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ABSTRACT

In this thesis the one-way random effects model is used as an analysis tool 

for estimating the distributional behavior of large data values. We define num­

ber of exceedances as the number of observations that have data value larger 

than a given threshold. The distributional behavior of large data values is stud­

ied using three quantities: (i)expected number of exceedances, (ii)variance of 

number of exceedances, and (iii)probability of observing no exceedances. We 

first use a parametric method, following the framework of Solomon (1989). 

Under the assumptions that the random effects and the random errors are 

normally distributed, the above three quantities can be expressed as func­

tions of the variance components. We then use bootstrap method to obtain 

robust estimates. Since classical bootstrap method is not appropriate under 

one-way random effects model, we propose three different bootstrap methods 

that are consistent for estimating the above mentioned three quantities. Our 

simulation study shows that the parametric method works best only when the 

normality assumption is met, and the third bootstrap method is very robust 

against the distributional assumption. An application to a real data set is also 

discussed.
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0(n *) represents terms that have the same or smaller order of magnitude

as n  , in the sense that 0 (n is bounded as a —> oo.

0 ( ( a  A n )  denotes 0(a  *) or 0 ( n  *) or both of them.

E m , VarM and C ovm denote the expectation, variance an covariance with 

respect to the model.

Var*, and Cov* denote the expectation, variance and covariance with 

respect to the bootstrap sample.
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Chapter 1

Introduction and Literature 

R eview

Understanding the distributional behaviour of large data values is very useful 

in medical research, for example in studying number of times blood pressure 

values increase over a threshold value. We study the distributional behaviour 

of large data values under a one-way random effects model. Both parametric 

method and bootstrap methods will be considered in this thesis. In this chap­

ter, we discuss an application of one-way random effects model to the estimate 

of number of exceedances and related quantities.

1.1 Introduction

Random effects models, also known as variance components models, have been 

widely used in many different fields of research. In epidemiologic research, they 

are commonly used to measure the degree of familial resemblance with respect 

to biological characteristics. In genetics these models play a central role in 

estimating the heritability of selected traits in animal and plant populations.

1
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In sample surveys, statisticians use random effects models to improve the 

estimate accuracy for the areas or population groups that do not have enough 

representative sample sizes. The simplest case of a random effects model is 

a one-way random effects model (see Searle et al, 1992). Under the one-way 

random effects model all data observations are classified into groups according 

to some criteria, for example, all the measurements from each subject are 

classified into one group. The groups in the data are assumed to be a random 

sample of groups from all possible groups. For example, if groups are subjects, 

then, all the subjects included in the data are assumed to be a finite sample 

from the subject population. There are two different sources of variations 

under one-way random effects model: one is the variation of observing only a 

sample of groups, which is called the group effect, or random effect, associated 

with each group of observations, the other is the variation of measurement, 

called random error, which is associated with each observation. The primary 

interest in the random effects model is to estimate the two sources of variations.

We use the data set from Solomon (1989) in this thesis. Solomon (1989) 

considers a data set on blood pressure from the International Prospective Pri­

mary Prevention Study in Hypertension (IPPPSH). The data are the observa­

tions made quarterly for a period of 4 years (thus a total of 16 measurements 

from each patient) on 25 hypertensive males receiving treatment regimens 

containing a betablocker, the measured variables are diastolic and systolic 

pressures. Using this data set, we want to find out how many blood pressure 

measurements from a patient will be higher than a given threshold, that is, 

we are interested in estimating the behaviour of large blood pressure measure­

ments.

The data on blood pressure can be classified in the following way: the 

measurements from a patient form a group, giving a total of 25 groups, and 

within each group, we have 16 observations. Thus the total variation of the 

blood pressure measurements is consisted of two components: between groups 

(patients) and within group (each patient). We then use one-way random 

effects model to analyze this data set.

2
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The one-way random effects model can be described as:

Vij — "b Vi T  6 j j , j  1, . . . , Tli, i 1, . . . , Cl, ( I f f )

where is the value associated with the j th observation for the i th group 

(such as the j th blood pressure measurement from the i th patient), /i is the 

overall mean, Vi is the random effect associated with i th group, and is the 

random error associated with the j th observation in the i th group. Here w?; and

are assumed identically independent random variables, with mean 0 and 

variances aI and o2e, respectively, and possibly normally distributed. Further, 

Vi and are assumed to be independently distributed. Here, a2 and a2 are 

unknown parameters, which are called variance components.

If all rii =  n  for i  =  1,2, . . . ,  a,  then the model is called balanced one-way 

random effects model.

In the IPPPSH blood pressure data, y^-’s represent the blood pressure 

measurements, describes the effect of the i th patient, and describes the 

measurement error of taking j th blood pressure for the i th patient. Vi and 

are not observed.

Note that the above one-way random effects model has three unknown pa­

rameters, fi, a 2, and (Tg. In the classical framework of random effects models 

(or mixed effects models), the primary interests are on the estimation of y, and 

the variance components or functions of variance components. For this pur­

pose, many methods are available for general random and mixed effects mod­

els. These methods include: Henderson’s Method I, Method II, and Method 

III (Henderson (1953)), Maximum Likelihood (ML) and Restricted Maximum 

Likelihood (REML), Bayes estimations, and Minimum Norm Quadratic Esti­

mation (MINQUE, Rao, 1970, 1971, 1972). ANOVA type of methods, which 

includes Henderson’s three methods, do not require the assumption of normal­

ity. Searle et al (1992) gives detailed treatment on the estimation of variance 
components.

For the simple one-way random effects model, the estimation of the two 

variance components is very simple, especially under a balanced case. We

3
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discuss this in Chapter 2. In this thesis, our primary purpose is not on the

estimation of the variance components for the model, but on the estimation 

of the distributional behaviour of number of large data values, which is not 

directly described by the one-way random effects model. Solomon (1989) first 

discussed this problem. She modeled the IPPPSH data set using a one-way 

random effects model. Under the normality assumptions of the random effects 

and the random errors, the distribution of the number of large data values can 

be easily derived from model (1.1).

Under model (1.1), if we define the large data value as an indicator function 

for the observation y^ as:

where h is a given threshold. Then, we can define the number of large data 

values, which we termed as number of exceedances T), for the i th group, as the 

summation of Iij(h) over all observations in the ith group. That is,

Since Ti is a function of y^,  for j  = 1 ,2 , . . . ,  Hi, which are normally distrib­

uted (under the normality assumptions of random effects and random errors), 

we can then easily derive the distribution of T). In a balanced case, all T) have 

identical distributions, in which case we drop the subscript i. Solomon (1989) 

considers three parameters based on T as the interested quantities. These three 

quantities are: (a) E(T),  the expected number of exceedances, (b) Var(T),  

the variance of number of exceedances, and (c) Pr{T  =  0), the probability of 

observing no exceedance. These three quantities can be expressed as functions 

of the model parameters: the overall mean y, the variance of random effects 

o\,  and the variance of random errors o\,  as follows:

1 Vij ^  h 
0 otherwise

( 1 .2 )

Var(T)  =  n<E>
( ^ ) {1 _  $  } [1 + {n - 1)pi]’ (L3)

4
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and,
/  + 00 

-oo

where

O ' -  4, (e z i)  tl -  $  (M_4)] ’

7 =  (h -  n)/(*v, 

t  =  (Te/ a v ,

and
cr2 =  a 2 +  a 2,

with <fi(x) and $(®) denoting the standard normal probability density function 

and cumulative density function, respectively.

The three interested quantities all depend on the model parameters //, 

cr2, and <j2, which are unknown. We can use the ANOVA method (such as 

Henderson’s three methods) or Maximum Likelihood method to estimate them 

from the observed data yij, and then plug these estimates in the above formulae 

(1.2), (1.3), and (1.4) to obtain the point estimates of E(T),  Var(T)  and 

Pr{T  =  0).

As discussed in Chapter 2, the form of these functions are quite compli­

cated, making it almost impossible to estimate the variances of these estimates, 

and further, these functions depend heavily on the assumption of normality, 

and thus they are not robust estimators. In order to address these problems, 

we propose bootstrap methods for the estimation of these three quantities.

The main difficulty in applying classical bootstrap methods to this problem 

is that these methods are developed for the identically independently distrib­

uted (i.i.d.) data. Under the i.i.d. data case, they are consistent and robust. 

But under one-way random effects model, the observed data are not i.i.d, 

so we can not directly apply the classical bootstrap methods. We have to con­

sider new bootstrap methods that are suitable for this non-i.i.d case. These 

procedures are described in Chapter 3.

5

$
7 — x

dx, (1.4)
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1.2 Literature R eview  for the Theory of B oot­

strap

The main purpose of this thesis is to estimate the three quantities proposed 

in Solomon (1989), using bootstrap procedures, so in this section, we review 

some development of the bootstrap theory that are relative to our problem. 

For the one-way random effects model, there are great amount of literature. 

In particular, the book on variance components by Searle et al (1992) is very 

useful.

Since the introduction of bootstrap by Efron (Efron, 1979), with the rapid 

development of fast computing ability, the bootstrap method has become an 

intensively used method for assessing uncertainty in a vast range of domains, 

from i.i.d. case to independent case to correlated models.

The bootstrap method can be viewed as a mixture of two techniques: the 

substitution principle and the Monte Carlo method for numerical approxima­

tion (Shao & Tu, 1995).

Often parameters can be expressed (implicitly or explicitly) as a function 

of the underlying distribution:

where R n is a function of X i , X 2, . . .  , X n, and the data X i , X 2, . . .  , X n, are 

generated from the distribution Pn (possibly from a distribution family, but 

the exact distribution is unknown), thus the form of the function Rn depends 

on Pn.

find a function Rn, and then plug in the observed data X \ , X 2, . . .  , X n. But 

sometimes it is difficult or even impossible to find a closed form of Rn, and 

furthermore, it will be even more difficult to find the accuracy measures (such

(1.5)

( 1 .6 )

The traditional approach of finding an estimate of 9, say, 8, is to use Pn to

as variance, mean squared error) of 9.

6
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Real World Bootstrap World

Pn —> X  => Pn -*• A*

Rn 1 P n i
§  e*

Figure 1.1: Typical Bootstrap Diagram

The bootstrap approach instead tries to estimate the distribution Pn, de­

noted as Pn, from the observed data X x,X2 , ...  , X n, and then plug in (1.6) 

(substitution principle). Since now Pn is completely known, we can generate 

as many data X*, X ^, • • ■, X* as we want from Pn, and for each generated data 

we compute an estimate from (1.5), say 0* (Monte Carlo method). Thus we 

have many 6*, then we can have their mean value and the variance (or mean 

squared error), which are used as the bootstrap estimate and the accuracy 

measure of the interested parameter 0. The general bootstrap approach is 

described in figure 1.1 (Efron, 2003).

This figure shows that from Real World to Bootstrap World, we simply re­

place Pn with its point estimate Pn. Usually we have two different approaches 

for estimating Pn from the given observed data X  = (W, X 2, . . . ,  X n). One is 

to assume Pn comes from a distribution family, depending on some unknown 

parameters. We first estimate these unknown parameters from the observed 

data Xi,X2,  ■ ■ ■ , X n, and then plug in Pn to get Pn, and the bootstrap sam­

ples are generated from Pn. This is called a parametric bootstrap. Another 

approach is that we do not assume any particular form of Pn, instead we use 

the empirical distribution Fn from X x, X2, ■ ■ ■ , X n, which assigns ^ of proba­

bility to each Xj, for Pn. This is called a nonparametric bootstrap. For the 

nonparametric bootstrap method, since we do not assume any specific form 

of the underlying distribution, it is thus distributionally robust, and is widely 
used.

From the above diagram we see that if the ” Bootstrap World” really mim­

ics the ’’Real World” , then the bootstrap method will provide a better result.

7
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In this sense, the bootstrap method is actually model-dependent,: the ’’Boot­

strap World” should fairly reflect the ’’Real World” , or the real model, in other 

words. But the bootstrap method requires no theoretical formula for the quan­

tity to be estimated and thus it is less model-dependent than the traditional 

approach.

The difference between the ’’Bootstrap World” and the ’’Real World” is 

determined by the two distribution Pn and Pn, which are the data generation 

mechanisms. Since in practice, we often use the empirical distribution Fn for 

Pn, thus it is intuitively correct that this bootstrap method works better when 

the observed data X lt X 2, ■ ■ ■, X n are independently identically distributed 

(i.i.d.) from Pn. This is well addressed and justified in literature. The first, 

two important papers on the asymptotic accuracy are by Singh (1981) and 

Bickel and Freedman (1981), which showed that the bootstrap procedure can 

deliver higher-order accuracy than the approximation by the limiting normal 

distribution for statistics that can be expressed as functions of sample means.

It is also well known that extending this classical bootstrap procedure to 

independent but not identically distributed data, or correlated data is quite 

difficult, and may not attain the consistency and asymptotic accuracy.

In the context of linear models, several algorithms have been developed 

for the bootstrap method (Shao & Tu, 1995). The first algorithms, external 

bootstrap (EB) or external weighted bootstrap, is proposed by Wu (1986) 

for the least squared estimator (LSE) in linear regression. For the regression 

model: y* =  x (/3 +  e;, let (3ls be the ordinary least squared estimator of (3, and 

ii be the residuals after fitting the model. Let t* be i.i.d. from a distribution 

with mean 0 and variance 1, then the bootstrap samples are generated by 
setting:

y* = x[(3LS + ^ L = t *  (1.7)

and $*, the bootstrap estimator of /?, is the ordinary least squared estimator 

based on the data (y*, a;'). Here the bootstrap estimator depends on t*, which is 

independent of the original data (yi,x-). Liu (1988) provided some extensions

8
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and gave theoretical justification for Wu’s EB procedure, and suggested having 

another restriction on t*: E*(t*3) = 1. Our first bootstrap method is based on 

this procedure.

The second procedure is bootstrapping residuals (RB), which can be viewed 

as semi-parametric bootstrap. This is done by first identifying the linear model 

by a parameter, such as /3 in the regression model Y  =  X f i  +  £, then find an 

estimate for the parameter (3, and then computing the residuals e*, where the 

bootstrap samples are drawn from. This seems to be intuitive since in general, 

we assume the error term in the model is i.i.d., if the model is correct and the 

estimate of the parameter is very close to the true value, then the residuals 

after fitting the model will have the same distribution as the error term, which 

is then i.i.d. (approximately), and bootstrap method can be applied to the 

almost identically independently distributed residuals. Cautions should be 

made here that, first, the fitted residuals e* are not independent, they are 

actually correlated, second, the usefulness of this procedure depends on the 

model assumption, if the model is incorrect, then the fitted residuals (c,:) will 

not distribute approximately the same as the error terms (e), and third, the 

estimated parameter should be consistent to the true parameter value. Our 

second and third bootstrap methods are the extension the RB procedure.

The third procedure is called paired bootstrap (PB), where the bootstrap 

samples are generated from i =  1,2, . . .  ,n. In this case, the model

can be identified by the joint distribution of and estimated by the

empirical distribution, putting mass ^ to each {y^x^).

A more recently developed bootstrap methodology for the non-i.i.d. models 

is bootstrapping estimating functions, the combination of bootstrap method 

and the theory of estimating function. The idea of this methodology is that the 

unknown parameters can be expressed as a solution to a series of estimating 

functions. We then treat each estimating function as if they were the observed 

data, and apply the classical bootstrap method on the estimating functions. 

The justification of this method is: the expected value of each estimating 

function is 0, so they have the same mean, although their variance may be

9
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different, but by Liu (1988), under some mild conditions, the bootstrap method 

applied in this case retains the same robust properties as when it is applied 

under the i.i.d. case. The method of bootstrapping estimating functions is 

robust and requires less computation. Lele (2003) gives an excellent review of 

this methodology, and a good example of this method in regression context 

can be found in Hu and Zidek (1995).

10
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Chapter 2

Param etric m ethod

In this Chapter, we describe the parametric method developed by Solomon 

(1989) for estimating the distributional behaviour of the number of exceedances 

over a threshold under one-way random effects model with normality assump­

tion, and present the analytical formulae for the three interested quantities: 

the expected number of exceedances, the variance of the number of exceedances 

and the probability of observing no exceedances.

2.1 One-way Random  Effects M odel

The one-way random effects model is described as below:

Dij =  fi + Vi + ei:i, j  = l , . . . , n u i = l , . . . , a ,  (2 .1)

with

V i ^ N & o t )  e i j ^  N (0 ,a 2e).

and further, {Vi} and {e^} are independently distributed. Here, y^ is j Ul 

observation in the ith group, fj, is the overall mean and is a constant value. 

Vi is the random effect associated with group i, and is the random error

11
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associated with the observation of y^, this usually is the measurement error. 

y, al, and aj  are unknown parameters.

Both the random effects {ty} and the random errors {e^} are assumed to 

be independently, identically distributed with mean 0 and variances a\  and 

(Tg, respectively, and also, ry and are independent, for alH =  1, 2 , . . . ,  a and 

j  = 1 ,2 , . . . ,  7ij. Thus the variance-covariance structure of y^ is given by

The unknown parameter y  is estimated by the overall sample mean y =

ally estimated by the classical ANOVA estimation method. We describe the 

method as below (Searle et al, 1992):

Let S S A  be the sum of squares between groups, S S E  be the sum of squares 

within groups, that is:

al + al  for i =  i' and j  =  f  

al  for i — i' and j  ^  j '

0 otherwise

(2 .2 )

m i Viji and the two variance components a2v and a\  are usu-

S S A (2.3)

(2.4)

, rn . S S A  M S A  = -------
a — 1 ’ (2.5)

M S E (2 .6 )

then, the ANOVA estimators of al  and al are, respectively,

M S A  -  M S E
(2.7)

and

M S E (2 .8 )

where N  =  ]T)“=1

12
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For the balanced data, i.e.,when rii = n 2 = . . .  — na, numbers of obser­

vations for each group are the same, the ANOVA estimators of al, a\  can be 

simplified to:

One advantage of using the ANOVA estimator is that, it does not require 

the normal distributional assumptions for the random effects and the random 

errors, and they have the unbiasness and consistency properties. But there are 

cases where aI maybe negative. In this case, we may simply let &l = 0 and 

dg =  g . We can also use the Maximum Likelihood Estimators for esti­

mating al  and a\,  which will guarantee that we will get the positive estimates 

for the two variance components, but the maximum likelihood estimators are 

not unbiased. We will use the ANOVA estimators a2v and a2e in this thesis.

2.2 D istributional Behaviour of Large D ata Val-

The main interest in this thesis is the estimation of the distributional behaviour 

of large data values under one-way random effects model. Following Solomon 

(1989), we use three quantities to describe the behaviour of large data values: 

The expected value of the number of exceedances, the variance of number of 

exceedances, and the probability of observing no exceedance. We give their 

definitions in this section.

First, we define Number of Exceedances for the ith group: Let h be a 
given threshold value, define:

- ( M S A -  M S E )
n

(2.9)

( 2 . 10 )M S E

ues

1 Xjij > h

0 otherwise
(2 . 11 )

13
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Then, the number of exceedances for the i th group is the sum of n* random 

variables:

T , = X p « (  ft) (2 . 12)

From model (2.1), we have t/y ~  N (p ,a l  +  Og), thus /p(h) is Bernouli 

distributed, with success probability p — Pr(yij > h). then, T) is the sum 

of rq Bernouli random variables, but T) is not necessarily binomial, because 

Iij{h) are not independent.

Since p  is a random variable, the three interested quantities are then de­

fined as:

(1) The Expected number of exceedances: The expectation of T f  E(Tj)\

(2) The variance of the number of exceedances: The variance of Tp

(3) The probability of observing no exceedance: The probability of 

Ti =  0 : Pr{Ti = 0).

Here, 7) are group specific. But following Solomon (1989), we only use the 

balanced one-way random effects model for our study, that is, the number of 

observations within each group are the same. Hence, the distribution of T) will 

be identical for all i, so we drop the subscribe % for simplicity in the following 

descriptions.

Given the observed data yij ,i  =  1, 2 , . . . ,  a, j  — 1 ,2 , . . . ,  n, according to the 

above definition, we can compute the observed E(T) ,  Var(T)  and P r(T  = 0) 

as below:

VariPy,

(2.13)

Varobs(T) (2.14)

Pr0bs(T =  0) = (2.15)a

14
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2.3 Param etric M ethod

In this section, we derive the parametric formulae for the estimation of the 

three quantities according to Solomon (1989), based on the balanced one-way 

random effects model, under normality assumptions: u,; ~  N(Q,a‘2), ~

N(0 ,a l) ,  i = 1 ,2 ,.. .  ,a, j  =  1 ,2 ,. . .  ,n.

Let a 2 = a 2v +  o2, from model (2.1), we have:

Vij ~  N (/i, a2) (2.16)

Then, the indicators Iij(h) are correlated binomial random variables where:

E[Iij(h)] = Pr(yij > h)

=  p r ( y i L Z £ > ,L Z £ )
a a

V a r [ I l t (h)) = £[/„(/>)]{! -  £[/,#)]}

$
H — h

a
1 _ $ H — h

a

and for j  ^  k:

Covllaihlhkih)] = E il^I ik ih)}  -  Eilijih^ElPkih)} 

=  PriVij > h, yik > h) -  $S2 i v - h
a

= p r [ Vv ~  11 > h ~  V Vik ~  11 > h ~ 11
a a a a

$ 2 , f i - h  
a

a a o j  \  a

with <&2{x,y;p) representing the standardized bivariate normal distribution 

function with correlation p.
Following the above results,

E(T) = E
- i = i

=  nE[Iij(h)\ = p — h
a (2.17)

15
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and

Var{T) — Var
. 3  = 1

2  V ar [/«(*)] + Y , c ™  V ‘i W ,  M'>)l
3 = i

rd/ar [/p(/i)] + n(n — l ) C o v  [Iij(h), Iif{h)]

— n<& fi — h
a

n(n — 1)

1 -<f>
fi — h

a

<j er crz
$ 2 / /' ~  k

a

n *  I - — - ' l  {1 -  «  f ^ ' ) }[! +  ( « -  1)P/](J (7
(2 . 18)

where

Pj
$ 2 ( V 1’ V 1; p = S )  -  $2 ( V )

^  ( ^ ) J

To find the probability of no exceedances, P r(T  =  0), note that given vf.

and,

yij\vi ~  N{n + Vi,al)

Vi ~  N (0 , cr̂ )

we have:

Pr(T  = 0)
p-f-OO

Pr{Ti = 0| Vi)f(yi)dVi

where

Pr{T =  0|t>j) = Pr(yn\vi <  h , . . .,  yin\vi <  h)

=  [Priyi j lvi  <  h)]n 
' h — jJL — Vi

$
<y„

and f(vi) is the density function of v\, which is:

f(vi) = — 4> ( —
*3V \&v

16
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Then
n

P r(T  =  0) dvi

J —oo L V W /

j r +,% w  j ” d I (2.19)

where 7  — (h — fi) /av, r  =  ae/ a v, and 0 (a;) and $(x) are the standard normal 

probability density function and cumulative density function, respectively.

The equations (2.17),(2.18), and (2.19) are all functions of the unknown 

parameters /r, a\  and a^. We can use the method described in Section 2.1 to 

find the estimates of the three model parameters, and then plug these estimates 

in the equations to estimate E ( T ), Var(T)  and P r(T  =  0).

To find the sampling variances of E(T),  Var(T)  and Pr(T  =  0), we can 

use the delta method, since they are smooth functions of the three model 

parameters, /i, al  and a\. But this is not easy, since it will be very difficult 

to find the derivative functions from (2.17), (2.18), and (2.19) with respect to 

the three parameters, thus making variance estimation quite difficult.

17
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Chapter 3

Proposed Bootstrap M ethods

We propose three bootstrap methods for the estimation of the distributional 

behaviour of the number of exceedances in this Chapter. The first bootstrap 

method is based on Wu’s external weighted bootstrap procedure, which draws 

bootstrap weights from an external distribution that are not related to the 

observed data. The idea behind the second bootstrap method is to transform 

the non i.i.d. data to almost i.i.d. data, and then apply the classical boot­

strap procedure on the transformed data to estimate the model parameters, 

and the three interested quantities can be estimated by plugging the model 

parameters in the formulae from Solomon’s parametric method. The third 

bootstrap method differs from the second bootstrap method in the way that 

after drawing the bootstrap samples from the transformed data, we apply the 

inverse transformation on the bootstrap samples, and compute the estimates 

of the three interested quantities directly from them. For each of the three 

bootstrap method, we give a description of the procedure and show that the 

estimates are consistent for the interested quantities.

18
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3.1 Introduction

Using the formulae of (2.17), (2.18), and (2.19), and the ANOVA or Maximum 

Likelihood estimates of n, al  and of, we can get the parametric estimates of 

the expected number of exceedances and its variance, and the probability of 

observing no exceedance. There are several disadvantages for the parametric 

method.

The first disadvantage is that, the parametric method relies heavily on the 

assumption of normality. This can be seen from the formulae of (2.17), (2.18), 

and (2.19). E(T),  V(T)  and P r(T  =  0) are all explicit functions involving the 

cumulative density function (cdf) of the standard normal distribution ($(x)), 

thus the validity of these estimators relies on the normality assumption. In 

cases when the data are not coming from normal distribution, the estimates 

of E ( T ), V(T)  and P r(T  — 0) will not be correct.

The second disadvantage is that, it is very difficult to derive explicit ex­

pressions of the variance for these estimators. If we treat E(T),  V ( T ) and 

P r(T  = 0) as functions of n, al  and of, and apply the delta-method, it is 

possible to compute their approximate variance estimates. But from (2.17),

(2.18), and (2.19), we see that these estimators are complicated functions of fi, 

al  and of, especially for the estimator of P r(T  =  0). It is not easy to find the 

partial derivatives with respect to //, al  and a l , thus, it is difficult to apply 

the delta-method.

In order to overcome the above disadvantages of the parametric methods, 

we use a bootstrap method. In general, unlike traditional parametric ap­

proaches, the bootstrap procedures do not require a theoretical form of the 

distribution underlying the data, thus they are robust against distributional 

assumptions. However, although the bootstrap method has drawn a great deal 

of attention in recent years, most of the theoretical work is for the independent 

and identically distributed (i.i.d.) cases; its applicability to cases other than

19
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i.i.d. is not justifiable in general. In our case, for the model (1.1), we have

al  +  <Tg for i =  i' and j  — j '  

coviVijiUi'j1) = { vI for i = %' and j  ±  j '  • I3-1)
0 otherwise

Thus the data {ytj} are not i.i.d, we can not directly apply the results 

of classical bootstrap procedure to the observed data {yij}- How to develop 

suitable bootstrap methods for one-way random effects model and compare

their performances is the main objective of this thesis. In this Chapter, we

present several bootstrap methods that are applicable for our model, and in 

the following chapter we compare their performances through a simulation 

study.

The first bootstrap method is based on Wu (1986). We first find the 

predictors of the random effects (u*) and the random errors (e^), and then 

construct the bootstrap samples by combining the random effects and the 

random errors with weights drawn from an external distribution. The sec­

ond bootstrap method applies the classical bootstrap procedure for the model 

parameters on the transformed approximately i.i.d. data, and then applies 

Solomon’s parametric formulae to obtain the estimates of the three interested 

quantities. Our third bootstrap method involves data transformation and the 

classical bootstrap procedure. Similar to the second bootstrap method, we 

first apply the same data transformation, then draw the bootstrap samples 

on the transformed data, but then we apply the inverse transformation on the 

bootstrap samples, and finally compute the three interested quantities directly 

from transformed bootstrap samples.

To make the description clear, we use the following notations. Let:

Vi.

N  =
?:=i

E n
i=l Uij
n

20
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v..
Y 'a V n 1/. ■ Z^i=1 Z-<j=i y*7

AT ;

v = T L i V i

e,- =
V'n e-2—/j=i eo

n

e =
V ° V'n p-Z^i=i Z^j=i eo

iV

(&■ ~ y-
i=1 j=l

\ 2

<5iv =  ^ ^ ( y u - V i f
i=1 i=l

A cr;
a

cr;
O’;

a  =  1
1 + n A ’

d =  1
1 + n A '

0 (n x) represents terms that have the same or smaller order of magnitude

as n 1, in the sense that °^n_, 1 is bounded as n  —> oo.7 n

O ((a A n )-1) denotes 0 (a _1) or 0{n~ l ) or both of them.

E m , VarM and C ovm denote the expectation, variance and covariance with 

respect to the model, and £*, Var*, and Con* denote the expectation, variance 

and covariance with respect to the bootstrap sample.
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3.2 Bootstrap M ethod I

In this section, we applied Wu’s external bootstrap procedure (Wu, 1986) to 

estimate the expected number of exceedances (E ( T )), the variance of num­

ber of exceedances (Var(T )) and the probability of observing no exceedance 

(P r(T  =  0)) under one-way random effects model.

3.2.1 Predicting the Random Effects and Random Er­

rors

Since in the model (2.1), we only have observed data the overall mean n, 

the random effect and the random error are not observed, in order to 

apply Wu’s procedure, we need to have the estimate of fi, and the predictions 

of Vi and first. The overall mean fi can be simply estimated by the overall 

sample mean, which is the ordinary least squared estimator:

A =  V.. (3.2)

For the random effect u, and the random error et], both are unobserved 

random variables, so we need to find their corresponding predictors A and 

eij. There are many different sets of predictors, but, in order to mimic the 

behaviour of ry and e^, we require that the predictors vt and should have 

the same or asymptotically the same first and second order moments as Vi and 

e*j, respectively, i.e.,we require that:

E(vi) =  0 , E(ii j )  =  0 ,

and,

V a r ( v i ) —+ cr^, Var(ci j )  —> as a oo an d  n  —> oo.

According to the above requirements, we have four different sets of predic­

tors. Our first set of predictors is to use the Best Linear Unbiased Predictor

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(BLUP) of vt, which is (assuming ji, a2 and a 2 are known):

v f  = -  n) (3.3)na2v +  a2e

and,

.4 '■A nUl - Ul /r, A\ed =  Vij - i i - v ?  = y i j ------=-— x y i -------—— 3. 4v a J ^  J na l 4- na£ +  (Jg

It is easy to see that
2T? (7

E<̂ i ) =  — ~  =  0>not  +  at

and,

For the variances of v f  and ed;

Var(v f )  = Var f  (yt  -  fi) )
\no*  + a2e )
2 4

n av 1/  f -  > ;Var(yi,)
(no* +  o l f

(no* +  o‘l )2 \ ° v n

a2 +u ^  n

a 2, as n  —»• oo

VorteJ) = Var (y„ -  -  ^ ^ / i )

n2crj T , N _ nat
=  ,/a r ( ! /‘’ ) +  (»g ;  + y  a r ( iU  -  fe )

2 | 2 i /_2 , a e \  o n(Jl ( _2 . ^— cr„ +  er„ +  - — — — —  cr„ H — 2 — ■ ■ „ o „  +

2 2 I
=  O  „ <7„ +

(ncr2 +  al)2 \  v n J na2 +  al  \  v n
.̂4

e v 2 | cr?<7 H s-« ^  n
cr2, as n  —> oo

This shows that our first set of predictors v f  and ed has the same first order 

moment and asymptotically the same second order moment as the random 

effects Vi and the random effects e^, respectively.
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But v f  and efj involve the unknown parameters n, al  and a f  we may 

replace them with their ANOVA estimators, which is described in Section 

(2 . 1).

Our second, third and fourth sets of predictors are constructed based on

Harris & Burch (2003,2004). The second set is a simple, or naive predictors:

v f  =  Vi. ~  V.. (3-5)

efj =  IHj ~  Vi. (3-6)

It is easy to show that

E {vf) = E(Vi. -  V.) =  M M =  0

E (efj) =  E (Vij ~ V i )  =  V -  »  =  0

and

Var( i f )  =  1 —
nal  + al

not
o„ (3.7)

V a f e f )  = ( l  - oc (3.8)

From the above equations, we can see that v f  and e f  have the same expec­

tation as Vi and e^, but their variances are not exactly equal to the variances 

of Vi and ep-. But if a —> oo and n  —> oo, we have:

lim Var(vj

lim Var(e f)  = a\

So, their variances are asymptotic the same as Vi and e^. 

From (3.7) and (3.8), we have:

Var

\
1

( i - h ( ncrl+aj =  cr:

24
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Thus we may construct a third set of predictors as (assuming al  and a\  are 

known):

i f
\ ( i - h

nal+al v f  =
n o t

a -  1 nal  +  aeo ( y i . - y . )

(Vij -Vi.)-

Then, it is obvious that assuming a'l and al are known, v f  and e f  have the 

same first and second order moments as Vi and e*j, respectively. Again, we 

could replace al  and a\  with their ANOVA estimators if these two parame­

ters are unknown. But instead of replacing al  and al separately with their 

estimators, we notice that under normal distribution assumption, we have:

E 3 )Qw
_a(n -  1 )Qb _

at

so

E 1 -

(a — 3 )Qw 
a(n — 1 )QB

na?, +  al

nat
nal  +

(3.9)

thus the term in v f  can be unbiasedly estimated by 1 — ^ - z {)qb > so we

replace — in v f  with 1 — , then finally, our third set of predictors

are:

v f  =  \ l  max { 0 ,
a  — 1

1 -

(a 3 
a(n -  1 )Qb {.Vi. ~ VJ (3.10)

SC1 n
n — 1 (Vij Vi-) (3.11)

Finally, if we look at the above predictor of vi:, we see that Qw and QB are 

correlated with (yi . -y . . ) .  Thus E ( v f )  and Var(v f )  may not equal to E(vi) and
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V a r ( v i ) .  We then construct a fourth set of predictors for using Jackknife

method: Q w  and Qb are computed by excluding the ith group, denoted as 

Q w ( —i) and Qb( - i ) -  Then, similar to (3.9), we have:

E
(a  -  l ) ( n  -  1 ) Q B(-i)

and, the fourth set of predictors is:

ncr:

nal  +  al

vP = \ I max <j 0 ,
a  — 1

1 -

(a  — 4 )Qw(_j )

(a -  l)(n  -  1 ) Q B(-i)_

/
&ij= y  n _  i  ~  (3.i3)

These four sets of predictors all have the required first and second order 

moments properties, and can be used in our first bootstrap method. Our 

simulation study shows that the Jackknife predictor works better than other 

predictors, so we will use the Jackknife predictor in this thesis.

3.2.2 Description of Bootstrap Method I

After obtaining the predictors of Vi and e^, we can then apply Wu’s bootstrap 

procedure. Also considering Liu’s suggestion (Liu, 1988) to obtain the same 

second order asymptotic properties as of the classical bootstrap for i.i.d. mod­

els, we obtain bootstrap weights (t*) from t* ~  T(4,2) — 2 distribution, where 

T(4, 2) denotes the Gamma distribution with shape parameter 4 and scale pa­

rameter 2, whose density function is: f ( x )  =  J^y.T4- 1e~2:c. By choosing the 

distribution of the bootstrap weights to be T(4,2) — 2, we have the moment 

requirement suggested by Liu (1988): E(t*) — 0, E ( t f )  = 1 and E ( t f )  = 1. 

The procedure is described in the following steps (Thach, 1998):

Step 1: Compute the predictors of u; and using one of the above four 

predictors, let the predictors be A and e^.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Step 2: Independently generate random numbers {f*} and

t*i ~  r ( 4 ,2) — 2 , i — 1, . . . ,  a

and

t ? . ~ r ( 4 , 2) - 2 , i =  j  =  1 , . . . ,  n

Step 3: Construct the bootstrap sample:

Vij =  A +  + tijiij

Step 4: Compute the following bootstrap estimators from the bootstrap sam­

ple:

E f̂ ' ) = \ i i f "
i=1

Var{T*) =
i=1

Pr(T* =  0) =  ^ i=1 1{yv - h)

Where

and

n

4* = I T
j=i

(Vtj>h)

,  I i 4  > fc

\  0 Otherwise

Step 5: Repeat steps (2) to (4) B  times, where B  is a large number, and obtain

B  estimates for the three corresponding quantities, namely: E(i)(T*), . . . ,  E^)(T*),  

C a r (i)(T*), . . . ,  Var{B)(T*), and P r {1)(T* =  0 ) , . . . ,  P r {B)(T* =  0). Then, 

the bootstrap estimators are:

1 B
E ( T )  =  - - £ E m ( f ' )

b—l

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



V'or(T) = i ^ V ' a r w (f*)
6=  1

and
1 B

Pr(T  =  0) = 1 ^ P r , 1„ (T -= 0 )
6 = 1

3.2.3 Consistency of the Bootstrap Estimators

To show the bootstrap estimators of E(T),  Var(T)  and P r(T  =  0) are con­

sistent, it is sufficient to show that the bootstrap sample y*j and the observed

data yij have asymptotically the same first and second order moments. We

show this result is true.

Suppose:

(1) The model (2.1) is valid;

(2) The predicted random effects A and random errors e*? have asymptotically

the same first and second order moments with U; and e^, respectively, 

i.e.,

E(vi) =  O ((a A n)~l ) (3-14)

E(eij) = O ((a A n y 1) (3.15)

and

E ( t f )  =  E(v?) + 0  ({a A n ) - 1) =  a2v + O ({a A n ) " 1) (3.16)

£ ,(e^) =  E(efj ) + O ((a A n )_ i) =  o\ + 0  ((a, A n)~l ) (3.17)

Then, (A)

E m [£*(y*)] =  H (3.18)

(B)

{ al  +  +  O ((a A n )-1 ) for i = i! and j  = j '

+  O ((a A n )_1) for i = i1 and j  ^  j '  (3.19)

0 otherwise
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where E* and E m represent expectation with respect to the distributions in­

duced by bootstrap sampling and the model, respectively, Far* represents 

variance with respect to the bootstrap samples, and Cov*(y*j, y*,y) =  E*(y?j —

fa)(vh' ~  £)■

Proof. For (A):

Under model (2 .1), fa is unbiased for //, i.e.,EM(fa) = /j,.

E m  [E*(y*j)] = E m [E*(fa +  t*i)i + i^-e^-)]

— E m (fa +  0 Vi +  0 iij)

=  fi (3.20)

For (B):

(1) If i = i' and j  — f :

E m  [Far*(y*)] =  EM [Var*(fa +  t,*Vi +  t * ^ ) ]

= E m [v^Var*(t*) +  e?-V ar*(Uj)]

= F m ^  +  4 )

=  E m (v1) +  £m (4 )

=  al + al + O ((a A n )-1) (3.21)
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(2) If i =  i' and j  ^  f :

E m [C ovM pV b)]

— E m  [Cov*(fi +  t*i>i +  fi +  t*i>i +

=  E m  [viVan(t*)]

= E M(Vi)

=  a l + 0  ((a A Ti)-1) (3.22)

Since t*, £*■ and t*y are independent.

(3) and j  ±  / ”

E m [C ov^y l j^y )]

— E m  [Cov*(fi +  t*i)i +  +  t'*v[ +  t^ e y y )]

=  0 (3.23)

Since f*, t'*, t*j and t*j, are independent.

3.3 B ootstrap M ethod II

The second bootstrap method can be viewed as a semi-parametric method. 

Assume the model is correct, it first estimates the model parameters from the 

observed data. Then it uses the estimated parameters to construct a data 

transformation, trying to transform the correlated data to uncorrelated and 

identically distributed data. It then applies the classical bootstrap method
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on the transformed data, and obtains the bootstrap estimates for the model 

parameters. Finally, it uses Solomon’s parametric formulae (2.17), (2.18), and 

(2.19) to compute the estimates of the interested quantities. Here bootstrap 

samples depend on the data transformation, which relies on the estimates of 

the model parameters, and on the final step, the parametric formulae are also 

used, thus it is a combination of the parametric method and the bootstrap 

method.

3.3.1 Model Transformation

If the model (2.1) is correct, and if we know the two variance components 

and <7g, then, following Fuller & Battese (1973), define:

^ij =  Vij ^Vi. (3.24)

Then it is easy to see that:

E(zij) =  E(yi:j -  ayi) = n -  ay, =  (1 -  a)y  (3.25)

and

{
(jg for i =  i' and j  = f

(3.26)

0 otherwise

That is, Zij are uncorrelated and identically distributed, with mean //,. -

(1 -  a)fj, and variance a: — o]. Under normal assumption, ztJ are i.i.d., and

we can apply the classical bootstrap procedure on z^,  to obtain the bootstrap
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estimator for the mean and variance, /r* and cr* , respectively. If we have the 

estimates of fi~ and al, then, we can have the estimates of n, al  and cr2 by:

A =  (3.27)
L — a

a2v = A (3.28)

a 2 =  h2 (3.29)

Then using the formulae (2.17), (2.18), and (2.19), we can get the estimates 

for the three interested quantities E(T),  V ar (T ) and Pr(T  = 0).

But the transformation (3.24) requires knowing both cr2 and a\. Hence, 

we need to estimate these two values from the observed data xjij. This can be 

done by using the ANOVA estimators:

, 2 =  (3.30)
a(n -  1) v 1

2 =  T Z . M  -  v . f  _  (3 3 1 )
a — 1 n

3.3.2 Description of Bootstrap Method II

The second bootstrap method is now described as below:

Step 1: Compute the ANOVA estimators for al  and al. from the data

a(n — 1)
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and

~ 2 =  Y r U v i . - v . r  _  k
a -  1 n

Step 2: If al < 0, then let

, 2 _ „ 2 E ,  T.j(yij -  l l Jav = 0 , a  = -------- --------------
an — 1

Step 3: Compute a  and A:

a  =  1 -

A =  ^

1 +  nA

2

al

Step 4: Do the following transformation:

Zij — yij &Ui,

Step 5: Compute:

T a z--l ^ i=1 l ^ j =l2 =    -------
an

Step 6 : Generate a x n  pairs of random number: i*k and j k, k =  1 , . . . ,  a x n, 

where i*k is an integer number from uniform distribution U(l,  a), and j k is 

an integer number from uniform distribution {7(1, n). Then, a bootstrap 

sample is defined as:

zk = zi ^  k = 1 , . . .  ,a x n
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Step 7: From z%, we compute /t*, and d*2:

E an *
  fc=l fc

P2 >an
a *2 E i n= M - z . r

an — 1

Step 8 : Compute fi*, a*2, and d*2:

A*
1 — d

±.*2 _ t_*2 ±.*2 a ±.*2

Step 9: Plug in fi*, d*2, and d *2 in Solomon’s formula:

Var*(T) = n<F

E * ( T ) = n §  

j j f - h 1 _ $

f f - h
a*

fi* -  h

Pr / OO

4,(x)
•oo

$

a

■y* — x

[l + (n-l)p*j}  

dx

where

Pi

and

~*2 ±.*2 | ±.*2 a = a v + c t6 , 7
h -  fi* cr:T =

cr;,

Step 10: Repeat Steps (6)-(9) B  times, where B  is a large number, then we 

have B  estimates for the 3 corresponding quantities, namely: E*^ (T) , . . . ,  E  

Var*(1](T ) , . . . ,  Var*{B)(T), and Pr*(l){T = 0 ) , . . . ,  Pr\B){T =  0). Then, 

the corresponding estimates from bootstrap method II are:

B

6= 1
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3.3.3 Justification  o f the B ootstrap  M ethod II

We prove that the bootstrap estimators for E ( T ), V(T)  and P r(T  — 0) are 

consistent. This can be done by first proving that the bootstrap estimators /}*, 

d*2 and d*2 are consistent for n, a2, and a2, respectively. Since from (2.17),

(2.18) and (2.19), we see that E(T),  V(T)  and P r(T  =  0) are all smooth 

functions of /r, cr2 and a2, then the required results follow.

Note that under model (2.1), the estimators a2 and a2 are consistent for 

cr2 and cr2, respectively, i.e.,EM (d2) =  a2v +  0 ( a _1), E M (d2) =  ex2 +  0 ( a _1). 

Since d2 and d 2 are consistent for a2 and a2 and a(= 1 —. /  —h—, A =  ?!)v e v ei \ y  1+nA ’ cr£ >

is smooth function of d2 and d2, then, it follows that a  is consistent estimator 

of a, i.e.,Em (d) =  a  +  0 (a _1). We then show the following conclusions:

(A) E m E*([i *) = n  +  0(a  1);

(B ) E ME * { a ? ) = o l  + 0 { a ^ ) -

(C) E ME * (a f )  = a2v + 0 ( a - 1).

Proof of (A):
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(1) Since zl  is taken from {ztj : i =  1, 2 ,.. . , o; j  = 1, 2 , . . . ,  n} with proba­

bility A-, then,

E *(zk ) — ' Y l ' Y l Zii an ~  an
i~ l j=i i=1 j=l
1 a n

=  — [(1 -  a)/x + (1 -  d K  + ejj -  dej.]
an i=i j=i

so,

E ME.*(zl) — —  E m  [(1 -  Qp/i + (1
an

1
i- 1 j~ 1 

a n

an
[ ( l - « ) ^  +  0 (a  : )

i=l j=l
=  (1 — a)// +  0 (a -1)

thus,

—  E m E*

=  E m

K
l  — a

E m E *

(1 — a)an fc=i
=  /i +  0 (a  *) (3.32)

(A) is proved.

Proof of (B): we prove the conclusion of (B) in several steps:

STEP 1:

Since zl  is taken from : % — 1 ,2 , . . . ,  a; j  =  1, 2 , . . . ,  n} with probability
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«j Ur I 6
=  —  y y  yy iK M + vi + eij) ~  + vi +6*.)](LTl

1 = 1  J = 1

-  [(1 -  a)(fi + v +e..)]}2
1 a n

= — 5^ [(i -  a)(vi -  h) + -  ae*. -  (1 -  a ) e . f

i=1 j=l

S T E P  2: Because

E m [ (1  -  a)(vi - v . )  + -  aeL -  ( 1  -  a)e, .]

=  (1 -  a)[E M(vj) -  E m {v.)} +  E M(ei:i) -  ctEM(ei.)

-  (1 — a)E M(e,) +  0(a~ l )

= 0(a~ l )

we have:

E m [(1 -  a)(vi -  v.) +  -  de*. -  (1 -  d)e..]2

~  VarM [(1 -  6i)(vi -  v )  + -  de?;. -  (1 -  d)e..]

=  (1 -  a f V a r M(vi -  v )  +  VarM{en -  aeL -  (1 -  a)e,]

+  0(a~ 1)
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where

VarM(vi -  v.) =  VarM(vi) +  VarM{v)  -  2CovM(vu v)

u'i +  —  - 2 —  =  ^
a a a

and

V a r M [etj -  a e t  -  (1 -  a ) e . ]

=  V a r M (eij)  +  a 2V a r M ( e i )  +  (1 -  a ) 2V a r M (e„)

-  2 a C o v M (e i j , e*.) -  2(1 -  a ) C o v M (ei j , e. . )

+  2 q ( 1  — a ) C o v M (e i . , e„ )

2 2 2
  _ 2  , 2 ^"e I /-i _ \ 2 ^ e  o -̂v-  +  Qt---- h (1 — CM   — ZQ?---

n  a n  n
2 2

-  2(1 — a ) —  +  2 a ( l  — a )  —
a n  a n

a 2 a 2 n 2^L +  ( l _ a ) 2 ^ _ (1 _ a )2^e
n n an

< $ - £  + ( 1 -

n a n

so,

VarM [(1 -  a)(vi -  v )  +  -  a e L -  (1 -  a)e„]

-  h *  + „ l - al  + ( i -  a f ^ l A
a no\ +  no2 a v e n

a ~  h i  -  a )2 U  + A \ + a> A
a \  v n J e n

a -  1 a2e na2 +  a2e , _2 a2e
— —  ---------------------------------------h c r --------------------

a na~ + <j~ n n
a ~ l a l  ° l  , _2----------------— +  aa n n
an — 1 

an
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and finally, we have

E m E*(zI
^ a n

=  —  V 'V '£ m [ ( 1  - a ) ( u i  - v )  + eij 
an j=i j=i
de*. -  (1 -  a)e..f

1
an anEE

i=i j=i
an — 1 2 -n

an — 1
a 2 +  0 (a  *)

an
-a; +  0(a"

STEP 3: Finally, for the bootstrap estimator d*2:

E ME*{a?)  = E'k=i\*k
\21

an — 1

 - J ' E U E,
n - l t t

i an r i
1 ^  an ~  1
3 7  2 ^

Zi, —

an — 1 

„2a ; +  0 (a
1

-1

<  +  0 ( O

(3.33)

This proves (B).

Proof of (C):

Since d*2 =  Ad*2, A is consistent for A, d*2 is consistent for o\  from 

conclusion (B), it follows that d*2 is consistent for <r2. Thus (C) is proved.

From the conclusions (A), (B) and (C), and noting that E(T),  V(T)  and 

P r(T  =  0) are smooth functions of /i, a\ and cr2, then, the bootstrap esti­

mators, E*(T), Var*(T) and Pr*(T  =  0), constructed by replacing er2 and a 2 

with their bootstrap estimators, are consistent for E(T),  V(T)  and P r(T  =  0), 

respectively.
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3.4 Bootstrap M ethod III

In the second bootstrap method, after having the bootstrap estimates of the 

two variance components from the i.i.d. normal {zq}, we still have to use 

Solomon’s parametric formulae to compute the required quantities, which are 

derived under normal assumption, thus the robustness of the second bootstrap 

method maybe weak. It is desirable that the estimates of E(T),  V(T)  and 

Pr(T  =  0) can be computed directly from the bootstrap samples, thus we 

propose the third bootstrap method.

3.4.1 Description of Bootstrap Method III

The third bootstrap method is described as below:

Steps 1-4: Exactly the same as steps 1-4 in second bootstrap method.

Step 5: Generate an pairs of random numbers i*k and j k in the same way 

as Step 6 in the second bootstrap method. Then arrange the bootstrap 

sample z*j in the following way:

y* — y-* •* y * — -v.1̂1 1̂1J1 ? • • * > Mn — ^n3n

Zal Zin(a-l)  + l in(a-l)  + l ’ ’ ' ' ’ Zan ~  Zi^ afna
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Step 6: Do the following transformation:

« -*
Vij -  zij +  i  _  &zi.

Step 7: Compute the following quantities:

i=1
"I  ̂ 2

Var(T-) = —
i~ 1

P r (T* =  0) =  ^ =1 ^ =1

Where
n

f r  =
i=i

and

1 y*- > h
■%>0 =  <

I 0 Otherwise

Step 8: Repeat steps (5) to (7) B  times, where B  is a large number, and obtain

B  estimates for the three corresponding quantities, namely: E ^ ( T *), . . . ,  E(B)(T*), 

V ar{1)( T * ) , V a r (B){T*), and P r {1)(T* = 0 ) , . . . ,  P r {B)(T* = 0). Then, 

the bootstrap estimators are:

1 B 
B (T > =  r

6= 1  

1 B
Var(T) = - Y J Var(b){ f ' )

6= 1

and

1 8
P r ( r  =  0) =  - ^ P r (6)( T * = 0 )

6 = 1
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3.4.2 C onsistency of the B ootstrap  estim ators

Now we will show that the bootstrap estimators from the above procedure are 

consistent for the three interested quantities. Similar to the first bootstrap 

method, it is sufficient to show that the bootstrap sample j/*- and the observed 

data yij asymptotically have the same first and second order moments, that 

is, we will show that:

(A)

(3.34)

E m [Cov^y^ypj,)]  =

and (B)
/

a v +  a e +  O (a_1) f°r =  an<̂  3 = f

cA +  0 ( a _1) for * =  %' and j  ^  j '  (3.35)

0 { a T l ) otherwise

Proof. Since and are consistent for a\  and o\, respectively, then a  is 

consistent for a , then we have:

zij = Vij ~  &Vi. Vij -  tt'Di. ~  N  ((1 -  a)Pi, a \ )

where denotes convergence in law. This shows that are asymptotically 

i.i.d, which we have:

E M(zij) =  (1 -  a)pi + 0 (a  )

COVM ( Zij, Zjt j >) —
o\  +  0(a  x) for i — i! and j  = j '

0 { a - 1)

(3.36)

(3.37)
otherwise
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Since z*j is a bootstrap sample from Zij, it is easy to show that (using the 

results of (3.36) and (3.37), and the same approach in Section 3.3):

E m E ^ z -j ) =  (1 -  a)jJL +  0 ( a  *) (3.38)

a\  +  0(a  *) for i =  i' and j  — j '
E MCovse(z*j , z*,jt) =   ̂ (3.39)

C^oT1) otherwise

For (A):

EME*(y*j) — EME*(z*j) + E,ij / 1 M

a

a  r n  - *
1 ~E *zt1 -  a  *'

=  (1 — a ) f i + -  (1 — a)fj, + 0 (a  1)
1 — a

H + 0(a (3.40)

This proves (3.34)

For (B) From (3.39), we have:

E MVan{z*) = ^ -  + 0 ( a ~ 1) (3.41)

E m C ov*(z *, z*,)  = 0(a  *) for i ^  i! (3.42)

E m C ov^ (z *p  z *, ) =  <
f i
n + 0(a~1) i = i' 

0(a~1) i /  i'
(3.43)
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Then, (i) for i — i' and j  = j ' , we have:

E MVar*(y\ijj = E m V ar* ( z*j +

— E m V  ar* (z *.•) +  2 E M
a

1 — d
Cov*(z*

E,M
a.

1 — a
Var*(z*)

n CV Gp
=  <% + h  -1 — a n

o.

(1 — a)2 n

+  A<jg +  0  (a-1)

=  a2e + a2v + 0  (a *)

since A = <7?

(ii) For i =  i' and j  ^  j 1:

cy
E m Cov^(y*j ,y*jl) = E m C ov^ z -j +  . 4 '  +

a  
1 — a

=  E MCav*{z*p z L )  +  E m
a

-Cov*(z*j} z*

+  E M
a

1 — a 
2

Cov*{zL, zl)

1 — a 

+  E MVar*(z*)

+  I — +  0(a1 — a n  \1  — a  /  n
2 , —1\A ae +  0(a  

al + Oia"1)

44
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And finally, (iii) for i ^ i' and j ^ j':

Em Cov^^y*^,)

f v  Cv
=  E m C ov*(z *_• +    -El, z*tj, +    tZ*i.)

' 1 - d

EmCov^ z*̂  z*,r ) + Em

J' ' 1 - A
a

Cov^(z*i , z*,)

+ Em
a

1 — a
Cov*(z*,j,, z*)

I — a

+  E m C ov*(z * , z *,}

0(a~

Combining (i), (ii) and (iii), we prove (3.35)
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Chapter 4 

Sim ulation Studies and Some 

Conclusions

The performances of the parametric method and the bootstrap methods devel­

oped in Chapter 2 and Chapter 3 are studied in this chapter. As an example, 

we gave an application of all these methods to a blood pressure data set at 

the end of this chapter.

4.1 Sim ulation Results

We use a simulation study to investigate the relative performances of the three 

bootstrap methods described in previous chapter and Solomon’s parametric 

method. We assume that the model equation is true, that is: =  ji + Vi + Cij,

i =  1, 2 , . . . ,  a, j  =  1, 2 , . . . ,  n, but the distribution of the random effects {v*}
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and the random errors {ey} may not be normal. In this study, we consider 

the following four different distributional cases for {u*} and {ey}:

• CASE 1, Normal distribution:

Vi ~  N(0,  26.86), 

e„ -  Ar(0, 52.02);

• CASE 2, Mixed normal distribution:

Vi ~  0.1N(0,26,86) +  0.9iV(0,52.02), 

ey -  0.L/V(0, 26,86) +  0.9iV(0, 52.02);

• CASE 3, Cauchy distribution:

Vi Cauchy (0,1), 

ey ~  Cauchy(0,1);

• CASE 4, Double Exponential distribution:

Vi ~  D E (0 ,26.86),

&ij ~  D E (0 ,52.02).

and we select the number of groups a =  25, number of subjects within each 

group n =  16, the grand mean fi = 91.70, and the threshold h =  95. These
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values (except for CASE 3) are computed from the actual blood pressure data 

set from the International Prospective Primary Prevention Study in Hyper­

tension (IPPPSH). Because the variance for a Cauchy distribution does not 

exist, we use the standard Cauchy distribution with location parameter 0 and 

scale parameter 1 for CASE 3.

We generate N  =  1000 sets of simulated random numbers { v ^ }  and 

where i =  1 ,2 , . . . ,  25, j  =  1 ,2 , . . . ,  16, and k =  1 ,2 , . . . ,  Â , accord­

ing to one of the four distributions specified above. Then, for the kth set 

of simulated values of { v ^ }  and { e^ } , we construct the kth set of simu­

lated data { y f f } using equation y f f  = fx + +  e . We then apply all

the methods developed in Chapters 2 and 3 to { y ^ }  (for the first, bootstrap 

method, we use the Jackknife predictor of n* and e^-), and estimate all the three 

quantities from the kth set of data, {yff}'. expected number of exceedance 

jE ^(T ), variance of number of exceedance V a r ^  (T), and the probability of 

observing no exceedance Pr^k\ T  — 0). Finally, the estimated values for the 

three quantities are the average of these three quantities over all sets of simu­

lated data, respectively, i.e.,Eest(T) = ^ fc=1̂ W(T), Varest(T ) =  V™(k){-T\

Prest(T  = 0) = E^ lP^ )(r=0).

From N  sets of data k = 1, 2 , . . . ,  N,  we can compute the true values

for E(T),  Var{T) and Pr(T  = 0) in the following way:
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For the kth set of simulated data {y ^} , first compute the number of ex­

ceedance in the ith group:

n

(4.1)

Then compute:

k Va TkAverage number of exceedances: E^bs{T) — i

Variance of the number of exceedances: Var^bs(T) = ELiWf-ELW))2 .

a-1 ’ft—1.

Probability of observing no exceedance: Pr%bs(T = 0) = ----------

From N  sets of simulated data {yjj^}, we get N  values of E^bs{T), Var^bs(T) 

and Pr^bs(T = 0), k =  1 ,2 , . . . ,  AT, then the average of these N  values are 

considered to be the true values of number of exceedances, variance of num­

ber of exceedances and probability of observing no exceedance, respectively,

The performance of each method is measured by the relative bias, which 

is defined as below:

i.e.,Etrue(T) — 

ELt PP„hAT=Q)

N Vartrue(T ) =  Prtrue(T  =  0) =

N

Relative Bias of E(T)  = E e s t iT ) — E tru e{T )

E t r u e { T )
(4.2)

R ela tiv e  B ias of V a r { T ) =

Relative Bias of P r(T  =  0) Prest(T  =  0) -  Prtrue(T  =  0) 
Pr true(T = 0) x 100% (4.4)
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Methods

Exp(T) Var(T) PrfT)

Average
Relative

Bias(%)
Average

Relative

Bias(%)
Average

Relative

Bias(%)

True Value 5.67 15.30 0.071

Solomon 5.68 0.102 14.93 2.417 0.072 0.888

Bootstrap I 4.70 17.038 15.56 1.717 0.082 15.588

Bootstrap II 5.69 0.407 14.78 3.365 0.075 5.168

Bootstrap III 5.69 0.279 14.98 2.090 0.072 1.659

Table 4.1: Simulation Results from Normal Distribution

The simulated results and relative biases are listed in Table 4.1 -  Table 

4.4. We summary the results as below:

CASE 1, normal distribution: In this case, the model assumptions are met. 

We see that the relative biases of the estimates of E ( T ) and V ( T ) using 

Solomon’s parametric method are very small, as expected (see table 4.1). 

Looking at the results from bootstrap methods, the third bootstrap method 

(bootstrapping on the transformed data, and then computing estimates from 

the inverse transformed bootstrap samples) also gives a very good result, al­

most as good as Solomon’s parametric method. This shows that the third 

bootstrap method retains the same accuracy when the model assumptions are 

met.
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Methods

Exp(T) Var(T) Pr(T)

Average
Relative

Bias(%)
Average

Relative

Bias(%)
Average

Relative

Bias(%)

True Value 5.79 21.79 0.135

Solomon 5.79 0.068 21.07 3.310 0.133 1.405

Bootstrap I 4.91 15.176 20.13 7.642 0.121 10.709

Bootstrap II 5.81 0.283 20.78 4.629 0.138 1.609

Bootstrap III 5.80 0.051 21.07 3.313 0.134 0.790

Table 4.2: Simulation Results from Mixture Normal Distribution

Methods

Exp(T) Var(T) Pr(T)

Average
Relative

Bias(%)
Average

Relative

Bias(%)
Average

Relative

Bias(%)

True Value 0.52 0.76 0.668

Solomon 1.22 134.740 1.10 44.707 0.334 50.058

Bootstrap I 0.79 51.554 0.76 0.119 0.579 13.316

Bootstrap II 1.16 123.877 1.06 39.254 0.361 46.037

Bootstrap III 0 .7 3 3 9 .8 2 7 0 .9 5 2 5 .8 2 3 0 .5 8 9 1 1 .7 9 1

Table 4.3: Simulation Results from Cauchy Distribution
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Methods

Exp(T) Var(T) Pr(T)

Average
Relative

Bias(%)
Average

Relative

Bias(%)
Average

Relative

Bias(%)

True Value 5.20 16.30 0.076

Solomon 5.69 9.491 15.05 7.672 0.073 4.436

Bootstrap I 4.30 17.258 15.56 4.526 0.099 29.827

Bootstrap II 5.70 9.631 14.88 8.711 0.076 0.040

Bootstrap III 5.27 1.421 16.57 1.687 0.098 28.493

Table 4.4: Simulation Results from Double Exponential Distribution

CASE 2, mixture normal distribution: In this case, the distribution is very 

close to the normal distribution. The performances of the methods are very 

similar to Case 1, but it seems the third bootstrap method yields smaller 

relative bias compared to the parametric method (see table 4.2).

CASE 3, Cauchy distribution: All the methods produce large relative bi­

ases for estimating the three quantities, except the first bootstrap method for 

V (T ) (see table 4.3). The parametric method is the worst one, and the second 

bootstrap method is the second worst method, since both methods depend 

on the assumption of normal distribution. The third bootstrap procedure has 

better performance than other methods, according to the criteria of relative 

bias.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CASE 4, double exponential distribution: When estimating E(T)  and V(T), 

the third bootstrap procedure has much smaller relative bias than all the other 

methods. The parametric method and the second bootstrap method have al­

most the same performance. But for estimating P(T),  the performance of 

these methods are somewhat different from estimating E(T)  and V(T),  the 

third and the first bootstrap method has a larger bias.

Now we present out final conclusions and remarks based on the findings 

from the above simulation study:

(1) Because both the model assumption and the analytical form of the 

formula of Solomon’s method depend on normal distribution, it works best 

only under the normal distributional case. For other distributional cases, the 

relative biases are much larger than the third bootstrap method.

(2) The first bootstrap method, which uses external bootstrap weights, 

generally has a larger bias than other methods, in almost all cases and for 

estimating all the three quantities.

(3) The second bootstrap method, which bootstraps on the transformed 

data and then plugs the bootstrap estimates of the model parameters in 

Solomon’s parametric formulae, behaves much the same as Solomon’s para­

metric method. This may be because when computing the three quantities, 

it still relies on Solomon’s parametric formulae, which are derived under the 

normal assumption.
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(4) In general the third bootstrap method is the best among these methods. 

When the model assumptions are met, it gives estimates almost as good as 

the parametric method. But when the model assumptions are not met, it still 

produces estimates with very small relative bias. Thus the third bootstrap 

procedure is very robust against distributional assumptions, and should be 

preferred when the exact distributions are not known.

(5) The estimation of P(T)  using bootstrap methods deserves more re­

search. From the simulation study, we found that its behaviours are somewhat 

different from E(T)  and VariT).

4.2 Application to the IP P P SH  data

In order to demonstrate how to use the parametric method and the three 

bootstrap methods developed in the previous chapters, we give an example 

in the section by applying these methods to a real data set given in Solomon 

(1989).

The data set on blood pressure from the International Prospective Primary 

Prevention Study in Hypertension (IPPPSH) is from 25 hypertension males 

receiving treatment regimes containing a betablocker. Each patient was mea­

sured quarterly for a period of 4 years, and both diastolic and systolic blood 

pressures were measured twice each time, thus we have 4 25 x 16 data sets, two 

for diastolic blood pressures and two for systolic blood pressures. The data sets
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From diastolic measurements with thresholds 95, 100, and 105

Methods

OIIr<> OOi—1II h =  105

Exp Var Pr Exp Var Pr Exp Var Pr

Observed 4.8 18.5 0.16 2.1 7.2 0.40 1.0 2.3 0.64

Solomon 5.4 15.0 0.08 2.7 8.4 0.26 1.2 3.2 0.52

Bootstrap I 4.4 17.9 0.12 2.0 8.0 0.32 0.9 3.2 0.53

Bootstrap II 5.7 15.3 0.07 3.0 9.0 0.24 1.3 3.7 0.49

Bootstrap III 5.5 17.3 0.09 2.6 8.3 0.26 1.2 2.9 0.47

Table 4.5: Estimated Results from the IPPPSH diastolic data, on log-scale

can be downloaded from http://www.maths.adelaide.edu.au/people/psolomon. 

For simplicity, we average the two diastolic measurements and the two systolic 

measurements taken at each time, and also we ignore the relationship between 

diastolic and systolic blood pressures, and analyze them separately. To re­

duce the influence of extreme values and make the assumption of normality 

more reliable, we do a log-transformation on the observed data. The observed 

values and fitted values using different methods and for a range of thresholds 

are listed in Table 4.5 and Table 4.6, where the observed values are computed 

directly from the data (see the formulae of (2.13), (2.14), and (2.15)). In ta­

bles 4.5 and 4.6, “Exp” denotes the expected value of number of exceedances, 

“Var” denotes the variance of the number of exceedances, and “Pr” denotes 

the probability of observing no exceedance.
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From systolic measurements with thresholds 150, 160, and 170

h =  150

OII II o

Methods Exp Var Pr Exp Var Pr Exp Var Pr

Observed 6.2 26.8 0.12 4.0 21.8 0.24 2.2 13.8 0.52

Solomon 7.3 24.4 0.08 4.4 18.5 0.22 2.2 10.1 0.43

Bootstrap I 6.8 23.9 0.08 3.2 16.2 0.22 1.7 10.0 0.46

Bootstrap II 7.3 23.9 0.09 4.4 18.3 0.23 2.3 10.4 0.42

Bootstrap III 7.2 25.1 0.09 4.3 18.5 0.23 2.2 10.0 0.42

Table 4.6: Estimated Results from the IPPPSH systolic data, on log-scale

Looking at Table 4.5, we see that for expected number of exceedances, 

the estimated values are larger than the observed values, except the estimates 

using bootstrap method I. For the variance of number of exceedances, when the 

threshold is 95, all methods give a smaller estimate than observed, but when 

the thresholds are 100 and 105, their estimates are larger than the observed 

values. W ith the probability of observing no exceedance, the estimated values 

from all methods are smaller than the observed.

Examining the estimated results from the systolic data, we see that for the 

quantity of number of exceedances, when the threshold is 150 and 160, all the 

estimates are larger than observed value, except for bootstrap method I when 

the threshold is 160. When the threshold is 170, the estimates from Solomon’s 

method, bootstrap method II and bootstrap method III are very close to the
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observed value. Also we notice that in this case, Solomon’s method, bootstrap 

method II and bootstrap method III produce very similar estimates. For 

the other two quantities, variance of number of exceedances and probability 

of observing no exceedances, all the methods give a smaller value than the 

observed value, and the estimated values are quite close.
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