
We can’t solve problems by using the same kind of thinking we used when we created them.

– Albert Einstein, 1965.
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Abstract

In most machine learning and data mining tasks, data is typically assumed to be indepen-

dent and identically distributed. In real applications, this assumption is not always correct.

Data points are related to each other. Taking these relationships into account is a challenge

but if done properly can provide new insights into the data. Data represented with its inner

relationships is called information networks. A Social Network or Information Network is

a structure made up of nodes representing entities, and edges representing the relationships

among nodes. Understanding the behaviour of social networks is known as Social Network

Analysis (SNA). SNA is used to study organizational relations, to analyse citation or com-

puter mediated communications, etc. One of the most important applications of SNA is to

find the similarity/relevance among entities in the network for a specific query. Finding the

relevance between different entities, we are able to rank them based on each other. Ranking

a set of entities with respect to one instance is required in many application domains. For

example, in E-Advertisement, the goal is to show the most related advertisement to each

user. This essentially means to rank the advertisements based on each user and to show the

high ranked ones to the user. A researcher has a new idea in a particular topic. Wanting to

publish the idea in the right place, an ordered list of conferences with respect to that partic-

ular topic is required. A person is eager to know the similar games to a favourite game, to

prevent buying many irrelevant games. Taking a query, a search engine wants to rank all the

web pages with respect to it. Consequently the user explore the most relevant pages rather

than reviewing all the pages which only match with the keywords in the query.

In this study we focus on ranking the entities in heterogeneous multiple relation so-

cial networks, networks for which nodes belong to different classes and relationships have

different types. We investigate social networks from bibliographic databases with authors,

conferences and topics. Analysing such networks is a non-trivial task dealing with large k-

partite graphs. We propose an algorithm to find the most related entities for each instance.

We develop a tool called DB-Connect which applies our method on the academic social

network.
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Chapter 1

Introduction

1.1 Motivation

Social networks are structures made of entities that are connected to each other by relation-

ships representing some semantics. In fact, in every social network, entities interact with

each other in one or more different ways. These interactions could be in any form such as: a

friendship between two individuals in the network of students of a class, a link between two

pages in the network of Internet web pages, a financial transaction between two companies

in the network of companies of a country, and so on. One might think of a wide range of

fields dealing with social networks. In fact wherever there are entities, there is a social net-

work corresponding to them. Entities such as human-beings, virtual profiles, organizations,

animals, web pages, etc.

Intuitively a social network is represented by a graph where nodes are the entities and

edges are the relationships. As an example, the graph corresponding to the social network

of the members of a karate club is depicted in Figure 1.1. The relationship between the

members is the friendship relationship. Other information in the network could also be rep-

resented in the graphs. For example the significance of a relationship between two entities

may be modeled as a numerical weight on the edge between the corresponding two nodes in

the graph. In some cases, relationships may not be two-ways. Consequently instead of hav-

ing undirected edges on the graph there are arrows showing the direction of the relationship

between two entities.

Social networks have different categories. One might generally classify social networks

based on the type of the entities and the relationships. Social networks are categorized in

two groups of Homogeneous (i.e all entities are from the same class) and Heterogeneous

(i.e entities have different types). Also, we may categorize social networks in two groups

of Unique Relation (i.e all the relationships are from the same class) and Multiple Relation
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Figure 1.1: The members of a karate club and their friendship relations

(i.e relationships have different types). Furthermore, social networks exist in many fields

such as (but not limited to): sociology, anthropology, psychology, marketing, economics,

criminology, medical sciences, computer sciences. The broad usage of social networks

makes the understanding of their properties and attributes important. Social Network Anal-

ysis (SNA) is the study of structural and behavioural properties of social networks. SNA

aims to find useful information about social networks such as: the most influential node(s)

in the network, the hubs in the network, the groups/communities in the network, and central

nodes in the groups. SNA is also used to study the evolution of social networks (e.g detect-

ing the formation, expansion, and changes in the communities within a social network). In

addition, SNA may be used to provide an ordering for the entities of the social network.

In many applications, there is the need to rank the entities in the corresponding social

network. This ranking may be as simple as sorting entities based on a specific attribute.

For example, having the social network of employees within an organization, the manager

wants to promote the employees based on their work experience in the organization. Con-

sequently, the manager needs to rank them based on the period of time they have worked

in the organization. However, the ranking task may be more sophisticated. For example as-

sume that the manager wants to promote the employees based on their interactions with the

clients. The more clients an employee serves and the more positive feedback the employee

2



gets from the clients, the more bonus the employee receives. This scenario requires a rank-

ing of employees based on their interactions with the clients, which means based on the

properties of the social network of employees and clients (e.g the number of connections of

a node, the sum of weights of the connections).

In a more complicated scenario, when the organization offers a variety of services/products

and targets a large number of clients regularly (e.g banks, chain supermarkets), the manager

may want to know which clients usually use a specific service or buy a specific product to

make some business decisions. This means ranking of entities (i.e clients) based on one

specific entity (i.e service/product) in the social network.

Ranking the entities based on each other in social networks with different entity types

and different relationships (i.e heterogeneous multiple relation social networks) is not trivial

because analysing and understanding the properties of such social networks is problematic.

Although ranking is not a new topic, not so many studies have been done on ranking entities

in such social networks.

1.2 Thesis Statement

In this thesis, we investigate the feasibility of ranking entities in social networks with dif-

ferent types of entities and relationships. The main thesis statement of this research is

presented as follows:

Ranking entities with respect to each other in heterogeneous multiple rela-

tion social networks is possible

Modeling heterogeneous multiple relation social networks as k-partite graphs, this work

investigates a ranking approach based on random walks on bipartite graphs to propose a

solution for the problem of ranking in such networks. We demonstrate the feasibility of

ranking in such social networks theoretically and practically. More particularly, we claim

the followings:

• It is possible to provide an analytical ranking of the entities in heterogeneous multiple

relation social networks.

• It is possible to perform the ranking task for the entities of the social network in

parallel.

• It is possible to perform the ranking task for reasonable portions of the social network,

yet achieving acceptable results.

3



1.3 Thesis Contribution

The major contribution of this thesis can be summarized as follows:

1. Modeling heterogeneous multiple relation social networks with k-partite graphs, we

propose an algorithm to rank all the nodes in the graph (i.e entities in the social

network) based on one specific instance of the network. More specifically, using

random walks on bipartite graphs, we assign relevance scores to the nodes of the

graph with respect to the target instance. Therefore we are able to sort the entities

based on their scores. We prove that the proposed ranking approach is theoretically

scalable for larger values of k. Developing a framework called DB-Connect, we

apply our ranking approach to a real heterogeneous multiple relation social network

(i.e tripartite graph) and argue the accuracy of the outcome.

2. The proposed ranking approach only uses the information available in the social net-

work. In other words, it computes the ranking for each instance separately without

using the results of other entities. Furthermore, ranking of different entities can be

done in parallel. Designing DB-Connect to be multi-threaded, we show the paral-

lelized ranking in practice.

3. Performing our ranking approach on a reasonable portion of the real dataset and com-

paring the results with the outcome of the real-size dataset, we show that there is a

negligible difference between the two results. This suggests that for large datasets,

where there is not enough computation resources available, one may partition the

dataset into smaller pieces and apply our ranking approach, yet achieve acceptable

results. Note that the partitioning should be done in a reasonable manner (e.g cluster-

ing approaches)

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, after introducing social networks and their different types, we discuss

their broad applications. We elaborate the necessity of analysing social networks.

Next we talk about ranking, one of the hot challenges in social networks. Discussing

the significance of ranking, we explain the issues in this area.
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• In Chapter 3, we review the related work to this study. Surveying Social Network

Analysis (SNA) in the literature, we inspect different approaches in SNA toward

ranking. Next, we explore the ranking approaches proposed in the context of social

networks. Finally, we study the online systems which are working close to the goal

of this thesis.

• In Chapter 4, first we explain the Random Walk with Restart (RWR) in bipartite

graphs as the building block of our method. Second, we explain our solution for

tripartite graphs. Next, we propose our ranking approach for k-partite graphs. Finally,

we wrap up this chapter by suggesting some computational improvements for our

approach.

• In Chapter 5, we describe a real world application for our ranking approach. Intro-

ducing our data source, we explain how we build the corresponding social network

for this domain. Next, we introduce our framework, DB-Connect, which is developed

to apply our ranking approach on the social network of this domain.

• In Chapter 6, we report the outcome of applying our ranking approach on the real

dataset. First we review the way DB-Connect presents the ranking results for different

entity types (i.e how the user should interact with the system). Next, we discuss

the quality of the ranking results for few selected entities (i.e one instance of each

entity type). Explaining the capability of our ranking approach in computing the

rankings in parallel, we describe how DB-Connect is deployed on WestGrid to use

the High-Performance Computation facilities for the ranking task. We also compare

the ranking results from the whole dataset with the similar results from a reasonable

portion of the database. Finally, we finish this chapter by a blind comparison between

the old prototype version of DB-Connect, which uses a different method for ranking,

and the new one.

• In Chapter 7, we present a brief summary of this dissertation. We review the contri-

butions of this study. We wrap-up the chapter by exploring unresolved challenges.

5



Chapter 2

Social Network Analysis and

Ranking in Graphs

2.1 Social Network Analysis

Social networks are structures made of entities that are connected to each other by relation-

ships representing some semantics. Entities are tied to one another via relationships such as

(but not limited to): friendship, common interest, financial exchange, dislike, WWW hyper-

link, physical connection, the presence in the same place. One might think of a wide range

of fields which deal with social networks. In fact, wherever there are individuals, there is a

social network corresponding to them. Individuals are not only human-beings but they can

be any entity such as profiles, companies, animals, web pages, etc. For instance, a network

of people and their relationships in the real life (e.g Facebook) can be modeled via a social

network so can a network of electric pieces on a board and their connections. Figure 2.1

shows some examples of different social networks. Figure 2.1 (a) corresponds to a web do-

main with several sub-domains. Nodes of the same colour represent web pages in the same

sub-domain. Directed edges show the links between pages. Figure 2.1 (b)1 depicts Yahoo!

360’s users. As seen in the image there is a large group of people at the centre who are

strongly connected to each other. There are also several groups consisting of a few number

of people who are connected to each other but not to the rest of the network. Finally there

are people who are isolated from the network. Figure 2.1 (c)2 represents the email flow

network among people working in a large project. People from different departments are

shown with nodes with different colours except gray nodes which stand for people who are

not formal team members. Each edge represents an email exchange between two people.

Intuitively a social network is represented by a graph where nodes are the entities and

1http://www.boxesandarrows.com/view/social-networks
2http://www.orgnet.com/email.html
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(a) Web Site (b) Users of Yahoo! 360

and their connections

(c) Email flows among a large

project team

Figure 2.1: Examples of different social networks

edges are the relationships. Other information in the network could also be represented

in the graph. Relationships may not be always two-way. Consequently instead of having

undirected edges on the graph there are arrows showing the direction of the relationship

between two entities. Figure 2.2 shows a part of the internet graph where pages are nodes

and the hyperlinks between them are the edges. As seen in the image, the links are directed

because of the nature of hyperlink in the web. Sometimes the relationships have different

levels of importance. This means while the relationships are from the same class, some of

them are stronger than others. In these cases, usually numerical weights are used on the

edges of the network. As an example, consider Figure 2.3 which represents the database of

a grocery store. Each customer has one or more transactions in the database. If customer

c purchases product p, there is a relationship between c and p. Based on the weights, we

observe that the relationship between Customer B and Orange is 4 times stronger than the

relationship between Customer C and Orange.

Social Network Analysis (SNA) is the study of structural and behavioural properties of

social networks. SNA is used to construct the social network for different problems. It also

answers questions about social networks such as: Which node is the most influential node?

7



Figure 2.2: An example of a directed graph: Internet

Figure 2.3: An example of a weighted graph: Customer-Product, weights are the frequency

of buying an item

What are the hubs? What are the groups? Which node is the most central in a group? SNA

is used to predict the future of social networks (usually predicting the new relationships

among entities). SNA discovers the communities and their evolution during the time in

social networks [30] . In addition, it finds ways to approximate large social networks.

Social Network Analysis has been used as a key technique in many fields such as soci-

ology, anthropology, epidemiology, psychology, etc. In the past few years, Social Network

Analysis has also gained a significant role in marketing, economics, criminology, medical

sciences, computer sciences.

Marketing: Facts of social networks such as most influential nodes, growing groups,

central nodes in groups, and so on, are the key concepts in marketing. SNA is a powerful

tool for companies to do a better marketing for their products/services. Figure 2.4 depicts

that US companies spend more and more budget on the social network marketing.

Criminology: SNA helps police and other law enforcement decision-makers to achieve

an awareness situation and enables them to plan and execute their actions in a pro-active
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Figure 2.4: US online social network advertising spending [52]

manner. [53], [54], [47].

Medicine: SNA provides doctors and researchers valuable information of how an epi-

demic disease spreads through its network.

Recommendation Systems and Relevance Ranking: SNA methods have been suc-

cessfully investigated to analyze the commercial social networks (e.g www.amazon.com).

Online stores want their customers to 1) find what they need 2) see what they might need or

want. For the former case, they develop user-friendly search interfaces. For the latter case,

they want to suggest products which are similar to or related to the searched items. Finding

similarity/relevance among entities plays the key role in product recommendation.

2.2 Types of social networks

Since social networks are used in different application domains, there is a variety of types

based on the problem to which they are applied. Nodes or edges could be from the same

class or multiple classes. Any of these will change the structure and consequently the

behaviour of the social network.

2.2.1 Homogeneous Networks

A social network is homogeneous when the nodes of the network are from the same class.

This means there is only one type of entity in the domain so all the nodes are representatives

from the same class. For example a dating network for high school students: the only entity

type in this network is Student. Figure 2.5 shows the corresponding graph for this social

network.
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Figure 2.5: An example of a Homogeneous social network: The dating network within a

high school

Figure 2.6: An example of a Heterogeneous graph: The publication network of a conference

2.2.2 Heterogeneous Networks

A social network is heterogeneous when there is more than one type of entity in the net-

work. In this type of social networks, each entity type has its own attributes but they are

related to other types of entities. Considering a conference, two entities are recognized:

Paper and Author. Each paper has attributes such as: title, conference, year, etc. Each

author has also its own attributes: first name, last name, affiliation, birth date, etc. The re-

lationship between these two entities is: an author a Publishes a paper p. Figure 2.6 shows

the corresponding graph of a social network for a sample conference. Two types of entities

are represented by different icons. As seen in the image, each paper has been published

by one or more authors. In some cases an author could participate in more than just one

paper in the conference. Note that the structure of this network is a well-known structure

called “bipartite” graph. This means there are two parts in the graph (each corresponds to
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one class). More importantly the relationships are only between these two parts. It means

the entities from one part are only related to the entities from the other part (if there is any

connection). In other words, all the relationships are inter-part relationships and there is no

intra-part relationship.

Figure 2.7: An example of a unique relation graph: The acting network for movies

2.2.3 Unique Relation Networks

When the edges of the network are of the same kind, the social network is called a unique

relation network. This means there is only one type of relationship in the network. For

example consider a network of actors and movies. The only relationship between entities

of this network is acting. Figure 2.7 shows the corresponding graph for this social network.

Figure 2.8: An example of a multiple relation graph: The network of people in a town
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2.2.4 Multiple Relation Networks

When the edges of the network are from different classes, the social network is called a

multiple relation network. In these social networks, there are different relationships among

the entities. For example in a network of people, there are relationships such as: Friend,

Family, Colleagues. Clearly, they could be interpreted separately for different purposes in

SNA. Figure 2.8 depicts an example of such a social network. As shown in the legend, the

solid line is used to show if two people are friends, dashed line is used for colleagues, and

the dot-dashed line is used for family.

Table 2.1 provides the summary of our discussion about types of social networks.

Homogeneous Heterogeneous

Unique Relation All nodes from one class, nodes from different classes,

edges have one semantic edges have on semantic

Multiple Relation All nodes from one class, nodes from different classes,

edges have different semantics edges have different semantics

Table 2.1: Types of Social Networks

2.3 Ranking in Social Networks

Ranking means to obtain a meaningful order for a set of entities. Ranking is always based

on some criteria. The criterion is usually one or more attribute(s) of the entities. Almost all

the application domains require/use ranking such as:

• Biology: one might rank a collection of blood samples based on their hemogolobin.

• Astronomy: one might rank the known galaxies based on the light-year distance

from the earth

• Geology: one might rank a collection of fossils based on their archaeological period

• Economics: one might rank IT companies based on their stock value

• Education: one might rank the graduate schools in Canada based on their perfor-

mance in a specific program

• History: one might rank wars occurred in Europe during the 20th centry based on

the estimated damage to the economics
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The simplest ranking is to sort similar objects based on one attribute. For example,

sorting the students of a class based on their GPA or based on their family names. In

either case, the problem of ranking is downgraded to finding a comparison function which

works between any pair of entities based on the target attribute. A comparison function F

takes entities e1 and e2 and attribute a as inputs and determines the superior entity based

on attribute a. Using a comparison function, we are able to sort the entities with a sort

algorithm such as: Merge Sort, Quick Sort, Bubble Sort, etc. As long as the ranking is based

on a quantitative attribute (i.e an attribute which is measured as a number), the procedure

is straightforward. The comparison function works with arithmetic rules. However, if the

attribute is categorical, the ranking is not trivial. For example, ranking the students of a

class based on their favourite sport. In this case it is not clear how the ranking function

should choose between a pair of attributes. Soccer or basketball? Swimming or volleyball?

Sometimes the attribute for ranking does not belong to the entities but the relationship

among them. That means the entities and the relationships among them constitute a social

network and the ranking is based on the properties of that network. For example, find-

ing the most central entity in a social network. Furthermore, SNA approaches have been

investigated to rank entities in different social networks. We will explain this concept in

Chapter 3.

To make it more complicated, the criteria for ranking may not be an attribute (related

to the entity or to the network) but an object. Assume that you have watched a movie and

you liked it. You are prompted to know what movies are close to that one to watch them

as well. This means you are asking for a ranking of entities (i.e movies) based on one

instance of them (i.e the movie you liked). In other words, you are interested to find the

most similar/related entities to an instance in a social network. Ranking a set of entities

with respect to one instance is required in many application domains. For example, in

E-Advertisement, the goal is to show the most related advertisement to each user. This

essentially means to rank the advertisements based on each user and to show the high ranked

ones to the user. A researcher has a new idea in a particular topic. Wanting to publish the

idea in the right place, an ordered list of conferences with respect to that particular topic

is required. A person is eager to know the similar games to a favourite game, to prevent

buying many irrelevant games. Taking a query, a search engine wants to rank all the web

pages with respect to it. Consequently the user explores the most relevant pages rather than

reviewing all the pages which only match with the keywords in the query.

13



Ranking entities based on each other is not trivial. There are two major issues 1) The

comparison function does not deal with one attribute but the whole entity. Thus it is more

complicated because the comparison function must deal with all the attributes of the entity

(both quantitative and categorical) at the same time 2) Even having a comparison function

which prefers one entity out of two, does not solve the problem. Because it only provides

a general ordering for all the entities while an ordering with respect to one instance is re-

quired. A possible solution for this problem is a relevance function. The relevance function

R takes a target entity e1 and another entity e2 as the input and assigns a numerical score

to e2 with respect to e1. Applying a relevance function where the target entity is fixed and

all other entities are used as the second parameter, a quantitative measure is available to

sort entities. Note that this order is specific to the target entity and may change by using

another instance as the target entity. It is clear that constructing such a relevance function

is not easy. Especially when e1 and e2 are from different types. In fact, one cannot assign a

relevance score between two entities only by observing the entities themselves. Instead one

should examine the interaction between them. While this interaction depends on the direct

relationship between those two entities, it is also affected by the relationship between other

entities in the network. Furthermore in a complex network, with different types of entities

and relationships, ranking entities based on particular instances of the network is not trivial.

In this chapter, we introduced social networks. Presenting different types of social net-

works by examples, we discussed why social networks are important. We also introduced

social network analysis and its applications. Moreover, we discussed the concept of ranking

in social networks. In addition, the importance and challenges of ranking in social networks

are explored. In the next chapter, we review related works to this study.
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Chapter 3

Related Work

Social networks are information networks that are represented by graphs and depict the

interactions between individuals (entities, objects). In those graphs, each entity is repre-

sented by a node and there is an edge between two nodes if an interaction has occurred, or

a relationship exists between the two entities. For example, the exchange of ideas, informa-

tion, and experiences between people in the web can be modeled as a social network. The

network of researchers who publish in conferences or journals is another example.

Finding the elements of social networks, objects and relationships, is not always trivial.

In fact in some domains, detecting objects in various data types and finding their associa-

tions is a challenge. As an instance, Dong et al. [15] propose methods to find associations

in unstructured data. For example, anyone who has a desktop wants to browse his personal

information in a meaningful manner. It has been observed that human beings do not think

of data in the way that is stored in the computers [15]. Instead of having a directory hierar-

chy of files (normal file systems), we tend to look for objects and their associations to each

other. The same authors introduce SEMEX (SEMantic EXplorer): a personal information

management tool [9]. SEMEX extracts objects and their associations from different data

sources such as: Word, Excel, PowerPoint, Bibtex, Latex, PDF, Contact, Email. The key

challenge in SEMEX is the fact that it has to support a variety of mechanisms to extract the

objects and associations. Although in many cases the objects and associations are explicitly

defined in data sources (e.g a contact list contains persons, an email message contains fields

indicating the sender and the receiver), there are other sources that need special treatment.

Considerable number of objects and associations are extracted by analyzing specific file for-

mats. For example, parsing a Latex file or a PowerPoint presentation provides the authors.

Combining the information from Bibtex and Latex subsidizes the citations. Furthermore

SEMEX makes the objects (e.g Person, Publication, and Message) and associations (e.g
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AuthoredBy, Cites and AttachedTo). Having an object-association structure built, SEMEX

allows its users to browse their data by following objects or associations. It also provides

keyword search on the domain model. Searching for a keyword, it returns not only the

direct match objects (the ones which have the keyword in their attributes) but also objects

that are strongly related to multiple such objects.

In many other application domains, social networks are well structured. Having the

entities and their relationships explicitly defined, one could investigate different properties

of entities and analyze the interactions among them to answer critical questions such as

(but not limited to): Which entity is the most influential one in the network? How does

an entity interact with others in the network? What are the groups and communities in the

network? How important is an entity in a group? Which entities have the least interactions

with the rest of the network and why? What are the most related entities with respect to a

specific node in the network? These questions are addressed in two realms: Social Network

Analysis and Ranking Approaches. In this chapter, in addition to covering significant studies

in these fields, we discuss several online systems which provide practical solutions for these

problems.

3.1 Social Network Analysis

The analysis of social networks is of interest to many fields such as sociology [51], epi-

demiology [32], recommendation systems [39], email communication [50], criminology

[10], advertisement, etc. Social network analysis includes challenges such as: building the

social network graph for a domain or dataset and browsing the data by its inner entities or

relationships, detecting the most important/influential entities in the network, investigating

groups and communities: formation and evolution, finding common patterns to understand

the behaviour of social networks to predict the future, approximating large social networks.

In social network analysis, several metrics have been defined to detect influential enti-

ties. The most popular metrics are the centrality measures [19]. These measures include

degree centrality and betweenness centrality and closeness centrality. Let G = (V,E) be

an undirected graph with the set of vertices V and the set of edges E.

Degree Centrality: the number of edges attached to a node is the degree centrality

of that node. The more connections a node has, the more popular the node might be.

Equation 3.1 shows the normalized degree centrality of node v1 ∈ V :
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CD(v1) =
deg(v1)

n− 1
(3.1)

where n is the number of nodes in the graph and deg(v) is the number of edges attached

to node v.

Betweenness Centrality: the number of shortest paths passing through a node is the be-

tweenness centrality for that node. The greater the numbers of shortest paths going through

a node, the more control that node has over the flow of information in the network. Equa-

tion 3.2 shows the normalized betweenness centrality of node v2 ∈ V .

CB(v2) =
fg(v2)

fg
(3.2)

where fg is the number of all shortest paths in G while fg(v2) represents the number of

shortest paths that go through v2.

Closeness Centrality: the average shortest path between a node to all other reachable

nodes is the closeness centrality for that node. When the total geodesic distance (i.e shortest

path) of a selected node and all other reachable nodes is small, that node has a high closeness

centrality value and it is more central in the network. Equation 3.3 shows a normalized

version of closeness centrality for node v3 ∈ V :

CC(v3) =
n− 1

∑n
i=1 d(v3, vi)

(3.3)

where n is the number of nodes in the graph (so n−1 is the minimum total distance from

v3 to all other nodes) and d(v3, vi) represents the geodesic distance between node v3 and vi.

Eigenvector Centrality: This centrality measure was introduced later by Philip Bonacich

[3]. Let A be the adjacency matrix for G where aij = 1 if there is an edge between nodes

i and j, and aij = 0 if these nodes are not connected. Because G is undirected, A is sym-

metric; thus all its eigenvalues are real and its eigenvectors are orthogonal [22]. Bonacich

suggests that the eigenvector corresponding to the largest eigenvalue of an adjacency matrix

could make a good network centrality measure. “The centrality of a vertex is proportional

to the sum of the centralities of the vertices to which it is connected” [4]. This recursive

definition shows that instead of only considering the direct neighbours, the eigenvector cen-

trality takes the whole network into account. Eigenvector centrality can be represented as a
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sum.

Ax = λx, λxi =
n
∑

j=1

aijxj , i = 1, 2, ..., n

where λ is the largest eigenvalue of A and n is the number of nodes in the graph.

In addition to finding central individuals in the network, researchers have tried to find

similar/relevant nodes in social networks. The concept of similarity between entities, have

been studied in the literature for years. Traditional methods use the set of attributes of each

entity to find similarities. These attributes make a vector for the entity. The more similar

the vectors of two entities, the more similar they are to each other. For example, Keywords

in a Document could make the attribute vector of that document. The closer the vectors are

in the attribute space, the more similar they are to each other. It means document A is more

similar to document B than C, if A shares more keywords with B than C.

There have been many efforts to improve the traditional approaches on finding similar-

ities between entities. Ganesan et al. [20] exploit the concept of hierarchy in the domain of

attributes. Using the hierarchy makes the comparison between two attributes more accurate.

In traditional methods, two elements in the attribute vector are either equal or not equal but

in the domain hierarchy there is a range of closeness between two elements: the distance

of those two elements in the hierarchy graph. This approach certainly helps improving the

similarity detection between entities which do not share the exact attribute values but do

have attributes from the same type in the hierarchy. The main drawback is that finding the

domain hierarchy could be difficult or even infeasible in some cases. Also the entities are

not always from the same class. Thus the direct comparison of attributes is meaningless.

Another approach to find relevant nodes in a network is to take the domain of attributes

into account. Instead of matching attribute values of entities, in most of the cases we could

consider the attributes as instances of other type of entities. Recall the document matching

example where keywords were attributes for documents, keywords themselves could be

instances of an entity. Thus we have two entities: Document, Keyword; and there is a

multiple relationship between these two as each document could contain multiple keywords,

and any keyword could be in multiple documents(i.e a social network). SNA methods have

been developed to investigate these relationships in social networks to find similar/relevant

entities.

Proximity or similarity is tied to the definition of an edge in the network. For instance,

while edges represent phone or email communication, proximity measures the potential

information exchange between two non-linked nodes through other nodes. Proximity can
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Figure 3.1: Sample graphs with all edge weights equal 1 [28]

also measure the likelihood of two nodes to belong to the same group. In addition, proximity

estimates the link existence in the future. For example, if two people speak on the phone to

many common friends, the probability is high that they will talk to each other in the future.

There are several approaches to measure the closeness of two nodes in social networks.

An intuitive candidate is the length of the shortest path between two nodes. In weighted

graphs this would be the sum of weights of edges on the shortest path. Figure 3.1 shows why

this is not a good candidate as the length of the shortest path between si and ti (i = 1, 2, 3)

is 2, yet we have different conclusions about their proximity. s2 is closer to t2 than s1

to t1 because they have more friends in common, while s3 and t3 are not probably close

because they are only connected through a large degree node (e.g two web pages that link

to www.RedCross.org for Haiti earthquake donations).

Another candidate is the maximal network flow: maximal number of units that can be

simultaneously delivered from one node to another. Although this definition favours (s2, t2)

over (s1, t1) in Figure 3.1 because we can deliver twice as many units between s2 and t2,

there is no notion of length in this definition. We get the same proximity between s4 − t4

and s1 − t1. In the other hand, the maximal flow between s5 − t5 is the same as s4 − t4

even though there are more paths between s5 and t5.

The next candidate comes from modeling the graph as an electric circuit where edges are

resistors whose conductance is their weights. Effective Conductance (EC) favours shorter

19



Figure 3.2: A part of a weighted graph: How a random walker chose the next edge in each

state

paths and the more number of alternative paths. The formal definition of the effective

conductance is EC(s, t) = deg(s).Pesc(s → t) = deg(t).Pesc(t → s) where Pesc is the

escape probability. In fact EC(s, t) is the expected number of “successful escapes” from s

to t where the number of attempts equals the degree of s. Furthermore, EC has an intuitive

interpretation based on random walks.

A “random walk” on a weighted graph G = (V,E) is a sequence of nodes in V which

an agent visits by taking random edges. The agent starts from a specific node, then selects

one of the out-going edges randomly with respect to their weights. This process continues

iteratively in each node. For example, if the agent is on node v in Figure 3.2, either of its

neighbours, nodes a, b, c, d, may be chosen with the probability of 4
15 ,

1
15 ,

7
15 ,

3
15 respec-

tively. The agent keeps traversing until a certain condition is reached (e.g. after a certain

number of times, having no change in the state probability of the nodes, etc). The relevance

between two nodes in the graph can be defined by a random walk from one to another. The

relevance of node t with respect to node s is the steady-state probability of the random agent

visiting node t when it starts from node s.

The effectiveness of random walks in finding “importance” scores for nodes or ranking

in general is proven especially after Google [8] successfully applied it on the web to rank

search query results.

Another property of effective conductance is that it is monotonic. That means increasing

the conductance of any resistor (i.e. increasing an edge weight), or adding a new resistor
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( i.e. adding an edge) to the network, can only increase the conductance between any two

nodes. While this property is desirable in some cases (e.g. in Figure 3.1 EC(s5, t5) >

EC(s4, t4) and EC(s2, t2) > EC(s1, t1) which is intuitive), sometimes it contradicts the

notion of proximity. An example of this situation is presented in Figure 3.1. As mentioned

before, s3 and t3 are not close because they are only related through a high degree node.

Faloutsos et al. [16] introduce Sink-Augmented Effective Conductance to solve the prob-

lem of monotonicity by connecting each node to a universal sink. The authors also explain

how to extract a subgraph from the main original one, so that all the important information

about node N1 and N2 is absorbed in that subgraph. This resolves the scalability problem.

Although their approach solves some issues, it completely destroys monotonicity. As the

graph becomes larger if we add more links between node s and t, the proximity decreases

because the delivered current from s to t is negligible compare to the current that goes to the

universal sink. In addition, this method needs a parameter k which is the size of subgraph to

extract from the original one. Finding this parameter is not trivial and affects the proximity

between nodes.

Inspired by the above study, Koren et al. [28] propose Cycle Free Effective Conductance

(CFEC) to measure the proximity of two nodes in a social network. CFEC solves the

problem of monotonicity. The key idea is to avoid visited nodes in computing the effective

conductance.

In the aforementioned approaches ([16],[28]) all the relationships are from the same

type. Also nodes are from the same class. This means these approaches do not apply to

heterogeneous social networks or multiple relation networks. That is why the corresponding

graph could be imagined as an electric circuit.

3.2 Ranking Approaches

Page et al. [38] introduce PageRank, a method primarily to rank Web pages. PageRank

exploits the link structure of hypertext in Web pages which makes it more powerful than

any other method that indexes the text. PageRank is the essence of Google [8], a powerful

search engine which has gained popularity since its appearance.

PageRank assigns numeric values to rank Web pages or as the writers of the paper quote:

“Bringing Order to the Web”. In fact these numeric values provide a notion of importance

for each web page. The key idea is that an important page is being linked from important

pages or many other pages. In other words, the citations of a page show its significance.
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Figure 3.3: Simplified PageRank Calculation [38]

Note that the idea of using the citations as a factor of importance was not new at the time.

For example, [21] demonstrates the effectiveness of citation analysis as a useful measure of

objectivity into the evaluation process.

The simplified formula for computing PageRank of page u is:

R(u) = c
∑

v∈Bu

R(v)

Nv
(3.4)

Where Bu is the set of pages that point to u, Nv is the number of links from v to other

pages, and c is a factor to normalize the rank scores. Figure 3.3 presents the PageRank

calculation for a pair of pages. The numbers on the pages indicate the rank for them. The

page with rank 100 propagates its rank to the pages that it points (i.e 100 splits into two for

each hyperlink), similarly the page with rank 9 splits its value to the outgoing links, each

takes 3.

It has been shown that this approach converges to a steady state except when there is a

rank sink. A “rank sink” is a loop which does not point to any other page outside of it, but

it has at least one incoming link. An example of rank sink is shown in Figure 3.4. Since the

rank values flow in the directed graph, when there is a rank sink, the loop accumulates rank

but never distributes any rank.

To solve this problem, the authors suggest the concept of rank source. Let E be a
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Figure 3.4: Rank Sink loop which causes the problem[38]

vector of pages that corresponds to a source of rank. Then the definition of PageRank in

Equation 3.4 changes to the Equation 3.5.

R′(u) = c
∑

v∈Bu

R′(v)

Nv
+ cE(u) (3.5)

such that c is maximized and || R′ ||= 1.

The definition of PageRank is equivalent to the random walks on graphs. The simplified

version corresponds to the state probability distribution of a random surfer on the graph of

Web. The rank sink emulates the cases when the random surfer is bored and jumps into a

random page. This solves the problem of surfer getting stuck in a loop, because the surfer

eventually gets bored and continues from another random page.

PageRank orders entities of the network in a meaningful manner, however, in many

applications this is not enough. One might ask for an ordered list of entities with respect

to a particular instance or query. As an example, in the context of searching in the World

Wide Web, the user enters a query and wants to see the pages relevant to it. Normally this

need is satisfied by looking into all web pages and collecting the ones with the keywords

in the given query. Nevertheless, if the query is general enough, there are thousands of

thousands we pages containing those keywords (A.K.A. broad-topic queries problem). For

instance finding information about the Java programming language is considered a broad-

topic query. Dealing with broad-topic queries, the main obstacle is that the number of

relevant pages, the ones which contain the keywords, is too large to be reviewed by a human

user. Kleinberg [27] proposes a solution which tries to find the most authoritative and

definitive pages among all the relevant pages. In the other hand, the authority pages about

query q usually do not contain the keywords in q. For example, if someone wants to know
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the URL of a search engine and enters the query “search engines”, he would not get any

good results because search engines do not usually include this keyword in their home page.

In another example, www.harvard.edu should be returned as the most authoritative page for

the query “Harvard” but there is no way for a pure text-based search engine to favour this

page over thousands of other pages which have the keyword “Harvard” in them. Thus the

goal is to focus on a collection of pages which is:

• 1) Small

• 2) Rich in relevant pages

• 3) Contains many of the strongest authorities in that topic

To achieve conditions 1 and 2, the authors get the top t results of the query topic q on a

text-based search engine (e.g. AltaVista). The graph of these t pages, Rσ, does not usually

include the authority pages of q. Moreover, it is most likely for an authority page to be

pointed by a page in Rσ. So all the pages that are being pointed by at least one page in Rσ

are added to achieve Sσ. While Sσ satisfies the third condition, it is not too large and it is

rich in relevant pages.

To actually find the authorities of q in Sσ, the authors sort pages in Sσ based on their in-

degree (the number of links that point to them). The issue here is that there are universally

popular authorities which no matter what q is, they are in Sσ. Furthermore they introduce

the concept of “hub” pages. Authority pages relevant to q, not only have a large in-degree,

but share pages who point to them, since they are about the same topic. These pages that

point to many authorities in q are called hubs. “A good hub is a page that points to many

good authorities; a good authority is a page that is pointed to by many good hubs.”[27]

Defining authority-weight and hub-weight for each page p, Kleinberg proposes an iter-

ative algorithm called “HITS” to find the authorities and hubs in query topic q. If p points

to many pages with large authority-weights, then it should receive a large hub-weight; and

if p is pointed to by many pages with large hub-weights, then it should receive a large

authority-weight.

Jeh et al. [26] propose SimRank: a recursive algorithm on directed graphs to compute

the similarity between pairs of nodes based on the structural context of the network. Sim-

Rank uses the entity-to-entity relationship and builds a graph for the social network where

entities are the nodes of the graph and the relationships represented as the edges. The key

idea is that two entities are similar to each other if they are related to similar entities. Let
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s(a, b) ∈ [0, 1] be the SimRank similarity between objects a and b. If a = b then s(a, b) = 1

otherwise it is computed as in Equation 3.6.

s(a, b) =
C

| I(a) || I(b) |

|I(a)|
∑

i=1

|I(b)|
∑

j=1

s(Ii(a), Ij(b)) (3.6)

where C is a constant (confidence level or decay level), I(a)/I(b) represents the set of

in-neighbours for node a/b. Note that if either a or b has no in-neighbours, the similarity is

defined to be 0.

In fact, to compute the similarity between two nodes, SimRank adds the similarity be-

tween all the in-neighbour pairs of those two nodes. In other words, the similarity flows

between pairs of nodes. Furthermore, if we build another graph which its nodes are or-

dered pairs of the original graph (e.g if G is the original graph with nodes a, b, c, d, ... then

G2 contains nodes such as (a, a), (a, b), (b, d), (a, c), ...), the similarity flows between the

nodes. Similarity flows from node (x, y) to (z, w) in G2 when node x is related to z, and y

is related to w in G. Since it is assumed each entity is similar to itself (i.e s(x, x) = 1 ), the

sources of similarities in G2 are (a, a), (b, b), (c, c), ... . An intuitive model for SimRank is

based on random walks. In fact SimRank similarity score, s(a, b), shows how soon two ran-

dom walker will meet at the same node if they start at node a and b. Another interesting fact

about SimRank is that even though SimRank is defined on directed graphs, the similarity

score assigned to objects is symmetric based on Equation 3.6 (i.e s(a, b) = s(b, a)).

To compute SimRank, the authors suggest using an iterative approach. Let Rk(a, b)

represent the score between a and b on iteration k. Defining R0(a, b) as:

R0(a, b) =

{

0 (if a 6= b)
1 (if a = b)

The score on the kth iteration is computed as shown in Equation 3.7.

Rk+1(a, b) =
C

| I(a) || I(b) |

|I(a)|
∑

i=1

|I(b)|
∑

j=1

Rk(Ii(a), Ij(b)) (3.7)

as the number of iterations becomes larger, Rk(a, b) converges to s(a, b).

The authors also define SimRank for bipartite graphs to compute similar nodes in each

partition. The intuition is that the instances of A in a bipartite graph of A and B, are similar

to each other if they have similar neighbours in B, and vice versa.

The main drawbacks of the reviewed ranking approaches are scalability and efficiency

issues. Also the weights of the edges are not taken into account. Assuming the same level
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of importance among all entities is not consistent with the real world problems. Also, these

approaches are only applied to homogeneous social networks.

In this study, not only the weights of edges (i.e levels of relationship between two

entities) are taken into account for finding the ranking, there are more than one types of

entities and relationship in the network. In addition, we find the ranking of entities with

regard to any specific instance in the network. This is different from finding similar nodes.

In other words, node v1 may be top ranked with respect to node v2, however, node v2 may

not be ranked high with respect to node v1.

3.3 Online Systems

In the past few years, as the concept of ranking entities in different domains has become

a hot topic, a few teams developed tools to provide online services for this purpose. All

these systems tend to bring some kind of order for the entities of their corresponding social

network. The most common social network used in these systems is the academic social

network. This is more likely due to the large number of public data sources and datasets

containing the bibliographic and academic information. For example, CiteSeer1 is a digital

library which lets the users search in scientific literature primarily in computer and infor-

mation sciences. ACM DL2 is another digital library containing all the ACM publication

and bibliographic citations from major publishers in computing sciences. Another major

source of information for computer sciences social network is DBLP3 which stands for

Digital Bibliography and Library Project. This website lists the computer science journal

and conference articles.

In this section we present the most popular frameworks which provide services on aca-

demic social networks.

3.3.1 ArnetMiner: Academic Researcher Social Network Search

Tang et al. [48] have built a comprehensive researcher social network called “ArnetMiner”

which provides search and mining services. ArnetMiner crawls the web and finds the home-

page of researchers by using a binary SVM classifier. Applying Conditional Random Fields

(CRF) tagging model, it extracts the profile information for researchers from these pages.

At the same time it collects the publication information from digital libraries (e.g CiteSeer,

1http://citeseerx.ist.psu.edu
2http://portal.acm.org/
3http://www.informatik.uni-trier.de/ ley/db
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ACM digital Library, DBLP) using explicitly defined rules. Finally it uses the “names” to

integrate the publication information into the profile information. Using names as the identi-

fiers creates many name collisions. Therefore they have proposed a probabilistic framework

to deal with the name ambiguity. The integrated data is stored in a MySQL database.

ArnetMiner is one of the first online services which may be used for researcher interest

finding and academic suggestions. Tang et al. propose three topic models to simultaneously

model the topical aspects of different entities (e.g authors, publication venues, publications).

In fact the authors try to find a topic distribution for each entity type. One advantage of the

topic models is that ArnetMiner may be used to estimate the relevance between two different

types of entities (e.g author, conference) based on their topic distribution. Figure 3.5 shows

a screenshot from ArnetMiner website. The basic information for the given researcher (i.e

name, position, affiliation, address, phone, email, etc.) is extracted from his/her homepage.

The box on the right side of the page lists other entities that are assumed to be related to

the given researcher. More specifically, this box contains three types of entities: 1) other

researchers 2) expertise or keywords 3) conferences or journals. The related researchers are

the top co-authors with the given researcher based on the number of mutual publications.

The expertise is the frequent keywords in the publications by the given researcher. The

related conferences are the ones that the given researcher has published papers on them.

Finally, at the bottom of the page, the research interests are listed for the given researcher.

These research interests are detected based on the proposed topic model in [48].

3.3.2 CIMple project: DBLife

Doan et al. [14] introduce the Community Information Management (CIM) problem. CIM

refers to the problem of monitoring, querying, and inferring the entities and their relation-

ships in the online communities. For example recognizing entity mentions, deciding if two

mentions refer to the same real-world entity, recognizing a relationship between two enti-

ties, etc. To deal with CIM problems, the authors of [14] propose CIM Platform (CIMple).

The goal is to build a general framework to adopt broad range of domains with minimum ad-

justments (i.e any online community could be quickly deployed to manage its data). DBLife

[13] is a prototype for CIMple project which only covers the database research community.

The following is the workflow of CIMple with community of database researchers as an

example:

• Feeding CIMple with relevant data sources (e.g. homepages of database researchers,

conference pages), domain knowledge about the entities and relationships, and hints
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Figure 3.5: The screenshot of ArnetMiner for query “Christos Faloutsos” on June 10, 2011

to extract the entities in that domain, by a domain expert;

• Crawling the sources regularly and finding the relevant mentions (e.g researcher

names, conference names, paper titles) ;

• Matching the mentions and grouping them into entities (e.g Papers, Conferences,

People);

• Discovering the relationships between entities (e.g If there is a mention of an entity

X on the seminar page of a department Y , then X probably is giving a talk at Y ).

A challenging issue here is the need to crawl the data sources on a regular basis. This is

necessary to keep the constructed Entity Relation (ER) graph consistent with the evolving

data and to provide temporal keyword search (e.g querying over the data only in the past

two weeks to get updates for a specific entity in the social network). The challenge is how to

update the ER graph efficiently. There are two options: 1) Making a new one from scratch

2) Updating the existing one incrementally. Of course updating incrementally is ideal but

it is not trivial. There are issues such as: How to match newly found mentions with the
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existing entities? How to merge the new data into the old one? In the other hand making

a new ER graph with every crawl is time consuming and not scalable for highly dynamic

domains (e.g. finance). Also it prevents providing services like temporal keyword search.

To our knowledge, DBLife rebuilds the ER graph from scratch. The module that builds the

ER graph, uses a dictionary of names supplied by the domain expert to find entity mentions.

Building the ER model from the raw data gathered from Internet, CIMple aims to pro-

vide services such as:

• (1) Keyword Search: given a keyword query, it returns the match entities, relation-

ships, and fragments of the ER graph.

• (2) Entity profiling in Super Homepages: it creates a super homepage for each entity

and put all the information about the entity, gathered by CIMple, in this page.

• (3) ER graph browsing: viewing an entity profile, the user is able to navigate to

related entity profiles through the relationships.

• (4) Temporal keyword search and structured querying: temporal query capabilities

like querying the network over a period of time.

Figure 3.6 shows a screenshot from DBLife website4. This is the superhomepage for

Christos Faloutsos. At the top of the page, there are top Google Image Search results for the

name of the given researcher. Below that, there is the list of publications from DBLP for the

given researcher. At the top right of the page, there is a box containing the basic information

for the given researcher such as: position, homepage, affiliation, citation number. Similar to

ArnetMiner, DBLife tries to suggest related entities for each other. There are a few tables

at the right side of the page showing the related people, related topics, related services,

and related organizations. Note that these suggestions are merely based on the constructed

ER graph for the social network. In other words, there is a direct link between the given

researcher and all the suggested entities. Presumably, entities of each class are sorted based

on the weight of the link to the given researcher.

3.3.3 Microsoft Academic Search

Microsoft Academic Search is a free academic search engine developed by Microsoft Re-

search5. This website provides a user friendly interface to search and browse in scientific

4http://dblife.cs.wisc.edu
5http://academic.research.microsoft.com
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Figure 3.6: The screenshot of DBLife for query “Christos Faloutsos” on June 10, 2011

publications, journals, conferences, authors. Even though Microsoft Academic Search is

still on a beta version, the results are encouraging. To best of our knowledge, Microsoft

Research has not disclosed its approach for this website yet. However, based on the in-

formation provided in the website, entities in the search results are sorted both by their

relevance to the query and their global importance. Microsoft Research group claims that

they are using technologies introduced in [37], [35], [36], [60], [59], [34]. It is said that the

relevance score of an entity is computed by its attributes; and the importance score of an

entity is calculated by its relationships with other objects.

Figure 3.7 shows a screenshot from Microsoft Academic Search website. This page is

the profile of Christos Faloutsos in the system. Similar to ArnetMiner and DBLife, the left

side bar contains the related entities to the given researcher. Top co-authors, conferences,

journals, and keywords based on the publications of the given researchers are listed. Some

basic information for the given researcher such as: affiliation, number of co-authors, H-

Index, and G-Index are provided at the top centre of the page. In addition to that, the
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Figure 3.7: The screenshot of Microsoft Academic Search for query “Christos Faloutsos”

on June 10, 2011

number of publications and the number of citations in other publications, is provided in a

graph. Also the publications by the given researcher are listed chronologically.

3.3.4 DBLP Cloud Mining

Cloud mining lets the users to refine their queries using tag clouds. A particular instance of

Cloud Mining is constructed on the bibligraphical data from DBLP. This website6 provides

the user a handy way of querying the data available in DBLP. It also ranks the entities based

on the citation numbers provided by CiteSeer. Figure 3.8 represents a screenshot from this

website for Christos Faloutsos. The list of his publications from DBLP ordered based on

the number of citations from CiteSeer is available at the centre of the page. There are three

boxes on the right side showing the related researchers, keywords, and venues. These lists

represented in a user friendly way which shows entity names in different sizes. The bigger

the item is, the more frequent that item is with respect to the query (i.e. Christos Faloutsos).

Note that this website does not provide any ranking of entities based on each other rather

it lists the entities with a relationship with the queried entity. In other words, if there is

6http://dblp.cloudmining.net/
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an edge between the two nodes in the corresponding graph, the entity is shown in the list.

However, based on the weight of the edge, the item may be larger or smaller.

Figure 3.8: The screenshot Cloud Mining for query “Christos Faloutsos” on July 28, 2011

3.3.5 DBConnect: the prototype version

Zaiane et al. [57] propose a random walk solution for the problem of ranking entities in

relational databases. Users of large databases are interested in the top-k tuples that are most

related to their queries. Thus the authors assign a relevance score to categorical data in

relational databases. For this purpose, they construct the database graph where the entity

tables serve as partitions of nodes and the relation tables serve as edges between partitions.

Furthermore, they develop a tool called DB-Connect and apply a random walk approach on

the extended k-partite graph to obtain the relevance values for the bibliographic information

from DBLP7.

The authors apply a variation of random walk called Random Walk with Restart (RWR)

on the constructed graph from the relational database to find relevant nodes for a specific

instance. Random Walk with Restart [46] is similar to the original random walk. The only

difference is when choosing the next edge on a node, there is always a probability Prestart

7http://www.informatik.uni-trier.de/ ley/db
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Figure 3.9: Database Graph based on the Entity-Relationship Model

Conference Author Participation

c1 {a1, a2}, {a1}, {a2}

c2 {a1, a2}

c3 {a1}, {a2}

Table 3.1: Conference participation by different authors

which the agent goes back to the initial state. This makes the closer neighbours of the initial

node, to get higher probability of being visited by the random agent. Sun et al. [46] used

RWR on the bipartite graphs for the first time to compute a relevance score for nodes to find

relevant and irrelevant entities for a given individual.

Inspired by the above study, Zaiane et al. [57] apply the idea of using RWR to rank

entities for relational databases. The authors believe there are some information in relational

databases which are usually ignored in the normal graph representation. Therefore the

authors introduce the concept of returning relations. A “returning relation” is a relationship

between nodes n1 and n2 in the same partition via node m in a different partition. For

example, the co-author relation between authors a1 and a2 is a returning relation because

it goes through conference c1. Based on Table 3.1 which shows the participation for a few

conferences, we observe that a1 has co-authored with a2 on a publication in c1 and yet has

another publication in c1. Constructing the weighted bi-partite graph for this domain, we

observe it does not capture the co-author relations. Figure 3.9 illustrates this issue in the

weighted graph of this problem: the only available information about a1 is that he has 2

publications in c1; no information about co-author relation is revealed.

To model returning relations in relational databases, [57] proposes the construction of

a virtual layer in the database graph, acting as surrogate nodes to replace the original nodes.

This results in a larger directed bipartite graph, since each node in one part of the graph
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Figure 3.10: [57] Tripartite graph model for Author-Conference-Topic

splits into as many nodes in the other part (e.g for the graph shown in Figure 3.9, each

conference node splits into two nodes, representing the number of authors connected to it).

Although the experimental results are promising, this approach does not scale even for

average size datasets. On the other hand, it is not clear how the returning relations are imple-

mented when there are more than two entities in the database (i.e when the corresponding

graph is not bipartite, instead a k-partite graph where k >= 3). Also when the number

of parts in the graph exceeds two, there is an issue of direction for the proposed random

walk. Figure 3.10 illustrates this problem. For example to rank authors for Tom, there are

two possible direction for the random walker. Starting from Tom, going to the Topic part

then going to the Conference part and finally coming back to Author part. In contrast, one

could start from Tom, visit Conference part then go to Topic part and finally go back to

Author part. The results vary based on the selected direction. It is not clear which direction

provides the best results.

In this thesis we propose an algorithm to find the most related entities for a specific

individual in heterogeneous multiple relation k-partite social networks. Our approach scales

for large size datasets. Since for each individual we compute the relevance scores of all

nodes separately, to get the complete ranking for the whole dataset we can parallelize the

computation easily.
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Chapter 4

Ranking In K-Partite Graphs

The most challenging category of social networks is heterogeneous multiple relation social

networks where not only the relationships are not from the same class, but the entities in the

network have different types. A simple example of such a social network consists of three

different classes of entities which are related two by two. The corresponding graph for such

a social network is a tripartite graph. Figure 4.1 shows the general configuration of such a

graph.

Random Walk with Restart (RWR) provides promising results in assigning relevance

scores in bipartite graphs by exploiting the relationships between two partitions (e.g in

[46]). Even though there are no connections among entities of the same type (nodes in

one partition), they are linked through the entities in the other partition. The similar/related

instances in Partition A are most likely connected to the same instances in Partition B.

Zaiane et al. [57] explore this idea in bibliographic data. Not only the authors use this idea

to rank the bipartite graph of “authors” and “conferences”, they investigate the application

of RWR on a tripartite graph. Thus instead of moving back and forth between two partitions

(the original RWR), the random walker picks a random sequence of partitions and visits

them iteratively until the state probability converges. Apart from the quality of results, one

drawback of this approach is choosing the sequence of partitions by random. Applying

RWR on a k-partite graph when k ≥ 3, the random walker must choose a sequence to

visit each partition. For example in Figure 4.1, ranking nodes for a specific instance of A,

one might first visit partition B, then C, and finally A (clockwise) or visit C first, then B,

and finally A (counter clockwise). The same study shows that different directions for the

random walk generate different relevance scores for the nodes. There is no clear way to find

the direction which produces the most accurate results. Also, as the number of entity types

in the graph increases (i.e as k becomes larger), there are more and more possible directions
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Figure 4.1: Heterogeneous multiple relation social network with 3 different entities A, B,

C: The corresponding graph is a tripartite graph

which generate different results. While there are only two different directions for a tripartite

graph, there are six different directions in a quadripartite graph, thus six different ranking

results are generated. Detecting the best ranking result is not trivial. In fact, comparing the

results without ground truth is defective because it brings up this question again: “which

entity is more related to this specific instance?”

In this chapter we first explain the original RWR on a bipartite graph which is the

building block of our approach. Next we explain our solution for a tripartite graph. Then

we propose a general algorithm for k-partite graphs based on RWR on bipartite graphs. The

proposed algorithm exploits the fact that any k-partite graph consists of several bipartite

graphs. We also resolve the issue of the direction for the random walker. Finally we discuss

some computational improvements for our algorithm.

4.1 Random Walk with Restart in Bipartite Graphs

Let G = (A,B,E) be a bipartite graph where A and B are two separate partitions with sA

and sB nodes respectively. E is the set of edges while every edge connects two nodes from

different partitions (i.e one node is in partition A and the other one is in partition B).

The Problem: given a node n1 in a bipartite graph, we want to rank other nodes (both

in the same partition as n1 and in the other partition) based on their relevance to n1. This

essentially means to assign a relevance score to all other nodes.
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In general, to apply RWR on a graph one may use the adjacency matrix of the graph.

The adjacency matrix is a matrix representing which vertex in the graph is adjacent to which

vertices. Let P be the adjacency matrix of a graph with stotal nodes. Then the following

lemma holds:

Lemma 1 Let c be the probability of restarting the random walk from node α. Then the

steady-state vector uα satisfies Equation 4.1:

uα = (1− c)Puα + cvα (4.1)

where vα is a one-column vector consisting of stotal elements, vα is a vector of zeros

except that the element corresponds to α is set to 1, uα is the steady-state vector which

contains relevance scores of all nodes in the graph for α. See [45] for proof of the lemma.

Let M be the adjacency matrix from A to B where rows present instances in A and

columns present instances in B. In each step the random walker chooses an edge propor-

tional to the edge weight over the sum of the weights of all outgoing edges. Furthermore,

we normalize M such that every row sums up to 1. M(α, β) indicates the normalized

weight of the edge from node α to β in G (0 means there is no edge between two nodes).

M =

b1 b2 ... bsB
a1 w11 w12 ... w1sB

a2 w21 w22 ... w2sB

... ... ... ... ...
asA wsA1 wsA2 ... wsAsB

where
∑sB

c=1wrc = 1, r = (1, 2, ..., sA).

Since graph G is a bipartite graph, the adjacency matrix would be:

P(sB+sA)×(sA+sB) =

[

0 MT

M 0

]

Applying Equation 4.1 iteratively, uα converges to the steady-state probability of visit-

ing all the nodes starting from α. More specifically, uα is a column vector of size sA + sB

where uα(1 : sB) contains the relevance scores of nodes in partition B with respect to α

and uα(sB : sB + sA) contains the relevance scores of nodes in partition A to α.

4.2 Ranking Solution for Tripartite Graphs

As we discussed in Chapter 2, when one has to deal with a large number of objects, often

there is a need to rank them. For example in the context of searching in the web, the large

number of related pages matching a query, which is not feasible to be reviewed by a human
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user, makes the search engine to rank web pages based on their relevance and importance.

In fact, users are not willing to check more than a few results for their queries. In many other

cases ranking is required because the user needs to know the most related items with respect

to one specific instance. For example, in a product recommendation system, products need

to be ranked based on each user. Consequently, instead of getting lost in the huge list of all

the available products, the user deals with the top ranked products based on his/her shopping

patterns and behaviours. In other words, the problem of ranking is reduced to finding the

top n related items with respect to a query1. n could vary based on the application.

In the previous section, we explained how to compute a relevance score for all entities

with respect to one specific instance in a bipartite graph using RWR. Breaking a tripartite

graph into bipartite graphs, we use the top score entities found by RWR, to rank entities in

the tripartite graph. While the RWR on bipartite graphs computes a relevance score for ev-

ery ordered pair (a, b), where a and b are arbitrary entities, our solution for tripartite graphs

does not compute a relevance score for all ordered triple (a, b, c). Instead we only compute

the relevance scores for top related items with respect to each instance. In other words,

we calculate a relevance score for a small subset of all ordered triple. We generalize our

method for k-partite graphs in the next section. We also propose an efficiency improvement

on our algorithm when the number of partitions in the graph becomes larger.

The Problem: Having a tripartite graph of entity types A, B, and C, an ordered list

of top n relevant entities of each type with respect to one specific instance (e.g. pstart ) is

required. More specifically we are interested in three lists: TOPA
n (pstart) which contains

the top n most related instances of A with respect to pstart; Top
B
n (pstart) which contains the

top n most related instances of B with respect to pstart; and TopCn (pstart) which contains

the top n most related instances of C with respect to pstart. Note that n may be as small as

1 or as big as the total number of entities.

To explain our solution we require to define relevance pair, relevance set and weighted

union set. We define ω(O,S) as a “relevance pair” where O represents any object/individual

in the network and S ∈ ℜ represents its relevance score. Two relevance pairs such as

ω1(p, sp) and ω2(q, sq) are equal if and only if p = q. A set of relevance pairs is called a

“relevance set”.

We define
⊎

as the weighted union operator which is applied to two or more relevance

1Note that in some applications the least related items are favourable. In this thesis we only consider the

positive case but we believe finding the least related items for query q can be relaxed to find the most related

items for ¬q; Thus the discussed methods are adaptable for those applications as well.
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sets to provide the “Weighted Union Set”. Note that the weighted union set is a relevance

set. As an example, let us assume X and Y are two relevance sets as follows:

X = {(x1, sx1
), (x2, sx2

), ..., (xm, sxm)}

Y = {(y1, sy1), (y2, sy2), ..., (yt, syt)}

⊎X,Y (n) is the weighted union set of X , and Y . Calculating the weighted union set

requires four steps. First, we find equal “relevance pairs” between the relevance sets. Any

number of equal “relevance pairs” will be merged into one “relevance pair” where its “ob-

ject” is the same as all of them but its “relevance score” is the summation of the relevance

scores of all of them. For example, if xi equals yj , the corresponding “relevance pair” in

the weighted union set is (xi, sxi
+syj ). The second step is to copy the remaining relevance

pairs, the ones which do not match with any “relevance pair” in the other relevance sets,

into the weighted union set. Third, we order the final relevance pairs based on their scores

(i.e the highest score comes the first and the lowest score comes at the last). Finally, we

select the top n pairs to construct the “weighted union set” where n ≤ max(m, t).

Let us calculate
⊎X,Y,Z(4) where:

X = {(a, 0.030), (b, 0.020)}

Y = {(b, 0.045), (c, 0.025), (d, 0.010), (e, 0.050)}

Z = {(a, 0.010), (d, 0.065), (b, 0.030)}

The first step is to find the equal relevance pairs among these relevance sets and merge

them:

(a, 0.030) , (a, 0.010) −→ (a, 0.040)

(b, 0.020) , (b, 0.045) , (b, 0.030) −→ (b, 0.095)

(d, 0.010) , (d, 0.065) −→ (d, 0.075)

The second step is to copy the relevance pairs that do not match with any other pair:

(c, 0.025) , (e, 0.050)

Which makes the initial weighted union set as follows:

{(a, 0.040), (b, 0.095), (c, 0.025), (d, 0.075), (e, 0.050)}
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The third step is to order the pairs based on their scores:

{(b, 0.095), (d, 0.075), (e, 0.050), (a, 0.040), (c, 0.025)}

The fourth step is to choose the top n = 4 relevance pairs:

X,Y,Z
⊎

(4) = {(b, 0.095), (d, 0.075), (e, 0.050), (a, 0.040)}

Now we explain our algorithm to compute the top n related instances for each entity in

tripartite graphs.

Let RWR(E1,E2)(pstart) represent a random walk with restart on the bipartite graph of

two entities E1 and E2 when the starting point is pstart. Essentially, RWR(E1,E2)(pstart)

generates a relevance score for each node in the graph with respect to pstart. Note that this

score is the probability of visiting the node when the random walker starts from pstart and

follows edges randomly with respect to their weights. Furthermore we are able to construct

a list of “relevance pairs” for instances of each entity.

Without loss of generality we assume the starting point is in A ( i.e pstart ∈ A ). To

find the top n related instances of C with respect to pstart we follow the below procedure:

First we run RWR(A,B)(pstart) and construct the relevance set for instances in B. Next

we save the top n relevance pairs (top score pairs).

Φ(A→B)(pstart) = (bAB
1 , sAB

b1
), (bAB

2 , sAB
b2

), ..., (bAB
n , sAB

bn
)

where bAB
i is the i-th related instance of B and sAB

bi
is its score with respect to pstart.

Also sAB
b1

> sAB
b2

> ... > sAB
bn

In the next step, we run RWR(A,C)(pstart) to detect the top n instances of C with

respect to pstart, similar to the previous step.

Φ(A→C)(pstart) = (cAC
1 , sAC

c1
), (cAC

2 , sAC
c2

), ..., (cAC
n , sAC

cn
)

Next, we run random walks on the bipartite graph of B and C. Each instance of B in

Φ(A→B)(pstart) is a new starting point. Therefore we run the following random walks and

in each run we save the set of top n relevance pairs as above:

RWR(B,C)(b
AB
1 ) top n −→ D1

(B→C) = {(c
BC
11 , scBC

11 ), (cBC
12 , scBC

12 ), ..., (cBC
1n , scBC

1n )}

RWR(B,C)(b
AB
2 ) top n −→ D2

(B→C) = {(c
BC
21 , scBC

21 ), (cBC
22 , scBC

22 ), ..., (cBC
2n , scBC

2n )}
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...

RWR(B,C)(b
AB
n ) top n −→ Dn

(B→C) = {(c
BC
n1 , scBC

n1 ), (cBC
n2 , scBC

n2 ), ..., (cBC
nn , scBC

nn )}

Furthermore we multiply the score of the relevance pairs in Di
(B→C) with sAB

bi
where

i = 1, 2, ..., n. In other words, whenever an instance of C (i.e cBC
ij ) is reached through

an instance of B (i.e bAB
i ), we multiply their score to get a more exact relevance score

with respect to pstart. For example (cBC
11 , scBC

11 ) is updated to (cBC
11 , scBC

11 ∗ sAB
b1

) and

(cBC
2n , scBC

2n ) changes to (cBC
2n , scBC

2n ∗ sAB
b2

). This update is done because we want to take

the effect of B into account when the random walker travels from partition A to C through

B.

Using the weighted union operator
⊎

, we merge the updated relevance sets . This means

if an instance of C is repeated in more than one list, the final score for that instance in the

weighted union set is the sum over all the occurrences of that instance. For example if cBC
1n

equals cBC
22 the final score for this instance in the union set would be (scBC

1n ∗ s
AB
b1

+ scBC
22 ∗

sAB
b2

). In this way we favour the instances with multiple occurrences; the more an instance

is repeated in different lists, the more likely that instance is related to pstart.

ΦA→B→C(pstart) =
n
⊎

i=1

Di
(B→C) =

[

(cABC
1 , sABC

c1
), (cABC

2 , sABC
c2

), ..., (cABC
n , sABC

cn
)
]

Finally we combine ΦA→B→C(pstart) and Φ(A→B)(pstart) using the weighted union

operator to find the top n instances of C with respect to pstart.

TopCn (pstart) = ΦA→B→C(pstart)
⊎

Φ(A→C)(pstart) =
[

(c∗1, s
∗
c1
), (c∗2, s

∗
c2
), ..., (c∗n, s

∗
cn
)
]

Figure 4.2 illustrates this procedure.

To find the most related instances of B with respect to pstart, we use a similar approach.

Random walks are run on the bipartite graph of C and B but this time instances of C in

Φ(A→C)(pstart) are the starting points. Therefore we have:

RWR(C,B)(c
AC
1 ) top n −→ D1

(C→B) =
[

(bCB
11 , sbCB

11 ), (bCB
12 , sbCB

12 ), ..., (bCB
1n , sbCB

1n )
]

RWR(C,B)(c
AC
2 ) top n −→ D2

(C→B) =
[

(bCB
21 , sbCB

21 ), (bCB
22 , sbCB

22 ), ..., (bCB
2n , sbCB

2n )
]

...

RWR(C,B)(c
AC
n ) top n −→ Dn

(C→B) =
[

(bCB
n1 , sbCB

n1 ), (bCB
n2 , sbCB

n2 ), ..., (bCB
nn , sbCB

nn )
]
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Figure 4.2: Procedure to find the most related instances of C with respect to pstart. Note

that the procedure for finding the most related instance of B with respect to pstart ∈ A is

similar.
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Furthermore we update all the relevance pairs by multiplying their score with the score

of the corresponding starting point. It means all the relevance scores in Di
(C→B) are multi-

plied with sAC
ci

for i = 1, 2, ..., n.

The weighted union set is constructed using the weighted union operator on the updated

relevance sets.

ΦA→C→B(pstart) =
n
⊎

i=1

Di
(C→B) =

[

(bACB
1 , sACB

b1
), (bACB

2 , sACB
b2

), ..., (bACB
n , sACB

bn
)
]

Finally we merge ΦA→C→B(pstart) and Φ(A→B)(pstart) using the weighted union op-

erator
⊎

to find the top n instances of B with respect to pstart.

TopBn (pstart) = ΦA→C→B(pstart)
⊎

Φ(A→B)(pstart) =
[

(b∗1, s
∗
b1
), (b∗2, s

∗
b2
), ..., (b∗n, s

∗
bn
)
]

Last but not least, we compute the most related instances of A with respect to pstart.

Since pstart is in the same class (partition) as the instances of A, and we assume there is

no relationship among entities of the same partition, we use the top related instances of

other partitions with respect to pstart. In fact we hypothesize that TopAn (pstart) includes

instances of A which are close to the top instances of B and C with respect to pstart. To do

this we use TopBn (pstart) and TopCn (pstart). Each instance of B in TopBn (pstart) would be

the starting point of a random walk on the bipartite graph of B and A.

RWR(B,A)(b
∗
1) top n −→ D1

(B→A) =
[

(aBA
11 , saBA

11 ), (aBA
12 , saBA

12 ), ..., (aBA
1n , saBA

1n )
]

RWR(B,A)(b
∗
2) top n −→ D2

(B→A) =
[

(aBA
21 , saBA

21 ), (aBA
22 , saBA

22 ), ..., (aBA
2n , saBA

2n )
]

...

RWR(B,A)(b
∗
n) top n −→ Dn

(B→A) =
[

(aBA
n1 , saBA

n1 ), (aBA
n2 , saBA

n2 ), ..., (aBA
nn , saBA

nn )
]

All the relevance sets are updated as before. This means the relevance scores in Di
(B→A)

are multiplied by s∗bi where i = 1, 2, ..., n (the score of the corresponding starting point in

RWR). Furthermore these relevance sets are merged into ΦA→C→B→A(pstart) using the

weighted union operator
⊎

.

ΦA→C→B→A(pstart) =
n
⊎

i=1

Di
(B→A) =

[

(aACBA
1 , sACBA

a1
), (aACBA

2 , sACBA
a2

), ..., (aACBA
n , sACBA

an
)
]

Similarly each instance of C in TopCn (pstart) would be the starting point of a random

walk on the bipartite graph of C and A.
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RWR(C,A)(c
∗
1) top n −→ D1

(C→A) =
[

(aCA
11 , saCA

11 ), (aCA
12 , saCA

12 ), ..., (aCA
1n , saCA

1n )
]

RWR(C,A)(c
∗
2) top n −→ D2

(C→A) =
[

(aCA
21 , saCA

21 ), (aCA
22 , saCA

22 ), ..., (aCA
2n , saCA

2n )
]

...

RWR(C,A)(c
∗
n) top n −→ Dn

(C→A) =
[

(aCA
n1 , saCA

n1 ), (aCA
n2 , saCA

n2 ), ..., (aCA
nn , saCA

nn )
]

Again, all the relevance scores in Di
(C→A) are multiplied by s∗ci (the score of the cor-

responding starting point in RWR) where i = 1, 2, ..., n. Next, we merge the updated

relevance sets into ΦA→B→C→A(pstart).

ΦA→B→C→A(pstart) =
n
⊎

i=1

Di
(C→A) =

[

(aABCA
1 , sABCA

a1
), (aABCA

2 , sABCA
a2

), ..., (aABCA
n , sABCA

an
)
]

Finally we combine ΦA→C→B→A(pstart) and ΦA→B→C→A(pstart) using the weighted

union operator to find the top n instances of A with respect to pstart.

TopAn (pstart) = ΦA→C→B→A(pstart)
⊎

ΦA→B→C→A(pstart) =
[

(a∗1, s
∗
a1
), (a∗2, s

∗
a2
), ..., (a∗n, s

∗
an
)
]

4.3 Ranking Algorithm for K-Partite Graphs

In the previous section we explained our ranking approach for tripartite graphs. In sum-

mary, we exploit the relationship between pairs of partitions by running Random Walk with

Restarts on the bipartite graphs and merging the results with the weighted union operator
⊎

. Not only breaking the problem into bipartite graphs solves the direction problem for the

random walker (refer to Chapter 3 and [57]), but it also enables us to adapt our approach

for any number of partitions in the network (i.e. k > 3).

Let G be a k-partite graph: k different partitions of nodes corresponding to k different

entity types are distinguishable in the graph. There may be an edge between any pair of

nodes in different parts but not the ones in the same partition. Thus G consists of several

bipartite graphs. For now let us assume G is a complete k-partite graph where there is a

relationship between any two partitions. The key idea in ranking different entities in such

graphs is to break the graph into imaginary smaller pieces in which we only deal with

bipartite graphs.

Let E1, E2, ..., and Ek be the k entity types corresponding to k partitions in the graph.

Let pstart ∈ Eθ be the node which we want to rank all entities for it (i.e we want to find
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the top n instances of each entity type with respect to pstart). Therefore we are interested

in the following “relevance sets”:

TopE1

n (pstart) , T op
E2

n (pstart) , ... , T op
Ek
n (pstart)

4.3.1 Top n instances in other partitions

For calculating TopEω
n (pstart) where ω = 1, 2, ..., k , ω 6= θ, we consider all the paths

between Eω and Eθ: from the shortest path (the direct relationship between Eω and Eθ )

to the longest paths (paths that go through all other partitions in G). Let Ψ be the set of all

entity types except Eθ (i.e the source) and Eω (i.e the destination).

Ψ = {E1, E2, ..., Eθ−1, Eθ+1, ..., Eω−1, Eω+1, ..., Ek} , | Ψ |= k − 2

Let P (Ψ) be the powerset of Ψ which also includes all the permutations. For example

if Ψ = {a, b, c} then

P (Ψ) = {(), (a), (b), (c), (ab), (ba), (ac), (ca), (bc), (cb), (abc), (acb), (bac), (bca), (cab), (cba)}

Since Ψ has k − 2 elements:

| P (Ψ) |=
k−2
∑

i=0

(k − 2)!

(k − 2− i)!
= λ

Thus we can present P (Ψ) as P (Ψ) = {r1, r2, ..., rλ}. Furthermore we present all the

paths between Eθ and Eω as EθriEω where i = 1, 2, ..., λ.

We calculate λ relevance sets, one for each path. We merge those λ relevance sets

using the weighted union operator
⊎

to find the most related instances of Eω with respect

to pstart. Here we explain how the relevance set is calculated for each path.

Let EθE
′
1E

′
2...E

′
mEω be an arbitrary path where 0 ≤ m ≤ k − 2. Figure 4.3 illustrates

the procedure of finding the relevance set for this path. In the first step we run a random walk

on the bipartite graph between Eθ and E′1 which provides us a relevance set of instances in

E′1. Then we select the top n relevance pairs.

RWR(Eθ,E
′

1
)(pstart) top n −→ DE′

1
= {(e11, s11), (e12, s12), ..., (e1n, s1n)}

From here we follow an iterative procedure which repeats m times. The procedure

works on two consecutive entities on the path. In other words we apply the same procedure

on E′1E
′
2 and E′2E

′
3 and E′3E

′
4 and ... and E′m−1E

′
m and E′mEω. Therefore we explain the

algorithm for E′iE
′
i+1 where i could take any value from 1 to m.
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Figure 4.3: The procedure of calculating the relevance set for an arbitrary path

EθE
′
1E

′
2...E

′
mEω
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Each element in DE′

i
= {(ei1, si1), (ei2, si2), ..., (ein, sin)} is a new starting point for a

random walk on the bipartite graph between E′i and E′i+1.

RWR(E′

i
,E′

i+1
)(ei1) top n −→ D1

E′

i
= {(e1(i+1)1, s1(i+1)1), (e1(i+1)2, s1(i+1)2), ..., (e1(i+1)n, s1(i+1)n)}

RWR(E′

i
,E′

i+1
)(ei2) top n −→ D2

E′

i
= {(e2(i+1)1, s2(i+1)1), (e2(i+1)2, s2(i+1)2), ..., (e2(i+1)n, s2(i+1)n)}

...

RWR(E′

i
,E′

i+1
)(ein) top n −→ Dn

E′

i
= {(en(i+1)1, sn(i+1)1), (en(i+1)2, sn(i+1)2), ..., (en(i+1)n, sn(i+1)n)}

We multiply the scores of all relevance pairs in Dj

E′

i
with sij (the relevance score of the

starting point of the corresponding random walk) where j = 1, 2, ..., n. This is to consider

both the length of the path and the importance of visited partitions on the way, in the score

of final relevance pairs.

After updating the above relevance sets, we construct DE′

i+1
by applying the weighted

union operator on them.

DE′

i+1
=

n
⊎

j=1

Dj

E′

i
= {(e(i+1)1, s(i+1)1), (e(i+1)2, s(i+1)2), ..., (e(i+1)n, s(i+1)n)}

After m iterations we come up with the relevance set for path EθE
′
1E

′
2...E

′
mEω.

Now that we are able to compute the relevance set for any arbitrary path, we calculate

the corresponding relevance set for EθriEω where i = 1, 2, ..., λ. Let RS(EθriEω) be the

relevance set for path EθriEω. To calculate the top n related instances of Eω with respect

to pstart ∈ Eθ, we apply the weighted union operator on the relevance sets:

TopEω
n (pstart) =

λ
⊎

i=1

RS(EθriEω)

4.3.2 Top n instances in the same partitions

Here we present the calculation of TopEθ
n (pstart). Recall that pstart ∈ Eθ and we found

the relevant instances to pstart of all entity types except Eθ. After finding the top relevant

instances of each entity type with respect to pstart, we use them to calculate TopEθ
n (pstart).

More specifically, we consider the instances in TopEω
n , ω 6= θ as the starting points of

random walks on the bipartite graph between Eω and Eθ. Therefore for every Ei where

i = 1, 2, ..., θ − 1, θ + 1, ..., k we run the following random walks:

RWR(Ei,Eθ)(ei1) top n −→ D1
Ei

= {(ei11, s
i
11), (e

i
12, s

i
12), ..., (e

i
1n, s

i
1n)}
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RWR(Ei,Eθ)(ei2) top n −→ D2
Ei

= {(ei21, s
i
21), (e

i
22, s

i
22), ..., (e

i
2n, s

i
2n)}

...

RWR(Ei,Eθ)(ein) top n −→ Dn
Ei

= {(ein1, s
i
n1), (e

i
n2, s

i
n2), ..., (e

i
nn, s

i
nn)}

Similar to the previous step, we update the scores in Dj
Ei

, multiplying them by sij where

j = 1, 2, ..., n. This takes the effect of each entity type in relation with Eθ into account. In

other words, the closer2 the instances of an entity with respect to pstart, the more influential

they are in ranking the same type instances for pstart.

Next, we construct a relevance set for every entity Ei as follows:

DEi
=

n
⊎

j=1

Dj
Ei

Finally we combine the relevance sets from all entity types to find the top n related

instances of Eθ with respect to pstart.

TopEθ
n (pstart) =

k
⊎

i=1

DEi
, i 6= θ

The proposed approach enables us to rank nodes in k-partite graphs. In other words, we

are able to find the most related instances of each entity type for any object in heterogeneous

multiple relation social networks.

4.3.3 Time Complexity

The proposed ranking approach for a complete k-partite graph considers all the paths be-

tween the source and the target partition to compute the weighted union set. As we ex-

plained before there are λ =
∑k−2

i=0
(k−2)!

(k−2−i)! paths between the source and the target parti-

tions. The longest paths contain k − 2 partitions in between. Consequently there are k − 2

steps, each running n RWR on a bipartite graph. All in all, the time complexity of comput-

ing the top n related instances of an entity type with respect to one instance in a complete

k-partite graph is O(nkλ). More specifically the time complexity is linear to n but it is

factorial to k.

2closeness here means having higher relevance scores
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(a) instances of 3 entity types

make a tripartite graph

(b) the same social network with an

inner relation on A

Figure 4.4: General schema of a tripartite graph

4.4 Computational Improvements

In the previous section we presented an approach to rank entities in k-partite graphs. In this

section we discuss three issues in our approach and suggest an improvement or a solution

in each case.

4.4.1 Inner Relations

Presenting our ranking approach on k-partite graphs, we assumed it works on heterogeneous

multiple relation social networks. The corresponding graph of such social networks is not

always a k-partite graph. If instances of one class are also related to each other, there is a

loop in the corresponding graph. In other words, the assumption of having no edges among

nodes of the same partition is wrong. To make this more clear let us zoom out the graph in

Figure 4.1 in which the instances of each entity type make a node together. Figure 4.4(a)

illustrates this idea. Each node in this graph represents an entity type which may have

any number of instances. Edges represent the relationships between entity types/partitions.

Now if there is a relationship between instances of entity type A the corresponding graph

looks like Figure 4.4(b).

Zaiane et al. [57] investigate the issue of having a loop in bipartite graphs. Let A and

B be the entity types in a bipartite graph and instances of A are related to both A and B (i.e

there is a loop on A). They propose surrogate nodes in which every node in A splits into as

many nodes as it is in B. The new nodes make a new layer called A′. Then they generate

appropriate edges between A′ and B based on A−A and A−B relationships. Not only this

approach is not efficient (because it increases the number of nodes and edges in the graph

by an order of magnitude), it is not clear how it applies to more than two entities (k > 2).
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In contrast, we suggest to use loops to filter nodes in the corresponding partitions. Based

on the theory of “six degrees of separation”[1] one might speculate when we are looking

for top related instances of the same class with respect to a particular individual, say pstart,

the nodes which are connected to pstart with less than 6 intermediaries are more likely to be

related to pstart. This implies that we can filter the nodes which are not in this range. For

example in Figure 4.4(b), computing the top nodes for pstart when pstart ∈ A, we remove

nodes in A which are farther than 6 nodes from pstart.

More formally, Let G be a k-partite graph where E1, E2, ..., and Ek are the k entity

types. G may have inner relations on each entity type. pstart ∈ Ew is the node which we

want to rank other entities based on that. If there is an inner relation on Ew, we remove

the nodes from Ew which are out of the range of 6 from pstart and follow the algorithm

presented in the previous section. This particularly reduces the computation complexity of

RWR(Ew,Ei)(pstart) and RWR(Ew,Eij)(eij) where i = 1, 2, ..., w − 1, w + 1, ..., k and

j = 1, 2, ...n.

4.4.2 Computation of Paths

Another computational issue is the large number of valid paths between two entity types

when k becomes larger. Recall that in our solution one must compute a relevance set for

every possible path between the source and the target entity. This means in a complete

k-partite graph one has to compute λ =
∑k−2

i=0
(k−2)!

(k−2−i)! relevance sets to find the top n

instances of each entity with respect to one instance. Basically we consider all paths from

length 1 to length k − 1 with all the permutations for each length. Even though for any

length, each permutation (i.e different order of visiting entities) generates a slightly different

results, for a large number of k we may ignore considering all of the permutations. Instead

we pick the “best” permutation for each length. This should not change the ranking results

significantly because we aggregate the relevance sets of different paths with different length

by the weighted union operator. With this negligible change, we will end up calculating only

k − 1 relevance sets corresponding to k − 1 paths (length 1 to k − 1).

Here the challenge is to choose the “best” permutation of entities for each path length.

We do that by assigning a score to each permutation and choosing the one with the highest

score as the “best” permutation. Let EθE
′
1E

′
2...E

′
mEω be an arbitrary path (length m+ 1)

where 0 ≤ m ≤ k− 2. Except Eθ and Eω, other entities could change their order. So there

are m! combination for this path. To explain how we choose the final combination for this

path, first we need to define inter entity weight.
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Let G be a k-partite graph where E1, E2, ..., and Ek are the k entity types with sE1
, sE2

,

..., and sEk
instances respectively. Let nij represents the number of relationships between

instances of Ei and Ej . Also wij represents the total sum of weights of the relationships

between Ei and Ej .

We define the “Inter Entity Weight” (IEW) as the weight between any two entity types

in a k-partite graph and it is calculated as in Equation 4.2.

IEW(Ei,Ej) =
nij

sEi
∗ sEj

∗
wij

nij
=

wij

sEi
∗ sEj

(4.2)

The intuition behind this definition is simple.
nij

sEi
∗sEj

is the ratio of currently exist-

ing edges to the maximum possible number of edges between instances of Ei and Ej . In

addition
wij

nij
is the average weight per edge.

Back to the problem of choosing one permutation for a fixed length path, we assign a

score to each path using IEW. The score of path EθE
′
1E

′
2...E

′
mEω is:

S(EθE
′
1E

′
2...E

′
mEω) = IEW(Eθ,E

′

1
) + IEW(E′

1
,E′

2
) + ...+ IEW(E′

m,Eω)

Finally, we choose the permutation that maximizes this score out of m! possible cases.

Reducing the number of paths to be considered from λ =
∑k−2

i=0
(k−2)!

(k−2−i)! to k − 1, this

technique decrease the computation complexity when k becomes larger.

4.4.3 Incomplete k-partite Graphs

Another issue is incomplete k-partite graphs. Explaining our approach in Section 4.3, we

assumed G to be complete which means there is a relationship between any two entity

types. In other words, there is a direct path from any partition to all other partitions in the

graph. Now let us consider a more general case where some entity types may not have

a direct relationship with each other. We claim our ranking approach still works in such

cases. In fact, our approach does not need the complete k-partite graph to rank the entities

with respect to each other.

Figure 4.5 depicts an example of an 8-partite graph where not all partitions are con-

nected to each other.

The proposed algorithm only exploits the bipartite graph between any pairs of partitions.

Therefore as long as there is a path between any two partitions, the algorithm computes a

“relevance set” for that path. If there is more than one path, the algorithm merges the results

while each relevance set is weighted inversely based on the number of different partitions

along the path. For example in Figure 4.5 when we rank instances of D with respect to an
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Figure 4.5: An example of an 8-partite graph

individual from E, there are four valid paths for the random walk: EBD and ECGD and

EFCGD and EHABD. Ranking instances of F for an individual from A, there are six

valid paths3: ABEF , AHEF , AHECF , ABECF , ABDGCF , AHEBDGCF . All in

all, the greater the number of paths between two partitions, the more accurate the ranking

results are, while the algorithm is able to find the top n related instances with only one path.

Clearly when there is no path between two partitions, there is no relationship between the

corresponding entity types. Clearly ranking in such cases is meaningless.

In this chapter, after explaining our solution for ranking entities in tripartite graphs, we

proposed a general approach to find the top n related entities with respect to one instance,

in k-partite graphs. We should note that our approach finds the top n related instances of

each entity type with respect to a node in the network. However, n is not fixed and may

change based on the application. In other words, whenever a ranking of all the entities with

respect to one instance is required, we simply set n to the total number of entities. In the

next chapter, we explain how we apply our ranking approach to a real dataset.

3There must not be a duplicate entity type in the path from the source to target
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Chapter 5

Application and Methodology

Researchers in different fields publish their new ideas and findings in conferences or scien-

tific journals all around the world. Every publication, annotates a relationship between one

or more researcher(s) with the venue of that publication. A deeper look into this area reveals

more entities and relationship. Basically, these entities and relationships can be modeled in

a social network. We call such social networks as Academic Social Networks. In academic

social networks, people want to search for papers, conferences, researchers, etc. There are

some websites providing the bibliographical information (e.g CiteSeer1, DBLP2, Google

Scholar3 ). In fact these informations are the main sources of data for such social networks.

Several studies have been targeting the analysis of the academic social networks and few

systems have been developed to facilitate the need of searching and browsing the academic

social networks. (e.g Microsoft Academic Search, ArnetMiner, DBLife). In addition to that,

research in the academic world has been increased in the past few years. Not only the

members of the academic social networks want to find researchers and publications and

conferences, they require more sophisticated information such as: What are the research in-

terests of a given researcher? What are the most related conferences for a given topic? Who

are working in the same fields as a given researcher? Who are the most famous researchers

with respect to a given topic? and so on.

A quick investigation on these types of questions suggests that there are three critical

entities involved in academic social networks.

1 Author: researchers who publish papers in conferences and/or journals

2 Proceeding: conferences and/or journals which act as communities for researchers

1http://citeseerx.ist.psu.edu
2http://www.informatik.uni-trier.de/ ley/db
3http://scholar.google.com
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Figure 5.1: An Academic Social Network: tripartite graph of Author, Topic, Proceeding

to interact with each other. (by publishing their ideas)

3 Topic: fields of interest for a researcher or topics of interest for a conference or

journal

Different entities and various relationships among these entities, make academic social

networks to be categorized as Heterogeneous Multiple Relation Social Networks (refer to

Chapter 2 for more details). The corresponding graph for such a social network is a tri-

partite graph as shown in Figure 5.1. To answer such questions for this social network, a

mechanism is required to rank entities based on each other. One might think, once we con-

struct the corresponding graph for this social network, it is easy to determine related nodes

with respect to a particular node, just by looking at its neighbours in the graph. We should

note that the concept of similarity/relationship that we target in this thesis is more sophis-

ticated than just being directly connected to an object in the social network. Moreover,

we are interested in discovering the hidden (non-obvious) ties between entities which are

based on the structure of the network and the interactions among nodes. For example, even

though author A might not have published any paper in conference C (i.e there is no direct

link between these two individuals in the social network), they may be related because: 1)

author A is working closely with other researchers who publish in conference C. 2) author

A is working in areas close to the topics of conference C.

This notion of similarity/relationship is not understood just by looking at the neighbours

of nodes in social networks. In the previous chapter we explained our ranking approach

for k-partite graphs which finds the top similar/related individuals in k-partite graphs with

respect to a particular instance. Developing a framework called “DB-Connect”, in this
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chapter, we construct an academic social network based on the data from DBLP, then we

apply our ranking approach on the tripartite graph of this social network to find top most

related entities based on each other.

5.1 Dataset

We choose DBLP as our major data source to investigate our ranking approach on a real

academic social network. DBLP is a public data source which provides bibliographic in-

formation on major computer science journals and proceedings. Being publicly available,

DBLP dataset has been used in many studies as the major dataset to investigate different

ideas. An advantage of DBLP is that the entities are explicitly defined in the dataset. This

significantly helps building the underlying social network for DBLP. Considering the in-

formation available for each publication, DBLP is a heterogeneous multiple relation social

network. There are different entities such as: authors, proceedings, publications; and there

are various relationships such as: an author publishes a publication, an author participates

in a conference, etc. Since we can represent this social network with a k-partite graph, it is

a good choice to apply our ranking approach. Also a part of the evaluation of the ranking

results for this social network could be done based on the existing background knowledge

of the academic domain. For example, it is clear that KDD is a conference in data mining

so we do not expect a researcher in mobile wireless communication to be ranked high for

KDD.

Aside from having a web interface to browse the bibliographic information online,

DBLP provides an XML version of its database which is updated frequently. Objects are

listed by different tags in the XML file4. A version of the XML file has been downloaded

on March 13th, 2011. Obviously our experiments do not contain any data added to DBLP

after this date.

There are 911, 126 conference papers and 447, 628 journal publications in this XML

file. While the oldest publication in this dataset is from year 1936, most of them are only a

few years old. In fact 93% of publications are published between 1990 to 2011. Therefore,

we filter those publications earlier than 1990, mostly because they act like noise in our

dataset. Since the total number of publications left is still large (i.e 1, 259, 597 ), we also

extract a smaller version of this dataset. This smaller dataset helps us to rank the entities

faster (mostly for test experiments). To do this, we select 150 top conferences based on

4For a complete description of the XML file see http://dblp.uni-trier.de/xml/docu/dblpxml.pdf
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their number of publications. We also filter publications earlier than 1997. Finally we end

up with 248, 673 publications. Table 5.1 illustrates details of these two datasets. Note that

all the reported results in Chapter 6 are from Small Dataset unless it is explicitly mentioned

otherwise.

Publication Author Conference/Journal Period

Small Dataset 248,673 263,375 150 1997-2011

Large Dataset 1,259,597 822,456 5,593 1990-2011

Table 5.1: Datasets

To complete our data and to construct a more accurate social network, we also use the

information fetched from Microsoft Academic Search5 and CiteSeer. These websites do not

provide an API on their databases. Therefore, all the required information was fetched by

querying the web interface. We explain more details about this in the next section.

5.2 Social Network Construction

To construct the social network for DBLP, we first have to detect instances of “Author”,

“Proceeding”, and “Topic”. Next, we need to assign the relationships among them. Iden-

tifying “Author” and “Proceeding” in DBLP is straightforward. Analyzing journal and

conference publications in DBLP XML file provides us the required information. We ex-

tract the instances of Authors and Proceedings by their names. Intuitively, each author has

a relationship with a proceeding if that author has published a paper in that proceeding.

Also, some extra relationships can be extracted. For example all the authors of a paper are

co-authors.

DBLP does not explicitly mention the topics. We should note that finding scientific

topics is a research problem which many studies have tried to propose solutions for (e.g.

[2], [24], [44], [41]). However, the primary focus of this thesis is to rank entities in social

networks not to identify them (i.e. we do not focus on finding topics of interest but to

rank them). Furthermore, we use a simple, yet effective, approach to find the topics of

publications. Detecting topics for publications enables us to discover both the Topic-Author

relationship and Proceeding-Topic relationship.

Based on keywords used in the title of a publication, one can guess that publication lies

within which area. For example by looking at the title: ”Modeling Multi-step Relevance

5http://academic.research.microsoft.com/
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Figure 5.2: Initial class diagram for academic domain

Propagation for Expert Finding”, it is clear that this publication is related to Expert Finding

and Relevance Propagation.

Using the title (and when it is available the abstract) of publications, we find the most

frequent bi-grams and consider them as topics. We provide a manual black list to skip

meaningless frequent words such as: also, any, of, is, for, but, etc. We choose bi-grams

because most of the topics in computer science6 consist of two words. For example: Data

Mining, Genetic Algorithm, Information Retrieval, Machine Learning, Sensor Networks,

etc. Also, we assume when two overlapping bi-grams are frequent (e.g. “Hidden Markov”

and “Markov Model”), the tri-gram is frequent as well. Therefore we detect several tri-

gram topics such as Hidden Markov Model, Support Vector Machine, Natural Language

Processing, World Wide Web, Association Rule Mining, etc.

After fixing the instances of “Topic”, we find the relationship between topics and au-

thors and proceedings. The procedure is straightforward: the topic(s) found for any publi-

cation, are assigned for author(s) of that publication and for its proceeding as well.

Figure 5.2 shows the data model for this domain. The important entities and relation-

ships are coloured. Each proceeding includes one or more paper(s). Each author publishes

one or more paper(s). Each paper is published by one or more author(s). Each author par-

ticipates in one or more proceeding(s). Each proceeding hosts one or more authors. Any

author may co-author with one or more other authors. Each author may be interested in

6Recall that DBLP has the bibliographic information on computer science journals and conferences
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one or more topic(s). Each topic is the subject of one or more proceeding(s) or the interest

of one or more author(s).

5.3 DB-Connect

To investigate the proposed ranking approach in Chapter 4, on the academic social net-

work of DBLP, we develop a framework called “DB-Connect”. DB-Connect is a tool with

a web interface to navigate through authors, topics, and proceedings. Applying our rank-

ing approach, DB-Connect provides the top most related entities for every instance of the

network. For example, for a specific conference, it determines the most related topics of

that conference, the most related authors to that conference, and other similar conferences

or journals to that conference. Moreover, having the co-authorship information extracted

from the DBLP XML file, DB-Connect suggests new collaborators for researchers. In other

words, DB-Connect finds the related researchers for a given author based on their interest

and proceeding participation, then it filters the ones who already have co-authored with the

given author. The remaining researchers are likely to be potential collaborators for the given

author.

DB-Connect has three major modules: 1) Preparation 2) Calculation 3) Interface. The

backbone modules (i.e Preparation and Calculation modules) are developed in C++ to be

as efficient as possible. The interface module is in PHP. The data is stored in a MySQL

database. Figure 5.3 illustrates the architecture of DB-Connect. The DBLP XML file and

the information extracted from CiteSeer and Microsoft Academic Search are the only data

sources of DB-Connect. Preparation Module reads these data sources, extracts the entity

and relationships among them, and finally stores the social network in the right format in

SN-Database. Next, the Calculation Module loads the social network from SN-Database

and starts computing the rankings. Note that the computation may be done in parallel for

different entities. Calculation Module stores the ranking results in CM-Database. Using

both databases, Interface Module maps the ranking results on the social network. Further-

more, not only this module provides a navigation tool on the social network, it shows the

ranking results related to each entity.

5.3.1 Preparation Module

This module takes the DBLP XML file as input. Parsing the XML file, this module con-

structs the corresponding entities and the relationships among them: Author, Paper, Pro-

ceeding. More specifically, we locate <article> tags for journal publications and collect
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Figure 5.3: The Architecture of DB-Connect
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the following attributes:

• <title>: determines the title of the paper

• <author>: determines the author(s) of the paper

• <year>: determines the publication year of the paper

• <journal>: determines the title of the journal

• <volume>: determines the volume of the journal

Also we locate <inproceedings> tags for conference publications. The following at-

tributes for conference papers are collected:

• <title>: determines the title of the paper

• <author>: determines the author(s) of the paper

• <year>: determines the publication year of the paper

• <booktitle>: determines the title of the conference

Iterating over the publications (journal or conference), we construct an instance of Au-

thor/Proceeding whenever a new name is seen in <author>/<booktitle>/<journal> tag.

The next step is to generate the instances of Topic. DBLP only provides the title for

publications. However, titles do not always clearly reveal the topic of the publications.

Sometimes the keywords in the title of a publication do not directly point to the topic of the

content. On the other hand, the abstract usually contains the gist of the publication. Fortu-

nately there are some online services which provide the abstract of scientific publications

(e.g CiteSeer, Microsoft Academic Search). Therefore, we try to collect as many abstracts

as we can for the existing publications in DBLP. Not all the publications in DBLP are in-

dexed in such online services. For this purpose we look up the title of the publications in 1)

CiteSeer 2) Microsoft Academic Search. We are able to find the abstract for almost 25% of

all the publications.

We choose the most frequent bi-grams in the titles of publications and the collected ab-

stracts, as the topics. Even though finding topics based on the frequent words works well in

general, there is an issue in our case. We do not know the exact number of topics. Further-

more, tuning the frequency threshold is challenging. It is not obvious how frequent must

a bi-gram be to be considered as a topic. Generally, for frequency-based parameters there

is no absolute value since they depend on the dataset. This means the higher the threshold

is, the less the topic-candidates are. However, we assume the number of important topics

in computer sciences do not exceed 2000. Furthermore, we list the valid bi-grams in a de-

scending order of their frequency and select the top 2000 of them as topics. Unfortunately,

our tests revealed that even considering this number of topics, leaves some authors (almost
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25% of the authors) without any assigned topic. In other words, there are some authors with

a few publications (in most cases just one) which do not have any of those selected bi-grams

in the title or abstract of their publication(s). In the other hand, decreasing the threshold (i.e

increasing the number of topic-candidates) with the hope of covering more keywords and

eventually more publications is not a good choice since it adds too much noise to the topic

set. For simplicity, we ignore those authors in our experiments. However, a possible solu-

tion to this problem is to assign the topics of the related proceedings for those authors. In

other words, if author a has a publication in proceeding p but it is not assigned with any

topic via his publication, we assign the related topics of p to a.

Once the topics and their relationship with other entities are found, all the entities and

the relationships are stored in an Entity-Relationship (ER) database called SN-Database.

The database schema is derived directly from the data model where each entity has its own

table. Also each many-to-many relationship is implemented with a table, containing foreign

keys to the two entities involved in that relationship. Figure 5.4 shows the database schema

of SN-Database in DB-Connect.

Figure 5.4: SN-Database Schema. Red arrows show foreign-keys
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5.3.2 Calculation Module

Loading Author, Proceeding, and Topic from SN-Database, this module constructs the ad-

jacency matrices of the graph, corresponding to the social network of these three entity

types. More specifically, there are three partitions in the graph (tripartite graph) and they

are all connected to each other. Figure 5.1 shows the graph of this network. We form the

adjacency matrices of the bipartite graphs as follows:

1 MAT : The adjacency matrix of the bipartite graph between Author and Topic where

rows indicate instances of Author and columns stand for instances of Topic.

MAT =

t1 t2 ... tsT
a1 wAT

11 wAT
12 ... wAT

1sT
a2 wAT

21 wAT
22 ... wAT

2sT
... ... ... ... ...
asA wAT

sA1 wAT
sA2 ... wAT

sAsT

where sA is the number of authors, sT is the number of topics, and wAT
ij is the nor-

malized number of different publications by author ai which include topic tj (i.e
∑sT

j=1w
AT
ij = 1 where i = 1, 2, ..., sA ).

2 MAP : The adjacency matrix of the bipartite graph between Author and Proceeding

where rows indicate instances of Author and columns stand for instances of Proceed-

ing.

MAP =

p1 p2 ... psP
a1 wAP

11 wAP
12 ... wAP

1sP
a2 wAP

21 wAP
22 ... wAP

2sP
... ... ... ... ...
asA wAP

sA1 wAP
sA2 ... wAP

sAsP

where sA is the number of authors, sP is the number of proceedings (journals +

conferences), and wAP
ij is the normalized number of times author ai has participated

in proceeding pj (i.e
∑sP

j=1w
AP
ij = 1 where i = 1, 2, ..., sA ).

3 MTP : The adjacency matrix of the bipartite graph between Topic and Proceeding

where rows indicate instances of Topic and columns stand for instances of Proceed-

ing.

MTP =

p1 p2 ... psP
t1 wTP

11 wTP
12 ... wTP

1sP
t2 wTP

21 wTP
22 ... wTP

2sP
... ... ... ... ...
tsT wTP

sT 1 wTP
sT 2 ... wTP

sT sP

62



where sT is the number of topics, sP is the number of proceedings (journals + con-

ferences), and wTP
ij is the normalized number of times topic ti has been a subject of

proceeding pj (i.e
∑sP

j=1w
TP
ij = 1 where i = 1, 2, ..., sT ).

Next, we apply the ranking approach, discussed in Chapter 4, for each node to find the

related instances of each class in the network with respect to That node. The top related

instances for each node, are stored in CM-Database.

Note that the ranking for each individual can be done separately. Furthermore, the

calculation module is multi-threaded to make the ranking task more efficient. The more the

number of threads, the faster the whole module finishes ranking. The theoretical limit for

number of threads would be the number of entities in the network (i.e in our dataset more

than a million). Therefore, to compute the rankings for the whole dataset, we use services

from a High Performance Computation (HPC) facility called WestGrid.

Western Canada Research Grid: WestGrid

WestGrid is one of the seven partner consortia that make up Compute Canada, a national

platform that integrates HPC resources across the country to create a dynamic computa-

tional resource. Compute Canada brings together HPC, data resources and tools, and aca-

demic research facilities around the country.

DB-Connect stores and loads its data into a MySQL database. The only server on

WestGrid providing this service is Bugaboo. Running the Scientific Linux operating system,

Bugaboo is a Dell blade cluster which is comprised of 10 chassis, each containing 16 8-

core blades, for a total of 1, 280 cores. Each compute node contains two sockets, with each

socket containing an Intel Xeon E5430 quad-core processor, running at 2.66 GHz. Each

blade has 16 GB of memory that can be shared among the 8 cores on that node. In addition

to the login server (i.e head node), there is a file server called Bugaboo-fs. The MySQL

database is located on this file server. For more information about Bugaboo please visit

http : //www.westgrid.ca/support/quickstart/bugaboo .

To use this facility, one have to submit the task as a job to the head node. Therefore, after

setting up the database on Bugaboo-fs, we provide a script describing the detail specification

of the job and submit it to the head node. There is an automatic scheduler running on the

head node which manages all the submitted jobs. Generally, the more resources a job

requires, the later the job is qualified to be run (i.e it has to wait in the queue for a longer

time).
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Currently, DB-Connect is running on the cluster using thirty-two (32) cores with the

maximum memory usage of four GigaBytes (4GB). Detail information on the job sub-

mission protocol can be found on http : //www.westgrid.ca/support/running job .

DB-Connect has been designed in a way to keep track of the entities which are ranked.

Therefore if any interruption occurs during the calculation, DB-Connect is able to continue

the computation from where it left.

5.3.3 Interface

This module is the set of PHP pages which access the result of Calculation Module. Com-

bining the basic information of entities from SN-Database and the ranking results from

CM-Database, this module provides a profile page for each individual in the network. (i.e

every instance of Author, Topic, and Proceeding has its own page. In addition to the basic

information for that entity, the page gives the top related instances of other entities in the

network. So for example in the page of a conference, there are top related researchers and

top related topics with respect to that conference. There are also top similar other confer-

ences or journals to that particular conference. Figure 5.5 shows some screenshots from the

interface of DB-Connect.

Figure 5.5: The interface of DB-Connect
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In this chapter, we explained academic social networks as one possible application for

our ranking approach. We discussed how we construct the social network for our case study.

Also, we introduced DB-Connect as a framework for applying our approach to the academic

social network. In the next chapter we report the results from DB-Connect. We compare

the results from DB-Connect to similar available systems for a selective set of entities. In

addition, we implement a blind comparison between our ranking approach and the method

introduced by Zaiane et al. [57] based on their results on the same dataset. We also show

that the idea of parallelizing the computation works in practice.
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Chapter 6

Experimental Results

In the previous chapter, we explained that we develop DB-Connect to apply our ranking

approach on the academic social network of DBLP. In this chapter we report the results from

DB-Connect. We also compare the results from DB-Connect to similar available systems

for a set of selected entities. In addition, we implement a blind comparison between our

ranking approach and the method introduced in [57], based on their results on the same

dataset.

6.1 Ranking Results for Authors

Figure 6.1 shows a screenshot from DB-Connect. This page shows an author profile which

belongs to Jiawei Han, one of the famous researchers in data mining and databases. Note

that Jiawei Han is selected arbitrarily just to describe different parts of author profile. On

the top left corner, it indicates this object is an Author. Clicking on any of the hyper-linked

names will generate a page for that selected instance whether it is an author, a topic, or a

conference/journal. The box on the left contains some information about the given author

such as the number of his publications, the duration of his academic career, the total number

of different researchers who have co-authored with the given author, and the top co-authors

based on the number of publications they have co-authored together.

Applying our ranking approach with the given author set as the starting point, we find

the top related entities of each type with respect to it. There are six tables for each given

author1 which we explain in detail. Items in each table are ordered by their descending

relevance scores to the given author.

1In some cases the last two tables might be empty because the rankings are one-way
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Figure 6.1: DB-Connect screenshot for Jiawei Han

6.1.1 Related Conferences/Journals

This table sorts the top related proceedings for the given author. That means the high

score proceedings from the random walk on Author-Proceeding, are combined with the

high score proceedings obtained from the random walk on Author-Topic-Proceeding using

the weighted union operator. Note that this is not necessarily the list of the proceedings

that the author has already published in them. In fact, we expect this list to show those

proceedings with the following criteria:

• Proceedings which contain most of the given author’s publications

• Proceedings which have close topics to the given author’s interests

• Proceedings which are attended by researchers who are close to the given author

• Important and significant proceedings

6.1.2 Related Topics

This table depicts the top related topics with respect to the given author. To make this list,

we merge the high score topics from the random walk on Author-Topic with the high score
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topics from the random walk on Author-Proceeding-Topic. We expect this list to show the

topics with the following criteria:

• Common topics in the given author’s publications

• Topics which are close to the topics of the related proceedings to the given author

• Topics which are mostly used by researchers who are close to the give author

• Frequently used topics

The author may or may not have a publication in either of these topics. If the author has at

least one publication on a topic, there is a button in front of that topic in the table, which

directs the user to another page showing the list of publications by the author on that topic.

For example, Figure 6.2 shows a part of the publication list of on Data Streams by Jiawei

Han.

Figure 6.2: DB-Connect screenshot for Publications by Jiawei Han on Data Streams

68



6.1.3 Related Researchers

This table shows the list of top related researchers with respect to the given author. This

list is generated using the results of two previous tables. That means, we compute the top

related authors using both “Related Conferences/Journals” and “Related Topics”. Merging

the high score authors from the random walk on Proceeding-Author and Topic-Author with

the weighted union operator, we come up with the final list of top related authors. Note that

these authors may or may not be co-author with the given author. To be more precise, we

expect this list to show the researchers with the following criteria:

• Researchers who are mostly working on topics close to the related topics of the given

author

• Researchers who are mostly publishing in the proceedings related to the given author

• Researchers who are well-known in their field

6.1.4 Recommended Collaborators

This table is the list of potential collaborators for the given author. Removing co-authors

from “Related Researchers”, we come up with the list of related researchers who have not

collaborated with the author yet. Since these researchers are closely related to the author

but they have not co-authored yet, we suggest them as the potential collaborators for the

author.

6.1.5 Recommended To

This table shows the researchers who have the given author in their “Recommended Collab-

orators”. In fact the relevance between two instances (e.g two researchers) is not a two-way

relationship. For example, even though Jiawei Han has been recommended to Raghu Ra-

makrishnan as a potential collaborator, Raghu Ramakrishnan is not recommended to him.

Note that this table might be empty since the given author is not necessarily recommended

as a potential collaborator to the other researchers.

6.1.6 Symmetric Recommendations

This table depicts the list of researchers who have a two-way relevance relation with the

given author. It means they are recommended to the given author while they also have

him/her on their “Recommended Collaborators” list. For example, Christos Faloutsos is
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recommended to Jiawei Han, at the same time Jiawei Han is recommended to him. This

puts Christos Faloutsos in the “Symmetric Recommendations” in Jiawei Han’s profile.

Note that if the given author is not recommended to anybody (i.e “Recommended To” is

empty), this table does not have any items.

6.2 Ranking Results for Topics

Figure 6.3 depicts a screenshot of DB-Connect corresponding to a topic profile. The given

topic is “Retrieval Systems”. Note that this topic is selected arbitrarily just to present the

different parts of topic profile. On the top left corner, it indicates this object is a Topic.

Each item on the page (whether it is an author, a topic, or a proceeding) is a hyper-link to

the corresponding profile page for that entity.

Figure 6.3: DB-Connect screenshot for Retrieval Systems

Setting the starting point of our ranking approach to the given topic, we find the top

related entities of each type with respect to that topic. There are three tables corresponding

to the three entity types which are ranked for the given topic. Items in each table sorted

based on descending order of their relevance scores to the given topic.
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6.2.1 Related Researchers

This table lists the top related researchers with respect to the given topic. More specifi-

cally, the high score authors from the random walk on Topic-Author are combined with the

high score authors from the random walk on Topic-Proceeding-Author using the weighted

union operator. We expect this list to show the researchers who are mostly working on this

topic and are close to the other researchers in this topic. Also they more likely publish in

conferences/journals which are related to the given topic.

6.2.2 Related Conferences/Journals

This table sorts the top related proceedings for the given topic. The high score proceedings

from the random walk on Topic-Proceeding are combined with the high score proceedings

from the random walk on Topic-Author-Proceeding using the weighted union operator. We

expect this list to show the proceedings which contain many publications in this topic. Also

if many researchers, interested to the given topic, publish in a proceeding, we expect that

proceeding to show up in this list.

6.2.3 Related Topics

This table depicts the top related topics with respect to the given topic. This list is generated

based on “Related Researchers” and “Related Conferences/Journals”. In fact, we merge

top score topics from the random walk on Author-Topic and Proceeding-Topic with the

weighted union operator to come up with the most related topics with respect to the given

topic. We expect this list to show the topics which are mostly used with the given topic by

the significant researchers in this area. Also the topics which often appear with the given

topic in the lead conferences/journals in the field.

6.3 Ranking Results for Conferences/Journals

Figure 6.4 shows a screenshot from DB-Connect corresponding to a conference profile.

The given conference is “Neural Information Processing System”(NIPS). Note that this

conference is selected arbitrarily just to present different parts of conference/journal profile.

On the top left corner, it indicates this object is a Conference.

Setting the starting point of our ranking approach to the given conference, we find the

top related entities of each type with respect to it. Similar to the topic profile, there are three

boxes corresponding to the three entity types which are ranked for the given conference.
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Figure 6.4: DB-Connect screenshot for Neural Information Processing System (NIPS)

Items in each table sorted based on descending order of their relevance scores to the given

conference.

6.3.1 Related Researchers

This table sorts the top related researchers with respect to the given conference. More

specifically, the high score researchers from the random walk on Proceeding-Author are

merged with the high score researchers from the random walk on Proceeding-Topic-Author

using the weighted union operator. We expect this list to show the researchers who often

publish in the given conference and researchers who are interested in topics close to the

given conference’s topics.

6.3.2 Related Topics

This table depicts the top related topics with respect to the given conference. The high

score topics from the random walk on Proceeding-Topic and Proceeding-Author-Topic are

combined using the weighted union operator. We expect this list to contain the topics which

are mostly used within the given conference and are popular among researchers who publish

in the given conference.
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6.3.3 Related Conferences/Journals

This table lists the top related proceedings for the given conference. This list is generated

based on “Related Researchers” and “Related Topics”. In fact, we find high score proceed-

ings once from the random walk on Author-Proceeding, and another time from the random

walk on Topic-Proceeding. Merging these top score proceedings with the weighted union

operator, we come up with the top related proceedings with respect to the given conference.

We expect to see the proceedings which are popular among the related researchers to the

given conference and are about the related topics to the given conference.

6.4 Discussion on the Quality of the Ranking Results

In this section, we select one instance of each entity type in our social network (i.e. a

researcher, a topic, and a conference) to argue its ranking results. We select Philip S. Yu

among the researchers because he is a well known researcher in data mining. Consequently

the reader is more likely familiar with his related topics of interests, conferences, and re-

searchers which makes the analysis of the ranking results straightforward. Also we select

Data Mining among the topics because this dissertation mostly lies in this topic, and KDD

among the conferences/journal because it is one the most prestigious conferences in data

mining.

6.4.1 DB-Connect: Ranking of different entities for Philip S. Yu

Figure 6.5 shows Philip S. Yu’s profile in DB-Connect. Having 201 publications in 24 con-

ferences, Mr.Yu is one of the most prolific researchers in our dataset. Here, we investigate

the ranking results of each entity type with respect to Mr.Yu.

Conferences/Journals

A quick look into our dataset discloses that Mr.Yu has published in all the selected confer-

ences in this list. In fact they contain most of his publications (i.e 174
201 which is more than

86%). All the conferences in the list are mainly about data and knowledge mining and/or

engineering. Based on Mr.Yu’s home page2 his research interests include data mining,

privacy preserving publishing and mining, data streams, database systems, Internet applica-

tions and technologies. ICDE, ICDM, KDD, CIKM, SIGMOD, VLDB, ICDCS, SAC, WWW,

2http://www.cs.uic.edu/PSYu
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Figure 6.5: DB-Connect screenshot: Philip S. Yu

INFORCOM are clearly lead conferences in these fields and they are listed as top ranked

conferences with regard to Mr.Yu.

Topics

Having the “publication button” in front of topics, the first glance at this list reveals that

Mr.Yu has publications in most of the top ranked topics (i.e Data Streams, Data Mining,

Association Rule Mining, Time Series, Decision Trees, Clustering Algorithms, Search En-

gines, Data Structures). A deeper look into the dataset, discloses that 77
201 ≃ 40% of his

publications contain these keywords in their titles and/or abstracts. In addition, these topics

are major topics of interest for the related conferences such as ICDE, ICDM, KDD, etc.

While Mr.Yu does not have a publication on Sensor Networks in our dataset3, looking at

the whole list of his publications discloses that he actually has several publications on this

topic. Also, checking the top ranked conferences, they all include a number of publica-

tions on this topic (i.e 978 in total). However, Mr.Yu does not have a publication on Neural

3This results are based on the “small dataset” which only contains a portion of the real data
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Networks, yet this topic is ranked high for him. To figure out why it appeared in the top

rank list, we again check our dataset. First, we find that there are a number of publications,

in the top related conferences to Mr.Yu, on Neural Networks ( in ICDCS, ICDM, KDD,

CIKM, VLDB, SAC, WWW, INFOCOM). More importantly, being located in 4563 publi-

cations, Neural Networks is the most frequent topic in our dataset. The large number of

publications associated with this topic (i.e its general popularity), is the main reason of its

appearance in the list of top ranked topics. Considering the fact that Mr.Yu has a direct

relationship with 109 topics out of 400 (total number of topics in the small dataset) which

means having publications on more than 27% of topics, there is a high probability for the

random walker, surfing back and forth on the bipartite graph of Author-Topic, to eventually

visit this topic. In other words, the random walker computes a high relevance score for this

topic with respect to Mr.Yu. Also, this topic is reachable through Author-Proceeding-Topic.

Altogether, Neural Networks shows up in the top related topics for Mr.Yu.

Authors

Investigating the quality of this list is more difficult. One might think researchers who have

co-authored many publications together, are the top related ones to each other. However,

we should note that our definition of relevance is a little different. We assume a researcher

is more likely related to the given author if his/her topics of interests are close to the top

related topics with respect to the given researcher, and his/her publications are published

in proceedings close to the top related proceedings to the given researcher. Also, between

researcher a1 and a2 who have similar situations with respect to the given author, the one

with more links (the more well-known researcher) is more likely to be ranked top for the

given author. Having this in mind, it is easier to analyze the results. For example the top

ranked author for Mr.Yu is Jiawei Han. Even though there are other researchers who have

co-authored more times with Mr.Yu (e.g Haixun Wang ), Jiawei Han has more topics and

proceedings in common with him.

Let us review the profile of Philip S. Yu in the existing online systems for academic

social networks. Note that these systems only have profiles for researchers. However, DB-

Connect provides a profile for all the entity types (i.e Authors, Topics, Conference).

6.4.2 Microsoft Academic Search: Philip S. Yu

Figure 6.6 depicts a screenshot from Microsoft Academic Search showing Mr.Yu’s profile.

In addition to showing the basic information about the given author (i.e number of publica-
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tions, number of citations, list of publications, etc.), Microsoft Academic Search provides a

navigation tool in the academic social network. For example for the given author, it lists all

the conferences/journals that the researcher has published in them. It also provides the list

of most frequent keywords used in the researcher’s publications such as Data Mining, Data

Stream, and Association Rule.

Figure 6.6: Microsoft Academic Search screenshot on May 5th, 2011: Philip S. Yu

Although Microsoft Academic Search sorts the entities of each type based on the cita-

tion number, there is no notion of ranking entities based on each other. In other words, not

only the user can not rank different entity types for each other (e.g ranking conferences for

an author), the user is not able to rank the entities of the same type based on one specific

instance (e.g ranking topics for a specific topic). However, Microsoft Academic Search

detects some topics of interests for researchers. In Figure 6.6, Data Mining, Databases,
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Distributed and Parallel Computing are lists as interests of Mr.Yu. The Microsoft Research

team does not disclose how they obtain these topics. However, we believe a hierarchy has

been built by experts which contains broad topics and the common keywords in each. Then

based on the frequent keywords in a given researcher’s publications, they guess the topics

of interests for the researcher.

6.4.3 ArnetMiner: Philip S. Yu

Figure 6.7 depicts Mr.Yu’s profile from ArnetMiner. ArnetMiner gathers all types of infor-

mation about an entity from the web to make a profile for the entity. In this case, the basic

information about Mr.Yu such as: position, affiliation, address, phone, fax, email, home-

page is provided. Applying the topical model explained in [48], ArnetMiner detects the

topical aspects of the given researcher. The “Research Interest” section shows these topics:

Data Mining, Data Streams, Data Mining Techniques. Finally, ArnetMiner provides a list

of entities of each type which it believes they are related to the given researcher. The box at

the right side of the page shows related researchers, topics of interests, and conferences.

• Others[Researchers]: Kun-Lung Wu, Charu C. Aggarwal, Ming-Syan Chen, Haixun

Wang, Joel Wolf

• Expertise: Data Mining, XML Data, Data Mining / Query Processing, Real-Time Sys-

tems / Automated Software Test Data, Software Engineering / Business Maintenance

Model, Parallel Algorithms / Wormhole Networks

• Conferences: IEEE Trans. Knowl. Data Eng, ICDE, ICDM, KDD, SDM, ICDCS,

CIKM

Note that the related entities in these lists are purely obtained from the constructed graph

for the social network. In the other words, there is no notion of ranking in here. Arnet-

Miner only crawls the web to find entities and the relationships among them to build the

corresponding Entity-Relation (ER) model of the social network. Therefore, the related

researchers for Mr.Yu are simply his co-authors. The expertise is the frequent keywords

used in his publications (i.e there is at least a publication by the given researcher using that

keyword). Finally, the related conferences are the ones which the researcher has published

in them.
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Figure 6.7: ArnetMiner screenshot on May 5th, 2011: Philip S. Yu

DBLife: Philip S. Yu

Figure 6.8 depicts the screenshot from DBLife corresponding to Mr.Yu’s profile. DBLife

provides some general information about the given researchers such as: the top images

from Google Images Search, the homepage, number of citations, the list of publications

from DBLP. Similar to the other online services, DBLife lists other related entities for the

given researcher on the right-side panel.

• Related People: Jian Pei, Ling Liu, Shaoping Chen, Bing Liu

• Related Topics: data mining, knowledge discovery and data mining, knowledge dis-

covery, mobile computing
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• Services: KDD 2009 (PC), SIGMOD 2008 (PC), SIGMOD 2008 (Chair), KDD 2007

(PC)

• Related Organizations: University of Illinois at Urbana-Champaign, Microsoft Re-

search, National University of Singapore, Carnegie Mellon University

• Panels: ICDE 2009. VLDB 2002

• SIGMOD 2010, KDD 2006

Looking at the related entities, we observe that they are based on the found relationships

on the web. In other words, there is no ranking done for the given researcher.

Figure 6.8: DBLife screenshot on May 5th, 2011: Philip S. Yu
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6.4.4 DB-Connect: Ranking of different entities for Data Mining

Figure 6.9 shows the profile in DB-Connect corresponding to Data Mining. Being located

in 2, 531 publications, Data Mining is the 5th top frequent topic in our dataset. Here, we

separately investigate the ranking results of each entity type with respect to this topic.

Figure 6.9: DB-Connect screenshot: Data Mining

Researchers

The first step to evaluate this list is to check these researcher’s homepages. Not surprisingly,

all the selected researchers in the list have Data Mining as their research interest. Neverthe-

less, this topic is a broad topic used by many researchers. Therefore, having Data Mining

as a research interest for a top ranked researcher with respect to this topic, is necessary

but not enough. In fact, there are 3, 707 researchers using the topic Data Mining in their

publications in our dataset. However, only a small number of them have more than a few

publications on this topic (e.g only 6% of these researchers have more than 5 publications

about Data Mining). Knowing this fact and checking the frequency of usage of this topic

only by the high ranked researchers, we observe a significant number. More specifically,

almost 20% of the usage of Data Mining is just by the selected researchers as the top ranked

for this topic. In addition to that, checking the ranking results for these researchers, Data

Mining is ranked first or second most related topic for all of them. We can also verify the

results by considering the Topic-Proceeding-Author path. The top ranked researchers to

Data Mining publish in 75 conferences. Not only all these conferences have publications
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on Data Mining, more than 90% of the usage of topic Data Mining is in these conferences

(i.e 2, 301 out of 2, 531).

Using Microsoft Academic Search, we realize the top ranked researchers for Data Min-

ing are the most cited researchers in this field. For example Jiawei Han, Philip S. Yu,

Hans-Peter Kriegel, Bing Liu, Christos Faloutsos, Eamonn J. Keogh, Xindong Wu, Charu

C. Aggarwal, Jian Pei are among the top 80 most cited researchers in Data Mining. Also,

based on the same source, these researchers have high H-index values which show their

importance in their field.

Conferences/Journals

Checking the list of conferences for Data Mining, we observe prestigious conferences in

this topic such as:

• KDD: Knowledge Discovery and Data Mining

• ICDM: IEEE International Conference on Data Mining

• SAC: ACM Symposium on Applied Computing

• ICDE: International Conference on Data Engineering

• PAKDD: Pacific Asia Conference on Knowledge Discovery and Data Mining

• SIGMOD Conference: ACM SIGMOD Conf on Management of Data

• VLDB: Very Larg Data Bases

Looking into our dataset, Data Mining is used 2, 531 times in 117 conferences/journals.

However, this topic is used 1, 723 times in the top 20 related conferences. This means only

the top 20 ranked conferences for Data Mining contain almost 70% of its usage over all the

other conferences. At the same time, there are conferences in the list which do not look

related enough to Data Mining at the first glance. For example one might ask why Hawaii

International Conference on System Sciences (HICSS) is ranked high for Data Mining.

Checking the conferences having publications in Data Mining, we observe that HICSS is

the 6th top conference out of 117 ( after KDD, ICDM, PAKDD, ICDE, SAC ) containing

the most number of publications on this topic. Also HICSS is the second most central

conference in our dataset. Having 6, 797 publications, HICSS has the most number of

publications after ICRA (with 9, 193 publication). The centrality among other conferences

increases the chance of HICSS to be ranked high for Data Mining.
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Topics

Verifiying this list requires more dedication. Most of the selected topics in this list are

known as related fields to Data Mining such as: Sensor Networks, Data Streams, Informa-

tion Retrieval, Time Series, Search Engines or they are sub-categories of this broad topic

such as: Association Rule Mining, Data Structures, Social Networks, Learning Algorithms.

However, there are some topics such as Neural Networks, Genetic Algorithms, Web Ser-

vices that at the first glance, do not look related to Data Mining. We seek the reason in our

dataset. Based on the dataset these topics share a considerable number of conferences and

researchers with Data Mining. For example, Neural Networks and Data Mining have been

appeared in 100 conferences together. At the same time they have been used together by 341

researchers. Note that, a deeper look in the dataset reveals that Data Mining does not share

as many conferences and researchers with other topics as it does with Neural Networks.

The same idea holds for Genetic Algorithms and other such topics. Table 6.1 illustrates the

number of times that each topic is used together with Data Mining in conferences and by

different researchers. Note that the same statistics for other topics is significantly less than

the high ranked topics. In fact the more conferences and researchers a topic shares with the

given topic, the more likely it is to be ranked high for the given topic.

Data Mining Number of Shared Researchers Number of Shared Conferences

Neural Networks 341 100

Sensor Networks 190 86

Genetic Algorithms 206 95

Web Services 162 83

Associated Rule Mining 522 66

Data Streams 315 85

Table 6.1: Mutual usage of Data Mining with other high ranked topics with respect to this

topic: 1) by researchers 2) in conferences

6.4.5 DB-Connect: Ranking of different entities for KDD

Figure 6.10 shows the ranking results for KDD in DB-Connect. Same as other entities,

KDD has a profile in DB-Connect where the it represents the top ranked researchers, topic,

and other conferences with respect to this conference. Here, we investigate the quality of

the ranking results separately for each entity type.
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Figure 6.10: DB-Connect screenshot: Knowledge Discovery and Data Mining (KDD)

Researchers

The first fact about these high ranked researchers is that they all have published considerable

number of papers in KDD. In fact they are among the most publishers in this conference.

2, 601 researchers have participated 4, 311 times in KDD. That means the normal participa-

tion rate for the researchers is about 1.65. However, the top 15 high ranked researchers have

participated 314 times in this conference. That means the participation rate for this group

(i.e 20.93) is 12 times more than the average participation rate in KDD. In addition, the top

15 researchers in the list, work in the same fields as the topics of KDD. More specifically,

KDD is related to 242 topics in our dataset. The top 15 researchers cover 191 of them. In

other words, almost 80% of KDD’s topics is covered by these researchers.

Another interesting fact is that this list is not just the list of researchers who publish

many papers in KDD. For example, there are researchers who are among the top participants

of this conference, yet not ranked high for it. Having 20 publications in KDD, Padhraic

Smyth is one of the top participants in this conference but he is not ranked high for KDD.

Querying our dataset, we observe that even though Padhraic Smyth has many publications

in KDD, he is not working as much on the hot topics of this conference. In fact, his top

frequent topics are Mixure Models, Time Series, EM Algorithms, Error Rate, Probabilistic

Models, Hidden Markov Models, etc. Also, based on the official homepage of Padhraic

Smyth4 his main research interests are “modeling of real-world data sets involving text, time

series, images, multivariate data from areas as diverse as text mining, Web data analysis,

4www.ics.uci.edu/ smyth/grad.html
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medical image analysis, bioinformatics, atmospheric science, remote sensing, and cognitive

science”, which are not hot topics in KDD.

Topics

A quick look at the list of high ranked topics, reveals that most of them exactly match the

hot topics in KDD. Based on the webpage of this conference5, we realize that topics such

as Data Mining, Association Rule Mining, Time Series, Social Networks, Data Streams,

Feature Selection, Clustering Algorithms, are popular topics of KDD. In the other hand,

checking our data distribution confirms this list as well. Not only all the high ranked topics

for KDD are used in the publications of this conference, they are the most frequent used

topics in KDD. More precisely, 242 topics were located 3, 546 times in the publications in

KDD. However, the top 15 high ranked topics cover 1, 531 usage in total. In other words,

more than 43% of publications in KDD are about these top 15 high ranked topics. Despite,

there are a few topics which are not directly of interest of KDD. For example, even though

Neural Networks is not a hot topic in KDD, it is ranked high for this conference. The

reason for this phenomenon is similar to what we explained for the appearance of Neural

Networks in the high ranked topics for Philip S. Yu in Section 6.4.1. Being located in 4, 563

publications, Neural Networks is the most frequent topic in our dataset. The centrality of

this topic makes it to be reachable thourgh many paths in the graph. Therefore it recieves a

high score in the random walk on the bipartite graph of Topic-Proceeding and Topic-Author.

To put it simply, although Neural Networks is not a hot topic in KDD and close conferences

to KDD, they all include a number of publications in this topic. In fact, Neural Networks

appeared in more than 80% of the conferences in our dataset. This constant usage of Neural

Networks adds up and makes it relevant to many entities in the network.

Conferences/Journals

Last but not least, we analyze the high ranked conferences with respect to KDD. As a matter

of fact, most of the well-known conferences in data mining and knowledge discovery are

found in the list of related conferences such as:

• ICDM: IEEE International Conference on Data Mining

• ICDE: International Conference on Data Engineering

• PAKDD: Pacific Asia Conference on Knowledge Discovery and Data Mining

5www.kdd.org
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• SIGMOD Conference: ACM SIGMOD Conf on Management of Data

• VLDB: Very Large Data Bases

• CIKM: International Conference on Information and Knowledge Management

• SAC: ACM Symposium on Applied Computing

• HICSS: Hawaii International Conference on System Sciences

A deeper look into the list of high ranked conferences discloses that there are also

a number of well-known conferences in the area of machine learning and related topics.

Indeed, there is no clear border between data mining and machine learning. Therefore,

NIPS, ICIP, ICML, IJCAI are related to KDD. In the other hand, there is a few items in

the list (e.g ICRA: International Conference on Robotics and Automation) which are not

clear why they are ranked high for KDD. Looing into our dataset, it turned out ICRA shares

numerous topics with KDD (i.e 202). Even though some top frequent topics in KDD are

not as frequent in ICRA, this conference contains considerable number of publications in

other frequent topics in KDD such as Machine Learning, Support Vector Machine, Learning

Algorithms, Hidden Markov Models, Learning Methods, Probabilistic Models.

6.5 Parallelization

Describing our methodology in Chapter 5, we explained that our ranking approach does

not need the ranking results of other entities to be able to rank with respect to a particular

instance of the network. In other words, the ranking computation could be done separately

for each entity. That means, it is possible to parallelize the ranking task to reduce the

total computation time. To prove this idea, we perform a simple experiment. Setting the

goal to compute the ranking results for 8 researchers in the big dataset (i.e more than 1.3

million nodes), we run the program where the number of threads equals 1, 2, 4, 8. The

machine to perform this task has a 64 bit Linux-Ubuntu operating system with 2 × quad-

core AMD Opteron 2.3 GHz. In each case, we average the computation time over 10 runs.

Table 6.2 summarizes the performance results. Clearly the total computation time reduces

by increasing the number of threads. More precisely, the total time is inversely proportional

to the number of threads. We have to note that the computation time for each instance might

vary based on its centrality. Furthermore, in the last case (i.e 8 threads) where each thread

is dealing with one instance, the total time is the maximum computation time for an entity
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over all the instances. That explains why the time is not exactly divided into half when we

multiply the number of threads. All in all, as long as the appropriate resources are available,

we can add more threads to reduce the total ranking time.

Number of Threads Total Time (seconds)

1 1984

2 991

4 564

8 325

Table 6.2: Parallel Ranking: The effect of using threads on the ranking time. The task is

to rank 8 researchers (i.e finding top ranked Topics, Conference, Researchers for each of

them). As the number of threads become larger the total computation time decreases.

6.6 Comparing the outcome from Big Dataset with Small Dataset

Introducing our dataset in Chapter 5, we explained that we built a smaller dataset to run

our experiments faster. However, we also applied our approach on the real-size dataset (i.e

Big Dataset) to rank the entities of different type for each other. Analyzing the ranking

results for a number of entities from Big Dataset and comparing them with the results from

Small Dataset for the same entities shows a slight difference between them. For example

Figure 6.11 illustrates the conference ranking results from both datasets for Philip S. Yu.

Comparing the top related conferences, 7 out of 10 are the exactly the same with a slight

change of ordering. Note that SDM, CoRR, EDBT replaced SAC, WWW, INFOCOM in this

new list. Note that SDM, CoRR, EDBT were not in Small Dataset at all. Also, SAC, WWW,

INFOCOM are still among the top 20 ranked conferences for Philip S. Yu in Big Dataset.

Figure 6.11: Conference comparison between the two data sets for Philip S. Yu: The left

ranking is from the big dataset and the right one from the small dataset

Similarly, looking at the list of top related topics in Figure 6.12 shows a slight differ-
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ence. Clustering Algorithms, Search Engines, Data Structures have been replaced by Web

Services, Query Processing, Database Systems. An interesting fact is in Small Dataset,

Mr.Yu did not have any publication on Sensor Networks yet it was ranked high for him.

In the list of related topics from Big Dataset, Sensor Networks appears again but this time

there are some publications on this topic by Mr.Yu.

Figure 6.12: Topic comparison between the two data sets for Philip S. Yu: The left ranking

is from the big dataset and the right one from the small dataset

Finally we compare the list of top related researchers from Big Dataset with the list of

top related researchers from Small Dataset (i.e Figure 6.13) with respect to Mr.Yu. Most of

top ranked researchers (i.e 7 out of 10) are fixed with a slight change in the ordering. Beng

Chin Ooi, Jian Pei, Kian-Lee Tan in the results from Small Dataset are replaced by Surajit

Chaudhuri, Gerhard Weikum, Rakesh Agrawal in the current list.

Figure 6.13: Researcher comparison between the two data sets for Philip S. Yu: The left

ranking is from the big dataset and the right one from the small dataset

6.7 Blind Test

As a part of the evaluation of our approach, we compare the ranking results from DB-

Connect to a similar work. Zaiane et al. [57] proposed a solution based on random walks to

rank entities in the same social network. In fact, the authors developed a prototype system
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called DB-Connect to apply their method. Note that the framework developed in this study

only shares its name and some parts of the interface with the prototype system. In the old

DB-Connect, the contribution is modeling the relational databases with an extended version

of bipartite graphs (i.e adding surrogate nodes). This only covers the relationship between

two entity types (i.e Author and Conference). To cover the third entity type (i.e Topic) they

choose a random direction (Author − > Conference − > Topic or Author − > Topic − >

Conference) for the random walk. However, having the same interface in both systems and

working with the same dataset, enables us to implement a blind comparison between the

ranking results.

Obviously, to judge between two ranking results with respect to a specific entity, one has

to know the given entity and its relevant entities. Furthermore, we selected ten well-known

researchers in the database and data mining area and developed a web interface which

allows the user to choose between the two ranking results, ours and the old version. While

the rankings are anonymous to the user (i.e the user does not know which output is from

which system), we invited those researchers to vote between the two ranking results for all

ten cases. Unfortunately, we did not receive enough votes. We believe this is mostly because

those selected top researchers are busy and did not give it the time sensitive importance it

deserves. In the other hand, ranking entities based on each other is certainly “subjective”.

Therefore, integrating different votes for a specific instance is even more troublesome. All

in all, we decided to ask locally available researchers to choose between the two ranking

results for themselves. In other words, we show each researcher, the ranking results with

respect to him/her. Clearly, the researcher is the most authoritative person to argue the

ranking result with respect to himself/herself.

Table 6.3 summarizes the outcome of this poll. In each case, the researcher is asked to

choose, separately for each entity type, between the two ranking results without knowing

which one is which. Evidently, the winner is the new DB-Connect which applies the pro-

posed approach in Chapter 4 to rank the entities. Note that there are statistical measures

such as Krippendorff’s Alpha which is a statistical measure of the agreement for values of

a variable or Cronbach’s Alpha which is a coefficient of reliability. It is recommended to

use these coefficients to measure the statistical importance of such tests. Unfortunately we

were not able to collect enough data points to use these measures.

88



Proceeding Topic Researcher

Ranking Ranking Ranking

Dale Schuurmans NEW SAME NEW

Mario Nascimento NEW NEW NEW

Joerg Sander OLD SAME NEW

Michael Bowling NEW NEW NEW

Davood Rafiei OLD NEW SAME

Csaba Szepesvari NEW SAME OLD

Rich Sutton NEW NEW OLD

Russ Greiner NEW NEW NEW

Osmar Zaiane NEW NEW NEW

total votes for

DBConnect 7 9 7

(NEW)

total votes for

Prototype DB-Connect 2 3 3

(OLD)

Table 6.3: The outcome of the poll between two ranking results from researchers
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Chapter 7

Conclusion

7.1 Summary

Entities and the interactions/relationships among them compose a Social Network. This

definition empowers a wide range of studies (e.g epidemiology, sociology, anthropology,

social psychology, economics, biology, communication studies, information science, soci-

olinguistics, organizational studies, geography, marketing, etc) to employ social networks

for modeling and further for analysing their corresponding environment. The study of

structural and behavioural properties of social networks is called Social Network Analy-

sis (SNA). Representing social networks by graphs where nodes are the entities and edges

are the relationships, SNA discloses useful information about social networks such as: the

most influential entities in the network, the hubs in the network, the groups/communities in

the network, central nodes in the groups. SNA is also used to study the evolution of social

networks (e.g detecting the formation, expansion, and changes in the communities within a

social network). In addition, SNA may be used to rank entities in social networks. In many

applications, there is the need to rank the entities in the corresponding social network. This

ranking could be as simple as sorting of entities based on one specific attribute. However,

in many application domains, the ranking task may be more sophisticated. For example

assume that the manager of an organization wants to promote the employees based on their

interactions with the clients. The more clients an employee serves and the more positive

feedback the employee gets from the clients, the more bonus the employee receives. This

scenario requires a ranking of employees based on their interactions with the clients. In

other words, the ranking is based on the properties of the social network of the employees

and clients.

Ranking can be even more complicated. Assume that a company offers variety of ser-

vices/products and targets a large number of clients regularly (e.g banks, chain supermar-
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kets), the manager may want to know which clients usually use a specific service or buy

a specific product to make some business decisions. This means ranking of entities (i.e

clients) based on one specific entity (i.e service/product) in the social network. However,

ranking the entities based on each other in social networks with different entity types and

different relationships, Heterogeneous Multiple Relation Social Networks, is not trivial be-

cause analysing and understanding the properties of such social networks is problematic.

In this dissertation, we addressed the problem of ranking entities in heterogeneous mul-

tiple relation social networks. Modeling such social networks with k-partite graphs, we

propose a ranking approach based on random walks which finds the top n related instances

of each entity type with respect to any node in the network. The main idea of our approach

is to break the k-partite graph into several bipartite graphs, apply a random walk to generate

relevance scores for the nodes with respect to the target entity, and finally to incorporate the

obtained relevance scores to detect the top n related instances.

Developing a framework called DB-Connect, we tested our theory in practice. DB-

Connect employs our ranking approach on a real heterogeneous multiple relation social

network extracted from DBLP. Analysing the ranking from DB-Connect suggests that our

results are promising. Comparing our results with other similar systems supports this con-

clusion.

Afterall, DBConnect may be useful in the following:

• To find the best matching reviewer for a paper submitted to a specific conference/journal.

• To suggest a venue to submit a paper based on its content and authors.

• To suggest popular topics when authors preparing for a conference.

• To find new collaborators for researchers.

• To find related conferences, topics and researchers when there is not much history for

a datapoint. For example for a new researcher who has only a few publications.

7.2 Contributions

To address the thesis statement we have done the following:

1. Modeling heterogeneous multiple relation social networks with k-partite graphs, we

propose an algorithm to rank all the nodes in the graph (i.e entities in the social

network) based on one specific instance of the network. More specifically, using

91



random walks on bipartite graphs, we assign relevance scores to the nodes of the

graph with respect to the target instance. Therefore we are able to sort the entities

based on their scores. We prove that the proposed ranking approach is theoretically

scalable for larger values of k. Developing a framework called DB-Connect, we

apply our ranking approach to a real heterogeneous multiple relation social network

(i.e tripartite graph) and argue the accuracy of the outcome.

2. The proposed ranking approach only uses the information available in the social net-

work. In other words, it computes the ranking for each instance separately without

using the results of other entities. Furthermore, ranking of different entities can be

done in parallel. Designing DB-Connect to be multi-threaded, we show the paral-

lelized ranking in practice.

3. Performing our ranking approach on a reasonable portion of the real dataset and com-

paring the results with the outcome of the real-size dataset, we show that there is a

negligible difference between the two results. This suggests that for large datasets,

where there is not enough computation resources available, one may partition the

dataset into smaller pieces and apply our ranking approach, yet achieve pleasant re-

sults. Note that the partitioning should be done in a reasonable manner (e.g clustering

approaches)

7.3 Challenges Left to Explore

7.3.1 Advanced Topical Model

We believe that there are more effective approaches to find the topical aspects of publi-

cations. We only used the frequency of words in the titles and abstracts of publications

to determine 1) the instances of topics 2) the relationship between researchers and confer-

ence/journals with topics. The better we model the topical aspects of publications, the more

exact our social network model is. For example the following ideas can be considered in a

more sophisticated topical model:

• Hierarchy of topics. Having a hierarchy from broad topics to the narrow one, each

publication lies within a broad topic (e.g Data Mining), yet is assigned with one or

more specific keyword(s) (e.g Association Rule Mining, Web Mining, etc.). This

would be particularly handy to detect expert researchers or specialized conferences
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in those narrow topics because otherwise they are outnumbered by the large number

of researchers and conferences dealing with the broad topics.

• Overlapping topics. We assumed if a publication contains one of the two frequent

overlapping bi-grams (e.g World Wide, Wide Web), it is related to the tri-gram topic

(i.e World Wide Web). This assumption does not always hold. Assume Continuous

Speech and Speech Recognition are both frequent over all. If a publication contains

Speech Recognition, it is not necessarily related to Continuous Speech Recognition.

• Topics by experts. Currently, we find the instances of topics based on the information

from publications. One may ask experts to define topics for the domain. This elim-

inates the noisy topics. However, finding the relationship between publications and

the pre-defined topics is not trivial anymore.

7.3.2 Ranking with Clustering

Applying our ranking approach to a reasonable portion of the dataset (i.e Small Dataset),

we observed that the results are close to the outcome from the real-size dataset (i.e Big

Dataset). This suggests that using the appropriate clustering algorithm on the large size

datasets may be an effective solution to decrease the computational and time complexity of

the ranking task.

7.3.3 Dynamic Tracking of the Social Network

Proposing our ranking approach, we considered a static graph corresponding to a static

social network. This assumption is not based on the real world. In fact, the academic

social network is always changing. There are always new publications, researchers, and

even conferences/journals which have to be added to the network. In the current version of

DB-Connect, after adding new nodes to the network, we have to compute the ranking for all

the entities from scratch. Indeed, this task is time-consuming. One may think of heuristics

to find the rankings incrementally or at least limit the number of entities in the network for

which a ranking has to be recomputed.
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