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Abstract 

Knowledge tracing involves assessing students' performance based on their learning interaction 

records and providing them with personalized learning paths. Deep learning methods model 

students' knowledge states by exploring extensive exercise records, with the Deep-IRT approach 

considered superior to others. However, Deep-IRT overlooks relevant behavioural features that 

could assist in modelling students' knowledge states. Therefore, this study introduces a new 

method for modelling student behaviour, combining behavioural features with learning records to 

enhance knowledge tracking performance. Experimental results on two real-world benchmark 

datasets indicate that the proposed model significantly outperforms the Deep-IRT model in 

predicting future students' abilities. Limitations of the current study and potential directions for 

future research are also discussed. 
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Chapter 1: Introduction  

As a result of the development of computing and information technologies, intelligent 

tutoring systems (ITS) are now being widely implemented, making online education possible on a 

massive scale. During the pandemic, a large number of schools were obliged to deliver learning 

content through online ITS platforms (Abdelrahman et al., 2023; Ni et al., 2022). Unlike traditional 

online learning platforms, ITS can personalize effective learning paths for students and track their 

current knowledge mastery based on their answers, thereby enabling tailored instruction (Feng et 

al., 2009). However, these technology-enhanced learning environments bring with them not only 

a range of advantages but also challenges (Abdelrahman et al., 2023). One of the predominant 

challenges encountered in implementing ITS involves evaluating and representing the student's 

level of knowledge as this relies on potentially uncertain data (AlShaikh & Hewahi, 2021). As a 

result, there is an urgent need to use more effective scientific methods for targeted analysis and 

exploration (Feng et al., 2009). This has led to an increasing number of researchers attempting to 

leverage the rich data available on ITS to model the students’ learning behaviours through machine 

learning or deep learning algorithms. Appropriate models should be able to predict a student's 

future performance based on analysis of their behaviour and past assessment results (Liu, 2022). 

Knowledge tracing (KT) is a particularly effective way of accomplishing this, so it has become an 

integral component of ITS (Fanzhi et al., 2022). KT uses educational data mining for the purposes 

of knowledge concepts analysis. This, in turn, depends upon computer-assisted large-scale data 

processing capabilities to track students' learning activities (Ni et al., 2022). 

Background 

The notion of "knowledge tracing" was first introduced by Corbett and Anderson in 1995. 

Since then, it has evolved into a well-established field of research in educational artificial 



2 

intelligence (Liu, 2022). There are two popular approaches: traditional knowledge tracing; and 

deep knowledge tracing. Early KT models focused on using student-related learning parameters to 

predict their performance. At this stage, the most popular algorithm was the Bayesian network 

tracing (BKT) (Pelánek, 2017). BKT employs probabilistic graphical theory, which considers a 

student's knowledge state as a latent variable and models it to track changes in the student's level 

of knowledge (Abdelrahman et al., 2023). However, researchers started to realize that other 

external factors could affect students' knowledge acquisition, such as an items' difficulty or 

forgetting. These factors are difficult to be incorporated into BKT (Liu, 2022). In 2000, a logistic 

model was proposed that offered better levels of interpretability and that was capable of including 

complex features for the purposes of knowledge-tracing tasks (Pavlik et al., 2021). Logistic models 

have attracted an increasing amount of attention and various variants have now been proposed 

(Cen et al., 2006; Deonovic et al., 2018). BKT and logistic models can both be considered 

traditional statistical approaches because they rely on statistical machine learning algorithms and 

student interaction data for the modelling process. However, statistical approaches struggle to 

model concepts with complex relationships and often necessitate the modelling of each concept 

individually before any relationships can be established. This consumes enormous amounts of time 

and resources (Song et al., 2022). 

A deep knowledge tracking (DKT) model was introduced by Piech et al. (2015). They 

suggested applying recurrent neural networks (RNNs) to knowledge tracing because RNNs can 

convert raw data into high-dimensional and continuous representations, making them well-suited 

to complex data structures (Piech et al., 2015). In contrast to the traditional approaches, especially 

BKT, deep learning-based KT models can draw upon students' temporal interactions and consider 

the relationships between different knowledge components to build models more efficiently (Liu, 
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2022). A number of researchers recognized the promise in Piech et al.'s work, which has led to the 

development of a range of deep learning-based KT models. Some of the examples include dynamic 

key-value memory networks (DKVMN) (Yeung, 2019; He et al., 2021; Xiao et al., 2022), which 

are based on memory networks; Graph-based knowledge tracing (GKT) (Nakagawa et al., 2019; 

Abdelrahman & Wang, 2021), which is based on graph theory; and Exercise-enhanced recurrent 

neural networks (EERNNA) (Su et al., 2018; Shin et al., 2021), which are based on attention 

mechanisms. A number of deep learning-based KT models have now been deployed in the real 

world to provide services to students (Li et al., 2023). Of particular interest, is a novel deep 

knowledge tracing model called Deep-IRT (Yeung, 2019), which incorporates aspects of item 

response theory (IRT) into the DKVMN model. This helps, in particular, to improve the model’s 

interpretability. Unfortunately, Deep-IRT and its variants do not give sufficient consideration to 

the potential impact of student behaviour on their model, which can have an important negative 

influence on its accuracy (Xu et al., 2021). This thesis looks at a specific way in which the 

performance of Deep-IRT might be enhanced. 

Purpose of Current Study 

There are several ways in which students’ behaviour can be introduced into the Deep-IRT 

model. In previous studies, researchers have attempted to improve the model’s performance by 

directly introducing student behaviour data as additional input (Xiao et al., 2022; Wang et al., 

2021). However, this method is open to being influenced by data sparsity, which can lead to 

inconsistent prediction results (Sarsa et al., 2022). Some prior research has also sought to formalize 

the relationship between student behaviour and deep models (He et al., 2021), which opens up the 

possibility of incorporating student behaviour data into Deep-IRT. However, no study has yet 

attempted to actually enact this proposition by using independent neural network layers to pre-
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process the student behaviour data. This study, therefore, aimed to construct an enhanced version 

of the original Deep-IRT model that is based upon educational psychology theory (He et al., 2021). 

It also examined a way of reshaping the difficulty and ability network to improve its overall 

performance. The performance of the new modified the Deep-IRT model was investigated and 

compared with baseline models under a variety of conditions. 

The core research questions this study set out to address were:  

1) Does introducing student behaviour information via independent neural networks 

improve existing Deep-IRT model performance? 

2) Does the proposed algorithm have better predictive performance than Deep-IRT and 

DKVMN models? 
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Chapter 2: Literature Review  

In this chapter, to situate this thesis work on developing an enhanced version of Deep-IRT, 

this thesis goes into greater detail regarding the development of knowledge tracing. This chapter 

begins by giving an overview of the idea of knowledge tracing, and then moving on to various 

traditional approaches that have been developed in the past, including Bayesian and logistic 

models. Finally, this chapter then reviews the use of deep learning, as well as various approaches 

that have sought to fuse traditional methods and deep learning. 

An overview of knowledge tracing  

KT can be formulated as a supervised sequential learning problem, where the goal is to 

predict the probability of a student giving a correct response to the next exercise, given their 

historical sequence of interaction (Zou et al., 2020). Figure 1 shows a typical student learning 

scenario to illustrate how KT is applied. The student is given a sequence of questions 

(𝑞1, 𝑞2, 𝑞3. . . 𝑞𝑡) from a question set, Q. The student is required to respond to each question 

separately, (𝑟1, 𝑟2, 𝑟3. . . 𝑟𝑡) . Each question, q, is associated with one or multiple knowledge 

concepts, denoted as 𝑘 (e.g., equality and equations). Importantly, these knowledge concepts are 

not independent of each other. For instance, to master the concept of linear equations (𝑘3), one 

must first have an understanding of equations ( 𝑘2 ) and equality ( 𝑘1 ). In that case, the 

interdependency between knowledge points is an important part of what needs to be considered in 

KT tasks (Abdelrahman et al., 2023). The student’s behaviour might also be recorded during the 

interaction (e.g., their response time, number of hints, engagement, etc.). On the basis of the above 

information, KT predicts the student’s future performance and estimates the level of concepts 

mastered by the student. Beyond this, estimates of the current state of the student’s knowledge can 

help build learning strategies that will optimize student learning efficiency (Liu et al., 2023). 
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However, there are several challenges to overcome when seeking to capture the state of a student’s 

knowledge. These include: (1) the fact that each question can require the mastery of more than one 

concept, which increases the complexity of tracking their knowledge state (Song et al., 2022); (2) 

students can be forgetful, impacting the estimated results (Abdelrahman et al., 2023).  

 

Figure 1. An overview of knowledge tracing.  

 

Original Approaches   

 The first use of ‘Knowledge tracing’ (KT) as a concept was in a publication by Anderson 

et al. in the Artificial Intelligence journal in 1990 (Anderson et al., 1990). Corbett & Anderson 

(1995) subsequently gave a specific definition of KT, which is to track and estimate students’ 

knowledge states through the use of machine learning algorithms. This was followed by their first 

outline of how to apply Bayesian network to the field of KT. Bayesian Knowledge Tracing (BKT) 

simulates a student’s knowledge level, models the current status of their knowledge, and 
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establishes the potential transitions between subsequent different knowledge states (Fenzhi et al., 

2022).  BKT models use probabilistic theory to model students’ learning trajectories, for instance 

by means of hidden Markovs (Abdelrahman et al., 2023). Hidden Markov models treat a student’s 

knowledge state as a hidden variable and seek to infer their level of knowledge mastery from their 

responses (i.e., correct, or incorrect) when answering questions (Ma et al., 2022). BKT models 

adhere to three critical assumptions: (1) all students have the same background knowledge; (2) 

each question involves just one concept, with each concept being independent; (3) forgetting 

phenomena will never occur after a student has mastered a concept (Corbett & Anderson, 1995). 

Let 𝑃𝐿0  denote a student’s level of knowledge mastery level and 𝑃𝑇  its prior probability. The 

student’s updated state of knowledge mastery will then be: 

𝑃(𝐿𝑛+1) = 𝑃(𝐿𝑛|𝑜𝑏𝑠) + (1 − 𝑃(𝐿𝑛|𝑜𝑏𝑠)) ∗ 𝑃(𝑇) (1) 

where 𝑃(𝐿𝑛+1) is the sum of two probabilities: (1) that the knowledge concept (KC) has already 

been mastered; (2) that the current knowledge state can be converted to mastery (Fanzhi et al., 

2022). Although BKT primarily relies on a particular knowledge concept to infer a student’s 

learning performance, a hidden state can represent the knowledge concept. This is the way in which 

BKT can be seen to inform later DKT models (Fanzhi et al., 2022) 

Unfortunately, BKT assumes that all students have the same level of prior knowledge and 

that each question only involves one skill (Abdelrhman et al., 2023). It also struggles to capture 

the interdependency between knowledge concepts. To address these issues, an individualized BKT 

model (Lee & Brunskill, 2012) and a dynamic BKT model (Kaser et al., 2014) have been proposed. 

Individualized BKT takes into account the fact that the standard BKT model may underestimate 

the learning performance of students who are above average level and overestimate the learning 

performance of students who are below average. Individualized BKT therefore introduces two 
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separate parameters into the model to correct the biases present in standard BKT, namely the 

student's initial knowledge mastery state and learning ability (Lee & Brunskill, 2012). Dynamic 

BKT, however, jointly models dependencies between multiple skills and different skill levels. Its 

goal is to capture a hierarchical structure of prerequisite skills within a single model. For example, 

if a certain skill is a prerequisite for mastering another, then the latter skill is treated as being 

conditionally dependent on the former skill (Kaser et al., 2014). 

 Later studies in this area focused on practical problems, such as introducing emotional 

states to improve the prediction performance (Spaulding & Breazeal, 2015) or using a dynamic 

learning rate to capture a student’s improvement (Agarwal et al., 2020). BKT and its variations are 

simple to construct and offer strong interpretability. However, the relevant models mainly rely on 

knowledge states and cannot capture rich data features such as student’s behaviour limiting their 

application in practical scenarios (Fenzhi et al., 2022). 

Another method for tracing students’ knowledge states is through logistic models, which 

can simplify KT tasks by calculating the probability of students correctly answering the exercises. 

The key idea is that the probability of correctly answering an exercise can be represented by a 

mathematical function of student behaviour and certain knowledge state parameters (Liu, 2022). 

On the basis of this, researchers have proposed using KT-related logistic functions to model 

students and predict answers where student performance is a dependent variable and a set of 

learning model parameters is derived from historical data (Fenzhi et al., 2022). One of the most 

famous logistic models was built on Item Response Theory (IRT). IRT is the basis of the modern 

psychometric theory. The ‘item’ in this case, relates to a question in a test, so ‘item response’ is a 

student’s correct (or incorrect) answer to a specific question. IRT is a collection of statistical 

models developed for analyzing responses to tests, surveys, and similar instruments. These models 
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have enabled researchers and measurement experts to gain insights into how well individual 

examinees perform in specific areas of evaluation (Finch & French, 2019). IRT uses a 1-PL 

(parameter) model, a 2-PL model, or a 3-PL model, depending on the number of parameters 

involved. As a 1-PL model, the Rasch model is the simplest, and this simplicity has served to 

attract the attention of KT researchers (Abdelrhman et al., 2023). According to the Rasch model, 

given a student’s potential ability (θ) and the item difficulty level (β), the probability that the 

student will give a correct response to given item is: 

𝑃(𝑥𝑗𝑖 = 1|𝜃𝑖 , 𝛽𝑗) =
𝑒𝜃𝑖 − 𝛽𝑗

1 + 𝑒𝜃𝑖−𝛽𝑗
(2) 

where,  𝑥𝑗𝑖 indicates the response to item 𝑗 by individual 𝑖; 𝑏𝑗 indicates the difficulty of item 𝑗; and 

𝜃𝑖 indicates the level of the individual’s ability. In other words, if the student demonstrates high 

levels of ability in relation to an item, the correct response probability will also be high. If the 

item’s difficulty level exceeds the students’ expectations, they will be more likely to give an 

incorrect answer. Unfortunately, even though the Rasch model can predict student performance, 

item difficulty, and student ability, it has inbuilt assumptions that limit its applicability 

(Abdelrahman et al., 2023). The Rasch model assumes all items have the same discrimination 

parameter, implying that all items contribute equally to measuring the KC. In reality, this 

assumption may not hold for all items. Therefore, many researchers have drawn more fully upon 

IRT with the goal of forging a deeper connection between KT and IRT (Liu, 2022).  

IRT places emphasis on students' latent abilities. The characteristics of the factors in a 

student's learning interactions (e.g., attempt count) can play a significant role in predicting their 

future learning performance (Embretson & Reise, 2013). In one study, for instance, Wilson et al. 

(2016) found that a Bayesian model using IRT-based extensions was capable of outperforming 

DKT. This model considered both time-related features and learning factors. Later, researchers 
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turned to using IRT to improve the interpretability of deep learning KT models (Yeung, 2019) or 

combined deep learning algorithms with IRT to estimate a student’s potential ability more 

accurately (Tsutsumi et al., 2021).  

Following on from the initial work on IRT, Learning Factors Analysis (LFA) emerged as 

a way of addressing the known IRT drawbacks of one item only containing one concept and it 

treats a student’s learning ability as unchangeable (Fanzhi et al., 2022). Here, the knowledge 

tracing machine (KTM) proposed by Vie and Hisashi exhibits the best performance (Vie & 

Kashima, 2018; Abdelrahman et al., 2023). KTM uses factorization machines algorithms to model 

a student’s performance, which it can accomplish rapidly even when confronted with sparse data. 

However, KTM relies on the repeated learning of latent concepts and, for some concepts that are 

not frequently practiced, its prediction performance can be no better than that of IRT (Fanzhi et 

al., 2022) 

 To sum up, although logistic regression is more robust than BKT, it ignores a great deal of 

student information during the modelling process, especially response time and the forgetting rate 

(Song et al., 2022). This has prevented logistic regression models from entirely replacing BKT 

(Fanzhi et al, 2022). 

Deep Learning-based Approaches 

 As data processing rates have improved, deep learning, which relies on big data and 

complex models, has started to attract the attention of researchers. Most deep learning models for 

knowledge tracing are based on BKT or logistic models, which are then combined with neural 

networks to predict student performance (Fanzhi et al., 2022). The deep learning models can 

capture more intricate representations of student knowledge and uncover and utilize information 

about the interrelationships between concepts (Song et al., 2022). They are also able to handle the 
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fact that a student’s current knowledge state can be influenced by the progression of their 

knowledge state over time. This makes them more realistic than BKT, where a student’s 

knowledge state is solely modelled upon their final response (Xiao et al., 2022). The first 

application of recurrent neural networks (RNNs) to knowledge tracing tasks was by Piech et al. in 

2005. This is now regarded as the seminal work in Deep learning-based knowledge Tracing.  

 Inspired by the Markov process present in BKT models and recent developments in RNNs, 

Piech et al. (2005) proposed an innovative new model for knowledge tracing called Deep 

knowledge Tracing model (DKT) that relies exclusively upon deep learning. The DKT are deep-

learning models that can capture sequential dynamics through recurrent connections (Zhang et al., 

2021). This property can reflect the proximate causality effect in learning science and facilitate the 

retention of information relating to learning trajectories (Song et al., 2022). To that end, Piech et 

al. (2005) converted raw observations of student learning into a fixed-learning vector (𝑥1, 𝑥2. . . 𝑥𝑡). 

Through one-shot encoding, 𝐱𝑡 can be transformed into an input vector. Then, using the hidden 

state, 𝐡𝑡, in an RNN to represent a student's knowledge state, 𝐡𝑡 can be passed through a sigmoid-

activated linear layer to obtain an ultimate predicted result, 𝐲𝑡. For example, in the most common 

instantiations of KT, an interaction  𝑥𝑡 can be formed as a tuple of (𝑞𝑡, 𝑎𝑡).𝑞𝑡  represents the 

question and 𝑎𝑡 is the student's response (𝑎𝑡 ∈ {0,1}). So, 𝑞1 could be a question about square root 

problems (e.g., where the problem number is 100) where a student answers correctly. In that case,  

𝑥𝑡 is (100, 1). If  𝑞2 is a question about linear intercept problems (where the problem number is 

101) and the answer is incorrect,  𝑥𝑡 will be (101, 0). As these student learning interactions are 

discrete and do not have numerical significance (e.g., using 100 to represent square root problems 

and 101 to represent the intercept problems), to represent these features reasonably it is necessary 

to encode these categorical features in a different way. One-hot encoding is a commonly used data 
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pre-processing method for this kind of situation. It is based on there being N category values. It 

then constructs an N-dimensional vector of zeros, where each dimension represents a category 

feature value. The corresponding position in the N-dimensional vector is set to 1 for a specific 

category feature value (Ai, 2019).  

Each element represents the predicted probability of a student answering a question 

correctly for a corresponding KC (Song et al., 2022). At each time step, 𝑡, the model calculates, 

𝐡𝑡 and 𝐲𝑡 as follows: 

𝐡𝑡 = tanh(𝐖ℎ𝑥𝐱𝑡 + 𝐖ℎℎ𝐡𝑡−1 + 𝐛ℎ) (3) 

𝐲𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝑦ℎ𝐡𝑡 + 𝐛𝑦) (4) 

In term of performance prediction, DKT models outperform BKT model by twenty percent, even 

without any human expert annotated data (Liu, 2022; Song et al., 2022). Overall, they have perhaps 

shown the best applicability to time-series-related tasks (Liu et al., 2023). However, DKT has 

several limitations: (1) it uses uninterpretable hidden states to represent a student's knowledge state, 

which makes it impossible to determine a student's level of mastery (Abdelrahman & Wang, 2019; 

Zou et al., 2020); (2) it focuses on student responses and sets aside other rich learning trajectory 

information (such as number of students attempts or elapsed time) (Liu, 2022). So, critiques of 

DKT point to its poor capacity for interpretation and limited learning features. 

 Researchers have tried a number of approaches to overcome the problems associated with 

DKT, such as creating new structure, redesigning the loss functions, and introducing attention 

mechanisms (Liu et al., 2023). Out of these, the most effective way is to extend the model’s input 

features by designing new structures. Memory networks, for instance, mimic human memory 

mechanisms and forgetting phenomena. Neural networks that introduce external memory into their 

structure are generally referred to as Memory Augmented Neural Networks (MANNs). A crucial 
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characteristic of MANNs is their ability to achieve good classification prediction even when 

confronted with sparse data (Santoro et al., 2016). Inspired by a MANN framework proposed by 

Graves et al. (2016), Zhang et al. (2017) improved the DKT model by introducing an external 

memory structure that moves beyond basic MANNs by using dynamic rather than static memory 

to capture temporal dependencies and evolving patterns in a student's learning process (Zhang et 

al., 2017). This improved model was called a Dynamic Key-Value Memory Network (DKVMN). 

DKVMN is now widely used for KT tasks and a read-write mechanism has now been added to 

predict a student's performance and update the interactions. DKVMN assumes there are N latent 

traits underlying a sequence of exercises. These are stored in a concept matrix. The corresponding 

latent traits and student's mastery levels at timestamp 𝑡 are stored in an ability matrix (Zhang et al., 

2017). The reading mechanism follows two steps to predict student performance: attention; and 

reading. The attention step embeds an input feature and multiplies it with the concept matrix to 

calculate the number of latent traits involved in a particular question. After that, the results are 

passed through ability matrix to give a weighted sum and through the fully connected layer to get 

the relative weight, at which point the process finishes with the reading step. According to a 

student's response to question 𝑞𝑡, the writing process can be seen to transform the student's latent 

level of mastery from state 𝑉𝑡−1 at time 𝑡 − 1 to 𝑉𝑡 at time 𝑡, with the ability matrix then being 

updated (Zou et al., 2020). 

Although DKVMN remains the most popular memory network, some other approaches 

have been proposed. Graph networks, for instance, offer another way of enhancing the input 

features. Here, the focus is on knowledge concept relationships, such as their similarity and the 

correspondence between exercises and existing concepts. Nakagawa et al. (2019) were the first to 

suggest Graph-based Knowledge Tracing (GKT). They redefined the knowledge tracing problem 
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as a time series node-level classification problem (Abdelrahman et al., 2023). GKT allows 

researchers to get a better understanding of students’ interactions and knowledge (Liu, 2022) 

Aside from this, Su et al. (2018) have argued for the extraction of textual features from 

exercises by using an attention-based exercise-enhanced recurrent neural network. This models 

the student learning process by embedding textural features within it so as to obtain exercise 

representations. This was the first attempt to introduce attention mechanisms into knowledge 

tracing (Fanzhi et al., 2022). Pandey & Karypis (2019), meanwhile, have applied a Transformers 

model to KT tasks and have introduced the use of NLP algorithms to knowledge tracing (Xu et al., 

2021). To tackle the problem of interpretability, some researchers have tried to visualize and model 

student behaviour in higher dimensions and thereby exhibit the interaction between different 

knowledge concepts (e.g., Ding & Larson, 2021). 

While existing graph-based algorithms or attention mechanisms can enhance the 

performance of DKT (Fanzhi et al., 2022), DKVMN is still currently considered the best 

knowledge-tracing model due to its lower probability of overfitting and its capacity to 

automatically discover correlations between exercise questions and concepts (Sun et al., 2021; Zou 

et al., 2020). Many researchers have therefore sought to further improve and build upon DKVMN. 

This includes redesigning the structure or introducing new modules. Ai et al. (2019) were the first 

to redesign the DKVMN model. They did this by treating questions as a set of concept tags, which 

are usually available in online ITS platforms. Concept tags are typically used to label each question 

or item with the relevant knowledge points they involve. This allows questions to be associated 

with their respective knowledge points. The suggestion was that question concept tags could then 

be used to modify the concept matrix structure and improve the performance of a tutoring system. 

Other research has attempted to extract textual features from the questions themselves. One such 
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approach applied a multi-head self-attention mechanism to question texts and combined this with 

other behavioural features to redesign the DKVMN model (Xiao et al., 2022). Some researchers 

have argued that the input features in the DKVMN model are limited and do not make sufficient 

use of the rich information available on online education platforms. In relation to this, Sun et al. 

(2021) have proposed a versatile knowledge-tracing algorithm that combines learning ability and 

behavioural features. This algorithm passes information about the number of attempts made by a 

student and the number of hints requested through an Xgboost layer to obtain a preliminary 

prediction, which then serves as part of a DKVMN model's input. In a distinct approach, Yeung 

(2019) attempted to incorporate IRT-related modules to enhance the performance of the model. 

Using difficulty and ability neural network layers can lead to more meaningful estimates and 

increase a network model's interpretability while preserving the DKVMN model's predictive 

capability. However, Yeung's model lacks theoretical support. Although it does seem to improve 

the performance and interpretability of DKVMN, it does not explain why introducing new network 

layers would have such an effect. Nor does it indicate where the new network layers should be 

placed. 
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Figure 2. Architecture for Deep-IRT. 

He et al. (2021) were the first researchers to provide an extensible deep knowledge tracing 

theory (EDKT) that could explain how adding neural networks has an impact on DKVMN 

performance. Drawing upon human learning theory and deep learning mechanisms, they suggested 

that learning factors and knowledge growth should be considered essential aspects of a DKVMN 

architecture. This laid a solid theoretical foundation for subsequent related research and enhanced 

the interpretability of DKVMN model. Meanwhile, Wang et al. (2021) proposed a deep multi-type 

knowledge tracing model that made use of students' non-assessed data to improve the prediction 

performance by changing the knowledge growth structure, which achieved promising results. 
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Alongside this, Tsutsumi et al. (2021) used a hyper network to optimize Deep-IRT in order to 

represent students' knowledge states by rebalancing historical information and the current 

interaction. However, to date, there has been little research seeking to expand upon the Deep-IRT 

model proposed by Yeung. There is a particular need to use EDKT theory to re-examine and 

potentially re-design the Deep-IRT model (shown in Figure 2). The basic Deep-IRT model relies 

solely on a neural network to estimate difficulty and ability, but this overlooks any valuable 

information that may be present in a student's behavioural data. EDKT provides a way of 

incorporating student behavioural information into Deep-IRT models. Proceeding in this fashion 

can enhance their predictive power while maintaining interpretability. This reflects the call from a 

large number of studies of the relevant literature, which point out that future studies need to explore 

more effective ways of integrating learning theories into deep learning. Numerous authors also 

emphasize the need to incorporate more relevant information in the model (e.g., Abdelrahman et 

al., 2023; Fanzhi et al., 2022; Song et al., 2022). This study therefore offers a positive contribution 

to the existing research by moving forward in this direction.  

Chapter Summary 

Knowledge Tracing is a supervised sequential learning problem that aims to predict the 

likelihood of students giving correct answers to questions, given their historical sequence of 

interaction. Challenges, here, are the complexity arising from questions requiring mastery of more 

than one concept and the tendency of students to forget information. The first use of KT was by 

Anderson et (Anderson et al., 1990). Corbett & Anderson (1995) subsequently sought to apply 

Bayesian networks to the field of KT through Bayesian Knowledge Tracing (BKT. BKT is limited 

by its assumptions that all students have the same level of prior knowledge, that each question only 

involves one skill, and that knowledge concepts are potentially interdependent. This has led to a 
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range of refinements, but these continue to rely on knowledge states and cannot capture rich data 

features. Another method is the use of logistic models, where the key idea is that the probability 

of correctly answering a question can be represented by a mathematical function expressing 

student behaviour and certain knowledge state parameters.  Some of the most famous logistic 

models have been built using Item Response Theory (IRT), which is a collection of statistical 

models developed for analysing responses. Being the simplest, the Rasch model has attracted the 

most attention in KT. This, however, is limited in its application, so various researchers have 

attempted to improve it through the use of deep learning (e.g., Deep-IRT (Yeung et al., 2019)). 

Deep learning can model student knowledge in greater detail, make use of information about the 

interrelationships between concepts, and handle changes in student knowledge states over time. 

Piech et al. (2005) were the first to use recurrent neural networks for knowledge tracing in a model 

called Deep Knowledge Tracing (DKT). DKT significantly outperforms BKT but is limited by its 

use of hidden states to represent student knowledge and lack of attention to student learning 

trajectories. Zhang et al. (2017) improved the DKT model by introducing an external memory 

structure that uses dynamic rather than static memory to capture temporal dependencies and 

evolving patterns in a student's learning process This improved model, Dynamic Key-Value 

Memory Network (DKVMN), is still the most popular memory-based deep learning approach in 

KT, though other approaches have also been proposed, such as Graph-based Knowledge Tracing 

(GKT) (Nakagawa et al., 2019) and attention-based exercise-enhanced recurrent neural networks 

(Su et al., 2018). A number of attempts have been made to improve and build upon DKVMN, one 

of the most promising being Yeung et al.'s (2019) Deep-IRT. However, Deep-IRT lacks grounding 

in educational psychology and relies on neural networks to estimate difficulty and ability, rather 
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than attempting to deduce this from student behavioural data. The Enhanced Deep-IRT model 

proposed in this thesis seeks to rectify this limitation. 
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Chapter 3: Methods and Study design  

Overview of the design 

The current study used a previous research framework based on the Deep-IRT architecture 

to implement the proposed model (See Figure 3). The proposed model has three main modules: an 

'embed input' module (that combines the input with student behavioural information and question 

tags); a 'prediction' module (that calculates the probability of the student giving a correct answer 

to a specific question); and an 'update' module (that takes the modelled result and actual student 

response to update the student's knowledge state). Each module is composed of multiple neural 

network layers. 

 

Figure 3. Architecture for proposal model (Enhanced Deep-IRT) 
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The model was implemented using Pytorch and Pandas. The training and validation sets 

contained 200 items for each iteration. These were randomly extracted from the 2009 and 2017 

ASSISTments student learning trajectory datasets. The test set was the same length as the training 

set and randomly extracted items from the same datasets. A standard cross entropy loss function 

was applied for the model evaluation. As the Deep-IRT architecture is fully differentiable, the 

proposed model was trained using stochastic gradient descent (Zhang et al., 2017). 

Before the experiment began, the raw data was pre-processed using Pandas, then loaded 

into memory using a Dataloader to improve the efficiency of the model's execution. The pre-

processing and memory loading operations used the same methods as those used in previous 

studies (e.g., Sarsa et al., 2022). The experimental process involved several steps. First, the input 

exercise, 𝑞𝑡, and student behavioural data, 𝑏𝑡, were multiplied separately by an embedding matrix, 

𝐀, to obtain the continuous embedding vector, 𝐤𝑡 , and the input vector, 𝐪𝐛𝑡 for the model. The 

student behavioural data, 𝐪𝐛𝑡, was run through a difficulty neural network to obtain the difficulty 

vector, 𝐃𝐢𝐟𝑡, for the current exercise. The difficulty vector was added to the exercise vector, 𝐤𝑡, 

and the resulting vectors, 𝐯𝑡, were used separately to calculate the similarity between the concept 

matrix, 𝐌𝑘(𝑖), and the ability matrix, 𝐌𝑡
v(𝑖). This similarity calculation helped to determine the 

knowledge points and skill requirements involved in the current exercise. After this, the similarity 

scores, 𝑤𝑡(𝑖) and 𝑤𝑣𝑡(𝑖), were used to calculate the estimated knowledge state, which was further 

processed through a fully connected layer and a sigmoid activation function. This process 

ultimately yielded the probability of a student correctly answering a question, indicating mastery 

of the corresponding knowledge points. Finally, depending on the student's actual performance, 

the previous ability matrix was erased and updated using a forget gate and a long short-term 
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memory network. This step makes it possible to capture changes in a student's ability as they 

practice different exercises. Table 1 shows more details about the notation used in this study.  

Table 1  

Notation definitions 

Notation  Description  

𝑞𝑡 exercise record 

𝐤𝑡 exercise record feature 

𝑏𝑡 learning behavior record 

𝐪𝐛𝑡 behavior record feature 

𝐃𝐢𝐟𝑡 exercise difficulty feature  

𝐯𝑡 cross-feature combining exercise and 

estimated difficulty  

𝐌𝑘 concept matrix  

𝐌𝑡
v ability matrix at time step t  

𝑾𝑑𝑖𝑓  weight of difficulty feature 

𝑤𝑡(𝑖) correlation weight of question-concept  

𝑤𝑣𝑡(𝑖) correlation weight of question-skill 

𝑨𝒃𝒊𝑡 student ability feature at time step t  

𝐫𝑡 level of knowledge concept mastery  

𝐃𝐮𝐫𝑡 duration feature  

𝐟𝑡 level of overall knowledge concept mastery 

𝑝𝑡 probability of correct response  

𝐞𝑡 erase vector  

𝐚𝑡 add vector  
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Datasets 

The study drew on two commonly used knowledge tracing datasets (ASSIST2009 and 

ASSIST2017) to evaluate the model's performance (see Table 2). There were several reasons for 

choosing these two datasets. First, they contain the most comprehensive student information 

currently available and have been widely used for evaluating KT models in recent years (Liu, 

2022). In addition, this study compared the model's performance with two benchmark models that 

also made use of the same datasets (Li et al., 2023; Wang et al., 2022; Sarsa et al., 2022).  

Table 2  

Basic Description of the Datasets 

Datasets  Students  Knowledge concepts  Records  

ASSIST2009 4,217 124 401,756 

ASSIST2017 1,709 102 918,106 

 

The ASSISTments 2009 dataset (Feng et al., 2009) was collected from the ASSISTments 

online tutoring platform. There are two versions of this dataset. The older version contains 

duplicated records and is therefore not usable for the evaluation of deep learning models (Zhang 

et al., 2017). The current experiment used an updated 'skill-builder' version that is smaller than the 

original dataset. The data covers 4,217 students, 401,756 answer records, and 124 knowledge 

concepts.  

The ASSIST2017 dataset (Patikorn et al., 2017) was also collected from the ASSISTments 

online tutoring platform. It contains 1,709 students, 918,106 answer records, and 102 knowledge 

concepts. The ASSIST2017 dataset is the richest dataset available in terms of the average number 

of records per student (Wang et al., 2022). 
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Baseline models 

In order to evaluate the proposed model's performance, two typical KT models were 

selected to provide a baseline:  

(1) DKVMN: This model uses memory-augmented neural networks to model students' 

latent knowledge concepts and dynamically updates their knowledge state over time. DKVMN is 

known to be an elegant architectural model that makes effective use of additional information to 

enhance its prediction performance. 

(2) Deep-IRT: This is a variant of DKVMN model that differs by introducing one-

parameter logistic item response theory (1PL-IRT) to the DKVMN architecture. This model 

provides for better interpretability and reduces the overfitting problems associated with the original 

DKVMN model.  

Implementation details 

The raw data coming from the datasets could not be input directly into the model, so Pandas 

was used to reformat the data. The outliers were detected using the Tukey method, which calculates 

the difference from the interquartile range (IQR) to determine their presence. After the pre-

processing, the dataset consisted of 7𝑛 rows, where 𝑛 represents the total number of questions 

answered by each student. Each question was associated with a question label, an indicator of 

whether the response was correct (1 means correct, 0 means incorrect), and four behavioural 

elements (see Table 3). 
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Table 3 

Data features after pre-processing 

Feature name Description  

user_id Student ID 

problem_id Exercise number  

correct  Response results 1 = correct 0 = incorrect  

first_response (2009) / time_taken (2017) Time spent by a student on an exercise  

hint  Whether the students requested a hint during 

the first attempt  

attempt_count  Number of attempts at an exercise 

hint_count  Number of hints for an exercise 

 

This thesis proposed embed input module has two separate neural network layers, one to 

estimate the difficulty of the question and the other to calculate correlations between the question, 

associated concepts, and ability. The difficulty estimation layer takes the available behavioural 

information about the students as input. 𝑏𝑡 denotes their learning behaviour at time step 𝑡. After 

their behavioural information is embedded into matrix 𝑨, it undergoes a summation operation.  

𝑏𝑡 = ℎ𝑖𝑛𝑡𝑡 + 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝐶𝑜𝑢𝑛𝑡𝑡 + ℎ𝑖𝑛𝑡𝐶𝑜𝑢𝑛𝑡𝑡 (5) 

It then passes through a fully connected layer with Tanh activation to get a summary vector, 

𝑾𝑑𝑖𝑓 : 

𝑾𝑑𝑖𝑓 = 𝑡𝑎𝑛ℎ(𝐖𝑤𝑑𝑖𝑓[𝐪𝐛𝑡] + 𝐛𝑡) (6) 

Next, an attention mechanism is introduced because the weight of the behaviour relating 

to each exercise's difficulty is not fixed. The embedded sum of the student's behavioural data, 𝐪𝐛𝑡, 

is multiplied by 𝑾𝑑𝑖𝑓  to obtain the final difficulty vector, 𝐃𝐢𝐟𝑡 : 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐃𝐢𝐟𝑡) = 𝐪𝐛𝐭 ∗ 𝑆𝑔𝑚𝑜𝑖𝑑(𝐖𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛[𝐖𝑑𝑖𝑓] + 𝐛𝑡) (7) 
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The correlation layer concatenates the current exercise difficulty vector, 𝐃𝐢𝐟𝑡, and the input 

exercise vector, 𝐪𝑡, to obtain the cross-feature, 𝐯𝑡. This is then passed to the concept matrix, 𝐌𝑘(𝑖), 

and the ability matrix, 𝐌𝑡
v(𝑖), to calculate the inner products. After that, it is passed through a 

softmax layer and the corresponding correlation weight vectors are obtained for the prediction 

module, i.e.:  

𝑤𝑡(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐌𝑖
𝑘𝐯𝑡) (8) 

𝑤𝑣𝑡(𝑖) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐌𝑖
𝑣𝐯𝑡) (9) 

Previous research has indicated a correlation between the accuracy of students' answers 

and their working memory capacity (Darolia & Varshney, 2015). Inspired by these findings, the 

following algorithm incorporates different relationships in the student ability network to represent 

working memory capacity. 𝑤𝑡(𝑖) is used to denote the question-concept relationship, and 𝑤𝑣𝑡(𝑖) is 

used to denote the question-skill relationship. 

𝑨𝒃𝒊𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝐴𝑏𝑖(∥ 𝑤𝑡(𝑖) ∥ +∥ 𝑤𝑣𝑡(𝑖) ∥) + 𝐛𝐴𝑏𝑖) (10) 

Once the corresponding correlation weight, 𝐀𝐛𝐢𝑡(𝑖), has been obtained, the model uses it 

to perform a weighted sum of all the ability matrix slot vectors, 𝐌𝑡
v. This represents the read 

content (Yeung, 2019; Zhang et al., 2017), 𝑟𝑡 , which is the student's level of mastery of the 

associated knowledge concept, i.e.:  

𝐫𝑡 = ∑ 𝐀𝐛𝐢𝑡(𝑖)𝐌𝑡
𝑣(𝑖)𝑇

𝑁

𝑖=1

(11) 

As that the time required for a student to respond to an exercise is also related to their 

ability, the more complex the question, the longer it will take them to answer, and vice versa. 

Previous research has shown that the time taken also has an impact on the learning outcome. In 

that case, drawing on EDKT theory, the time taken was also introduced as a learning factor within 
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the model. Duration, here, is denoted by the independent feature, 𝑑𝑢𝑟𝑡 , and is constructed as 

follows: 

𝐃𝐮𝐫𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝑑𝑢𝑟[𝑑𝑢𝑟𝑡] + 𝐛𝑡) (12) 

𝐫𝑡, 𝐯𝑡, 𝑨𝒃𝒊𝑡and  𝐃𝐮𝐫𝑡 are now combined and passed through a fully connected layer with 

tanh activation to obtain the overall concept mastery (Zhang et al., 2017), 𝐟𝑡:  

𝐟𝑡 = 𝑡𝑎𝑛ℎ(𝐖𝑓[𝐫𝑡, 𝐯𝑡, 𝐀𝐛𝐢𝑡 , 𝐃𝐮𝐫𝑡] + 𝐛𝑓) (13) 

Finally, 𝐟𝑡 is passed through another fully connected layer with Sigmoid activation, which 

outputs the probability of the student answering 𝑞𝑡 correctly (Yeung, 2019; Zhang et al., 2017):  

𝑝𝑡 = 𝑃(𝑞𝑡) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝑝𝐟𝑡 + 𝐛𝑝) (14) 

After the student has given their response (correct or incorrect), the question 𝑞𝑡  and 

response 𝑎𝑡 are taken together to update the value matrix 𝐌𝑡
𝑣. First, the tuple (𝑞𝑡, 𝑎𝑡) is embedded 

within the matrix 𝐁 ∈ ℝ2𝑄∗𝑑𝑣  to obtain the vector 𝐮𝑡 ∈ ℝ𝑑𝑣 , which represents the change in the 

student's knowledge after working on the exercise. Next, drawing upon the idea of the input and 

forget gates in a long short-term memory network, part of the memory is erased using the erase 

vector, 𝐞𝑡 ∈ ℝ𝑑𝑣 . This step aims to mimic the potential impact of forgetting behaviour on learning 

growth (Zhang et al., 2017):  

𝐞𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐖𝑒𝐮𝑡 + 𝐛𝑒) (15) 

𝐞𝑡 is a column vector in the range (0,1). After erasure, an add vector, 𝐚𝑡 ∈ ℝ𝑑𝑣 , is used to 

update each memory slot in 𝐌𝑡
𝑣 (Zhang et al., 2017):  

𝐚𝑡 = 𝑡𝑎𝑛ℎ(𝐖𝑎𝐮𝑡 + 𝐛𝑎) (16) 

Finally, the new value matrix, 𝐌𝑡
𝑣, can be formulated as follows (Yeung, 2019; Zhang et 

al., 2017):  

𝐌𝑡+1
𝑣 = 𝐌

~

𝑡
𝑣(𝑖) + 𝑤𝑡𝑖𝐚𝑡

𝑇 = 𝐌𝑣 (𝑖) ⊗ (1 − 𝑤𝑡𝑖𝐞𝑡)𝑇 + 𝑤𝑡𝑖 𝐚𝑡
𝑇 (17) 
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The experiment adopted a fivefold cross-validation method to evaluate the model's 

performance. For each dataset, 70% was used for training and validation and 30% for testing. For 

each run-through, the validation set was used to fine-tune the hyperparameters. The experiments 

were conducted five times for each dataset, and the average of the five results was taken as the 

final result. Unlike most previous studies (Wang et al., 2021; Zhang et al., 2017), in which the 

concept and ability matrix has been initialized in advance, this study used a Kaiming normal 

distribution to initiate the model, thereby avoiding gradient explosion. The memory size, 𝑑0, was 

set at 20 dimensions for each dataset, and both 𝑑𝑘  and 𝑑𝑣 were set at 200. The model used an 

Adam optimizer, with an initial learning rate of 0.01. The learning rate was reduced if the training 

loss increased. The calculation framework used for the experiments was Pytorch and the 

experiments were conducted on an NVIDIA RTX 3060.  

This study followed other empirical research that has suggested using a cross-entropy loss 

function to optimize the model. All the learnable parameters in the model were jointly learned by 

minimizing the cross-entropy loss between the real label, 𝑎𝑡, and the predicted value, 𝑝𝑡, as follows: 

ℓ = − ∑(𝑎𝑡𝑙𝑜𝑔𝑝𝑡 + (1 − 𝑎𝑡)log (1 − 𝑝𝑡))

𝑡

(18) 

Chapter Summary 

This thesis reports on a study that used student behavioural information to redesign the 

Deep-IRT neural network. The proposed model uses question-concept and question-skill 

relationships to build a new network to represent student ability. The model's architecture is 

constructed around three network modules: 'embed input'; 'prediction'; and 'update'. Two KT 

datasets (ASSIST 2009 and ASSIST 2017) were used to tune the model's hyperparameters and 

evaluate its performance. The datasets were pre-processed in Pandas. Two baseline models, 
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DKVMN and Deep-IRT, were compared with the proposed model to assess its relative 

performance. The results of the various experiments undertaken are reported in the next chapter.
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Chapter 4: Results  

This chapter compares the performance of DKVMN, Deep-IRT, and the proposed model 

when applied to the two large evaluation datasets. The chapter concludes with the results of an 

ablation test, which was undertaken to assess whether each new factor helped to improve the 

model's performance. 

Overall model performance  

According to the previous empirical study, the Area under the Curve (AUC) is a commonly 

used metric in the knowledge tracing model (Sarsa et al., 2022). It corresponds to the likelihood 

that the classifier will rank a randomly selected positive instance higher than a randomly selected 

negative instance. Moreover, some research apply AUC as the performance index. Hence the 

current study uses the AUC to report the proposed model performance (see Figure 4).   

Two experiments, one using ASSIST 2009 and the other ASSIST 2017, were conducted 

for each of the three models. These revealed a number of differences in their performance. For 

ASSIST 2009, the AUC value for the proposed model was 98.33%, which was 15.44% and 16.70% 

higher than DKVMN and Deep-IRT, respectively. For ASSIST 2017, the AUC value for the 

proposed model was 86.12%, which was 19.24% and 20.83% higher than DKVMN and Deep-IRT, 

respectively. Compared with state-of-the-art models (AUC: 0. 919), the proposed model improved 

the AUC values by 6.43% for the ASSIST 2009 dataset (Sun et al., 2021). Table 4 provides an 

overview of the above results.  
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Figure 4. Comparative performance for the training and test data when applying the proposed 

model to the ASSIST 2009 and ASSIST 2017 datasets. 
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Model performance and comparison of the results  

Experiment 1 compared the performance of DKVMN with the proposed model using the 

same hyperparameters across the two evaluation datasets. The AUC of DKVMN was 66.87% for 

the ASSIST 2017 dataset and 82.89% for the ASSIST 2009 dataset (see Figure 5). As the proposed 

model enhances the input features more than DKVMN, the DKVMN model was also modified so 

that it was using the same features as the proposed model. The AUC of the modified DKVMN was 

85.16% for the ASSIST 2017 dataset and 96.98% for the ASSIST 2009 dataset. However, the 

proposed model outperformed the modified DKVMN by 2.05% for ASSIST 2017 and by 0.96% 

for ASSIST 2009. 

Experiment 2 investigated the differences in performance of Deep-IRT and the proposed 

model for the same two datasets. The Deep-IRT model's AUC was 65.29% for ASSIST 2017 and 

81.63% for ASSIST 2009 (see Figure 5). As with Experiment 1, the input structure of Deep-IRT 

was also modified so that it used the same features as the proposed model. The AUC of the 

modified Deep-IRT was 84.96% for ASSIST 2017 and 97.43% for ASSIST 2009. The proposed 

model outperformed Deep-IRT by 1.16% for ASSIST 2017 and 0.9% for ASSIST 2009. 

Table 4  

Overall performance of the different models when applied to the two datasets 

Model  ASSIST 2009 ASSIST 2017 

DKVMN  0.8289 0.6687 

Baseline Deep-IRT 0.8163 0.6529 

Enhanced Deep-IRT (current) 0.9833 0.8612 
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Figure 5. Performances of all models on all datasets. 

 

Ablation study results  

 This research adopts a technique inspired by neuroscience, specifically the ablation studies 

approach, to explore how a single factor influences the model and examine the effects of various 

feature combinations on the model's performance. In traditional neuroscience studies, researchers 

tend to damage specific neural areas to investigate different neural tissue influences on the brain's 

capabilities to perform a specific task, which can obtain insight into the brain's structure and 

organization of processing. Since ablation studies have proven valuable in examining complex 

neural systems such as primate brains (Meyes et al., 2019), exploring their potential for advancing 

state-of-the-art artificial neural systems is reasonable. Moreover, most deep knowledge tracing 

model research utilized ablation studies to confirm that their neuro layer design can positively 

contribute to the model performance (He et al., 2021; Xiao et al., 2022). Hence, to better 

understand the contribution of each factor to the proposed model's final performance, an ablation 

study was undertaken that involved several different experiments using the datasets. The proposed 

model centres around three key factors: difficulty, ability, and time taken. The cumulative totals 

for these are shown in Table 5.  
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By adding the new modules to Deep-IRT, its AUC was generally enhanced, as was shown 

for both the 2017 and 2009 datasets. However, by combining different factors, the model's 

performance may be improved to different degrees. As can be seen, a combination of attention to 

difficulty and ability yielded a higher AUC than just using the difficulty. This was the case for 

both the 2009 and 2017 datasets. A combination of all three factors (difficulty, ability, and time 

taken) produced the best overall performance. 

Table 5  

Ablation study results for different model configurations 

Model  ASSIST 2009 ASSIST 2017 Compare Baseline 

Baseline (Deep-IRT) 0.8163 0.6529 - 

Enhanced Deep-IRT 

(ability) 

0.8184 0.6543 + 0.0021 (2009) 

+ 0.0014 (2017) 

Enhanced Deep-IRT 

(time) 

0.8168 0.6554 + 0.0005 (2009) 

+ 0.0025 (2017) 

Enhanced Deep-IRT 

(difficulty) 

0.9808 0.8573 + 0.1645 (2009) 

+ 0.2044 (2017) 

Enhanced Deep-IRT 

(difficulty+ability) 

0.9829 0.8587 + 0.1666 (2009) 

+ 0.2058 (2017) 

Enhanced Deep-IRT 

(difficulty+time) 

0.9813 0.8588 + 0.1650 (2009) 

+ 0.2059 (2017) 

Enhanced Deep-IRT 

(difficulty+ability+time) 

0.9833 0.8612 + 0.1670 (2009) 

+ 0.2083 (2017) 

 

Chapter summary  

The performance of the proposed model was evaluated in comparison to two other baseline 

models, DKVMN and Deep-IRT, using the ASSIST 2009 and ASSIST 2017 datasets. The 

proposed model (enhanced deep-IRT) outperformed DKVMN by between 15.44% and 19.25% 
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and Deep-IRT by between 16.70% and 20.83%, depending on the specific dataset and 

modifications used. An ablation study revealed that the factors drawn upon within each dataset can 

also influence the performance results. It was established that the proposed Enhanced Deep-IRT 

model using features relating to difficulty, ability, and time taken will produce the best results. 

Overall, the experiments confirmed that an improvement in model performance relies on 

introducing students' behaviour information and redesigning the network architecture in the ways 

proposed in Chapter 3. 
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Chapter 5: Discussion 

Since the introduction of the first deep learning model specifically designed for knowledge 

tracing in 2015 (Piech et al., 2015), various types of deep learning models have been proposed. 

These have contributed new insights regarding the tracking and prediction of student performance, 

given the prospects offered by the processing of big data (Liu et al., 2023). Out of all the different 

models developed, DKVMN has perhaps generated the most interest amongst researchers due to 

its interpretability and elegant and scalable structure (Zhang et al., 2017). While many algorithms 

have now been proposed that enhance some aspect of the DKVMN model, there has been relatively 

little work done so far regarding the incorporation of theoretical insights coming out of educational 

psychology. An exception, here, is Deep-IRT, which is a pioneering model that attempts to 

combine IRT theory with DKVMN. However, in the Deep-IRT model, the estimation of difficulty 

and ability relies entirely on what is already present in the neural networks, thereby missing the 

opportunity to build in additional important information (Yeung, 2019). Inspired by the 

Transformation design, I have attempted to enhance the performance and interpretability of the 

Deep-IRT model by incorporating attention mechanisms and normalization layers. In practical 

terms, this has involved not only looking at how to enhance the model's input features but also 

modification of the model by adding in difficulty and ability layers.  

As indicated at the outset, the principal goal of the research reported in this thesis was to 

investigate ways of improving the Deep-IRT model's performance. My first step towards 

accomplishing this was to enhance the input features based on the features of student learning 

interactions (i.e., the total number of attempts, the number of hints provided, and the time elapsed) 

instead of relying only on questions and student responses as the input. The next step was to 

develop new algorithms that could estimate an item's difficulty and the ability required to be able 
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to respond to it correctly. For estimation of the difficulty, This study developed a difficulty neural 

network that introduces attention mechanisms that dynamically model student's perception of a 

question's difficulty. For the assessment of student ability, I created an ability neural network that 

considers not only the relationship between questions and knowledge concepts (Q-C), but also the 

relationship between questions and skills (Q-S). An integrated relationship between knowledge, 

concepts, and skills is obtained through a normalization layer, which estimates a student's current 

ability state. In addition, an independent elapsed time network is used to balance the influence of 

the different difficulty and ability estimations to predict the student's responses. This latter element 

was built in because it is important to determine the impact of time-related factors on student 

performance predictions by taking into account the time taken to answer a question and how this 

relates to the question's difficulty and the student's ability. 

The secondary aspect of the research was to compare the proposed model's performance 

with baseline models (DKVMN and Deep-IRT) and to investigate the extent to which the 

redesigned aspects of the algorithm were contributing to the proposed model's performance. To 

achieve this, the present study utilized small datasets (from two extensive datasets) to execute 

multiple replicated experiments to identify appropriate hyperparameters for both the baseline and 

proposed models. Additionally, an ablation study was conducted to evaluate the performance of 

individual algorithms applied to each neural layer. This facilitated observation of the respective 

contributions of each neural layer to the proposed model's AUC value. 

Compared with the baseline model (Deep IRT), the current proposed model introduces an 

independent neural network for estimating difficulty, redesigns the algorithm for updating the 

ability matrix, and incorporates elapsed time as a separate feature into the model. Given the use of 
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the same dataset, the algorithm for the item input layer remains consistent with the previous 

approach, serving as the input feature for the model. 

The original research questions were: 

1) Does introducing student behavioural information via independent neural networks 

improve the baseline model's performance? 

2) Does the proposed algorithm have better predictive performance than other baseline 

models? 

The impact of introducing student behavioural information 

The ablation study confirmed that the proposed algorithms have outperform the baseline 

model. Specifically, introducing a difficulty estimation network improved the Deep -IRT baseline 

model by 16.70% for the ASSIST 2009 dataset and 20.83% for the ASSIST 2017. As mentioned 

earlier, there are two ways of estimating question difficulty: absolute difficulty assessment; and 

relative difficulty assessment (Xu et al., 2021). Here, student behavioural information in the 

datasets was used to build a relative difficulty estimation network, instead of relying on just the 

character of a specific question. This approach is more open to generalization. For the ability 

assessment network, there was an improvement on the baseline model of 0.21% for the 2009 

dataset and 0.14% for the 2017 dataset. Unlike baseline models that only use a single fully 

connected layer and a tanh activation function to describe student ability, the proposed model uses 

the question-concept and question-skill relationship to model student ability. This is a novel 

approach to knowledge tracing. These features are combined using a fully connected layer and 

normalization layer to showcase student ability. For the network focused upon the time elapsed, 

there were improvements over the baseline model of 0.05% for the ASSIST 2009 dataset and of 

0.25% for the ASSIST 2017 dataset. This finding is consistent with previous research, which 



38 

suggests that duration may contribute to model performance, although the impact may not be 

particularly pronounced (Xiao et al., 2022). A possible reason is that, although research has shown 

a relationship between the time taken to answer a question and a student's mastery of latent 

concepts (Pelánek & Jarušek, 2015), individual differences in students' emotional and cognitive 

patterns during problem-solving, makes any prediction of student performance based on duration 

challenging (Ofelia et al., 2013). 

The predictive performance in comparison to established baseline models  

The study reported here used AUC scores to measure each model's performance. The 

results of this exercise suggest that enhancing the input features does, indeed, lead to an 

improvement in model performance. After enhancing the input, the AUC score was improved by 

18.67% for the ASSIST 2009 dataset and 4.01% for the ASSIST 2017 dataset. Similarly, for the 

Deep-IRT model, adding in the enhanced input features resulted in an improvement of 17.52% for 

the ASSIST 2009 dataset and 2.88% for the 2017 ASSIST dataset. A somewhat surprising result 

here is that, although the same features were enhanced for both datasets (such as the number of 

attempts, the response time, the number of requests for help, and the initial attempt behaviour), the 

resulting improvement was better for the 2009 dataset. A likely reason for this is that the 2009 

dataset was not over-parameterized and had incorporated other factors (He et al., 2021). Other 

prior research has found the same phenomenon. The state-of-the-art model for ASSIST 2009 prior 

to the current study achieved an AUC score of 91.9%. In addition, as a report by He et al. (2021) 

has already suggested, the structure of DKVMN and its variants enables it to leverage neural 

networks in ways in which it can automatically discover the relationship between skills and latent 

concepts. As a result, enhancing the input features does not lead to over-parameterization or the 
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overfitting issues that have been seen with other deep knowledge tracing models (i.e., DKT). 

Hence, this study provides additional evidence for the validity of these previous hypotheses. 

Chapter Summary  

An enhanced Deep-IRT model has been proposed that takes forward the state of the art by 

incorporating attention mechanisms and normalization layers. In particular, this has sought to build 

in inspiration from educational psychology with regard to the relationship between working 

memory and question-concept (or skill) relationships. The research associated with this model has 

set out to address two research questions, the first regarding whether building in network layers 

relating to difficulty, ability and duration can augment Deep-IRT's performance, and the second 

regarding whether the resulting improvements enable the model to outperform existing baseline 

models. In relation to the first question, it was found that difficulty and ability factors had the most 

notable effect on performance, but that duration also had a slight effect. In the case of the second 

question, it has been demonstrated that the proposed model offers advantages over existing models, 

though it made a more significant difference for the ASSIST 2009 dataset than for the ASSIST 

2017 dataset. 
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Chapter 6: Conclusion 

The study reported in this thesis focused on the development of an enhanced Deep-IRT 

model. The model is a knowledge-tracing algorithm that is able to incorporate and build 

predictions upon information about the behaviour of students when engaged in learning exercises. 

The results of experiments conducted on two real-world datasets indicate that the proposed model 

outperformed baseline models such as DKVMN and Deep-IRT. In particular, the proposed model 

helped to improve the interpretability of the baseline model. Drawing upon theories relating to 

EDKT, a set of distinct neural network layers was created, and an appropriate overall architecture 

was designed. Specific innovations in the model that significantly contributed to its success were 

the use of relative difficulty theory (Xu et al., 2021), research on working memory (Darolia & 

Varshney, 2015), and question-concept (or skill) relationships (Ma et al., 2022) derived from 

educational psychology. The relative difficulty perspective on questions suggests that the difficulty 

of a question reflects the individual knowledge level of students and that the difficulty of a question 

should be quantified through the interactive performance between students and the question (Xu 

et al., 2021). The model's design provides for a more accurate and explainable assessment of 

student abilities and experienced levels of difficulty. Generally, the model facilitates a better 

understanding of students' learning processes and performance. 

Limitations of the Study and the Directions for Future Research  

Inevitably, the study reported here had some limitations. First, the experiments were 

conducted using specific datasets, which may introduce data bias and limit the model's 

generalizability. The publicly available education datasets suitable for knowledge tracing model 

evaluation mainly derive from the ASSISTment Data project and competition datasets geared 

towards the development of artificial intelligence. The ASSIST 2009 and 2017 datasets contain 
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the most information about student behaviour. However, these datasets only record students' 

responses to mathematical questions, so they are limited with regard to what they may say about 

learning in other subjects (Song et al., 2022). Indeed, predicting student performance in other 

subjects using the current research model would be challenging. Future studies therefore need to 

explore how best to use datasets relating to other subjects to improve the generalisability of the 

existing models.  

Second, the current study used the simplest Rasch model to build the proposed neural 

networks. As a result, the proposed model does not consider other potential factors that might 

impact a student's response, such as guessing. Ding and Larson (2020) identify a number of areas 

for improvement in existing deep knowledge tracing models with regard to the handling of 

uncertain student behaviour (including guessing). They suggest introducing a regularization 

mechanism to adjust the loss function, so that it can capture uncertain student behaviour more 

effectively. This regularization mechanism can help a model to handle phenomena such as 

guessing when students are responding to questions, thereby improving the model's predictive 

performance and reducing the impact of the uncertainty. Future research should therefore explore 

ways of incorporating other algorithms into the model's loss function, so that the impact of 

uncertain behaviour can be properly taken into account when making predictions. The first step 

towards this would be to test a range of regularization mechanisms and evaluate their effect on the 

model's performance. Ultimately, this feature will enhance the model's robustness and 

generalizability and make it more reliable and effective in real-world applications. 

Finally, while the proposed model achieved outstanding predictive performance and 

enhanced interpretability, the network architecture is relatively complex. This led to slow 

convergence during training. It is therefore worth exploring how to integrate new deep learning 
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algorithms, such as Transformer, that might help to enhance the model's computational efficiency. 

This, too, will improve its effectiveness for real-world applications.  

By pursuing the various new avenues of exploration proposed above, the work commenced 

in this thesis can continue to contribute to new advances in the field of deep knowledge tracing, as 

well as leaving it open to being inspired by new developments in the field. 
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