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Parallel Massive-Thread Electromagnetic
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Abstract—The electromagnetic transient (EMT) simulation of a
large-scale power system consumes so much computational power
that parallel programming techniques are urgently needed in this
area. For example, realistic-sized power systems include thousands
of buses, generators, and transmission lines. Massive-thread com-
puting is one of the key developments that can increase the EMT
computational capabilities substantially when the processing unit
has enough hardware cores. Compared to the traditional CPU,
the graphic-processing unit (GPU) has many more cores with dis-
tributed memory which can offer higher data throughput. This
paper proposes a massive-thread EMT program (MT-EMTP) and
develops massive-thread parallel modules for linear passive ele-
ments, the universal line model, and the universal machine model
for offline EMT simulation. An efficient node-mapping structure is
proposed to transform the original power system admittance ma-
trix into a block-node diagonal sparse format to exploit the mas-
sive-thread parallel GPU architecture. The developed MT-EMTP
program has been tested on large-scale power systems of up to 2458
three-phase buses with detailed component modeling. The simula-
tion results and execution times are compared with mainstream
commercial software, EMTP-RV, to show the improvement in per-
formance with equivalent accuracy.

Index Terms—Electromagnetic transient analysis, graphics
processors, massive-thread, parallel algorithms, parallel pro-
gramming, power system simulation.

I. INTRODUCTION

T HE USE of electromagnetic transient (EMT) simulation
tools is no longer restricted to specialized studies that

focus on analyzing the propagation of EM transients. Due to
their versatility and breadth of modeling capability, offline EMT
simulation tools, such as EMTP-RV [1], PSCAD/EMTDC [2],
Alternative Transients Program (ATP) [3] etc., are routinely
used in the planning, design, and operation of power systems, to
study dynamic phenomena over a wide frequency range—from
steady-state studies, such as load flow and harmonic anal-
ysis, to high-frequency studies, such as restrike overvoltages
in gas-insulated substations [4]. Along with modeling and
application diversity, the size of the power system simulated
by EMT tools has grown concomitantly [5]. These days, it
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is not uncommon to simulate in detail systems containing
hundreds of buses using such tools. Nevertheless, the common
characteristic of the aforementioned EMT simulation tools is
that they are single-thread sequential programs designed to run
efficiently on single-core CPUs based on the x86 processor
architecture. Throughout the 1990s and 2000s, the CPU clock
speed steadily increased and memory costs decreased, fueling
a sustained increase in the speed of these programs. But now
with the clock speed saturated around 3 GHz due to chip
power dissipation and fabrication constraints, the computer
industry has transitioned to multicore CPU and many-core
GPU hardware architectures, which require multithread par-
allel programming. Executing a single-thread EMT program
on a multicore architecture is inefficient because the code is
executed on a single core, one instruction after another in
a homogeneous fashion, unable to exploit the full resource
of the underlying hardware. The overall performance of the
code can be severely degraded especially when simulating
large-scale systems with high data throughput requirements. A
multithread parallel code can provide substantial gain in speed
and throughput over a single-thread sequential code on the
multicore architecture. Even on single-core processor systems,
multiple threads can add palpable performance improvement
in some applications. What this means for the EMT program
is that the system component models and the EMT algorithm
need to be reformulated to be executed in parallel on multiple
cores. Since data independence is the key requirement for
efficient parallel programming, the serial component models
and network data structure have to be transformed to meet
this requirement. Although the focus of this paper is offline
EMT simulation, it is worth mentioning that real-time EMT
simulation tools are available, such as RSCAD and Hypersim,
etc., which can also run offline simulations on multicore CPUs.
However, these tools do require specialized expensive hardware
to run real-time EMT simulation.
In this paper, we propose a GPU-based parallel mas-

sive-thread EMT simulation program (MT-EMTP). The GPU
[6]–[8] has native parallel many-core processing units and
high-performance floating-point number processors. To cir-
cumvent understanding the cumbersome assembly language
of GPU, compute unified device architecture (CUDA) [9],
a general-purpose parallel computing environment, was in-
troduced by NVIDIA to offer an efficient C-like language to
develop an application. Researchers have already begun to
exploit GPUs for power system applications [10]–[18], such
as data visualization, load-flow computations, electromagnetic
transient, and transient stability simulations. The objective of
this paper is to develop massive-thread parallel modules for
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Fig. 1. GPU hardware architecture: 1) data transmission between host and de-
vice, 2) data dispatched to/from many cores, and 3) control instruction dispatch.

three ubiquitous and computationally demanding system com-
ponents for EMT simulation: linear passive elements (LPE),
the universal line model (ULM), and the universal machine
model (UMM). A new efficient node mapping structure (NMS)
is proposed to reorder the original power system bus numbers
using the block-node adjustment (BNA) method to obtain a
block diagonal pattern for the system admittance matrix that
is ideally suited for the GPU-based massive-thread parallel
architecture. The performance of the developed parallel EMT
program was evaluated for accuracy, computational efficiency,
and scalability by using several large-scale test power systems,
and compared with the EMTP-RV software program.
This paper is organized as follows: Section II describes the

key features of the GPU and CUDA, which enable the design of
the parallel component models and the proposed data structure
used in the EMT simulation. Section III gives the details of the
parallel massive-thread component models. Section IV explains
the NMS using the BNA method and the sparse linear network
solution. Then, the experimental results for various large-scale
test systems are shown and compared with EMTP-RV. Finally,
Section V gives the conclusion.

II. GPU ARCHITECTURE AND CUDA ABSTRACTION

Since the most advanced concept, the Fermi architecture
(shown in Fig. 1) [6] of the GPU from NVIDIA, is chosen for
developing the parallel massive-thread modules for EMT sim-
ulation, it consists of several streaming multiprocessors (SMs).
Each SM is.populated with many compute cores which share
the registers, caches, and dedicated memory inside the SM.
Since the GPU is designed to work as a coprocessor, all data
and instructions come from the CPU via the PCIe interface.
In order to make every core in the GPU work efficiently,

enough data must be fed to catch up to the instruction cycles;
without data input, the cores can only remain idle, thus reducing
computing speed. Since the GPU has far more (hundreds) cores
than the CPU, the data bandwidth requirement is increased
tremendously. However, the system main memory and the
video memory cannot offer that ideal bandwidth; therefore,
specific memory access routes have to be followed to reach
the optimal speed. The data-transmission paths between the

Fig. 2. CUDA abstraction.

memories, that is, path 1 and path 2 in Fig. 1 are the main
bottlenecks of the architecture. As explained later, the proposed
massive-thread parallel EMT modules are designed to mini-
mize the use of these paths in order to maximize computational
efficiency.
CUDA is the programming tool used to implement the par-

allel programwithout dealing with the GPU assembly language.
The details of the GPU hardware are taken care of by CUDA’s
mapping and abstraction, as shown in Fig. 2. A CUDA program
(kernel) separates the hardware resources into two parts: CPU
side as the host, on which the serial parts of the program run,
and the GPU side as the device, on which the parallel parts of
the program run.
In the CUDA thread hierarchy, Grid, Block, and Thread map

to GPU, SM, and Core, respectively. However, the user need
not be concerned with the actual number of GPUs, SMs, and
Cores since the number of abstracted threads are automatically
assigned to the physical cores in parallel or serial fashion.
Therefore, even if the GPU used has fewer cores than what
the CUDA program requires, the programmer can still claim
the number of threads needed. The developed parallel EMT
program can adapt to various CUDA-supported GPUs with a
varying number of cores without change. A group of threads
makes up a block, and a group of blocks makes up a grid.
All threads inside a grid execute the same instruction simul-
taneously with multiple data input, which requires complete
data independence and unified processing flow in the kernel.
This is known as the single instruction multiple data (SIMD)
format. On the other hand, the single-instruction multiple thread
(SIMT) enables the program with thread-level parallel code for
independent, scalar threads [9], thereby allowing the GPU to
handle multiple branches and operations in a single instruction.
The developed parallel EMT component modules and the
sparse linear solver utilize the SIMD and SIMT concepts.
In the CUDAmemory hierarchy, each thread has its own reg-

ister and local memory. Threads of the device cannot access the
host memory directly due to it being on the CPU side. Thus,
all data that are processed by the GPU have to be first copied
into the global memory of the device. Since the global memory
(video memory) is not on-chip though it is onboard, accessing
it is relatively inefficient. Shared memory, which is much faster
than global memory, is offered for each block, which can be
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accessed by all threads in the block. Thus, using this limited re-
source (48 kB/block) wisely can effectively optimize the perfor-
mance of the program. The advanced Fermi architecture (com-
pute capability 2.0 and above) offers a data cache which re-
quires a well-organized data input to maximize access speed.
In the global and shared memories, a memory address normally
can only be accessed once in an instruction cycle, especially for
write operation. Therefore, simultaneous multiple and random
memory access should be avoided in the CUDA kernel because
not all threads can guarantee that their memory access is safe.
Furthermore, unlike the previous GPU generations, the Fermi
architecture enables the execution of multiple kernels simulta-
neously for increased efficiency.
Thus, these are the aforementioned considerations of the GPU

architecture and CUDA that the design of the data structure and
parallel modules for massive-thread EMT simulation is based
on.

III. PARALLEL MASSIVE-THREAD COMPONENT MODELS

A. Linear Passive Elements

1) Model Formulation: Linear passive elements (LPEs),
such as resistance, inductance, capacitance, switches, and
their combinations, are represented by a discrete-time lumped
model [19]. As mentioned in Section II, since all threads in a
kernel run the same instruction concurrently, a unified model
is required for all LPEs in the system. Using the trapezoidal
rule of integration, any LPE combination can be modeled as a
discrete Norton equivalent circuit, comprised of an equivalent
conductance and a history current source. In the unified model,
every LPE has an R, L, or C character. An arbitrary LPE
shown in Fig. 3(a) can be represented as an R, L, and C

Thévenin equivalent circuit as shown in Fig. 3(b), where is
the equivalent resistance of R, is the equivalent resistance
of C, is the equivalent resistance of L, is the capaci-
tive history voltage, and is the inductive history voltage.
Depending on the LPE character, constant flag coefficients can
be defined, for example, and for the L or C character.
Source transformation results in the unified Norton equivalent
circuit are shown in Fig. 3(c), where is the total equivalent
conductance and is the history current source of the unified
model [21]. The LPE current is given as

(1)

With the unified LPE lumped model, all linear elements can
be processed in the same kernel.
2) Massive-Thread Parallel Implementation: Fig. 4 shows

the designed parallel module for unified LPE computation. For
each LPE, a CUDA thread is assigned to execute the computa-
tion based on the SIMT format. When the number of LPEs
exceeds the limitations of thread per block , they will be di-
vided into groups assigned to multiple blocks

(2)

Fig. 3. Unified linear passive element lumped model.

Fig. 4. Massive-thread parallel unified LPE module.

Fig. 5. Kernel operation flow in the unified LPE module.

where and are integers. The operation flow of the LPE
kernel is shown in Fig. 5.

Algorithm III.1: ULPE_Kernel

Assign blocks

Assign threads per block

Config Shared Memory

Shared Memory Global Memory

Task1

Task2

Task3

Global Memory Shared Memory

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 19,2022 at 07:40:20 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



1048 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 29, NO. 3, JUNE 2014

Algorithm III.1 shows the pseudocode for the CUDA kernel
of the unified LPE module. Inside the kernel, there are three se-
quential tasks with the same CUDA thread and memory config-
uration. First, the LPE current is computed from (1), then
the inductive and capacitive history voltages and
are calculated and, finally, the history current is updated.
The only global memory accesses are reading the input vari-

ables and writing the output variables, and all computations of
LPE take place inside the threads. During the EMT simulation,
all variables are stored and reused on the device side; thus, the
host-device and device-host data transmission is minimized in
each timestep.

B. Transmission Lines

1) Model Formulation: The universal line model (ULM)
is a phase-domain wideband fully frequency-dependent line
model [24] capable of representing symmetrical and asym-
metrical overhead transmission lines and underground cables.
Traditional frequency-dependent transmission-line models
[22] were constituted in the modal-domain based on real and
constant transformation matrices with a frequency-dependent
model for the traveling waves. These models are mainly suited
for symmetrical (transposed) lines and cables. The transforma-
tion matrix of untransposed lines is, in general, complex and
frequency dependent; nevertheless, such models can also be
applied to untransposed conditions after appropriate numerical
modifications, including eigenvector rotations, to make the
coefficients in the transformation matrices real and constant.
The ULM avoids the transformation matrices and is constituted
directly in the phase domain; however, it involves computa-
tionally expensive convolutions.
The ULM represents the sending-end “ ” and the re-

ceiving-end “ ” of a line of arbitrary length, shown in
Fig. 6(a), as two decoupled Norton equivalent circuits, as
shown in Fig. 6(b). The ULM current is given as

(3)

where is the equivalent conductance matrix and the history
currents are expressed as

(4)

where the reflected current is defined as

(5)

where is the incident current [24].
In (4), the characteristic admittancematrix and propagation

matrix are approximated by the finite-order rational functions
using the vector-fitting (VF) method [26]; the “ ” denotes the
numerical complex matrix-vector convolution. The numerical
convolution is defined as

(6)

where the coefficient matrix can be obtained from the
residues and the coefficients which are, in turn, func-
tions of the poles ; and the state variables are obtained

Fig. 6. Universal line model.

from the coefficients and line voltages . Similarly, the
numerical convolution is defined as

(7)

where is the propagation matrix of . Since the wave trav-
eling time is not an integral multiple of the time step nor-
mally, linear interpolation is used to approximate the reflected
current .
2) Massive-Thread Parallel Implementation: As shown in

Fig. 7, the designed parallel module for the ULM includes eight
kernels grouped into four stages. Stage 1 updates the reflected
current and calculates the interpolation for the reflected cur-
rent before delay , Stage 2 updates the state variable , Stage
3 computes the convolutions, and Stage 4 updates the incident
current and the history current . All of the kernels inside
the same stage are executed concurrently in the Fermi architec-
ture space. The computation for each ULM unit is done by a
CUDA block running in SIMT, inside which multiple threads
are assigned to handle vector and matrix operations based on
SIMD. Therefore, every kernel has blocks (the number of
ULM units) in every stage, and the number of threads in a block
depends on the dimension of computed vectors and matrices,
which is typically based on the number of poles and residues
from vector fitting. The data are transferred deliberately from
the global memory into the shared memory first to improve the
memory access performance due to the critical bandwidth re-
quirement of vector and matrix operations.
The kernel operation flow of the ULM module is shown in

Fig. 8. Since the thread dimension and shared memory size have
to be reconfigured in different tasks, such as in updating vari-
ables, interpolation, and convolutions, they are separated into
different kernels, and their results are output to global memory
and shared with other kernels. Since the parallel computation
is based on each ULM unit instead of its sending and receiving
ends, all “ ” and “ ” variables are computed within one kernel,
avoiding the data exchange between “ ” and “ ” ends. Similar
to the LPE module, all of the module variables are limited to
the device side, that is, to the global and shared memories of
the GPU; thus, there is no data exchange between the host and
device during ULM execution.

C. Electrical Machines

1) Model Formulation: There are several types of rotating
machine models that can be used for EMT studies. The advan-
tage of the unified machine model (UMM) [23], [25] is that
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Fig. 7. Massive-thread parallel ULM module.

Fig. 8. Kernel operation flow in the ULM module.

Fig. 9. Electrical model of the mechanical part of UMM.

it provides a unified mathematical framework to model up to
12 types of rotating machines, including asynchronous, syn-
chronous, and dc machines. The electrical part of the UMM in-
cludes the armature and field windings. The UMM is allowed to
have up to three armature windings (converted to 3 wind-
ings), and an unlimited number of windings on the field struc-
ture. The mechanical part of the UMM is modeled as an equiva-
lent lumped electric network, where the electromagnetic torque
appears as a current source. An alternate representation of the
mechanical part as a multimass model (up to a maximum of 6
masses representing various turbine stages) is also possible.

a) Electrical Part: In the UMM used for synchronous
machines in this paper, there are three-phase stator armature
windings , one field winding , up to 2 damper wind-
ings on the rotor direct -axis, and up to three3

Fig. 10. Interfacing UMM with the network using compensation.

damper windings on the rotor quadrature -axis.
Thus there are a maximum of nine coupled windings whose
discretized winding equations are described as

(8)

where is the winding resistance matrix, and is the flux
linkage. The history term using Trapezoidal discretization
can be expressed as

(9)

The Park’s transformation orthogonal matrix links the abc
phase domain with the rotating reference domain.

b) Mechanical Part: The dynamics of the rotor, as shown
in Fig. 9(a), can be represented as a linear electrical equivalent
circuit in the UMM instead of the mass-shaft system, as shown
in Fig. 9(b), where the torque , inertia , damping , and
rotor speed are mapped to the current , capacitance ,
conductance , and voltage , respectively. The equivalent
differential equation is given as

(10)
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Fig. 11. Massive-thread parallel UMM module.

Discretizing the lumped equivalent capacitance , the me-
chanical side model is shown in Fig. 9(c). Thus, the equivalent
voltage is expressed as

(11)

where is the equivalent conductance and is the his-
tory current.
Since the UMM is a nonlinear model which connects to the

linear network, the compensation method [20] is used to cir-
cuit interface it with the EMT network solution. As shown in
Fig. 10, the open-circuit node voltage of the nonlinear compo-
nent , which is also the Thévenin equivalent voltage of the
linear network, is first solved. Considering as the input to the
nonlinear component, the reaction current from the nonlinear
system can be calculated by the relational function between
and . Injecting into the linear network, the node voltage
of nonlinear components after compensation is given as

(12)

where th is the Thévenin equivalent resistance of the linear
network looking into the open port from the nonlinear side.
The electromagnetic torque involving the product of fluxes

and currents is calculated iteratively. Once the speed has con-
verged, the currents are transferred back to the phase do-
main as an incident current from the nonlinear network to the
linear network.
2) Massive-Thread Parallel Implementation: As shown in

Fig. 11, the designed parallel module for the UMM includes
three kernels within three stages. Stage 1 predicts the rotor speed
and transfers the phase-domain inputs into the reference

domain. Stage 2 is responsible for the computations of electrical
part and mechanical part, and gets the electromagnetic torque
, the nonlinear current in , and the equivalent speed

voltage . Before proceeding to Stage 3, the convergence of
the rotor speed for all UM units is determined by the CPU to
avoid the synchronous, efficient, and random memory-access
issues arising from the parallel determination, and Stages 1 to

2 are repeated until all UMM units are converged or the max-
imum number of iterations are reached. Finally, Stage 3 updates
the history variables and completes the calculation of the in-
tegrated UMM voltage . Similar to the ULM module, each
UMM unit occupies a CUDA block running in SIMT, where
multiple threads are assigned to handle the vector andmatrix op-
erations based on SIMD, according to their dimensions. Shared
memory inside the CUDA block is used for critical memory ac-
cess during the vector and matrix operations.
Fig. 12 shows the operation flow in the kernels of the UMM

module. In order to reduce the extra cost for the kernels’ switch
of the CUDA program, as many as possible tasks are contained
in a kernel unless the configuration (threads and memory) of
the kernel has to be changed. Inside the kernel , the rotor speed
is predicted by extrapolation first, then the Park’s transfor-

mation matrix is updated to transfer the linear network volt-
ages and Thévenin equivalent resistance th into the vari-
ables and . The kernel first solves the linear
system using LU decomposition and forward-backward sub-
stitution from (8) to obtain the frame-domain currents .
Then, the flux linkages are updated and, finally, the equiv-
alent speed voltage is calculated using (11). In kernel , the
reference domain currents are transferred back to the
phase-domain current with the Park’s transformation matrix

based on the converged rotor speed ; then, the UMMvolt-
ages are computed from (12) with the linear network voltages
, Thévenin equivalent resistance th, and the incident cur-

rents ; finally, the history current and the history volt-
ages are updated for the next timestep.

IV. MASSIVE-THREAD NETWORK SOLUTION

Using the UMM, ULM, and LPE to model a network, the
nodal equation for the network is assembled as

(13)

where is the admittance matrix, is the node voltage vector,
and is the vector of nodal current injections. In general, is
very sparse. For example, for the test system shown in Fig. 13,
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Fig. 12. Kernel operation flow in the UMM module.

Fig. 13. Single-line diagram of the Scale 1 test power system.

the original is shown in Fig. 14(a). It is 97.39% sparse with
357 nonzero elements. With increasing network size, the admit-
tance matrix becomes even more sparse. It is considerably inef-
ficient to handle a sparse matrix with traditional parallel dense
algorithms, and the traditional parallel sparse algorithm is un-
suitable for the GPU architecture; therefore, a specific sparse
structure, where the nonzero elements are regrouped into diag-
onal blocks which are decoupled from each other, is proposed
using the block-node adjustment (BNA). In the BNA, a graph
optimizing algorithm is applied to adjust the node IDs inside
each subsystem, which are divided by traveling-wave delays of
transmission-line models, into sequential addresses in memory.
Since the node IDs created by users are typically random, which
do not conform with the rules of the BNA, they are mapped to
new node IDs, which are serial and ordered, by the node map-
ping structure (NMS), where the original IDs are hashed and
one-to-one mapping to the new IDs. The minimal perfect hash
[27] and integer sorting are applied to avoid string operations so
that the complexity is reduced from to .
The matrix derived from the NMS is a perfect block

diagonal matrix, whose condition number is not affected, as
shown in Fig. 14(b), where the number of blocks depends on the
number of decoupled systems. Therefore, a large-scale system
is divided into independent smaller subsystems

, where is the number of blocks. Only the
decoupled blocks in the admittance are stored in the host/de-
vice memory, which significantly reduces the pressure of data

Fig. 14. Pattern of the Y matrix of the IEEE 39-bus system. (a) Before block-
node adjustment (BNA). (b) After BNA.

Fig. 15. Comparison of simulation results (three-phase voltages) between
MT-EMTP and EMTP-RV at Bus 5 during a three-phase fault at Bus 4.

transfer for large-scale admittance matrices. All small ma-
trices are considered as dense matrices, and all subsystems are
solved independently by the normal dense algorithm in parallel
on the GPU. The linear solver uses LU decomposition and for-
ward-backward substitution, implemented in a CUDA kernel
to compute the unknown node voltages .

V. LARGE-SCALE EMT SIMULATION CASE STUDY

The Scale-1 test power system is shown in Fig. 13. It is the
modified IEEE 39-bus New England test system. The specifi-
cations of the hardware used for the simulation are listed in
Table I. The MT-EMTP (64-b code) program was executed on
the Fermi GPU, while EMTP-RV (32-bit code) was running on
the AMD CPU, both using 64-b double precision floating-point
data. The time-domain voltage waveforms at Bus 5 of the test
power system (Fig. 13) are shown in Fig. 15, during a three-
phase fault event at Bus 4. The fault currents at Bus 4 are shown
in Fig. 16. The simulation time is 100 ms and the timestep is 20
s, and the total simulation steps are 5000. The results from
EMTP-RV and MT-EMTP are superimposed in Figs. 15–18,
which show close agreement.
The zoomed-in figures (Figs. 17 and 18) also show a close

match in the transients.
To evaluate computational efficiency, execution times of test

systems of increasing size were recorded. Eight large-scale
test cases were created by expanding the original IEEE 39-bus
system with detailed modeling of all components. Subsystems
(39-bus) were interconnected with the systems around them
by two additional transmission lines. The execution times are
shown in Table II, which also includes the number of buses

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on April 19,2022 at 07:40:20 UTC from IEEE Xplore.  Restrictions apply. 

READ O
NLY



1052 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 29, NO. 3, JUNE 2014

Fig. 16. Comparison of simulation results (three-phase fault currents) between
MT-EMTP and EMTP-RV at Bus 4.

Fig. 17. Zoomed-in view of Fig. 15 from 0.05 s to 0.057 s.

Fig. 18. Zoomed-in view of Fig. 16 from 0.049 s to 0.056 s.

TABLE I
HARDWARE SPECIFICATION

and devices in the systems. All of the lines in these test cases
were modeled using ULM and the uncontrolled machines using
UMM. As can been seen, when the system size is relatively
small, the speedup is less than 1; however, when the system
scale is increased to 63 times of the original IEEE 39-bus
system, the achieved speedup is up to 5.63.
Fig. 19 shows the execution time and speedup with in-

creasing system size. It is obvious that the computation time
of EMTP-RV follows a high-order complexity
with respect to the system scale, since most vector and matrix
operations have high-order complexity and in

TABLE II
COMPARISON OF EXECUTION TIME FOR VARIOUS SYSTEM SIZES BETWEEN
EMTP-RV AND GPU-BASED MT-EMTP FOR SIMULATION DURATION 100 ms

WITH TIMESTEP 20 s

Fig. 19. Execution time and speedup with respect to the scale of test systems
in EMTP-RV and the GPU-based MT-EMTP program.

serial CPU algorithms. The execution time of the proposed
MT-EMTP program, however, only increases linearly with
first-order complexity , derived from SIMD-based par-
allel programming. Thanks to the complexity order reduction,
a GPU-based EMT simulator is always faster than the con-
ventional CPU-based simulator when the scale of the test
case is large enough. Therefore, the speedup can be expected
to increase without saturation for increasing system sizes.
Larger systems (greater than Scale 63) could also be tested
on MT-EMTP, but the EMTP-RV licence only allowed a
maximum of 5000 devices. Note that in a commercial and in-
dustrial program, such as EMTP-RV, there are many input and
output activities, and a large collection of models/codes that
require extra processing time. Nevertheless, this experiment
clearly demonstrates the advantage of parallel massive-thread
computation in accelerating EMT simulation.

VI. CONCLUSION

The GPU with its massive-core architecture shows promise
for higher computational performance, provided the system size
and the data throughput requirements are large. Detailed EMT
simulation of the large-scale system is therefore ideally suited
to exploit GPU technology for reducing computational burden.
This paper proposed a parallel massive-thread module for linear
passive element, transmission line, and electrical machine for
implementing the MT-EMTP program on the GPU, a node-
mapping structure is proposed for an efficient sparse network
solution. Large-scale test cases are used to evaluate the per-
formance of the MT-EMTP program in comparison with the
commercial EMTP-RV software. With lower order complexity,
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the massive-thread parallel implementation shows substantial
speedup under the same accuracy and precision. Finally, the pro-
posedmethods, algorithm, and data structure also can be applied
to the multithread computing system, which is also pervasive
these days as a mainstream CPU architecture.

APPENDIX A

The parameters for the test power system in Fig. 13 are given
below:
1) ULM transmission-line (Line1–Line35) parameters: three
conductors, resistance: 0.0583/km, diameter: 3.105 cm,
line length: 50 km (line 5, 6, 7, 8, 15, 16, 18, 19, 23, 27,
29, 30, 31, 35); 150 km (line 2, 3, 4, 9, 10, 11, 13, 14,
20, 21, 22, 24, 25, 26, 32, 33); and 500 km (line 1, 12,
17, 28, 34). and are 3 3 matrices, whose elements
are approximated with ninth-order rational functions.
Line geometry: flat horizontal phase spacing; horizontal
distance between 4.87 m; vertical
distance: phases a to ground, c to ground 30 m, phase b
to ground 28 m, and shield wire to tower arm 6 m.

2) UMM synchronous machine (G1–G10) parameters: 1000
MVA, 22 kV, Y-connected, field current: 2494 A, 2 poles,
60Hz,moment of inertia: 5.628e4 kg m /rad and damping:
6.780e3 kg m/s/rad.

3) Loads and transformer parameters: load parameter:
500 0.05 H, F and transformer leakage
impedance 0.5 0.03 H.
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