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Abstract

The intensive competitive nature of the world market, the growing significance of quality

products, and the increasing importance and the number of safety and environmental issues

and regulations, respectively, have increased the need for fast and low-cost changes in chem-

ical processes to enhance their performance. Any possible changes and modifications in a

system in order to control, optimize, evaluate the behavior of the process, or achieve the

maximal performance of the system require clear understanding and knowledge of its actual

state. This information is obtained by processing a data set - collecting it, ameliorating its

accuracy, and storing/using it for further analysis. It should be emphasized that in today’s

highly competitive world market, increasing the accuracy of measurements by resolving even

small errors can result in substantial improvements in plant efficiency and economy.

Industrial process measurements play a significant role in online optimization, process

monitoring, identification, and control. These measurements are used to make decisions

which potentially influence product quality, plant safety, and profitability. Nonetheless, they

are inherently contaminated by errors, which may be random and/or systematic/gross er-

rors, due to sensor accuracy, improper instrumentation, poor calibration, process leak, and

so on. The objective of data reconciliation and gross error detection is the estimation of the

true states and the detection of any faults in the instruments which could seriously degrade

the performance of the system. Data reconciliation techniques deal with the problem of

improving the accuracy of raw process measurements and their application allows optimal

adjustment of measurement values to satisfy material and energy constraints. These methods
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also make possible estimation of the unmeasured variables. However, data reconciliation ap-

proaches do not always provide valid estimates of the actual states, and the presence of gross

errors in the measurements significantly affect the accuracy levels that can be accomplished

using reconciliation. Therefore, the main focus of this work is to develop a framework to

obtain the accurate estimates of reconciled values while reducing the impact of gross errors.

In reality, operating conditions under which a process works change with different circum-

stances. Therefore, it is vital to develop a model that is capable of identifying and switching

between operating regions. To this end, a method is proposed for simultaneous gross error

detection and rectification of a data set which contains different operating regions. First,

the data set is divided into several clusters based on the number of operating regions. Then,

the same operation, i.e., data rectification is performed on each operating region. It must be

noted that all of the proposed approaches in this thesis do not require to preset the parame-

ters of the error distribution model, rather they are determined as part of the solution. They

are also applicable to problems with both linear and nonlinear constraints, in addition to the

ability to determine the magnitude of gross errors. Furthermore, these methods/approaches

detect partial gross errors, so it is not required to assume that gross errors exist in the en-

tire data set. Finally, the performance of the proposed methods is verified through various

simulation studies and realistic examples.
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Chapter 1

Introduction

1.1 Motivation

Raw measurements which are collected from industrial plant operations contain substantial

information and play a significant role in process identification, process control, and online

optimization. However, these measurements have to be processed prior to further analysis,

since they are often corrupted by errors, including random errors and possibly gross errors,

which may affect the subsequent applications, i.e., biased results for estimation. The pres-

ence of gross errors in the measurements affects the reliability of optimization and control

solutions. Therefore, in this work, in order to remove both kinds of measurement errors,

we characterize the measurement noise model using a Gaussian mixture distribution with

two modes, where each mixture component denotes the error distribution corresponding to

random error and gross error, respectively. Based on this assumption, a maximum likeli-

hood framework for simultaneous steady state data reconciliation and gross error detection

is proposed. Therefore, the problem of data rectification is solved based on principles of

probability, and all the estimated parameters and rectified values are obtained based on the

principle of the highest probability. The identification of normal noise versus gross error is

based on the highest probability, similar to the likelihood ratio tests. Since the proposed
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framework involves noise mode as a hidden variable denoting the existence of gross errors in

the data, it should be solved using the Expectation Maximization (EM) algorithm. However,

maximum likelihood estimation does not extend coverage to the actual states where there

are “equivalent sets of gross errors”, and prior information has to be incorporated to handle

these special cases. Therefore, in order to cover all different situations in data rectification,

the Maximum a Posteriori (MAP) framework is proposed. Nonetheless, in reality, operating

conditions under which a process works change with different circumstances. Therefore, it

is necessary to develop a model which is capable of identifying and switching between oper-

ating regions. Accordingly, a method is proposed for simultaneous gross error detection and

rectification of a data set which contains different operating regions. To this end, the data

set must be divided into several clusters based on the number of operating regions. Then, the

same operation, i.e., data rectification has to be performed on each operating region. It must

be noted that all proposed approaches in this thesis do not require to preset the parameters

of the error distribution model, rather they are determined as part of the solution. The

approaches presented here are also applicable to problems with both linear and nonlinear

constraints, in addition to the ability to provide the magnitude of gross errors. Furthermore,

they detect partial gross errors, so it is not required to assume that gross errors exist in the

entire data set. Finally, the performance of the proposed methods is verified through various

simulation studies and realistic examples.

1.2 Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, an expectation maximization approach is developed in order to eliminate

both random and gross errors. This approach is based on the Maximum Likelihood Estima-

tion (MLE), and Gaussian mixture distribution with two modes is used to describe the noise

model. In this approach, the parameters of the error distribution model are determined as
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part of the solution. In addition, problems with both linear and nonlinear constraints are

covered in the proposed approach. Finally, the performance of the method is demonstrated

through several simulation case studies and realistic examples.

Since the proposed method in Chapter 2 is based on the MLE framework, it cannot

handle different gross errors which have the same effect on the objective function. Therefore,

in Chapter 3, prior information is considered in the objective function as well. Incorporating

the prior information provides not only more accurate estimates of the true states, but also

allows some other possible situations of gross error sets in measurements to be rectified. It

is worth to mention that if there is a gross error in a measurement it is not necessary to

assume all of the sample points of that variable are contaminated by the gross error, i.e., it

could partially occur in a data set. Several simulation studies and examples are provided to

evaluate the effectiveness of the proposed method.

Both Chapter 2 and Chapter 3 deal with data rectification for cases with only a single

operating region. In Chapter 4, the proposed method is extended such that it is capable of

identifying different operating regions, estimating the distribution parameters of each region,

and then returning the rectified estimates of each region. Finally, different case studies of

an example are presented to illustrate the efficiency of the proposed method.

Conclusions and recommendations for future work are provided in Chapter 5.

1.3 Main Contributions

The main contributions of the thesis can be summarized as follows:

1. A new method is proposed for simultaneous gross error detection and data reconcilia-

tion using a contaminated Gaussian distribution based on Expectation Maximization

(EM) algorithm.

2. The method is further extended by incorporating the prior information in order to

obtain the more accurate estimate of the true states and to be able to rectify various
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kinds of raw measurements.

3. The proposed robust data rectification approach is developed when there exist multiple

operating regions in a data set.

1.4 Submitted Publications

Materials of the thesis have been submitted in the following publications:

1. H.Alighardashi, N. Magbool Jan, B. Huang, “Expectation Maximization Approach for

Simultaneous Gross Error Detection and Data Reconciliation Using Gaussian Mixture

Distribution”, I&EC Journal. (Chapter 2)
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Chapter 2

Expectation Maximization Approach

for Simultaneous Gross Error

Detection and Data Reconciliation

Using Gaussian Mixtrue Distribution

Process measurements play a significant role in process identification, control, and optimiza-

tion. However, they are often corrupted by two types of errors, random and gross errors.

The presence of gross errors in the measurements affects the reliability of optimization and

control solutions. Therefore, in this work, we characterize the measurement noise model

using a Gaussian mixture distribution, where each mixture component denotes the error

distribution corresponding to random error and gross error, respectively. Based on this as-

sumption, we propose a maximum likelihood framework for simultaneous steady state data

reconciliation and gross error detection. Since the proposed framework involves noise mode

as a hidden variable denoting the existence of gross errors in the data, it can be solved using

the Expectation Maximization (EM) algorithm. This approach does not require the param-

eters of the error distribution model to be preset, rather they are determined as part of the
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solution. Several case studies are presented to demonstrate the effectiveness of the proposed

approach.

2.1 Introduction

Raw measurements collected from processes are of vital importance for online optimization,

process monitoring, and control. These measurements are used to make decisions which

might influence product quality, plant safety, and profitability. Nonetheless, they are con-

taminated by measurement errors - random errors and possibly gross errors - due to sensor

inaccuracy, improper instrumentation, poor calibration, and so on1,2. The accuracy of pro-

cess measurements is often improved using data reconciliation techniques. However, the

presence of gross errors in the measurements significantly affect the improvement in accura-

cy that could be accomplished using reconciliation3. Therefore, the focus of this work is to

develop a framework for obtaining the accurate estimates of reconciled values while reducing

the impact of gross errors.

There exist three main approaches to handle gross errors in the measurements: sequential

gross error detection and data reconciliation, simultaneous gross error detection and data

reconciliation, and robust data reconciliation that provides reconciled estimates by ignoring

gross errors without actually identifying them. In the first approach, gross error detection

is performed using statistical tests; then the measurement containing a gross error is ei-

ther eliminated or compensated with the average value and finally, data reconciliation is

performed2. In general, the data has to be processed for the detection and identification

of gross errors that have to be eliminated prior to performing data reconciliation. Various

statistical tests or methodologies have been proposed to detect gross errors – the global

test4,5, nodal test5–7, measurement test5,8,9, generalized likelihood ratio test10, the Bonfer-

roni test11, and principal component analysis12. However, it is desirable to identify not only

the presence of gross errors, but also the location and magnitude of these errors 13. One
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of the approaches that can eliminate gross errors is the serial elimination strategy 14,15. In

this strategy, each measurement is tested one by one using the above mentioned statistical

tests, and finally, possible gross errors are eliminated. Alternatively, a serial compensation

strategy can estimate the magnitude of gross errors in which gross errors are estimated and

the measurements are compensated in turn10. However, the results of this kind of gross

error elimination rely on the accuracy of the estimated magnitude of gross errors 11. After

employing one of the gross error detection and elimination strategies discussed above, a

conventional steady state data reconciliation technique which minimizes the weighted least

square criterion satisfying the steady state model of the process is performed 16. It should be

noted that the conventional reconciliation problem assumes there is no gross error present in

the data and hence, gross error detection should be performed prior to data reconciliation.

In the second approach, gross error detection and data reconciliation are performed simul-

taneously. In this regard, Soderstrom et al.17 proposed a mixed integer linear programming

problem to estimate the magnitude of the gross errors and simultaneously obtain the recon-

ciled estimates. On the other hand, Arora and Biegler18 presented a mixed-integer nonlinear

programming formulation that can systematically identify the magnitude of the faulty sensor

in the redescending estimator framework and consider bias magnitude as decision variables

in the optimization problem. Both of the mentioned methods employed branch and bound

schemes to solve the optimization problem and hence, are not suitable for large systems.

Alternately, Yuan et al.19 proposed a novel hierarchical Bayesian framework, in which the

problem is divided into three layers, and in each layer one or two parameters are obtained

using Bayes rule.

In the third approach, the ideas from robust statistics are used to obtain the reconciled

estimates by minimizing the influence of gross errors whenever the magnitude of the residuals

exceed the threshold values. This approach involves defining robust objective functions for

data reconciliation depending on the assumption of noise distribution. In this regard, Tjoa

and Biegler20 utilized the contaminated Gaussian to characterize the noise model such that

7



each mode of the contaminated Gaussian signifies the occurrence of random errors and

gross errors. A hybrid successive quadratic programming (SQP) method was proposed to

solve the resulting non-convex data reconciliation problem. Following a similar noise model

and using the prior distribution of states, a maximum likelihood rectification problem was

formulated21. On the other hand, Alhaj-Dibo et al.1 presented an analytical form for the

reconciled estimates in terms of the weighting matrix. The weight matrix is shown to be

the function of residuals and hence, an iterative solution algorithm was proposed. Different

choice of noise distribution would result in different objective functions for robust data

reconciliation. For a comparative study of different objective functions, the reader is referred

to the works of Prata et al.22 and Özyurt23. It is important to note that these objective

functions require the parameters of the noise model to be tuned out in order to successfully

mitigate the influence of gross errors18,20.

In this chapter, we follow the work of Tjoa and Biegler20 to characterize the measurement

noise distribution as a Gaussian mixture distribution with two sensor modes, where each

mode represents the occurrence of random errors and gross errors, respectively. The main

contributions of this work are three-fold: (1) an Expectation-Maximization (EM) algorithm

is proposed to solve the simultaneous gross error detection and data reconciliation problem;

(2) there are no tuning parameters in our proposed approach in comparison to the work of

Tjoa and Biegler20 and Alhaj-Dibo et al.1, and (3) this approach can be directly used to

handle multiple gross errors in measurements, and can be easily extended to the partially

measured case, and also for nonlinear systems.

The rest of the chapter is organized as follows. Section 2.2 contains the background

and a general introduction to data reconciliation problem. In section 2.3, the definition of

data reconciliation is presented using the Gaussian mixture distribution as a measurement

noise model. In section 2.4, an Expectation Maximization algorithm is presented such that

the parameters are estimated along with the reconciled estimates. In section 2.5, several

examples are presented to evaluate the performance of the proposed approach and finally,

8



conclusions are presented in section 2.6.

2.2 Data Reconciliation

Data reconciliation is a technique to improve the accuracy of raw measurements using the

mathematical model of the process. There are three main components in a reconciliation

problem: process model, measurement model, and assumptions on measurement noise distri-

bution. Obtaining the accurate estimates of reconciled values relies heavily on the knowledge

of these components. Let y ∈ Rn be denoted as a vector of raw measurements, x ∈ Rn as

true values of the process variables, and ε ∈ Rn as the measurement errors. Assuming that

the sensor noise is additive, the measurement model is given by,

yi = xi + εi (2.1)

where yi and xi denote the measured and true value of the ith variable, respectively.

Given the process model of the form, f(x) = 0, and assuming the measurement error εi to

be independent of xi, the general formulation of a steady state data reconciliation problem

can be expressed as2,21:

arg max
x

P{y|x} (2.2)

s.t. f(x) = 0 (2.3)

g(x) ≤ 0 (2.4)

where the objective function signifies the probability of measurements, and g(x) denotes the

inequality constraints signifying the safety limits or variable bounds. Due to the presence

of errors, the raw measurements do not satisfy the process model and hence, solving the

above optimization problem determines the reconciled values by maximizing the probability

of measurements.

9



For linear processes, assuming a zero-mean Gaussian distribution of measurement errors

and no inequality constraints, the reconciliation problem can be stated as a weighted least

squares problem:

min
x

(y − x)TV −1(y − x) (2.5)

s.t. Ax = 0 (2.6)

where A is the model coefficient matrix, and V is the covariance matrix of measurements

and it is often assumed to be a diagonal matrix. The reconciled estimates are given by the

following closed-form solution2:

x̂ = [I − V AT (AV AT )−1A]y (2.7)

The above data reconciliation problem, Equation (2.5), is based on the assumption that

measurements contain only random errors. Therefore, the presence of gross errors invalidates

the statistical basis of the reconciliation problem and hence, results in a smearing effect2.

In other words, in the presence of gross errors, the conventional approach adjusts the mea-

surements such that they follow the process model constraints but the adjustments might

result in erroneous reconciled values. In order to account for the presence of gross errors in

the measurements, it is often assumed that εi follows a non-zero mean Gaussian distribution

(i.e., εi ∼ N(bi, σ
2
i )) for the measurement model given by Equation (2.1). Equivalently, εi

can be characterized using the zero-mean Gaussian distribution with the measurement model

given by yi = xi + bi + εi. Using these noise characteristics and the form of the measurement

model, the simultaneous gross error detection and data reconciliation can be formulated as

a mixed-integer optimization problem17,18. Recently, Yuan et al.19 proposed a hierarchical

Bayesian framework that iteratively solves for reconciled values, gross error detection, and

hyperparameters of the noise model.

Alternately, the concepts from robust statistics can be utilized to define robust objective

10



functions, ρ(ri), which are expressed as functions of standardized residuals, ri = (yi − xi)/σi,

and the corresponding robust data reconciliation problem is stated as1,24,25:

min
x

n∑
i=1

ρ(ri) (2.8)

s.t. Ax = 0 (2.9)

where ρ can be any monotone function of standardized residuals such that the effect of gross

errors is reduced on estimation of reconciled values. The robust objective function ρ can

be derived from the maximum likelihood functions for contaminated Gaussian, Cauchy and

Logistic distributions. Further, the Fair function, Lorentzian function and the redescending

M-estimator can also be used with the proper tuning parameters to eliminate the influence

of gross errors and perform robust data reconciliation23.

2.3 Problem Statement

Let Y denotes the data matrix of raw measurements as follows:

Y =



y11 y12 · · · y1m

y21 y22 · · · y2m

...
...

...
...

yn1 yn2 · · · ynm


=



yv
1

yv
2

...

yv
n


=

[
ys
1 ys

2 · · · ys
m

]
(2.10)

where superscripts s and v refer to sample point and variable, respectively. The ith row

of the Y matrix represents the variable i measured at different sampling instants, and the

jth column represents the set of n variables measured at jth sampling instant. Hence, the

measurement model for all variables is given by,

ys
j = x + ε (2.11)
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where x is defined as,

x =



x1

x2

...

xn


(2.12)

It should be noted that the measurement model given by Equation (2.11) is the vector

form of the measurement model presented in Equation (2.1) at the jth time instant.

In this work, following the works of Tjoa and Biegler20 and Alhaj-Dibo et al.1, a Gaussian

mixture distribution with two modes is assumed for the measurement error vector, ε, to

account for the presence of gross errors. The sensor mode with small variance corresponds

to random noise, and the other abnormal one with large variance corresponds to gross errors.

Therefore, the measurement error distribution can be written for the ith variable as,

εi ∼ δi1N(0, σ2
i1) + δi2N(0, σ2

i2) (2.13)

such that δi1 + δi2 = 1. Representing gross errors with the probability density function with

zero mean might appear as a contradiction to the definition of gross error. However, the main

idea is that by assigning a large variance for the second mode of the error distribution, ±3σi2

could cover the magnitude of the gross error. Therefore, if there is an error between −3σi1

and −3σi2 or +3σi1 and +3σi2, it would be considered as a gross error. While the gross errors

can be described by various probability distributions such as Gaussian location mixture or

a uniform distribution, representing gross errors by zero-mean Gaussian distribution is a

mathematically more tractable solution and has also been used in the literature1. Since the

two modes are mutually exclusive, the sensor model for a single measurement set can be

expressed as,

P{y|x} = P{ys
j |x} =

2∑
k=1

P{ys
j |x, Iij = k}P{Iij = k} (2.14)
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where Iij denotes the hidden sensor mode of variable i at the jth sample point. This can be

either in the normal mode or in the abnormal mode. Using the above sensor model, we can

define the log-likelihood of m measurements set as:

arg max
x

lnP{Y |x} = ln(
2∑

k=1

P{Y |x, Iij = k}P{Iij = k}) (2.15)

Assuming the measurements are independent, the above equation becomes,

arg max
x

lnP{Y |x} =
n∏
i=1

m∏
j=1

ln(
2∑

k=1

P{yij|xi, Iij = k}P{Iij = k}) (2.16)

where pijk = P{yij|xi, Iij = k} is defined as follows,

pijk{yij|xi, σik} =
1√

2πσik
exp(−(yij − xi)2

2σ2
ik

) k = 1, 2 (2.17)

and P{Iij = k} = δik denotes the probability of occurrence of sensor mode k. In partic-

ular, P{Iij = 1} = δi1 is the probability of measurements in the normal mode where only

random error is present, and P{Iij = 2} = δi2 denotes the probability of measurements in

the abnormal gross error mode for variable i. Prior works that utilize the Gaussian mixture

model to characterize the noise distribution use the prespecified values of noise distribution

parameters θik = {δik, σ2
ik} for both the modes1,20,23. However, presetting the noise distri-

bution parameters influences the performance of gross error detection and hence, affects the

accuracy of reconciled estimates. Therefore, in this work, we aim at determining the noise

distribution parameters while simultaneously obtaining the reconciled estimates. Now, the

simultaneous data reconciliation and gross error detection problem for linear steady state
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processes can be posed as follows:

max
x,θik

lnP{Y |x} =
n∏
i=1

m∏
j=1

ln(
2∑

k=1

pijk{yij|xi, θik, Iij = k}P{Iij = k|θik}) (2.18)

s.t. Ax = 0 (2.19)

From Equation (2.18), it can be observed that the model identity probability cannot be

obtained explicitly, and hence, the maximum likelihood estimation problem cannot be solved

directly. To resolve this issue, the Expectation Maximization (EM) algorithm is applied to

obtain the distribution parameter values for each variable. In other words, all of the model

distribution parameters along with the reconciled values are estimated simultaneously using

the EM algorithm.

2.4 Solution Methodology

In this section, an Expectation Maximization approach will be proposed to solve the simul-

taneous gross error detection and data reconciliation problem in the maximum likelihood

framework. In general, the EM algorithm is used to solve a maximum likelihood problem

with hidden variables26. In the following subsections, the EM algorithm is presented for a

general problem of maximum likelihood estimation with hidden variables. Next, we derive

the relevant update expressions for the data reconciliation problem presented in section 2.3.

2.4.1 General Formulation of the EM Algorithm

Suppose that the complete data is {Cobs, Cmis}, where Cobs refers to observed data and Cmis

denotes hidden variables. The problem of maximum likelihood estimation of parameter Θ,

when there are hidden variables, can be mathematically stated as:

Θ̂ = arg maxΘ P (Cobs, Cmis|Θ) (2.20)
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For such problems, the EM algorithm is often used. It is an iterative two step algorithm

and the general procedure of the algorithm is as follows:

1. In the first step, known as the Expectation or E-step, the conditional expectation of

the hidden variables (Q function) is obtained by replacing {Cmis} with its conditional

expectation given {Cobs} using the current fit for Θ, as,

Q(Θ,Θ(l)) = ECmis|Cobs,Θ(l) [ln P (Cmis, Cobs|Θ)]

=

∫
P (Cmis|Cobs,Θ(l))[ln P (Cmis, Cobs|Θ)]dCmis

(2.21)

2. In the second step, known as the Maximization or M-step, the Q(Θ,Θ(l)) function is

maximized over the parameter space with respect to Θ,

Θ(l+1) = arg maxΘ Q(Θ,Θ(l)) (2.22)

The Q function is re-evaluated with the updated parameter values Θ(l+1), and the pro-

cedure is repeated until convergence.

2.4.2 EM Algorithm for Simultaneous Gross Error Detection and

Data Reconciliation

For the simultaneous gross error detection and data reconciliation problem presented in

section 2.3, the observed data is Cobs = Y and the hidden variable (Cmis) is the model

identity Iij = {1, 2}. The reconciled variables and the noise distribution parameters are

collected in Θ = {xi, θik}.
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2.4.2.1 E-step

As mentioned previously, in the E-step, the Q function is derived:

Q(Θ,Θ(l)) = EI|Y,Θ(l) [lnP (Y, I|Θ)]

=
n∑
i=1

m∑
j=1

E
Iij |yij ,θ

(l)
i

[ln(P (yij, Iij|θi))]

=
n∑
i=1

m∑
j=1

2∑
k=1

P (Iij = k|yij, θ(l)
ik )[ln(P (yij, Iij = k|θik))]

(2.23)

In Equation (2.23), P (Iij = k|yij, θ(l)
ik ) is the posterior distribution of the model identity

and it can be defined using Bayes theorem as,

P (Iij = k|yij, θ(l)
ik ) =

P (yij|Iij = k, θ
(l)
ik )P (Iij = k|θ(l)

ik )

P (yij|θ(l)
ik )

=
P (yij|Iij = k, σ2(l)

ik , x
(l)
i )P (Iij = k|θ(l)

ik )∑2
t=1 P (yij|Iij = t, θ

(l)
ik )P (Iij = t|θ(l)

it )

=

1√
2πσ2(l)

ik

exp(
−(yij−x

(l)
i )2

2σ2(l)

ij

)P (Iij = k|θ(l)
ik )∑2

t=1
1√

2πσ2(l)

it

exp(
−(yij−x

(l)
i )2

2σ2(l)

ij

)P (Iij = t|θ(l)
it )

(2.24)

In the above equation, P (Iij = k|θ(l)
ik ) is the prior distribution of the model identity which

is equal to the weight of kth component, i.e., P (Iij = k|θ(l)
ik ) = δ

(l)
ik . So, Equation (2.24) can

be further simplified as,

P (Iij = k|yij, θ(l)
ik ) =

δ
(l)
ik√

2πσ2(l)

ik

exp(
−(yij−x

(l)
i )2

2σ2(l)

ik

)∑2
t=1

δ
(l)
it√

2πσ2(l)

it

exp(
−(yij−x

(l)
i )2

2σ2(l)

it

)
(2.25)

Since all parameters in Equation (2.25) are obtained from the previous iteration, it can

be simplified as P (Iij = k|yij, θ(l)
ik ) = γ

(l)
ijk. Further, the log-likelihood term in the Q function
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is written as,

lnP (yij, Iij = k|θik) = ln(
1√

2πσ2
ik

exp(
−(yij − xi)2

2σ2
ik

)P (Iij = k|θik))

= ln(δik)− ln(
√

2πσ2
ik)−

(yij − xi)2

2σ2
ik

(2.26)

Substituting Equations (2.25) and (2.26) into Equation (2.23), the following expression

for the Q function can be obtained:

Q(Θ,Θ(l)) =
n∑
i=1

m∑
j=1

2∑
k=1

P (Iij = k|yij, θ(l)
ik )[lnP (yij, Iij = k|θik)]

=
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk[ln(δik)− ln(

√
2πσ2

ik)−
(yij − xi)2

2σ2
ik

]

(2.27)

2.4.2.2 M-step

The M-step involves maximizing the Q(Θ,Θ(l)) function with respect to Θ and this yields

the update equations for the parameters.

Update expression for σrt: This can be obtained by setting the partial derivative of Q with

respect to σrt to zero. The partial derivative is obtained as follows:

∂Q(Θ,Θ(l))

∂σrt
=
∂
∑n

i=1

∑m
j=1

∑2
k=1 γ

(l)
ijk[ln(δik)− ln(

√
2πσ2

ik)−
(yij−xi)2

2σ2
ik

]

∂σrt
(2.28)

for r = 1, ..., n and t = 1, 2. The derivative can be further simplified as,

∂Q(Θ,Θ(l))

∂σrt
=
∂
∑n

i=1

∑m
j=1 γ

(l)
ijt[ln(δit)− ln(

√
2πσ2

it)−
(yij−xi)2

2σ2
it

]

∂σrt

=
1

σrt
(

∑m
j=1 γ

(l)
rjt(yrj − xr)2

σ2
rt

−
m∑
j=1

γ
(l)
rjt) = 0

(2.29)

17



Now the update equation for σrt is given by,

σ
(l+1)
rt =

√√√√∑m
j=1 γ

(l)
rjt(yrj − x

(l)
r )2∑m

j=1 γ
(l)
rjt

(2.30)

Update expression for δrt: This can be derived by formulating the following constrained

optimization problem:


δ

(l+1)
ik = arg maxδrt

∑n
i=1

∑m
j=1

∑2
k=1 γ

(l)
ijk[ln(δik)− ln(

√
2πσ

(l+1)2

ik )− (yij−x
(l)
i )2

2σ
(l+1)2

ik

]

s.t.
∑2

k=1 δ
(l+1)
ik = 1

(2.31)

The above optimization problem can be solved using the method of Lagrange multipliers

and the corresponding Lagrangian function is defined as,

L(δi, λδi) =
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk[ln(δik)− ln(

√
2πσ

(l+1)2

ik )− (yij − x(l)
i )2

2σ
(l+1)2

ik

]−λδi(
2∑

k=1

δik− 1) (2.32)

In order to solve the above equation, the partial derivative of L with respect to δrt and

λδr is determined and then set to zero.

∂L(δi, λδi)

∂δrt
=

∂
∑n

i=1

∑m
j=1

∑2
k=1 γ

(l)
ijk[ln(δik)− ln(

√
2πσ

(l+1)2

ik )− (yij−x
(l)
i )2

2σ
(l+1)2

ik

]

∂δrt
− λδr

δrt =

∑m
j=1 γ

(l)
rjt

λδr

(2.33)

It is known that
∑2

k=1 δrk = 1; using the property of γijk function where
∑2

k=1 γ
(l)
ijk = 1,

we get λδr = m. As a result, δ
(l+1)
rt can be expressed as,

δ
(l+1)
rt =

∑m
j=1 γ

(l)
ijt

λδr
=

∑m
j=1 γ

(l)
ijt

m
(2.34)
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Update expression for xi: Similarly, the update expression for the reconciled estimate x
(l+1)
i

can be obtained using the method of Lagrange multipliers,


x

(l+1)
i = arg maxxr

∑n
i=1

∑m
j=1

∑2
k=1 γ

(l)
ijk[ln(δ

(l+1)
ik )− ln(

√
2πσ

(l+1)2

ik )− (yij−xi)2

2σ
(l+1)2

ik

]

s.t. Ax = 0

(2.35)

The Lagrangian function for the above constrained optimization problem is given by,

L(x, λx) =
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk[ln(δ

(l+1)
ik )− ln(

√
2πσ

(l+1)2

ik )− (yij − xi)2

2σ
(l+1)2

ik

] +
n∑
i=1

q∑
z=1

λxzazixi

(2.36)

To obtain the update expression for the reconciled estimates, the partial derivatives of

the above equation with respect to xr and λxw have to be evaluated.

∂L(x, λx)

∂xr
=

m∑
j=1

2∑
k=1

γ
(l)
rjk[

yrj − xr
σ

(l+1)2

rk

] +

q∑
z=1

λxzazr

=
m∑
j=1

([
γ

(l)
rj1

σ
(l+1)2

r1

+
γ

(l)
rj2

σ
(l+1)2

r2

](yrj − xr)) +

q∑
z=1

λxzazr = 0

(2.37)

∂L(x, λx)

∂λxw
=

n∑
i=1

awixi = 0 (2.38)

Define w
(l+1)
rj as,

w
(l+1)
rj =

γ
(l)
rj1

σ
(l+1)2

r1

+
γ

(l)
rj2

σ
(l+1)2

r2

(2.39)

Here, w
(l+1)
rj corresponds to the weights for each of the measured variables. The above
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equation is then written in matrix form such that the resulting expression for reconciled

estimates can be compared to ones from literature. For this purpose, we define a diagonal

matrix W
(l+1)
j = diag{w(l+1)

1j , · · · , w(l+1)
nj }, where diag(j=1,...,m)(aj) denotes the operator that

creates the diagonal matrix having the dimension of measured variables (i.e., n) with diagonal

elements w
(l+1)
rj . Equation (2.37) can be then simplified as,

m∑
j=1

W
(l+1)
j (ysj − x) + ATλx = 0 (2.40)

multiplying by A
(∑m

j=1 W
(l+1)
j

)−1

yields,

λ(l+1)
x = −

(
A
( m∑
j=1

W
(l+1)
j

)−1

AT
)−1

A
( m∑
j=1

W
(l+1)
j

)−1( m∑
j=1

W
(l+1)
j ys

j

)
(2.41)

define R(l+1) = (
∑m

j=1 W
(l+1)
j )−1 and yw =

(∑m
j=1 W

(l+1)
j

)−1(∑m
j=1 W

(l+1)
j ys

j

)
, then λx is

given by,

λ(l+1)
x = −(AR(l+1)AT )−1Ayw (2.42)

and hence, the update equation for reconciled values is given by,

x(l+1) = (I −R(l+1)AT (AR(l+1)AT )−1A)yw (2.43)

The resulting expression in Equation (2.43) for reconciled estimates resembles the well-

known expression for data reconciliation as given in Equation (2.7). However, the weighting

matrix V in the conventional data reconciliation problem is a known constant denoting the

diagonal covariance matrix of Normal distribution of errors, whereas the weighting matrix

in our formulation uses the standardized residual of m measurement points and the current

estimate of noise distribution parameters. In addition, it can be observed that the weighted

values of m measurements, denoted by yw, is used in the proposed formulation. This shows

that the measurements are appropriately weighed to obtain more accurate values of the
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reconciled estimates.

Table 2.1: EM Algorithm for Simultaneous Data Reconciliation and Gross Error Detection
1 Input the raw measurements Y
2 Initialize the parameter Θl

3 E-step Evaluate theQ function, Equation (2.27), using current updated values
of parameters

4 M-step Update the parameters σrt, δrt and x using Equations (2.30), (2.34),
and (2.43), respectively.

5 Terminate on convergence. Otherwise, proceed to Step 3.

2.4.3 Data Reconciliation for a Single Measurement

In the previous subsection, we presented the solution methodology that determines the error

distribution model parameters which can be used in obtaining the robust reconciled values.

The solution algorithm in Table 2.1 uses m measurement samples to estimate the parame-

ters of the noise distribution as well as the reconciled estimates. This shows that the data

reconciliation can be performed in the moving horizon fashion with window size of m. On

the other hand, the presented algorithm can be used to obtain historical noise parameters

of each of the variables {δik, σik} for i = 1, · · · , n, and these parameter values can be used to

perform data reconciliation for any set of current measurement values, i.e., single measure-

ment set. Therefore, now we present the application of the EM algorithm to a single set of

measurements. Using the noise distribution parameters obtained from the EM algorithm,

the simplified iterative algorithm for the case of single measurements involves three steps:

First, for the current measurement, the probability density values of all measured variables

and probabilities of the individual sensor modes, pik, are evaluated; next, the weights are

computed using the values of pik and the parameter values of δik estimated from earlier

iteration of the EM algorithm. Finally, the reconciled values are obtained using the newly

calculated weights. The corresponding update expressions used at each step is given by,

p
(l)
ik =

1√
2πσ2

ik

exp

(
−(yi − x(l)

i )2

2σ2
ik

)
(2.44)
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(R(l))−1 = diag

( δi1
σ2
i1
p

(l)
i1 + δi2

σ2
i2
p

(l)
i2

δi1p
(l)
i1 + δi2p

(l)
i2

)
(2.45)

x(l+1) = (I −R(l)AT (AR(l)AT )−1A)y (2.46)

This procedure is repeated until convergence. The algorithm presented above for the

single measurement set closely resembles the one presented by Alhaj-Dibo et al.1. However,

in their work, δik were assumed to be the same for all the measurements and the variance of

the second mode was b times the variance of random errors; further details can be found in

the original article.

2.4.4 Further Extensions

Partially measured case: In this subsection, we present suitable modifications to the

proposed EM approach such that unmeasured variables can be estimated from the linear

process models in the case of partial measurements. For this purpose, the process model

constraint is divided into two parts - measured and unmeasured. Next, reconciled values

of measured data are estimated, then unmeasured values are computed using the reconciled

values.

Ayŷ + Az ẑ = 0 (2.47)

A matrix P is determined such that PAz = 0, and hence, the second term in Equation

(2.47) can be eliminated. Using the following Theorem 1, the process model constraint

modifies to,

PAyŷ = 0 (2.48)

To simplify the mathematical representation, PAy is substituted by A which is the process

22



model coefficients matrix,

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·

aq1 aq2 · · · aqn


(2.49)

Theorem 127 If Az(m× n), where m ≥ n, has rank of n, then there is a Q(m×m) matrix

with orthonormal column vector such that Az = QR, where QTQ = I, and R =

R1

0

.

R1(n × n) is an upper triangular and non-singular matrix. 0 is a zero matrix with the

dimension ((m− n)× n).

Az =

[
Q1 Q2

]
×

R1

0

 (2.50)

Q1 and Q2 are (m× n) and (m× (m− n)), respectively.

For proof, the reader is referred to the original article.

After performing data reconciliation and obtaining reconciled values, the unmeasured

variables can be estimated using,

Az ẑ = −Ayŷ (2.51)

ẑ = −(ATz Az)
−1ATz (Ayŷ) (2.52)

Nonlinear Case: The proposed algorithm can be applied to the case with nonlinear model

constraints without linearization since it decreases the accuracy of the results 21. In order to

solve the problem without linearization, the explicit update equation for x in the M-step can

be replaced with an implicit nonlinear optimization problem which can be solved efficiently

using commercially available optimization solvers. In this work, we use an inbuilt MAT-
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LAB function “fmincon” with interior point algorithm to solve the nonlinear programming

problem; further details of this algorithm can be found in Dantzig et al. book28.

2.4.5 Performance Measures

In this work, we use the following performance measures to assess the efficiency of the

proposed methodology: (a) Overall power (OP)10,17, (b) Average number of type I error

(AVTI)10,17, and (c) Correct rate (CR)19. They are defined as follows:

OP =
Number of biased variables correctly identified

Number of biased variables simulated
(2.53)

AV TI =
Number of unbiased variables wrongly identified

Number of simulation trials
(2.54)

CR =
Number of runs where all the gross errors are correctly identified

Total number of runs
(2.55)

2.5 Illustrations

In this section, we present several examples to study the effectiveness and performance of

the proposed method for simultaneous data reconciliation and gross error detection. In this

work, both the linear and nonlinear cases are investigated; in the linear case, the occurrence

of single and multiple gross errors as well as partially measured variables and partially

occurrence of gross errors are examined, and for the nonlinear part, the presence of multiple

gross errors is studied. Finally, a realistic network with both linear and nonlinear constraints

while there are some unmeasured variables is presented.
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2.5.1 Illustration 1- Linear Example

Let us consider a water flow network of Yuan et al.19, which has four process units and seven

streams as shown in Figure 2.1.

Figure 2.1: Schematic of water flow network

Let xi denote the flow rate of stream i. For the process network presented in Figure 2.1,

the process model constraints (in this case, mass balance equations) are given by,

x1 − x2 + x4 = 0

x2 − x3 + x6 = 0

x3 − x4 − x5 = 0

x5 + x6 − x7 = 0

Now expressing the above set of equations in the form of Ax = 0, the process model

coefficient matrix, A, is given by,

A =



1 −1 0 1 0 0 0

0 1 −1 0 0 1 0

0 0 1 −1 −1 0 0

0 0 0 0 1 −1 −1


All the variables are assumed to be measured unless otherwise stated. The vector of true

values of the flow rates is set as x =

[
1 2 3 1 2 1 1

]T
.
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Case 1 − Single Gross Error : The measurement data of all the process variables are

generated by adding a random noise with zero mean and 0.1I variance to the true values.

In other words, the standard deviations are around 11 − 32% of the measurements. In this

case, we assume x1 contains gross error with a magnitude of +2. A set of simulated data

are plotted in Figure 2.2.

Figure 2.2: Data plot showing gross error in x1, σi = 0.1

Table 2.2 compares the performance measures obtained using our proposed approach

with the results of Algorithm 1 and 2 of Yuan et al.19. Only the CR information has been

reported in their work when they added a gross error to one of the variables (x1 to x7 by

sequence) for each 50 runs. The average CR obtained using the proposed EM approach is

1 which means the variable which has gross error has been identified correctly in all the

simulation runs.
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Table 2.2: Performance measures for single gross error
Method Simulation runs Biased OP AVTI Average CR
Proposed Method 50 1 1 0 1
Algorithm 119 50 1 ** ** 0.8
Algorithm 219 50 1 ** ** 0.98

** denotes not reported

Table 2.3 represents the true values, reconciled values, and the estimates of probability

of occurrence of gross errors, δi1, as well as the estimated variance for the modes when x1

has gross error. It can be observed from Figure 2.3 and Table 2.3, that the proposed method

eliminated bias appropriately (1.9826 which is so close to 2), and resulted in reconciled values

that are close to true values. Figure 2.3 shows the histogram of reconciled estimates for 50

runs.

Table 2.3: Reconciliation solution using EM approach for single gross error case
Variables x x̂ δ̂i1 σ̂i1 σ̂i2

x1 1 1.0174 0.1000 1.9697 2.0237
x2 2 2.0203 0.9000 0.3069 0.0786
x3 3 3.0001 0.8667 0.2971 0.0389
x4 1 1.0029 0.8333 0.3006 0.0590
x5 2 1.9972 0.9667 0.3545 0.0142
x6 1 0.9798 0.9333 0.3423 0.0132
x7 1 1.0174 0.9667 0.2828 0.0855

As mentioned before, σi2 can handle the effect of gross errors. In Case 1, the magnitude

of gross error is 2 for the first variable, x1, and the proposed algorithm returned 2.0237 as

the standard deviation of the abnormal mode. In this method, instead of adding another

parameter for the mean value and estimating that as a parameter, the gross error effect is

captured by a large variance value. Therefore, by applying this method, not only is the effect

of gross errors eliminated properly, but the mathematical complexity is also reduced owing

to the use of fewer parameters compared to the case where the mean value is considered.

However, in this special case, the simulated measurement data does not follow a Gaussian

mixture distribution as random noise with zero mean and 0.1I variance is being added to

all of the variables, as considered in Yuan et al.19. Nonetheless, the proposed method can
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also handle this case properly as shown in Table 2.3. It is important to note that a low

probability of occurrence of the first mode for x1, and low probability of occurrence of the

second mode for the other have been determined using the proposed methodology. This

signifies that the resulting distribution is not a contaminated Gaussian distribution, rather a

single Gaussian distribution. In order to show the performance of the proposed method for

Gaussian mixture case, Case 4 is presented by simulating the measurement data following

a Gaussian mixture distribution.

Figure 2.3: Histogram of reconciled values for 50 runs, when x1 has a bias magnitude of 2

Case 2− Multiple Gross Errors : In this case, multiple gross errors in measurements are

examined. The simulated data in this case follow the same noise characteristics as in Case 1,

but now we consider gross errors in x2 and x7 with magnitudes of 3 and 1, respectively.
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Figure 2.4: Data showing with gross errors in x2 and x7

In Table 2.4, the performance measures OP, AVTI, and CR obtained for two simultaneous

gross errors are presented.

Table 2.4: Performance measures using EM algorithm for multiple gross errors
Simulation runs Biased OP AVTI CR

50 x2, x7 0.98 0.04 0.98

Table 2.5 provides true and reconciled values, estimated values for the probability of

occurrence of the random noise, and estimated variance of each mode of all variables. It can

be noted that the variables with gross errors contain high variance. This is because of our

characterization of measurement noise distribution. However, all other variables have a low

variance, signifying accurate values for those measurements. From Figure 2.5 and Table 2.5,

it can be inferred that the proposed method eliminated the bias terms efficiently, and the

difference between the reconciled and the true values is close to zero. Figure 2.5 shows the
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histogram of reconciled values obtained using our proposed EM approach for 50 simulations.

Table 2.5: Reconciliation solution using EM approach for multiple gross errors case
Variables x x̂ δ̂i1 σ̂i1 σ̂i2

x1 1 1.0521 0.9740 0.3100 0.3968
x2 2 2.0806 0.0333 2.5160 3.1681
x3 3 3.0351 0.8667 0.3205 0.5269
x4 1 1.0285 0.9333 0.3095 0.5736
x5 2 2.0066 0.9000 0.3180 0.2952
x6 1 0.9545 0.9667 0.2717 0.5048
x7 1 1.0521 0.0333 0.9855 1.0063

Figure 2.5: Histogram of reconciled values for 50 runs, when x2 and x7 contain gross errors

Case 3− Partially Measured with a Gross Error : The objective of this case is to show

the performance of the proposed method when there are both measured and unmeasured

variables. In this case, x6 is unmeasured and all other process variables are measured. Also,

x2 contains gross errors with a bias magnitude of 2 at all sample points. The measurement

data is generated similar to the previous two cases for all other variables. The process model
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constraint is given by Ayŷ + Az ẑ = 0, in which Ay and Az are as follows,

Ay =



1 −1 0 1 0 0

0 1 −1 0 0 0

0 0 1 −1 −1 0

0 0 0 0 1 −1


, Az =



0

1

0

−1


The P matrix in PAyŷ = 0 is,

P =


1 0 0 0

0
√

2/2 0
√

2/2

0 0 −1 0


A set of simulated data is presented in Figure 2.6.

Figure 2.6: Data plot showing gross error in x2

In Table 2.9 the results of OP, AVTI, and CR tests for Case 3 are presented. The results
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show that the gross error has been eliminated in all the simulation runs.

Table 2.6: Performance measures for partially measured case with single gross error
Simulation runs Biased OP AVTI CR

50 x2 1 0 1

Table 2.7 presents true and reconciled values, estimated values for the probability of

occurrence of random noise and estimated variance of each mode of all variables. From

Figure 2.7 and Table 2.7, it can be seen that the proposed method eliminated the bias terms

in an efficient manner, and the difference between the reconciled and the true values is close

to zero. Figure 2.5 shows the histogram of rectified values for 50 runs, when there is gross

error in x2.

Table 2.7: Reconciliation solution using EM approach for partially measured case with gross
error in x2

Variables x x̂ δ̂i1 σ̂i1 σ̂i2
x1 1 1.0336 0.9858 0.3058 0.6204
x2 2 1.9975 0.1168 1.6135 2.0453
x3 3 2.9822 0.8132 0.2672 0.4918
x4 1 0.9639 0.8974 0.2915 0.5288
x5 2 2.0183 0.9792 0.2952 0.7453
x7 1 1.0336 0.9620 0.3091 0.4944
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Figure 2.7: Histogram of reconciled values for 50 runs, when x2 includes gross error and x6

is unmeasured

The estimate of unmeasured variable x6 can be obtained using Equation (2.52) and the

value is determined to be 0.9847 which is close enough to its true value. As a result, the

proposed method can successfully determine the values of unmeasured variables in partially

measured case.

Case 4 − Mixture Gaussian Distribution with Multiple Gross Errors : The three

previous cases assumed that if a particular variable contains gross error, then the gross error

is persistent through all sample points. However, it is possible that gross error exists only

for a short period of time. This can be characterized by the use of the Gaussian mixture

distribution. The objective of this case is to determine the performance of the proposed

method for a Gaussian mixture distribution. In order to do so, the measurement data are

generated such that the error characteristics follow a Gaussian mixture distribution noise

with zero mean and 10% of measurement variance. For variables x2 and x7, the first mode

is possible to occur 65%, and the bias magnitude for both of these two variables is 3. Table

2.8 presents true and reconciled values of all variables. Figure 2.8 shows the histogram of

the rectified values for 50 runs, when there are gross errors in x2 and x7.
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Table 2.8: Reconciliation results for mixture distribution with multiple gross errors
Variables x x̂ δ̂i1 σ̂i1 σ̂i2

x1 1 1.0180 0.9000 0.2972 0.3055
x2 2 2.0251 0.6566 0.4014 2.8074
x3 3 3.0378 0.9232 0.6092 0.2631
x4 1 1.0071 0.9700 0.3791 0.0904
x5 2 2.0307 0.9970 0.5020 0.1722
x6 1 1.0127 0.9700 0.2929 0.3954
x7 1 1.0180 0.6404 0.3081 3.0165

Table 2.9: Performance measures for mixture distribution with multiple gross errors
Simulation runs Biased OP AVTI CR

50 x2 1 0 1

Figure 2.8: Histogram of reconciled values for 50 runs of Case 4

Based on the results and figures presented, it can be concluded that the developed method

and framework can handle partially gross errors as well.
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2.5.2 Illustration 2 - Nonlinear Example

The purpose of this case study is to demonstrate the efficacy of the proposed approach for

nonlinear systems. To this end, we consider the nonlinear example of Yuan et al.19 and Tjoa

and Biegler20. This problem contains eight variables, five of which are measured and the

rest, unmeasured. There are six nonlinear constraints given by,

0.5x2
1 − 0.7x2 + x3u1 + x2

2u1u2 + 2x3u
2
3 − 255.8 = 0

x1 − 2x2 + 3x1x3 − 2x2u1 − x2u2u3 + 111.2 = 0

x3u1 − x1 + 3x2 + x1u2 − x3
√
u3 − 33.57 = 0

x4 − x1 − x2
3 + u2 + 3u3 = 0

x5 − 2x3u2u3 = 0

2x1 + x2x3u1 + u2 − u3 − 126.6 = 0

The exact values for all of the variables are given by,

xexact = [4.5124, 5.5819, 1.9260, 1.4560, 4.8545]T

uexact = [11.070, 0.61467, 2.0504]T

In this case, three different situations are investigated to present the effectiveness of the

proposed approach for data reconciliation using the EM algorithm, and then the results are

compared with the performance measures reported in literature. In Scenario 1, the set of

measurements is divided into 5 blocks with 20 gross errors in each block in sequence from

x1 to x5. Scenario 2 is the case that all the measured variables are added with gross errors

in every fifth run and no gross errors in other runs. Finally, in Scenario 3, one gross error is

added for each run in sequence from x1 to x5 in rotation.

The data is simulated with the mean values equal to the true values, and has the variance

0.1. The magnitudes of the gross errors considered in this study are +0.4 and +1.
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Table 2.10: Comparison of the results of the proposed method with previous methods for
bias = + 0.4

x1 x2 x3 x4 x5

Scenario R W R W R W R W R W

1 Proposed Method 17 - 20 - 20 - 20 - 20 -
1 Yuan et al.19 5 2 20 6 20 - 20 2 20 5
1 Tjoa and Biegler20 8 3 19 - 20 - 9 - 17 1

2 Proposed Method 15 - 20 - 20 - 19 - 20 -
2 Yuan et al.19 8 - 20 1 20 - 15 - 20 -
2 Tjoa and Biegler20 - - 20 - 20 2 - - 20 1

3 Proposed Method 10 - 20 - 20 - 20 - 20 -
3 Yuan et al.19 3 2 20 8 20 - 20 2 20 -
3 Tjoa and Biegler20 4 - 18 - 20 1 9 - 14 2

For the case where bias = +0.4, the reconciled values of measured variables and the

estimated values of unmeasured values are given by,

x̂ = [4.5402, 5.5666, 1.9221, 1.4735, 4.8441]T

û = [11.1174, 0.6151, 2.0487]T
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Table 2.11: Comparison of the results of the proposed method with previous methods for
bias = + 1

x1 x2 x3 x4 x5

Scenario R W R W R W R W R W

1 Proposed Method 20 - 20 - 20 - 20 - 20 -
1 Yuan et al.19 20 2 20 - 20 1 20 1 20 2
1 Tjoa and Biegler20 19 - 20 1 20 - 19 1 20 2

2 Proposed Method 19 - 20 - 20 - 20 - 20 -
2 Yuan et al.19 10 - 20 - 20 - 19 - 20 -
2 Tjoa and Biegler20 12 - 20 - 20 1 20 1 17 1

3 Proposed Method 17 - 20 - 20 - 20 - 20 -
3 Yuan et al.19 20 1 20 2 20 2 20 2 20 1
3 Tjoa and Biegler20 20 2 20 - 20 - 19 - 20 1

For the case in which bias = +1, the reconciled and estimated values are given by,

x̂ = [4.5704, 5.5638, 1.9178, 1.5110, 4.8163]T

û = [11.1620, 0.6154, 2.0406]T

In Table 2.10 and Table 2.11, R and W refer to Right and Wrong, respectively. Right

denotes there is gross error in a measurement and it has been detected correctly, and Wrong

means there is no gross error in a measurement, but it has been incorrectly detected as

gross error measurement. It is important to note that the gross errors in variables x2, x3

and x5 have been identified correctly at all times whereas the gross error in variable x4

has been identified in 19 of 20 simulation runs. The gross error in variables x1 has been

identified correctly most of the time and the results reveal that the proposed method shows

improved performance compared to that of Yuan et al.19 and Tjoa and Biegler20. Moreover,

our method does not wrongly identify gross errors in any of the variables.
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2.5.3 Illustration 3 - Realistic Mineral Processing Example

In this example, the proposed method is applied to a realistic mineral processing plant1.

This process contains 16 streams, and each of them is characterized by a flow rate and

two concentration variables. The process schematic is shown in Figure 2.9. All of the

concentration variables are measured, and the flow rates except streams 1, 4 and 11 are

measured. Therefore, there are 45 measured variables and 3 unmeasured variables in total.

In order to demonstrate the approach, seven measured variables are assumed to be corrupted

by gross errors with the magnitude of variables reported in Table 2.13.
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Figure 2.9: Process flow diagram

Table 2.12 represents measurements, standard deviations, and reconciled estimates. In

order to analyze the performance of the proposed method, we define the relative correction

in terms of a percentage of the measurement for each variable as c(r) = 100(ŷi − yi)/yi.
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Table 2.12: Measurements, standard deviations, and reconciled estimates

Measurement Standard deviation Rectified estimate

x y1 y2 Std(x) Std(y1) Std(y2) x̂ ŷ1 ŷ2

1 3.890 3.440 0.389 0.344 22.565 2.408 3.452
2 26.500 2.700 3.530 1.325 0.270 0.353 25.874 2.710 3.651
3 29.200 2.520 3.550 1.460 0.252 0.355 20.895 2.517 3.533
4 4.750 5.000 0.475 0.500 3.309 4.770 5.007
5 18.320 2.090 3.290 0.916 0.209 0.329 17.586 2.093 3.255
6 22.020 2.460 3.510 1.101 0.246 0.351 21.722 2.488 3.502
7 20.800 2.900 3.740 1.040 0.290 0.374 12.203 2.863 3.722
8 9.430 2.010 5.200 0.472 0.201 0.520 9.519 2.006 3.220
9 8.010 3.710 3.290 0.401 0.371 0.329 8.067 2.196 3.297

10 4.140 4.150 4.550 0.207 0.415 0.455 4.136 4.164 4.550
11 3.490 4.190 0.349 0.419 4.980 3.518 4.146
12 6.560 3.630 4.340 0.328 0.363 0.434 6.539 3.537 4.243
13 1.040 8.710 6.320 0.052 0.871 0.632 1.040 8.312 6.254
14 7.380 4.240 6.650 0.369 0.424 0.665 7.579 4.192 4.519
15 4.990 3.490 4.100 0.250 0.349 0.410 4.980 3.518 4.146
16 7.690 5.150 5.180 0.385 0.515 0.518 2.599 5.484 5.233

Table 2.13: True and estimated values of gross errors
x3 x7 x16 y1,1 y1,9 y2,8 y2,14

True Bias 8.0 8.0 5.0 1.5 1.5 2.0 2.0
Proposed method 8.31 8.59 5.09 1.48 1.51 1.98 2.13
Alhaj-Dibo et al.1 8.52 8.51 4.87 1.46 1.45 1.95 2.10

Figure 2.10 shows the relative corrections c(r) obtained for each measurements using

our proposed method while Figure 2.11 represents the relative correction obtained using

conventional data reconciliation. It should be noted that the relative corrections for the

measurements with gross errors are high, and for other measurements it is minimal. On

the other hand, the relative correction obtained using the conventional data reconciliation

approach shows that the relative correction occurs in all the measurements thus showing

smearing effect.
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Figure 2.10: Relative corrections by proposed method

Figure 2.11: Relative corrections by conventional data reconciliation1

2.6 Conclusions

In this chapter, we addressed the problem of data reconciliation in the maximum likelihood

framework by simultaneously eliminating the gross errors present in the measurement data.

The Gaussian mixture distribution model characterizes the error distribution of differen-

t noise modes and hence, the resulting formulation involves solving for hidden variables.

Therefore, the expectation maximization approach was introduced. It is important to note
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that the parameters of the error distribution model are not preset and are determined as

part of the solution. Several case studies were presented to demonstrate the various fea-

tures of the algorithm. For the linear example, with single gross error cases (Case 1 and

Case 3), the performance measures showed that the gross error was identified correctly in

all the simulation runs. For the case of multiple gross errors in which the data are generated

with the Gaussian mixture distribution (Case 4), the performance measures of the proposed

method achieved theoretical optimal values. From the nonlinear example, it was seen that

the proposed approach showed superior performance over methods from literature. Using

the realistic mineral processing example, we demonstrated that because of the assumed char-

acterization of noise distribution, our proposed method did significant adjustments to the

biased measurements appropriately.
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Chapter 3

Simultaneous Data Reconciliation and

Gross Error Detection Based on

Maximum A Posteriori (MAP)

Estimation via EM Algorithm

The raw measurements collected from industrial plants operations contain significant infor-

mation for process identification, online optimization, and process control. However, they

are prone to random and gross errors that may affect the subsequent applications, i.e., bi-

ased results for estimation. In this work, we formulate the data rectification problem to

eliminate both random and gross errors by assuming a mixture Gaussian distribution for

the measurement noise model. Some of the previously proposed models for data reconcil-

iation and gross error estimation cannot determine the true set of reconciled estimates for

arbitrary sets of gross error candidates. That said, some of the candidates’ combinations

result in the same value for the objective function of data reconciliation. Previous works,

which did not utilize prior information, mainly fail in distinguishing the true set among the

equivalent sets of gross errors. Therefore, in this work, the proposed framework is able to
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rectify measurements in the presence of equivalent sets of gross errors by incorporating prior

knowledge into the objective function. Based on this assumption, a Maximum a Posteriori

(MAP) framework is proposed for simultaneous data reconciliation and gross error detec-

tion. The problem is solved using the Expectation Maximization (EM) algorithm due to the

presence of the hidden variable in the noise model, i.e., noise mode. The proposed method

provides the magnitude of gross errors in addition to the ability of detecting partial gross

errors. Thus, it is not required to assume that gross errors exist in the entire data set. In

order to illustrate the efficiency and the performance of the proposed method, several case

studies are presented.

3.1 Introduction

Raw measurements play a significant role in chemical plants for process monitoring, iden-

tification, control, and so on. However, there are errors in these measured variables that

are incurred by improper instrumentation, poor calibration, and other unmeasured errors.

Consequently, the collected data generally are not expected to follow process balances, i.e.,

mass and energy balances29–32. Errors which are caused by random and nonrandom events

are addressed by data reconciliation and gross error detection, respectively. Using error

contaminated data leads to suboptimal and even unsafe process operation33. Therefore,

obtaining rectified data is the basis for efficient process operation and control19,33,34. The

theory of data reconciliation has been developed to resolve the contradictions between the

raw measurements and their constraints in order to obtain consistent information 35. Gross

error detection has been well investigated in the literature using different theoretical and

numerical methods, which is an essential step for industrial applications32. There are three

main approaches to remove the effect of gross errors in the measurements: (1) sequential

gross error detection and data reconciliation, (2) simultaneous gross error detection and data

reconciliation, and (3) robust data reconciliation that obtains reconciled estimates by ignor-
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ing gross errors without actually identifying them. As a result, data reconciliation and gross

error detection, or data rectification, have to be performed before conducting any further

analysis.

Data rectification and data reconciliation are two distinct terms which are often used

indiscriminately. Data rectification is used to obtain an estimate of true values by removing

both random and gross errors, and literally means “to make data right”, or data correction,

while the objective of data reconciliation is to adjust data such that they follow process

balance models21,36. Data reconciliation is a widely used approach for improving the accuracy

of measurements with the help of the process model37. Initially, it was assumed there are

only random errors in the measurements, i.e., absence of gross errors. However, the existence

of gross errors in data limits the usage of conventional data reconciliation solutions due to

the smearing effect34. If measurements are adjusted in the presence of gross error(s) in order

to follow the process model, all the adjustments are affected by the bias measurements (gross

errors) and would not be a reliable indicator of the true values31. Therefore, gross errors

should be removed prior to or during data reconciliation. In order to remove gross errors

prior to data reconciliation, a statistical test must be performed to first identify gross error

candidates and then remove them in the subsequent step. However, to remove gross errors

during data reconciliation, a robust objective function must be defined such that gross errors

are eliminated while trying to reconcile the data. Several statistical tests have been developed

to detect gross errors, like the global test4,5, nodal test5–7, measurement test5,8,9, generalized

likelihood ratios10, the Bonferroni tests11, and principal component tests12. Therefore, data

reconciliation and gross error detection are techniques that help with producing accurate

estimates while identifying instrument malfunction37. The statistical tests mentioned above

have their unique approaches/methodologies to detect the presence of gross errors, namely,

the global and nodal tests are based on model constraint residuals, and the measurement test

is based on the residuals between measurements and estimations29. However, it is desirable

to not only detect the gross errors, but to identify their locations and magnitudes as well 13.
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In this work, we have formulated the data rectification problem to eliminate both random

and gross errors. There are plenty of books and articles that discuss different aspects of

data reconciliation and gross error detection, and extensive effort has been devoted to this

problem30.

The data rectification solution is vulnerable to equivalent sets of gross errors which are

defined as follows: “Two sets of gross errors are equivalent if they have the same effect in the

data reconciliation, i.e., when eliminating either one, leads to the same value of the objective

function.” In other words, utilizing each of the rectified values leads to the same objective

function value of data rectification13,34. Therefore, the equivalent sets of gross errors are

theoretically indiscernible, and in the presence of an equivalent set of gross errors, there is

an equal probability that the true locations of gross errors will be in one of its equivalent

sets37. Thus, the existence of equivalent sets of gross errors leads to several undesirable

situations. For instance, it is possible that the wrong set of errors are identified using gross

error detection approaches which could result in the removal of good measurements and

therefore, incorrectly leave biased measurements that will smear the reconciliation 37. As a

result, if there are equivalent sets of gross errors in the measurements, it would not be solved

by Maximum Likelihood Estimation (MLE). In order to resolve this issue, the Maximum a

Posteriori (MAP) estimation is applied, or in other words, the prior information must be

considered in the objective function, which is the main motivation of this work.

Linear and/or nonlinear constraints are an inevitable part of the data rectification prob-

lem. Almost all the research on gross error detection consider only linear or linearized models

under steady state conditions. That said, nonlinear process models are linearized first, and

then data reconciliation is performed on the measurements19. However, this linearization

may introduce other errors to the data as well21. Rollins and Roelfs38 solved the nonlin-

ear data reconciliation problem by extending the unbiased estimation method11 to bilinear

constraints. Herein, we consider both linear and nonlinear systems operating under steady

state conditions. Further, the proposed algorithm performs gross error elimination and data
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reconciliation simultaneously and also estimates the magnitudes of the gross errors. More-

over, the distribution parameters of errors and the occurrence probability of gross errors

have to be estimated. The rest of this chapter is organized as follows: In section 3.2, data

reconciliation and rectification are defined, and then in section 3.3, the problem statement is

discussed and all assumptions are provided. The proposed approach is elaborated in section

3.4 by elaborating the general framework and then applying it to our case. In section 3.5, the

simulation results for different examples are discussed in order to evaluate the performance

of the proposed approach. Finally, in section 3.6, conclusions are provided.

3.2 Data Reconciliation and Rectification

As mentioned previously, raw measurements are corrupted by errors, and data reconciliation

is a procedure of optimally adjusting contaminated measurements such that they satisfy

process models. Due to the existence of errors, measurements can be modelled as given in

Equation (3.1),

yi = xi + εi (3.1)

where yi and xi denote the measurement and true value of the ith variable, respectively.

Given the process model of the form, f(x) = 0, and assuming the measurement error εi to

be independent of xi, the general formulation of a steady state data rectification problem

can be expressed as21:

arg max
x

P{x|y} (3.2)

s.t. f(x) = 0 (3.3)

g(x) ≤ 0 (3.4)

where the objective function signifies the probability of state given measurements, and g(x)

denotes the inequality constraints signifying the safety limits or variable bounds. Due to the
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presence of errors, the raw measurements do not satisfy the process model and hence, solving

the above optimization problem obtains the rectified values by maximizing the posterior

probability of states. By applying the Bayes rule, the posterior probability of states can

be converted in terms of the probability of the measurements given the states, the prior

probability of the states, and the probability of the raw measurements.

arg max
x

P{x|y} = arg max
x

P{y|x}P{x}/P{y} (3.5)

In the above equation, P{y} is independent of x, and therefore, it can be excluded from

Equation (3.5):

arg max
x

P{x|y} = arg max
x

P{y|x}P{x} (3.6)

If the prior probability of the states are assumed to have uniform distribution, the rectifi-

cation problem is changed to a reconciliation problem. For linear processes with no inequality

constraints and also assuming zero-mean Gaussian distribution of measurement errors, the

reconciliation problem can be stated as a weighted least squares problem

min
x

(y − x)TV −1(y − x) (3.7)

s.t. Ax = 0 (3.8)

where A is the model coefficient matrix, and V is the covariance matrix of measurements

which is often assumed to be a diagonal matrix. The reconciled estimates is given in vector

form by the following closed-form solution2:

x̂ = [I − V AT (AV AT )−1A]y (3.9)

In the above data reconciliation problem, it is assumed that there are no gross errors,

and therefore, the presence of gross errors invalidates the statistical basis of the reconcilia-
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tion problem and results in the smearing effect, since the above solution only adjusts raw

measurements such that they obey the process model constraints2. In order to elucidate on

the concept of the smearing effect, consider the network shown in Figure 3.1 which has three

units with five flow rates.

Figure 3.1: Diagram of process network

Suppose the true flow rate values are x = [1 2 3 1 2 1]T , but x2 includes gross error

with magnitude 3, i.e., x2 fluctuates around 5. The reconciled estimate vector for this case

is ŷ = [1.83 3.59 3.79 1.76 2.03 0.20]T which is a poor estimate of the true values. This

phenomenon is called smearing effect. A wide variety of methods and algorithms have been

developed to address the effect of gross errors prior or simultaneously by performing data

reconciliation. It is often assumed that εi follows a non-zero mean Gaussian distribution

(i.e., εi ∼ N(bi, σ
2
i )) for the measurement model given by Equation (3.1). Equivalently,

εi can be characterized using a zero-mean Gaussian distribution with measurement model

given by yi = xi + bi + εi. Using these noise characteristics and form of the measurement

model, the simultaneous gross error detection and data reconciliation can be formulated as

a mixed-integer optimization problem17,18. Recently, Yuan et al.19 proposed a hierarchical

Bayesian framework that iteratively solves for reconciled values, gross error detection, and

hyperparameters of the noise model. Apart from these, robust objective functions can be

used in order to address the effect of gross errors while obtaining the reconciled estimates 1,24.
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The generalized form of the robust objective function, θ, is given by1,24,25,

min
x

n∑
i=1

ρ(εi) (3.10)

s.t. Ax = 0 (3.11)

where εi = (yi − xi)/σi represents the standardized error, and ρ is any reasonable function

of standardized error which reduces the effect of gross errors on estimation of true values.

The robust objective function ρ can be derived from the maximum likelihood functions

for contaminated Gaussian, Cauchy and Logistic distributions. Further, the Fair function,

Lorentzian function and redescending M-estimator can also be used with the proper tuning

parameters to eliminate the influence of gross errors and perform robust data reconciliation. 23

There are various methods and algorithms that can be used to reconcile the measure-

ments and also eliminate the effect of gross errors. Nonetheless, these methods cannot handle

equivalent sets of gross errors. To this end, we need to use prior information in the objec-

tive function which transforms the objective function of the reconciliation problem to the

rectification problem. Thus, the main objective of this chapter is to handle equivalent sets

of gross errors by introducing a new method for data rectification. In order to clarify the

concept of equivalent sets, consider a tank with only one input and output (Figure 3.2).

In this example, the process constraint is the mass balance equation, i.e., x1 = x2. The

measurements for the input and output flow rates are given in Table 3.1; it is assumed that

there are no random errors. From Table 3.1, it can be seen that the reconciled values can

be both sets, and the estimated gross error is ±10.
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Figure 3.2: Isolated tank

Therefore, prior information must be incorporated to determine which sensor reading is

biased. Depending on the importance of the measurement, prior information in industrial

plants is typically obtained using two or more sensors to measure the same variable in the

process. When there are three or more sensors, one can select the “majority view” by voting.

In this method, m measurements are selected out of the total n number of signals such that

m > n/2. Practically, n is 3 so that m is 2.39 In the case that there are two sensors measuring

the same variable, we should use history of actual flows to know in which regions the actual

flows would tend to lie21. For instance, in this example, if the historical data shows the

stream flow rates are in the range of 40, i.e., the stream follows a Gaussian distribution with

the mean value of 40 and a particular standard deviation, it means that currently, the first

sensor is not working properly.

Table 3.1: Isolated tank with an input and an output
x1 x2

Measurement 50 40

Case 1
Reconciled data 40 40
Estimated gross error -10

Case 2
Reconciled data 50 50
Estimated gross error +10

Therefore, if prior information is considered in the objective function, a set of estimates

close to the true values can be obtained. In the case where there is not any prior knowledge

of P (x), a uniform distribution is used to describe non-informative priors, and the Maximum

A Posteriori (MAP) estimation problem is changed to a Maximum Likelihood Estimation
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(MLE) problem21. If the network has more than a unit, it would not be so easy to determine

equivalent sets of gross errors. However, determining equivalent sets of gross errors has

already been investigated thoroughly in the literature. To this end, we need to define gross

error cardinality and basic subset concepts:

Gross error cardinality : A set of variables has gross error cardinality Γ = t if t is the

minimum number of gross errors that are required to represent all possible sets of gross errors

in the variables34.

Basic subset : A set of variables constitutes a basic subset of a system when every set of

gross errors is equivalent to a set of gross errors in the basic set34.

Theorem 1. 34 Let m columns [a1 a2 ... am] of the coefficient matrix A correspond to a set

of variables. The set has gross error cardinality Γ = t if rank [a1 a2 ... am] = t.

Suppose a set of gross errors with t elements has been identified. If t is equal to the gross

error cardinality of the network, then the identified set is a basic subset of the network. A

more detailed discussion of these concepts is provided in the first example of section 3.5.

3.3 Problem Statement

Let Y denote the data matrix of raw measurements as follows:

Y =



y11 y12 · · · y1m

y21 y22 · · · y2m

· · · · · · · · · · · ·

yn1 yn2 · · · ynm


=



yv
1

yv
2

· · ·

yv
n


=

[
ys
1 ys

2 · · · ys
m

]
(3.12)

where superscripts s and v refer to sample points and variables, respectively. The ith row

of the Y matrix represents the variable i measured at different sampling instants, and the

jth column represents the set of n variables measured at jth sampling instant. Hence, the

measurement model for all variables is given by,
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ys
j = x + ε (3.13)

where x is defined as,

x =



x1

x2

· · ·

xn


(3.14)

It should be noted that the measurement model given by Equation (3.13) is the vector

form of the measurement model presented in Equation (3.1) at the jth time instant.

Following our previous work, a Gaussian mixture distribution with two noise modes is

assumed for the measurement error vector, ε, to account for the presence of gross errors.

The sensor mode with small variance corresponds to random noise, and the other abnor-

mal one with large variance corresponds to gross errors. Therefore, the measurement error

distribution can be written for the ith variable as,

εi ∼ δi1N(0, σ2
i1) + δi2N(0, σ2

i2) (3.15)

such that δi1 + δi2 = 1. Representing gross errors with a probability density function with

zero mean might appear as a contradiction to the definition of gross error. However, the

main idea is that by assigning a large variance for the second mode of the error distribution,

±3σi2 could cover the magnitude of the gross error. Therefore, if there is an error between

−3σi1 and −3σi2 or +3σi1 and +3σi2, it would be considered as gross error.

As mentioned previously, P{x|y} is directly proportional to the probability of raw mea-

surements and the prior probability of the states based on the Bayes rule, and also since

both the noise modes are mutually exclusive, the sensor model for a single measurement set
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can be expressed as:

P{x|y} = P{x|ys
j} ∝ P{ys

j |x}P{x} =
2∑

k=1

P{ys
j |x, Iij = k}P{Iij = k}P{x} (3.16)

where Iij denotes the hidden sensor mode of variable i at the jth sample point. This can be

either in the normal mode or in abnormal mode. Using the above noise model, the log of

the posterior probability of the set of m measurements can be defined as:

arg max
x

lnP{x|Y } = ln(
2∑

k=1

P{Y |x, Iij = k}P{Iij = k}P{x}) (3.17)

Assuming the measurements are independent, the above equation becomes,

arg max
x

lnP{x|Y } =
n∏
i=1

m∏
j=1

ln(
2∑

k=1

P{yij|xi, Iij = k}P{Iij = k}P{xi}) (3.18)

where pijk = P{yij|xi, Iij = k} is defined as follows,

pijk{yij|xi, σik} =
1√

2πσik
exp(−(yij − xi)2

2σ2
ik

) k = 1, 2 (3.19)

and P{Iij = k} = δik denotes the probability of occurrence of noise mode k. In particular,

P{Iij = 1} = δi1 is the probability of measurements in the normal mode where only random

error is present, and P{Iij = 2} = δi2 denotes the probability of measurements in abnormal

gross error mode for variable i. Prior works that utilize the Gaussian mixture model to

characterize the noise distribution do not utilize prior information in their objective functions

to handle equivalent sets of gross errors. Moreover, some of them use the prespecified values of

noise distribution parameters θik = {δik, σ2
ik} for both the modes1,20,23. However, presetting

the noise distribution parameters influences the performance of gross error detection and

hence, affects the accuracy of the reconciled estimates. Therefore, in this work, we aim to

determine the noise distribution parameters while obtaining the rectified estimates. Now,
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the simultaneous data reconciliation and gross error detection problem for linear steady state

processes can be posed as follows:

max
x,θik

lnP{x|Y } =
n∏
i=1

m∏
j=1

ln(
2∑

k=1

pijk{yij|xi, θik, Iij = k}P{Iij = k|θik}P{xi}) (3.20)

s.t. Ax = 0 (3.21)

From Equation (3.20), it can be observed that the model identity probability cannot

be obtained explicitly, and hence, the maximum a posteriori estimation problem cannot be

solved directly. To resolve this issue, the Expectation Maximization (EM) algorithm is ap-

plied to obtain the distribution parameter values for each variable. In other words, all of the

model distribution parameters along with the rectified values are estimated simultaneously

using the EM algorithm.

The assumptions considered in this study are as follows

1. Steady state process model is available, which can be expressed as,

f(x, z) = 0 (3.22)

where, x is a vector of measured variables, and z is a vector of unmeasured variables.

2. In Equation (3.13), the true value, x, is unknown and is assumed to follow the Gaussian

distribution,

xi ∼ N(µi, σ
2
i ) (3.23)

3. The prior distribution variances for xi and εi follow the Inverse Gamma distribution.

It should be noted that the Inverse Gamma distribution is the conjugate prior for the
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Gaussian and the Gaussian mixture likelihood function40, and thus we have:

σ2
i ∼ IG(αi, βi) (3.24)

σ2
ik ∼ IG(αik, βik) (3.25)

Therefore, the probability density functions are given by,

P (σ2
i |αi, βi) =

βαii
Γ(αi)

(σ2
i )
−αi−1exp(− βi

σ2
i

) (3.26)

P (σ2
ik|αik, βik) =

βαikik

Γ(αik)
(σ2

ik)
−αik−1exp(−βik

σ2
ik

) (3.27)

Further, each component of the mixture Gaussian follows a Dirichlet(also known as

multivariate Beta) distribution40; if there are only two modes for mixture Gaussian,

they follow the Beta distribution, so we used the Beta distribution as a prior for the

probability of occurrence of each mode, δik:

P (δi1, δi2|φi) =
Γ(φi)

Γ(φi/2)2

2∏
j=1

δ
φi/2−1
ik (3.28)

Therefore,

P (δik|φi) ∝ δ
φi/2−1
ik (3.29)

If there is no a priori information for the hyperparameters, a uniform distribution can

be applied to express noninformative priors19.
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3.4 Proposed Approach

In this section, the general formulation of the Expectation Maximization method in a maxi-

mum a posteriori framework will be presented. Subsequently, the method will be applied on

the data rectification problem in order to solve simultaneous data reconciliation and gross

error detection, and parameter estimation.

3.4.1 General Formulation for the Maximum A Posteriori Esti-

mation Using EM Algorithm

In order to solve the MAP estimation problem with hidden variable, the EM algorithm is

applied. The EM algorithm can be modified to obtain the maximum a posteriori (MAP)

estimate26. Suppose the complete data is {Cobs, Cmis}, where Cobs refers to observed data and

Cmis denotes hidden variables. The objective is to find the MAP estimate of the parameter

Θ, which can be mathematically expressed as:

Θ̂ = arg maxΘ P (Θ|Cobs, Cmis)

= arg maxΘ P (Cobs, Cmis|Θ) P (Θ)

(3.30)

Since the formulation involves hidden variables, the EM algorithm is often used. It is an

iterative two step algorithm where in the first step, also known as the Expectation or E-step,

the conditional expectation of hidden variables (R function) is obtained, and in the second

step, also known as the Maximization or M-step, the parameters are optimized.

3.4.1.1 E-step

In this step, {Cmis} is replaced by its conditional expectation given {Cobs}, using the current

fit for Θ. Therefore, the R function is defined as
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R(Θ,Θ(l)) = ECmis|Cobs,Θ(l) [ln P (Cmis, Cobs|Θ)] + ln P (Θ)

=

∫
P (Cmis|Cobs,Θ(l))[ln P (Cmis, Cobs|Θ)] dCmis + ln P (Θ)

(3.31)

It can be seen that in the E-step the first term is the Q function in MLE framework, so

R(Θ,Θ(l)) = Q(Θ,Θ(l)) + ln P (Θ) (3.32)

3.4.1.2 M-step

After obtaining the R function in the E-step, the M-step requires the maximization of

R(Θ,Θ(l)) with respect to Θ over the parameter space.

Θ(l+1) = arg maxΘ R(Θ,Θ(l)) (3.33)

The R function in the E-step is evaluated with the updated parameter values Θ(l+1) and

the procedure is repeated until convergence.

3.4.2 Data Rectification based on MAP Estimation Using EM Al-

gorithm

This thesis attempts to develop a method for data rectification in the presence of random

errors and gross errors. Therefore, the error distribution is assumed to follow the mixture

Gaussian distribution, that is εvi ∼ δi1N(0, σ2
i1) + δi2N(0, σ2

i2). In this section, the detailed

solution algorithm is presented.

3.4.2.1 E-step

In the mixture normal distribution, the observed data is Y , and the hidden variable is the

model identity, Iij = {1, 2}. Parameters which have to be estimated are denoted as Θ.
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Hence, the E-step in the EM algorithm can be illustrated as,

R(Θ,Θ(l)) = Q(Θ,Θ(l)) + lnP (Θ)

= EI|Y,Θ(l) [lnP (Y, I|Θ)] + lnP (Θ)

= EI|Y,Θ(l) [ln
n∏
i=1

P (Y v
i , I

v
i |θi)] + ln

n∏
i=1

P (θi)

= EI|Y,Θ(l) [
n∑
i=1

lnP (Y v
i , I

v
i |θi)] +

n∑
i=1

lnP (θi)

=
n∑
i=1

E
Ivi |Y vi ,θ

(l)
i

[lnP (Y v
i , I

v
i |θi)] +

n∑
i=1

lnP (θi)

=
n∑
i=1

E
Ivi |Y vi ,θ

(l)
i

[ln
m∏
j=1

P (yij, Iij|θi)] +
n∑
i=1

lnP (θi)

=
n∑
i=1

E
Ivi |Y vi ,θ

(l)
i

[
m∑
j=1

lnP (yij, Iij|θi)] +
n∑
i=1

lnP (θi)

=
n∑
i=1

m∑
j=1

E
Ivi |Y vi ,θ

(l)
i

[lnP (yij, Iij|θi)] +
n∑
i=1

lnP (θi)

=
n∑
i=1

m∑
j=1

2∑
k=1

P (Iij = k|yij, θ(l)
ij )[lnP (yij, Iij = k|θik)] +

n∑
i=1

2∑
k=1

lnP (θi)

(3.34)

P (Iij = k|yij, θ(l)
ij ) is the posterior distribution of the model identity in Equation (3.34);

based on Bayes theorem, it is defined as,

P (Iij = k|yij, θ(l)
ij ) =

P (yij|Iij = k, θ
(l)
ik P (Iij = k|θ(l)

ik )

P (yij|θ(l)
ik )

=
P (yij|Iij = k, σ2

ik
(l)
, x

(l)
i )P (Iij = k|θ(l)

ik )∑2
t=1 P (yij|Iij = t, θ

(l)
it )P (Iij = t|θ(l)

it )

=

1√
2πσ2

ik
(l)
exp(− (yij−x

(l)
i )2

2σ2
ik

(l) )P (Iij = k|θ(l)
ik )∑2

t=1
1√

2πσ2
it

(l)
exp(− (yij−x

(l)
i )2

2σ2
it

(l) )P (Iij = t|θ(l)
it )

(3.35)
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Since P (Iij = k|θ(l)
ik ) is the prior distribution of the model identity, it is equal to the

weight of the kth component, i.e., P (Iij = k|θ(l)
ik ) = δ

(l)
ik ; so Equation (3.35) can be written

as:

P (Iij = k|yij, θ(l)
ij ) =

δ
(l)
ik√

2πσ2
ik

(l)
exp(− (yij−x

(l)
i )2

2σ2
ik

(l) )∑2
t=1

δ
(l)
it√

2πσ2
it

(l)
exp(− (yij−x

(l)
i )2

2σ2
it

(l) )
(3.36)

In the above equation, all parameters are obtained from the prior iteration, so parameters

are assumed to be known, and can be simplified as P (Iij = k|yij, θ(l)
ij ) = γ

(l)
ijk

lnP (yij, Iij = k|θik) = ln(
1√

2πσ2
ik

exp(
−(yij − xi)2

2σ2
ik

)P (Iij = k|θik))

= ln(
δik√
2πσ2

ik

exp(
−(yij − xi)2

2σ2
ik

))

= ln(δik)− ln(
√

2πσ2
ik)−

(yij − xi)2

2σ2
ik

(3.37)

Substituting Equations (3.36) and (3.37) into the first term of Equation (3.34), i.e., the

Q function, the following equation is obtained:

Q(Θ,Θ(l)) =
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk[ln(δik)− ln(

√
2πσ2

ik)−
(yij − xi)2

2σ2
ik

] (3.38)

The joint prior probability of the parameters is given by,

n∑
i=1

2∑
k=1

lnP (θik) =
n∑
i=1

2∑
k=1

(lnP (xi) + lnP (σ2
i ) + lnP (δik) + lnP (σ2

ik))

= −
n∑
i=1

2∑
k=1

(lnσi +
(xi − µi)2

2σ2
i

+ 2(αi + 1)lnσi +
βi
σ2
i

− (φi/2− 1)ln(δik)

+ 2(αik + 1)lnσik +
βik
σ2
ik

)

(3.39)
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Substituting Equations (3.38) and (3.39) in the R function, the following expression is

obtained:

R(Θ,Θ(l)) = Q(Θ,Θ(l)) +
n∑
i=1

2∑
k=1

lnP (θik)

=
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk[lnδik − ln

√
2πσ2

ik −
(yij − xi)2

2σ2
ik

]

−
n∑
i=1

2∑
k=1

[lnσi +
(xi − µi)2

2σ2
i

+ 2(αi + 1)lnσi +
βi
σ2
i

− (φi/2− 1)ln(δik)

+ 2(αik + 1)lnσik +
βik
σ2
ik

]

=
n∑
i=1

m∑
j=1

2∑
k=1

[γ
(l)
ijk(lnδik − ln

√
2πσ2

ik −
(yij − xi)2

2σ2
ik

)− (xi − µi)2

2σ2
i

− (2αi + 3)lnσi + (φi/2− 1)ln(δik)−
βi
σ2
i

− 2(αik + 1)lnσik −
βik
σ2
ik

]

(3.40)

3.4.2.2 M-step

In the M-step, the R(Θ,Θ(l)) function is maximized with respect to Θ, and the update

equations for the parameters are calculated. Now, the update expression for σrt can be

derived as follows:
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∂R(Θ,Θ(l))

∂σrt
=

∂

∂σrt
(
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk(lnδik − ln

√
2πσ2

ik −
(yij − xi)2

2σ2
ik

)− (xi − µi)2

2σ2
i

− (2αi + 3)lnσi −
βi
σ2
i

− 2(αik + 1)lnσik −
βik
σ2
ik

)

=
∂

∂σrt
(
n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk(−ln

√
2πσ2

ik −
(yij − xi)2

2σ2
ik

)− 2(αik + 1)lnσik −
βik
σ2
ik

)

=
∂

∂σrt
(
n∑
i=1

m∑
j=1

γ
(l)
ijt(−ln

√
2πσ2

it −
(yij − xi)2

2σ2
it

)− 2(αit + 1)lnσit −
βit
σ2
it

)

=
∂

∂σrt
(
m∑
j=1

γ
(l)
rjt(−ln

√
2πσ2

rt −
(yrj − xr)2

2σ2
rt

)− 2(αrt + 1)lnσrt −
βrt
σ2
rt

)

=
m∑
j=1

γ
(l)
rjt(−

1

σrt
+

(yrj − xr)2

σ3
rt

)− 2(αrt + 1)

σrt
+

2βrt
σ3
rt

= 0

(3.41)

(
m∑
j

γ
(l)
rjt + 2(αrt + 1))σ2

rt − (
m∑
j

γ
(l)
rjt(yrj − xr)2 + 2βrt) = 0 (3.42)

The updating equation for σrt is given by,

σ
(l+1)
rt =

√√√√∑m
j γ

(l)
rjt(yrj − x

(l)
r )2 + 2βrt∑m

j γ
(l)
rjt + 2(αrt + 1)

(3.43)

In order to obtain the updating equation for δik, the constraint optimization problem

should be solved as follows:

 δ
(l+1)
ik = arg maxδrt

∑n
i=1

∑m
j=1

∑2
k=1[γ

(l)
ijkln(δik) + (φi/2− 1)ln(δik)]

s.t.
∑2

k=1 δ
(l+1)
ik = 1

(3.44)

In order to solve this constrained optimization problem, the Lagrange multipliersmethod

is applied.
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L(δi, λδi) =
n∑
i=1

m∑
j=1

2∑
k=1

[γ
(l)
ijkln(δik) + (φi/2− 1)ln(δik)]− λδi(

2∑
k=1

δik − 1) (3.45)

In order to solve the above equation, the partial derivative of L with respect to δrt and

λδr is determined and then set to zero.

∂L(δi, λδi)

∂δrt
=
∂
∑n

i=1

∑m
j=1

∑2
k=1[γ

(l)
ijkln(δik) + (φi/2− 1)ln(δik)]

∂δrt
− λδr

=
∂
∑m

j=1[γ
(l)
rjtln(δrt)] + (φr/2− 1)ln(δrt)

∂δrt
− λδr

=

∑m
j=1 γ

(l)
rjt + (φr/2− 1)

δrt
− λδr = 0

(3.46)

δrt =

∑m
j=1 γ

(l)
rjt + φr/2− 1

λδr
2∑

k=1

δrk =

∑2
k=1

∑m
j=1 γ

(l)
rjt + φr/2− 1

λδr

(3.47)

∂L(δi, λδi)

∂λδr
=

2∑
k=1

δrk − 1 = 0 (3.48)

Due to the property of the γijk function, the following equation is obtained:

2∑
k=1

γ
(l)
ijk = 1→

m∑
j=1

2∑
k=1

γ
(l)
ijk = m (3.49)

By substituting equations (3.48) and (3.49) into equation (3.47), it can be concluded that

1 = m+φr/2−1
λδr

→ λδr = m+ φr/2− 1, and as a result δ
(l+1)
rt would be
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δ
(l+1)
rt =

∑m
j=1 γ

(l)
rjt + φr/2− 1

λδr
=

∑m
j=1 γ

(l)
rjt + φr/2− 1

m+ φr/2− 1
(3.50)

Similarly for σ
(l+1)
r :

∂R(Θ,Θ(l))

∂σr
=

∑n
i=1

∑2
k=1(− (x

(l)
i −µi)

2

2σ2
i
− (2αi + 3)lnσi − βi

σ2
i
− 2(αik + 1)lnσik − βik

σ2
ik

)

∂σr

=

∑n
i=1(− (x

(l)
i −µi)

2

2σ2
i
− (2αi + 3)lnσi − βi

σ2
i
)

∂σr

=
∂(− (x

(l)
r −µr)2

2σ2
r
− (2αr + 3)lnσr − βr

σ2
r
)

∂σr

=
(x

(l)
r − µr)2

σ3
r

− (2αr + 3)

σr
+

2βr
σ3
r

= 0

(3.51)

(2αr + 3)σ2
r − ((x(l)

r − µr)2 + 2βr) = 0 (3.52)

The solution for σ
(l+1)
r is:

σ(l+1)
r =

√
(xr(l)− µr)2 + 2βr

2αr + 3
(3.53)

Since there are process model constraints, solve the constrained optimization problem for

x(l+1) must be solved.



x
(l+1)
i =argmaxxr

n∑
i=1

m∑
j=1

2∑
k=1

γ
(l)
ijk(lnδ

(l+1)
ik − ln

√
2πσ

(l+1)
ik

2
− (yij − xi)2

2σ
(l+1)
ik

2 )

− (xi − µ(l+1)
i )2

2σ
(l+1)
i

2

s.t. Ax = 0

(3.54)

The Lagrangian function for the above constrained optimization problem is given by,

64



L(x, λx) =
n∑
i=1

m∑
j=1

2∑
k=1

[γ
(l)
ijk(lnδ

(l+1)
ik − ln

√
2πσ

(l+1)
ik

2
− (yij − xi)2

2σ
(l+1)
ik

2 )− (xi − µ(l+1)
i )2

2σ
(l+1)
i

2 ]

+ λTxAx

=
n∑
i=1

m∑
j=1

2∑
k=1

[γ
(l)
ijk(lnδ

(l+1)
ik − ln

√
2πσ

(l+1)
ik

2
− (yij − xi)2

2σ
(l+1)
ik

2 )− (xi − µ(l+1)
i )2

2σ
(l+1)
i

2 ]

+

[
λx1 λx2 ... λxq

]


a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

aq1 aq2 ... aqn





x1

x2

...

xn


=

n∑
i=1

m∑
j=1

2∑
k=1

[γ
(l)
ijk(lnδ

(l+1)
ik − ln

√
2πσ

(l+1)
ik

2
− (yij − xi)2

2σ
(l+1)
ik

2 )− (xi − µ(l+1)
i )2

2σ
(l+1)
i

2 ]

+
n∑
i=1

q∑
z=1

λxzazixi

(3.55)

In order to obtain the update expression for the rectified estimates, the partial derivatives

of the above equation with respect to xr and λxw must be evaluated.

∂L(x, λx)

∂xr
=

m∑
j=1

2∑
k=1

[γ
(l)
rjk(

yrj − xr
σ

(l+1)
rk

2 )− xr − µ(l+1)
r

σ
(l+1)
r

2 ] +

q∑
z=1

λxzazr

=
m∑
j=1

[γ
(l)
rj1(

yrj − xr
σ

(l+1)
r1

2 ) + γ
(l)
rj2(

yrj − xr
σ

(l+1)
r2

2 )]− xr − µ(l+1)
r

σ
(l+1)
r

2 +

q∑
z=1

λxzazr

=
m∑
j=1

[
γ

(l)
rj1

σ
(l+1)
r1

2 +
γ

(l)
rj2

σ
(l+1)
r2

2 ](yrj − xr)−
xr − µ(l+1)

r

σ
(l+1)
r

2 +

q∑
z=1

λxzazr = 0

(3.56)

∂L(x, λx)

∂λxw
=

n∑
i=1

awixi = 0 (3.57)
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Consider W
(l+1)
j and Z(l+1) matrices,

W
(l+1)
j = diag

( γ
(l)
rj1

σ
(l+1)
r1

2 +
γ

(l)
rj2

σ
(l+1)
r2

2

)
(3.58)

Z(l+1) = diag
( −1

σ
(l+1)
r

2

)
(3.59)

where diag(j=1,...,m)(aj) represents the operator that converts an m-dimensional vector a into

a diagonal matrix; Equation (3.56) can be simplified as,

∑m
j=1 W

(l+1)
j (ysj − x) + Z(l+1)(x− µ(l+1)) + ATλx = 0∑m

j=1

(
W

(l+1)
j ysj −W

(l+1)
j x

)
+ Z(l+1)x− Z(l+1)µ(l+1) + ATλx = 0∑m

j=1

(
W

(l+1)
j ysj

)
−
(∑m

j=1 W
(l+1)
j

)
x + Z(l+1)x− Z(l+1)µ(l+1) + ATλx = 0∑m

j=1

(
W

(l+1)
j ysj

)
+
(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)
x− Z(l+1)µ(l+1) + ATλx = 0(

Z(l+1) −
∑m

j=1 W
(l+1)
j

)−1∑m
j=1

(
W

(l+1)
j ysj

)
+ x−

(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)−1

Z(l+1)

µ(l+1) +
(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)−1

ATλx = 0

A
(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)−1∑m
j=1

(
W

(l+1)
j ysj

)
− A

(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)−1

Z(l+1)

µ(l+1) + A
(
Z(l+1) −

∑m
j=1 W

(l+1)
j

)−1

ATλx = 0

B and C are defined as,

B(l+1) = (Z(l+1) −
∑m

j=1 W
(l+1)
j )−1

C(l+1) =
∑m

j=1 (W
(l+1)
j ysj)

Therefore,

AB(l+1)C(l+1) − AB(l+1)Z(l+1)µ(l+1) + AB(l+1)ATλx = 0 (3.60)

λx = (AB(l+1)AT )−1(AB(l+1)Z(l+1)µ(l+1) − AB(l+1)C(l+1)) (3.61)
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C(l+1) +B(l+1)−1
x− AT (AB(l+1)AT )−1(AB(l+1)Z(l+1)µ(l+1) − AB(l+1)C(l+1)) = 0

x(l+1) = B(l+1)(I − AT (AB(l+1)AT )−1AB(l+1))(Z(l+1)µ(l+1) − C(l+1)) (3.62)

Table 3.2: Simultaneous Data Reconciliation and Gross Error Detection Using EM Algorithm
1 Input the raw measurements Y
2 Initialize the parameter Θ(l)

3 E-step Evaluate the R function (3.40) using current updated values of parameters
4 M-step Update the parameters using Equations (3.43), (3.50), (3.53), and(3.62).
5 Terminate on convergence. Otherwise, proceed to Step 3.

3.4.3 Performance Assessment

In order to illustrate the performance of the proposed method and to draw a comparison

with the other approaches, several performance assessment tests have been used.

The AVTI (average number of type I) and OP (overall power) tests, which are utilized

by Narasimhan and Mah10 as well as Soderstrom, Himmelblau, and Edgar17, are performed

in order to judge the performance of the proposed method. The AVTI and OP tests are

defined as follows:

AV TI =
Number of unbiased variables wrongly identified

Number of simulation trials
(3.63)

OP =
Number of biased variables correctly identified

Number of biased variables simulated
(3.64)

The AVTI test is computed for each simulation run separately; for this test, it does not

matter whether there are gross errors or not in the data set. It gives the average number of

gross errors mispredicted per each run. By contrast, the OP test is computed only for those

simulations which include gross errors in the data set10.
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3.5 Simulation Examples

In order to illustrate the effectiveness and the performance of the proposed method, in this

section, different simulation case studies are presented.

3.5.1 Example 1

In this example, we will illustrate equivalent sets of a network and compare the performance

of MLE and MAP estimation. First, we determine all of the equivalent sets of the network,

then show the difference between MLE and MAP estimation for one of the equivalent cases

of the network for simultaneous data reconciliation and gross error detection using EM

algorithm. Simulated data sets of a water flow network shown in Figure 3.3 are examined to

validate the proposed method. The network includes four units as well as seven flow rates.

Figure 3.3: Diagram of process network

Based on the above flow diagram, the process model equations, which are the constraints

of the problem, are given by:

x1 − x2 + x4 = 0

x2 − x3 + x6 = 0

x3 − x4 − x5 = 0

x5 + x6 − x7 = 0

According to the above equations, the process model coefficient matrix in Ax = 0 is given
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by,

A =



1 −1 0 1 0 0 0

0 1 −1 0 0 1 0

0 0 1 −1 −1 0 0

0 0 0 0 1 −1 −1


In order to illustrate the performance of the proposed method in the presence of an

equivalent set of gross errors, equivalent sets of gross errors of the system must be determined

first. According to Theorem 1, the rank of matrix A is 4. Consider the presence of gross

error of size (+2) in x1, a gross error of size (-1) in x3, a gross error of size (+3) in x5, and

a gross error of size (+1) in x6. As illustrated in Case 1 of Table 3.3, these four gross errors

can be modelled by gross errors in four other streams (Case 2). Case 3 shows that the four

gross errors in Case 1 can be reduced to three gross errors since the gross error cardinality

of x3, x5, and x6 streams is 2, i.e., Γ = 2. Therefore, we can model any gross error in these

three streams by two other gross errors. Case 4, also, shows this fact which is used to express

errors in Case 2.

Table 3.3: Illustration of a set of gross error cardinality Γ = 4
x1 x2 x3 x4 x5 x6 x7

Measurement 12 20 29 10 23 11 10
Case 1 Reconciled estimate 10 20 30 10 20 10 10
Candidates: x1, x3, x5, x6 Estimated bias +2 -1 +3 +1

Case 2 Reconciled estimate 12 19 30 7 23 11 12
Candidates: x2, x3, x4, x7 Estimated bias +1 -1 +3 -2

Case 3 Reconciled estimate 10 20 31 10 21 11 10
Candidates: x1, x3, x5 Estimated bias +2 -2 +2

Case 4 Reconciled estimate 12 20 31 8 23 11 12
Candidates: x3, x4, x7 Estimated bias -2 +2 -2
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Assume x2 and x3 are biased, and the magnitude of gross errors in these two variables

are +6 and +7, respectively (Case 1, Table 3.4). The gross error cardinality of these two

variables is 2; adding another variable to this set, i.e., {x2, x3}, will not increase the gross

error cardinality. The two gross errors in x2 and x3 can be modeled by two other variables

by constructing a subset. x4 is the only variable in this network by adding which the gross

error cardinality of the mentioned set will not be changed. As expected, if the Maximum

Likelihood Estimation (MLE)is used, incorrect, or very poor estimates, of these three vari-

ables will be obtained. By contrast, because prior information is used in the Maximum A

Posteriori (MAP) framework, better results are obtained for the estimation. Let us first

show what would be the expectation of MLE and MAP estimation, then compare the results

of these two methods. As can be seen in Table 3.4, there are three different equivalent sets.

The MLE approach should return the results of Case 3 as reconciled estimates. Since in

the MLE estimation we use the mean values of the raw measurements as initial values, it

converges to the first equivalent set of reconciled estimate in the iteration procedure, i.e., it

converges to those results which need least adjustments. Even if we use the available prior

information as an initial guess for MLE approach, we cannot obtain a true estimate of the

state, and we will demonstrate this shortly.

Table 3.4: Illustration of a set of gross errors cardinality Γ = 2
x1 x2 x3 x4 x5 x6 x7

Measurement 10 26 37 10 20 10 10
Case 1 Reconciled estimate 10 20 30 10 20 10 10
Candidates: x2, x3 Estimated bias +6 +7

Case 2 Reconciled estimate 10 27 37 17 20 10 10
Candidates: x2, x4 Estimated bias -1 -7

Case 3 Reconciled estimate 10 26 36 16 20 10 10
Candidates: x3, x4 Estimated bias -1 +6

Let us illustrate the performance of MLE and MAP estimation by comparing the per-

formance of these two methods for this example. Suppose all the variables are measured
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and the vector of true values of the flow rates is set as x =

[
10 20 30 10 20 10 10

]T
.

The measurements are generated by adding a random noise with zero mean and 10% of true

value variance. It is assumed that x2 and x3 contain gross errors with magnitudes of +6 and

+7, respectively. Table 3.5 shows the performance of the proposed method by the results of

the OP and the AVTI tests.

Table 3.5: Solution for MLE and MAP DR using EM algorithm for multiple gross errors in
the presence of equivalent sets of gross errors

Simulation runs Biased OP AVTI
MLE 50 2 0 1
MAP estimation 50 2 1 0

From Table 3.5, it can be seen that the MLE approach cannot converge to the true

values, and as expected, it converged to the results of Case 3 of Table 3.4. Because it

wrongly estimated x4 as a biased variable, and also could not correctly identify gross errors

in x2 and x3, the results of the AVTI and the OP tests are 1 and 0, respectively. Figure 3.4

represents the histogram of the rectified values for 50 runs for MLE and MAP estimation.

Figure 3.4: Histogram of developed code for 50 runs for MLE (right hand side) and MAP
estimation (left hand side), when x2 and x3 are corrupted by gross errors with magnitude of
6 and 7, respectively.

Now, let us assume that we use the prior knowledge to initialize the state. In the M-

LE framework, even if we set the initial values of the variable based on the prior infor-

mation, it cannot handle the equivalent sets of gross errors. For instance, in the curren-
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t example, where x2 and x3 are corrupted by gross errors. Even if we consider x(0) =[
10 20 30 10 20 10 10

]T
as a set of initial values, the MLE method would not con-

verge to these initial values. Although in the first iteration it forces measurements to get

closer to the true values, it is very likely that the MLE approach converges to other equiv-

alent sets. From Table 3.4, it can be seen that there are two equivalent sets between the

raw measurements and the true values. Therefore, in the iteration procedure, the estimated

values can converge to one of these sets. To make it clear, we plotted the results of MLE

method when we use true values as our initial guesses for the states in Figure 3.5.

Figure 3.5: Histogram of developed code for 50 runs for MLE while the initial values for the
state are true value, when x2 and x3 are corrupted by gross errors with magnitude of 6 and
7, respectively.

As can be seen in the Figure 3.5, the MLE method has problem when there are equivalent

sets of gross errors. The mean value of the estimated reconciled values for 50 runs with MLE

approach is x =

[
10.1197 21.9289 32.0910 11.8093 20.2817 10.162110.1197

]T
. Table

3.6 shows the true and rectified values, as well as the estimated parameters of the MAP

estimation.
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Table 3.6: MAP results for multiple gross errors while there are equivalent sets.
Variables x x̂ δ̂i1 σ̂i1 σ̂i2

x1 10 9.9390 1.00 0.9097 0.7071
x2 20 19.9624 0.00 0.7071 5.7537
x3 30 30.0316 0.00 0.7071 6.5693
x4 10 10.0234 1.00 0.9568 0.7071
x5 20 20.0082 1.00 1.5565 0.7071
x6 10 10.0692 1.00 1.0534 0.7071
x7 10 9.9390 1.00 0.9960 0.7071

In Table 3.6, σ̂i2 = 0.7071 for those variables with δ̂i1 = 1, or in other words, if δ̂i2 = 0

then σ̂i2 = 0.7071. Whenever there is an unbiased set of measurements, this set follows a

single distribution, not a mixture one. Mathematically speaking,

εi ∼ δi1N(0, σ2
i1) + δi2N(0, σ2

i2) if δi2 = 0→ εi ∼ N(0, σ2
i1)

The reason that the same value is obtained for their σ̂i2 is that in the γij2 equation when

δ̂i2 = 0 we have,

γij2 =

δ
(l)
i2√

2πσ2
i2

(l)
exp(− (yij−x

(l)
i )2

2σ2
i2

(l) )∑2
t=1

δ
(l)
it√

2πσ2
it

(l)
exp(− (yij−x

(l)
i )2

2σ2
it

(l) )
=

0

1√
2πσ2

i1
(l)
exp(− (yij−x

(l)
i )2

2σ2
i1

(l) )
= 0

so, in this case, the updating equation for σi2 is given by,

σ
(l+1)
i2 =

√√√√∑m
j γ

(l)
ij2(yij − x(l)

i )2 + 2βi2∑m
j γ

(l)
ij2 + 2(αi2 + 1)

=

√
βi2

αi2 + 0.5

Therefore, it is a function of some constant values, βi2 and αi2, which result in the same

value (0.7071) for the σi2 subsequently. There is also the same reason for σ̂i1 when δ̂i1 = 0,

i.e., if δ̂i1 = 0 then σ̂i1 = 0.7071.
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3.5.2 Example 2 - Comparing with Literature

In this example, we will illustrate the performance of the proposed method for different cases

with and without equivalent sets of gross errors by selecting any possible combinations of

two biased variables and we compare the results with previously proposed methods in the

literature. Consider the well-known example14,30 including a recycle system with four units

and seven streams as shown in Figure(3.6). In this example, the vector of true values of the

flow rates is set as x =

[
5 15 15 5 10 5 5

]T
and the standard deviations of the flow

rates are taken as 2.5% of the true flow rate values. As in previous publications, all possible

combinations of two measurement biases are simulated. The magnitude of the gross errors

is fixed at 7 and 4 standard deviations for the corresponding flow rates.

Figure 3.6: Diagram of steam metering process network

Table 3.7 compares the results of OP and AVTI tests of the proposed method to the Mod-

ified Iterative Measurement Test (MIMT)7, the Generalized Likelihood Ratio Test Method

(GLR)10, and the Simultaneous Estimation of Gross Error Method (SEGE)30.
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Table 3.7: Performance results for MIMT, GLR, SEGE, and Proposed Method

MIMT GLR SEGE Proposed Method

Streams OP AVTI OP AVTI OP AVTI OP AVTI

1-2 0.969 0.152 0.971 0.167 0.996 0.008 1.000 0.000
1-3 0.969 0.153 0.972 0.168 1.000 0.000 1.000 0.000
1-4 0.974 0.070 0.973 0.063 0.974 0.049 1.000 0.000
1-5 0.035 2.088 0.145 1.950 0.704 0.615 1.000 0.000
1-6 0.500 1.048 0.993 0.143 0.997 1.000 1.000 0.000
1-7 0.821 0.403 0.504 1.074 0.997 1.000 1.000 0.000
2-3 0.500 1.045 0.997 1.041 0.999 1.000 1.000 0.000
2-4 0.501 0.963 0.500 0.961 0.958 0.948 1.000 0.000
2-5 1.000 0.043 0.999 0.089 0.999 0.000 1.000 0.000
2-6 0.989 0.050 0.966 0.130 0.987 0.027 1.000 0.000
2-7 0.999 0.046 0.999 0.057 0.999 0.002 1.000 0.000
3-4 0.501 0.965 0.500 0.964 0.960 0.951 1.000 0.000
3-5 0.999 0.044 1.000 0.086 1.000 0.000 1.000 0.000
3-6 0.988 0.051 0.967 0.125 0.987 0.027 1.000 0.000
3-7 0.999 0.049 0.999 0.054 0.999 0.001 1.000 0.000
4-5 0.500 1.037 0.999 0.077 0.999 1.000 1.000 0.000
4-6 0.923 0.189 0.577 1.063 0.998 0.999 1.000 0.000
4-7 0.999 0.035 0.998 0.067 0.998 0.004 1.000 0.000
5-6 0.978 0.062 0.500 1.026 0.977 0.996 1.000 0.000
5-7 0.996 0.051 0.996 0.144 0.997 0.006 1.000 0.000
6-7 1.000 0.045 0.886 0.820 1.000 1.000 1.000 0.000

3.6 Conclusion

In this chapter, data rectification problem in the maximum a posteriori framework was pro-

posed. The contaminated Gaussian distribution model characterized the error distribution

of different noise mode and therefore, the resulting formulation involved hidden variable. As

a result, the EM method was used. It is important to notice that the proposed approach

could handle the cases where there are sets of gross errors which lead to multiple sets of true

value estimates, which is known as an equivalent set of gross errors, because of using prior

information. Moreover, the parameters of the error distribution model were not preset and
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could be determined as part of the solution. Moreover, the proposed method was capable of

reporting the magnitude of gross errors. Furthermore, it detected partial gross errors, so it

was not required to assume that gross errors exist in the entire data set. Several case studies

were presented to demonstrate the different features of the algorithm.
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Chapter 4

Maximum A Posteriori Framework

for Data Rectification Using

Contaminated Gaussian Mixture

Distribution with Multiple Operating

Regions

Process measurements collected from chemical or other industrial plant operations contain

significant information which is used in process optimization, control, and identification.

These raw measurements, however, are mostly corrupted by errors including random errors

and gross errors, which could lead to biases in subsequent calculations. Therefore, the p-

resence of gross errors causes unreliable solutions for control and optimization problems.

In reality, a system works under different circumstances, i.e., there are multiple operating

regions. The main focus of this chapter is rectifying a data set which includes different

operating regions. Distinguishing between the occurrence of gross errors and changing the

operating mode is the challenging part of this work. In other words, when either a measure-
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ment is corrupted by gross errors or the operating mode is changed, the mean value of the

measurement is changed subsequently. Therefore, first, the operating mode of each sample

point must be determined, and then, the noise mode of each measurement in the sample

point, as a gross error identifier, has to be specified accordingly. To this end, the data set

is divided into several clusters based on the number of operating modes. Then, the same

operation, i.e., data rectification, is applied to each operating mode. In order to remove

both kinds of measurement errors in different operating regions, two hidden variables are

introduced - one for identifying the operating mode and one for identifying the noise mod-

e. Based on these assumptions, the Maximum a Posteriori (MAP) framework is applied,

and the subsequent optimization problem is solved using Expectation Maximization (EM)

algorithm due to the presence of hidden variables. It should be noted that the proposed

approach distinguishes between the operating modes in different clusters. As a result, the

future model would be capable of identifying operating modes and switching between them.

This approach does not require presetting the parameters of the error distribution model,

rather they are determined as a part of the solution. Several case studies are presented to

demonstrate the effectiveness of the proposed approach.

4.1 Introduction

The intense competitive nature of the world market, the growing importance of producing

quality products, and the increasingly relevant necessity to consider safety and environmental

issues and their regulations have magnified the need for fast and low-cost changes in chemical

processes to enhance their performance30. Any possible changes and modifications in a

system to control, optimize, and evaluate the behavior of the process, or to improve the

performance of the system requires clear understanding and knowledge of its actual state.

This information is obtained by processing a data set - collecting it, ameliorating its accuracy,

and storing/using it for further analysis30.
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It is necessary to improve the accuracy of the collected raw measurements from different

process plant operations such that the most reliable and the highest performance is attained.

It is important to note that raw measurements inherently contain inaccurate information due

to imperfect instruments30,33. Two types of errors can be identified in plant data; random

errors, which are assumed to be independent of each other and normally distributed with

zero mean and small variance due to the normal fluctuation of the process or the variation

in instrument operation, and gross errors, or systematic errors, which occur occasionally

because of incorrect calibration or malfunctioning of instruments, process leaks, and so

on30,41.

A failure in one of the instruments can lead to a deviation in process variables beyond

acceptable limits unless the failure detection and correction is performed in an appropriate

time. It is the purpose of data rectification to estimate the true states and detect any

instrument faults which could seriously degrade the performance of a system42. Several

rectification methods have been proposed in the literature based on the assumptions made

for gross error detection and data reconciliation. Steady state data reconciliation and gross

error detection methods can be categorized into three parts. These approaches have been

discussed in detail in Chapter 2. The current chapter belongs to the third category.

So far, several approaches have been proposed for data rectification when there is no

change in the process operating mode. However, in reality, the process operating condition

changes over time, and the problem of data rectification when there are multiple operating

regions has not been thoroughly investigated. This chapter extends the proposed method in

Chapter 3 by introducing another hidden variable in order to determine the operating mode.

Therefore, the main contribution of this chapter is proposing a method to solve the simul-

taneous gross error detection and data reconciliation problem, and estimating distribution

parameters based on the historical data when there are more than one operating regions.

It should be noted that the proposed approach discerns between the operating regions and

therefore, the future model is capable of identifying and switching between the operating
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modes.

Here, we tackle the issue of distinguishing the change in operating modes from the oc-

currence of gross errors. In other words, there are two scenarios when the mean values of

the measurements change: (1) the operating mode is switched to another region, and the

mean values of the measurements are changed accordingly, and (2) some of the variables are

partially corrupted by gross errors which lead to the changes in the mean values. Therefore,

a vital step in this work is to identify the reason for changes in the mean values of the

measurements. To this end, the operating mode of each sample point has to be identified,

followed by determining whether each measurement in the sample point contains a gross

error or not. As a result, the data set has to be divided into several clusters based on the

number of operating regions. Then, the same operation of data rectification is applied to each

operating mode. Hence, in order to remove both types of measurement errors in different

operating regions, two hidden variables are introduced - one for identifying operating mode

and one for identifying noise mode. In section 4.3, a detailed explanation for distinguishing

between operating mode and noise mode is provided.

The rest of the Chapter is organized as follows: Section 4.2 provides the background

and a general introduction to data rectification problem with multiple operating regions. In

section 4.3, the problem of the data reconciliation using Gaussian mixture distribution as a

measurement noise model is presented, and then in section 4.4, an Expectation Maximiza-

tion algorithm is presented such that the parameters are estimated along with the rectified

estimates. In section 4.5, several examples are given to evaluate the performance of the

proposed approach. Finally, conclusions to this chapter are provided in section 4.6.
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4.2 Data Rectification with Multiple Operating Re-

gions

Data rectification is a procedure of processing raw measurements to remove errors, both

random and gross errors, from error-corrupted measurements, and estimating true states

based on the available process models. Due to the presence of errors, raw measurements can

be modelled shown in Equation (4.1),

yzi = xzi + εzi (4.1)

where yzi is the measurement, and xzi is the true value of the ith variable in the zth operating

mode. Here, i and z are variable and operating mode indices, respectively. Given the process

model of the form, f(x) = 0, and assuming the measurement error εzi is independent of the

true states, xzi, the general formulation of the data rectification problem is given by:

arg max
x

P{x|y} (4.2)

s.t. f(x) = 0 (4.3)

g(x) ≤ 0 (4.4)

where the objective function expresses the probability of the true state given the raw mea-

surements, and the inequality constraint is given by g(x). Using Bayes rule and writing

the above posterior probability in terms of the probability of the raw measurements given

the state, P{y|x}, the prior probability of the states, P{x}, and the probability of the raw

measurements, P{y}, the last term can be removed from the objective function since it is

independent of the states. Therefore, the objective function is simplified to the following

expression,

arg max
x

P{x|y} = arg max
x

P{y|x}P{x} (4.5)
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Further, assuming a uniform distribution for the prior probability, i.e., P{x} = 1, the

rectification problem is converted to the reconciliation problem. Further details of data

rectification and reconciliation, equivalent sets of gross errors, and examples can be found in

Chapter 3 or in the work which has been done by Bagajewicz et al.34. In this chapter, we solve

the data rectification problem for a system which works in different operating modes. To

this end, the objective function in Equation (4.5) has to be expanded such that it represents

different operating regions, or it should be a function of operating regions as well. Equation

(4.6) describes the objective function for this chapter,

arg max
x

P{x|y} = arg max
x

P{y|x}P{x}

= arg max
x

q∑
z=1

P{yz|xz, I = z}P{xz|I = z}P{I = z}
(4.6)

where, I denotes the hidden operating mode variable. In Section 4.4, the proposed method

is presented in detail.

4.3 Problem Statement

Let Yz denote the data matrix of raw measurements for each operating mode as follows:

Yz =



yz11 yz12 · · · yz1m

yz21 yz22 · · · yz2m

· · · · · · · · · · · ·

yzn1 yzn2 · · · yznm


=



yv
z1

yv
z2

· · ·

yv
zn


=

[
ys
z1 ys

z2 · · · ys
zm

]
(4.7)

where superscripts s and v refer to sample points and variables, respectively. The ith row

of the Yz matrix represents the variable i measured at different sampling instants which

belongs to zth operating mode, z = {1, 2, ..., q}, and the jth column represents the set of n

variables measured at jth sampling instant. Since each sample point belongs to an operating
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point, the raw measurements can be modelled according to sampling instants. Hence, the

measurement model for all variables is given by,

ys
zj = xz + εz (4.8)

where xz for each operating mode is defined as,

xz =



xz1

xz2

· · ·

xzn


(4.9)

It should be noted that the measurement model given by Equation (4.8) is the vector

form of the measurement model presented in Equation (4.1) at the jth time instant of the zth

operating mode. Since true values are unknown and there is uncertain information of xzi, it

is assumed in Equation (4.1) this uncertain information follows a Gaussian distribution, i.e.,

xzi ∼ N(µzi, σ
2
zi).

The second term in the right-hand-side of the Equation (4.1), εzi, follows a mixture

Gaussian distribution with two modes; the first mode with small variance accounts for the

random errors and the second one with large variance accounts for the presence of gross

errors. Therefore, the raw measurement error distribution for the ith variable of the zth

operating mode can be expressed in the following form:

εzi ∼ δzi1N(0, σ2
zi1) + δzi2N(0, σ2

zi2) (4.10)

such that δzi1 + δzi2 = 1. Since both the sensor modes are mutually exclusive, the sensor

model for a single measurement set can be expressed as,
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P{xz|ys
zj} ∝ P{ys

zj|xz}P{xz} =
2∑

k=1

P{ys
zj|xz, Izij = k}P{Izij = k}P{xz} (4.11)

where Izij denotes the hidden noise mode of variable i at the jth sample point of the zth

operating mode which can be in either normal or abnormal mode. Using the above noise

model, the log of the posterior probability of m measurements set can be expressed as:

arg max
x

lnP{x|Y } = ln(

q∑
z=1

P{Yz|xz, Ij = z}P{Ij = z}P{xz})

= ln(

q∑
z=1

2∑
k=1

P{Yz|xz, I
′
zij = k, Ij = z}P{I ′zij = k|Ij = z}

P{Ij = z}P{xz})

(4.12)

Assuming the measurements are independent, the above equation can be expanded as

follows:

arg max
x

lnP{x|Y } =
n∏
i=1

m∏
j=1

ln(

q∑
z=1

2∑
k=1

P{yzij|xzi, I ′zij = k, Ij = z}

P{I ′zij = k|Ij = z}P{Ij = z}P{xzi})

(4.13)

where pzijk = P{yzij|xzi, Izij = k, Ij = z} is defined as follows,

pzijk{yzij|xzi, σzik} =
1√

2πσzik
exp(−(yzij − xzi)2

2σ2
zik

) k = 1, 2 z = 1, ..., q (4.14)

and P{I ′zij = k|Ij = z} = δzik and P{Ij = z} = ηzj are the probability of occurrence of

noise mode k and the probability of occurrence of the operating mode z, respectively. Prior

works which used the Gaussian mixture model to characterize the noise distribution neither
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considered multiple operating modes nor used prior information in their objective functions

to handle a multi-operating mode process and equivalent sets of gross errors, respectively.

Moreover, some of previous studies used the pre-specified values of noise distribution pa-

rameters θzik = {δzik, σ2
zik} for both of the noise modes1,20,23. However, presetting the noise

distribution parameters might lead to inaccurate results for the rectified estimates. There-

fore, the objective of this work is to determine the noise distribution parameters and obtain

the rectified estimates while the system works under different operating modes. Now, the

simultaneous data reconciliation and gross error detection problem for linear steady state

processes can be stated as follows:

max
xz,θzik

lnP{x|Y } =
n∏
i=1

m∏
j=1

ln(

q∑
z=1

2∑
k=1

pzijk{yzij|xzi, θzik, I ′zij = k, Ij = z}

P{I ′zij = k|θzik, Ij = z}P{Ij = z|θzik}P{xzi})

s.t. Axz = 0

(4.15)

From Equation (4.15), it can be seen that the noise model identity probability as well

as operating mode probability cannot be obtained explicitly, and as a result the maximum

a posteriori estimation problem cannot be solved directly. Therefore, the Expectation Max-

imization (EM) algorithm is applied to solve this issue in order to obtain the distribution

parameter values for each variable for each operating mode. In other words, all of the model

distribution parameters along with the rectified values are estimated simultaneously using

the EM algorithm.

In this work, we assumed that the prior distribution variances for xzi and εzi follow the

Inverse Gamma distribution which is the conjugate prior for the Gaussian and the Gaussian

mixture likelihood function40, and therefore:

σ2
zi ∼ IG(αzi, βzi) (4.16)
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σ2
zik ∼ IG(αzik, βzik) (4.17)

Hence, their probability density functions are given by,

P (σ2
zi|αzi, βzi) =

βαzizi

Γ(αzi)
(σ2

zi)
−αzi−1exp(−βzi

σ2
zi

) (4.18)

P (σ2
zik|αzik, βzik) =

βαzikzik

Γ(αzik)
(σ2

zik)
−αzik−1exp(−βzik

σ2
zik

) (4.19)

Further, each component of the noise model follows a Dirichlet(also known as multivariate

Beta) distribution40, and for the situation where there are only two modes for mixture

Gaussian they follow Beta distribution, so Beta distribution is a prior for the probability of

occurrence of each noise mode, δik:

P (δi1, δi2|φi) =
Γ(φi)

Γ(φi/2)2

2∏
j=1

δ
φi/2−1
ik (4.20)

Therefore,

P (δik|φi) ∝ δ
φi/2−1
ik (4.21)

If there is no a priori information available for the hyperparameters, a uniform distribu-

tion can be applied to express noninformative priors19.

4.4 Proposed Method and Algorithm

In this section, the general formulation of the Expectation Maximization method in a max-

imum a posteriori framework is presented, and then Single Measurement Rectification is

applied in that framework to solve the simultaneous data reconciliation and gross error de-

tection problem along with parameter estimation while the process operating point changes.
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4.4.1 General Formulation of EM Algorithm for The Maximum A

Posteriori Estimation

In general, the EM algorithm is used to solve a maximum likelihood problem with hidden

variables, but it can be modified to produce the MAP estimation26. If the complete data

set is denoted by {Cobs, Cmis}, where Cobs refers to observed data and Cmis denotes hidden

variables, the objective to find the MAP estimate of the parameter Θ is mathematically

given by:

Θ̂ = arg maxΘ P (Θ|Cobs, Cmis) (4.22)

Using Bayes rule,

P (Θ|Cobs, Cmis) =
P (Cobs, Cmis|Θ) P (Θ)

P (Cobs, Cmis)
(4.23)

Since the denominator of the above equation is independent of the parameters,

P (Θ|Cobs, Cmis) ∝ P (Cobs, Cmis|Θ) P (Θ) (4.24)

Therefore,

Θ̂ = arg maxΘ P (Cobs, Cmis|Θ) P (Θ) (4.25)

Since the formulation involves hidden variables, the EM algorithm is typically used. It

is an iterative two step algorithm where in the first step, also known as the Expectation or

E-step, the conditional expectation of hidden variables (R function) is obtained and in the

second step, also known as the Maximization or M-step, the parameters are optimized.

4.4.1.1 E-step

In the E-step, the hidden variable is substituted by its conditional expectation given observed

data, using the current fit for the parameters, i.e., ECmis|Cobs,Θ(l) . Therefore, the R function
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is defined as

R(Θ,Θ(l)) = ECmis|Cobs,Θ(l) [ln P (Cmis, Cobs|Θ)] + ln P (Θ)

=

∫
P (Cmis|Cobs,Θ(l))[ln P (Cmis, Cobs|Θ)] dCmis + ln P (Θ)

(4.26)

It can be seen that in the E-step the first term is the Q function in the MLE framework,

so

R(Θ,Θ(l)) = Q(Θ,Θ(l)) + ln P (Θ) (4.27)

4.4.1.2 M-step

After obtaining the R function in the E-step, the M-step requires the maximization of

R(Θ,Θ(l)) with respect to Θ over the parameter space.

Θ(l+1) = arg maxΘ R(Θ,Θ(l)) (4.28)

The R function in the E-step is evaluated with the updated parameter values Θ(l+1) and

the procedure is repeated until convergence.

4.4.2 Data Rectification based on MAP Estimation Using EM Al-

gorithm while There Are Different Operating Regions

This work attempts to develop a method for data rectification for a single measurement in

the presence of random errors and gross errors while there are multiple changes in process

operating point. To this end, a model is built for each operating point beforehand, then

the best fit model according to the available single measurement is selected, and finally, the

data rectification is performed. The assumed distribution model for the noise of historical

measurements for each operating mode is the mixture Gaussian, i.e., εvzi ∼ δzi1N(0, σ2
zi1) +

88



δzi2N(0, σ2
zi2). In this section, the detailed solution is presented.

4.4.2.1 E-step

In the present mixture Gaussian distribution, the observed data is Y and the hidden variables

are the operating mode and the noise mode for each operating point, i.e., I = {I, I ′}, where

I and I ′ refer to the operating mode identity and noise mode identity, respectively. Each

sample point corresponds to an operating mode, and each measurement in a sample point

is prone to have gross error, so Ij = {1, 2, ..., q} and I ′zij = {1, 2}. Parameters which have to

be estimated are denoted as Θ, which contains rectified variables besides noise distribution

parameters. Hence, the E-step in the EM Algorithm, in which the R function is derived, can

be illustrated as,
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R(Θ,Θ(l)) = Q(Θ,Θ(l)) + lnP (Θ)

= EI|Y,Θ(l) [lnP (Y, I|Θ)] + lnP (Θ)

=

∫
P (I|Y,Θ(l)) dI [lnP (Y, I|Θ)] + lnP (Θ)

=

∫ ∫
P (I ′, I|Y,Θ(l)) dI ′ dI [lnP (Y, I, I ′|Θ)] + lnP (Θ)

=

∫ ∫
P (I ′|I, Y,Θ(l))P (I|Y,Θ(l)) dI ′ dI [lnP (Y, I, I ′|Θ)] + lnP (Θ)

=

∫
P (I|Y,Θ(l)) dI

∫
P (I ′|I, Y,Θ(l)) dI ′ [lnP (Y, I ′|I,Θ) + lnP (I|Θ)] + lnP (Θ)

=

∫
P (I|Y,Θ(l)) dI

∫
P (I ′|I, Y,Θ(l)) dI ′ [lnP (Y, I ′|I,Θ) + lnP (I|Θ)]

+ ln
n∏
i=1

P (θi)

=
m∑
j=1

P (Ij|ysj ,Θ(l))
n∑
i=1

P (I ′zij|Ij, yij, θ
(l)
i ) [lnP (yij, I

′
zij|Ij, θi) + lnP (Ij|Θ)]

+
n∑
i=1

lnP (θi)

=

q∑
z=1

m∑
j=1

P (Ij = z|ysj ,Θ(l)
z )

n∑
i=1

2∑
k=1

P (I ′zij = k|Ij = z, yzij, θ
(l)
zik)

[lnP (yzij, I
′
zij = k|Ij = z, θzik) + lnP (Ij = z|Θz)] +

q∑
z=1

n∑
i=1

2∑
k=1

lnP (θzik)

=

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

P (Ij = z|ysj ,Θ(l)
z )P (I ′zij = k|Ij = z, yzij, θ

(l)
zik)

[lnP (yzij|I ′zij = k, Ij = z, θzik) + lnP (I ′zij = k|Ij = z, θzik) + lnP (Ij = z|Θz)]

+ lnP (θzik)

(4.29)

In Equation (4.29), P (I ′zij = k|Ij = z, yzij, θ
(l)
zik) is the posterior probability of the noise

mode identity which can be expressed using Bayes rule as,
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P (I ′zij = k|Ij = z, yzij, θ
(l)
zik) =

P (yzij|I ′zij = k, Ij = z, θ
(l)
zik)P (I ′zij = k|Ij = z, θ

(l)
zik)

P (yzij|Ij = z, θ
(l)
zik)

=
P (yzij|I ′zij = k, Ij = z, θ

(l)
zik)P (I ′zij = k|Ij = z, θ

(l)
zik)∑2

t=1 P (yzij|I ′zij = t, Ij = z, θ
(l)
zit)P (I ′zij = t|Ij = z, θ

(l)
zir)

=

1√
2πσ2

zik
(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zik

(l) )P (I ′zij = k|Ij = z, θ
(l)
zik)∑2

t=1
1√

2πσ2
zit

(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zit

(l) )P (I ′zij = t|Ij = z, θ
(l)
zit)

(4.30)

In the Equation (4.30), P (I ′zij = k|Ij = z, θ
(l)
zik) is the prior probability of the noise mode

identity which is equal to the weight of kth component, i.e., P (I ′zij = k|Ij = z, θ
(l)
zik) = δ

(l)
zik.

By substituting it in the Equation (4.30), it can be further simplified as,

P (I ′zij = k|Ij = z, yzij, θ
(l)
zik) =

δ
(l)
zik√

2πσ2
zik

(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zik

(l) )∑2
t=1

δ
(l)
zit√

2πσ2
zit

(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zit

(l) )
= γ

(l)
zijk (4.31)

Since all the parameters in the above equation are obtained from the previous iteration,

we have simplified and shown them as γ
(l)
zijk. In Equation (4.29), P (Ij = z|ysj ,Θ

(l)
z ) is the

posterior probability of the operating mode identity which can be calculated using Bayes

rule as,
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P (Ij = z|ysj ,Θ(l)
z ) =

P (ysj |Ij = z,Θ
(l)
z )P (Ij = z|Θ(l)

z )

P (ysj |Θ
(l)
z )

=
P (ysj |Ij = z,Θ

(l)
z )P (Ij = z|Θ(l)

z )∑q
s=1 P (ysj |Ij = s,Θ

(l)
s )P (Ij = s|Θ(l)

s )

=

(∏n
i=1 P (yzij|Ij = z, θ

(l)
zi )
)
P (Ij = z|Θ(l)

z )∑q
s=1

(∏n
i=1 P (yzij|Ij = s, θ

(l)
si )
)
P (Ij = s|Θ(l)

s )

=

∏n
i=1

{
δzi1√

2πσ2
zi1

(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zi1

(l) ) + δzi2√
2πσ2

zi2
(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zi2

(l) )
}
P (Ij = z|Θ(l)

z )∑q
s=1

∏n
i=1

{
δsi1√

2πσ2
si1

(l)
exp(

−(ysij−x
(l)
si )2

2σ2
si1

(l) ) + δsi2√
2πσ2

si2
(l)
exp(

−(ysij−x
(l)
si )2

2σ2
si2

(l) )
}
P (Ij = s|Θ(l)

s )

(4.32)

Equation (4.32) can be further simplified by substituting P (Ij = z|Θ(l)
z ) = η

(l)
zj , since

P (Ij = z|Θ(l)
z ) is the prior probability of the operating mode which is equal to the weight of

zth operating mode.

P (Ij = z|ysj ,Θ(l)
z ) =

η
(l)
zj

∏n
i=1

{
δzi1√

2πσ2
zi1

(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zi1

(l) ) + δzi2√
2πσ2

zi2
(l)
exp(

−(yzij−x
(l)
zi )2

2σ2
zi2

(l) )
}

∑q
s=1 η

(l)
sj

∏n
i=1

{
δsi1√

2πσ2
si1

(l)
exp(

−(ysij−x
(l)
si )2

2σ2
si1

(l) ) + δsi2√
2πσ2

si2
(l)
exp(

−(ysij−x
(l)
si )2

2σ2
si2

(l) )
}

(4.33)

Here we can also simply replace the above equation with ζ
(l)
zj , i.e., P (Ij = z|ysj ,Θ

(l)
z ) = ζ

(l)
zj ,

since all the parameters are obtained in the previous iteration.

P (yzij|I ′zij = k, Ij = z, θzik) =
1√

2πσ2
zik

exp(
−(yzij − xzi)2

2σ2
zik

) (4.34)

P (I ′zij = k|Ij = z, θzik) = δzik (4.35)
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P (Ij = z|Θz) = ηzj (4.36)

The log of joint prior probability of the parameters is given by,

q∑
z=1

n∑
i=1

2∑
k=1

lnP (θzik) =
t∑

z=1

n∑
i=1

2∑
k=1

(lnP (xzi) + lnP (σ2
zi) + lnP (δzik) + lnP (σ2

zik))

= −
q∑
z=1

n∑
i=1

2∑
k=1

(lnσzi +
(xzi − µzi)2

2σ2
zi

+ 2(αi + 1)lnσzi +
βi
σ2
zi

− (φzi/2− 1)ln(δzik) + 2(αik + 1)lnσzik +
βik
σ2
zik

)

(4.37)

Substituting Equations (4.31)-(4.37) into Equation (4.29), the following expression for R

function is obtained:

R(Θ,Θ(l)) = Q(Θ,Θ(l)) + lnP (Θ)

=

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

P (Ij = z|ysj ,Θ(l)
z )P (I ′ij = k|Ij = z, yzij, θ

(l)
zik)

[lnP (yzij|I ′zij = k, Ij = z, θzik) + lnP (I ′zij = k|Ij = z, θzik)

+ lnP (Ij = z|Θz)] + lnP (θzik)

=

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
zj γ

(l)
zijk[lnP (yzij|I ′zij = k, Ij = z, θzik)

+ lnP (I ′zij = k|Ij = z, θzik) + lnP (Ij = z|Θz)] + lnP (θzik)

(4.38)
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R(Θ,Θ(l)) =

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
zj γ

(l)
zijk[ln(

1√
2πσ2

zik

exp(
−(yzij − xzi)2

2σ2
zik

)) + ln(δzik) + ln(ηzj)]

−
q∑
z=1

n∑
i=1

2∑
k=1

(lnσzi +
(xzi − µzi)2

2σ2
zi

+ 2(αi + 1)lnσzi +
βi
σ2
zi

− (φzi/2− 1)ln(δzik)

+ 2(αik + 1)lnσzik +
βik
σ2
zik

)

=

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
zj γ

(l)
zijk[−ln(

√
2πσ2

zik)−
(yzij − xzi)2

2σ2
zik

+ ln(δzik) + ln(ηzj)]

−
q∑
z=1

n∑
i=1

2∑
k=1

(lnσzi +
(xzi − µzi)2

2σ2
zi

+ 2(αi + 1)lnσzi +
βi
σ2
zi

− (φzi/2− 1)ln(δzik)

+ 2(αik + 1)lnσzik +
βik
σ2
zik

)

(4.39)

4.4.2.2 M-step

The M-step involves maximizing R(Θ,Θ(l)) with respect to the parameters, Θ, and this

results in the update equations for the parameters.

Update expression for σzik: This can be obtained by setting the partial derivative of R w.r.t

σsrt to zero. The partial derivative is obtained as follows:

∂R(Θ,Θ(l))

∂σsrt
=

m∑
j=1

ζ
(l)
sj γ

(l)
srjt[−

1

σsrt
− (ysrj − xsr)2

σ3
srt

]− [
2(αrt + 1)

σsrt
− 2βrt
σ3
srt

] = 0 (4.40)

for s = 1, ..., q, r = 1, ..., n, and t = 1, 2. The derivative can be simplified as,

(
m∑
j=1

ζ
(l)
sj γ

(l)
srjt + 2(αrt + 1))σ2

srt −
m∑
j=1

ζ
(l)
sj γ

(l)
srjt(ysrj − xsr)2 + 2βrt = 0 (4.41)

Now the update equation for σsrt is given by,
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σ
(l+1)
srt =

√√√√∑m
j=1 ζ

(l)
sj γ

(l)
srjt(ysrj − x

(l)
sr )2 + 2βrt∑m

j=1 ζ
(l)
sj γ

(l)
srjt + 2(αrt + 1)

(4.42)

Update expression for δzik: The updating equation for δsrt can be derived by formulating the

following constrained optimization problem:

 δ
(l+1)
zik = arg maxδzik R(Θ,Θ(l))

s.t.
∑2

k=1 δ
(l+1)
zik = 1

(4.43)

In order to solve the above constrained optimization problem, the Lagrange multipliers

method can be applied.

L(δzik, λδzi) =

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
zj γ

(l)
zijkln(δzik) + (φzi/2− 1)ln(δzik)−λδzi(

2∑
k=1

δzik− 1) (4.44)

The above equation is solved by taking partial derivative of L(δzik, λδzi) w.r.t δzik and

λδzi, and then setting them to zero.

∂L(δzik, λδzi)

∂δsrt
=

∑m
j=1 ζ

(l)
sj γ

(l)
srjt + φzi/2− 1

δsrt
− λδsr = 0

→ δsrt =

∑m
j=1 ζ

(l)
sj γ

(l)
srjt + φzi/2− 1

λδsr

→
2∑

k=1

δsrk =

∑2
k=1

∑m
j=1 ζ

(l)
sj γ

(l)
srjk + φzi/2− 1

λδsr

(4.45)

∂L(δzik, λδzi)

∂λδsr
=

2∑
k=1

δsrk − 1 = 0 (4.46)

Owing to the property of the γsrjt equation, the following expression is obtained:
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2∑
k=1

γ
(l)
zijk = 1→

m∑
j=1

2∑
k=1

ζzjγ
(l)
zijk =

m∑
j=1

ζzj (4.47)

By substituting Equation (4.47) into Equation (4.45), it is obtained that 1 =
∑m
j=1 ζzj+φr/2−1

λδr
→

λδr =
∑m

j=1 ζzj + φr/2− 1, and as a result, the updating equation for δ
(l+1)
rt would be:

δsrt =

∑m
j=1 ζ

(l)
sj γ

(l)
srjt + φr/2− 1∑m

j=1 ζ
(l)
sj + φr/2− 1

(4.48)

Update expression for ηzj: This can be derived by solving the following constrained opti-

mization problem:

 η
(l+1)
zj = arg maxηzj R(Θ,Θ(l))

s.t.
∑q

z=1 η
(l+1)
zj = 1

(4.49)

Again, in order to solve the above optimization problem, the Lagrange multipliers

method is applied and the corresponding function is given by,

L(ηzj, ληz) =

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
zj γ

(l)
zijkln(ηzj)− ληz(

q∑
z=1

ηzj − 1) (4.50)

In order to obtain the update expression for ηzj, the partial derivatives of the above

equation with respect to ηsp and ληs must be determined.

∂L(ηjz, ληz)

∂ηps
=

n∑
i=1

2∑
k=1

ζ
(l)
sj γ

(l)
sipk

1

ηsp
− ληs = 0

→ ηsp =

∑n
i=1

∑2
k=1 ζ

(l)
sp γ

(l)
sipk

ληs

→ ηsp =

∑n
i=1 ζ

(l)
sp

ληs

(4.51)

∂L(ηzj, ληz)

∂ληs
=

q∑
z=1

ηzp − 1 = 0 (4.52)
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Similar to the approach in obtaining the update equation for δsrt, if we get a summation

of ηsp over z we have,

q∑
z=1

ηzp =

∑q
z=1

∑n
i=1 ζ

(l)
sp

ληs

→ 1 =

∑n
i=1 1

ληs
=

n

ληs
→ ληs = n

(4.53)

Therefore,

ηsp =

∑n
i=1 ζ

(l)
sp

n
(4.54)

Update expression for σzi: This can be obtained by taking the partial derivative of the R

function w.r.t the σsr and setting it to zero.

∂R(Θ,Θ(l))

∂σsr
=

(xsr − µsr)2

σ3
sr

− 2αr + 3

σsr
+

2βr
σ3
sr

= 0 (4.55)

As a result, the update equation for xzi is given by,

σ(l+1)
sr =

√
(x

(l)
sr − µ(l)

sr )2 + 2βr
2αr + 3

(4.56)

Update expression for xzi: Similarly, the update equation for the rectified estimate x
(l+1)
zi is

obtained using the Lagrange multipliers method:

 x
(l+1)
zi = arg maxxzi R(Θ,Θ(l))

s.t. Axz = 0
(4.57)

The Lagrangian function for the above constrained optimization problem is given by,
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L(xz, λxz) = −
q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

ζ
(l)
jz γ

(l)
zijk

(yzij − xzi)2

2σ2
zik

−
q∑
z=1

n∑
i=1

2∑
k=1

(xzi − µzi)2

2σ2
zi

+ λTxzAxz

=

q∑
z=1

m∑
j=1

n∑
i=1

2∑
k=1

−ζ(l)
jz γ

(l)
zijk

(yzij − xzi)2

2σ2
zik

− (xzi − µzi)2

2σ2
zi

+
n∑
i=1

e∑
f=1

λxzfaifxzi

(4.58)

In order to obtain the update equation for rectified values, the partial derivatives of the

above function w.r.t xzi and λxzf have to be determined.

∂L(xz, λxz)

∂xsr
=

m∑
j=1

ζ
(l)
js

[
γsrj1

σ
(l+1)
sr1

2 +
γsrj2

σ
(l+1)
sr2

2

]
(ysrj − xsr)−

xsr − µ(l+1)
sr

σ
(l+1)
sr

2 +
e∑

f=1

λxzfaif = 0 (4.59)

∂L(xz, λxz)

∂λxzf
=

n∑
i=1

e∑
f=1

aifxzi = 0 (4.60)

Define w
(l+1)
srj and z

(l+1)
sr as:

w
(l+1)
srj = ζ

(l)
sj

[
γsrj1

σ
(l+1)
sr1

2 +
γsrj2

σ
(l+1)
sr2

2

]
(4.61)

z(l+1)
sr =

−1

σ
(l+1)
sr

2 (4.62)

Here, w
(l+1)
srj and z

(l+1)
sr correspond to the weights for each measured variable for each

operating mode. Now, we rewrite the above equation in matrix form such that the re-

sulting expression for rectified values can be compared to the expressions form literature.

To this end, we define a diagonal matrices W
(l+1)
sj = diag{w(l+1)

s1j , · · · , w(l+1)
snj } and Z

(l+1)
s =

diag{z(l+1)
s1 , · · · , z(l+1)

sn } for each operating mode, where diag(j=1,...,m)(aj) denotes the operator
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that creates the diagonal matrix having the dimension of measured variables (i.e., n) with

diagonal elements w
(l+1)
srj and z

(l+1)
sr . Now, Equation (4.59) can be simplified as

∑m
j=1 W

(l+1)
zj (ysj − xz) + Z

(l+1)
z (xz − µ(l+1)

z ) + ATλx = 0∑m
j=1

(
W

(l+1)
zj ysj

)
+
(
Z

(l+1)
z −

∑m
j=1 W

(l+1)
zj

)
xz − Z(l+1)

z µ
(l+1)
z + ATλx = 0

(4.63)

Premultiplying by A
(
Z

(l+1)
z −

∑m
j=1 W

(l+1)
zj

)−1

results in,

A
(
Z

(l+1)
z −

∑m
j=1 W

(l+1)
zj

)−1∑m
j=1

(
W

(l+1)
zj ysj

)
− A

(
Z

(l+1)
z −

∑m
j=1 W

(l+1)
zj

)−1

Z
(l+1)
z µ

(l+1)
z + A

(
Z

(l+1)
z −

∑m
j=1 W

(l+1)
zj

)−1

ATλx = 0
(4.64)

In order to simplify the formulation expression, B
(l+1)
z and C

(l+1)
z are defined such that:

B(l+1)
z = (Z(l+1)

z −
m∑
j=1

W
(l+1)
zj )−1 (4.65)

C(l+1)
z =

m∑
j=1

(W
(l+1)
zj ysj) (4.66)

Hence, Equation (4.64) is simplified to,

AB(l+1)
z C(l+1)

z − AB(l+1)
z Z(l+1)

z µ(l+1)
z + AB(l+1)

z ATλx = 0 (4.67)

Therefore, λx is given by,

λx = (AB(l+1)
z AT )−1AB(l+1)

z (Z(l+1)
z µ(l+1)

z − C(l+1)
z ) (4.68)

and as a result, the update equation for rectified values is given by,
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xz
(l+1) = B(l+1)

z (I − AT (AB(l+1)
z AT )−1AB(l+1)

z )(Z(l+1)
z µ(l+1)

z − C(l+1)
z ) (4.69)

The resulting expression Equation (4.69) shows rectified estimates of the true state in

Equation (4.8). Table 4.1 represents the proposed algorithm for simultaneous gross error

detection and data reconciliation under different operating conditions.

Table 4.1: EM Algorithm for Simultaneous Data Reconciliation and Gross Error Detection
under Different Operating Conditions
1 Input the raw measurements Y
2 Initialize the parameter Θ(l)

3 E-step Evaluate the R function (4.29) using current updated values of parameters
4 M-step Update the parameters σzik, δzik, ηzj, σzi, and xz using Equations (4.42), (4.54), (4.56),

(4.48), and (4.69), respectively.
5 Terminate on convergence. Otherwise, proceed to Step 3.

4.5 Simulation Study

In this section, simulated data sets are used to show the performance of the proposed method

for simultaneous gross error detection and data reconciliation for a system working under

different operating conditions. In order to assess the efficiency of the proposed method, the

following performance measure tests are used: (a) Overall power (OP)10,17, and (b) Average

number of type I error (AVTI)10,17. They are defined as follows:

OP =
Number of biased variables correctly identified

Number of biased variables simulated
(4.70)

AV TI =
Number of unbiased variables wrongly identified

Number of simulation trials
(4.71)
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4.5.1 Case 1 - Same Biased Variables in Different Operating Modes

In this example, the performance of the proposed method is illustrated using a water flow

network shown in Figure 4.1, while it is working under two operating modes and two variables

out of seven contain gross errors.

Figure 4.1: Diagram of process network

Based on the above network, the process model equations, which are the constraints of

the problem and in this example, are mass balance equations, are as follows,

x1 − x2 + x4 = 0

x2 − x3 + x6 = 0

x3 − x4 − x5 = 0

x5 + x6 − x7 = 0

Based on the above equations, the process model coefficient matrix in Axz = 0 is given

by,

A =



1 −1 0 1 0 0 0

0 1 −1 0 0 1 0

0 0 1 −1 −1 0 0

0 0 0 0 1 −1 −1


Assume that x1 and x6 are biased, and the magnitude of gross errors in these two variables
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are +3 and +4, respectively. All the variables are assumed to be measured and the vector of

true values of the flow rates for each operating mode are set as x1 =

[
1 2 3 1 2 1 1

]T
and x2 =

[
4 5 8 1 7 3 4

]T
. The measurement data of all the process variables are

generated by adding a random noise with zero mean and 0.1I variance to the true values. In

other words, the standard deviations are around 11 − 32% of the measurements. Also, the

probability of occurrence of each operating region is 60% and 40%, respectively. Figure 4.2

represents a set of the simulated data.

Figure 4.2: Data plot showing gross error in x1 and x6, σi = 0.1

Table 4.2 represents the performance of the proposed method using the results of the OP

and the AVTI tests.

Table 4.2: Performance measures for multiple gross errors for 50 runs
Simulation runs Biased OP AVTI

Proposed Method 50 2 0.98 0.08

From Table 4.2 and Figure 4.3, it can be seen that the proposed method can appropriately
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return rectified values for each operating points.

Figure 4.3: Histogram of the rectified values when x1 and x6 contain gross errors in both
operating modes

Table 4.3 shows the true and rectified values, as well as estimated parameters of MAP

estimation.

Table 4.3: Rectified results and estimated distribution parameters for multiple gross errors
Mode Variables x x̂ δ̂i1 σ̂i1 σ̂i2

First Mode

x1 1 0.9901 1.00 0.0610 3.0074
x2 2 1.9738 0.00 0.0922 0.0939
x3 3 3.0105 1.00 0.0999 0.0934
x4 1 0.9837 1.00 0.1109 0.0703
x5 2 2.0267 1.00 0.0836 0.0924
x6 1 1.0366 0.00 0.0100 4.0123
x7 1 0.9901 1.00 0.1055 0.0100

Second Mode

x1 4 3.9786 1.00 0.1440 3.0057
x2 5 4.9988 0.02 0.1083 0.0100
x3 8 8.0390 0.98 0.1035 0.0986
x4 1 1.0202 0.98 0.1086 0.7071
x5 7 7.0189 1.00 0.1098 0.0100
x6 3 3.0402 0.00 0.0100 3.9864
x7 4 3.9786 0.98 0.1140 0.0100

The estimated probability of occurrence of each mode is 56% and 44%, respectively.
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4.5.2 Case 2 - Different Biased Variables in Different Operating

Modes

In this example, the effectiveness of the proposed method when the biased variables are

different for each operating mode is studied. To this end, the data are generated similar to

the previous example, and the only difference is in the gross errors of each operating mode.

We add gross errors with the magnitude of +3 and +2 to the 2nd and the 7th variables in

the first operating mode, respectively, and also a gross error with the magnitude of +4 to

the 4th variable in the second operating mode. A set of simulated data are plotted in Figure

4.4.

Figure 4.4: Data plot showing gross error in x1 and x6 for the first mode and gross error in
x4 for the second mode, σi = 0.1

Table 4.4 represents the performance of the proposed method using the results of the OP

and the AVTI tests.
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Table 4.4: Performance measures for multiple gross errors for 50 runs
Simulation runs Biased OP AVTI

Proposed Method 50 2 0.96 0.04

From Table 4.4 and Figure 4.5, it can be seen that the proposed method can appropriately

return rectified values for each operating mode.

Figure 4.5: Histogram of the rectified values when x1 and x6 contain gross error in the first
mode and x4 is corrupted by gross error in the second mode.

Table 4.5 shows the true and rectified values, as well as estimated parameters of MAP

estimation.
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Table 4.5: Rectified results and estimated distribution parameters for multiple gross errors
when the gross errors of each operating are different

Mode Variables x x̂ δ̂i1 σ̂i1 σ̂i2

First Mode

x1 1 1.0369 1.00 0.1352 0.0369
x2 2 2.0731 0.00 0.0855 2.9823
x3 3 3.0611 1.00 0.0999 0.0895
x4 1 1.0362 1.00 0.0957 0.0703
x5 2 2.0249 1.00 0.0836 0.0924
x6 1 0.9880 0.95 0.0931 0.1055
x7 1 1.0369 0.00 0.0922 1.9897

Second Mode

x1 4 3.9995 1.00 0.0834 0.0120
x2 5 5.0407 1.00 0.1083 0.1103
x3 8 8.0238 0.98 0.1035 0.1079
x4 1 1.0477 0.02 0.0100 4.0075
x5 7 6.9761 1.00 0.1156 0.0100
x6 3 2.9766 0.98 0.1205 0.0733
x7 4 3.9995 0.93 0.1140 0.0962

The estimated probability of occurrence of each mode is 66% and 34%, respectively.

4.6 Conclusions

In this chapter the problem of gross error detection and data reconciliation for measurement

data which is collected under different operating conditions is studied in a maximum a

posteriori framework. The noise model that was used in this study followed a Gaussian

mixture distribution with two modes. The formulation of the proposed noise model besides

modeling different operating modes resulted in introducing two hidden variables, one for

each.

In general, the expectation maximization (EM) algorithm is used to solve an MLE or

MAP estimation with hidden variables. Therefore, we used EM approach in order to obtain

an estimate of the true state and the error distribution parameters. The proposed method

was also capable of returning the rectified values and the magnitude of gross errors for each

operating mode even though the biases for each mode are different. Several case studies were
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presented to illustrate the performance and the different features of the algorithm.
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Chapter 5

Conclusions

The main focus of this thesis was to introduce new methods for simultaneous gross error

detection and data reconciliation by developing the EM algorithm and utilizing the Gaus-

sian mixture distribution for the noise model. The main contribution of the thesis can be

summarized as follows:

Chapter 1 provided the motivation and challenges of data reconciliation and gross error

detection and their importance in industrial processes. It also provided the outline and

contributions of each Chapter of the thesis.

In Chapter 2, the problem of data reconciliation in the maximum likelihood framework

by simultaneously eliminating the gross error in the measurement data was addressed. The

contaminated Gaussian distribution model with two modes characterized the error distri-

bution of different sensor mode and hence, the resulting formulation involved solution for

hidden variables. The expectation maximization approach was presented which is an itera-

tive algorithm with two expectation and maximization steps. Furthermore, the parameters

of the error distribution model were calculated as part of the solution and they were not set

in advanced. Moreover, problems with both linear and/or nonlinear constraints were covered

in the proposed approach. Finally, several case studies were presented to demonstrate the

various features of the proposed method.
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Chapter 3 extended the proposed method in Chapter 2 by including the prior knowl-

edge into the objective function. Since the maximum likelihood framework was not able

to distinguish between the two gross error sets which have the same effect on the objective

function, by adding prior information maximum likelihood was transformed to maximum a

posteriori estimation for data reconciliation and gross error detection. By doing so, not only

was the more accurate estimate of the true states obtained, but also other possible situations

of gross error sets in measurements could be rectified. It is worth to mention that if there

was a gross error in a measurement it did not have to be assumed all of the sample points

of that variable were corrupted by the gross error, i.e., it could partially occur in a data set.

Again, several simulation case studies and examples were provided to show the efficacy of

the proposed method.

Chapter 4 expanded the proposed method of Chapter 3 such that it could cover data

rectification for the system working under different operating conditions. Therefore, there

were multiple operating regions in a data set, and the proposed approach was capable of i-

dentifying operating regions, estimating the distribution parameters of each region, and then

returning the rectified estimates of each region. Based on these assumptions, the Maximum

a Posteriori (MAP) framework was applied and solved using the Expectation Maximization

(EM) algorithm. The EM method was used since the proposed mixture distribution involved

the noise mode as well as the operating mode as hidden variables. To this end, the data

set was divided into several clusters based on the number of operating modes. Then, data

rectification, was applied to each operating mode. It is important to note that the pro-

posed approach distinguished between the operating modes in different clusters. As a result,

the future model was capable of identifying operating modes and switching between them.

Finally, two case studies were presented to demonstrate the efficacy of the proposed method.

All the chapters of this thesis are related to each other, and each chapter extended the

proposed method from the previous chapter to cover some other cases besides increasing the

accuracy of the rectified estimates. Therefore, the future work could further develop/expand
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the proposed method and algorithm of Chapter 4.

All the proposed methods in different chapters of the thesis belong to the data reconcil-

iation and gross error detection problems of systems working under steady state conditions,

i.e., the constraints of the rectification problem was f(x, z) = 0. Extending the proposed

methods for unsteady state systems would be a potential future work.
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