Detrital Zircon Studies in Silurian Basins of Southern New Brunswick
by

Robert John Dokken

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Earth and Atmospheric Sciences

University of Alberta

© Robert John Dokken, 2017



Abstract

The Appalachian orogen in eastern Canada resulted from the Paleozoic convergence of the con-
tinents Laurentia and Gondwana during the closure of the intervening lapetus Ocean. In New
Brunswick, the Fredericton Trough and Mascarene Basin were filled in the Silurian within the
peri-Gondwanan domain of Ganderia during associated convergence and ocean closure. Detri-
tal zircon geochronological studies demonstrate that the northern formations of the Fredericton
Trough were juxtaposed with Laurentia in the early Silurian; however, southern portions of the
trough were still separated from Laurentia at this time, indicating the persistence of the lapetus
Ocean. These southern formations record the arrival of Laurentian detritus by the mid-Wenlock,
indicating that components of Ganderia were juxtaposed with Laurentia by this time, coinciding
with ocean closure. The location of the terminal Iapetan suture, marking the closure of the last
portion of lapetus Ocean, is approximated by the Fredericton Fault, which bisects the trough.
Analogous studies in the Mascarene back-arc basin, to the south of the Fredericton Trough, show
that it was separated from Laurentia until at least the late Llandovery, and may suggest juxtaposi-
tion with a composite Laurentia by 423 &= 1 Ma. These combined results suggest a scenario where
Ganderian terranes were successively accreted to Laurentia in the Silurian, as recorded by the

progressively increasing extent of Laurentian detritus in juxtaposed terranes.

ii



Acknowledgments

Firstly, I would like to gratefully acknowledge the mentorship of Dr. John Waldron, whose
experience and insight has been invaluable over a number of years. Numerous faculty and staff
at the University of Alberta have been a great assistance to this project; to name a few, Andy
DuFrane greatly assisted with analysis and data reduction, and Nathan Gerein and Richard
Stern facilitated sample imaging. Many others from the Department of Earth and Atmospheric
Sciences have been helpful and willing to share their knowledge, whether in courses,
presentations, or discussion. Les Fyffe, Adrian Park, and Susan Johnson aided in field work and
sample collection by identifying fossil localities, providing field maps, assisting with field work
in-person, and otherwise sharing their knowledge of New Brunswick geology. Correspondence

with Allan Ludman has provided helpful insights into related geological puzzles in Maine. Cees

van Staal has provided encouragement and constructive feedback. Funding was provided through

a Natural Sciences and Engineering Research Council of Canada Discovery Grant to Dr. John

Waldron. Lastly, I would like to thank my family and friends for their continued support.

iii



iv



Contents

Chapter 1: Introduction

1. Overview of Appalachian geology

1.1
1.2
1.3
1.4

Description and background to study of the orogen
Tectonic history and development of the Appalachian orogen
Appalachian-Caledonide connections

Purpose of study

2. Overview of methods

2.1
2.2
2.3
2.4

Introduction to U-Pb geochronology
Method overview
Detrital zircon geochronology

Data representation and statistical analyses

3. Organization

4. References

Chapter 2: Detrital zircon geochronology of the Fredericton Trough: Constraints on the Silu-

rian closure of remnant Iapetus Ocean

1. Introduction

2. Geologic setting

2.1
2.2
2.3

Tectonic overview
Stratigraphy

Structure

3. Detrital zircon geochronology

3.1
3.2
3.2.1
322
3.2.3
324
3.3
3.3.1
332

Methods
Sampled units
Digdeguash Formation
Flume Ridge Formation
Hayes Brook Formation
Burtts Corner Formation
Results
South of the Fredericton Fault
North of the Fredericton Fault

4. Discussion

4.1
4.2

Provenance of zircon

Tectonic implications

5. Conclusions

6. References

O 0 NI O O U b W o= e

—
o

18

25
25
28
28
33
35
36
36
39
39
41
44
44
45
45
48
48
48
50
54
55



Chapter 3: Detrital zircon geochronology of the Mascarene Group
1. Introduction
2. Geologic Setting
2.1 Tectonic Overview
2.2 Stratigraphy
2.3 Structure
3. Detrital zircon geochronology
3.1 Sampled units
3.2 Methods
3.3 Results
4. Discussion
5. Conclusions
6. References
Chapter 4: Conclusions
1. Fredericton Trough
2. Mascarene Basin
3. Synthesis
4. Future Work
5. References
Bibliography
Appendix A: Fredericton Trough detrital zircon data and diagrams

Appendix B: Mascarene Basin detrital zircon data and diagrams

69
69
73
73
76
80
81
81
86
90
91
101
102
115
115
118
119
122
123
129
149
173

vi



List of figures

Figure 1.1: Map of the Appalachian-Caledonide orogen. 2
Figure 1.2: Detrital zircon probability density plots. 10
Figure 1.3: Detrital zircon histograms. 12
Figure 1.4: Detrital zircon cumulative density plots. 14
Figure 1.5: Detrital zircon kernel density plots. 15
Figure 1.6: Detrital zircon Kolmogorov-Smirnov (K-S) tests. 17
Figure 2.1. Lithotectonic divisions of the Appalachian-Caledonide orogen. 27
Figure 2.2. New Brunswick terranes and cover successions. 29
Figure 2.3. Simplified stratigraphic chart for the Kingsclear Group. 34
Figure 2.4. CL (cathodoluminescent) images of selected zircons from four formations of the
Fredericton Trough. 40
Figure 2.5. Representative thin section photomicrographs from sampled units of four formations
of the Fredericton Trough. 42
Figure 2.6. Detrital zircon probability density plots (PDP) and cumulative probability
distributions (CPD). 46
Figure 2.7. Schematic evolution of the Fredericton Trough and adjacent terranes during the
Silurian Period. 52
Figure 3.1: Map of the Appalachian-Caledonide orogen showing lithotectonic divisions. 70
Figure 3.2: Lithotectonic terrane map of New Brunswick. 72
Figure 3.3: Stratigraphic columns of the Mascarene Group and related formations. 75

Figure 3.4: Thin section photomicrographs from three sampled formations of the Mascarene
Group. 82

Figure 3.5: Representative cathodoluminescence images of zircons from sampled formations of
the Mascarene Group. 84

Figure 3.6: Detrital zircon probability density plots and cumulative probability plots for sampled
formations of the Mascarene Group, and other formations for comparison. 92

Figure 3.7: Selected weighted means and MSWDs for sampled formations of the Mascarene

Group. 94
Figure 3.8: Schematic tectonic setting of the Mascarene Group. 96
Figure 3.9: Kolmogorov-Smirnov test results. 98
Figure 4.1: Schematic tectonic diagram of the Fredericton Trough and Mascarene Basin. 116

Figure 4.2: Progressive extent of Laurentian detritus in New Brunswick through the Silurian. 120

vii



viii



Chapter 1: Introduction

1. Overview of Appalachian geology

1.1 Description and background to study of the orogen

The Paleozoic Appalachian orogen in eastern Canada is a belt of deformed rock, up to 600 km
wide at its broadest point, extending through Newfoundland, the Maritime provinces, and a
portion of southern Quebec. The orogen is bounded to the west by rocks of the Canadian Shield,
and to the east by the Atlantic Continental Shelf (Williams, 1995). It continues southward
through the United States, and is correlated northwards with the Caledonides in eastern

Greenland and Europe (Figure 1.1).

The Appalachian region has been very well-studied and thoroughly mapped over centuries of
work. For much of the century previous to the advent of plate tectonic theory, the Appalachians
were the type example of geosynclinal theory (Dana, 1873; Hall, 1883), a mountain belt

formed from subsidence, compression, and uplift. Subsequent study saw the development and
application of plate tectonic theory, some of which was pioneered in the Appalachians (Wilson,
1966; Dewey, 1969; Bird and Dewey, 1970), leading to the current framework of the orogen as
the end result of a cycle of subduction, ocean closing, terrane accretion, and continental collision

(Williams, 1995).

The Appalachian orogen has traditionally been divided into several regions of similar lithology,
stratigraphy, fossil biota, and structural characteristics (Williams, 1979): these are the Humber,
Dunnage, Gander, Avalon, and Meguma Zones. The Humber Zone “miogeocline” (Kay, 1951)
is interpreted as the Paleozoic passive margin of Laurentia, or ancient North America. The
remaining successively outboard zones are regarded as suspect terranes (Williams and Hatcher,
1982, 1983), accreted to the margin of Laurentia during the Paleozoic closure of an ancient

seaway, the Iapetus Ocean (Harland and Gayer, 1972). More recent subdivision (Hibbard and



Figure 1.1: Map of the Appalachian-Caledonide orogen.
Pangean (pre-Mesozoic) reconstruction after Waldron and others (2014b) and references therein.
Lithotectonic divisions after van Staal and others (1998) and Hibbard and others (2006, 2007).
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others, 2006, 2007) has attempted to clearly designate lithotectonic zones as those of Laurentian
affinity, peri-Laurentian (separated at some point from the continent), or peri-Gondwanan.
Gondwana was an assembling supercontinent in the Paleozoic, opposite Laurentia across the
Iapetus Ocean. A number of peri-Gondwanan microcontinental domains, including Ganderia
and Avalonia, rifted from Gondwana in the early Paleozoic and were assimilated into the

Appalachian orogen.

1.2 Tectonic history and development of the Appalachian orogen

Research in recent decades has attempted to synthesize knowledge of Appalachian geology and
produce a cohesive model of the tectonic setting and formation of the orogen (e.g. Williams,

1979; van Staal and others, 1998; Hibbard and others 2006, 2007; van Staal and others, 2009).

Laurentia was an independent continent in the late Neoproterozoic (Li and others, 2008), one
fragment resulting from the protracted breakup of the Proterozoic supercontinent Rodinia. The
lapetus Ocean developed to south of Laurentia from about 570 — 550 Ma (Williams and Hiscott,
1987), resulting in a Laurentian passive margin by the early Cambrian (Cawood and others,
2001). This ocean separated Laurentia from Gondwana, an assembling supercontinent which
included Amazonia and West Africa. Appalachian orogenesis resulted from the convergence of
Laurentia with Gondwana, as the Iapetus Ocean closed, and material (microcontinental, oceanic,

arc) within the ocean was successively accreted to the Laurentian margin.

Accretion at the Laurentian margin began taking place in the late Cambrian to Late Ordovician,
notably including the collision of the peri-Laurentian Notre Dame arc in the Early Ordovician
(van Staal and others, 2009). This deformation has been identified as Taconic orogenesis, which
terminated with the Late Ordovician accretion of the Popelogan arc terrane, rifted from the
margin of Ganderia, to the active Laurentian margin. This event was the first contact of peri-
Gondwanan material with Laurentia, and also coincided with the closure, according to van Staal

and others (1998), of the “main tract” of the Iapetus Ocean, leaving only a remnant behind. This



remnant was the 600-800 km wide Tetagouche-Exploits backarc basin (van Staal and others,

2012), which had opened between Ganderia and the rifted Popelogan arc.

The deformation which closely followed is interpreted (ex. van Staal and others, 2009) to

have resulted from the accretion of Ganderia to Laurentia in the Silurian, which involved the
subduction and closure of the Tetagouche-Exploits seaway (and microcontinental material within
it), in what is referred to as Salinic orogenesis. This may have marked the closure of the last

remnant of the lapetus Ocean (Reusch and van Staal, 2012).

Deformation in the late Silurian to Early Devonian is interpreted (ex. van Staal and others,
2009) to result from the convergence and accretion at Ganderia’s opposite (southern) margin

of Avalonia, another arc terrane rifted from the margin of Gondwana. This is referred to as the
Acadian orogeny (van Staal and others, 2009). Accretion is interpreted to have taken place
following the stepping back of a northwest-dipping subduction zone behind previously accreted

material, continuing the progressive growth of a composite Laurentia.

Lastly, further deformation took place in the Middle Devonian to Early Carboniferous,
interpreted to result from the accretion of the Meguma terrane (or Megumia: Waldron and others,
2011; Figure 1.1) to the Laurentian margin (now represented by accreted peri-Gondwanan
terranes) in Neo-Acadian orogenesis (van Staal and others, 2009). This heralded the assembly of
Laurentia, Gondwana, and other continental domains into the supercontinent of Pangaea by the

end of the Paleozoic; the Appalachian orogen was effectively one of the seams of this assembly.

1.3 Appalachian-Caledonide connections

The Caledonides feature similar rocks and terranes (Bluck and others, 1992) to the Appalachian
orogen, and ongoing research has attempted to correlate sutures and terranes, and compare
tectonic histories. There are, however, notable differences between the orogens (van Staal and

others, 1998; McKerrow and others, 2000; Waldron and others, 2014a).



The Caledonide orogen includes deformed rocks in the British Isles, Scandinavia, and Eastern
Greenland, attributed to the Paleozoic closure of the Iapetus Ocean, and involving the continents
of Laurentia, Baltica, and microcontinental domains of peri-Gondwana (McKerrow and

others, 2000). Ordovician (Grampian) deformation in the British Isles probably resulted from
arc-continent collision (Dewey and Mange, 1999; Soper and others, 1999), and is considered
equivalent to the Taconic orogeny in the Canadian Appalachians (van Staal and others, 1998;
McKerrow and others, 2000). In the Silurian, the closure of the Iapetus Ocean resulted in
collision of Ganderia with Laurentia by about 430 Ma along the Solway Line (Waldron

and others, 2014a). This is in contrast to the Early (Macdonald and others, 2014) and Late
Ordovician (van Staal and others, 2009) arrival of Ganderian fragments in the New England and
Newfoundland Appalachians, respectively. Later Devonian (Acadian) deformation following
Iapetan closure may have been related to the convergence of Avalonia, or other convergence
across the Rheic Ocean (Woodcock and Soper, 2006) which divided Gondwana from separated

peri-Gondwanan material (van Staal and others, 2012).

1.4 Purpose of study

Constraints on the timing of closure of the lapetus Ocean are complicated by diachronous

or isolated orogenic events within the Appalachian-Caledonide orogen. While previous
interpretation (e.g. van Staal and others, 1998) suggests that the main tract of the Iapetus Ocean
closed with the accretion of the first piece of Ganderia with Laurentia, at least a portion of
Iapetus persisted in the form of the Tetagouche-Exploits seaway, or Sea of Exploits (Waldron
and others, 2014a, 2014b), which evolved from its origin as a back-arc basin into a seaway

of significant width (van Staal and others, 2012), and the closure of which resulted in the
accretion of many other peri-Gondwanan fragments (van Staal and others, 2008). As a result
Silurian Salinic orogenesis involves many possible sutures, and the accretion of the final mass
of Ganderia, coinciding with the closure of the Tetagouche-Exploits seaway and the terminal

Iapetan suture.



This thesis presents new detrital zircon data from two Silurian basins in the Appalachians of
southern New Brunswick. Previous work has demonstrated that Laurentian detritus, marked by
distinctive zircon age distributions, is found pervasively and abundantly in accreted terranes (e.g.
Cawood and Nemchin, 2001; Moecher and Samson, 2006; Pollock and others, 2007; Waldron
and others, 2012; Macdonald and others, 2014; Waldron and others, 2014a). Peri-Gondwanan
terranes that have not been accreted preserve a contrasting detrital zircon signature, typically
including abundant Neoproterozoic zircon and lacking the diagnostic detritus shed from the
Laurentian margin. Analyzing detrital zircon signatures from basin sediments deposited upon
suspect terranes can then be used to determine when peri-Gondwanan material, or Ganderia in

particular, was accreted to Laurentia.

The Silurian Fredericton Trough, trending northeast-southwest in southern New Brunswick,

is filled by turbidites interpreted to have been deposited along the margins of the Tetagouche-
Exploits seaway: to the north, along the margin of composite Laurentia, and to the south along
the margin of the final piece of Ganderia. It is ideally located to provide constraints on the
timing and location of the terminal Iapetan suture. The Silurian volcanic-sedimentary Mascarene
Basin sits upon Ganderian terranes to the south of the Fredericton Trough, further outboard with
respect to Laurentia, and can likewise be studied for evidence of Laurentian detritus to indicate

the timing of accretion.

2. Overview of methods

2.1 Introduction to U-Pb geochronology

Uranium-lead (U-Pb) geochronology produces age data by measuring the ratios between the
parent and daughter isotopes of two distinct decay chains from uranium to a stable isotope of
lead: 28U - 206Pb, and U > 2°’Pb. A third decay chain, from thorium to lead, is sometimes also
measured: 22Th - 2%Pb. These cycles account for three of the four stable isotopes of lead; the

fourth, 2°*Pb, is not radiogenic.



A singular advantage to the U-Th-Pb system is the wide range of half-lives and decay constants
of each decay series. 2*8U-*"Pb has a half-life of approximately 4.47 Ga, **U-*""Pb of 0.704 Ga,
and »**Th-*%Pb of 14.01 Ga. Measuring more than one of these parent-daughter ratios allows

each to cross-check the other for the internal consistency of the U-Pb (or U-Th-Pb) system as a

whole.

A disadvantage of the U-Pb system in its simplest form is the relative mobility of uranium and
lead — it is not necessarily a closed system — leading to difficulties in dating rocks which have
undergone low-grade metamorphism or even superficial weathering (Dickin, 2008). However, by
employing each of the two U-Pb decay schemes together, even disturbed rocks can yield valuable
and accurate age data. This is particularly true of U-Pb zircon dating. Zircon is a ubiquitous

and robust mineral that incorporates uranium at the time of crystallization, but little initial lead;
combined with the helpful redundancy of U-Pb analysis, reliable age data can be obtained in a

diverse assortment of rocks, some of which may otherwise be difficult to analyze.

2.2 Method overview

Modern analytical methods can accommodate either individually selected zircons and other
mineral grains, or thin section and grain mounts via in situ techniques. Three commonly used
methods are thermal ionization mass spectrometry (variants include isotope dilution and/or
chemical abrasion, ID-TIMS or CA-TIMS), laser ablation inductively coupled mass spectrometry
(LA-ICPMS), and secondary ion mass spectrometry (SIMS). Backscattered electron imaging
(BSE) or cathodoluminescence imaging (CL) is often performed before analysis of selected
zircons, epoxy mounts, or thin sections, to identify internal structures which may affect the
analysis, such as oscillatory zoning, inherited cores, inclusions, overgrowths, metamict textures,

and alteration.

TIMS has been used for several decades, and has long been the mainstay of U-Pb analysis

(Schoene, 2014). It involves purifying U and Pb by column chemistry, and then depositing a



sample onto a metal filament, which is heated to ionize the sample, and analyzed by the mass
spectrometer. This method is used to analyze carefully selected single grains. It is the most
precise technique, but also the slowest and most costly for the typically large number of analyses

involved in detrital samples.

LA-ICPMS is a technique widely used to accommodate in situ analysis of epoxy grain mounts
and thin sections, and has the additional advantage of being able to analyze many distinct grains
in a short period of time, at relatively little cost, and with reasonable precision and accuracy

for most geologic problems. It is a relatively recent technique that began to be applied to U-Pb
geochronology in the 1990s (Dickin, 2005; Schoene, 2014), and has since been widely adopted.
Laser ablation apparatus may be combined with different types of mass spectrometers, such as
multi-collector or quadrupole instruments (LA-MC-ICPMS or LA-Q-ICPMS). It is often the
preferred method for detrital zircon studies due to its efficiency in analyzing a large number of

grains.

SIMS was developed in the 1970s (Dickin, 2005; Schoene, 2014), and soon applied effectively
to analyzing one or many zircons with complex histories. An advantage of the technique is its
ability to sputter small spot sizes with much shallower pit depths than in laser ablation, making
it the ideal technique in terms of in situ spatial resolution, and the least destructive of standard

methods. However, it is more expensive and time-consuming than LA-ICPMS.

2.3 Detrital zircon geochronology

Detrital zircon geochronology is a subfield which studies sedimentary rocks specifically, where a

given sample may have zircons of many different ages representing various sources.

One useful application of this method is the study of provenance, or determining the sources
or source regions of a given rock unit. When many zircons from a single sedimentary rock are

analyzed they can form a fingerprint-like spectrum of ages, and these spectra can be used to



distinguish between rocks of substantially different source regions.

A consideration of these studies is the number of grains required for a statistically sound analysis
while balancing the cost and time invested. The number of zircons required is dependent on the
number of discrete populations in a sample, and the desired confidence level that a fraction is not
missed (Vermeesch, 2004). Typical reported figures range from dozens to hundreds of analyses,
and techniques are increasingly being developed to efficiently accommodate large numbers of

grains.

One problem which must constantly be addressed by researchers employing this method is the
depositional environment of the rocks chosen for study. For example, extant fluvial systems
draining known source terranes have been shown to underrepresent or not record the ages of
those terranes (Eriksson and others, 2003). The ideal system is one in which detritus can be

widely and consistently distributed, such as in a foreland basin or continental margin.

2.4 Data representation and statistical analyses

Accurately representing detrital zircon data presents several unique challenges. The goal is

to present the typically large quantities of data in an easily visualized plot, which accurately
represents the general trend of the age spectra for the entire sample while also allowing an
outside reader to discern information about measurements from individual grains. Analyses
should be easily comparable between different researchers, with relative consistency between
different data sets and authors. In other words the same data should appear the same, regardless

of who has plotted it, so as to encourage more objective interpretations.

Probability density plots (PDPs; Figure 1.2) have been widely used to this end, having been
greatly facilitated by the availability and ease of software such as Isoplot (Ludwig, 2012).
In these plots, each individual analysis is represented as a normal distribution, with a mean

corresponding to the age and standard deviation to the analytical error. The final probability



Figure 1.2: Detrital zircon probability density plots.

Individual analyses are shown as normal distributions (red), with their age and analytical error

corresponding to the mean and standard deviation of each curve. The resulting probability

density curve is shown at a different scale (blue).

Relative probability

450

500

550

Age (Ma) | 10 (Ma)
505 12
510 10
512 19
550 9
600 11
700 11
600 650 700
Age (Ma)

750

10



density function is effectively the sum of each of these individual curves. In the theoretical
analysis of an infinite number of grains all possible zircon ages must fall within the curve, the
integral of which is 1.0 (Guynn and Gehrels, 2010). The vertical scale on these plots is relative
and arbitrary; a large number of zircon analyses at a certain age will result in a higher peak than
a population of only a few grains. Similarly, broader peaks are less precise than sharp, narrow
peaks. These plots are reproducible with relative consistency between different researchers,

and they present age data in an easily comprehendible format. However, they may lack a sound
statistical basis (Vermeesch, 2012), leading many researchers to seek other means for presenting
their data. Additionally, these plots do not inherently indicate how many analyses form a given
peak. This makes it difficult to distinguish between a robust data set of many analyses, or a
sparse data set of only a few grains. Even within the plot itself, peak heights cannot be directly

compared in a way that indicates the number of analyses in each.

Standard histograms are often shown in addition to (or in place of) PDPs, and avoid their
statistical problems, in addition to incorporating information on how many grains of a given age
group were analyzed. These plots consist of bins (including all analyses of a given age range
along the horizontal axis) whose height along the vertical axis corresponds to the number of
analyses falling within that range. However, these graphs have parameters which, depending on
the researcher’s preference, can significantly affect the representation of the data. Bin width, for
example, may undersmooth or oversmooth a data set. If individual age measurements typically
include an error of 10 Ma, then bins of 1 Ma imply more detail than can be justified; alternately,
bins of 100 Ma may lose meaningful data. Comparing these two plots (Figure 1.3) demonstrates
inconsistencies in their visual representation, complicating the comparison of different data sets,
from different authors. Additionally, the start location of bins (Figure 1.3) can also significantly
change the appearance of a data set. For example, a significant population of zircons from a
single source may be split into multiple bins, appearing inconsistent with what may be suggested
from a single, more prominent bin. These difficulties mean that visual comparisons of different

data sets may be unreliable on their own.
11



Figure 1.3: Detrital zircon histograms.

Comparison of bin start and width affecting representation of the same sample (Burtts Corner

Fm., n=113, see Chapter 2). Probability density curves in red, histogram bins in blue.

A: Bin start 0, width 100. B: Bin start 50, width 100. C: Bin start 0, width 50. D: Bin start 0,
width 25 (note the different vertical scale).
Note the shifted bins of B relative to A, changes in relative bin heights (e.g. 700 Ma), and gaps

where there were none previously. In C, note the different bin heights at ca. 1000 Ma and 450

Ma, where they were nearly equal in A and B. The bin width in D approximates the mean 26

analytical uncertainty of the analyses, and closely follows the shape of the probability density

curve.
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Cumulative density plots (CDPs; Figure 1.4) are perhaps a less intuitive way to visualize data,
but enable a data set to be reproduced consistently, while avoiding some of the statistical pitfalls
of PDPs and the potential inconsistencies of histograms. Age is plotted on the x-axis, and
cumulative probability on the y-axis: thus a sample with a large proportion of grains at 500 Ma
will produce a steep line at this point; a sample with few or no zircons from 500 Ma to 1000 Ma
will yield a shallow or horizontal line in this range. Although these plots do show the proportion
(or probability) of a given age population in the sample, they still do not typically show the
number of grains in as precise a manner as histograms. The basic cumulative density plot is
represented as a step function (Figure 1.4), with vertical lines where an age is reported, and
horizontal lines where there are no analyses of that age range. With detrital zircon data, analytical
uncertainty is typically incorporated in a manner analogous to PDPs, by summing individual
normal distributions with a mean equal to the age, and standard deviation equal to the analytical
error. This has the effect of rounding the corners and sloping the lines of the step function (Figure

1.4).

Kernel density plots (KDPs; Figure 1.5) are another option in visualizing detrital zircon age data,
superficially similar to PDPs, but with a sound statistical basis underlying their construction
(Vermeesch, 2012). However, they have a tendency to oversmooth datasets and risk obscuring
real information from the measured ages (Gehrels, 2013). This can be addressed by arbitrating
the “bandwidth” associated with the plot (Figure 1.5); the result may be very similar to standard
PDPs. These plots may not be as easily reproducible as PDPs, since the bandwidth and other
parameters may be determined differently by various researchers, but they are otherwise an

excellent method to visually represent age distributions.

Kolmogorov-Smirnov (K-S; Figure 1.6) tests are a statistical method which allow one to
objectively compare detrital zircon samples; more specifically, a two-sample test can test the
null hypothesis that two data sets are the same, or taken from the same population (Gehrels

and others, 2006; Guynn and Gehrels, 2010). The test functions by measuring the maximum

13



Figure 1.4: Detrital zircon cumulative density plots.

Plotting the same data as Figure 1.2. In purple, data are plotted as a step function (not accounting

for analytical error). In blue, the data are plotted to account for uncertainty by summing up

normal distributions, as in PDPs.
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Figure 1.5: Detrital zircon kernel density plots.

Kernel density plots shown in blue, probability density plots in red, for the Burtts Corner
Formation (Chapter 2).

A: Bandwidth of 12.2 Ma (mean of the analytical errors, 1c). B: Adaptive kernel density

(Vermeesch, 2012) with starting bandwidth of 12.2 Ma. C: Bandwidth of 24.4 Ma (mean of 20).

D. Adaptive kernel density with starting bandwidth of 24.4 Ma.
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difference between two cumulative density curves. If this value D is greater than a critical
value (dependent on the number of analyses), then the null hypothesis is rejected, and the

two samples were probably not drawn from the same parent population. The significance of
measured D values is expressed as P, or the probability that observed D values are a result of
random sampling error. High P-values mean than two samples are probably not from different
populations; low P-values indicate that they are probably from different populations. The value
of P is also correlated to confidence level; so at a 95% level of confidence, the null hypothesis
is rejected for P values of less than 0.05 (the compared samples probably did not come from the

same population).

Concordia plots are also useful in studying detrital zircon distributions. The standard concordia
diagram (Wetherill, 1956; Appendix A; Appendix B) plots 2*Pb/***U on the y-axis, and **’Pb/**°U
on the x-axis; the concordia curve is drawn where these ratios correspond to the same age. These
plots are not typically used for comparing provenance between different detrital zircon samples,
but they are valuable tools in studying the causes of discordance within a sample, and can be
used to calculate discordia lines, and help estimate the crystallization age of discordant zircon.

A common alternative to the Wetherill diagram is the Tera-Wasserburg concordia (Tera and
Wasserburg, 1972a, 1972b), plotting 2°’Pb/**Pb on the y-axis and ***U/**Pb on the x-axis. These
diagrams are often preferred when dealing with young analyses, as they can show those discordia

lines more clearly (Dickin, 2005).

Lastly, weighted means are frequently used within a sample to estimate the age of discrete
populations (Schoene, 2014). For example, the youngest grains in a detrital sample may be
averaged in this way to suggest the maximum depositional age. These figures are typically
accompanied by measures of goodness of fit, such as the MSWD (mean square of weighted
deviates, York, 1969). An MSWD > 1 indicates that the means are overscattered, compared to
what would be expected given the assigned analytical uncertainties. An MSWD < 1 shows the

scatter is less than what would be expected with the analytical uncertainties, and assigned errors

16



Figure 1.6: Detrital zircon Kolmogorov-Smirnov (K-S) tests.

A: Schematic graph showing the maximum difference (D-value) between two cumulative density

functions.

B: Tables of P-values and D-values resulting from K-S analysis between four samples. Yellow
cells in the first table highlight those tests which do not reject the null hypothesis at 95%
confidence (P>0.05); they are probably not from different populations. Note that the test without
error in the CDF is more stringent; red cells highlight comparisons that reject the null hypothesis

here, but do not in the K-S test using error.
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are over-estimated.

3. Organization

This thesis is presented in paper format, organized in a manner intended for future publication.
Chapter 2 presents the results of our detrital zircon study in the Fredericton Trough, a version

of which is being prepared for publication under the authorship Dokken, R.J., Waldron, J.W.F.
and DuFrane, S.A., who provided information on the operating conditions of the instrumentation
used for analyses. Chapter 3 presents our work from the Mascarene Basin, and will be prepared
for publication under the same authorship. Chapter 4 summarizes our conclusions and suggests

avenues for further research.
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Chapter 2: Detrital zircon geochronology of the Fredericton
Trough: Constraints on the Silurian closure of remnant Iapetus

Ocean

The Fredericton Trough in the Appalachians of southwestern New Brunswick is filled

by the Silurian Kingsclear Group, consisting mainly of turbidites, deposited during
convergence of Laurentia with components of the peri-Gondwanan domain Ganderia. Its
tectonic setting has been interpreted as a successor basin, trench, foredeep or foreland
basin. We present new detrital zircon U-Pb data from four formations of the Kingsclear
Group, collected north and south of the Fredericton Fault, which bisects the trough.

South of the Fredericton Fault, detrital zircon ages from an early Silurian (Llandovery)
unit show a late Neoproterozoic peak, typical of peri-Gondwanan provenance. Detrital
zircons from a younger Silurian unit (Wenlock - Ludlow, intruded by the Pocomoonshine
pluton, 422.7 + 3 Ma) display a distinctive asymmetric peak at ~1.0 Ga with a tail of older
Proterozoic zircons, suggesting Laurentian provenance. North of the Fredericton Fault, a
Llandovery sample also shows a signature consistent with Laurentian sources. In a mid-
Silurian (Wenlock) unit zircon peaks indicate mixed Laurentian and peri-Gondwanan
sources, consistent with exhumation of the Miramichi terrane to the north. The absence

of Laurentian material in Llandovery strata south of the fault, contrasted with a strong
Laurentian signature in rocks to the north, suggests that a remnant of the Iapetus Ocean, in
which turbidites of the Kingsclear Group were deposited, persisted until at least the mid-
Silurian. The timing of its closure is constrained by the arrival of Laurentian detritus south

of the Fredericton Fault before 422.7 + 3 Ma, and probably by the mid-Wenlock.

1. Introduction

The Appalachians of eastern Canada record a complex history of orogenesis, resulting from
the convergence of Gondwanan elements with Laurentia during the closure of the lapetus
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Ocean. Previous work has divided the orogen into distinct lithotectonic domains based on

their Laurentian or Gondwanan origin (Figure 2.1; Williams, 1979; Hibbard and others, 2006;
Hibbard and others, 2007). Ganderia (van Staal and others, 1998; Hibbard and others, 2006,
2007; Pollock and others, 2012) is a peri-Gondwanan microcontinental domain underlying much
of New Brunswick, which probably rifted from the margin of Amazonia (van Staal and others,
1996, 1998) in the mid-Cambrian (van Staal and others, 2012), and underwent a complex history
of arc formation and rifting before and during its accretion to Laurentia (van Staal and others,
2009). Avalonia (Kerr and others, 1995; Landing 1996; O’Brien and others, 1996; van Staal and
others, 1998; Hibbard and others, 2007; Pollock and others, 2012), a peri-Gondwanan domain
represented by the Caledonia terrane in southeastern New Brunswick, probably separated from
West Africa or Amazonia (van Staal and others, 1996; McNamara and others, 2001; Murphy

and others, 2002) in the Early Ordovician (Prigmore and others, 1997; van Staal and others,
1998; Murphy and others, 2004b) and was accreted to the southern margin of Ganderia. Multiple
positions (and timings) have been proposed for sutures associated with Iapetus Ocean closure
between Laurentia and Ganderia (e.g. McKerrow and Ziegler 1971; McKerrow, 1982; Bluck and
others, 1992; van Staal and others, 1998).

Detrital zircon geochronology has been widely applied in the Appalachian-Caledonide orogen

to constrain the timing of terrane juxtaposition resulting from plate convergence (e.g. Phillips
and others, 2003; Waldron and others, 2008, 2012; Waldron and others, 2014a; Pothier and
others, 2015). Accretion at a convergent plate boundary is typically accompanied by an influx of
sediment from the upper plate onto the lower plate. Therefore, in convergent tectonic settings,
analyzing the provenance of selected sediments can constrain the timing of terrane juxtaposition.
In this paper, we use detrital zircon geochronology to provide new evidence for the timing of
amalgamation between Laurentia and peri-Gondwanan terranes in New Brunswick during early

Paleozoic orogenesis.
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Figure 2.1. Lithotectonic divisions of the Appalachian-Caledonide orogen.
Pangean (pre-Mesozoic) reconstruction after Waldron and others (2014b) and references therein.

Box encloses Figure 2.2. Lithotectonic divisions after van Staal and others (1998) and Hibbard

and others (2006, 2007).
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2. Geologic setting

2.1 Tectonic overview

Laurentia, the ancestral core of present-day North America, developed into an independent
continent during the late Neoproterozoic Era following the break-up of Rodinia (Li and others,
2008). The Iapetus Ocean opened between Laurentia, Baltica, and Amazonia by ca. 570-550 Ma,
leading to the development of a passive margin along the Laurentian boundary of Iapetus prior
to the oldest drift sediments deposited at ca. 520-515 Ma (Williams and Hiscott, 1987; Cawood
and others, 2001; timescale of Peng and others, 2012). The microcontinental domain Ganderia
separated from Gondwana by about 505 Ma (White and others, 1994; Schulz and others, 2008;
van Staal and others, 2009, 2012), though the mechanism of separation is uncertain; van Staal
and others (2012) propose back-arc basin opening, potentially resulting from slab roll-back (van
Staal and others, 2009), whereas Waldron and others (2014b) propose more oblique separation.
Components of Ganderia (see below) collided with Laurentia beginning in the Early Ordovician
in New England (Macdonald and others, 2014), or Late Ordovician in Newfoundland (van

Staal and others, 2009), interpreted to result in the final phases of Taconic orogenesis (van Staal
and others, 2009). Subsequent accretion of Ganderian material during the Silurian has been
interpreted as the cause of Salinic orogenesis (van Staal and others, 2008, 2009), defined by a
widespread Late Silurian unconformity in the Newfoundland Appalachians (Dunning and others,
1990), and extending to include multiple diachronous unconformities in New Brunswick (van
Staal and de Roo 1995; Fyffe and others, 2011; Wilson and others, 2015). Avalonia separated
from Gondwana by the Early Ordovician (Nance and others, 2002) and is interpreted to have
collided with Laurentia during late Silurian to mid-Devonian Acadian orogenesis (van Staal and

others, 2009).

In New Brunswick, Ganderia is represented by several terranes (Figure 2.2; Fyffe and others,
2011). North of the Fredericton Trough these include the Popelogan and Miramichi terranes

(Figure 2.2). The Popelogan terrane (van Staal and others, 2016) is correlated with the
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Figure 2.2. New Brunswick terranes and cover successions.
Map units after Smith (2005) and Smith and Fyfte (2006); see also Fyffe and others (2011).
Locations of samples reported in this paper are shown. A: Digdeguash Formation. B: Flume

Ridge Formation. C: Hayes Brook Formation. D: Burtts Corner Formation.
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Victoria Arc of Newfoundland (van Staal and others, 1998) and the Bronson Hill Arc in New
England, and is characterized by Late Ordovician chert and shale overlying Middle Ordovician
mafic lapilli tuff and volcanics (Wilson, 2000, 2003). It is interpreted to have been accreted

to Laurentia during the Late Ordovician (van Staal and others, 2009). The Elmtree terrane
(Fyffe and others, 2011) represents an ensimatic basin to the southeast (present coordinates).
Volcanic and sedimentary rocks of the Miramichi terrane characterize the Brunswick subduction
complex (van Staal, 1994; van Staal and others, 2008), recording the accretion of Ganderian
microcontinental material, accompanied by deformation and high-pressure/low-temperature
metamorphism (van Staal and others, 2008), to Laurentia from the Late Ordovician to early

Silurian.

The Annidale terrane includes rocks similar to the Miramichi terrane (Johnson and others,
2009; Fyffe and others, 2011; Johnson and others, 2012), but located south of the Fredericton
Trough. Along strike to the southwest, the St. Croix terrane is characterized by the Cambrian to
Upper Ordovician Cookson Group, comprising quartzose and lithic sandstone, shale, and minor
pillow basalt (Ludman, 1987; Fyffe and Riva, 1990; Ludman, 1991), interpreted by Fyffe and
others (2011) to have been deposited on a Ganderian passive margin. The Ganderian basement
of these rocks may be represented (Fyffe and others, 2011) by the New River terrane (Johnson
and McLeod, 1996), immediately south (Figure 2.2), consisting of several fault-bounded slices.
These include Neoproterozoic to Cambrian arc and rift-related volcanics, with marine and

volcanic sedimentary rocks (Johnson and others, 2009; Fyffe and others 2011).

The Fredericton Trough obscures the contact between the Miramichi terrane to the north and
the St. Croix terrane to the south (Figure 2.2); it is filled by the Silurian Kingsclear Group,

consisting mainly of turbiditic sandstone, siltstone, and shale, which sit disconformably upon
the Cookson Group of the St. Croix terrane along the southern boundary of the trough (Fyffe
and others, 2011). The trough is divided by the northeast-striking Fredericton Fault (Park and

Whitehead, 2003). To the north of the fault, the Kingsclear Group is in contact with rocks of
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the Miramichi terrane along the Bamford Brook - Hainesville Fault; its basement is locally
unexposed. The trough was interpreted as the floor of the “Proto-Atlantic” or Iapetus Ocean by
McKerrow and Ziegler (1971; see also McKerrow, 1982) but reinterpreted by Williams (1979) as
a successor basin, isolated from the Iapetus Ocean. More recent interpretations have suggested it
is a marine foredeep or foreland basin (van Staal and others, 1990; van Staal and de Roo, 1995;
van Staal and others 1998) formed by tectonic loading of the Brunswick subduction complex
upon the subducting Ganderian margin during Salinic orogenesis (Fyffe and others, 2011). The
clastic sedimentary fill of the Fredericton Trough contrasts dramatically with Silurian volcanic
successions that characterize the Mascarene Basin and the Kingston belt farther south in New

Brunswick.

To the south of all these Silurian basins, the Brookville terrane (Figure 2.2) includes Meso-
Neoproterozoic marble, quartzite, and siltstone; Neoproterozoic orthogneiss and paragneiss;
Ediacaran rhyolite flows and tuffs; and various Neoproterozoic to early Cambrian plutonic rocks
overlain by early Cambrian sandstones (White and Barr, 1996; Fyfte and others, 2011). Previous
work (Barr and White, 1996; Barr and others, 2003) has demonstrated similarities with the New
River terrane (Johnson and McLeod, 1996), allowing it to be assigned to Ganderia (Fyffe and
others, 2009, 2011), though some previous workers (e.g. Williams, 1979) assigned the Brookville

Terrane to Avalonia.

The Caledonia terrane (Figure 2.2) includes Ediacaran tuff and tuffaceous sedimentary rock, and
comagmatic plutons (Fyffe and others, 2011). Their facies and geochemistry are consistent with
Avalonia elsewhere in the northern Appalachians (Barr and White 1996; Barr and others, 2003).
Overlying this basement is a Cambrian to Early Ordovician platformal sedimentary succession
(Saint John Group), also characteristic of Avalonia (White and Barr, 1996; Fyffe and others,

2011),

Interpretations of the Ganderian domain variously regard it as a coherent microcontinent or

a domain of many distinct slivers of lithosphere (Waldron and others, 2014a, 2014b; Pothier
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and others, 2015). While the timing of accretion of the Popelogan and Miramichi terranes of
Ganderia to the Laurentian margin has been relatively well constrained (e.g. van Staal, 1994;
van Staal and others, 1998, 2008, 2016), the accretion of southern Ganderian components,
particularly the St. Croix terrane (and its assumed New River basement) is less well known.
Central to these issues is the timing of closure of the Iapetus Ocean. In the earliest tectonic
models (e.g. McKerrow and Ziegler, 1971; McKerrow, 1982) the Fredericton Trough was
regarded as marking a Silurian lapetus suture correlative with that identified in the British

Isles (Phillips and others, 1976; Leggett and others, 1983; Bluck and others, 1992). However
Williams (1979) interpreted Iapetus closure in the Appalachians as Middle Ordovician; Late
Ordovician and Silurian rocks including the Fredericton Trough were regarded as successor
basins deposited across the accreted terranes. Later work (e.g. van Staal and others, 1998) in
New Brunswick demonstrated the peri-Gondwanan affinities of the Popelogan and Miramichi
terranes, suggesting that the Iapetus Ocean closed in the Late Ordovician with the accretion of
the Ganderian Popelogan-Victoria arc to Laurentia along the Red Indian Line (Figure 2.1; van
Staal and others, 1998). However, prior to this collision, Early Ordovician separation of this arc
from the remainder of Ganderia had opened a wide Tetagouche-Exploits backarc basin (van Staal
and others, 2009, 2012); this basin closed over the Late Ordovician to mid-Silurian (van Staal
and others, 2009; Reusch and van Staal, 2012), ending with the accretion of the trailing Gander
margin (including the St. Croix terrane and other southern components — sensu Reusch and van
Staal, 2012), in the terminal event of Salinic orogenesis. In this model, the Fredericton Trough is
interpreted as a marine foredeep basin built upon a Ganderian microcontinent and filled during

the closure of the Tetagouche-Exploits backarc basin.

In the remainder of this paper we examine the provenance of sedimentary rocks in the
Fredericton Trough to determine when a sedimentary connection was established across the
trough and to shed light on the separation and collision of Ganderian fragments as remnants of

the Iapetus Ocean closed.
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2.2 Stratigraphy

The Fredericton Trough (Figure 2.2) is filled by the Silurian Kingsclear Group (Figure 2.3). At
its southern margin, it sits unconformably upon rocks of the Late Ordovician Kendall Mountain
Formation, belonging to the Cookson Group of the St. Croix terrane. The Kendall Mountain
Formation bears Sandbian (ca. 455-453 Ma: timescale of Cooper and Sadler, 2012) graptolites
of the Climacograptus wilsoni zone (Fyffe and Riva, 1990). To the north, the Fredericton Trough
is in contact with rocks of the Miramichi terrane, separated from them by the Bamford Brook -
Hainesville fault. The Fredericton Trough itself is divided by the Fredericton Fault, correlated
with a segment of the Norumbega Fault Zone in Maine, which comprises an extensive system
displaying up to 135 km of dextral offset beginning at ca. 380 Ma (Ludman and West, 1999;
Ludman and others, 1999).

To the south of the fault, the Kingsclear Group includes the Digdeguash Formation, comprising
medium-grained lithic and feldspathic wacke, quartz wacke, granule conglomerate, and grey

to black shale, with commonly well-graded beds exhibiting Bouma sequences (Ruitenberg and
Ludman, 1978). Fyffe and Riva (2001) recovered graptolites of the Coronograptus cyphus zone
of the upper Rhuddanian stage (early Llandovery, ca. 441.6 to 440.8 Ma: Melchin and others,
2012).

The Sand Brook Formation conformably overlies the Digdeguash Formation, and pinches out to
the west. It consists of greenish feldspathic wacke interlayered with green siltstone and mudstone
(Fyffe, 1991). The age of the Sand Brook Formation is constrained as late Rhuddanian to Pridoli

by its stratigraphic location above the Digdeguash and below the Flume Ridge Formation.

The youngest unit south of the fault, the Flume Ridge Formation, sits with apparent conformity
upon both older units. It includes greyish-green calcareous and argillaceous sandstone, siltstone,
and shale (Ruitenberg and Ludman, 1978). The Pocomoonshine pluton intrudes the Flume Ridge

Formation in Maine, and has been dated by West and others (1992) at 422.7 + 3 Ma, near the
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Figure 2.3. Simplified stratigraphic chart for the Kingsclear Group.

Timescale from Cooper and Sadler (2012) and Melchin and others (2012); Pocomoonshine

pluton age from West and others (1992).
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Ludlow-Pridoli boundary (Melchin and others, 2012).

North of the Fredericton Fault, the lowest unit in the Kingsclear Group is the Hayes Brook
Formation, medium to thickly bedded greyish quartz wacke interlayered with thin grey-black
shale (Poole, 1963). Its depositional age is constrained by upper Rhuddanian graptolites of the
Coronograptus cyphus zone (formerly Monograptus cyphus; Cumming, 1960; Fyffe, 1995;
Zalasiewicz and others, 2003), identical in age to those from the Digdeguash Formation to the

south.

The Hayes Brook Formation is conformably overlain by green siltstone and shale of the Cross
Creek Formation (Poole, 1963). Its depositional age is constrained by its stratigraphic position

between the Hayes Brook and the conformably overlying Burtts Corner Formation.

The Burtts Corner Formation includes gray lithic wacke interlayed with dark grey siltstone and
shale. Beds are well-graded with Bouma sequences, and show flute casts, climbing ripples, and
soft-sediment deformation structures such as flames and convolute bedding (Fyfte, 1995; Park
and Whitehead, 2003). Mid-Wenlock (ca. 432.4 to 430.5 Ma: timescale of Melchin and others,
2012) to early Ludlow (ca. 427.4 to 426.9 Ma) graptolites (Cyrtograptus linnarssoni and M.
nilssoni zones, now respectively the Cyrtograptus rigidus and Neodiversograptus nilssoni zones;
Zalasiewicz and others, 2009) have been recovered from the Burtts Corner Formation (Fyffe,

1995).

The Taxis River Formation, comprising grey lithic wacke and shale, was previously interpreted
(Poole, 1963) to rest conformably upon the Burtts Corner Formation, but recent mapping (Smith
and Fyffe, 2006 and references therein) suggests faulted contacts with bounding formations; its

depositional age has not been determined, and it is not further considered here.

2.3 Structure

The northeast-trending belt of rocks comprising the Fredericton Trough shows multiple stages
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of deformation (e.g. Smith, 2005; Smith and Fyffe, 2006), and only a few studies (e.g. Park

and Whitehead, 2003) have examined their structural characteristics in detail. Structural
characteristics of individual formations at their sampled locations are described later in this paper
(see also Fyffe, 1995; Fyffe and others, 2001 and references therein). Rocks of the Fredericton
Trough are interpreted by Park and Whitehead (2003) to record southeast-vergent Silurian
thrusting and folding, documenting Salinic orogenesis, in which a low-angle, northwest-dipping
thrust, a precursor to the Fredericton Fault, divided adjacent slices of the Kingsclear Group.
Later dextral transpressive deformation may have resulted either in the steepening of this thrust
(Park and Whitehead, 2003), or may have produced a new structure which reactivated or cut it.
Ludman and others (1999) have documented an extensive history of activity on the correlative
Norumbega Fault Zone to the southwest; the earliest dateable activity of this system is at ca. 380
Ma, and at present it has been interpreted to display up to 135 km of dextral offset. Additional
work in correlating the New Brunswick Fredericton Trough with equivalents in Maine is in part
hindered by an increasing Acadian metamorphic overprint (Ludman and others, 1999) to the

southwest, and a paucity of fossils to provide depositional age constraint (Ludman and others,

1993).

3. Detrital zircon geochronology

3.1 Methods

Detrital zircon geochronology has been successfully applied in the Appalachian-Caledonide
orogen to determining provenance and correlating terranes (Cawood and Nemchin, 2001;
Cawood and others, 2003, 2004; Murphy and others, 2004b; Waldron and others, 2012;
Macdonald and others, 2014; Waldron and others, 2014a). Previous work (e.g. Cawood and
Nemchin, 2001; Waldron and others, 2014a) has demonstrated that Laurentian provenance is
marked by an asymmetric peak at 1.0 to 1.1 Ga, with a tail of zircons typically extending to

ca. 2.0 Ga, and a scarcity of zircons in the 2.0 to 2.4 Ga range. The population at 1.0 to 1.1
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Ga is attributed to the Grenville orogen, which dominates the provenance of the Laurentian
margin (Cawood and Nemchin, 2001; Waldron and others, 2014a). Peri-Gondwanan zircon
signatures lack this distinctive asymmetric peak, and are distinguished by one or more large late
Neoproterozoic populations, in the 550 to 650 Ma range. Within this range, peri-Gondwanan
terranes of Avalonia and Ganderia may be distinguished by slightly older or younger peaks
respectively (Murphy and others, 2004a; Fyfte and others, 2009; Pollock and others, 2009).
Additionally, peri-Gondwanan detritus is frequently distinguished by zircon peaks from 2.0 — 2.2
Ga, often interpreted as representing derivation from the Eburnian or Trans-Amazonian orogens
of West Africa or Amazonia respectively (Pollock and others, 2007; Waldron and others, 2009,
2011, 2014a). These distinguishing characteristics enable the differentiation between sources

in Laurentia and the Ganderian terranes which converged with it during Salinic orogenesis
(Waldron and others, 2014a). By examining the fill of the Fredericton Trough for these
distinctive detrital zircon signatures, we can determine when southern components of Ganderia
were juxtaposed with Laurentia, and investigate whether they were separated by a seaway, a

possible remnant of the Iapetus Ocean.

Four samples from the Kingsclear Group were chosen, where possible, from known fossil
localities to constrain depositional age. Samples of ~10 kg mass were selected from the coarser-
grained sandstones representative of each formation, while avoiding any obvious weathering,
alteration, or mineralization. These were disaggregated by crushing and milling, and dense
minerals concentrated using a Wilfley table. The heavy mineral concentrate was sieved with

a standard 70 size nylon mesh (approx. 210 um) to remove remnant aggregate particles,

and further processed with Frantz Isodynamic and Barrier separators (e.g. Rosenblum and
Brownfield, 2000) to remove magnetic minerals. A final zircon concentrate was obtained by
gravity separation with methylene iodide (specific gravity of 3.32). Obvious non-zircons (e.g.
pyrite) were removed and the remaining portion then mounted in epoxy for LA-MC-ICP-MS
U-Pb analysis. Zircons were not selected individually for analysis, to avoid bias towards easily

recognizable zircon morphologies. Each zircon mount was polished to expose sections through
37



the grains, and imaged to reveal internal structure (zonation, inherited cores, altered rims, etc.)
by backscattered electron and cathodoluminescence imaging utilizing a Zeiss EVO scanning

electron microscope.

132 to 152 grains from each sample were analyzed at the Canadian Centre for Isotopic
Microanalysis (CCIM) at the University of Alberta, using procedures modified from Simonetti
and others (2005) for measuring U-Pb isotopic ratios by LA-MC-ICP-MS. Each zircon is
typically represented by a single spot analysis, as restricted by physical grain size. When discrete
cores and rims of different age can be distinguished, they are represented by separate analyses
(ex. 001A and 001B within grain 001). Instrumentation consisted of a New Wave UP-213 laser
ablation system interfaced with a Nu Plasma MC-ICP-MS, with three ion counters to measure
Pb isotopes and twelve Faraday buckets measuring »*%U, U, 2%°T1 and 2*TI. The laser was
operated with a beam diameter of 30 microns, 4 Hz pulse frequency and fluence of ~3 J/cm?.

A He atmosphere was maintained in the ablation cell at a flow rate of 1 L/min. Output from

this cell was combined with that from a standard Nu Instruments desolvating nebulizer (DSN).
Unknowns from each sample were analyzed in groups of 10, with data collected statically in
thirty 1 s integrations. Separating each set of analyses, on peak gas + acid blanks were measured
over a duration of 30 s, and two zircon reference materials were analyzed to monitor U-Pb
fractionation, reproducibility, and instrumental drift: LH94-15 (1830 + 1 Ma; Ashton and others,
1999; Simonetti and others, 2005; Heaman, unpublished data) and GJ1-32 (606 Ma; Jackson and
others, 2004; Elhlou and others, 2006; Heaman, unpublished data). Mass bias for Pb isotopes was
corrected for by concurrently measuring **T1/2%T1 from an aspirated 0.5 ppb TI solution (NIST
SRM 997), utilizing an exponential mass fractionation law and assuming a natural 2*T1/2%T] of
2.3871. Data were reduced using an offline Excel-based spreadsheet, in which sample (unknown)
isotopic ratios were corrected based on standard analyses, using a cutoff value of 2*’Pb/?*Pb =
0.0658 (800 Ma): young grains were normalized to GJ1-32, and old grains to LH94-15. This
method of normalization allows unknowns to be corrected based on standards of a similar age;

natural gaps in our data typically occur at 800 Ma, making this a convenient cutoff. Uncertainties
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were reported using a quadratic combination of the standard error of the measured isotopic ratio,
and the standard deviation of the standard means. Reproducibility of the zircon standards is
estimated at ~1% (*“’Pb/?%Pb) and 2% (**°Pb/**U) (26). Sample measurements were discarded in
the case of obvious inclusions that contributed to analysis (and could not be isolated), an extreme
common Pb component, or analysis of non-zircons. Common Pb corrections after Simonetti

and others (2005) were typically applied when measured **Pb exceeded ~400 cps. The software
Isoplot (version 3.75: Ludwig, 2012) was employed to produce relative probability density

plots for zircons 90% concordant or better. Concordia diagrams, weighted means, MSWD
calculations, and other statistical analyses were prepared with the same software. Cumulative
probability plots and Kolmogorov-Smirnov tests were calculated using analysis tools from the

Arizona LaserChron Center (Gehrels and others, 2006).

3.2 Sampled units

Lithological observations (and classification after Dott, 1964) from each of the four sampled
formations bear broadly similar characteristics (see below), and are consistent with their
interpretation as polydeformed, turbiditic material deposited in a narrowing seaway. Zircon
grains from each of the four formations also share similar characteristics (Figure 2.4). They
vary from rounded to angular, with older zircons more frequently showing rounded shapes,
and young zircons with the most angular shapes. Common textures include oscillatory zoning
(with or without inherited cores), overgrowths, and various textures related to metasomatism,

metamictization, or recrystallization.

3.2.1 Digdeguash Formation

The Digdeguash Formation was examined in the Digdeguash river where outcrops exhibit three
generations of structures. The earliest fabric is a bedding-parallel S1 cleavage. F1 folds are not
observed at outcrop scale. F2 folds gently plunge eastward and exhibit parasitic folding, and are

refolded by F3 folds. These latest folds are open, with axial traces trending NNE-SSW.
39



Figure 2.4. CL (cathodoluminescent) images of selected zircons from four formations of the
Fredericton Trough.
Circles show location of 30 micron laser ablation pits.
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Because of the lack of fossils in the type section, the Digdeguash Formation was sampled at a
known fossil locality (Upper Rhuddanian Coronograptus cyphus zone; Fytfe and Riva, 2001)
southwest of Otter Lake (Figure 2.2). Thin section analysis (Figure 2.5) indicates the rock is a
feldspathic wacke, with a relatively high amount of matrix (42%). Framework grains consist

of quartz (52%, normalized to total QFL components; subgrain boundaries and polycrystalline
quartz are particularly common) with a large amount of feldspar (42%, about two-thirds of which
is alkali feldspar) and some lithic fragments (6%). Accessory phases include mainly biotite and
opaque minerals. Framework grains are mainly subangular, and frequently show evidence of
strain. Biotite comprises most of the matrix, along with a small amount of quartz and feldspar,
and uncommon heavy minerals and opaques. A persistent foliation is present, approximately 60°

to bedding, and is defined mainly by biotite, and to a lesser extent lath-shaped feldspars.

3.2.2 Flume Ridge Formation

The Flume Ridge Formation contains multiple generations of mapped folds (e.g. Smith, 2005),
though these structures are frequently obscured in outcrop by abundant brittle fractures. The
sampled section (Figure 2.2) is largely overturned, alternating with shorter intervals of upright
beds, but the corresponding outcrop-scale fold closures themselves were not observed. Discrete,
highly sheared intervals typically divide upright from overturned sections, and contain small

folds, rare axial planar cleavage, and small duplexes (< 20 cm width).

The sampled rock (Figure 2.5) is a feldspathic wacke, including 60% matrix. Normalized QFL
proportions are quartz (73%), feldspar (15%, mainly alkali feldspar) and lithic fragments (12%).
Detrital accessory minerals include mainly muscovite, and smaller amounts of calcite, chlorite,
opaques, and rare mafic minerals such as pyroxene. The matrix is composed mainly of calcite,
muscovite, quartz and feldspar, with less common chlorite, opaques, and heavy minerals.
Alteration is common, particularly of the matrix, and products include sericite, iron carbonate,

and other iron-rich phases. A prominent foliation is defined by mostly muscovite and strained or
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Figure 2.5. Representative thin section photomicrographs from sampled units of four
formations of the Fredericton Trough.

PPL: plane polarized light, XPL: cross polarized light. A: Burtts Corner Formation, NAOOIA,
PPL. B: Burtts Corner Formation, NAOO1A, XPL. C: Digdeguash Formation, NAOO3A, PPL. D:
Digdeguash Formation, NAOO3A, XPL. E: Hayes Brook Formation, NAOOSA, PPL. F: Hayes
Brook Formation, NAOOSA, XPL. G: Flume Ridge Formation, NAO10A, PPL. H: Flume Ridge
Formation, NAO10A, XPL.
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recrystallized phases, and is about 60° to bedding.

3.2.3 Hayes Brook Formation

The Hayes Brook Formation shows multiple generations of map-scale folds (e.g. Smith and
Fyftfe, 2006), but may appear less deformed on outcrop scale relative to other sections of the
Fredericton Trough. The sampled section, at a Coronograptus cyphus fossil locality (Figure 2.2;
Cumming, 1960; Fyffe, 1995), contains consistently upright, steeply dipping beds striking NE
(ex. 045/80). Visible cleavage is at a low angle to bedding, and is strictly limited to thin finer-

grained beds between thickly bedded sandstones.

Thin section analysis (Figure 2.5) indicates the rock is a feldspathic wacke, comprising

43% matrix. Normalized framework grain proportions include quartz (53%), feldspar (38%,
equally alkali and plagioclase feldspar), and lithic fragments (8%, including chert, volcanics,
and granitoids). Mafic minerals (including pyroxene) make up a small portion of the detrital
components. Framework grains are mainly subrounded to subangular. The matrix fraction of

the rock includes quartz and feldspar, calcite, muscovite, and chlorite. There is no obvious or
persistent fabric, despite the presence of orientable phases, in contrast to outcrop observations of

bedding in coarser sandstone layers and cleavage in finer-grained siltstone and mudstone.

3.2.4 Burtts Corner Formation

Three distinct generations of folds have been identified in turbidites of the Burtts Corner
Formation (Park and Whitehead, 2003). The most prominent are chevron-type, F2 folds locally
exhibiting a well-developed axial planar cleavage. Interlimb angles tighten, from open to tight,
with increasing proximity to the Fredericton Fault, while fold hinges become more curvilinear.
These F2 folds plunge gently NE and SW, roughly parallel to the strike of the nearby Fredericton
Fault. F1 fold closures have not been observed in outcrop, but limited occurrence is suggested by

Park and Whitehead (2003). F3 structures reported by the same authors include kink bands, and

44



chevron folds with sub-horizontal axial planes and poorly developed axial planar cleavage. The
sampled section (Figure 2.2), consisting of gray lithic wacke interbedded with dark gray siltstone

and shale, bore graptolites of the Cyrtograptus linnarssoni (rigidus) zone (Fytfe, 1995).

In thin section (Figure 2.5), point counting allows the sampled rock to be classified as a
feldspathic wacke, with a high proportion of matrix (53%). Framework grains consist of quartz
(75%) with a significant amount of feldspar (22%, mainly alkali feldspar), and minor lithic
fragments (3%). Major components are mainly subangular, and irregular grain boundaries are
particularly common in quartz. Common accessories include muscovite and opaque minerals.
Identifiable matrix consists mainly of calcite and white mica, with a small amount of chlorite. A

strong foliation is defined primarily by white mica, and is about 50° to 60° from bedding.

3.3 Results

3.3.1 South of the Fredericton Fault

Detrital zircon probability density distributions are shown in Figure 2.6 for the four analyzed
formations of the Kingsclear Group. To the south of the Fredericton Fault, the upper Rhuddanian
Digdeguash Formation (Figure 2.6) shows a dominant statistical peak at ca. 615 Ma, consistent
with sources in the peri-Gondwanan terranes of Ganderia and Avalonia. A scatter of other
Proterozoic zircons range from 1.0 to 2.0 Ga, and a minor Cambrian peak (488.9 £ 7.1

Ma; MSWD of 0.63, probability of fit 0.71) is also observed. The overlying Flume Ridge
Formation (Figure 2.6) shows a distinctly different zircon signature. A strong asymmetric

latest Mesoproterozoic (“Grenville”) peak, at about 1.0 Ga, is accompanied by a range of
Proterozoic zircons up to 1.9 Ga, — a distribution closely resembling those from the Laurentian
margin (Cawood and Nemchin, 2001; Waldron and others, 2008, 2014a) indicating Laurentian
provenance. It bears a strong peak in the Ordovician (ca. 465 Ma), probably derived from an arc
associated with Iapetan subduction. It contains only a single Neoproterozoic zircon (567.3 + 26.1

Ma), in contrast to the abundant population in the underlying Digdeguash Formation, suggesting
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Figure 2.6. Detrital zircon probability density plots (PDP) and cumulative probability
distributions (CPD).

Horizontal axes from 0 to 4000 Ma; vertical scales arbitrary (PDP) or from 0.0 to 1.0 (CPD).

All data <10% discordant. Analyses with *’Pb/2%Pb ratios of less than 0.0658 are reported as
206Ph/238U ages; 2"Pb/2%Pb ages are reported otherwise. A: Digdeguash Formation. B: Flume
Ridge Formation. C: Hayes Brook Formation. D: Burtts Corner Formation. Comparative data
from Laurentia: E. Raeberry Castle Formation, Southern Uplands of Scotland (Waldron and
others, 2014a). F: Birk Riggs Formation, English Lake District (Waldron and others, 2014a).
Comparative data from Ganderia: G: Baskahegan Lake Formation, Miramichi Terrane (Fyffe and
others, 2009). H: Martinon Formation, Brookville Terrane (Fyffe and others, 2009). I: Watch Hill
Formation, English Lake District (Waldron and others, 2014a).
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that peri-Gondwanan sources are minor. Rare zircons from 2.1 to 2.8 Ga could also represent a

combination of Laurentian and minor peri-Gondwanan sources.

3.3.2 North of the Fredericton Fault

North of the fault, the upper Rhuddanian Hayes Brook Formation (Figure 2.6) displays a strong
Ordovician peak (ca. 465 Ma), probably representing a young arc. The majority of the remaining
zircon is contained in an asymmetric “Grenville” peak at 1.0 Ga, accompanied by a range of
Proterozoic zircons to 1.8 Ga, and a scatter of zircons from 2.4 to 2.8 Ga, indicating Laurentian
sediment input. There are no zircons in the “Eburnean” (2.0 to 2.2 Ga) range, nor circa 600 Ma
that would indicate peri-Gondwanan sources. The Burtts Corner Formation (Figure 2.6), sampled
at a mid-Wenlock fossil locality, similarly displays an asymmetric “Grenville” peak at 1.0 to 1.1
Ga, suggesting Laurentian sources. However, the range of Mesoproterozoic and Paleoproterozoic
zircons extends back to 2.2 Ga, overlapping the Eburnean range. In addition it displays a strong
Neoproterozoic (~640 Ma) peak. These observations suggest a mixture of Laurentian and
peri-Gondwanan sources. A peak in the Paleozoic (480 Ma) is similar in age to the youngest
Penobscot volcanics (487 + 3 Ma: Fyffe and others, 2011) and volcanism in the Annidale terrane
(from 493 + 2 Ma: McLeod and others, 1992; Ruitenberg and others, 1993; to 481 + 1.7 Ma:
Johnson and others, 2012), and probably indicates a contribution from Ordovician arc sources, as

in the samples from the Flume Ridge and Hayes Brook Formations.

4. Discussion

4.1 Provenance of zircon

South of the Fredericton Fault our results show a distinct change in provenance through time.
Although the early Llandovery Digdeguash Formation lacks the 2.0 — 2.2 Ga Eburnean zircons
frequently present in peri-Gondwanan rocks (Pollock and others, 2007; Waldron and others,
2014a), its dominant late Neoproterozoic peak, and the scatter of Mesoproterozoic zircons
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without a strong concentration at 1.0 Ga, are characteristic of peri-Gondwanan provenance
(Fyffe and others, 2009; Waldron and others, 2014a). In contrast, the overlying Flume Ridge
Formation shows a distinctive large and asymmetric Mesoproterozoic “Grenville” peak at 1.0
Ga, with a positive tail of older zircon extending to 1.9 Ga. These features indicate that by

the time of deposition of the Flume Ridge Formation, Laurentian sources had overwhelmed
Gondwanan sources in this part of the Fredericton Trough. Minor peaks in the Neoproterozoic
and early Proterozoic suggest only a minor contribution of the peri-Gondwanan zircon that
dominates the underlying Digdeguash Formation, or that might suggest exhumation of the
Miramichi terrane to the north. Given our depositional age constraints for these formations,

this brackets the arrival of Laurentian detritus in the southern Fredericton Trough between the
late Rhuddanian (~441 Ma: Melchin and others, 2012) deposition of the Digdeguash Formation
and intrusion of the Pocomoonshine pluton at 422.7 +3 Ma (West and others, 1992), close to

the Ludlow-Pridoli boundary (Melchin and others, 2012). Furthermore, the absence of material
consistent with exhumed Miramichi terrane sources (seen in the Burtt Corner Formation by mid-
Wenlock), suggests that the Flume Ridge sample predates this event: It is likely that the arrival of

Laurentian detritus occurred no later than mid-Wenlock.

North of the fault, in the Hayes Brook Formation (contemporaneous with the Digdeguash
Formation at the resolution of graptolite biostratigraphy; see Melchin and others, 2012), we
record Laurentian detritus in the upper Rhuddanian, indicated by an asymmetric “Grenville”
peak and tail similar to that in the Flume Ridge Formation. The conspicuous absence of peri-
Gondwanan material suggests that the Miramichi terrane had not been exhumed at this time. The
younger Burtts Corner Formation, in contrast, has a mixed zircon signature of both Laurentian
and peri-Gondwanan elements, bearing both an asymmetric 1.0 Ga peak and tail, in addition to
Neoproterozoic (ca. 660 Ma) and Eburnean (2.0 — 2.2 Ga) zircons typical of peri-Gondwanan
terranes. Both samples indicate the presence of a significant Laurentian source; the additional
components in the Burtts Corner Formation probably record exhumation of the peri-Gondwanan

Miramichi terrane to the north, following its Late Ordovician to Llandovery metamorphism
49



under high P/T conditions in the Brunswick Subduction Complex (van Staal and others, 2008).
Exhumation must have occurred by the Wenlock, consistent with the history proposed by van

Staal and others (2008).

Large Ordovician (~465 to 480 Ma) peaks are characteristic of each of the three formations
showing Laurentian zircon signatures, comprising 15 to 55% of their detrital zircon populations.
The association of these young zircons with Laurentian detritus suggests that they probably

represent peri-Laurentian arcs associated with Iapetan subduction.

4.2 Tectonic implications

McKerrow (1982) argued that the Iapetan suture in New Brunswick lies along the Fredericton
Trough, the trough itself representing the floor of the Iapetus Ocean (McKerrow and Ziegler,
1971). However, Williams (1979) regarded the Iapetus suture as an Ordovician feature and
interpreted the Fredericton Trough as a successor basin. Subsequent work (e.g. van Staal and
de Roo, 1995 and references therein) confirmed peri-Gondwanan material north of the trough,
and identified the main Iapetan suture along the Red Indian Line (van Staal and others, 1998),
largely concealed as it passes through northwest New Brunswick. The Fredericton Trough
was interpreted (e.g. van Staal and others, 2009) to record a part of the Tetagouche-Exploits
backarc basin, which closed during Salinic orogenesis. The terminal Salinic suture, marking
the final closure of this seaway, was drawn along the Bamford Brook - Hainesville fault in
New Brunswick (Pollock and others, 2007; Reusch and van Staal 2012), which bounds the
northern margin of the Fredericton Trough against rocks of the Miramichi terrane (Figure 2.2).
The Tetagouche-Exploits seaway, though originating as a backarc basin, evolved into a seaway
of significant width (van Staal and others, 2012), showing scarce volcanic input in its later
(Silurian) history (van Staal and others, 2009). Recent reconstructions (Waldron and others,
2014a, 2014b) suggest that the Iapetus Ocean formed a large system comprising a number of

seas separated by arcs and microcontinents. The Fredericton Trough, regarded as a part of this
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larger system, records a remnant of the Iapetus Ocean in the New Brunswick Appalachians.

Contrasting detrital zircon signatures across the Fredericton Fault suggest that it marks the
position of an earlier structure, possibly a suture or terrane boundary (McKerrow and Ziegler,
1971; McKerrow, 1982) dividing two distinct slices of the Fredericton foredeep as they were
accreted to a composite Laurentia (Figure 2.7). An alternative hypothesis, that provenance
differences could be produced from variable paleoflows in a small successor basin bounded
by contrasting margins, is unlikely in the case of the Fredericton Trough. Previous work (e.g.
Waldron and others, 2008, 2014a) clearly shows that Laurentian detritus is pervasively found
throughout Silurian deepwater basins along the Laurentian margin, regardless of spatial and
temporal fluctuations in paleocurrent direction. Thus, it is unlikely that interleaving turbiditic
fans from different sources could preserve as clear a separation of distinct sediment sources as
is seen in the contemporary Hayes Brook and Digdeguash Formations; reworking of sediment,
and mixing of detrital zircon signatures, would be expected. It is therefore likely that provenance

differences seen in the Fredericton Trough result from tectonic closure of a wider basin.

Structural observations (Park and Whitehead, 2003) indicate that the portion of the Fredericton
Trough to the north of the Fredericton fault overrode those sediments to the south, juxtaposing
the northern and southern portions of the basin in approximately their present configuration.
The division of provenance across the fault records a seaway of significant width — a barrier
to sedimentation — during deposition of the Hayes Brook and Digdeguash Formations, which
are constrained to be approximately of the same late Rhuddanian depositional age. Contrasts in
provenance between the Burtts Corner and Flume Ridge Formations may result from localization
of exhumed Miramichi terrane sources along the Laurentian margin, either in time or space, or
may indicate deposition of the Flume Ridge Formation sample prior to the exhumation of the
Miramichi terrane, recorded in the Burtts Corner Formation sample. The seaway which divided
the older Hayes Brook and Digdeguash Formations cannot have persisted after 422.7 &+ 3 Ma,

since by this time Laurentian detritus is clearly seen in the Flume Ridge Formation.
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Figure 2.7. Schematic evolution of the Fredericton Trough and adjacent terranes during
the Silurian Period.

A: Late Llandovery; B: Early Wenlock (before exhumation of the Brunswick subduction
complex); C: Mid-Wenlock (after exhumation of the Brunswick subduction complex); D:
Devonian, post-accretion. AV: Avalonia, BC: Burtts Corner Formation, BSC: Brunswick
subduction complex, DG: Digdeguash Formation, FR: Flume Ridge Formation, HB: Hayes
Brook Formation, KA: Kingston arc, LR: Laurentia, NR: New River terrane, PVA: Popelogan-

Victoria arc, SC: St. Croix terrane. Arrows indicate the provenance of detritus.
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Several locations have been proposed for the placement of the Salinic suture in New Brunswick.
A position along the Bamford Brook — Hainesville faults (Figure 2.2; Reusch and van Staal,
2012) is not consistent with our results, particularly the evidence of Laurentian detritus in the
late Rhuddanian Hayes Brook Formation, south of this proposed suture, prior to the closure of
the Tetagouche-Exploits seaway. Based on detrital zircon provenance, the Fredericton Fault
itself, though a later feature, approximates the position of the terminal Salinic suture in the New
Brunswick Appalachians between the late Rhuddanian and 422.7 + 3 Ma (late Ludlow - early
Pridoli; West and others, 1992).

Traced to the northeast, this boundary corresponds to the Dog Bay Line in Newfoundland
(Williams and others, 1993), where detrital zircon data and other work is consistent with

a Silurian closure of the last vestige of Iapetus Ocean (Pollock and others, 2007). Farther
northeast, in the British Isles, the equivalent Solway Line is commonly regarded as the Iapetan
suture (Phillips and others, 1976; Leggett and others, 1983; Bluck and others, 1992), bounding
the southern margin of the Southern Uplands terrane. Detrital zircon geochronology in the
Caledonides (Waldron and others, 2014a) provides evidence for Ganderia-Laurentia collision
in the Wenlock; however, there is no evidence for earlier Ordovician accretion of Ganderian

fragments, as in the equivalent Canadian Appalachians.

The timing and nature of Ganderia-Avalonia juxtaposition is unclear, and is not further clarified
by our detrital zircon data. However, work from Pothier and others (2015) in Wales has
suggested that a portion of Ganderia was juxtaposed with Avalonia in the Early Ordovician
Monian/Penobscot orogenic event, associated with sinistral movement along the Menai Strait
Fault System. A similar scenario is possible in the New Brunswick Appalachians between

southern Ganderian terranes and Avalonia, represented by the Caledonia terrane.

5. Conclusions

Detrital zircon U-Pb data from four formations of the Fredericton Trough contribute to resolving
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several longstanding controversies in Appalachian geology:

1.

A remnant of the Iapetus Ocean persisted into the mid-Silurian, and is recorded by the

Fredericton Trough.

The closure of this seaway, and terminal Salinic convergence between northern and
southern Ganderian components, is constrained by the arrival of Laurentian detritus
within the Flume Ridge Formation: after the late Rhuddanian depositional age of the
Digdeguash Formation, before intrusion of the Pocomoonshine pluton at 422.7 £ 3 Ma,

and probably prior to the mid-Wenlock deposition of the Burtts Corner Formation.

The Miramichi terrane, including the Brunswick subduction complex, was exhumed by
the mid-Silurian and shed detritus into the adjacent Fredericton Trough. Exhumation
occurred after the late Rhuddanian Hayes Brook Formation, and had occurred by the mid-

Wenlock deposition of the Burtts Corner Formation at the sampled locality.

The terminal Salinic suture in New Brunswick may be located close to the trace of the

Fredericton Fault.
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Chapter 3: Detrital zircon geochronology of the Mascarene

Group

Volcanic-sedimentary successions of the Mascarene Group, in present-day southwestern
New Brunswick, were deposited across components of Ganderia from the Late Ordovician
to late Silurian, contemporaneous with the convergence of the microcontinent Ganderia
with a composite Laurentian continent across a narrowing remnant of the lapetus Ocean.
Samples were selected from three key formations of the Mascarene Group for detrital
zircon geochronological analysis: the Waweig Formation, with a previously interpreted
U-Pb zircon date from a felsic tuff suggesting a depositional age of 438 + 4 Ma; the

Back Bay Formation, of late Llandovery age indicated by brachiopods; and the Eastport
Formation, bearing a felsic tuff dated at 423 + 1 Ma. The Waweig Formation is found to
contain almost entirely young zircon, ca. 430 Ma, slightly younger than the previously
dated tuff outcrop 7 km away along strike. The Back Bay Formation displays significant
proportions of zircon at about 610 Ma, with minor sources from 430 Ma, and suggests
peri-Gondwanan provenance. The Eastport Formation, in addition to zircon peaks at about
425 Ma and 605 Ma, shows a range of zircon extending from 1.0 Ga to 1.7 Ga, similar

to other distributions from Ganderia but also showing a resemblance to a distribution
from the Fredericton Trough to the north, that shows mixed Laurentian and Ganderian
provenance. The possible presence of Laurentian detritus in the Mascarene Basin, after
the late Llandovery (Back Bay Formation) and by 423 + 1 Ma (Eastport Formation),
could constrain the time at which Ganderia was juxtaposed with Laurentia during their

convergence and the associated closure of the lapetus Ocean.

1. Introduction

The Appalachian Orogen (Figure 3.1) lies along the eastern edge of present day North America,

and extends to include the correlative Caledonides in Greenland and the British Isles. Previous
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Figure 3.1: Map of the Appalachian-Caledonide orogen showing lithotectonic divisions.

Pangean (pre-Mesozoic) reconstruction after Waldron and others (2014b) and references therein.

Box encloses Figure 3.2. Lithotectonic divisions after van Staal and others (1998) and Hibbard
and others (2006, 2007).
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work (e.g. Williams, 1979; Hibbard and others, 2006, 2007) has detailed the various lithotectonic
divisions which constitute the orogen, dividing them into terranes of Laurentian or Gondwanan
origin (Figure 3.1). The Paleozoic convergence of peri-Gondwanan components, and Gondwana

itself, with Laurentia is interpreted to have been a driving cause of Appalachian orogenesis.

Peri-Gondwanan components include Ganderia and Avalonia; the former is especially

well represented in New Brunswick, Canada (Figure 3.2). Both Ganderia and Avalonia are
interpreted to have originated from the margin of Gondwana, having rifted apart as domains

of microcontinental material by the mid-Cambrian and Early Ordovician respectively (Nance
and others, 2002; van Staal and others, 2012). Coinciding with the closure of the Iapetus Ocean
(which divided Laurentia from Gondwana), these peri-Gondwanan components would converge
with Laurentia in what have been interpreted as the Taconic, Salinic, and Acadian orogenies (van

Staal and others, 2009).

Detrital zircon geochronology has been applied in key areas of the Appalachian-Caledonide
orogen, enabling the determination of the provenance of various terranes, and using this
knowledge to ascertain the timing of accretionary events (Cawood and Nemchin, 2001; Cawood
and others, 2003, 2004; Waldron and others, 2012; Macdonald and others, 2014; Waldron

and others, 2014a). Previous work has demonstrated that distinctive Laurentian detritus is
pervasively found in basins formed within or upon terranes juxtaposed or accreted to Laurentia
(Waldron and others, 2008, 2012, 2014a; Chapter 2). The presence of Laurentian detritus is
typically indicated by a distinctive and prominent “Grenville” zircon population at 1.0 to 1.1 Ga,
with an asymmetric tail of zircons typically extending to about 2.0 Ga, and a paucity of zircon
populations in the 2.0 to 2.4 Ga range (Cawood and Nemchin, 2001; Waldron and others, 2014a).
This is in contrast to the detrital zircon signatures typically found in peri-Gondwanan terranes,
typically including a prominent Neoproterozoic peak from 550 to 650 Ma (Fyffe and others,

2009; Waldron and others, 2014a), and which lack Laurentian indicators.

The volcanic-sedimentary Mascarene Basin (Figure 3.2), a composite basin named by Fyffe and
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Figure 3.2: Lithotectonic terrane map of New Brunswick.
After Smith (2005, 2006); see also Fyffe and others (2011). Sampled formations of the
Mascarene Group are shown with arrows. A: Eastport Formation. B: Waweig Formation. C: Back

Bay Formation.
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others (1999) after the Late Ordovician to late Silurian Mascarene Group, was deposited upon
some of the last components of Ganderia to converge with the Laurentian continent (e.g. Fyfte
and others, 2011). Its relatively constricted, extensional paleogeographic setting, and deposition
during Salinic orogenesis, make it an ideal target to test this method of geochronology, and
demonstrate if the methods used elsewhere in the orogen may be applied successfully within this
basin. Based on the distinctive and contrasting indicators of Laurentian and peri-Gondwanan
provenance, individual formations of the Mascarene Group can be studied to determine

whether or not they were juxtaposed with Laurentia by the time of deposition. By suggesting
when Laurentian detritus may first have arrived within the Mascarene Basin, we can provide
constraints on the timing and nature of the accretion of Ganderia with Laurentia. Detrital zircon
data have previously been reported from one formation of the Mascarene Group (Fyffe and
others, 2009). The early Silurian Oak Bay Formation records only peri-Gondwanan sources;
there has been no further detrital zircon study of other formations within the basin, and no record

of Laurentian detritus.

2. Geologic Setting

2.1 Tectonic Overview

Laurentia took form as a discrete continent in the late Neoproterozoic, following the breakup
of the supercontinent Rodinia (Li and others, 2008). The Iapetus Ocean opened by 570 — 550
Ma (Williams and Hiscott, 1987) between Laurentia, Baltica, and Amazonia, which led to the
development of a Laurentian passive margin (Cawood and others, 2001) by 520 — 515 Ma

(timescale of Peng and others, 2012).

The microcontinental domain Ganderia separated from Gondwana by 505 Ma (White and others,
1994; Schulz and others, 2008; van Staal and others, 2009, 2012); following this, components of
Ganderia began to collide with Laurentia in the Early Ordovician in New England (Macdonald

and others, 2014) and the Late Ordovician in Newfoundland (van Staal and others, 2008,
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2009). Subsequent Salinic orogenesis is interpreted to have resulted from the accretion of other
Ganderian components in the Silurian (van Staal and others 2008, 2009), and is defined by a
late Silurian unconformity in west Newfoundland (Dunning and others, 1990), and multiple
unconformities (Late Ordovician to late Silurian) in New Brunswick (van Staal and de Roo,
1995; Wilson and others, 2004; Fyffe and others, 2011; Wilson and Kamo, 2012; Wilson and
others, 2015). The microcontinent Avalonia separated from Gondwana by the Early Ordovician
(Nance and others, 2002). Its collision with Ganderia, which may have formed part of a
composite Laurentian margin at the time, is interpreted to have resulted in late Silurian to mid-

Devonian Acadian orogenesis (van Staal and others, 2009, 2014).

The Mascarene Basin overlies two Ganderian terranes (Figures 3.2, 3.3): the late Neoproterozoic
to late Cambrian New River terrane (Johnson and McLeod, 1996; Johnson and others, 2009;
Fyfte and others, 2011), and the late Neoproterozoic to Late Ordovician St. Croix terrane
(Ludman, 1987; Fyffe and Riva, 1990; Ludman, 1991; Fyffe and others, 2011). The St. Croix
terrane comprises a continental margin succession, at least part of which was deposited while
Ganderia was still attached to Gondwana (Fyffe and others, 2011), and is overlain by a Salinic
unconformity prior to deposition of the Mascarene Group. The New River terrane is itself the
basement to the St. Croix terrane (Fyffe and others, 2011), and includes Late Neoproterozoic

to Early Cambrian arc-related igneous rocks, overlain by thick Early Cambrian quartz-rich
sediments typical of Ganderia, which are in turn overlain by volcanic rocks at the end of the

Early Cambrian (Fyffe and others, 2011; Johnson and others, 2012).

The Mascarene Basin has been interpreted to have been deposited in an extensional, possibly
back-arc setting (Van Wagoner and others 2001, 2002). Associated volcanic rocks are bimodal:
basaltic rocks are probably derived from partial melting of the mantle, modified by both crustal
contamination and mantle metasomatism from a subduction event; rhyolitic rocks are crustal
melts probably driven by underplating of continental crust (Van Wagoner and others, 2002).

These rocks are consistent with, and have been interpreted as resulting from the convergence of
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Figure 3.3: Stratigraphic columns of the Mascarene Group and related formations.
Timescales of Cooper and Sadler (2012), Melchin and others (2012), and Peng and others
(2012).
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Avalonia with Ganderia, along a northerly-dipping subduction zone beneath Ganderia’s southern
margin (Fyffe and others, 1999; Van Wagoner and others, 2001, 2002; Fyffe and others, 2011;
van Staal and others, 2014). In this hypothesis the Mascarene Basin is interpreted as Silurian
back-arc basin fill, associated with volcanic and intrusive rocks of the Kingston arc to the

southeast (Figure 3.2).

Coinciding with the deposition of the Mascarene Basin in the Silurian, the Fredericton Trough
to the northwest was filled, deposited along the margins of a closing lapetus Ocean, and sharing
in part the same St. Croix terrane basement as the Mascarene Basin (Fyfte, 1995). Previous
study (Chapter 2) has demonstrated the arrival of Laurentian detritus within the Fredericton
Trough between the late Rhuddanian and mid-Wenlock, providing evidence that this part of
Ganderia accreted to Laurentia during this time. Although these two basins share the same
basement terrane, post-depositional faulting and differing lithologies (notably the paucity of
volcanic input in the Fredericton Trough) suggest separated depositional settings, and a more
complex convergent scenario. There are few existing constraints on when the Mascarene Basin,
and southernmost Ganderian terranes, converged with a composite Laurentia, which this detrital

zircon study attempts to address.

2.2 Stratigraphy

The Mascarene Basin (Fyffe and others, 1999) is filled by Late Ordovician to late Silurian
bimodal volcanic-sedimentary rocks of the Mascarene Group (Figure 3.3). The basin is filled by
ca. 2 to 3 km of mixed sedimentary and volcanic rocks (King and Barr, 2004) overstepping the
boundary between its St. Croix terrane basement to the north, and New River terrane basement
to the south (Figure 3.2). However, the basin is a composite of lithologically similar successions
with similar faunal assemblages (Fyffe and others, 1999), which are divided by many faults; few
formations within the basin are in stratigraphic contact with one another. The Mascarene Basin is

correlated with the Coastal Volcanic Belt in Maine, and is coeval with arc-related igneous rocks
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of the Kingston terrane to the south.

Numerous formations are considered part of the Mascarene Group in New Brunswick (Figures
3.2, 3.3), found in four main fault-bounded sequences (Miller and Fyfte, 2002). The Oak Bay
Formation, unconformably overlain by the Waweig Formation, is composed of polymictic
conglomerate interbedded with sandstone; brachiopods in a limestone clast suggest an early
Silurian age (Cumming, 1967). The Waweig Formation consists of sandstone interbedded

with mudstone and tuff; U-Pb zircon dating (TIMS) of a tuff within the formation yielded a
Llandovery age of 438 + 4 Ma (Miller and Fyfte, 2002). The St. George batholith intrudes the
Waweig Formation and obscures its contact with the Eastport Formation; however, mapping
relationships suggest that the latter may be conformable upon the Waweig Formation (Fyffe
and others, 2011; Johnson and others, 2012). The Eastport Formation bears a felsic tuff dated
at 423 £ 1 Ma (Dadd and Van Wagoner, 2001; van Wagoner and others, 2001), and includes
bimodal volcanic rocks interbedded with an increasing proportion of sandstone, siltstone, and
mudstone towards the upper portion of the unit. The Goss Point Formation is composed mainly
of limestone interbedded with quartzite and tuff, with conodonts indicating a Late Ordovician
(Caradoc to Ashgill, ca. 458 to 444 Ma: Cooper and Sadler, 2012) age (Nowlan and others,
1997). Shale, siltstone, and sandstone of the Fowle Lake Formation bears a diverse fossil
assemblage indicating a Llandovery (C3, ca. 438 Ma: Cocks and others, 1970; Melchin and
others, 2012) to Ludlow age (Johnson and McLeod, 1996). The Letete Formation is composed
of bimodal volcanics, quartz wacke, mudstone, siltstone, and tuff, with a U-Pb zircon age

from a felsic tuff of 437 = 7 Ma (Miller and Fyffe, 2002). The lithologically similar Wilsons
Beach Formation is correlated to the Letete Formation (McLeod and others, 2001), and has no
additional age control. The Back Bay Formation includes sandstone, grey to green siltstone and
mudstone, conglomerate, and volcanic rock, and bears fossils suggesting a Late Llandovery
age (Boucot and others, 1966). The Henderson Brook Formation is of similar age and lithology,
consisting of polymictic conglomerate, volcanic rock, sandstone and other clastic rock, and

bears fossils suggesting a Llandovery (C5, ca. 436 Ma: Cocks and others, 1970; Melchin and
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others, 2012) age (McCutcheon and Boucot, 1984). An outlier of Henderson Brook Formation
sits unconformably on the Grant Brook Formation of the New River terrane, dated at 541 + 3
Ma from zircons in its type locality (Johnson and others, 2009). The Long Reach Formation is
composed mainly of volcanic rocks, sandstone and siltstone, and bears brachiopods suggesting
a late Llandovery to Wenlock age (Boucot and others, 1966; Berry and Boucot, 1970). Its
depositional age is further constrained by the conformably (McCutcheon and Ruitenberg, 1987)
overlying Jones Creek Formation, which bears an interlayered dacite dated at 432.2 + 2.4 Ma
(Dadd and Van Wagoner, 2001). The Jones Creek Formation consists of feldspathic arenite,
wacke, siltstone and volcanic rock. The Cunningham Creek Formation conformably (Johnson,
2000) overlies the Jones Creek Formation, and consists of mudstone, siltstone, tuff, and other
volcanic rocks. It contains fossil assemblages suggesting a late Ludlow to Pridoli age (Turner,

1986; others).

Within this complex basin, three formations were selected for detrital zircon analysis based on
the most robust depositional age constraints, and lithologies likely to yield detrital zircon from
basement source rocks. Those selected are the Waweig, Back Bay, and Eastport Formations. The
Waweig Formation is located in southwestern New Brunswick, striking northeast from Oak Bay
past the Digdeguash River along the northern margin of the St. George batholith (Figure 3.2).
The formation includes, from oldest to youngest: volcaniclastic conglomerate and sandstone

of the Campbell Point Member; interbedded mudstone and tuff of the Sawyer Brook Member;
and sandstone, mudstone, and tuff of the Simpson Corner Member (Fyffe and others, 1999).

The latter member is up to 3000 m thick, while the others are about 600 m each, for a total
formation thickness of about 4200 m over a belt 5 km wide. The Waweig Formation conformably
overlies the early Silurian Oak Bay Formation; a detrital zircon study by Fyffe and others (2009)
reported only peri-Gondwanan sources within this formation. The Oak Bay Formation in turn
unconformably overlies the Ordovician Cookson Group of the St. Croix terrane (Fyffe and
others, 1999, 2011). The Waweig Formation is intruded by the Early Devonian Magaguadavic

Granite in the east (Fyfte, 2005; McLeod and others, 2005a), and the probably late Silurian
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(based on a coeval relationship with the Utopia Granite: McLeod, 1990) Bocabec Gabbro to the
south (Fyffe, 2005). Brachiopods were previously interpreted to indicate a late Ludlow to Pridoli
age (ca. 424 to 419 Ma: Melchin and others, 2012) for the Simpson Corner Member (Boucot and
others, 1966; Pickerill, 1976). However, analysis by Miller and Fyffe (2002) of a felsic tuff from
the Campbell Point Member provided a U-Pb zircon age of 438 &+ 4 Ma (Llandovery); from this
and other data, the authors subsequently questioned the validity of assigning late Silurian ages
based specifically on the occurrence of Salopina sp., but allow that the thickness of the Waweig
Formation may mean that it extends to the Ludlow. The upper age limit is constrained by the
intrusion into the Simpson Corner Member (Fyffe and others, 1999) of the Bocabec Gabbro in
the late Silurian: the Utopia Granite, coeval with the Bocabec Gabbro, has been dated at 423 £ 3
Ma (U-Pb age) (McLeod, 1990; McLaughlin and others, 2003). The Waweig Formation may be

conformably overlain by the Eastport Formation to the south (Fyffe and others, 2011).

The Back Bay Formation, extending several hundred meters along the shore of Back Bay near
the village of the same name (Figure 3.2), consists of shale, slate, quartz wacke and arenite, and
volcanic wacke. It has a thickness of about 300 m and a relatively limited extent. The formation
is in faulted contact with adjacent units (McLeod and others, 2005b), including the Letete
Formation and igneous rocks of the New River terrane. The Back Bay Formation has a late
Llandovery (C4-C5, or about 437-436 Ma: Cocks and others, 1970; Melchin and others, 2012)
depositional age based on the occurrence of the brachiopod Pentamerus sp. (Boucot and others,
1966). Other fossils are consistent with a late Llandovery to Wenlock age (Boucot and others,
1966), corresponding to approximately 437-427 Ma in the timescale of Melchin and others
(2012).

The Eastport Formation is present along the shore of Passamaquoddy Bay, and extends northeast
past Utopia Lake and southeast into Maine (Figure 3.2). It is composed of interbedded mafic
and felsic flows, red sandstone and siltstone, and dips gently south (Fyffe and others, 2011). The

formation is intruded by the late Silurian Utopia Granite (423 =3 Ma U-Pb age) and Bocabec
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Gabbro (McLeod, 1990; McLaughlin and others, 2003) and the Mesozoic Ministers Island Dyke
(Dunn and Stringer, 1990). A felsic tuff within the Eastport Formation yielded an age of 423

+ 1 Ma (Dadd and Van Wagoner, 2001; van Wagoner and others, 2001), approximately at the
Ludlow-Pridoli boundary, although fossil assemblages previously suggested the Early Devonian
(Pickerill and Pajari, 1976). It is unconformably overlain by the Late Devonian Perry Formation.
The formation is up to 4000 m thick in the Passamaquoddy Bay area, and consists of four cycles
of bimodal volcanic-sedimentary rocks, including the dated felsic tuff (Dadd and Van Wagoner,
2001; van Wagoner and others, 2001, 2002). The Eastport Formation may conformably overlie
the Waweig Formation, in which case it would probably overstep the St. Croix-New River

boundary in the subsurface (Fyffe and others, 2011).

2.3 Structure

The Mascarene Basin consists of four main fault-bounded successions of similar age and
lithology, with few stratigraphic contacts. The four sequences include (Figure 3.3): 1) Oak Bay
and Waweig Formations. 2) Eastport Formation, and other formations in the Coastal Volcanic
Belt in Maine. 3) Goss Point, Back Bay, Fowle Lake, Letete, and Wilsons Beach Formations. 4)
Henderson Brook, Long Reach, Jones Creek, and Cunningham Creek Formations. Correlative
formations in Maine may include the Quoddy, Dennys, Edmunds, Hersey, and Leighton

Formations (Miller and Fyffe, 2002).

The northern margin of the Mascarene Basin is bounded by the Sawyer Brook Fault (Figure 3.2),
which juxtaposes Oak Bay against the Calais and Kendall Mountain Formations of the St. Croix
terrane (Fyfte and others, 2011). However, the contact is an angular unconformity between the
Oak Bay and Calais Formations (Fyfte and others, 1999, 2011). The faulting, where present,
between the Calais and Oak Bay Formations has been interpreted to mark the initiation of rifting
or opening of the Mascarene Basin (Fyffe and others, 1999, 2011). Rocks of the Mascarene

Group are also juxtaposed (at its northern margin) against the New River terrane by the St.
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George — Fanning Brook Fault, which becomes an internal fault within the Mascarene Basin
to the west of the St. George Batholith (Fyffe and others, 2011). The southern contact of the
Mascarene Basin, also against the New River terrane, is marked by the Wheaton Brook — Back

Bay Fault (Fyffe and others, 2011; Johnson and others, 2012).

The contrasting lithologies of the Mascarene Basin and the Fredericton Trough suggest that,
though sharing the same Ganderian St. Croix terrane basement, the two were not juxtaposed in
their present position until after deposition. In addition, the study of faults separating the basins
(Fyffe and others, 1999; Park and Whitehead, 2003; Park and others, 2008), and the unique
tectonic setting of the Fredericton Trough (Chapter 2), suggest a more complex scenario of
convergence, where the St. Croix terrane basement may not have been continuous between the

two basins.

3. Detrital zircon geochronology

3.1 Sampled units

The Waweig Formation (Figure 3.2; Figure 3.3) was sampled from the Campbell Point Member
(Fyffe and others, 1999; Johnson and others, 2007) at a road cut along New Brunswick Route

1. About 400 m northwest lies the northeast-southwest trending contact with the Oak Bay
Formation. Approximately 7 km northeast, along strike, felsic tuff from the Campbell Point
Member has been sampled and dated at 438 + 4 Ma (Miller and Fyffe, 2002). A detrital zircon
sample was obtained from a bed about 20 cm thick, a fine-grained, volcaniclastic, quartz-rich and
feldspathic sandstone. It is a well-indurated, grey weathering rock, surrounded by other similar
beds along with reworked and welded tuffs. Surrounding beds have a laminated texture in finer-
grained portions and are locally calcareous. The unit strikes to the northeast, and dips moderately

to steeply southeast.

Thin section analysis of the sample (Figure 3.4) indicates the rock is a feldspathic wacke
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Figure 3.4: Thin section photomicrographs from three sampled formations of the
Mascarene Group.

A: Eastport Formation (plane-polarized light, ppl). B: Eastport Formation (cross-polarized light,
xpl). C: Waweig Formation (ppl). D: Waweig Formation (xpl). E: Back Bay Formation (ppl). F:
Back Bay Formation (xpl).
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(classifications are after Dott, 1964), with a very high proportion of matrix (68%). Framework
grains are feldspar-rich, and typically sub-angular to sub-rounded. Normalized to total QFL
(quartz, feldspar, lithic fragment) components, they include 27% quartz, 68% feldspar, and 5%
lithic fragments. The feldspar is about two-thirds potassium feldspar, and one-third plagioclase.
Veins are commonly parallel to bedding, and filled by opaque minerals and clays. The section

is locally very calcareous, and includes recrystallized calcite. Alteration is common in both the
framework grains and the matrix, including calcite, white mica, chlorite, and glauconite. While
the largest clasts may range up to 1 mm, the average framework grain size is about 220 microns,
or fine sand. The section has no obvious foliation, but bedding is readily observed. Overall, the
sample is very texturally immature. Cathodoluminescence (CL) imaging (Figure 3.5) of selected
zircons from this sample shows that they tend to be sub-angular in shape, and frequently display

oscillatory zoning. Inherited cores and crystal overgrowths are also observed.

The Back Bay Formation (Figure 3.3) was sampled at a Pentamerus fossil locality (Boucot
and others, 1966) along the shore of Back Bay, south of the town of Back Bay, about 500 m
west of Douglas Island (Figure 3.2). The sampled bed, about 15 cm thick, is grey-green, fine-
grained, quartz-rich sandstone, and is surrounded by beds of similar lithology and thicknesses
ranging from a few centimeters to several meters. The rock is highly fractured, and bedding

is typically unclear. A second common lithology in the vicinity includes pink to green, fine to
medium-grained volcaniclastic sandstone with abundant euhedral feldspar laths up to 5 mm
long. Less commonly, dark brown volcanic clasts are also present, accompanied by brown
haloes in surrounding rock. A third lithology is locally interlayered with the first, and consists
of green mudstone layers from 2 to 5 cm thick. This rock type is highly veined and fractured,
with volcanic interbeds. The mudstones are cleaved at a low angle to bedding, and many veins
are bedding parallel. Bedding is clearer here than in other lithologies, particularly along contacts

with the coarser beds of the first lithology, and strikes north-northeast, dipping steeply.

Thin section analysis (Figure 3.4) of the sampled rock from this formation indicates it is a
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Figure 3.5: Representative cathodoluminescence images of zircons from sampled
formations of the Mascarene Group.

Circles show location of 30 micron laser ablation spots.
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feldspathic wacke with about 21% matrix, and includes 15% quartz and 85% feldspar (75% of
which is potassium feldspar), normalized to total QFL components. Accessory phases include
chlorite and opaque minerals. Both chlorite and calcite are present as cement, but the rock
appears to be more matrix-supported. The matrix includes chlorite, quartz, feldspar, opaque
minerals, and calcite. The rock is very texturally immature and tuffaceous, with no obvious
bedding or other fabric. While feldspars are typically angular, quartz grains may be more
rounded. Framework grains tend to have poorly defined grain boundaries, whether resulting from
heavy alteration, or reflecting their depositional setting. Large feldspar laths range up to 2 mm in
length, but framework grain size in general is much smaller, averaging about 200 microns (fine
sand). CL imaging of zircon studied from this sample (Figure 3.5) shows both sub-rounded and
sub-angular shapes. Larger, more rounded grains frequently correspond to older zircons, while
smaller, angular grains, often with oscillatory zoning, have younger ages. Both types may show

overgrowths, inherited cores, and textures suggestive of metamictization or recrystallization.

The Eastport Formation (Figure 3.3) was sampled along the northwest shore of Bayside, about 1
km northeast of St. Croix Island (Figure 3.2). It is mapped as the youngest part of the formation,
Cycle 4 (Van Wagoner and others, 2002). A felsic tuff from the Eastport Formation in the
Passamaquoddy Bay area has been dated as 423 = 1 Ma (Dadd and Van Wagoner, 2001; Van
Wagoner and others, 2001). The sampled bed, about 20 cm thick, is a fine-grained, grey-green,
quartz-rich, micaceous and feldspathic sandstone. It is part of a continuous shoreline outcrop
showing little deformation, apart from some near-vertical jointing. The beds locally strike north,
and dip sub-horizontally eastward. Other lithologies in the exposure include cleaved mudstones

and vesicular basaltic flows.

Thin section analysis (Figure 3.4) indicates that the sampled rock is a feldspathic wacke,
composed of 63% quartz, 31% feldspar, and 6% lithic fragments (QFL normalized), and
including about 40% matrix. Many quartz grains are polycrystalline, or show subgrain

boundaries. Feldspar is about one third plagioclase, and two thirds potassium feldspar. Lithic
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fragments are mainly chert. Accessory phases include white mica, chlorite, pyroxene, and opaque
minerals. In comparison to the previous sampled formations, framework grains of the Eastport
Formation are much less altered. The rock is also more mature in appearance, and clasts are
sub-angular to sub-rounded. Bedding is observable in thin section, but no other fabric is present.
CL imaging of selected zircon from this sample (Figure 3.5) shows an assortment of zircon
morphologies, from rounded to more angular forms. As seen in previous samples, larger zircons
tend to be more rounded, and typically correspond to the older zircons of the sample. Smaller
zircons tend to be more angular, typically show oscillatory zoning, and often have young ages.
Oscillatory zoning is very common, as are overgrowths and inherited cores, and various textures

or amorphous internal structures suggest recrystallization or metamictization.

3.2 Methods

Previous work has established the efficacy of detrital zircon geochronology in solving geological
problems in the Appalachian-Caledonide orogen (Cawood and Nemchin, 2001; Cawood and
others, 2003, 2004; Murphy and others, 2004; Waldron and others, 2012; Macdonald and others,
2014; Waldron and others, 2014a). This and other research has established that Laurentian
provenance is indicated by a dominant zircon peak at 1.0 to 1.1 Ga (attributed to the Grenville
orogen), with an asymmetric tail extending up to 2.0 Ga (representing other Meso- and
Paleoproterozoic orogens in the Canadian Shield); this is typically accompanied by a lack of
grains in the 2.0 to 2.4 Ga range (Cawood and Nemchin, 2001; Waldron and others, 2014a). In
contrast, rocks of peri-Gondwanan provenance, such as those found in terranes not yet linked

to Laurentia, lack the conspicuous Laurentian “Grenville” peak, and typically bear one or more
prominent zircon peaks in the 550 to 650 Ma range (Fyffe and others, 2009). Different peri-
Gondwanan terranes may differ slightly: Avalonia normally displays slightly older populations
in this Neoproterozoic range, and typical Ganderian populations fall within the younger part

of the range (Pollock and others, 2007). Early Cambrian (ca. 540 to 510 Ma) populations are

also indicative of Ganderia, being very rare in Avalonia and absent in Laurentia (Pollock and
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others, 2007). Also characteristic of peri-Gondwanan terranes are zircon peaks in the 2.0 to 2.2
Ga range (normally absent in rocks of Laurentian provenance), possibly indicating derivation
from the Eburnean orogen of West Africa or the Trans-Amazonian orogen of Amazonia (Pollock
and others, 2007; Waldron and others, 2009, 2011, 2014a). A diverse range of Mesoproterozoic
zircon may also be present, particularly in Ganderian rocks, suggesting sources from Amazonia

(Pollock and others, 2007).

Three formations of the Mascarene Group were chosen for analysis by detrital zircon
geochronology. The depositional age of each formation was constrained by either fossil control
(the Back Bay Formation) or previously published U-Pb zircon geochronology of felsic tufts
(the Waweig and Eastport Formations). Samples ranging from 10 to 20 kg were taken from

the coarsest sandstone layers of each unit, avoiding obvious volcanogenic horizons (which
would tend to yield high proportions of contemporary volcanic zircon, and under-representative
proportions of detrital zircon derived from source terrane basement, critical to provenance
determination). Weathered, veined, mineralized, or otherwise altered parts of the sampled
formations were also avoided. Each rock sample was individually crushed and milled, using a
jaw crusher and disk mill, to release individual minerals from the rock matrix. Samples were
then processed using a Wilfley water table to concentrate heavy minerals (including zircon,
pyrite, and others). The heavy fraction of each sample was then sieved with a standard 70 size
nylon mesh (approximately 210 um) to remove uncrushed or aggregate particles. The coarse
fractions were inspected to ensure that they did not contain discrete heavy mineral crystals. The
sieved heavy portions were then processed using a Frantz Isodynamic separator (model L-1)

in freefall operation to remove highly magnetic material, and with a Frantz Barrier Laboratory
separator (model LB-1) to remove other magnetically susceptible minerals (e.g. Rosenblum
and Brownfield, 2000). The non-magnetic portions of each sample were then processed using
methylene iodide (specific gravity of 3.32) in a standard separatory funnel, producing a final
heavy mineral concentrate from the sinking fraction. These final portions consisted primarily

of zircon and pyrite; if large proportions of pyrite overwhelmed any zircon present, the sample
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was lastly treated with a nitric acid solution to dissolve pyrite and leave only the most refractory
minerals, effectively concentrating zircon. Otherwise, pyrite (and other obvious non-zircon)
was simply picked aside in a clean culture dish. To keep zircon selection as random as possible,
and avoid introducing bias towards particular zircon populations, grains were not individually
selected for analysis. Instead, the remaining zircon-rich portions were mounted in epoxy. Each
mount was then polished to expose the interior of the grains, and imaged by energy-dispersive
X-ray spectroscopy to identify zircon (and non-zircon) in each sample. Further backscattered
electron and/or cathodoluminescent imaging were used to reveal crystal structure and other

features (such as igneous zonation, inherited cores, and altered rims).

128 to 329 zircon grains from each mount were analyzed at the Canadian Centre for Isotopic
Microanalysis (CCIM) at the University of Alberta, using procedures modified from Simonetti
and others (2005) for measuring for U-Pb isotopic data using LA-MC-ICP-MS. Each zircon is
typically represented by a single spot analysis, due to physical grain size restrictions and the need
to avoid bias by over-representing an age. When discrete cores and rims can be distinguished,
they are represented by separate analyses (ex. 001 A and 001B within grain 001). Sample
PGO36A (the Eastport Formation) was additionally analyzed a second time via LA-Q-ICP-MS
at the same facility. The multi-collector instrumentation consisted of a New Wave UP-213 laser
ablation system interfaced with a Nu Plasma MC-ICP-MS, with three ion counters to measure
Pb isotopes and twelve Faraday buckets measuring U, 2°U, %°Tl, and ** T1. The laser was
operated with a beam diameter of 30 microns, 4 Hz pulse frequency and fluence of ~3 J/cm?.

A He atmosphere was maintained in the ablation cell at a flow rate of 1 L/min. Output from

this cell was combined with that from a standard Nu Instruments desolvating nebulizer (DSN).
Sampled unknown zircon grains were analyzed in groups of 10, with data collected statically in
thirty 1 s integrations. Separating each set of analyses, on peak gas + acid blanks were measured
over a duration of 30 s, and two zircon reference materials were analyzed to monitor U-Pb
fractionation, reproducibility, and instrumental drift: LH94-15 (1830 + 1 Ma; Ashton and others,

1999; Simonetti and others, 2005; Heaman, unpublished data) and GJ1-32 (606 Ma; Jackson and
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others, 2004; Elhlou and others, 2006; Heaman, unpublished data). Mass bias for Pb isotopes
was corrected for by concurrently measuring 2T1/2%T1 from an aspirated 0.5 ppb T1 solution
(NIST SRM 997), utilizing an exponential mass fractionation law and assuming a natural
205T1/29T1 of 2.3871. Data were reduced using an offline Excel-based spreadsheet, in which
sample (unknown) isotopic ratios were corrected based on standard analyses, using a cutoff value
of 27Pb/?Pb = 0.0658 (800 Ma): young grains were normalized to GJ1-32, and old grains to
LH94-15. This ensures unknowns are normalized to standards of a similar age; natural gaps in
our data often occur at 800 Ma, making this a convenient choice of cutoff. Uncertainties were
reported using a quadratic combination of the standard error of the measured isotopic ratio, and
the standard deviation of the standard means. Reproducibility of the zircon standards is estimated
at about ~1% (*"Pb/?*Pb) and 2% (**Pb/***U) (26). Sample measurements were discarded in the
case of obvious inclusions that contributed to analysis (and could not be isolated), an extreme
common Pb component, or analysis of non-zircons. Common Pb corrections after Simonetti and

others (2005) were typically applied when measured 2*Pb exceeded ~400 cps.

The quadrupole instrumentation employed in additional analysis of the Eastport Formation
consisted of a New Wave UP-213 laser ablation system interfaced with a Thermo Scientific
ICAP-Q. The laser was operated with a beam diameter of 40 microns, at a frequency of 5 Hz
and fluence of ~3-4 J/cm?. A He atmosphere in the ablation cell was maintained at a flow rate of
0.5 L/min. Output from this cell was combined with an Ar make-up gas line (0.55 L/min) and
an N, line (4 mls/min) prior to entering the injector. The instrument was auto-tuned by ablating
NIST 612, and manually adjusting the Ar make-up gas to achieve a U/Th ratio of about ~1.05.
Data were collected in time-resolved mode with each analysis taking about 70 s, including a
25 s blank, and with a 30-45 s washout between analyses. Dwell times were 50 ms for masses
238, 235, 232, and 208, and 80 ms for masses 207, 206, 204, 202, for an estimated duty cycle
of about 550 ms. Zircon reference materials GJ1-32 and LH94-15 were measured as before,
between sets of 10-20 analyses. Data were reduced offline using the program Iolite and the

visual-age data reduction scheme (DRS). A cutoff of 2’Pb/**Pb = 0.0658 was likewise applied:
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young zircons were normalized to GJ1-32 as the primary standard, and older zircons to LH94-15.
Reported uncertainties are a quadratic combination of the internal measurement precision and
the reproducibility of the standards analyzed during the session. Analyses containing significant

amounts of common Pb were corrected after the method of Anderson (2002).

The resulting data (combining, in the Eastport Formation, the results of both analytical sessions)
were studied with the use of Isoplot (version 3.75: Ludwig, 2012), utilizing concordia diagrams,
weighted means, MSWD calculations, probability density plots, and other standard methods.
Other analysis tools from the Arizona LaserChron Center (Gehrels and others, 2006) were used
to produce cumulative probability plots, and perform Kolmogorov-Smirnov tests, which test the

null hypothesis that two distributions could represent the same population.

3.3 Results

Analyses of 140 zircons of the Waweig Formation (Figures 3.6, 3.7) produced almost entirely
contemporary zircon: rejecting grains with worse than 10% discordancy (as with all reported
data, unless noted), this population ranges from 402.8 &+ 25.3 Ma to 469.1 + 20.8 Ma (analyses
with 27Pb/?*Pb ratios less than 0.0658, or 800 Ma, are reported as 2°°*®/>3¥U ages, with 2-sigma
errors; 2’Pb/>*Pb ages are reported otherwise). A weighted mean calculation for this entire
population of 70 concordant grains yields a mean of 429.9 + 3.4 Ma at 95% confidence; however,
the range is overscattered with an MSWD of 2.1 and a very low probability of fit of 0.00000025.
A possible break in the population separates grains younger than approximately 450 Ma; this 60
grain subset yields a mean of 426.0 = 2.4 Ma at 95% confidence, with an MSWD 0f 0.98 and a
probability of fit of 0.52. The remaining older subset of 10 grains then gives a mean of 459.1 +
6.6 Ma, MSWD of 0.28, probability of fit 0.98. However, given the relatively high continuity

in the contemporary zircon population, and the error associated with each measurement, it is
difficult to be certain whether these are two discrete populations. The previous radiometric age

(TIMS) for this locality is 438 + 4 Ma (Miller and Fyffe, 2002), significantly older than the mean
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0f'426.0 + 2.4 Ma for the youngest subset, and slightly outside of overlapping the 429.9 + 3.4 Ma
mean calculated for the entire population of young zircon. In addition to this near-contemporary

zircon, two other grains (less than 10% discordant) were analyzed, at 675.7 + 32.6 Ma and

1749.2 £ 19.5 Ma.

Analyses of 129 zircons of the Back Bay Formation (Figures 3.6, 3.7) display a prominent
zircon peak at ca. 610 Ma, a relatively continuous range of 67 zircons from 550 Ma to 680 Ma.
A secondary peak, of 6 zircons, has a mean of 431.7 = 7.7 Ma, MSWD of 0.80, probability of fit
0.55. This is within error of a late Llandovery depositional age suggested by Boucot and others
(1966) based on the occurrence of Pentamerus sp. Remaining concordant grains (5 zircons) are
scattered throughout the 1.0 to 1.9 Ga range, at: 1069.5 £22.3 Ma, 1114.8 +27.2 Ma, 1722.3 +
20.9 Ma, 1870.7 + 34.3 Ma, and 1874.4 + 19.4 Ma.

The Eastport Formation (Figures 3.6, 3.7), of which 329 zircons were analysed in two sessions,
bears a large portion of zircon near-contemporary with the depositional age, including a
population of 25 concordant grains at 424.1 & 3.0 Ma, with an MSWD of 1.3 and probability of
fit of 0.14. This is within error of a felsic tuff dated at 423 + 1 Ma (Dadd and Van Wagoner, 2001;
van Wagoner and others, 2001). About 18 other early Paleozoic zircons range from the latest
Silurian to mid-Cambrian, ca. 440 Ma to 515 Ma. A range of about 21 zircons spans the late
Neoproterozoic from about 550 Ma to 670 Ma, including an over-scattered peak of 12 zircons at
606.2 + 8.5 Ma, MSWD 2.3 and probability of fit 0.007. An additional 4 grains populate the early
Neoproterozoic from ca. 815 Ma to 890 Ma. Remaining zircon is largely concentrated in the 1.0
to 1.7 Ga range (44 grains), including 9 grains forming a double peak in the late Mesoproterozoic
(ca. 1.00 to 1.07 Ga). Remaining older grains are at 2152.6 + 18.3 Ma, 2155.9 £ 17.9 Ma, 2213.5
+ 17.7 Ma, and 2667.8 = 16.6 Ma.

4. Discussion

Results from the Waweig Formation are broadly consistent with its previous (Llandovery)
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Figure 3.6: Detrital zircon probability density plots and cumulative probability plots for
sampled formations of the Mascarene Group, and other formations for comparison.

Plots consist of ages <10% discordant. Analyses with 2*’Pb/?*Pb ratios of less than 0.0658 are
reported as 2Pb/*8U ages; 2""Pb/*Pb ages are reported otherwise. A: Eastport Formation. B:
Waweig Formation. C: Back Bay Formation. D: Oak Bay Formation (Fyffe and others, 2009). E:
Calais Formation, St. Croix terrane (Fyfte and others, 2009). F: Matthews Lake Formation, New
River terrane (Fyffe and others, 2009). G: Burtts Corner Formation, Fredericton Trough (Chapter
2). H: Hayes Brook Formation, Fredericton Trough (Chapter 2). Note that the data reported by
Fyffe and others (2009) is replotted here with a 10% discordance filter.
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Figure 3.7: Selected weighted means and MSWDs for sampled formations of the Mascarene

Group.

See text for discussion. Plots consist of 2*Pb/**U ages <10% discordant. A: Waweig Formation,
n=70. 429.9 + 3.4 Ma. MSWD: 2.1, probability of fit: 0.00000025. B: Waweig Formation, n=60.

426.0 + 2.4 Ma. MSWD: 0.98, probability of fit: 0.52. C: Waweig Formation, n=10. 459.1 +
6.6 Ma. MSWD: 0.28, probability of fit: 0.98. D: Back Bay Formation, n= 6. 431.7 + 7.7 Ma.

MSWD: 0.80, probability of fit: 0.55. E: Eastport Formation, n=25. 424.1 + 3.0 Ma. MSWD: 1.3,
probability of fit: 0.14. F: Eastport Formation, n=12. 606.2 + 8.5 Ma. MSWD: 2.3, probability of

fit: 0.007.
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radiometric age of 438 = 4 Ma (Miller and Fyfte, 2002). However, the weighted mean and
MSWD calculations may suggest two populations at 426.0 = 2.4 Ma and 459.1 + 6.6 Ma. These
uncertainties are probably underestimated due to the large number of analyses; uncertainties

of ~2-3% are more likely. The continuity of the populations, and the conflict of the younger
population with the previously determined radiometric age, suggest that this is a single
population at about 429.9 + 3.4 Ma with excess scatter. Isoplot calculations suggest an additional
constant external error of 4.7% in this scenario, though the scatter could be geological as well
(representing a prolonged period of volcanism). An alternative explanation, that the 426.0 +

2.4 Ma age accurately reflects the depositional age range of the 600 m thick Campbell Point
Member, would require that the sampled unit is significantly younger than the dated tuff, possible
due to unexposed stratigraphic and/or structural complications in the 7 km along-strike interval
between the locations. The remaining two grains from this sample are insufficient to determine
provenance. Future work may seek other horizons in the formation that are more likely to yield
detrital zircon from source terranes, closer to dated units. Additionally, more precise (TIMS)
dating of young grains in the existing sample may provide better constraints on its depositional

age.

The early Silurian Back Bay Formation, dominated by Neoproterozoic zircon and lacking any
distinctive Laurentian signature, is consistent with peri-Gondwanan provenance. Available fossil
evidence, particularly the occurrence of Pentamerus sp. (Boucot and others, 1966), indicates a
late Llandovery depositional age for the Back Bay Formation (C4-C5, or about 437-436 Ma:
Cocks and others, 1970; Melchin and others, 2012), which is consistent with our youngest
zircons at 431.7 = 7.7 Ma. These results are corroborated by detrital zircon study of the early
Silurian Oak Bay Formation (Fyffe and others, 2009), which bears a continuous range of
zircons from about 490 to 700 Ma, with peaks reported at 548 + 8 Ma, 619 + 15 Ma, and 680

+ 26 Ma, and a few Mesoproterozoic zircons at 1097 £ 12 Ma, 1178 £ 30 Ma, 1568 = 37 Ma.
The Neoproterozoic peaks are similarly suggestive of peri-Gondwanan sources, and the late

Neoproterozoic/earliest Cambrian peak may suggest Ganderia specifically. This suggests that,
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Figure 3.8: Schematic tectonic setting of the Mascarene Group.

A: Early Silurian (Late Llandovery) setting of the Oak Bay and Back Bay Formations. B: Late
Silurian (Ludlow-Pridoli) setting of the Eastport Formation. Arrows show extent of Laurentian or
peri-Gondawnan detritus. AV: Avalonia. BB: Back Bay Formation. BSC: Brunswick subduction
complex. EP: Eastport Formation. KA: Kingston arc. LR: Laurentia. NR: New River terrane.
OB: Oak Bay Formation. PVA: Popelogan-Victoria arc. SC: St. Croix terrane.

NW IAPETUS OCEAN SE
Laurentia Ganderia  Avalonia

~423 Ma
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during the late Llandovery, part or all of the Mascarene Basin was separated from the Laurentian
margin (Figure 3.8). This likely indicates that a remnant of the Iapetus Ocean persisted until

this time, or that Ganderian basement to the north formed a barrier to detritus from Laurentia,

or some combination of the two. The persistence of an lapetan seaway, forming a barrier to
otherwise ubiquitous and pervasive Laurentian detritus, is supported by analogous detrital zircon

studies in the Fredericton Trough (Chapter 2).

The late Silurian Eastport Formation bears a mixed detrital zircon signature, and is clearly
different than the older Back Bay Formation. The Neoproterozoic (ca. 605 Ma) zircon population
is typical of peri-Gondwanan samples, and the presence of Cambrian zircon may suggest
Ganderia specifically (Pollock and others, 2007). The Mesoproterozoic zircon, while contrasting
with the older Back Bay Formation, is more ambiguous. It spans the “Grenville” range (1.0

to 1.1 Ga) typical of Laurentian provenance, but not as the prominent asymmetric peak we

see in more typical Laurentian samples (Chapter 2, Waldron and others, 2014a), nor in great
proportions relative to other Meso-Paleoproterozoic zircon. K-S testing (Figure 3.9) points out
the similarity of the Eastport Formation with the Hayes Brook Formation (Fredericton Trough,
New Brunswick: see Chapter 2), showing Laurentian provenance. When Paleozoic zircon is
excluded (to compare only the pre-Paleozoic history of the samples), similarity is shown with
the Burtts Corner Formation (Fredericton Trough, New Brunswick: see Chapter 2), which was
interpreted as showing a mixed provenance of both Laurentian and peri-Gondwanan sources.
One of the lowest D-values reported is for these two samples, suggesting that similarity is
independent of sample size. However, the same testing shows it is decidedly dissimilar from

the Flume Ridge Formation (Fredericton Trough, New Brunswick: see Chapter 2), interpreted
as having Laurentian provenance. Additional comparison suggests similarity between the
Eastport Formation and a number of Ganderian terranes (Fyffe and others, 2009), including the
Calais Formation and Matthews Lake Formation, from the St. Croix and New River terranes
respectively, basement to the Mascarene Basin. These results allow the possibility that the

Eastport Formation received detritus from both Laurentian and peri-Gondwanan sources. This
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Figure 3.9: Kolmogorov-Smirnov test results.

K-S tests comparing samples of the Mascarene Group to formations of the Fredericton Trough
(Chapter 2), other samples from the Mascarene Basin and Ganderian terranes (Fyffe and others,
2009). Testing compares only age data <10% discordant. P-values and D-values were calculated
using errors in the cumulative density function. P-values less than 0.05 are probably from
different populations (at a confidence level of 95%). P-values greater than 0.05 are highlighted,
and are unlikely to be from different populations. Note that very small sample sizes may not

produce meaningful comparisons (the Waweig Fm. in B, n=2, is greyed out).
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would require that by the time of deposition of this part of the Eastport Formation (423 + 1

Ma: Dadd and Van Wagoner, 2001; Van Wagoner and others, 2001), the Mascarene Basin had
been juxtaposed to and in sedimentary communication with the Laurentian margin (Figure
3.8). The greater proportion of peri-Gondwanan detritus, relative to that from Laurentia, would
probably have resulted from the unique depositional setting of the Eastport Formation, farther
outboard relative to the Laurentian margin and its accreted terranes, and more proximal to peri-
Gondwanan sources. These observations may also have resulted from receiving detritus from

a Burtts Corner Formation-like source of mixed provenance to the north, further diluted in the

Eastport Formation by proximal peri-Gondwanan sources.

The provenance contrast between the early Silurian Back Bay and late Silurian Eastport
Formations indicates new, more diverse sources of detritus in the Mascarene Basin over time.
It may, additionally, suggest the arrival time of Laurentian detritus within the Mascarene Basin,
requiring the juxtaposition of its Ganderian basement with Laurentia by this time, due to the
associated closure of the Iapetus Ocean. If this were the case, then this accretion must have
been after the late Llandovery (ca. 437-436 Ma) depositional age of the Back Bay Formation,
but before the 423 + 1 Ma age of the Eastport Formation (approximately at the Ludlow-Pridoli
boundary). A remnant of the lapetus Ocean, dividing the composite Laurentian continent from
these southern components of Ganderia, must have persisted until at least the late Llandovery,

and had essentially closed by the Ludlow-Pridoli boundary.

This scenario is consistent with that suggested by detrital zircon analysis of the Fredericton
Trough (see Chapter 2), a Silurian basin to the north of the Mascarene Group, deposited along
the margins of a closing Iapetus. The Fredericton Trough is divided by the northeast trending
Fredericton Fault. Formations south of this fault unconformably overlie Ganderian (St. Croix
terrane) basement, and formations north of the fault do not have exposed basement relationships
(though they are currently in faulted contact with the Ganderian Miramichi terrane at its northern

edge). Upper Rhuddanian (early Llandovery) formations of the Fredericton Trough, north
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and south of the fault, bear distinctly contrasting detrital zircon signatures that indicate the
persistence of the Iapetus Ocean at this time. This ocean probably closed by the mid-Wenlock,
indicated by the appearance of Laurentian detritus in the youngest formation south of the
Fredericton Fault. This closure juxtaposed Laurentia with southern components of Ganderia,
including the St. Croix terrane basement. These combined results suggest that Laurentian
detritus progressively encroached upon successively accreted terranes: the Fredericton Trough
by the mid-Wenlock, and the Mascarene Basin by the Ludlow-Pridoli boundary. However,
limited depositional age constraints of the formations in question prevent us from resolving the
difference in timing between the arrival of Laurentian detritus in the Fredericton Trough and
the Mascarene Basin. Additionally, the ambiguous sources in the Eastport Formation allow a
different scenario: that Laurentian sediment did not reach the Eastport Formation until after its
deposition (423 + 1 Ma). This hiatus after the arrival of Laurentian detritus in the Fredericton
Trough could indicate a barrier to sedimentation, such as an oceanic remnant or an uplifted

basement block, or suggest different paleogeographic settings.

The paleogeography of these basins — the Mascarene Basin and the Fredericton Trough —
introduces a further complication, as the two were probably not juxtaposed until after their
deposition. As a result, their supposedly shared St. Croix terrane basement is ambiguous: they
may have been distinct pieces of Ganderia, or in different settings. Similarly, post-depositional
faulting within the Mascarene Basin itself could have juxtaposed formations that may have been

separated before.

5. Conclusions

Three selected formations of the Mascarene Basin, in southern New Brunswick, were studied by
means of detrital zircon geochronology, and have contributed to an understanding of Appalachian

orogenesis:

1. Aremnant of the Iapetus Ocean, dividing Laurentia from southern components of Gan-
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deria, persisted until at least the late Llandovery, as recorded in the Back Bay Formation,

and corroborated by previous study of the early Silurian Oak Bay Formation.

. The juxtaposition of Laurentia with southern components of Ganderia, accompanied by
the closure of the Iapetus Ocean, is a scenario suggested by the possible presence of Lau-
rentian detritus within the Eastport Formation. This event would then have taken place
after the Late Llandovery depositional age of the Back Bay Formation, and by the time of

the deposition of the Eastport Formation at 423 + 1 Ma.

. This model is consistent with detrital zircon results from the Fredericton Trough, which
records the arrival of Laurentian detritus after the Upper Rhuddanian (early Llandovery)
and before the mid-Wenlock. However, due to the ambiguous sources within the Eastport

Formation, further study is required before suggesting this as the most probable model.

. The deposition of the Waweig Formation at about 429.9 + 3.4 Ma is broadly consistent
with the previously reported age of 438 £ 4 Ma from a tuff 7 km away along strike; the

overscattered zircon population is insufficient to suggest a different depositional age.
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Chapter 4: Conclusions

1. Fredericton Trough

The Fredericton Trough, New Brunswick, was filled by turbidites of the Silurian Kingsclear
Group during closure of the Iapetus Ocean (Chapter 2). Deposited proximal to the shores of
both the continent Laurentia and the microcontinental domain Ganderia, it is ideally situated to
constrain when Ganderia converged with Laurentia, and determine the timing of closure of the

associated lapetus Ocean.

The upper Rhuddanian (ca. 441.6 to 440.8 Ma: Cumming, 1960; Fyffe, 1995; timescale of
Melchin and others, 2012) Hayes Brook Formation, north of the present-day Fredericton Fault,
records detrital zircon signatures which indicate the prominence of Laurentian detritus within
this part of the basin. This formation was juxtaposed with the Laurentian margin at this time. In
contrast, the Digdeguash Formation, of identical age (Fyfte and Riva, 2001) but located south of
the Fredericton Fault, contains no indication of Laurentian detritus. It was clearly separated from
the Laurentian margin at this time. The Ganderian St. Croix terrane, basement to the Digdeguash
Formation, was therefore also separated from Laurentia by the last vestige of the Iapetus Ocean,

the Tetagouche-Exploits seaway (Figure 4.1).

Later in the Silurian, the Burtts Corner Formation, north of the Fredericton Fault, records the
persistence of Laurentian detritus in this part of the basin, with the addition of new sources

of peri-Gondwanan detritus, interpreted to result from the uplift of the Miramichi and related
terranes to the north. This uplift must have occurred by the mid-Wenlock depositional age of the
sampled Burtts Corner Formation, ca. 432.4 to 430.5 Ma (Melchin and others, 2012). South of
the fault, the mid-Silurian Flume Ridge Formation records the arrival of Laurentian detritus. The
lack of peri-Gondwanan detrital zircon suggests this probably occurred before the mid-Wenlock
deposition of the Burtts Corner Formation. It must have also occurred prior to the intrusion of

the Flume Ridge Formation by the Pocomoonshine Pluton at 422.7 + 3 Ma (West and others,
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Figure 4.1: Schematic tectonic diagram of the Fredericton Trough and Mascarene Basin.
A: Early Llandovery. Laurentian detritus recorded in the Hayes Brook Formation. Peri-
Gondwanan detritus recorded in the Digdeguash Formation.

B: Late Llandovery. Peri-Gondwanan detritus recorded in the Oak Bay and Back Bay
Formations.

C: Early Wenlock. Laurentian detritus recorded in the Flume Ridge Formation.

D: Ludlow-Pridoli. Laurentian detritus may arrive in the Eastport Formation. Peri-Gondwanan
sources contribute to the Eastport Formation. Mixed detritus recorded in the Burtts Corner
Formation by the mid-Wenlock, due to exhumation of the Brunswick subduction complex.

E: Devonian, post-accretion.

Arrows show extent and provenance of detritus. AV: Avalonia. BB: Back Bay Formation. BC:
Burtts Corner Formation. BSC: Brunswick subduction complex. DG: Digdeguash Formation.
EP: Eastport Formation. FR: Flume Ridge Formation. HB: Hayes Brook Formation. KA:
Kingston arc. LR: Laurentia. NR: New River terrane. OB: Oak Bay Formation. PVA: Popelogan-

Victoria arc. SC: St. Croix terrane.
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1992). The clear contrast between detrital zircon provenance of the Digdeguash and Flume Ridge
Formations constrains the timing of juxtaposition of this part of Ganderia with Laurentia (Figure
4.1), and approximately coincides with the closure of the last remnant of the lapetus Ocean. This
juxtaposition must have occurred after deposition of the Digdeguash Formation (ca. 441 Ma) and

probably prior to deposition of the Burtts Corner Formation (ca. 431 Ma).

Provenance contrasts across the Fredericton Fault, particularly between formations of an
identical depositional age, suggests that it marks the position of an earlier suture or terrane
boundary (McKerrow and Ziegler, 1971; McKerrow, 1982). The terminal Salinic suture, or Dog
Bay Line (Reusch and van Staal, 2012), marks the closure of the last remnant of the Iapetus
Ocean, the Tetagouche-Exploits seaway. It has previously been drawn along the northernmost
faulted contact of the Fredericton Trough with rocks of the Miramichi terrane, already a part of
composite Laurentia at this time. However, the clear juxtaposition of the Hayes Brook Formation
with Laurentia prior to final Iapetan closure indicates that this suture must lie farther south,

approximately along the trace of the Fredericton Fault.

2. Mascarene Basin

The Mascarene Basin, a fault-bounded composite basin of volcanic-sedimentary successions,

has been interpreted as Silurian back-arc basin fill within the southernmost Ganderian terranes
(Van Wagoner and others 2001, 2002; van Staal and others, 2014), located to the south of the
Fredericton Trough, and sharing St. Croix terrane basement at its northern margin. Multiple
formations of the Mascarene Basin were studied to test a model of successive terrane accretion at
the Laurentian margin (Chapter 3), which would result in the progressively increasing extent of

Laurentian detritus across juxtaposed terranes.

The early Silurian Waweig Formation, bearing a felsic tuff dated at 438 + 4 Ma (Miller and
Fyffe, 2002), contains mainly contemporary zircon, with only a few older zircons insufficient to

suggest provenance. The Back Bay Formation, with fossils indicating a late Llandovery C4-C5
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depositional age (ca. 437.2 — 436.5 Ma: Melchin and others, 2012), records peri-Gondwanan
sources, with no indication of Laurentian detritus at this time. This corroborates previous

study of the early Silurian Oak Bay Formation (Fyffe and others, 2009), with comparable
detrital zircon signatures. Notably, these two formations span nearly the present-day width of
the Mascarene Basin: the Oak Bay Formation at its northern margin, on Ganderian St. Croix
terrane basement; and the Back Bay Formation near its southern margin. This suggests that the
Mascarene Basin was not juxtaposed with Laurentia at this time (Figure 4.1), or that there was a

barrier to receiving detritus from sources to the north.

The late Silurian Eastport Formation, with a felsic tuff dated at 423 + 1 Ma (Dadd and Van
Wagoner, 2001; van Wagoner and others, 2001), records new sources of detritus, in contrast to
the older Back Bay Formation. Although these sources are not clearly of Laurentian affinity, K-S
tests show that they do share some similarities, suggesting the possibility that the Mascarene
Basin was juxtaposed to and in communication with the Laurentian margin by the time of

deposition of the Eastport Formation at 423 + 1 Ma (Figure 4.1).

3. Synthesis

Previous work in the Appalachians has proposed a model of orogenesis resulting from successive
terrane accretion at the Laurentian margin of the Iapetus Ocean, opposite Gondwana (Williams
and Hatcher, 1982, 1983; van Staal and others, 1998, 2009). The timing of terrane juxtaposition
has been studied by means of detrital zircon geochronology, which searches for signs of

Laurentian detritus within basins deposited upon accreted terranes (Waldron and others, 2014).

Results from the Fredericton Trough and Mascarene Basin demonstrate the progressive spread
of Laurentian detritus over Ganderian terranes in southern New Brunswick (Figure 4.2). The
northern margin of the Fredericton Trough was clearly juxtaposed with Laurentia by about 441
Ma, its southern portion by about 431 Ma, and the Mascarene Basin may have been juxtaposed
by 423 Ma. The closure of a remnant of the lapetus Ocean, approximated by the coinciding
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Figure 4.2: Progressive extent of Laurentian detritus in New Brunswick through the

Silurian.
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convergence of Laurentia with southernmost terranes of Ganderia, took place after the upper
Rhuddanian and by the mid-Wenlock (between ca. 441 to 431 Ma), as indicated by the changing
provenance of the Fredericton Trough. In the Mascarene Basin, sharing the same Ganderian
basement as the Fredericton Trough, the Back Bay Formation records only peri-Gondwanan
detrital zircon signatures in the late Llandovery, at about 437 Ma. This suggests a narrower
constraint on the time of juxtaposition of these last components of Ganderia with Laurentia,

between about 437 to 431 Ma.

However, this inference is complicated by the detrital zircon record of the Eastport Formation, at
about 423 Ma, or 8 Ma after the terrane juxtaposition recorded by the Flume Ridge Formation.
Laurentian detritus, if present in the Eastport Formation, is ambiguously diluted by other
sources, with the result that no published detrital zircon samples from the Mascarene Basin show

unequivocal indication of Laurentian detritus.

This requires the consideration of at least two alternative scenarios. First, that the Mascarene
Basin did not receive Laurentian detritus by ca. 423 Ma, despite the closure of the Fredericton
Trough about 8 Ma earlier. This might suggest along-strike differences in the depositional
settings of the Fredericton Trough and Mascarene Basin; for example, a model of oblique
convergence, or a ribbon-like Ganderian microcontinent that converged at an angle to the
Laurentian margin. The Fredericton Trough, in this scenario, would record early terrane
juxtaposition in the narrow neck of Iapetus Ocean, while the Mascarene Basin, and its Ganderian
basement, was still separated by a substantial seaway. Previous estimates of the rate of
convergence of this portion of Ganderia are approximately 5 cm/yr (van Staal and others, 2012),
or up to 400 km over the 8 Ma period between the juxtaposition of the Fredericton Trough, and
the deposition of the Eastport Formation. If this rate were constant through this period, this
would require the Mascarene Basin (and its Ganderian basement) to have trailed substantially
behind that of the Fredericton Trough. Additionally, this may suggest that the supposedly shared

Ganderian basement of the two Silurian basins is not the same terrane, but distinct and separated
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portions of Ganderia. Northern Ganderian terranes have already been shown to have arrived
in many distinct pieces (van Staal and others, 2008, 2009; Waldron and others, 2017), and the

predominantly faulted margins of the Mascarene Basin make this a plausible explanation.

A last consideration is the unique depositional setting of the Mascarene Basin, compared to
previous detrital zircon studies. Previous work, demonstrating the pervasive extent of Laurentian
detritus in accreted terranes, has sampled basins deposited in settings such as foredeeps or
foreland basins (Waldron and others, 2014, 2017). In these settings, Laurentian detritus may be
deposited without hindrance, and spread pervasively. However, the Mascarene Basin, interpreted
as a back-arc within microcontinental material, is a distinctly different setting. Abundant
proximal volcanic sources could easily overwhelm more distal sources, and in this setting,
Ganderian basement to the north may have formed a barrier to detritus. These complications

point out the limits of detrital zircon study in the Appalachian orogen.

4. Future Work

Correlating detrital zircon provenance between the Fredericton Trough and Mascarene Basin is
complicated by ambiguous basement relationships. In the Fredericton Trough, the Digdeguash
Formation has been interpreted to unconformably overlie rocks of the St. Croix terrane (Fyffe
and others, 2011); however, this contact may also be faulted (Ruitenberg, 1967; Ludman 1987,
1991). Similarly, the locally unconformable contact of the Mascarene Oak Bay Formation over
St. Croix basement is also elsewhere faulted (Fyffe and others, 1999, 2011). Faults have also
been mapped within the St. Croix terrane itself. Further study of the structural relationships
between and within these Silurian basins is essential in understanding their tectonic evolution;
specifically, whether they were each deposited on Ganderian basement represented by the St.

Croix terrane, and whether this terrane itself may be formed of distinct pieces of Ganderia.

Further detrital zircon work is also required in other formations of the Mascarene Basin, with
several goals. This will further constrain provenance changes across faults, and demonstrate
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whether or not they mark the positions of earlier, significant structures during basin evolution.
Similarly, this will demonstrate any provenance changes across intrusions, which may obscure
contacts and correlations between units. The abundant volcanic components in the Mascarene
Basin also introduce a complication in detrital zircon analysis, and further work can suggest
which formations and lithologies minimize these contemporary volcanic sources. Further

work will also show any provenance changes across the width of the basin, and through time,
demonstrating how provenance may have changed during Silurian convergence. Lastly, further
detrital zircon work may show if the arrival of Laurentian detritus can be unequivocally recorded

in the unique depositional setting of the Mascarene Basin, as it has in other parts of the orogen.

Correlative Silurian basins along the length of the orogen may also be studied. The Fredericton
Trough continues southwest into the Merrimack-Fredericton belt of Maine, and preliminary
detrital zircon work has suggested the presence of Laurentian sources by about 430 Ma (Ludman
and others, 2014). However, the absence of fossils in this part of the trough severely limits
depositional age constraints (Ludman and others, 1993), and therefore poorly constrains the
timing of ocean closure and terrane juxtaposition. The Mascarene Basin is correlative to the Aspy
terrane of Nova Scotia, La Poile basin of Newfoundland, and Coastal Volcanic Belt of Maine

(van Staal and others, 2009), from which no detrital zircon data have been reported.

Sm-Nd, Hf isotope, or other geochemical work may also be used to help distinguish a Laurentian
source (Murphy and others, 1996, 2004; Willner and others, 2014). Paleoflow indicators would
also be helpful, but probably insufficient in the case of the Mascarene Basin specifically, since

a source to the northwest could suggest Ganderian basement as easily as Laurentia. Methods

of analysis which are able to clearly distinguish Laurentian sources in formations of mixed

provenance would be very useful in complicated basins such as the Mascarene Basin.
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Appendix A: Fredericton Trough detrital zircon data and diagrams

Notes to appendix:
"Percent discordance between 2°°Pb/?*8U and 2’Pb/?*Pb, as per the following formula:
[(60'000155125 x 207Pb/206Pb age _ 1) _ 207Pb/206Pb ratio] X 100 / [(60'000155125 x 207Pb/206Pb age _ 1)]

2207Pb/2%Ph ages are reported for 2’Pb/?Pb ratios greater than 0.0658 (800 Ma); 2°Pb/**¥U ages

reported otherwise.

Samples in italics are corrected for common lead. A discordance cutoff of 10% is applied:

analyses which fall outside of the -10% to +10% range are greyed out.
Concordia diagrams do not exclude discordant analyses.
Correlation coefficients (p) calculated by the following formula:

[(20207Pb/235U / 207Pb/235U)2 + (26206Pb/238U / 206Pb/238U)2 _ (26207Pb/206Pb / 207Pb/206Pb)2] / [(2)
(26206Pb/238U / 206Pb/238U)(20207Pb/235U /207Pb/235U)]

207ph/235U ratios are calculated as 137.88 x 2°°Pb/?*8U x 207Pb/?*Pb.

Histograms and KDEs were generated using DensityPlotter 7.3 (Vermeesch, 2012), and

concordia diagrams with Isoplot 3.75 (Ludwig, 2012).

149



61 S9LT LT 98 €TLT Ly Ll 61 S9LT ¥86'0 SSLI0'0 £€90€°0 rS9T0 €08SSY €1100°0 °6L0T°0 6 6S108C 8%0-VI0O0VN
(U4 658 s's- 124 €06 23 168 oy 658 9€6'0  06L00°0 TrosT'0 TLBLOO 68071 €€100°0 69L90°0 6T cTLee L¥0-VIO0OVN
74 434 LS T 44 14 (394 9 01¢ L98°0  96£00°0 09LL0°0 IT€€0°0 ¥¥795°0 100°0 LSTSO0 143 [144%4 9%0-VI00VN
6T 96 0l 6T 96 9T L8y 0oL Sty 0880 6L¥00°0 S0080°0 61700 ¥0919°0 08100°0 786500 0€ LYS6T S¥0-VIOOVN
9T 0611 8T €S 6ST1 9¢ OLTT 9T 0611 996'0  £6600°0 €0L61°0 S6TIT0 €PS91°T 80100°0 1L6L0°0 s 6¥T8Y Yr0-VIOOVN
T SSy €0 T SSy (44 SSy 0s (394 €76'0  ¥0¥00°0 11€L0°0 8LEE00 LLY9SO 6C100°0 €0950°0 €S L0T09 £70-VIOOVN
ST 8Ly 0¢ ST 8Ly €T oLy sS Sov 906'0 61+¥00°0 ¥0LLO'0 T65€0°0 978650 €7100°0 T€950°0 89 LO9LY TP0-VIOOVN
0T 90ST Tt 1L LLYT w 6871 0T 90ST T86'0 00¥10°0 IYLSTO 8S¥8T°0 68T¢EC’E 66000°0 68£60°0 SS LS1T8T 170-VIOOVN
(44 (3488 91 s LTIT se (43181 T (3488 LL6'0 096000 L6061°0 €6501°0 L66V0'T 98000°0 S8LLOO (388 143441 0v0-VIOOVN
(4 9€01 6'C s 901 LE Sso1 T 9€01 T86'0 000100 PP6LT'0 €9¢€01°0 609T8°T 6L000°0 18€L0°0 811 9Y6¥LT 6£0-VIOOVN
e 08 09- e 08 LT €6L 184 19L L16°0 909000 88TET'0 088500 IPE8T'T 8T100°0 657900 SET TSTYOE 8€0-VIOOVN
1T €STT 90 9¢ 1T LE 6v11 1T €STT 186°0 1¥010°0 S9v61°0 SPPIT'0 17660°C £€8000°0 €T8LO0 LET T19Tee LEO-VIOOVN
€T 66 T €S L6 LE 6L6 €T 66 T86'0  LS600°0 18291°0 0TL60°0 66TT9'1 T8000°0 0€TLO0 8LT €0LS6T 9€0-VIOOVN
ST LOS 9€l ST LOS (44 1cs St 8¢S §T6'0  TTY00'0 68180°0 I¥L€0°0 8TILI0 9T100°0 S¥650°0 1 STYIL S€0-VIOOVN
8¢S 8611 L'TT IS S¥6 44 ST0T1 8¢ 8611 0680 +1600°0 P6LST'0 IPETT0 86THL'T 8€700°0 +0080°0 611 STIPI €0-VI0O0OVN
9T 9011 9Y 43 6501 9¢ SLOT 9T 9011 1L6'0 096000 LS8LT'O 91¥01°0 LYI188'1 101000 w9L00 6C1 118S¢S €€0-VIOOVN
€€ 99 601 €€ 99 8T L9 124 TEL 660 TLSO00 SILOTO LO¥S0°0 6€176°0 SET100°0 TLEY00 01T 0600LS TE0-VIOOVN
61 €e1T 9 001 610T 1s 9L0T 61 €eIT £€86'0 LEITO0 9LLOE0 €EL6E0 L8ETL9 r100°0 09T€1°0 ST1 12981 1€0-VIOOVN
0€ 179 90 0€ 179 ST w9 w 79 LT6'0  TIS00°0 0S¥01°0 1900 660880 12100°0 ST190°0 L 618S0L 0€0-VIOOVN
0T TILl LS SL L791 a4 991 0T TILT 6L60  86¥10°0 S0L8T0 9TITT0 (448984 11000 68%01°0 94 PesTrl 620-VIOOVN
(14 L8Y 06l (44 L8Y 14 L0OS sS 965 6L8°0 SLEOOO 9¥8L0°0 €15€0°0 £89¥9°0 SS100°0 6L650°0 89 629TS 8T0-VI00VN
9T 861 00T 9T 861 €T L0OS 6F 199 1260 TEY00'0 LT080°0 98L€0°0 €18¥9°0 €100°0 96850°0 or LTT¥9 LTO-VIO0OVN
0T 8681 L8 Ly 9981 0T 0860 608100  €L6TE0 095620 96T8T'S 8C100°0 02911°0 18 8969¢1 920-VIOOVN
ST 681 ST [44 961 (94 L16°0  €1¥00°0 88L0°0 L6SE0°0 66790 TE100°0 S6LS0°0 w ST0-VIOOVN
0T 448t 9¢ LE 811 0T 860 60100 81861°0 P8YIT°0 788CI'C 08000°0 16LL0°0 a4 ¥20-VIOOVN
6T 668 6T 9z 0€9 6t 6060 T0S000  OPL6O'0  9L8Y00  LSO98'0  ISI000  80¥90°0 99 €20-VI00VN
Ly ST91 0L Ly €01 Ly ST91 9060 S9ET00  TO9YTO  6LLOTO  ¥TH6EE  6STOO0  90001°0 [
[« 9Ly (44 Iz 887 Ly LyS Y160 SLEODD  S99L0°0  SOEE0'0  PLLI9O  LTIOOO  SP8SO'0 6€ 6¥¥89
81 SLOT ¥6 8 950T 81 SLOT 786'0 020200 181L€0 SLEIED 6€8LS9 T€100°0 e8Tro 8¢ LO6TYT 020-VIOOVN
L4 816 94 [43 0€6 T 816 LL6'0 818000 90951°0 870800 968611 080000 99690°0 09 996811 610-VIOOVN
14 1ozt 59 LE 8911 L4 1ozt €L6°0 9201070 8€S61°0 6S911°0 ¥0091°C 001000 81080°0 144 T8¢86 810-VIOOVN
61 9¢81 08 144 06L1 61 9¢€81 1860 S¥910°0 £€611€°0 S¥6ST0 €SLT8Y L1100°0 STTInro 6S L8I9YT L10-VIOOVN
w S6LI v'LE €8 8¢ 81¥1 [44 S6L1 886'0 9SS100  80I10T0  9¥8ETO  L6THO'E  SEI000  SL60TO 19 €vLYTE 910-VI00VN
ST 61l LS Pril 8¢ 1911 ST [£8! €L6'0  ¥S010°0 81¥61°0 ST611°0 PE9ETT 201000 6L6L0°0 184 16SLS S10-VIOOVN
w vy [44 vy w sor €8 867 7280 89€000  P6L900  IETEO0  T868K'O 961000  6TTSO0 o £€8€9¢C #10-VI00VN
0T 08¥1 9 STl [34 PEET 0T 081 ¥86'0 T1€C100  L6TITO 186 61L'T 860000  6STO( 0L 9LYES9 €10V
99 €88 8t €001 8¢ 996 99 €88 8¥8'0 LL800'0  6E89T0  TIL6O'0  TI6SST  €TTO00  L8IC LE sseet 210V
14 108 ¥ 108 1T £0S 34 (489 1€6°0  80%00°0 LLOSO'0 8L¥€0°0 1L0¥9°0 11000 €SLS0°0 143 SLT199T 110-VIOOVN
1T 0S€l 9 el 6¢ geel 1c 0sel 6L6'0 881100 99LTTO ILYPT'0 €991L°T ¥6000°0 ¥$980°0 6L 008991 010-VIOOVN
9T LY 9t LY €C 1Ly 0s 1434 976'0  0£¥00°0 8€9L0°0 ¥8S€0°0 T1065°0 821000 $0950°0 ¥9 90299 600-VIOOVN
1T 0or91 LL €091 144 0€91 1c 0r91 6L6'0  €SS10°0 1€987°0 950TT0 8€186°¢ ¥1100°0 $8001°0 01 PE06E1 800-VIOOVN
s¢ €L01 YL Is 668 8¢ 156 s¢ €L01 1960 L06000  S96F1°0  88L600  TIISST  TEI000  8ISLC 901 YoITHe L00-VI00YN
LE [41Us 1’0 8 1101 133 cIol LE ciot 6’0 0880070 68691°0 6£60°0 8oLl $€100°0 £6TLO0 0L 9061¢ 900-VIOOVN
9¢ PEL ¥'0 9¢ PEL 62 veL Ly 9EL L16'0  1€900°0 soTro 050900 S¥100°0 £€8€90°0 6L STI69 S00-VIOOVN
9¢1 Tee P8 L9 S08 11 €L1T 9¢ (449 ¥89°0 981100  96TET0 8L6°0 T6860°0  S68C TSIL L9¥TLT #00-V100YN
0¢ 619 TL 0¢ 619 ST 629 w S99 0£6'0 605000 LLOOT'O 8S9¥0°0 €2100°0 €L190°0 9¢ $205€T €00-VIOOVN
ST PE01 Ll S 116 23 L¥6 94 €01 €L6°0 SLISTO  86¥80°0 £6000°0 43 S1698
s€ 059 €91 93 059 3 LLY Is 0LL 80901°0  66L50°0 091000 984900 9g 1€2191
b4 ANEV % 4 Dwmu\.ﬂmeou 0T DmmN\ﬁﬂmhaN ot JQ@@N\QQF@N d oT DmmN\ﬂﬂmecN ot Dmmu\ﬁmron oT ﬂﬁmcau\ﬂﬁmgu Aw&Uv ﬁam.én Aw&Uv ﬁmwcu ouwred O—Qsﬂm
33e pajaodox |99UEPI0ISIp (eJA) 10119 (BJ\) 9%  (BJA) 10013  (BJy) 99  (BJN) Joa1d (B[ 93¢k

T

(VIOOVN) "W Jouio) spang

150



81 Y061 Tt 68 8981 Ly G881 81 Y061 €86'0 98100 €19€€°0 £€5Y0€°0 8600%°S 611000 YSI1T°0 L LOS6ES 60-VIOOVN
0T 08¢l 10~ YL 18€1 54 18¢T 0T 08¢l 9860 0E¥10°0 ¥68£T°0 9ILSLTO €568'C 06000°0 88L80°0 9 951966 £€60-VIOOVN
61 9651 €T 6L €961 o LLST 61 9651 ¥86'0  €LST10°0 0EVLTO 8691C°0 S8YTL'E 201000 6¥860°0 14! YCLYLE T60-VIOOVN
ST (4301 €S 143 86 9¢ 866 ST (4301 LL60  0¥600°0 PS¥91°0 99L60°0 LTILY'T 16000°0 99€L0°0 14! 1806 160-VIOOVN
143 SS9 T 143 SS9 8T 6¥9 w 0€9 6’0 T6S00°0 ¥6901°0 £€9250°0 975680 021000 €L090°0 (44 LyS08¢€ 060-VIOOVN
L1 a6t 4 8¢CI 86LT 143 0L8T Ll Taet 860  €60€0°0 8€EVS0 §T616°0  0S068°ST 612000 0ITITO 1 €E60LT 680-VIOOVN
0T €91 184 0L €861 (U4 6091 0T 321 8L6'0 €6€10°0 678LT0 67861°0 SE9L8'E LOT00°0 co101°0 0€ cisece 880-VIOOVN
0T 61CI L1 8¢S 6611 8¢ 90T1 0T 61CI 7860 680100 6¥70T°0 €LETTO 8L08T'T £8000°0 680800 91 Y1691% L80-VIOOVN
0T 1601 €€ 8¢S 8601 6¢ 6901 0T 1601 9860 09010°0 0¥8L1°0 SPCIro €LS98'T LL000'0 S8SL0°0 33 1SL6SY 980-VIOOVN
9T 661 e 9T ST [ L9 91§ 0L8°0  T¥¥00°0 95080°0 9€0%0°0 £€20¥9°0 6L100°0 Y9LS0°0 6 S1929 $80-VIOOVN
0€ 1011 90 LS 6¢ L601 0€ 1011 9960  19010°0 €0S81°0 LYSTT0 Prre'l L1100°0 T9L0°0 184 12681 ¥80-VIOOVN
6T 8¥S S0l 6C 9t 09¢ 39 609 [16°0  68¥ €9880°0 [4924U1 YTSELO 0S100°0 S1090°0 LE 1806C1 £80-VIO0OVN
T [394 8¢ T 1 06% 54 9Ly §T6'0  T0¥00°0 €56L0°0 16£€0°0 ¥5029°0 811000 65950°0 €C 1veice T80-VIOOVN
[43 809 Lo (43 LT 609 54 ci9 LE60  $SS00°0 06860°0 606%0°0 9TIT80 92100°0 €2090°0 ol 9TLOL 180-VIOOVN
LT 8% L1e LT ST €Cs 9¢ L69 906’0 S¥¥00°0 T6LLOO YrTr0°0 91€L9°0 L9100°0 997900 (U8 8ET6ST 080-VIO0OVN
€T 701 1e 39 9¢ €T 701 6L60  6L600°0 0€181°0 1ceoro 8¥CS8'l ¥8000°0 01¥L0°0 61 [192% 44 6L0-VIOOVN
€€ [43% $'8C- €€ [43% LT 8Y L6Y 1€6'0  ¥LS00°0 66201°0 198+0°0 vl STI00°0 ¥ILSO0 ST 806L8 g8L0-VIOOVN
143 19 [N e 19 8T St 0ss w60 685000 766600 1%0S0°0 0%9C Tc1o0'0 L1 6S89¢€1 V8L0-VIOOVN
1 086 ST s L96 8¢ 1c 086 986’0  €8600°0 LLI9T'0 89860°0 TE109'1 €L000°0 144 8TYoT6 LLO-VIOOVN
61 §S91 (34 L6 681 99 61 §S91 6860 9¥610°0 €008C°0 €8SLT0 £€£926'¢ 90100°0 €1 867T6€ 9L0-VIOOVN
¥C 9¢y €T v 9¢y 0c IS 60€ LT60 16£00°0 £6690°0 SS0 §9905°0 611000 Pid 0L0L8 SLO-VIOOVN
€¢ 088 v1- 94 168 33 (33 088 §96'0  TL8000 678%1°0 61580°0 SI86€'1 011000 4 SOTIL L0-VIOOVN
6C (444 (e 6¢ (424 14 Iy IS 01¢ 96’0 SLY00'0 60L0°0 0¥9€0°0 S6E£1S0 1Z100°0 8T 90LTL €L0-VIOOVN
61 9891 I 9L 091 34 0¥91 61 9891 1860 ¥IS10°0 65780 L00TT0 60620 011000 8¢ 805991 CTLO-VIOOVN
€T 891 76" €T 891 0t 19% 4 (U4 8160  6L£00°0 STSLOO LSTE0'0 0ISLS0 121000 £VSS00 144 P€656 1L0-VIOOVN
€€ 089 90 €€ 089 LT 189 a4 789 1€6°0  €L500°0 LTIITO 68250°0 99556°0 921000 62290°0 0s 6058¢€1 0L0-VIOOVN
LE 129 o€l LE 129 IC1 €6¢ 8LTI clel- a4l 8€900°0 IC1 0L891 [EVEE0 661100 96£T( 9¢ 9EvS 690-V N
1€ ¥$9 T8 1€ ¥$9 9t €9 144 909 ¥26'0  $€500°0 ¥L90T°0 €6L¥0°0 121880 ST100°0 800900 6¢ 10L181 890-VIOOVN
14 £34 I'er- e £34 1T (X474 (94 8¢ 9€6'0  SO0¥00°0 €1690°0 7€TEl TELISO 611000 LTHSC [43 STIv6 L907V /N
LT 16% 66 LT 16% €T 981 144 594 P76'0  TSY00°0 €16L0°0 0TLEO'O LEVIOO €1100°0 1€950°0 143 L6900 4-990-VI0O0OVN
ST LSO [t 9¢ SOl 8¢ 6¥01 4 LSO LL6'0  L1010°0 €09L1°0 S0L0T°0 ST018°T ¥6000°0 8S¥L00 53 789051 990-VI0O0OVN
81 3314 s 101 L€0T 1s $80T 81 €€IT ¥86'0 C9120°0 LSTILEO 9910¥°0 0LE6L™9 6£100°0 19ze1o ST ST8061 $90-VIOOVN
L4 [Nad LS 4 [Nad 1T 944 Blg 544 S€6'0  00¥00°0 80TLO0 ¥92€0°0 86750 L1100°0 [433500 1 PE0LTT 90-VI0OOVN
1T 0zot 8y 8 SL6 €€ 686 1c 0zo1 186°0 198000 [433240] £9880°0 S06¥9°1 LL0000 €TELOO ¥ (433243 £€90-VIOOVN
1T 1437 9T L9 ot w PIEL 1c 1£37¢ 86°0  L8TI00 S8ETTO 60SST°0 6¥8¥9°C $6000°0 185800 34 6LT98L 790-VIOOVN
0T 1s€l 6'¢ L Y0EL 94 1cel 0T 1s€l $86°0  €LET00 01¥CT0 0€991°0 09vL9'T 160000 95980°0 €€ 0L0L8T 190-VI0OOVN
61 6£81 (a4 6 0LLT 0S 081 61 6£81 $86°0 0681070 9651€°0 LYL6TO 81L68'Y 811000 weiro 6L 1sesLe 090-VIOOVN
s Syl 9L 8 Seel ¥S Soel 1s sSSPl 8260 985100 86€£€T0 PrSIT0 L68Y6'C 6¥200°0 171600 8L 16L81C 6S0-VIOOVN
ST LSY 9'¢ 94 LSY [44 19% 94 €87 0r6'0  S1¥00°0 £VELO0 SSPE00 £87LS°0 911000 LL9SO0 66 8evITl 8S0-VIOOVN
0T €651 9 88 SOST 49 wel 0T €651 986°0 0€L100 10€9T°0 €8LETO 6699¢5°¢ 801000 9€860°0 9¢1 £TTS6E LSO-VIOOVN
8T LY 8T 8T LY ¥ 6Ly 94 06t L¥6°0  L9%00°0 1L9L0°0 TL8E00 S€T09°0 811000 $6950°0 161 06099¢ 950-VIOOVN
(44 291 S'e SL €LST 144 S6S1 (4 o1 LL6'0  €6¥10°0 YPOLTO £901T°0 1crige 811000 666600 0LT 0L0€9¢€ $S0-VIOOVN
ST 594 (3 194 594 €C L9Y 65 081 €060 STY00'0 €LYLOO 089€0°0 0T¥8S°0 €5100°0 0L950°0 611 1€L09 S0-VIOOVN
1T L9Y L'L 1 L9Y 61 €LY 9% ¥0S €160 95€00°0 11SL0°0 ¥80€0°0 6LE6S0 12100°0 €ELSO0 14 66L6L1 £50-VIOOVN
61 0€91 1'C YL 0091 34 €191 61 0€91 860 687100 991870 ¥860T°0 LT968°€ €0100°0 £€001°0 0 65$9C TSO-VIOOVN
€T 9L01 0's 1s 9201 53 wol €T 9L01 LL6'0  9T600°0 PSTLTO 9€860°0 9IT6L'T 880000 6TSLO0 1 8¥09S1 1S0-VIOOVN
(44 LLOT 0l 39 L901 9¢ 0L01 (4 LLOT 086'0 696000 L66LT"0 L9201°0 90698°[ £8000°0 TESLOO 9t 8€EV0E 0S0-VIOOVN
0T 9091 88 6L 6Ly Ly [4391 0t 9091 $86°0  6¥S10°0 L6LSTO SLYITO §8TIS'E ¥0100°0 $0660°0 (G4 STLYT8 6v0-VIOOVN
oC ANEV % 4 Dwmn}mmwon 0T DmmN\ﬂﬂﬁhaN b JAM@:N\QAmgN d oT DmmN\QﬂmeaN e Dmma\ﬁamrcﬂ oT ﬂﬁmcaﬂ\ﬂﬁmgﬂ AMQUV Armwcﬂ AMQUV Armwcu oureu @—QEﬂm

33e pajaodox |99UEPI0ISIp (eJA) 10119 (BJ\) 9%  (BJA) 10013  (BJy) 99  (BJN) Joa1d (B[ 93¢k

N VIOOVN) "wij Jouio) spang

151



1 SETL 184 1s 1601 33 9011 1c SETL 0860  S¥600°0 8¥¥81°0 LI€0T0 I81L6°T 8000°0 TSLLOO Ll 99€5€T WI-VIOOVN
LE 609 144 LE 609 0¢ S19 14 9€9 0560 $T900°0 80660°0 12SS0°0 61€8°0 921000 06090°0 cl 9¥s6cl I71-VIOOVN
€T €81 s's- €T 314 0T 6Ly 54 8t 926’0 16£00°0 LLLLOO 997€0°0 L0T09°0 S1100°0 S1950°0 €1 LLY1ET 0¥I-VIOOVN
vC 1534 81 T 1534 (44 [434 143 6€y TT6'0 TOY00°0 €1690°0 LYEL0'0 150€5°0 9€100°0 996500 cl ST06L 6€1-VIOOVN
61 €8L1 LS LL 691 34 PeLT 61 €8L1 1860 995100 7900€°0 966£T°0 LOG6IS Y €1100°0 €0601°0 99 9780y 8E€I-VIOOVN
o 0681 L0t 8L [3491 0s 9691 b4 0681 I16'0 6£S10°0 SE0LTO w6970 €ETIEY 862000 99S11°0 106 LLL60L LET-VIOOVN
6T 9¢¢ 91 6C 9¢¢ ST 8¢S 144 §9¢ 9€6'0  68%00°0 C1060°0 Pro'0 6€TEL'O 021000 6850°0 143 STEE9T 9€1-VIOOVN
€C 4 (34 9 L9T1 w €811 €T 4 1860 S0TI00 L€861°0 ¥99€1°0 w9L0TT 96000°0 1,L080°0 S 605901 SEI-VIOOVN
1T €Il €1l 09 9001 [44 €701 1T €Tl 986'0 980100 ¥8891°0 €0LTTO PTreL'1 £€8000°0 LOLLOO 4! °6861C PEI-VIOOVN
SS 6001 019~ sS 6001 19 106 SLI s¥9 895°0  L0O0OTOO LY691°0 £S6v1°0 6£6TY'1 LTS00°0 L1900 4! 0SSL €E1-VIOOVN
3C 339 8T 339 14 yTs [ 8Ly 6’0 €L¥00°0 8798070 110¥0°0 6¥SL9°0 0€100°0 §9950°0 S L008Y TEI-VIOOVN
£3 L79 1€ L79 9T LT9 34 679 TE6'0  LTS00°0 cieoro €ELYO0 £6¥S8°0 TT1o0°0 L0900 L LET0TT 1€1-VIOOVN
6T €601 9 0s L¥01 133 901 6C €601 7960 €1600°0 8€9LT°0 1%660°0 859181 CI100°0 €65SL0°0 081 0€SL0T 0€1-VIOOVN
(44 YOLT €0t 69 £6¢€l a4 [44 YOLT 9L6'0 LEETOO YCIvco YIL6T0 [€ELY'E 8C100°0 wroro €79 0LTTSTI 6CI-VIOOVN
1 P11 39 LOTT 9¢ 011 1c Eign! 1860 $8600°0 1¥L81°0 66L01°0 w“r10T 8000°0 L6LLO'O 68 LLLBSE 8TI-VIOOVN
6T 1501 43 6%01 9¢ 001 6T 1501 9960 L¥600°0 L99LT°0 65001°0 LETTIR'T LOT00°0 9EVLO'O €8 8S¥S9 LTI-VIOOVN
1 91Iv1 89 99¢1 w 98¢1 1c 1860 LIETI00 909€T°0 1LS9T°0 0I¥I6'C 860000 £5680°0 33 STE6LT 9TI-VIOOVN
LS 618 IS S06 6¢ 088 LS 606'0 816000 890S1°0 ¥¥260°0 LLOLE'T S8100°0 1¥990°0 84 8CC8T STI-VIOOVN
ST L8T1 LS 1911 8¢ 0LT1 ST €L6'0 890100 0¥L61°0 9€0TT°0 §T991°C 101000 656L0°0 s9 12LE01 YCI-VIOOVN
€C 8Ly €T 8Ly 1 €87 Ly 9160 98¢00°0 $0LLOO TELL0'0 £€8609°0 92100°0 1%LS0°0 1841 9896C1 €CI-VIOOVN
1 (3301 s 8601 LE OrT1 1c 1860 €0010°0 LSBT0 TT601°0 18¢86°1 ¥8000°0 LYLLO'O 143 6CETTT TCI-VIOOVN
0€ 0€s 0€ 0€s ST 549 8t LE60  $0S00°0 TLS80°0 LYTH0'0 ¥§9L9°0 921000 YTLSO'0 0€ 68YES 1TI-VIOOVN
61 6081 6’1 9L 08L1 184 6Ll 61 8L6'0 8SS10°0 LO6LTE0 S0EYTO LEOY8'Y 911000 19011°0 L6 £€9€09 0CI-VIOOVN
8¢ 189 [ 8¢ 189 1€ €89 54 1760 999000 IPIT1T°0 60900 86560 SE100°0 S¥290°0 €L1 0S€S6 611-VIOOVN
[44 S801 143 s 1€01 9¢ 8¥01 (44 186°0  T¥600°0 8EELT'O €1001°0 PSLOS'T 80000 195L0°0 01¢ ¥9010€ 8T1-VIOOVN
0T SOL1 10 09 Y911 6¢ o1l 0T ¥86'0 LTI100 98L61°0 8TYCI'0 09LY1'T 180000 TL8LOO 09 09vSTL LT1-VIOOVN
61 3391 1 1L SIST w £Ts1 61 860 LOYIO0 005970 SY881°0 90€8Y°¢ 660000 £€560°0 €9 [£:14 483 911-VIOOVN
14 8¥6 08 94 LL8 €€ 868 L4 8,60 S0800°0 18S¥1°0 810800 8LOTY'T £8000°0 L90L0°0 09 901161 STT-VIOOVN
[44 2991 611 LL (334! Ly [439 (44 7991 1860 CTOSTO0 910ST°0 6TSIT0 020TS'€ 0T100°0 90201°0 €01 098801 PIT-VIOOVN
8T Svs (O 8T Svs ¥ ws Blg 154y 1€6°0  9L¥00°0 878800 £80%0°0 LSYOL'O €2100°0 88L50°0 8¢ 99609 €11-VIOOVN
8¢C LES 91T 8¢ LES 9T 19 8L9 088°0  69¥00°0 ¥6980°0 19S+0°0 IrPyL0 08100°0 112900 [34 80€€9 CIT-VIOOVN
1T $901 Ty 49 20l 9¢ 1c $901 860 LS600°0 0TTLT'0 §S001°0 SLLLL'T 6L000°0 887L0°0 St ¥96¥8C TT1-VIOOVN
8T 1€01 L'l 6F S101 143 8C 1€01 9960 $6800°0 PPOLT'0 <0¥60°0 166TL'1 €0100°0 19€L0°0 19 €18681 0IT-VIOOVN
€C 8LIT L01 s 2901 LE €C 8LIT 8L60 986000 16L1°0 Y1011T°0 T6956'1 760000 $T6L0°0 98 [qq4'13% 601-VIOOVN
1T (144t ¥'T LL T6¢1 Ly 1c vl $86'0  TO6Y10°0 £80¥C°0 8SL8T°0 66786'C 860000 £8680°0 53 L9LY8T 801-VIOOVN
(44 LyEl 90 0L 6¢€l 34 (4 Lyel 186°0 9€€100 $60€T°0 022910 £€80SL°C 860000 6£980°0 0¢ L690€1 LOT-VIOOVN
L1 ¥0LT 88 101 L0ST 9 Ll Y0LT 6L6'0 1¥ET00 9IYSLY'0 P6119°0  8TTLITL 881000 89681°0 €€ 901-VIOOVN
1T 98¢1 611 SL 9¢€T1 114 ¥4 98¢l 986’0 80¥10°0 9TIIT0 LSELTO 17896°C 66000°0 L1880°0 e SOT-VIOOVN
1T 9LEL e s9 9tel 144 1 9LEL 086'0 0SCI00 920€T'0 9IYST'0 80¥8L'C 960000 69L80°0 1L Y0I-VIOOVN
0T 1691 '8 9L (43¢ 94 0T 1691 186°0 115100 $789T°0 EVSIT0 LTESL'E C11000 8¥101°0 [43 €01-VIOOVN
ST 1Ly ¥'6- 194 1Ly ¥ 0L (434 L98°0  TTr00°0 £86L0°0 12LE0°0 020850 LL100'0 6¥SS0°0 ¥ 201-VIOOVN
0T 881 9'¢ 98 Sesl 9 €681 0T 7881 086°0 9LLI00 LILTEO 1188T°0 69661°S 821000 9TsI'0 1 80€6¢Y 101-VIOOVN
0T 8¢El €1 19 €cel 8¢ 8cel 0T 8ecl 186°0 SLIT0O TLLTTO clerlo 88669°C 680000 66580°0 €1 ¥961¢¢ 001-VIOOVN
61 €091 681 9 9peEl w LSPI 6l €291 786'0 9STIO0 0TTET0 0T9LT°0 0€661°¢ €0100°0 £6660°0 €0€L91T 660-VIOOVN
LT €6 L'0T LT €6 e 8LY LS 1160  TS¥00°0 w6L0’0 €9L£0°0 L8109°0 r100°0 96¥50°0 9 (39 2%4 860-VIOOVN
0T 9¢1l ST 09 OrTL oy 6111 0T 9Tl $86°0 111100 68L81°0 $90T1°0 $0010°C 080000 6SLLOO 9 ST9SOY L60-VIOOVN
€€ 99 1'e €€ 99 LT 899 144 789 1€6'0  ¥LS00°0 £7801°0 162500 811€6°0 621000 87900 ¥ 9¥618C 960-VIOOVN
w 1601 9'l- ¥9 LOTT w 1011 w 1601 $86°0  S8I10°0 PELST'O 8LSTI'O L88S6'1 £8000°0 ¥8SL0°0 €C SrIv8s $60-VIOOVN
oz W % o1 Nger/Udgy o1 Oger/d o2 Adgy7/Ud d 0T Mgy  °T Ogefldyy 2T Adgyr/dd,,, (D) Adyy, () ad,, s djdures

Nowu pariodoax |99UEPI0ISIp (eJA) 10119 (BJ\) 9%  (BJA) 10013  (BJy) 99  (BJN) Joa1d (B[ 93¢k

VI0OVN) "l 19u10) spang

152



81 6681 LS S8 €081 9 8¥81 81 6681 €860 TILI00 8LTTE0 0€L8T0 EEILT'S 611000 029110 14 0€LT69 0ST-VIOOVN
(44 Lot 19 St 56 [43 (219 (44 Lot 8L6°0  TI800°0 £56S1°0 6¥€80°0 £VE09°1 080000 062L0°0 ! £OPI81 6v1-VIOOVN
94 986 Sl 149 L6 6¢ 9L6 94 986 9¢6'0  ¥L600°0 69291°0 62€01°0 P8Y19°1 91000 661L0°0 8 1€€9¢ 8¥1-VIOOVN
6T 65¢l 'sT IS 6€01 LE Ly11 6C 65¢l : ¢€600°0 68vL1°0 66S11°0 8LS60°C €100°0 [ €9 899501 LY1-V /N
14 wil 9T 8¢ PITL 6¢ €Cll ¥ il LL6'0  9LO10°0 ¥9881°0 SISITO £S€T0°C 960000 08LLOO €C TL8001T IY1-VIOOVN
0T LEST 8T 0L 6671 144 Sist 0t LEST 086'0 SLEIOO SLI9T0 89¥81°0 8ESHi'E 10100°0 LYS60°0 0¢ 00L8¢ SY1-VIOOVN
33 PEL 0l 33 PEL 8T 9¢L 84 [473 €60 ¥1900°0 890C1°0 91850°0 W6¥90°1 LT100°0 00¥90°0 L 020TLY PrI-VIOOVN
1T 9741 €S 9 S8I1 144 90Cl1 1c 9741 860 891100 9L10T°0 LEVEL'O L908T'T 060000 861800 11 8689¢1 £vI-VIOOVN
oz (W % o1 Nger/Udgy o1 Oger/d o2 Adgy7/Ud d 0T Mgy  °T Ogefldyy 2T Adgyr/dd,,, (D) Adyy, () ad,, s djdures

Nowu pariodax |99UEPI0ISIp (eJA) 10119 (BJ\) 9%  (BJA) 10013  (BJy) 99  (BJN) Joa1d (B[ 93¢k (VIOOVN) “Wig 39107 spang

153



Concordia diagrams for NAOO1A, Burtts Corner Fm.
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Histogram and kernel density plot for NAOO1A, Burtts Corner Fm. Bandwidth and bin width is

equal to median 20, 22.1 Ma.

NAOO1A Burtts Corner Fm. (n=113)
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Concordia diagrams for NAOO3A, Digdeguash Fm.
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Histogram and kernel density plot for NAOO3A, Digdeguash Fm. Bandwidth and bin width is

equal to median 20, 38.6 Ma.

NAOO3A Digdeguash Fm. (n=90)
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Concordia diagrams for NAOO5SA, Hayes Brook Fm.
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Histogram and kernel density plot for NAOOSA, Hayes Brook Fm. Bandwidth and bin width is

equal to median 20, 22.2 Ma.
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Concordia diagrams for NAO10A, Flume Ridge Fm.
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Histogram and kernel density plot for NAO10A, Flume Ridge Fm. Bandwidth and bin width is

equal to median 20, 23.3 Ma.
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Appendix B: Mascarene Basin detrital zircon data and diagrams

Notes to appendix:
"Percent discordance between 2°°Pb/?*8U and 2’Pb/?*Pb, as per the following formula:
[(60‘000155125 x 207Pb/206Pb age _ 1) _ 207Pb/206Pb ratiO] X 100 / [(60‘000155125 x 207Pb/206Pb age _ 1)]

2207Pb/2%Pb ages are reported for 2’Pb/?*Pb ratios greater than 0.0658 (800 Ma); 2°Pb/**¥U ages

reported otherwise.

Samples in italics are corrected for common lead. A discordance cutoff of 10% is applied:

analyses which fall outside of the -10% to +10% range are greyed out.
Concordia diagrams do not exclude discordant analyses.

Correlation coefficients (p) calculated by the following formula:

[(20207Pb/235U / 207Pb/235U)2 + (20206Pb/238U / 206Pb/238U)2 _ (20207Pb/2061)b / 207Pb/206Pb)2] / [(2)

(ZGZOGPb/238U / 206Pb/238U)(20207Pb/235U /207Pb/235U)]
207phH/235U ratios are calculated as 137.88 x 2°°Pb/23¥U x 207Pb/?°°Pb.

Histograms and KDEs were generated using DensityPlotter 7.3 (Vermeesch, 2012), and

concordia diagrams with Isoplot 3.75 (Ludwig, 2012).
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Concordia diagrams for PG0O35A, Waweig Fm.
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Histogram and kernel density plot for PGO35A, Waweig Fm. Bandwidth and bin width is equal
to median 2 0, 19.9 Ma.
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Concordia diagrams for PG036A, Eastport Fm.
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Histogram and kernel density plot for PGO36A, Eastport Fm. Bandwidth and bin width is equal
to median 2 0, 19.7 Ma.
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Concordia diagrams for PG044A, Back Bay Fm.
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Histogram and kernel density plot for PG044 A, Back Bay Fm. Bandwidth and bin width is equal
to median 2 0 , 26.4 Ma.
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