the assumption about Clifford reduction on k Heg.
This means that we must have had F = U. By our observations cencerning
Clifford theory reduced groups, we must have U = Cy(U) also. Thus H/U is
abelian, and U is cyclic, so H is metabelian, as required.

When p = 2, then the same will hold true if some choice of A is non-cyclie.
However, the possibility exists that every possible choice of A results in a cyclic
group. This can happen only when H has a normal Qg-subgroup, the 2-part of
U has order 2, and |F : U| has order 4. In this case, we have F' = F(H) because
the 2-part, of U has order at least 8 when these are not equal. Fix a maximal
cyclic normal subgronp 4 of H with |A : U| = 2. We know that Cn(4) is a
nilpotent normal subgroup of H because the p’ part of Cy(A) is centralized.
Thus Cy(A) € F(H) = F. As F contains an element outside Cu(A), and A
has index 2 in F, we must have Cy(A) = A. Since H/Cy(A) is abelian, this
again forces H to be metabelian. B

For the rest of this chapter, we will assume that G is a finite metabelian
group with a cyclic maximal abelian normal subgroup C, and G/C is a p-group
that acts faithfully as automorphisms of C, for a fixed prime number p. Let x
be an irreducible character of G that is induced from a faithful linear character
X of C, and put u = |C|. Our goal is to compute the Schur index of the simple
algebra QGa, in as constructive a manner as possible.

It is routine to use the isomorphism of QGa, with kGe,, where k = Q(x),
so for convenience we will use the latter algebra. Because of the isomorphism
of G/C with Gal(k()\)/k), there is a natural isomorphism of kGe, with the
crossed product algebra

(k(¢u)/k, B),
where 3 : G/C x G/C — Kk((,) is a factor set naturally defined by the mul-
tiplication in G and the character A of C. Choose a transversal X of C in G,
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and note that

kGe, = ®zex(kCe\)re,

because x(1) = |G : C| = |k(Cu) : k|- Extension of the lincar character A :
C - lk(g’u)x to kC gives a homomorphism from kC to k((y). Define o €
Gal(k(Cy)/k) by ((u)7= = McT), for all r € X. Use this to define a natural
isomorphism

BDrex (kcex)xex = G)Iexk(cu)"n

achieved by identifying the ze,’s with the u,’s. Define conjugation by u, in
the algebra on the right so that uza = ()% u,, forall r € X. Whenever r and
y are elements of X and zy = ¢z yz for some ¢, y € C and = € X, then set

uzuy = AMCz,y)u:.

The set of elements {\(czy) : 7,y € X} are the values of the factor set 4. We
use the notation (k(Cu)/k, ) for ®zexk(Cu)us in this case.

It is well known that the Schur index of a finite dimensional crossed product
algebra whose center is an algebraic number field is the least common multiple
of the Schur indices of the simple algebras obtained by localizing at all primes
of the central field, including both finite and infinite primes [R, 32.19]. By
“localizing” (or “completing”), we mean considering the tensor product algebra

as a finite dimensional central simple k¢-algebra, where kg is the localization of
the algebraic number field k over one of its primes g. Several authors, including
Lorenz [L], Yamada [Y], Ford [F], and recently Schmidt [Sch] have developed
methods for computing Schur indices of these algebras. Lorenz’s work gives
formulas for the Schur index of a cyclotomic crossed product algebra over a
Jocal field based on the order of certain elements of the factor sct of the algebra
[L, §2). In our version, we will emphasize how the multiplicative structure of
the group determines the structure of the division algebra part of its simple
component. The formula for the Schur index of these simple components will
be given in terms of the multiplication table of the group and the number of
roots of unity contained in the central field. We believe that this makes available
a formula for computing Schur indices for those with a limited understanding of
homological algebra, or those that are not experts in algebraic number theory.

We can always restrict the set of the primes we need to consider to a finite set.
For either infinite primes or primes lying over 2, the Schur indices of the localized
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algebras can only be 1 or 2. For infinite primes, this fact follows because C is
a splitting field for G and |C : R| = 2. If g lies over 2, then this follows from
|Q@2(¢s) : @2] = 2 and the Schur subgroup of the Brauer Group of @,((4) being
trivi W, Satz 12] (see also [J, Proposition 3.2]). Thus when p is odd, we
only have to localize at primes lying over odd rational primes. We can further
restrict to the finitely many primes q of k for which the extension kq(¢u)/Kq
is partly ramified. If the extension is unramified, then it is known to be a
cyclic extension, and so the algebra above is naturally a cyclic extension with
factor set consisting of roots of unity, all of which are norms for the unramified
extension. By [R, 30.7 and 31.4], this implies that this algebra has trivial Schur
index. Therefore, in the odd p case, we can restrict to primes q of k that lie
over an odd prime ¢ dividing u. When p = 2, however, we must localize at a
prime lying over 2, an infinite prime, and at primes lying over any odd prime
that divides u. Of course, the Schur index of kGe, has to be a power of the
fixed prime p, so there is a primne q of k for which the local algebra k Gey has

precisely the same Schur index.

The main advantage of localizing the algebra is that the Galois group is
usually smaller over the local field, and so we can obtain a further Clifford
reduction of the algebra. It is well known that after localization, the new

Galois group will be
Gal(ko(Gu)/ke) = Gal(K(G)/K(G) M)

Since the character ) induces y, we know that x vanishes off C, and so e, = ax
in kGey. The idempotent ax has its support in the field k, so extending the
center to kq has the effect of splitting the idempotent into a sum

ay = Z(ak)ay
{34

of centrally primitive idempotents of kqGe,, indexed by G = Gal(kqNk((u)/K).
If we let G be the centralizer in G of the idempotent ay, then we can apply the
Clifford reduction to get an isomorphism

koGey = (kqGan)" ",

where n = |G : G|. As XS € Irr(G), we also see that Gy = e, for an irreducible

character x = AC of G. Of course,
G/C = Gal(kq(Cu)/kq),
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and we can view this isomorphism as being the restriction to G of the map
z +— o, defined above.

Now G/C has been restricted to being the Galois group of the cyclotomie
extension of a local number field. These Galois groups are not very complicated.
If the prime q of k is an infinite prime, then G/C is a subgroup of Gal(C/R).
and so has order at most 2. If g lies over a finite prime ¢, then

Gal(kq(Cu)/Ka) = Gal(Kg(Cr)/kq) x Gal(kq(Ce /Ka),

where u = ¢°r, for an integer r that is relatively prime to ¢. Both of these
extensions are now cyclic extensions when ¢ is an odd prime, because kg((r)
is the maximal unramified subextension of kq((y)/kq, and the totally ramified
extension kq((ge)/Kkq is cyclic. Thus when ¢ is odd, we have that G/C has at
most two generators, one fixing (, and the other fixing (.. If g lies over the
prime 2, then just as in the odd case we have

Gal(kq(Gu)/kq) = Gal(ko(Cr) k) x Gal(Kg(Gar)/Kg).

Gal(kq(¢r)/kg) is again cyclic, because kg is the maximal unramified subexten-
sion. However, Gal(kq(2:)) is not cyclic when s > 2, being generated by the
automorphisms (4 +— ¢4 ! and (o0 (¢2:)°. So G/C can have at most three
generators when ¢ = 2.

In the case where q is an infinite prime, we have kq = R if and only if k is
real. If k is not real, then G = C and the Schur index has to be one. If k is
real, then the Schur index can be determined directly from the structure of the
group G. If the Schur index is to be 2, then we must be able to construct an
isomorphism from Réei to the real quaternion algebra, which has the cyclic
algebra presentation

(C/R,0,0% = —1).

Thus we must be able to find an element z € G that lies outside C, has order
4, and inverts all elements of C. In addition, u = |C| has to be an even integer
larger than 2, so that R(A) = C.

Now suppose that g lies over a finite prime q. The next theorem is useful in
reducing the number of generators of the Galois group we need to consider. For
any positive integer n and field L, let W(IL,n) be the group of roots of unity in
L of order dividing some positive power of n.
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Theorem 4.2. Let K he a ficld of characteristic 0, L be a finite abelian
extension of K, with W(L,n) finite for some integer n. Suppose that F is a
subfield of L such that Gal(LJF) is cyclic, and the norm map N-jz carries
W(L,n) onto W(F,n).

Then

(i) any crossed product algebra (L/K, o) whose factor set o consists of roots of
unity in W(L, n), lies in the same class of Br(K) as a crossed product algebra
(F/IK,~) with factor set ~ consisting of roots of unity in W(F,n); and

(ii) If Gal(F/K) is also cyclic, and is a direct summand of Gal(L/K), then we can
determine a precise cyelic algebra presentation for (F/K,v) from the proof

of (1).

Proof. (i) is exactly [J, Theorem 1]. For the proof of (i), we will repeat the
steps of the proof of (i) with the assumption that Gal(L/K) = Gal(F/K) x
Gal(LL/F) is the direct product of cyclic groups.

Suppose (o) = Gal(L/F) and (u) = Gal(F/K). Let V be the subfield of
L that is fixed by u, so that we have L = F @V, since these extensions are
disjoint over K.

L
(@) /" \
/ N
N\ /

F v

() \ /
K

Figure 3: Field extensions and associated Galois groups for Theorem 4.2.

Suppose W(L,n) is generated by (n, without loss of generality. Write the
crossed product algebra as

(L/K, o) = &2 @720 Lus'u,t,

where (1) = (2% and (u,)f = (a2 are roots of unity in W(L,n). Because
Nyp carries W(L,n) onto W(F,n), there is a { € W(L,n) such that

Nyr(€) = a7
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Replacing u, by vp = ¢ Vuy, we will not change the algebra, and now we have
(vo)' = 1. We now change u, so that it commutes with v,. We know that

Uplo == Qy gVl y.

for some a, ,» € W(L.n). (Since ¢ is m W(L,n), the factor set values are still
in W(L,n).) Thus

U () ! = apaty,

and raising both sides to the £-th power gives
1= Nyp(ope)

Using Herbrand’s Theory as in [J, page 527], we can conclude that there exists
a root of unity § € W(L,n) such that

—~I\o
567 = au..
Now replacing u, by v, = 6 'u,, we have

VyUo = 5"1u,,v,,
= (5—1(1,,,61),’11“
= (671 vou,
= vy (67 u,

-_ 'UU‘U#.

Now that v, and v, commute, we find that v, must also commute with (,,d“.
Since (v, )¢ = 1, this means that the factor set generated by v, and v, is fixed

by o, and thus lies in W(F,n). Therefore,

(L/K o) = &{Z5 &1 Los‘v,’
~ @iZs &1 (F @xV)vs'v,’
> (@20 Vve') @k (B2 Fv,?)

Since (v,)¢ = 1, @f_'__'éVv,,i is the cyclic algebra (V/K o,1). Since 1 is always
a norm, this algebra has Schur index 1, and thus is isomorphic to (K)**¢. The
original crossed product algebra (L/K,«a) thus lies in the same class of the
Brauer group as (-Bf;gli“v#f, which is the cyclic algebra (F/‘K,/z,(v”)f). We
have

(“#)f = (5—1"#)[ = NF/H((‘S)_IC‘I"-

n
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This element can always be recovered from the original factor set « and from

W(L,n). This proves (ii). B

We now apply Theorem 4.2 in the ase wkere g is an odd prime. We know
that kq(Cy)/kq(¢4+) is an unramified extension, and the norm map will map
W (ko(Cy),n) onto W(kg((ye),n) as long as n is relatively prime to g. Thus
Theorem 4.2 will apply as long as p # ¢, because this is the condition that will
guarantee that the factor set generated by G/C consists of roots of unity of
order prime to g. When p = ¢, however, lkqée,-( is a g-local algebra that has
index a power of g. However, the following result of Janusz shows that such an
algebra must necessarily have Schur index 1.

Lemma 4.3. [J, page 537] Let K be a subfield of L = Qq((,+, () for some odd
prime q, with s > 0 and (r,q) = 1. Then any crossed product algebra of the

form

(L/K, a),

with factor set contained in W (L, q) must necessarily have Schur index one.

Proof. Suppose (L/K, a) has Schur index ¢™, for some m > 0. By a theorem
of Benard and Schacher [BS], we find that ¢, € K. This implies that Ny x maps
W(L,q) onto W(K, g), because the constant term of the minimal polynomial of
C4+ over K will be a generator of W(K, q). We can now apply Theorem 4.2 with
F = K(¢,). This implies that (L/K, a) has the same Schur index as a crossed
product algebra of the form (F/K,v), with v taking values in W(F,g). Since
F/K is unramified, and ~ consists of roots of unity, this algebra is split, which
proves the lemma. B

It follows from Lemma 4.3 that if p is odd, it is only necessary to localize at
odd primes ¢ dividing u for which p divides ¢ — 1 when computing the Schur
index of kGey. (These are the only ones for which Gal(kq((g)/kgq) will have a
non-trivial Sylow p-subgroup.)

As it is now safe to assume that p # ¢, we can apply Theorem 4.2 to the
algebra kqGe;. Choose elements x and y of a Sylow p-subgroup of G so that if

g + a4 is the homomorphism of G to Gal(kq(y)/kq) satisfying

Mc%) = Ac)??, for all c € C,

then

Gal(kq(r)/kq) = (92),

58



and
Gal(kqo(Cqr)/kq) = ().

Working through the proof of part (ii) of Thecrem 4.2 with n = p, we find that
by multiplying these by suitable elements of W(kg(Cu),p). we can create new
units 7 and 7 that act as o, and o, commute with cach other, (#)°lms) = 1, and
(§)°00) € W(kq((ge,p)- (Effectively, we are extending the group G to a larger
group that has enough p-power roots of unity to guarantee the existence of a
“nice” transversal of C in G.) Now we apply Theorem 4.2 to get an isomorphism

koGes = (R T Kal(r)(#)") @a, (@750 kalG)()):
The Schur index of lquAe,‘( will be the same as the index of the second factor,
which is the cyclic algebra

(Ka(Gor )/ ka3, (9)°7)).

It is easy to see that this cyclic algebra is the simple component of the group
algebra of a metacyclic group of the form Cgs x Cpnix over kg, where p" =
[kq(Cqe) : kgl, and p* is the order of (§)P". The faithful representation is chosen
so that the generator of Cpn+x acts as oy on (Cqe) = Cqe. Tt is casy to compute
the Schur index of such an algebra using the formula provided by the next
result.

Theorem 4.4 Suppose
G= ch A Cpn+k = (a) ] <1?),

where p and q are distinct primes with q odd, and z acts as an automorphisi
of (a) of order p". Let A be a faithful irreducible complex character of the
cyclic maximal abelian subgroup U = (azP") of G, and let x be the faithful
irreducible character A¢ of G. Let kq = Q,(x), and suppose that (,¢ generates
W (kq,p). Then the Schur index of the simple component kqGey of Q.G is

m

p™, where m = max{n +k —£,0}.

Furthermore,
m@q(x) =1 <> (pn+x € Qulx)-

Proof. We know that the algebra Q,Gay is exactly the cyclic algebra
(B(Q(’\)/lkq’ Oz, Cp“ ),
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where o, is defined by

(‘:q’p")az = )‘(”I)-,
v € U chosen so that A(v) = (. The Schur uidex of this algebra is well
known to be the least power of (,« that is a norm for the given field extension.
By [J, Lemia 3.1], since p # ¢. (px is a norm if and ouly if it is a p™ th power
of a root of unity in kg, because the extension Qg(Cg- )/kg is totally rarmified of

degree p™.

Thus if we set p™ = m,, ,(X), then

'

/P
Sp

m n
& =

p
pl—2>

d
for some integer d and primitive root of unity (-2 = ¢ 1}: , . (Up to multiplication
by a a power of {pe that is relatively prime to p.) It follows that

k—m=~0~—-d—n.

If the Schur index is 1, then m = 0, and we conclude that d = £ —n — k, so
Cpmax € (Cpe). TEm >0, then the least power of (.« that is a norm must come
from a p:imitive p’-th root of unity, so d must be 0. Therefore, we have in this
casc that m = n+ k — £. Since m > 0, this shows that (yr+x & ((p¢) whenever
the Schur index is non-trivial, which finishes the proof of the theorem.M

Corollary 4.4.1 If x is a faithful ckaracter of a metacyclic group of the form
Cyqs % Cynx in which the order of the action is p*, and W(Q.(x),p) = ((pe),

Jhen
mq, (x) < min{p",p’}.

Proof. 5i1..e {px € Qy(x), we must have k < £. Therefore, n+k —£ < n. Also,
mg, (x) is 11+ least power of (,« that is a norm from Q,({g+) to Qg(x), so k < £
implies that mg,(x) < pl. @

Now suppose q lies over the prime 2. We can assume p = 2 because as we
have pointed out previously, the 3chur index is at most 2 in this case. Let

G/C = (T) x (7) x (),
for some r,y. 2 € G suchi that

(0:) = Gal(kg(Gs) ko),
(0y) = Gal(Kq(Cae)/Kq(C)), and
(0.) = Gal(kq(C:)/Ky),
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for some odd integer r with u = 2°r, and s > 2. (Note that if 4 does not divide
u, then the extension will be unramified, and thus the algebra qu'(:\ will be
split.) Since (4 € kq(Csr) implies that qu(cu)/ﬂﬂq((:n) maps (2- to the generator
of W(kgq((sr,2), we can apply Theorem 4.2 to show that ,Gey has the same
Schur index as an algebra of the form

(kq(C4r)/kq- 7)

in which values of the factor set v lie in W(kq({sr),2) and are a consequence of
ckoosing r and z so that they commute with y. (No extension of the group is
needed this time, as C generates encugh roots of unity of order a power of 2.)

With this choice of z and y, we have
k
(kq(Car) /Kgy ) = Blg @ﬁ:—o] kq(Ca- Wy "0y

where 2% = [kq(¢;)/kql. We now try to decompose this wlpbra into the product
of two cyclic algebras.

First, determine the factor set values of v in W(k,((4,),2). We find that
(u;)? = ¢z = 1, because (u)? has to be centralized by ug, and %1 are the

only roots of unity in W(kq(Csr),2) centralized by .. Let (uz)zk = (., and
upu; =z, UsUz. If we can find an element w € ¥ q(Car) such that

w(“’—l)az = (z,z

then

- - -1
lu:)ux =w 1(.1:,2 UzU>

= ux(w'—lcx,z_] )7 u,

-1

(w

= uz(w u,).

So if we replaced v, by w™lu,, then we could deconipose tne algebra as

(kq(c'ir)/kq, 7) = (qu(Cfi)/kq Tz, Cz) ®kq (kq(Cr)/kq, Ty, f),
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Different possibilities for ;. , lead to different w’s and €’s, which determie the
Schur index of cach factor above. Of course, the Schur index of (kq(Csr)/kq,7)
will be 2 only when exactly one of the factors above has Schur index 2. (The
algebra splits when both factors have index 2, because H @, H = Qx4

If (;. = 1, then u; and u, already comnmute, so the algebra decomposes
with ¢ = (,. Since kq(¢,) is unramified over kq and € is a root of unity, the
second factor in this decomposition splits. Thus the Schur index will be 2 only
when the first factor is not split. This will be the case if and only if (; = -1,
and |kq : Q2| is odd, because these are the conditions for the first factor to be

a non-split quarternion zlgebra over kq [FGS].

If (;: # 1, then we have to examine the action of u; on a generator Con
of W(kg(Csr),2). (The integer h here is at least 2, but can be greater than 2
depending on kq.) Since 0, maps (4 to its inverse, there are two possibilities
whenever h > 3, these being

()7 = (Con)™", and
(Can )™ = (Gn) ¥

We now need to establish the identity
(C-ryz)ax = Cr)z_l'
Since (; = %1, we have that uz ! = (uz. Thus uzu, = {; ;u-u; implies that

Uy = uz " o s UsUs
= (z(Cz,2) " urU Uz
= (Cr,2)7" (a2t (uz)?
= ((z,2)7* Cz,2 Uz

establishing the identity.

If h >3 and ((3»)%" = (Czh)(”lﬂh_l), then o, inverts only even powers of
(yn. The above identity then implies that ¢z, = ((zn )?® for some integer b. We
can then choose w = (on b(142"™%) " and achieve w(w™1)? = (; .. Replacing u.
by w™tu, allows for a decomposition of the algebra into a tensor product as
above with € being a root of unity. It follows that the second factor will be
split, and so the Schur index will be 2 if and only if the Schur index of the first

factor is 2.
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Now suppose (; . # 1 and o, inverts (on. Set w™ = (4(1 — (.7 "), Since
Cr.: # 1, we have that w™! # 0, and w™!(w)°* = ¢;!. Thus if we replace u,
by w™lu., then u, and u. will commute, and we get a decomposition of the
algebra above. However, this time € is not a root of unity, and so the second
algebra may be non-split. Suppose that

€= 7w,
with 7 a uniformizer for the field k4, and w an integer unit in kq. Since the

extension kq((,) is unramified over kg, € will be a norm if and only if =
norm. The norms of elements in the maximal ideal of the integers of kg(¢r) are

s a

generated by n2" , because 7 is also a uniformizer of kq((,). Therefore, n* is a
norm if and only if 2 divides t.

Suppasc (- = —1. Then € = 22y = (7r°)2kw , for some integer unit w',
with e being the ramif - tion index for the extension kq/Q.. (Since kq((y) is the
cyclotomic field Q2((, ), we find that k4((sr) is the field Q2((2n,). This implies
that e = 2572.) Thus ¢ = €2*, and the second factor spiits when (; . = —1.

If (;,, has order 24, for some d > 1, then we use the fact that N, (¢,.) /0. (1~
(y¢) = 2 [J, page 541]. This shows that

qu((m)/(b (1 — Czd) = (NQ(ng)/QQ (1 —_ Czd))lkq(C‘Ir):Q.’(CQd)l
_- olkq(Car)Ca(Ca)]

On the other hand, up to multiplication by an integer unit in kq we have

N, (¢or)/x(¢a) (1 = Goa) = 7.

Thus
Ny, (¢ar)/@: (1 = Ca¢) = Ny, jq, (m)*' = 22/,

where f is the residue class degree of the extension kq/Q;. We conclude that

2tf = [Kq(Car) : Qa(Gye)|. But

|kg(Car) : Q2(Ca0)| = qu(c‘gd)_:,k“lef

2k+lef
= 51

Since kq(¢u) has to be the cyclotomic field @2(Cyu), we find that kq(Csr) is the
field Q3(Cyn,). This implies that e = 2#*~2. Therefore, t = 2%2%=4=1 Thus
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ok will divide t if d < h and will not divide t only when d = h. Therefore,
the conditions necessary and sufficient for the second factor to have index 2 are
that ¢, . has order 2" where (on generates W(kg(Car).2). and o inverts (an.

We have now shown that the case for localizing at a prime lying over 2 is
summarized by the following result.

Theorem 4.5. Suppose q is a prime lying over 2, and suppose p = 2. Write
u = 2%r. In order to determine the index of the algebra kqGey,, we first use
Theorem 4.2 to reduce to a crossed product algebra of the form

1 2k 1 Kk i ]
Bizo Bi=o KalCar)uz'u:

with factor set contained in W(kgq((4r),2) generated by uz? = (q, (u;)zk = (z,
anduy; " 'u.:"‘'uzu, = (;,;. Then we can findanw € kq(Car) such that replacing
u. by w™lu, gives a decomposition of the above into cyclic algebras of the form

(]kq(C«i)» Ozr, Cr) G, (qu(Cr), Oz, f)’

with € = (Ny, (¢, )/k, (w))~'¢.. In any case, the first factor of this decomposition
has Schur index 2 if and only if |kq : Q2| is odd and {; = —1. For the second
algebra, the Schur index will be 2 if and cnly if 0, inverts all roots of unity in
W (kq(Car),2) = ((2n), and (;,; has maximal possible order 2".

We now give examples to illustrate the process developed in Chapter 4.

Example 1: Let G = C;5 x Qs, where the action of Qg on C15 = Cs5 x C3
is defined by the following: Let = and y be generators of Qg, both of order 4,
and suppose a® = a~, o¥ = a, b = b, b¥ = b~!, with (a) = Cs, and (b) = Cs.
The maximal abelian subgroup of G is C = C1s x Z(Qs), which has a faithful
irreducible character that sends a — (s and b — (3. A induces to a faithful
irreducible character x of G. The center of the simple component QGay is the
field of character values Q(x) = Q(+/5), which we will denote by k. A natural
isomorphism of G/C with Gal(k())/k) is implied by the above assumptions,
given by £ v 04, y ++ gy, where A(ab)”* = A(a®b) and Mab)?v = A(ab?).

In order to compute the Schur index of the algebra kGe,, we must compute
the local indices at the primes 2, 3, 5, and an infinite prime, because G/C is a
2-group acting on X as Gal(k())/k).

If we localize at an infinite prime of k, we must expect a Clifford t:.eory
reduction because G/C has order larger than 2. The field fixed by o0y is real,
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being Q(C1s -+ C157'). and so ay breaks up into the sum of two idempotents in
RG. The ensuing Clifford theory reduction gives

RGe, = (RGey6)? "2,

with G = Cys x (ry). We have that ry inverts all clements of Cys. so since ry
has order 4, we have a natural 1somorphism of RGe s¢ with the real quaternion
algebra

(C/R,0.0,,—1).

So the Schur index of kGey is at least 2, and is divisible by 2.

If q is a prime of k lying over 2, then we find that kq(A) = kq((15). As this
extension is unramified over kg, the algebra kqGe, must be split, because it 1s
naturally isomorphic to a crossed product algebra with factor set consisting of
roots of unity. Thus the 2-local index is 1.

Suppose that ¢ lies over 3. There is a natural isomorphism
kqGey = @1 j—oka(Cis)uz"uy’,
where u, and u, arc independent units satisfying

(ur)?=-1= (“y)za
Uyux = —uny,
(65)“: = <5—]’
(<3)u: = C37

(Ga)*r = ¢, and
(

(s)"¥ = Cs.

Now kq(¢15) is unramified over kq((3), so by using Theorem 4.2 we can reduce
the algebra.

~

First, we need to find a v € Wi(kg(:-},?) so that (y~'uz;” = 1. This
is equivalent to 4(7)°= = —1. Since W(kgq({15),2) is a subset of the max-
imal unramified subextension of kq((15)/kq, we know that W(kg((i5),2) =
W (kq(Cs),2). Since k = Q(V5), the degree of the extension kq((s)/kq is 2, 50
kq(Cs) = kq(¢32—1). Thus (g is a generator for W(kg((s),2). Since there is no

¢4 in kg, we must have that

Csax — CSS-
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(It has to be either a 3 or a 5, and it cannot fix (s2.) Note that

(s’ = (st = =1,

. . . . =1 .
s0 (g is a suitable chowee for 4. Put vy = (s ur asin the proof of Theoremn 4.2

to get vt = 1.
Next, we need to replace uy, by a unit that will commute with v;. We have

that

-1
UyUz = Uy(y  Ur

i

CS—]uyuz

il

—Cg_luruy

—UrlUy,

so by the proof of Theorem 4.2 we need to replace uy by §~tu,, for some

§ € W(kq((is),2) satisfying
§(871)7 = 1.

This time,

Ca(Ca 1) = ol 2 = G2,

so (4 is an appropriate choice for 4. vy = (4—luy commutes with v, and so we

bave an isomorphism
k,Geyx = ®l_okq((s)v:' Ok, Bj=0 kq(C3)vy”.
Thus the 3-local index of kGey is the Schur index of the cyclic algebra
(kq((:;),o*y,vyz),

We have that
”y2 = (C4—luy)2 = C4_2(uy)2 =1,

so this is a norm, torcing the Schur index of the cyclic algebra to be 1.

Finall -, suppose that g i+ a prime lying over 5. Localizing kGey with respect
to @ we find a similar isomorphism

koGe, = €B},j=okq(C15)uxi“ij
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with u; and uy satisfying the same identities as before. Again Wikg((1s).2) is
contained in the maximal unramified subextension. which this time is kg((z) =
Kq(Cs2—1). Hence (s again generates W(kg((rs).2). Since (4 1s in kg this time,
we have that the galois action on (g is given by " = (&”. Replacing uy, by
vy = (17 uy gives

vyz = (4*1(@5)"113,2 =(=1)(-1) = 1.
Replacing u; by v, = Ca lug gives

VyUgp = C.._luy(:g—lu,
-1~ =5
= C4 (8 ’uyur
-5 - -1
= “CB Ur(Gq Uy
-1
=(s  urvy
= Vg Uy.
Therefore, we have an isomorphisin
~ 71 i o 1 J
lquex = @i=o’kq(C5)Uz Ok, q’j:o B‘q(Ca)“y s

and the Schur index of this algebra is the same as that of the cyclic algebra

(kq(C5)> Oz, 7)12)'

We find that
vrz = (CS_IU:::)2 = <8_2(uz)2 - _C4~1 = C4-

By [J, Lemma 3.1}, {4 is not a norm from kgq((s) because it is not the square of
a root of unity in kq(¢s). (W(kgq((s),2) is generated by (4.} Thus the 5-local
index of kGe, is two. The Schur index of the original algebra is also 2, being
achieved at primes of k lying above 5 or an infinite prime.

A final example shows that in the computation of the 2-local index, the
second factor in the decomposition of Theorem 4.5 may indeed have Schur
index 2. The example is a group having 3 generators that is of the type (QD, )
described in {Sch].

Example 2. Let X be a dihedr:; group of order 16, with Z = (z) its cyclic
maximal subgroup of order 8, and z an element of order 2 such that X = Z x(z).

Let P = X x (y) be a 2-group of order 32 in which the element y centralizes
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Z and [z,y] = 2. Let U be a cyclic group of order 3, and define G to be a
group of the formn U = P, with the action defined so that Cp(U) = X and y
inverts U. Then C = U x Z is a cyclic maximal abelian normal subgroup
of G, and G/C = (Z,7) is easily scen to act as Galois automorphisms on
Q()), for any faithful irreducible character A € Irr(C'). Thus G has a faithful
irreducible character x = A\¢. Working through the proof of Theorem 4.5, we
sce that ug? = 1, u,,2 = 1, and uzuy = (guyu; when we choose A so that
Mz) = (g. Using Theorem 4.5, we sce that the Schur index of the first factor
in the decomposition of Q,(v/2)Ge, will be 1 because u;? = 1. However, the
second factor will necessarily have Schur index 2 because (g is the maximal
possible 2-th power root of unity in Qz(A).
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