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ABSTRACT 

With the booming development of the Internet, the amount of data stored in databases are 

enormously growing. Databases retrieve relevant information in response to users’ queries; the 

retrieved information is encoded in dynamically generated by databases in the form of structured 

data records. As the amount of data increases, the query time becomes longer and longer. So, there 

is an urgent need for database optimization. 

Database optimization is the strategy of reducing database system response time. Databases 

provide us with information stored with a hierarchical and related structure, which allows us to 

extract the content and arrange it easily. Database optimization includes avoiding unused tables, 

using proper indexing, avoiding temporary tables and coding loops and so on. In our research, we 

choose to optimize cardinality estimation in database optimizer.  

Cardinality estimation is a fundamental task in database query processing and optimization. 

However, the accuracy of traditional estimation techniques is poor resulting in non-efficient query 

execution plans. With the rise of deep learning, there is a general notion that data representation 

can lead to better estimation accuracy. Up to now, all proposed neural network approaches for 

cardinality estimation can only deal with inner joins between tables. To overcome this issue, we 

introduce a novel neural network (NN) in this paper. Through systematic experiments and 

scientific analysis results, it is proved that our model performs better than other models. This 

approach leads to better data representation and thus better estimation accuracy in multiple types 

of joins. 
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CHAPTER 1 INTRODUCTION 

1.1 Research Background 

Query optimization is based upon cardinality estimation. To be able to choose the optimal 

execution plan, the query optimizer needs to have good estimates for result sizes. Due to increasing 

data sizes, query optimization becomes a more difficult challenge. Most query optimization 

techniques are cost-based2,14, where cardinality estimation plays a dominant role in the approach 

to approximate the number of returned tuples for every query within a query execution plan. These 

estimations are used in various optimization techniques. For this reason, it is essential to improve 

the accuracy of cardinality estimation. 

Methods to improve the accuracy for cardinality estimation is an open area of research. Most 

traditional estimation approaches based on statistical models are not accurate enough. The reason 

is that they make unreasonable assumptions, which are data independent. Nowadays, we know that 

data carries important hidden information. So traditional approaches will lead to erroneous 

cardinality estimation. 

A possible way to break the limitations is to use machine learning, especially neural networks, for 

cardinality estimation. With the rise of machine learning in many different fields, database 

researchers also have started to apply machine learning to cardinality estimation7,8,9,11,13,16,19.  

We argue that deep learning is a highly promising technique for solving the cardinality estimation 

problem. Deep learning can model complex data dependencies and correlations. Neural networks 
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have powerful representation learning capabilities. Estimation can be considered as a supervised 

learning problem. The input to neural network contains tables, query features and join types, the 

output of the neural network is an estimated cardinality. Under these circumstances, there are 

several groups of researchers who already combined neural networks with cardinality estimation; 

however, they neglect to consider the actual query situation of the database. In other words, their 

models can only deal with inner joins, ignoring left and right joins. 

In this paper, we propose a neural network (NN) for multiple types of joins including inner join, 

left join and right join. NN addresses the aforementioned weak spot of the single join problem. 

Thus, even for large databases, our model is efficient because NN does not waste any capacity for 

memorizing. Combined with deep learning, NN has good performance with multiple types of joins. 

We evaluate our model using the IMDB and the Pagila datasets, which show that NN is more 

robust than other approaches in multiple types of joins. The comparison with other approaches is 

promising.  

1.2 Literature Review of Existing Models  

Traditional approaches of cardinality estimation in relational database management system rely on 

statistics that include histograms on each column in a table4,5,6, min and max values18, a list of most 

frequent values and their frequencies and the number of distinct values. However, with the 

development of data analysis, data independence has been shown to be a major problem for these 

statistical approaches, which leads to a non-efficient query execution plan.  

To solve this issue, a promising way is to use deep learning for cardinality estimation. Twenty 

years ago, neural networks had already been used for cardinality estimation10. Also, people had 

already combined machine learning with cardinality estimation. Regression-based models have 
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used for cardinality estimation1. A semi-automatic alternative for explicit machine learning was 

presented in paper12, where the feature space is partitioned using decision trees, and for each split 

a different regression model is learned. For a more sophisticated formulation way, reinforcement 

learning has been applied to query optimization in three articles9,13,17. Another two articles treat 

cardinality estimation as a supervised learning problem7,21. Woltmann21 introduces a local neural 

network concentrating on sub-part of the whole schema, which makes the query sampling less 

sparse and makes the smaller neural network structure. A. Kipf et al.7 introduce an approach called 

multi-set constitutional neural network (MSCN) which is a set-based neural network. MSCN uses 

bitmaps which are derived from samples given the truth values of the query’s predicates. MSCN 

is capable of modeling joins and predicates over several tables and thus can cover correlations in 

the data. MSCN depends on large bitmaps to cover the whole schema in order to find query 

execution plans. If a query without bitmaps is passed to the neural network, the network will return 

an erroneous estimation. Additionally, the main assumption in these two works is that there are 

only inner joins in any database. However, in practice, this hardly happens. If a query with left or 

right joins is passed to their models, the networks' capability fails, and the estimate is erroneous. 

Their neural networks only work on the inner join situation. 

1.3 Problem Statement 

The discussion above reveals that the previous studies on improve the accuracy of cardinality 

estimation pay more attention to statistics that include histograms on each column in a table and 

pay less attention to the schema of the database. Whereas the schema of the database is essential 

for cardinality estimation. The existing models ignore the relationship between cardinality 

estimation and the schema of the database. So existing models maybe perform well on inner join 

situation, they perform bad on multiple type situations such as left join and right join situations.  
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Our approach overcomes this issue, NN is a neural network which can handle sophisticated 

multiple types of joins situations and hence derives better estimates. 

1.4 Research Objectives 

The main objective of this research is to improve the accuracy of cardinality estimation. The 

detailed objectives are as follows: 

(1) To conduct a thorough literature review to screen the most promising models that can well 

applying deep learning to the cardinality estimation task; 

(2) To overcome the problem that neural networks can only take numerical values as input 

vectors, we use vectorization and one-hot encoding to transform their string representations 

to numerical vectors; 

(3) To propose a new model based on vectorization and one-hot encoding calculated by the 

neural network to yield more accurate cardinality estimation. 

1.5 Thesis Structure 

(1) Chapter 1 presents research background, literature review, problem statement, research 

objectives, and thesis structure. 

(2) Chapter 2 introduces the methodology employed in this thesis, including the introduction of 

neural network, vectorization and one-hot encoding for neural network, and the new model 

proposed in this study.  

(3) Chapter 3 demonstrates the data set we use, the way we generate training data and validation 

data, hyperparameter tuning and runtime performance. This chapter also introduces the way we 

use to judge if our model is the most suitable model to solve cardinality estimation problem 

including statistical significant testing and effect size. 
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(4) Chapter 4 summarizes the conclusions obtained in this study and the recommendations for 

future work.  
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CHAPTER 2 METHODOLOGY 

2.1 Deep Learning and Neural Network 

Deep learning is a subset of machine learning where neural networks learn from large amounts of 

data. The algorithms of neural networks are inspired by the human brain. Deep learning algorithms 

perform a task repeatedly and gradually improve the outcome through deep layers that enable 

progressive learning. Deep learning is making a big impact across industries. In life sciences, deep 

learning can be used for advanced image analysis, research, drug discover, prediction of health 

problems and disease symptoms, and the acceleration of insights from genomic sequencing. In 

transportation, it can help autonomous vehicles adapt to changing conditions. It is also used to 

protect critical infrastructure and speed response.  

Deep learning methods is based on artificial neural networks with representation learning. The 

architectures of deep learning such as deep neural networks, deep belief networks, recurrent neural 

networks and convolutional neural networks have been applied to fields including computer 

vision, machine vision, speech recognition, natural language processing, audio recognition and so 

on.  

The artificial neural networks have good representation capabilities, which can learn the hidden 

information between data. For example, applying convolutional neural networks (CNN) to 

computer vision, by using convolution and pooling, CNN can learn the connection between pixels.  

In order to improve the accuracy of cardinality estimation, we choose artificial neural network as 

our model. Our model is fully connected deep network. Fully connected networks are the 
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workhorses of deep learning, used for thousands of applications. The major advantage of fully 

connected networks is that they are “structure agnostic”. That is, no special assumptions need to 

be made about the input (for example, that the input consists of images or videos). We cannot 

know the hidden information between fields in each table, and the hidden information between 

tables. In this way, fully connected networks are applicable for handling cardinality estimation 

problem. The structure of fully connected neural network are shown in Figure 1. A fully connected 

neural network consists of a series of fully connected layers. A fully connected layer is a function 

from 𝑅𝑚 to 𝑅𝑛. Each output dimension depends on each input dimension. 
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Figure 1 The structure of fully connected neural network. 

2.2 Neural Network (NN) 

A typical machine learning algorithm, like regression or classification, is designed for fixed 

dimensional data instances. Their extensions to handle the case when the inputs or outputs are 

permutation invariant sets rather than fixed dimensional vectors is not trivial. However, for our 
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task that improve the accuracy of cardinality estimation, just using vectors are not suitable. Vectors 

have orders, they carry hidden information through the orders. We plan to learn the correlations 

between tables in the datasets, the order of tables and the fields is meaningless. That means, the 

order carries no information we need.  

For our neural network, we want the input instances are four parts rather than traditional vectors. 

Similar to fixed dimensional data instances, we use two learning paradigms in case of parts. In 

supervised learning, we have an output label for a part that is invariant or equivariant to the 

permutation of elements. We use the queries of the datasets for training and testing, the order of 

the queries carries nothing information. Therefore, we use four parts as our input. 

From a high-level perspective, applying deep learning to the cardinality estimation task is 

straightforward. Placing the features of queries including tables, joins and columns etc. into the 

neural network, and then deriving the estimate as output later. After training a model, the model 

can be a query optimizer for other queries. Deep learning algorithms indeed enhance the accuracy 

of the cardinality estimation task compared to traditional approaches.  

Before discussing NN directly, we introduce the techniques which do featurization for queries first 

including vectorization and one-hot encoding for queries. After that, we introduce the key idea of 

NN in Section 2.4. 

2.3 Vectorization And One-hot Encoding 

Neural networks can only take numerical values as input vectors. However, in real world databases, 

there are always string values instead of numerical values. Many deep learning algorithms cannot 

operate on string data directly. To overcome this problem, we use Vectorization and one-hot 
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encoding to transform the four parts (Tq, Jq, Pq, TJq) from their string representations to numerical 

vectors. 

Each table  𝑡 ∈ 𝑇  is represented by a unique one-hot encoding vector v. Since Table part T is 

unique which does not contain any duplicate table, every vector v is unique. This ensures that the 

neural network can learn the global schema. Similarly, each join  𝑗 ∈ 𝐽 transforms to a unique one-

hot encoding. Every vector of join is also unique. For predicate part P, the process becomes a little 

bit complex. Each predicate is an expression instead of a string. The form of P is (column, operator, 

value). We featurize column by a unique one-hot encoding. With three singular operators >, <,

=, we need a vector of length three to model all possible operators. The presence of an operator 

dictates a 1 at the corresponding position in the vector. For example, > generates (1,0,0) and ≥ 

generates (1,1,0). Finally, the value vi is already a number. However, neural networks are usually 

used with min-max-normalized input vectors ranging from 0 to 1 to enhance their accuracy. In 

order to get the best performance of NN, we normalized vi to [0,1] as shown in Equation (1). 

𝑣𝑖 =
𝑣𝑖−min (𝑝)

max(𝑝)−min (𝑝)
                                                                    (1) 

Where min(p) is the minimum boundary of the range of predicate p and max(p) is the maximum 

boundary. These can be obtained directly from the database. 

The last part is encoding the types of join part TJ. NN supports the recognition of three types of 

joins, left, inner and right join. Thus, we also need a vector of length three to model all possible 

types of joins. The final vector is shown in Figure 2. 
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Figure 2 Numerical query representation. 

2.4 The Structure Of NN 

Standard neural network architectures are not suitable for this type of data structure. Convolutional 

neural networks (CNNs) are applicable to images, recurrent neural networks (RNNs) are 

applicable to time-series data. However, we require multi-layer perceptrons (MLPs) with 

serialization to deal with queries. Multi-layer perceptions are defined by three types of layers: input, 

hidden and output layers. Each neuron is connected to all the neurons in both the previous and 

following layer. Thus, they are also called a fully connected layer.  

We use MLPs to simulate the global schema. The structure of NN is shown in Figure 3. We 

generate queries from the datasets. The queries we generated is based on the frequency of the 

tables and the columns. Simultaneously, we would generate the queries based on the whole schema. 

The two types of queries will help the neural network learn the globe structure which is the whole 

schema and the local structure which is the local schema.   

We get tables, joins, conditions and true cardinalities from the database. And then using 

vectorization and one-hot encoding to help queries generates its numerical representations. Our 

query representation consists of a collection of multiple parts, which including Tables part, Joins 

part, Predicates part and Types of join part. we merge the individual part representations by 

concatenation and then put them into a neural network. The hidden layers of NN are three fully 

connected layers, which use ReLU activation functions. For the output layer of NN, we use a 

sigmoid activation function, and the output is a scalar which between 0 and 1. Based on the 

normalization of the predicate value by using the minimum and maximum values. 
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We train our model to minimize the mean q-error15. This article demonstrates that q-error is more 

suitable for judging the accuracy of the estimates compared to mean-squared error.  

The smaller the q-error is, the better the neural network trained.  

I use PyCharm to experiment. And using Torch to build the network. The core code of the 

experiment is detailed in Appendix A. It only shows the code of the main steps in the experiment, 

including preprocessing, training, and model structure. Does not include data set extraction and 

other complex tasks. 

 

 

Figure 3 The architecture of Neural network (NN). 
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CHAPTER 3 EXPERIMENT AND RESULTS  

We conduct an experimental study to evaluate the performance of our approach. We begin by the 

generating a training data (Section 3.1 and Section 3.2), including details about the data sets. In 

Section 3.3, we present details of the experiment results. In Section 3.4, we present the statistical 

significant testing and effect size for Section 3.3. In Section 3.5, we describe hyperparameter 

tuning. Finally, the runtime performance is shown in Section 3.6. 

3.1 Generating training data for IMDb 

We use the IMDb data set as our first experiment to evaluate our approach. IMDb is a well-known 

online Internet Movie Database, which captures approximately 6.5 million titles (including 

episodes) and 10.4 million personalities in its database. Therefore, IMDb contains various complex 

correlations between tables, and it is challenging for cardinality estimation.  

We choose title, movie_info, movie_companies, movie_keyword and cast_info as our main tables. 

We focus on the complex correlations among them. For example, table title contains more than 4 

million distinct values, table movie_companies contain nearly 3 million distinct values. More 

details are listed on Table 1. All properties are chosen in order to ensure comparability with other 

approaches. We select all columns from each join which can be represented as integers.  

We generate a training set and a test set which focuses on the five tables. Both sets contain complex 

multiple types of join including left, right and inner joins. All queries in the training set and test 

set are two table or three table joins.  
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Left, inner and right joins each account for 1/3 both in the training and test set. Our model is 

different from MSCN7 and local deep learning models20, NN do not require bitmap sampling to 

improve its accuracy. Therefore, NN uses less memory in a shorter training time. This is another 

reason why NN can learn more complex database schemas. 

Table 1 Detail information about tables in IMDb. 

table column min value max value 
number of 

distinct values 

title  kind_id 1 8 8 

title production_year 1874 2018 144 

movie_info movie_id 1 4730460 4519477 

movie_info info_type_id 1 98 61 

movie_companies company_id 1 319060 319060 

movie_keyword keyword_id 1 236627 236627 

cast_info person_id 1 6128554 6122920 

cast_info role_id 1 11 10 

3.2 Generating training data for Pagila 

We use Pagila as our second data set to evaluate our approach. Pagila is a sample database from 

PostgreSQL to show the basic functions of the database. Pagila is the DVD rental database, which 

contains 15 tables and over 30,000 pieces of data.  

We choose rental, payment, custom, inventory, film as our tables. More details are shown in Table 

2. In order for our model to learn complex correlations among them, we also generate a training 

set and a test set as before. All queries in the training set and test set are two table or three table 

joins. Again, left, inner and right joins each account for 1/3 both in the training set and test set.  

Table 2 Detail information about tables in Pagila. 

table coulumn min value max value 
number of 

distinct values 

rental rental_id 1 16049 16049 

payment id 1 16049 16049 

payment amount 0.00 11.99 12 

custom custom_id 1 599 599 
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inventory inventory_id 1 4581 4581 

film length 1 4581 4581 

3.3 Estimation accuracy 

3.3.1 Estimation accuracy for IMDb 

To evaluate the estimation accuracy of our model, we compare our approach with two other 

techniques. First, we select a traditional estimate approach which does not use machine learning. 

PostgreSQL use traditional estimations based on histograms on each column in a table and a list 

of most frequent values and their frequencies. The other approach is multi-set convolutional neural 

network (MSCN) which is a state-of-the-art approach using deep learning for cardinality 

estimation. In order to compare with MSCN, we use the same data set, and the queries are 

generated in the same tables. MSCN uses samples to help their model learn mappings and thus 

improve accuracy. 

Figure 4 and Table 3 detail the experiment results for the three different approaches. In the figure, 

the q-error of each estimate is scaled to a log-space on the y-axis. The underestimates give negative 

values and overestimates give positive values. The line inside the box is the median q-error. Table 

3 shows detailed q-errors of each model including median q-error, 90th q-error, 95th q-error, 99th 

q-error, max q-error and mean q-error on the same test set. 

From Figure 4 and Table 3, it suggests that our model is more accurate than PostgreSQL and 

MSCN in multiple types of join situations. 
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Figure 4 Different cardinality estimators evaluation results. 

Table 3 Experiment result comparison. 

model median q-error 
90th q-

error 

95th q-

error 

99th q-

error 

max q-

error 

mean 

q-error 

PostgreSQL 2.16 43.34 112 1131.21 470132 976.07 

MSCN 9.73 188.79 376.55 2400 4267.63 106.46 

NN 2.29 12.25 26.47 201.36 2868 14.83 

3.3.2 Estimation accuracy for Pagila 

For the second experiment, our goal is to compare NN with traditional estimate approaches in 

PostgreSQL. Traditional estimate approaches based on histograms on each column in a table and 

a list of most frequent values and their frequencies to derive estimate. Pagila is a small data set 

compared to IMDb, it only contains over 30,000 pieces of data. Traditional approaches may 

perform well for small data sets. Figure 5 and Table 4 detail the experiment results for the two 

approaches. The MSCN open-source version is only a partial implementation of the article, hence 

it cannot be applied to Pagila. 

From Table 4, we can see that NN performs better than traditional approaches in PostgreSQL. 

And from Figure 5, we can see that the estimates derived from NN are more accurate than 
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PostgreSQL. Most estimates are really near the true cardinality values. From the second 

experiment, we can draw a conclusion that NN performs better than PostgreSQL in multiple types 

of joins situations. 

Table 4 Experiment result comparison. 

model median q-error 
90th q-

error 

95th q-

error 

99th q-

error 

max q-

error 

mean q-

error 

NN 1.04137 6.42184 7.0 174.420 438.0 6.39075 

PostgreSQL 2.36820 16.01582 72.99068 2726.760 9719.0 97.77848 

 

 

Figure 5 Different cardinality estimators evaluation results. 

3.4 Statistical Significant Testing And Effect Size 

3.4.1 Statistical Significant Testing And Effect Size for IMDb 

Judging the quality of a model cannot be done by only using the mean q-error. We need more 

scientific methods to evaluate if NN is truly better than the other two models. We use the Mann–

Whitney U test (MWW) and an Effect Size estimation3 (Cliff's Delta) to determine whether our 

approach is statistically significantly more accurate than others. The Mann–Whitney U test is a 
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nonparametric test that can be used to determine whether two independent samples are selected 

from populations having the same distribution. If population 1 and 2 are unequal, then at any fixed 

𝛼 level of significance the probability of the MWW test being significant at the 𝛼 level tends to 1 

as the m, n sample size values tend to infinity. By contrast, if populations 1 and 2 are equal, then 

the probability of the MWW test being significant at the 𝛼 level will not tend to 120. 

The null hypothesis for 𝛼 = 0.05 is that the prediction data of NN, MSCN and PostgreSQL are 

from the same distribution. We make three comparing experiments here: the first experiment is 

NN VS MSCN, the second is NN VS PostgreSQL and the last one is MSCN VS PostgreSQL. The 

results are shown in Table 5. 

Table 5 Mann–Whitney U test experiments results for IMDb. 

Competing 

models 
statistic p-value 

NN VS MSCN 551566.5 
1.6541e-

23 

NN VS 

PostgreSQL 
706647.0 

2.1574e-

07 

MSCN VS 

PostgreSQL 
558334.5 

8.3136e-

22 

 

The size of our test sets is 1500 samples. From Table 5, we can see that the p-values are close to 

0, with no value larger than 0.05 which means that the data of the three models are from different 

distributions. Also, we use Cliff's Delta to estimate the effect size. Effect size is a simple way of 

quantifying the difference between two groups that has many advantages over the use of tests of 

statistical significance alone1. It reflects the statistical effect size between two populations. Cliff's 

Delta d produces a value between -1 to 1. 0 indicates that the two groups distributions overlap 

completely. An effect size of 1 or -1 indicates the absence of overlap between the two groups. The 
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larger absolute value of delta the smaller the overlap between two distributions. The equation is 

shown in Equation (2).  

𝑑𝑒𝑙𝑡𝑎 =
∑ [𝑥𝑖>𝑥𝑗]−[𝑥𝑖<𝑥𝑗]𝑖,𝑗

𝑚𝑛
                                             (2) 

Where the two distributions are of size n and m with items xi and xj respectively. and [∙] is the 

Iverson bracket, which is 1 when the contents are true and 0 when false. 

From Table 6, we can see that the delta of NN and MSCN is 0.3634 and the delta of NN and 

PostgreSQL is 0.8752. These imply the prediction data of NN is significantly different from the 

other two models. Combined with the q-error in Section 4.2, we can draw a conclusion that NN 

indeed improves the accuracy of cardinality estimation in multiple types of joins situations. 

Table 6 Effect Size results for IMDb. 

Competing 

models 
Effect Size (d) 

NN VS MSCN 0.3634 

NN VS 

PostgreSQL 
0.8752 

MSCN VS 

PostgreSQL 
0.4552 

 

3.4.2 Statistical Significant Testing And Effect Size for Pagila 

We also use Mann–Whitney U test (MWW) and Effect Size to determine whether NN is 

statistically significantly accurate for the Pagila data set. The p-value is shown in Table 7. Our test 

set is over 1200 queries. From Table 7, we can deduce that the prediction data of NN and 

PostgreSQL are not from the same distribution. 
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Next, we still use Cliff's Delta to estimate the effect size. The result is shown in Table 8. The delta 

𝑑 = 0.37, which is larger than 0. Combined with the q-error, we can conclude that the prediction 

data of NN is different from PostgreSQL, and NN improve the accuracy for the small data set. 

Table 7 Mann–Whitney U test experiments results for Pagila. 

Competing 

models 
statistic p-value 

NN VS 

PostgreSQL 
306025 

2.258e-

14 

 

Table 8 Effect Size results for Pagila. 

Competing 

models 
Effect Size (d) 

NN VS 

PostgreSQL 
0.37 

 

3.5 Hyperparameter Tuning 

3.5.1 Hyperparameter Tuning for IMDb 

For hyperparameter tuning of our model, we tuned the hyperparameters including epochs, batch 

size, the number of hidden units and the learning rate. The number of hidden units means the width 

of the neural network which influences performance of neural networks. More hidden units mean 

larger model sizes and increased costs in training and prediction. The learning rate and batch are 

both influence the convergence during training.  

We varied the number of epochs (30,40,50,60,70,80,90,100), the number of batch size 

(16,32,64,128,256,1024), the number of hidden units (32,64,128,256) and the learning rate 

(0.1,0.01,0.001), resulting in 576 different configurations. For each configuration, we train the 

model three times using a training sets of 6750 queries and a validation set of 750 queries. After a 
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detail comparison, we found that the configuration with 40 epochs, 128 batch size, 256 hidden 

units and 0.001 learning rate performs best over others on the validation set. And after 70 epochs, 

the model becomes overfitted, this is due to the model capturing the noise in the training set and 

results in poor prediction performance. Figure 6 shows the detail of the mean q-error with the 

number of epochs.  

 

Figure 6 mean q-error with the number of epochs. 

3.5.2 Hyperparameter Tuning for Pagila 

As what did in hyperparameter tuning for IMDb, we also tuned the hyperparameters including 

epochs, batch size, the number of hidden units and the learning rate. Like what we did before, we 

still varied the number of epochs (30,40,50,60,70,80,90,100), the number of batch size 

(16,32,64,128,256,1024), the number of hidden units (32,64,128,256) and the learning rate 

(0.1,0.01,0.001), resulting in 576 different configurations. At this time, our training set is 4800 

queries and a validation set 480 queries. In the end, we found the best hyperparameters for our 

model, which are 30 epochs, 32 batch size, 128 hidden units and 0.001 learning rate. 
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3.6 Runtime Performance 

Runtime performance is a key feature of models that can be used for cardinality estimation in a 

database management system. Since the cardinality estimation for PostgreSQL is directly obtained 

from database, so we will not add PostgreSQL to comparison. To evaluate the runtime 

performance of different models, we use a training set containing 7500 queries and test set 

containing 1500 queries to train models. For MSCN and our model NN, we train the two model 

with a GPU and the batch size of 128. After the two models convergenced, we compare the training 

time and the test time for each query. Table 9 shows the detail about the comparison.  

From Table 9, it can be seen that the training time of our model is much faster than MSCN as well 

as the test time per query.  

Table 9 Runtime performance comparison. 

model Training time 

Test time 

(per 

query) 

MSCN 720s 23ms 

NN 193s 15ms 
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CHAPTER 4 CONCLUSIONS AND FUTURE WORK 

4.1 Future Work 

In this paper, we propose a new approach of using deep learning for cardinality estimation. Our 

model can beat state-of-the art approaches in multiple types of join situations. However, it can be 

extended to a more complex and powerful model. In the following, we discuss what we can 

improve in the future. 

More Table Joins. NN can do an excellent job for two and three tables join. However, this is not 

enough in real work situations. More tables joins brings complex correlations between tables, 

adapting many tables in multiple types of join situations is a challenging problem. 

Precise queries. We generate random queries based upon the database schema for training and 

testing. Usually, if you want to improve the accuracy of the model, it may need many queries. This 

kind of work is not efficient enough. The next stage of work is to generate more precise queries 

which can precisely reflect the relationship between queries. The advantage of precise queries is 

that the model can learn the correlations between tables faster and use fewer queries. Fewer precise 

queries can save costs. 

Online Learning. Throughout this work, we have assumed an immutable(read-only) database. In 

the real world, the database is constantly changing. If data and schema change a little, NN can 

tolerate minor shifts in data distribution and correlation. However, if data and schema change 

heavily, we can either completely re-train NN or we can modify NN to adapt to that situation, a 

possible way is to combine incremental learning. 
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However, completely re-training NN is not easy. It brings considerable costs including re-

executing queries to obtain new cardinalities or even generating new queries based on a new 

schema. If we can combine incremental learning, instead of re-training the whole model, we could 

use the model and just apply new samples. 

Combining traditional approaches. Although traditional approaches perform poorly in cardinality 

estimation, these approaches are cost effective. If we can combine the histograms and a list of 

frequent values and its values, we may see great benefits. 

4.2 Conclusions 

In summary, we introduced a new approach NN which is a deep learning model for cardinality 

estimation. The experiment results show that our NN can handle multiple types of join situations 

and performs well in terms of accuracy when compared to other approaches. Our model is the first 

approach to concentrate on multiple types of join situation including left, inner and right joins. 
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APPENDIX 

Appendix A. The core code of the experiment. 

Train.py 

import argparse 
import time 
import os 
import csv 
import torch 
from torch.autograd import Variable 
from torch.utils.data import DataLoader 
 
from mscn.util import * 
from mscn.data import get_train_datasets, load_data, make_dataset 
from mscn.model111 import SetConv 
from mscn.model import NN 
 
 
def unnormalize_torch(vals, min_val, max_val): 
    vals = (vals * (max_val - min_val)) + min_val 
    return torch.exp(vals) 
 
 
def qerror_loss(preds, targets, min_val, max_val): 
    qerror = [] 
    preds = unnormalize_torch(preds, min_val, max_val) 
    targets = unnormalize_torch(targets, min_val, max_val) 
 
    for i in range(len(targets)): 
        if (preds[i] > targets[i]).cpu().data.numpy()[0]: 
            qerror.append(preds[i] / targets[i]) 
        else: 
            qerror.append(targets[i] / preds[i]) 
    return torch.mean(torch.cat(qerror)) 
 
 
def predict(model, data_loader, cuda): 
    preds = [] 
    t_total = 0. 
 
    model.eval() 
    for batch_idx, data_batch in enumerate(data_loader): 
 
        samples, predicates, joins, targets, types, sample_masks, predicate_masks, join_masks, type_masks = data_batch 
 
        if cuda: 
            samples, predicates, joins, targets, types = samples.cuda(), predicates.cuda(), joins.cuda(), targets.cuda(), types.cuda() 
            sample_masks, predicate_masks, join_masks, type_masks = sample_masks.cuda(), predicate_masks.cuda(), 
join_masks.cuda(), type_masks.cuda() 
        samples, predicates, joins, targets, types = Variable(samples), Variable(predicates), Variable(joins), Variable( 
            targets), Variable(types) 
        sample_masks, predicate_masks, join_masks, type_masks = Variable(sample_masks), Variable(predicate_masks), Variable( 
            join_masks), Variable(type_masks) 
 
        t = time.time() 



29 

        outputs = model(samples, predicates, joins, types, sample_masks, predicate_masks, join_masks, type_masks) 
        t_total += time.time() - t 
 
        for i in range(outputs.data.shape[0]): 
            preds.append(outputs.data[i]) 
 
    return preds, t_total 
 
 
def print_qerror(preds_unnorm, labels_unnorm): 
    qerror = [] 
    for i in range(len(preds_unnorm)): 
        if preds_unnorm[i] > float(labels_unnorm[i]): 
            qerror.append(preds_unnorm[i] / float(labels_unnorm[i])) 
        else: 
            qerror.append(float(labels_unnorm[i]) / float(preds_unnorm[i])) 
 
    print("Median: {}".format(np.median(qerror))) 
    print("90th percentile: {}".format(np.percentile(qerror, 90))) 
    print("95th percentile: {}".format(np.percentile(qerror, 95))) 
    print("99th percentile: {}".format(np.percentile(qerror, 99))) 
    print("Max: {}".format(np.max(qerror))) 
    print("Mean: {}".format(np.mean(qerror))) 
 
 
def train_and_predict(workload_name, num_queries, num_epochs, batch_size, hid_units, cuda): 
    # Load training and validation data 
    num_materialized_samples = 1000 
    dicts, column_min_max_vals, min_val, max_val, labels_train, labels_test, max_num_joins, max_num_predicates, train_data, 
test_data = get_train_datasets( 
        num_queries, num_materialized_samples) 
    table2vec, column2vec, op2vec, join2vec, type2vec = dicts 
 
    # Train model 
    # sample_feats = len(table2vec) + num_materialized_samples 
    sample_feats = len(table2vec) 
    predicate_feats = len(column2vec) + len(op2vec) + 1 
    join_feats = len(join2vec) 
    type_feats= len(type2vec) 
 
    # print("sample_feats " + str(sample_feats)) 
    # print("predicate_feats " + str(predicate_feats)) 
    # print("join_feats " + str(join_feats)) 
 
    # model = SetConv(sample_feats, predicate_feats, join_feats, type_feats, hid_units) 
 
    model = NN(sample_feats, predicate_feats, join_feats, type_feats, hid_units) 
 
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001) 
 
    if cuda: 
        model.cuda() 
 
    train_data_loader = DataLoader(train_data, batch_size=batch_size) 
    test_data_loader = DataLoader(test_data, batch_size=batch_size) 
 
    model.train() 
    for epoch in range(num_epochs): 
        loss_total = 0. 
 
        for batch_idx, data_batch in enumerate(train_data_loader): 
 
            samples, predicates, joins, targets, types, sample_masks, predicate_masks, join_masks, type_masks = data_batch 
 
            if cuda: 
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                samples, predicates, joins, targets, types = samples.cuda(), predicates.cuda(), joins.cuda(), targets.cuda(), types.cuda() 
                sample_masks, predicate_masks, join_masks, type_masks = sample_masks.cuda(), predicate_masks.cuda(), 
join_masks.cuda(), type_masks.cuda() 
            samples, predicates, joins, targets, types = Variable(samples), Variable(predicates), Variable(joins), Variable( 
                targets), Variable(types) 
            sample_masks, predicate_masks, join_masks, type_masks = Variable(sample_masks), Variable(predicate_masks), Variable( 
                join_masks), Variable(type_masks) 
 
            optimizer.zero_grad() 
            # print() 
            # print("samples " + str(samples.shape)) 
            # print("predicates " + str(predicates.shape)) 
            # print("joins " + str(joins.shape)) 
            # print("sample_masks " + str(sample_masks.shape)) 
            # print("predicate_masks " + str(predicate_masks.shape)) 
            # print("join_masks " + str(join_masks.shape)) 
            # print() 
            outputs = model(samples, predicates, joins, types, sample_masks, predicate_masks, join_masks, type_masks) 
            loss = qerror_loss(outputs, targets.float(), min_val, max_val) 
            loss_total += loss.item() 
            loss.backward() 
            optimizer.step() 
 
        print("Epoch {}, loss: {}".format(epoch, loss_total / len(train_data_loader))) 
 
    # Get final training and validation set predictions 
    preds_train, t_total = predict(model, train_data_loader, cuda) 
    print("Prediction time per training sample: {}".format(t_total / len(labels_train) * 1000)) 
 
    preds_test, t_total = predict(model, test_data_loader, cuda) 
    print("Prediction time per validation sample: {}".format(t_total / len(labels_test) * 1000)) 
 
    # Unnormalize 
    preds_train_unnorm = unnormalize_labels(preds_train, min_val, max_val) 
    labels_train_unnorm = unnormalize_labels(labels_train, min_val, max_val) 
 
    preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val) 
    labels_test_unnorm = unnormalize_labels(labels_test, min_val, max_val) 
 
    # Print metrics 
    print("\nQ-Error training set:") 
    print_qerror(preds_train_unnorm, labels_train_unnorm) 
 
    print("\nQ-Error validation set:") 
    print_qerror(preds_test_unnorm, labels_test_unnorm) 
    print("") 
 
    # Load test data 
    file_name = "workloads/" + workload_name 
    # joins, predicates, tables, samples, label = load_data(file_name, num_materialized_samples) 
    joins, predicates, tables, label, types = load_data(file_name, num_materialized_samples) 
    # Get feature encoding and proper normalization 
    samples_test = encode_samples(tables, table2vec) 
    predicates_test, joins_test = encode_data(predicates, joins, column_min_max_vals, column2vec, op2vec, join2vec) 
    labels_test, _, _ = normalize_labels(label, min_val, max_val) 
    types_test = encode_types(types, type2vec) 
 
    print("Number of test samples: {}".format(len(labels_test))) 
 
    max_num_predicates = max([len(p) for p in predicates_test]) 
    max_num_joins = max([len(j) for j in joins_test]) 
 
    # Get test set predictions 
    test_data = make_dataset(samples_test, predicates_test, joins_test, types_test,labels_test, max_num_joins, max_num_predicates) 
    test_data_loader = DataLoader(test_data, batch_size=batch_size) 
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    preds_test, t_total = predict(model, test_data_loader, cuda) 
    print("Prediction time per test sample: {}".format(t_total / len(labels_test) * 1000)) 
 
    # Unnormalize 
    preds_test_unnorm = unnormalize_labels(preds_test, min_val, max_val) 
 
    # Print metrics 
    print("\nQ-Error " + workload_name + ":") 
    print_qerror(preds_test_unnorm, label) 
 
    # Write predictions 
    file_name = "results/predictions_" + workload_name + ".csv" 
    os.makedirs(os.path.dirname(file_name), exist_ok=True) 
    with open(file_name, "w") as f: 
        for i in range(len(preds_test_unnorm)): 
            f.write(str(preds_test_unnorm[i]) + "," + label[i] + "\n") 
 
 
def main(): 
    parser = argparse.ArgumentParser() 
    parser.add_argument("testset", help="synthetic, scale, or job-light") 
    parser.add_argument("--queries", help="number of training queries (default: 10000)", type=int, default=10000) 
    parser.add_argument("--epochs", help="number of epochs (default: 10)", type=int, default=10) 
    parser.add_argument("--batch", help="batch size (default: 1024)", type=int, default=1024) 
    parser.add_argument("--hid", help="number of hidden units (default: 256)", type=int, default=256) 
    parser.add_argument("--cuda", help="use CUDA", action="store_true") 
    args = parser.parse_args() 
    train_and_predict(args.testset, args.queries, args.epochs, args.batch, args.hid, args.cuda) 
 
 
if __name__ == "__main__": 
    # main() 
    # train_and_predict("test", 4457, 2, 32, 128, False) 
    X=[] 
    Y=[] 
    file_name = "results/predictions_test.csv" 
    with open(file_name, 'r') as f: 
        data_raw = list(list(rec) for rec in csv.reader(f, delimiter=',')) 
        for row in data_raw: 
            X.append(float(row[0])) 
            Y.append(row[1]) 
 
    print("\nQ-Error for postgreSQL :") 
    print_qerror(X, Y) 
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Model.py 

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
from mscn.model111 import SetConv 
import numpy as np 
 
 
 
# Define model architecture 
 
class NN(nn.Module): 
    def __init__(self, sample_feats, predicate_feats, join_feats, type_fests, hid_units): 
        super(NN, self).__init__() 
        self.SetConv = SetConv(sample_feats, predicate_feats, join_feats, type_fests, hid_units) 
        self.Full_Connected1= nn.Linear(128,64) 
        self.Full_Connected2= nn.Linear(64,16) 
        self.Full_Connected3= nn.Linear(16,1) 
        # self.Conv1 = nn.Conv1d(256,64,1) 
        # self.relu= nn.ReLU() 
        # self.maxpooling = nn.MaxPool1d(1) 
        # self.Conv2 = nn.Conv1d(64,32,1) 
        # self.flatten=nn.Flatten() 
        # self.Drop= nn.Dropout(0.2) 
 
 
 
    def forward(self, samples, predicates, joins, types, sample_mask, predicate_mask, join_mask, type_mask): 
        # samples has shape [batch_size x num_joins+1 x sample_feats] 
        # predicates has shape [batch_size x num_predicates x predicate_feats] 
        # joins has shape [batch_size x num_joins x join_feats] 
        # return self.SetConv(samples, predicates, joins, sample_mask, predicate_mask, join_mask) 
        x=self.SetConv(samples, predicates, joins, types, sample_mask, predicate_mask, join_mask,type_mask) 
        x = x.view(x.size(0), -1) 
        x=self.Full_Connected1(x) 
        x=self.Full_Connected2(x) 
        x=self.Full_Connected3(x) 
        # x= torch.unsqueeze(x,-1) 
        # x=self.Conv1(x) 
        # x = self.relu(x) 
        # x= self.maxpooling(x) 
        # x=self.Drop(x) 
        # 
        # x= self.Conv2(x) 
        # x= self.relu(x) 
        # x= self.maxpooling(x) 
        # x=self.flatten(x) 
        # 
        # x=self.Full_Connected3(x) 
        out=torch.sigmoid(x) 
        return out 
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Util.py 

import numpy as np 
 
 
# Helper functions for data processing 
 
def chunks(l, n): 
    """Yield successive n-sized chunks from l.""" 
    for i in range(0, len(l), n): 
        yield l[i:i + n] 
 
 
def get_all_column_names(predicates): 
    column_names = set() 
    for query in predicates: 
        for predicate in query: 
            if len(predicate) == 3: 
                column_name = predicate[0] 
                column_names.add(column_name) 
    return column_names 
 
 
def get_all_table_names(tables): 
    table_names = set() 
    for query in tables: 
        for table in query: 
            table_names.add(table) 
    return table_names 
 
 
def get_all_operators(predicates): 
    operators = set() 
    for query in predicates: 
        for predicate in query: 
            if len(predicate) == 3: 
                operator = predicate[1] 
                operators.add(operator) 
    return operators 
 
 
def get_all_joins(joins): 
    join_set = set() 
    for query in joins: 
        for join in query: 
            join_set.add(join) 
    return join_set 
 
def get_all_type(type): 
    type_set = set() 
    for t in type: 
        type_set.add(t) 
    return  type_set 
 
def idx_to_onehot(idx, num_elements): 
    onehot = np.zeros(num_elements, dtype=np.float32) 
    onehot[idx] = 1. 
    return onehot 
 
 
def get_set_encoding(source_set, onehot=True): 
    num_elements = len(source_set) 
    source_list = list(source_set) 
    # Sort list to avoid non-deterministic behavior 
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    source_list.sort() 
    # Build map from s to i 
    thing2idx = {s: i for i, s in enumerate(source_list)} 
    # Build array (essentially a map from idx to s) 
    idx2thing = [s for i, s in enumerate(source_list)] 
    if onehot: 
        thing2vec = {s: idx_to_onehot(i, num_elements) for i, s in enumerate(source_list)} 
        return thing2vec, idx2thing 
    return thing2idx, idx2thing 
 
 
def get_min_max_vals(predicates, column_names): 
    min_max_vals = {t: [float('inf'), float('-inf')] for t in column_names} 
    for query in predicates: 
        for predicate in query: 
            if len(predicate) == 3: 
                column_name = predicate[0] 
                val = float(predicate[2]) 
                if val < min_max_vals[column_name][0]: 
                    min_max_vals[column_name][0] = val 
                if val > min_max_vals[column_name][1]: 
                    min_max_vals[column_name][1] = val 
    return min_max_vals 
 
 
def normalize_data(val, column_name, column_min_max_vals): 
    min_val = column_min_max_vals[column_name][0] 
    max_val = column_min_max_vals[column_name][1] 
    val = float(val) 
    val_norm = 0.0 
    if max_val > min_val: 
        val_norm = (val - min_val) / (max_val - min_val) 
    return np.array(val_norm, dtype=np.float32) 
 
 
def normalize_labels(labels, min_val=None, max_val=None): 
    labels = np.array([np.log(float(l)) for l in labels]) 
    if min_val is None: 
        min_val = labels.min() 
        print("min log(label): {}".format(min_val)) 
    if max_val is None: 
        max_val = labels.max() 
        print("max log(label): {}".format(max_val)) 
    labels_norm = (labels - min_val) / (max_val - min_val) 
    # Threshold labels 
    labels_norm = np.minimum(labels_norm, 1) 
    labels_norm = np.maximum(labels_norm, 0) 
    return labels_norm, min_val, max_val 
 
 
def unnormalize_labels(labels_norm, min_val, max_val): 
    labels_norm = np.array(labels_norm, dtype=np.float32) 
    labels = (labels_norm * (max_val - min_val)) + min_val 
    return np.array(np.round(np.exp(labels)), dtype=np.int64) 
 
 
def encode_samples(tables,  table2vec): 
    samples_enc = [] 
    for i, query in enumerate(tables): 
        samples_enc.append(list()) 
        for j, table in enumerate(query): 
            sample_vec = [] 
            # Append table one-hot vector 
            sample_vec.append(table2vec[table]) 
            # Append bit vector 
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            # sample_vec.append(samples[i][j]) 
            sample_vec = np.hstack(sample_vec) 
            samples_enc[i].append(sample_vec) 
    return samples_enc 
 
def encode_types(types,  type2vec): 
    type_enc = [] 
    for i, query in enumerate(types): 
        type_enc.append(list()) 
        sample_vec = [] 
        # Append table one-hot vector 
        sample_vec.append(type2vec[query]) 
        # Append bit vector 
        # sample_vec.append(samples[i][j]) 
        sample_vec = np.hstack(sample_vec) 
        type_enc[i].append(sample_vec) 
    return type_enc 
 
def encode_data(predicates, joins, column_min_max_vals, column2vec, op2vec, join2vec): 
    predicates_enc = [] 
    joins_enc = [] 
    for i, query in enumerate(predicates): 
        predicates_enc.append(list()) 
        joins_enc.append(list()) 
        for predicate in query: 
            if len(predicate) == 3: 
                # Proper predicate 
                column = predicate[0] 
                operator = predicate[1] 
                val = predicate[2] 
                norm_val = normalize_data(val, column, column_min_max_vals) 
 
                pred_vec = [] 
                pred_vec.append(column2vec[column]) 
                pred_vec.append(op2vec[operator]) 
                pred_vec.append(norm_val) 
                pred_vec = np.hstack(pred_vec) 
            else: 
                pred_vec = np.zeros((len(column2vec) + len(op2vec) + 1)) 
 
            predicates_enc[i].append(pred_vec) 
 
        for predicate in joins[i]: 
            # Join instruction 
            join_vec = join2vec[predicate] 
            joins_enc[i].append(join_vec) 
    return predicates_enc, joins_enc 

 


