

A Neural Network for Cardinality Estimation

by

Xingchi Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering & Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Xingchi Wang, 2021

ii

ABSTRACT

With the booming development of the Internet, the amount of data stored in databases are

enormously growing. Databases retrieve relevant information in response to users’ queries; the

retrieved information is encoded in dynamically generated by databases in the form of structured

data records. As the amount of data increases, the query time becomes longer and longer. So, there

is an urgent need for database optimization.

Database optimization is the strategy of reducing database system response time. Databases

provide us with information stored with a hierarchical and related structure, which allows us to

extract the content and arrange it easily. Database optimization includes avoiding unused tables,

using proper indexing, avoiding temporary tables and coding loops and so on. In our research, we

choose to optimize cardinality estimation in database optimizer.

Cardinality estimation is a fundamental task in database query processing and optimization.

However, the accuracy of traditional estimation techniques is poor resulting in non-efficient query

execution plans. With the rise of deep learning, there is a general notion that data representation

can lead to better estimation accuracy. Up to now, all proposed neural network approaches for

cardinality estimation can only deal with inner joins between tables. To overcome this issue, we

introduce a novel neural network (NN) in this paper. Through systematic experiments and

scientific analysis results, it is proved that our model performs better than other models. This

approach leads to better data representation and thus better estimation accuracy in multiple types

of joins.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisor, Dr. James Miller, for his guidance

and patience throughout my master program. He taught me not only the way to conduct quality

research but also professional skills useful for my future career.

I also would like to express my sincere thanks to my family, my friends, as well as my colleagues

in Dr. James’s research group.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vii

CHAPTER 1 INTRODUCTION... 1

1.1 Research Background .. 1

1.2 Literature Review of Existing Models .. 2

1.3 Problem Statement .. 3

1.4 Research Objectives .. 4

1.5 Thesis Structure ... 4

CHAPTER 2 METHODOLOGY ... 6

2.1 Deep Learning and Neural Network ... 6

2.2 Neural Network (NN).. 8

2.3 Vectorization And One-hot Encoding ... 9

2.4 The Structure Of NN ... 11

CHAPTER 3 EXPERIMENT AND RESULTS .. 13

3.1 Generating training data for IMDb.. 13

3.2 Generating training data for Pagila ... 14

v

3.3 Estimation accuracy .. 15

3.3.1 Estimation accuracy for IMDb ... 15

3.3.2 Estimation accuracy for Pagila ... 16

3.4 Statistical Significant Testing And Effect Size ... 17

3.5 Hyperparameter Tuning .. 20

3.6 Runtime Performance .. 22

CHAPTER 4 CONCLUSIONS AND FUTURE WORK .. 23

4.1 Future Work .. 23

4.2 Conclusions ... 24

BIBLIOGRAPHY ... 25

APPENDIX .. 28

Appendix A. The core code of the experiment. .. 28

vi

LIST OF TABLES

Table 1 Detail information about tables in IMDb. .. 14

Table 2 Detail information about tables in Pagila. ... 14

Table 3 Experiment result comparison. .. 16

Table 4 Experiment result comparison. .. 17

Table 5 Mann–Whitney U test experiments results for IMDb. .. 18

Table 6 Effect Size results for IMDb. ... 19

Table 7 Mann–Whitney U test experiments results for Pagila. .. 20

Table 8 Effect Size results for Pagila. ... 20

Table 9 Runtime performance comparison. .. 22

vii

LIST OF FIGURES

Figure 1 The structure of fully connected neural network. ... 8

Figure 2 Numerical query representation. .. 11

Figure 3 The architecture of Neural network (NN). ... 12

Figure 4 Different cardinality estimators evaluation results. .. 16

Figure 5 Different cardinality estimators evaluation results. .. 17

Figure 6 mean q-error with the number of epochs. ... 21

1

CHAPTER 1 INTRODUCTION

1.1 Research Background

Query optimization is based upon cardinality estimation. To be able to choose the optimal

execution plan, the query optimizer needs to have good estimates for result sizes. Due to increasing

data sizes, query optimization becomes a more difficult challenge. Most query optimization

techniques are cost-based2,14, where cardinality estimation plays a dominant role in the approach

to approximate the number of returned tuples for every query within a query execution plan. These

estimations are used in various optimization techniques. For this reason, it is essential to improve

the accuracy of cardinality estimation.

Methods to improve the accuracy for cardinality estimation is an open area of research. Most

traditional estimation approaches based on statistical models are not accurate enough. The reason

is that they make unreasonable assumptions, which are data independent. Nowadays, we know that

data carries important hidden information. So traditional approaches will lead to erroneous

cardinality estimation.

A possible way to break the limitations is to use machine learning, especially neural networks, for

cardinality estimation. With the rise of machine learning in many different fields, database

researchers also have started to apply machine learning to cardinality estimation7,8,9,11,13,16,19.

We argue that deep learning is a highly promising technique for solving the cardinality estimation

problem. Deep learning can model complex data dependencies and correlations. Neural networks

2

have powerful representation learning capabilities. Estimation can be considered as a supervised

learning problem. The input to neural network contains tables, query features and join types, the

output of the neural network is an estimated cardinality. Under these circumstances, there are

several groups of researchers who already combined neural networks with cardinality estimation;

however, they neglect to consider the actual query situation of the database. In other words, their

models can only deal with inner joins, ignoring left and right joins.

In this paper, we propose a neural network (NN) for multiple types of joins including inner join,

left join and right join. NN addresses the aforementioned weak spot of the single join problem.

Thus, even for large databases, our model is efficient because NN does not waste any capacity for

memorizing. Combined with deep learning, NN has good performance with multiple types of joins.

We evaluate our model using the IMDB and the Pagila datasets, which show that NN is more

robust than other approaches in multiple types of joins. The comparison with other approaches is

promising.

1.2 Literature Review of Existing Models

Traditional approaches of cardinality estimation in relational database management system rely on

statistics that include histograms on each column in a table4,5,6, min and max values18, a list of most

frequent values and their frequencies and the number of distinct values. However, with the

development of data analysis, data independence has been shown to be a major problem for these

statistical approaches, which leads to a non-efficient query execution plan.

To solve this issue, a promising way is to use deep learning for cardinality estimation. Twenty

years ago, neural networks had already been used for cardinality estimation10. Also, people had

already combined machine learning with cardinality estimation. Regression-based models have

3

used for cardinality estimation1. A semi-automatic alternative for explicit machine learning was

presented in paper12, where the feature space is partitioned using decision trees, and for each split

a different regression model is learned. For a more sophisticated formulation way, reinforcement

learning has been applied to query optimization in three articles9,13,17. Another two articles treat

cardinality estimation as a supervised learning problem7,21. Woltmann21 introduces a local neural

network concentrating on sub-part of the whole schema, which makes the query sampling less

sparse and makes the smaller neural network structure. A. Kipf et al.7 introduce an approach called

multi-set constitutional neural network (MSCN) which is a set-based neural network. MSCN uses

bitmaps which are derived from samples given the truth values of the query’s predicates. MSCN

is capable of modeling joins and predicates over several tables and thus can cover correlations in

the data. MSCN depends on large bitmaps to cover the whole schema in order to find query

execution plans. If a query without bitmaps is passed to the neural network, the network will return

an erroneous estimation. Additionally, the main assumption in these two works is that there are

only inner joins in any database. However, in practice, this hardly happens. If a query with left or

right joins is passed to their models, the networks' capability fails, and the estimate is erroneous.

Their neural networks only work on the inner join situation.

1.3 Problem Statement

The discussion above reveals that the previous studies on improve the accuracy of cardinality

estimation pay more attention to statistics that include histograms on each column in a table and

pay less attention to the schema of the database. Whereas the schema of the database is essential

for cardinality estimation. The existing models ignore the relationship between cardinality

estimation and the schema of the database. So existing models maybe perform well on inner join

situation, they perform bad on multiple type situations such as left join and right join situations.

4

Our approach overcomes this issue, NN is a neural network which can handle sophisticated

multiple types of joins situations and hence derives better estimates.

1.4 Research Objectives

The main objective of this research is to improve the accuracy of cardinality estimation. The

detailed objectives are as follows:

(1) To conduct a thorough literature review to screen the most promising models that can well

applying deep learning to the cardinality estimation task;

(2) To overcome the problem that neural networks can only take numerical values as input

vectors, we use vectorization and one-hot encoding to transform their string representations

to numerical vectors;

(3) To propose a new model based on vectorization and one-hot encoding calculated by the

neural network to yield more accurate cardinality estimation.

1.5 Thesis Structure

(1) Chapter 1 presents research background, literature review, problem statement, research

objectives, and thesis structure.

(2) Chapter 2 introduces the methodology employed in this thesis, including the introduction of

neural network, vectorization and one-hot encoding for neural network, and the new model

proposed in this study.

(3) Chapter 3 demonstrates the data set we use, the way we generate training data and validation

data, hyperparameter tuning and runtime performance. This chapter also introduces the way we

use to judge if our model is the most suitable model to solve cardinality estimation problem

including statistical significant testing and effect size.

5

(4) Chapter 4 summarizes the conclusions obtained in this study and the recommendations for

future work.

6

CHAPTER 2 METHODOLOGY

2.1 Deep Learning and Neural Network

Deep learning is a subset of machine learning where neural networks learn from large amounts of

data. The algorithms of neural networks are inspired by the human brain. Deep learning algorithms

perform a task repeatedly and gradually improve the outcome through deep layers that enable

progressive learning. Deep learning is making a big impact across industries. In life sciences, deep

learning can be used for advanced image analysis, research, drug discover, prediction of health

problems and disease symptoms, and the acceleration of insights from genomic sequencing. In

transportation, it can help autonomous vehicles adapt to changing conditions. It is also used to

protect critical infrastructure and speed response.

Deep learning methods is based on artificial neural networks with representation learning. The

architectures of deep learning such as deep neural networks, deep belief networks, recurrent neural

networks and convolutional neural networks have been applied to fields including computer

vision, machine vision, speech recognition, natural language processing, audio recognition and so

on.

The artificial neural networks have good representation capabilities, which can learn the hidden

information between data. For example, applying convolutional neural networks (CNN) to

computer vision, by using convolution and pooling, CNN can learn the connection between pixels.

In order to improve the accuracy of cardinality estimation, we choose artificial neural network as

our model. Our model is fully connected deep network. Fully connected networks are the

7

workhorses of deep learning, used for thousands of applications. The major advantage of fully

connected networks is that they are “structure agnostic”. That is, no special assumptions need to

be made about the input (for example, that the input consists of images or videos). We cannot

know the hidden information between fields in each table, and the hidden information between

tables. In this way, fully connected networks are applicable for handling cardinality estimation

problem. The structure of fully connected neural network are shown in Figure 1. A fully connected

neural network consists of a series of fully connected layers. A fully connected layer is a function

from 𝑅𝑚 to 𝑅𝑛. Each output dimension depends on each input dimension.

8

Figure 1 The structure of fully connected neural network.

2.2 Neural Network (NN)

A typical machine learning algorithm, like regression or classification, is designed for fixed

dimensional data instances. Their extensions to handle the case when the inputs or outputs are

permutation invariant sets rather than fixed dimensional vectors is not trivial. However, for our

9

task that improve the accuracy of cardinality estimation, just using vectors are not suitable. Vectors

have orders, they carry hidden information through the orders. We plan to learn the correlations

between tables in the datasets, the order of tables and the fields is meaningless. That means, the

order carries no information we need.

For our neural network, we want the input instances are four parts rather than traditional vectors.

Similar to fixed dimensional data instances, we use two learning paradigms in case of parts. In

supervised learning, we have an output label for a part that is invariant or equivariant to the

permutation of elements. We use the queries of the datasets for training and testing, the order of

the queries carries nothing information. Therefore, we use four parts as our input.

From a high-level perspective, applying deep learning to the cardinality estimation task is

straightforward. Placing the features of queries including tables, joins and columns etc. into the

neural network, and then deriving the estimate as output later. After training a model, the model

can be a query optimizer for other queries. Deep learning algorithms indeed enhance the accuracy

of the cardinality estimation task compared to traditional approaches.

Before discussing NN directly, we introduce the techniques which do featurization for queries first

including vectorization and one-hot encoding for queries. After that, we introduce the key idea of

NN in Section 2.4.

2.3 Vectorization And One-hot Encoding

Neural networks can only take numerical values as input vectors. However, in real world databases,

there are always string values instead of numerical values. Many deep learning algorithms cannot

operate on string data directly. To overcome this problem, we use Vectorization and one-hot

10

encoding to transform the four parts (Tq, Jq, Pq, TJq) from their string representations to numerical

vectors.

Each table 𝑡 ∈ 𝑇 is represented by a unique one-hot encoding vector v. Since Table part T is

unique which does not contain any duplicate table, every vector v is unique. This ensures that the

neural network can learn the global schema. Similarly, each join 𝑗 ∈ 𝐽 transforms to a unique one-

hot encoding. Every vector of join is also unique. For predicate part P, the process becomes a little

bit complex. Each predicate is an expression instead of a string. The form of P is (column, operator,

value). We featurize column by a unique one-hot encoding. With three singular operators >, <,

=, we need a vector of length three to model all possible operators. The presence of an operator

dictates a 1 at the corresponding position in the vector. For example, > generates (1,0,0) and ≥

generates (1,1,0). Finally, the value vi is already a number. However, neural networks are usually

used with min-max-normalized input vectors ranging from 0 to 1 to enhance their accuracy. In

order to get the best performance of NN, we normalized vi to [0,1] as shown in Equation (1).

𝑣𝑖 =
𝑣𝑖−min (𝑝)

max(𝑝)−min (𝑝)
 (1)

Where min(p) is the minimum boundary of the range of predicate p and max(p) is the maximum

boundary. These can be obtained directly from the database.

The last part is encoding the types of join part TJ. NN supports the recognition of three types of

joins, left, inner and right join. Thus, we also need a vector of length three to model all possible

types of joins. The final vector is shown in Figure 2.

11

Figure 2 Numerical query representation.

2.4 The Structure Of NN

Standard neural network architectures are not suitable for this type of data structure. Convolutional

neural networks (CNNs) are applicable to images, recurrent neural networks (RNNs) are

applicable to time-series data. However, we require multi-layer perceptrons (MLPs) with

serialization to deal with queries. Multi-layer perceptions are defined by three types of layers: input,

hidden and output layers. Each neuron is connected to all the neurons in both the previous and

following layer. Thus, they are also called a fully connected layer.

We use MLPs to simulate the global schema. The structure of NN is shown in Figure 3. We

generate queries from the datasets. The queries we generated is based on the frequency of the

tables and the columns. Simultaneously, we would generate the queries based on the whole schema.

The two types of queries will help the neural network learn the globe structure which is the whole

schema and the local structure which is the local schema.

We get tables, joins, conditions and true cardinalities from the database. And then using

vectorization and one-hot encoding to help queries generates its numerical representations. Our

query representation consists of a collection of multiple parts, which including Tables part, Joins

part, Predicates part and Types of join part. we merge the individual part representations by

concatenation and then put them into a neural network. The hidden layers of NN are three fully

connected layers, which use ReLU activation functions. For the output layer of NN, we use a

sigmoid activation function, and the output is a scalar which between 0 and 1. Based on the

normalization of the predicate value by using the minimum and maximum values.

12

We train our model to minimize the mean q-error15. This article demonstrates that q-error is more

suitable for judging the accuracy of the estimates compared to mean-squared error.

The smaller the q-error is, the better the neural network trained.

I use PyCharm to experiment. And using Torch to build the network. The core code of the

experiment is detailed in Appendix A. It only shows the code of the main steps in the experiment,

including preprocessing, training, and model structure. Does not include data set extraction and

other complex tasks.

Figure 3 The architecture of Neural network (NN).

13

CHAPTER 3 EXPERIMENT AND RESULTS

We conduct an experimental study to evaluate the performance of our approach. We begin by the

generating a training data (Section 3.1 and Section 3.2), including details about the data sets. In

Section 3.3, we present details of the experiment results. In Section 3.4, we present the statistical

significant testing and effect size for Section 3.3. In Section 3.5, we describe hyperparameter

tuning. Finally, the runtime performance is shown in Section 3.6.

3.1 Generating training data for IMDb

We use the IMDb data set as our first experiment to evaluate our approach. IMDb is a well-known

online Internet Movie Database, which captures approximately 6.5 million titles (including

episodes) and 10.4 million personalities in its database. Therefore, IMDb contains various complex

correlations between tables, and it is challenging for cardinality estimation.

We choose title, movie_info, movie_companies, movie_keyword and cast_info as our main tables.

We focus on the complex correlations among them. For example, table title contains more than 4

million distinct values, table movie_companies contain nearly 3 million distinct values. More

details are listed on Table 1. All properties are chosen in order to ensure comparability with other

approaches. We select all columns from each join which can be represented as integers.

We generate a training set and a test set which focuses on the five tables. Both sets contain complex

multiple types of join including left, right and inner joins. All queries in the training set and test

set are two table or three table joins.

14

Left, inner and right joins each account for 1/3 both in the training and test set. Our model is

different from MSCN7 and local deep learning models20, NN do not require bitmap sampling to

improve its accuracy. Therefore, NN uses less memory in a shorter training time. This is another

reason why NN can learn more complex database schemas.

Table 1 Detail information about tables in IMDb.

table column min value max value
number of

distinct values

title kind_id 1 8 8

title production_year 1874 2018 144

movie_info movie_id 1 4730460 4519477

movie_info info_type_id 1 98 61

movie_companies company_id 1 319060 319060

movie_keyword keyword_id 1 236627 236627

cast_info person_id 1 6128554 6122920

cast_info role_id 1 11 10

3.2 Generating training data for Pagila

We use Pagila as our second data set to evaluate our approach. Pagila is a sample database from

PostgreSQL to show the basic functions of the database. Pagila is the DVD rental database, which

contains 15 tables and over 30,000 pieces of data.

We choose rental, payment, custom, inventory, film as our tables. More details are shown in Table

2. In order for our model to learn complex correlations among them, we also generate a training

set and a test set as before. All queries in the training set and test set are two table or three table

joins. Again, left, inner and right joins each account for 1/3 both in the training set and test set.

Table 2 Detail information about tables in Pagila.

table coulumn min value max value
number of

distinct values

rental rental_id 1 16049 16049

payment id 1 16049 16049

payment amount 0.00 11.99 12

custom custom_id 1 599 599

15

inventory inventory_id 1 4581 4581

film length 1 4581 4581

3.3 Estimation accuracy

3.3.1 Estimation accuracy for IMDb

To evaluate the estimation accuracy of our model, we compare our approach with two other

techniques. First, we select a traditional estimate approach which does not use machine learning.

PostgreSQL use traditional estimations based on histograms on each column in a table and a list

of most frequent values and their frequencies. The other approach is multi-set convolutional neural

network (MSCN) which is a state-of-the-art approach using deep learning for cardinality

estimation. In order to compare with MSCN, we use the same data set, and the queries are

generated in the same tables. MSCN uses samples to help their model learn mappings and thus

improve accuracy.

Figure 4 and Table 3 detail the experiment results for the three different approaches. In the figure,

the q-error of each estimate is scaled to a log-space on the y-axis. The underestimates give negative

values and overestimates give positive values. The line inside the box is the median q-error. Table

3 shows detailed q-errors of each model including median q-error, 90th q-error, 95th q-error, 99th

q-error, max q-error and mean q-error on the same test set.

From Figure 4 and Table 3, it suggests that our model is more accurate than PostgreSQL and

MSCN in multiple types of join situations.

16

Figure 4 Different cardinality estimators evaluation results.

Table 3 Experiment result comparison.

model median q-error
90th q-

error

95th q-

error

99th q-

error

max q-

error

mean

q-error

PostgreSQL 2.16 43.34 112 1131.21 470132 976.07

MSCN 9.73 188.79 376.55 2400 4267.63 106.46

NN 2.29 12.25 26.47 201.36 2868 14.83

3.3.2 Estimation accuracy for Pagila

For the second experiment, our goal is to compare NN with traditional estimate approaches in

PostgreSQL. Traditional estimate approaches based on histograms on each column in a table and

a list of most frequent values and their frequencies to derive estimate. Pagila is a small data set

compared to IMDb, it only contains over 30,000 pieces of data. Traditional approaches may

perform well for small data sets. Figure 5 and Table 4 detail the experiment results for the two

approaches. The MSCN open-source version is only a partial implementation of the article, hence

it cannot be applied to Pagila.

From Table 4, we can see that NN performs better than traditional approaches in PostgreSQL.

And from Figure 5, we can see that the estimates derived from NN are more accurate than

17

PostgreSQL. Most estimates are really near the true cardinality values. From the second

experiment, we can draw a conclusion that NN performs better than PostgreSQL in multiple types

of joins situations.

Table 4 Experiment result comparison.

model median q-error
90th q-

error

95th q-

error

99th q-

error

max q-

error

mean q-

error

NN 1.04137 6.42184 7.0 174.420 438.0 6.39075

PostgreSQL 2.36820 16.01582 72.99068 2726.760 9719.0 97.77848

Figure 5 Different cardinality estimators evaluation results.

3.4 Statistical Significant Testing And Effect Size

3.4.1 Statistical Significant Testing And Effect Size for IMDb

Judging the quality of a model cannot be done by only using the mean q-error. We need more

scientific methods to evaluate if NN is truly better than the other two models. We use the Mann–

Whitney U test (MWW) and an Effect Size estimation3 (Cliff's Delta) to determine whether our

approach is statistically significantly more accurate than others. The Mann–Whitney U test is a

18

nonparametric test that can be used to determine whether two independent samples are selected

from populations having the same distribution. If population 1 and 2 are unequal, then at any fixed

𝛼 level of significance the probability of the MWW test being significant at the 𝛼 level tends to 1

as the m, n sample size values tend to infinity. By contrast, if populations 1 and 2 are equal, then

the probability of the MWW test being significant at the 𝛼 level will not tend to 120.

The null hypothesis for 𝛼 = 0.05 is that the prediction data of NN, MSCN and PostgreSQL are

from the same distribution. We make three comparing experiments here: the first experiment is

NN VS MSCN, the second is NN VS PostgreSQL and the last one is MSCN VS PostgreSQL. The

results are shown in Table 5.

Table 5 Mann–Whitney U test experiments results for IMDb.

Competing

models
statistic p-value

NN VS MSCN 551566.5
1.6541e-

23

NN VS

PostgreSQL
706647.0

2.1574e-

07

MSCN VS

PostgreSQL
558334.5

8.3136e-

22

The size of our test sets is 1500 samples. From Table 5, we can see that the p-values are close to

0, with no value larger than 0.05 which means that the data of the three models are from different

distributions. Also, we use Cliff's Delta to estimate the effect size. Effect size is a simple way of

quantifying the difference between two groups that has many advantages over the use of tests of

statistical significance alone1. It reflects the statistical effect size between two populations. Cliff's

Delta d produces a value between -1 to 1. 0 indicates that the two groups distributions overlap

completely. An effect size of 1 or -1 indicates the absence of overlap between the two groups. The

19

larger absolute value of delta the smaller the overlap between two distributions. The equation is

shown in Equation (2).

𝑑𝑒𝑙𝑡𝑎 =
∑ [𝑥𝑖>𝑥𝑗]−[𝑥𝑖<𝑥𝑗]𝑖,𝑗

𝑚𝑛
 (2)

Where the two distributions are of size n and m with items xi and xj respectively. and [∙] is the

Iverson bracket, which is 1 when the contents are true and 0 when false.

From Table 6, we can see that the delta of NN and MSCN is 0.3634 and the delta of NN and

PostgreSQL is 0.8752. These imply the prediction data of NN is significantly different from the

other two models. Combined with the q-error in Section 4.2, we can draw a conclusion that NN

indeed improves the accuracy of cardinality estimation in multiple types of joins situations.

Table 6 Effect Size results for IMDb.

Competing

models
Effect Size (d)

NN VS MSCN 0.3634

NN VS

PostgreSQL
0.8752

MSCN VS

PostgreSQL
0.4552

3.4.2 Statistical Significant Testing And Effect Size for Pagila

We also use Mann–Whitney U test (MWW) and Effect Size to determine whether NN is

statistically significantly accurate for the Pagila data set. The p-value is shown in Table 7. Our test

set is over 1200 queries. From Table 7, we can deduce that the prediction data of NN and

PostgreSQL are not from the same distribution.

20

Next, we still use Cliff's Delta to estimate the effect size. The result is shown in Table 8. The delta

𝑑 = 0.37, which is larger than 0. Combined with the q-error, we can conclude that the prediction

data of NN is different from PostgreSQL, and NN improve the accuracy for the small data set.

Table 7 Mann–Whitney U test experiments results for Pagila.

Competing

models
statistic p-value

NN VS

PostgreSQL
306025

2.258e-

14

Table 8 Effect Size results for Pagila.

Competing

models
Effect Size (d)

NN VS

PostgreSQL
0.37

3.5 Hyperparameter Tuning

3.5.1 Hyperparameter Tuning for IMDb

For hyperparameter tuning of our model, we tuned the hyperparameters including epochs, batch

size, the number of hidden units and the learning rate. The number of hidden units means the width

of the neural network which influences performance of neural networks. More hidden units mean

larger model sizes and increased costs in training and prediction. The learning rate and batch are

both influence the convergence during training.

We varied the number of epochs (30,40,50,60,70,80,90,100), the number of batch size

(16,32,64,128,256,1024), the number of hidden units (32,64,128,256) and the learning rate

(0.1,0.01,0.001), resulting in 576 different configurations. For each configuration, we train the

model three times using a training sets of 6750 queries and a validation set of 750 queries. After a

21

detail comparison, we found that the configuration with 40 epochs, 128 batch size, 256 hidden

units and 0.001 learning rate performs best over others on the validation set. And after 70 epochs,

the model becomes overfitted, this is due to the model capturing the noise in the training set and

results in poor prediction performance. Figure 6 shows the detail of the mean q-error with the

number of epochs.

Figure 6 mean q-error with the number of epochs.

3.5.2 Hyperparameter Tuning for Pagila

As what did in hyperparameter tuning for IMDb, we also tuned the hyperparameters including

epochs, batch size, the number of hidden units and the learning rate. Like what we did before, we

still varied the number of epochs (30,40,50,60,70,80,90,100), the number of batch size

(16,32,64,128,256,1024), the number of hidden units (32,64,128,256) and the learning rate

(0.1,0.01,0.001), resulting in 576 different configurations. At this time, our training set is 4800

queries and a validation set 480 queries. In the end, we found the best hyperparameters for our

model, which are 30 epochs, 32 batch size, 128 hidden units and 0.001 learning rate.

22

3.6 Runtime Performance

Runtime performance is a key feature of models that can be used for cardinality estimation in a

database management system. Since the cardinality estimation for PostgreSQL is directly obtained

from database, so we will not add PostgreSQL to comparison. To evaluate the runtime

performance of different models, we use a training set containing 7500 queries and test set

containing 1500 queries to train models. For MSCN and our model NN, we train the two model

with a GPU and the batch size of 128. After the two models convergenced, we compare the training

time and the test time for each query. Table 9 shows the detail about the comparison.

From Table 9, it can be seen that the training time of our model is much faster than MSCN as well

as the test time per query.

Table 9 Runtime performance comparison.

model Training time

Test time

(per

query)

MSCN 720s 23ms

NN 193s 15ms

23

CHAPTER 4 CONCLUSIONS AND FUTURE WORK

4.1 Future Work

In this paper, we propose a new approach of using deep learning for cardinality estimation. Our

model can beat state-of-the art approaches in multiple types of join situations. However, it can be

extended to a more complex and powerful model. In the following, we discuss what we can

improve in the future.

More Table Joins. NN can do an excellent job for two and three tables join. However, this is not

enough in real work situations. More tables joins brings complex correlations between tables,

adapting many tables in multiple types of join situations is a challenging problem.

Precise queries. We generate random queries based upon the database schema for training and

testing. Usually, if you want to improve the accuracy of the model, it may need many queries. This

kind of work is not efficient enough. The next stage of work is to generate more precise queries

which can precisely reflect the relationship between queries. The advantage of precise queries is

that the model can learn the correlations between tables faster and use fewer queries. Fewer precise

queries can save costs.

Online Learning. Throughout this work, we have assumed an immutable(read-only) database. In

the real world, the database is constantly changing. If data and schema change a little, NN can

tolerate minor shifts in data distribution and correlation. However, if data and schema change

heavily, we can either completely re-train NN or we can modify NN to adapt to that situation, a

possible way is to combine incremental learning.

24

However, completely re-training NN is not easy. It brings considerable costs including re-

executing queries to obtain new cardinalities or even generating new queries based on a new

schema. If we can combine incremental learning, instead of re-training the whole model, we could

use the model and just apply new samples.

Combining traditional approaches. Although traditional approaches perform poorly in cardinality

estimation, these approaches are cost effective. If we can combine the histograms and a list of

frequent values and its values, we may see great benefits.

4.2 Conclusions

In summary, we introduced a new approach NN which is a deep learning model for cardinality

estimation. The experiment results show that our NN can handle multiple types of join situations

and performs well in terms of accuracy when compared to other approaches. Our model is the first

approach to concentrate on multiple types of join situation including left, inner and right joins.

25

BIBLIOGRAPHY

[1] Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., & Zdonik, S. B. (2012, April). Learning-

based query performance modeling and prediction. In 2012 IEEE 28th International

Conference on Data Engineering (pp. 390-401). IEEE.

[2] Bruno, N., & Chaudhuri, S. (2002, June). Exploiting statistics on query expressions for

optimization. In Proceedings of the 2002 ACM SIGMOD international conference on

Management of data (pp. 263-274).

[3] Coe, R. (2002). It's the effect size, stupid: What effect size is and why it is important.

[4] Ioannidis, Y. E., & Christodoulakis, S. (1993). Optimal histograms for limiting worst-case

error propagation in the size of join results. ACM Transactions on Database Systems (TODS),

18(4), 709-748.

[5] Ioannidis, Y. E., & Poosala, V. (1995). Balancing histogram optimality and practicality for

query result size estimation. Acm Sigmod Record, 24(2), 233-244.

[6] Jagadish, H. V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K. C., & Suel, T. (1998,

August). Optimal histograms with quality guarantees. In VLDB (Vol. 98, pp. 24-27).

[7] Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P., & Kemper, A. (2018). Learned cardinalities:

Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677.

26

[8] Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018, May). The case for learned

index structures. In Proceedings of the 2018 International Conference on Management of

Data (pp. 489-504).

[9] Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J., & Stoica, I. (2018). Learning to optimize

join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196.

[10] Lakshmi, S., \& Zhou, S. (1998, August). Selectivity estimation in extensible databases-A

neural network approach. In VLDB (pp. 623-627).

[11] Liu, H., Xu, M., Yu, Z., Corvinelli, V., & Zuzarte, C. (2015, November). Cardinality

estimation using neural networks. In Proceedings of the 25th Annual International

Conference on Computer Science and Software Engineering (pp. 53-59). IBM Corp.

[12] Malik, T., Burns, R. C., & Chawla, N. V. (2007, January). A Black-Box Approach to Query

Cardinality Estimation. In CIDR (pp. 56-67).

[13] Marcus, R., & Papaemmanouil, O. (2018, June). Deep reinforcement learning for join order

enumeration. In Proceedings of the First International Workshop on Exploiting Artificial

Intelligence Techniques for Data Management (pp. 1-4).

[14] Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., & Cilimdzic, M. (2004, June).

Robust query processing through progressive optimization. In Proceedings of the 2004 ACM

SIGMOD international conference on Management of data (pp. 659-670).

[15] Moerkotte G, Neumann T, Steidl G. Preventing bad plans by bounding the impact of

cardinality estimation errors[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 982-993.

27

[16] Mukkamala, R., & Jajodia, S. (1991). A note on estimating the cardinality of the projection

of a database relation. ACM Transactions on Database Systems (TODS), 16(3), 564-566.

[17] Ortiz, J., Balazinska, M., Gehrke, J., & Keerthi, S. S. (2018, June). Learning state

representations for query optimization with deep reinforcement learning. In Proceedings of

the Second Workshop on Data Management for End-To-End Machine Learning (pp. 1-4).

[18] Piatetsky-Shapiro, G., & Connell, C. (1984). Accurate estimation of the number of tuples

satisfying a condition. ACM Sigmod Record, 14(2), 256-276.

[19] Van Aken, D., Pavlo, A., Gordon, G. J., & Zhang, B. (2017, May). Automatic database

management system tuning through large-scale machine learning. In Proceedings of the

2017 ACM International Conference on Management of Data (pp. 1009-1024).

[20] Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the CL common

language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral

Statistics, 25(2), 101-132.

[21] Woltmann, L., Hartmann, C., Thiele, M., Habich, D., & Lehner, W. (2019, July). Cardinality

estimation with local deep learning models. In Proceedings of the Second International

Workshop on Exploiting Artificial Intelligence Techniques for Data Management (pp. 1-8).

28

APPENDIX

Appendix A. The core code of the experiment.

Train.py

import argparse
import time
import os
import csv
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader

from mscn.util import *
from mscn.data import get_train_datasets, load_data, make_dataset
from mscn.model111 import SetConv
from mscn.model import NN

def unnormalize_torch(vals, min_val, max_val):
 vals = (vals * (max_val - min_val)) + min_val
 return torch.exp(vals)

def qerror_loss(preds, targets, min_val, max_val):
 qerror = []
 preds = unnormalize_torch(preds, min_val, max_val)
 targets = unnormalize_torch(targets, min_val, max_val)

 for i in range(len(targets)):
 if (preds[i] > targets[i]).cpu().data.numpy()[0]:
 qerror.append(preds[i] / targets[i])
 else:
 qerror.append(targets[i] / preds[i])
 return torch.mean(torch.cat(qerror))

def predict(model, data_loader, cuda):
 preds = []
 t_total = 0.

 model.eval()
 for batch_idx, data_batch in enumerate(data_loader):

 samples, predicates, joins, targets, types, sample_masks, predicate_masks, join_masks, type_masks = data_batch

 if cuda:
 samples, predicates, joins, targets, types = samples.cuda(), predicates.cuda(), joins.cuda(), targets.cuda(), types.cuda()
 sample_masks, predicate_masks, join_masks, type_masks = sample_masks.cuda(), predicate_masks.cuda(),
join_masks.cuda(), type_masks.cuda()
 samples, predicates, joins, targets, types = Variable(samples), Variable(predicates), Variable(joins), Variable(
 targets), Variable(types)
 sample_masks, predicate_masks, join_masks, type_masks = Variable(sample_masks), Variable(predicate_masks), Variable(
 join_masks), Variable(type_masks)

 t = time.time()

29

 outputs = model(samples, predicates, joins, types, sample_masks, predicate_masks, join_masks, type_masks)
 t_total += time.time() - t

 for i in range(outputs.data.shape[0]):
 preds.append(outputs.data[i])

 return preds, t_total

def print_qerror(preds_unnorm, labels_unnorm):
 qerror = []
 for i in range(len(preds_unnorm)):
 if preds_unnorm[i] > float(labels_unnorm[i]):
 qerror.append(preds_unnorm[i] / float(labels_unnorm[i]))
 else:
 qerror.append(float(labels_unnorm[i]) / float(preds_unnorm[i]))

 print("Median: {}".format(np.median(qerror)))
 print("90th percentile: {}".format(np.percentile(qerror, 90)))
 print("95th percentile: {}".format(np.percentile(qerror, 95)))
 print("99th percentile: {}".format(np.percentile(qerror, 99)))
 print("Max: {}".format(np.max(qerror)))
 print("Mean: {}".format(np.mean(qerror)))

def train_and_predict(workload_name, num_queries, num_epochs, batch_size, hid_units, cuda):
 # Load training and validation data
 num_materialized_samples = 1000
 dicts, column_min_max_vals, min_val, max_val, labels_train, labels_test, max_num_joins, max_num_predicates, train_data,
test_data = get_train_datasets(
 num_queries, num_materialized_samples)
 table2vec, column2vec, op2vec, join2vec, type2vec = dicts

 # Train model
 # sample_feats = len(table2vec) + num_materialized_samples
 sample_feats = len(table2vec)
 predicate_feats = len(column2vec) + len(op2vec) + 1
 join_feats = len(join2vec)
 type_feats= len(type2vec)

 # print("sample_feats " + str(sample_feats))
 # print("predicate_feats " + str(predicate_feats))
 # print("join_feats " + str(join_feats))

 # model = SetConv(sample_feats, predicate_feats, join_feats, type_feats, hid_units)

 model = NN(sample_feats, predicate_feats, join_feats, type_feats, hid_units)

 optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

 if cuda:
 model.cuda()

 train_data_loader = DataLoader(train_data, batch_size=batch_size)
 test_data_loader = DataLoader(test_data, batch_size=batch_size)

 model.train()
 for epoch in range(num_epochs):
 loss_total = 0.

 for batch_idx, data_batch in enumerate(train_data_loader):

 samples, predicates, joins, targets, types, sample_masks, predicate_masks, join_masks, type_masks = data_batch

 if cuda:

30

 samples, predicates, joins, targets, types = samples.cuda(), predicates.cuda(), joins.cuda(), targets.cuda(), types.cuda()
 sample_masks, predicate_masks, join_masks, type_masks = sample_masks.cuda(), predicate_masks.cuda(),
join_masks.cuda(), type_masks.cuda()
 samples, predicates, joins, targets, types = Variable(samples), Variable(predicates), Variable(joins), Variable(
 targets), Variable(types)
 sample_masks, predicate_masks, join_masks, type_masks = Variable(sample_masks), Variable(predicate_masks), Variable(
 join_masks), Variable(type_masks)

 optimizer.zero_grad()
 # print()
 # print("samples " + str(samples.shape))
 # print("predicates " + str(predicates.shape))
 # print("joins " + str(joins.shape))
 # print("sample_masks " + str(sample_masks.shape))
 # print("predicate_masks " + str(predicate_masks.shape))
 # print("join_masks " + str(join_masks.shape))
 # print()
 outputs = model(samples, predicates, joins, types, sample_masks, predicate_masks, join_masks, type_masks)
 loss = qerror_loss(outputs, targets.float(), min_val, max_val)
 loss_total += loss.item()
 loss.backward()
 optimizer.step()

 print("Epoch {}, loss: {}".format(epoch, loss_total / len(train_data_loader)))

 # Get final training and validation set predictions
 preds_train, t_total = predict(model, train_data_loader, cuda)
 print("Prediction time per training sample: {}".format(t_total / len(labels_train) * 1000))

 preds_test, t_total = predict(model, test_data_loader, cuda)
 print("Prediction time per validation sample: {}".format(t_total / len(labels_test) * 1000))

 # Unnormalize
 preds_train_unnorm = unnormalize_labels(preds_train, min_val, max_val)
 labels_train_unnorm = unnormalize_labels(labels_train, min_val, max_val)

 preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val)
 labels_test_unnorm = unnormalize_labels(labels_test, min_val, max_val)

 # Print metrics
 print("\nQ-Error training set:")
 print_qerror(preds_train_unnorm, labels_train_unnorm)

 print("\nQ-Error validation set:")
 print_qerror(preds_test_unnorm, labels_test_unnorm)
 print("")

 # Load test data
 file_name = "workloads/" + workload_name
 # joins, predicates, tables, samples, label = load_data(file_name, num_materialized_samples)
 joins, predicates, tables, label, types = load_data(file_name, num_materialized_samples)
 # Get feature encoding and proper normalization
 samples_test = encode_samples(tables, table2vec)
 predicates_test, joins_test = encode_data(predicates, joins, column_min_max_vals, column2vec, op2vec, join2vec)
 labels_test, _, _ = normalize_labels(label, min_val, max_val)
 types_test = encode_types(types, type2vec)

 print("Number of test samples: {}".format(len(labels_test)))

 max_num_predicates = max([len(p) for p in predicates_test])
 max_num_joins = max([len(j) for j in joins_test])

 # Get test set predictions
 test_data = make_dataset(samples_test, predicates_test, joins_test, types_test,labels_test, max_num_joins, max_num_predicates)
 test_data_loader = DataLoader(test_data, batch_size=batch_size)

31

 preds_test, t_total = predict(model, test_data_loader, cuda)
 print("Prediction time per test sample: {}".format(t_total / len(labels_test) * 1000))

 # Unnormalize
 preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val)

 # Print metrics
 print("\nQ-Error " + workload_name + ":")
 print_qerror(preds_test_unnorm, label)

 # Write predictions
 file_name = "results/predictions_" + workload_name + ".csv"
 os.makedirs(os.path.dirname(file_name), exist_ok=True)
 with open(file_name, "w") as f:
 for i in range(len(preds_test_unnorm)):
 f.write(str(preds_test_unnorm[i]) + "," + label[i] + "\n")

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument("testset", help="synthetic, scale, or job-light")
 parser.add_argument("--queries", help="number of training queries (default: 10000)", type=int, default=10000)
 parser.add_argument("--epochs", help="number of epochs (default: 10)", type=int, default=10)
 parser.add_argument("--batch", help="batch size (default: 1024)", type=int, default=1024)
 parser.add_argument("--hid", help="number of hidden units (default: 256)", type=int, default=256)
 parser.add_argument("--cuda", help="use CUDA", action="store_true")
 args = parser.parse_args()
 train_and_predict(args.testset, args.queries, args.epochs, args.batch, args.hid, args.cuda)

if __name__ == "__main__":
 # main()
 # train_and_predict("test", 4457, 2, 32, 128, False)
 X=[]
 Y=[]
 file_name = "results/predictions_test.csv"
 with open(file_name, 'r') as f:
 data_raw = list(list(rec) for rec in csv.reader(f, delimiter=','))
 for row in data_raw:
 X.append(float(row[0]))
 Y.append(row[1])

 print("\nQ-Error for postgreSQL :")
 print_qerror(X, Y)

32

Model.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from mscn.model111 import SetConv
import numpy as np

Define model architecture

class NN(nn.Module):
 def __init__(self, sample_feats, predicate_feats, join_feats, type_fests, hid_units):
 super(NN, self).__init__()
 self.SetConv = SetConv(sample_feats, predicate_feats, join_feats, type_fests, hid_units)
 self.Full_Connected1= nn.Linear(128,64)
 self.Full_Connected2= nn.Linear(64,16)
 self.Full_Connected3= nn.Linear(16,1)
 # self.Conv1 = nn.Conv1d(256,64,1)
 # self.relu= nn.ReLU()
 # self.maxpooling = nn.MaxPool1d(1)
 # self.Conv2 = nn.Conv1d(64,32,1)
 # self.flatten=nn.Flatten()
 # self.Drop= nn.Dropout(0.2)

 def forward(self, samples, predicates, joins, types, sample_mask, predicate_mask, join_mask, type_mask):
 # samples has shape [batch_size x num_joins+1 x sample_feats]
 # predicates has shape [batch_size x num_predicates x predicate_feats]
 # joins has shape [batch_size x num_joins x join_feats]
 # return self.SetConv(samples, predicates, joins, sample_mask, predicate_mask, join_mask)
 x=self.SetConv(samples, predicates, joins, types, sample_mask, predicate_mask, join_mask,type_mask)
 x = x.view(x.size(0), -1)
 x=self.Full_Connected1(x)
 x=self.Full_Connected2(x)
 x=self.Full_Connected3(x)
 # x= torch.unsqueeze(x,-1)
 # x=self.Conv1(x)
 # x = self.relu(x)
 # x= self.maxpooling(x)
 # x=self.Drop(x)
 #
 # x= self.Conv2(x)
 # x= self.relu(x)
 # x= self.maxpooling(x)
 # x=self.flatten(x)
 #
 # x=self.Full_Connected3(x)
 out=torch.sigmoid(x)
 return out

33

Util.py

import numpy as np

Helper functions for data processing

def chunks(l, n):
 """Yield successive n-sized chunks from l."""
 for i in range(0, len(l), n):
 yield l[i:i + n]

def get_all_column_names(predicates):
 column_names = set()
 for query in predicates:
 for predicate in query:
 if len(predicate) == 3:
 column_name = predicate[0]
 column_names.add(column_name)
 return column_names

def get_all_table_names(tables):
 table_names = set()
 for query in tables:
 for table in query:
 table_names.add(table)
 return table_names

def get_all_operators(predicates):
 operators = set()
 for query in predicates:
 for predicate in query:
 if len(predicate) == 3:
 operator = predicate[1]
 operators.add(operator)
 return operators

def get_all_joins(joins):
 join_set = set()
 for query in joins:
 for join in query:
 join_set.add(join)
 return join_set

def get_all_type(type):
 type_set = set()
 for t in type:
 type_set.add(t)
 return type_set

def idx_to_onehot(idx, num_elements):
 onehot = np.zeros(num_elements, dtype=np.float32)
 onehot[idx] = 1.
 return onehot

def get_set_encoding(source_set, onehot=True):
 num_elements = len(source_set)
 source_list = list(source_set)
 # Sort list to avoid non-deterministic behavior

34

 source_list.sort()
 # Build map from s to i
 thing2idx = {s: i for i, s in enumerate(source_list)}
 # Build array (essentially a map from idx to s)
 idx2thing = [s for i, s in enumerate(source_list)]
 if onehot:
 thing2vec = {s: idx_to_onehot(i, num_elements) for i, s in enumerate(source_list)}
 return thing2vec, idx2thing
 return thing2idx, idx2thing

def get_min_max_vals(predicates, column_names):
 min_max_vals = {t: [float('inf'), float('-inf')] for t in column_names}
 for query in predicates:
 for predicate in query:
 if len(predicate) == 3:
 column_name = predicate[0]
 val = float(predicate[2])
 if val < min_max_vals[column_name][0]:
 min_max_vals[column_name][0] = val
 if val > min_max_vals[column_name][1]:
 min_max_vals[column_name][1] = val
 return min_max_vals

def normalize_data(val, column_name, column_min_max_vals):
 min_val = column_min_max_vals[column_name][0]
 max_val = column_min_max_vals[column_name][1]
 val = float(val)
 val_norm = 0.0
 if max_val > min_val:
 val_norm = (val - min_val) / (max_val - min_val)
 return np.array(val_norm, dtype=np.float32)

def normalize_labels(labels, min_val=None, max_val=None):
 labels = np.array([np.log(float(l)) for l in labels])
 if min_val is None:
 min_val = labels.min()
 print("min log(label): {}".format(min_val))
 if max_val is None:
 max_val = labels.max()
 print("max log(label): {}".format(max_val))
 labels_norm = (labels - min_val) / (max_val - min_val)
 # Threshold labels
 labels_norm = np.minimum(labels_norm, 1)
 labels_norm = np.maximum(labels_norm, 0)
 return labels_norm, min_val, max_val

def unnormalize_labels(labels_norm, min_val, max_val):
 labels_norm = np.array(labels_norm, dtype=np.float32)
 labels = (labels_norm * (max_val - min_val)) + min_val
 return np.array(np.round(np.exp(labels)), dtype=np.int64)

def encode_samples(tables, table2vec):
 samples_enc = []
 for i, query in enumerate(tables):
 samples_enc.append(list())
 for j, table in enumerate(query):
 sample_vec = []
 # Append table one-hot vector
 sample_vec.append(table2vec[table])
 # Append bit vector

35

 # sample_vec.append(samples[i][j])
 sample_vec = np.hstack(sample_vec)
 samples_enc[i].append(sample_vec)
 return samples_enc

def encode_types(types, type2vec):
 type_enc = []
 for i, query in enumerate(types):
 type_enc.append(list())
 sample_vec = []
 # Append table one-hot vector
 sample_vec.append(type2vec[query])
 # Append bit vector
 # sample_vec.append(samples[i][j])
 sample_vec = np.hstack(sample_vec)
 type_enc[i].append(sample_vec)
 return type_enc

def encode_data(predicates, joins, column_min_max_vals, column2vec, op2vec, join2vec):
 predicates_enc = []
 joins_enc = []
 for i, query in enumerate(predicates):
 predicates_enc.append(list())
 joins_enc.append(list())
 for predicate in query:
 if len(predicate) == 3:
 # Proper predicate
 column = predicate[0]
 operator = predicate[1]
 val = predicate[2]
 norm_val = normalize_data(val, column, column_min_max_vals)

 pred_vec = []
 pred_vec.append(column2vec[column])
 pred_vec.append(op2vec[operator])
 pred_vec.append(norm_val)
 pred_vec = np.hstack(pred_vec)
 else:
 pred_vec = np.zeros((len(column2vec) + len(op2vec) + 1))

 predicates_enc[i].append(pred_vec)

 for predicate in joins[i]:
 # Join instruction
 join_vec = join2vec[predicate]
 joins_enc[i].append(join_vec)
 return predicates_enc, joins_enc

