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ABSTRACT

L ]
The theory of empirical orthqgonal funct

s is presented by
means of a simple two-variable example awhich/can be easily visual-
ized and \d;ich can be easily generalized to th‘o or more variables.
Applications of ‘the f\n.ctionl are shown by reviewing the available
literature’'with the last two sections introducing complex eigen-
voct«c;r a@yu.o. '

liqom-alyoh of a simple wave pattern is foliovnd RY tr;o
CMIYIiI;& ten ‘yoarl of monthly mean temperatures in western
Canada. The first four time functions of the temperature data
are_studied by means of periodograms and the use of empirical

»
ort;\oqonal functions for the storage of climatological data is
discussed.

5:0--b fwiqhts in western Canada and the northwestern United
Stat?n are analyzed next with a p'tactical appl{cation being pre-
sented: tho detection of errors in a set of data. Precipitation
data for the summer months in Alberta are also attempted but with
discouraging results.

Comments and consideration for future work, such as micro-

mateorology and complex eigenvector an'al‘ysis, conclude the work.

Y
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CHAPTER'1

INTRODUCTION

1.1 Introduction

Empirical orthogonal functions or principal components arise in
the statistical‘annlysil‘of one or more varjiables by a method that .,
can be described as a translation plus a rotation of axes or, alter-
natively, as a representation of the data by a set of orthogonal*
functions.

An example of the method of representation by orthogonal functions
is shown in Appendix I; it is sufficient to say noy~that if there

are N stations observing some variable p at several times t, then p

at station j and time t may be represented by the expansion:

N .
py(t) = PIERCI

i=1
where the qi(t) are time functions and the yjy are the empirical

orthogonal functions. Of course, the yi could be any of the stan-

3
dard orthogonal polynomials (Legendre, Tschebysheff, etc.) but it
is interesting to see what happens when the functions are derived

from the observed data. . The empirical orthogonal functions can of

course be transformed to any other set of orthogonal functions.

* To be precise, the functions are orthonormal but will be called
; y
-

.prﬁhogonal to be consistent with the literature.
*

N

1



1.2 An Exaaile
Since the\application of eigenvector analysis to ; complicated set
of re;l data may not provide much insight into what is actually being
done, a simple example. using translation and rotation of axes will
perhaps give a 'feel' for empirical orthogonal functions.
consider two stations recording temperatures with the data shown
in Ta;;le 1l and Figure‘ for four _consecutive days. 1Is it possible |
to reduce the number;offvariables from two to one and yét retain all

]

the vital informaffon? Also, is it possible to make a reasonable ,
! A /.’

guess as to what the temperature will be on day 47 v

In order to reduce the number of variables, one temperature must
be a funcfion of the other. One of the simplest relationships is a
linear one, so if the two variaples correlate linearly to a high
degree, one can be written as a linear function of the other. A
simple cross-correlation coefficient can then be c#lculated and this
will provide some clue. However, much more information can be ob-
tained if the axes are translated to the 'centre of gravity' of the
data and then rotated in such { way that the data correlate highly*
along one axis and very little along the other. The two new vari-
ables thus produced should be uncorrelated, since if one correlates
with the other tyen one can be written as a linear function of the
other, and another transformation may be perférmed.

The data, with the means removed, are listed in Table 2 and

plotted in Figure 2. .

*+ TIn practi@e, the correlation coefficient is maximized.



Temperature Temperature
Day . at ’ at
L Station One . station Two
0 ' 9 " 11
1 21 19
F 2N
2 29 31
. 3 21 ) 19

Table 1. Temperatures at two hypothetical .

stations.
. v
7
. A .
30 P ay 2. 7/
. /’
7/ .
Ve
2 /
7/

o ’
2 20 i
E Day 1/ @ Day 3
b ‘//
?: ,/ ]
é Day O /, ' '
5 10 ay 0@
5 g .
3] // \

/ = ‘

/7 ‘ Temperature,
V4 1 ) \ \

10 20 30 Station One

Figure 1. Graph of ten(peratures from Table 1.



b Station Station
ay One Two
, [+
0 -11 . -9
1 1 . -1
2 9 ) 11
3 1 -1
. - 1
¢ Table 2. Temperatures from Table 1 with

means Qremoved .

Station
Two
Day 2
10 L o /
/
7/
7
7
4 0 /7 Station
| — J; One
-10 D&Y 1/ . bay 3 10
7
Day 0 / Q
T ~ ‘o / -10 -
/ .

Fiﬂre 2. Graph of values from Table 2.



Let the temperatures of Table 1 be represented by the matrix
P. By removing the means, let this become P* (i1.e. Table 2). By

application of a rotation matrix X these values become metrix Q.

Then, _ Q* = P*X_ . S |

Since X is a rotation matrix,
t R .
x =1 = L L2

. >

where I is the identity matrix and x* is the transpose of X.

Also, the new variables are uncorrelated,’ go

v

Q‘tQ' = D . ¢ P
: o
- where D is a diagonal matrix.
It _ g A = prips
then from 1 and 3, g
. D = o*"Q* :
R .
= (P*x) “pex
= x%peCpex \
D = xtAx : .c..4
t
Solving ) XX =1
and D = x“AX .

~

for a given A is the well-known eigenvalue problem and can be

written as:

(A-D)X = O eeed
t
since X'AX = D
' t
then XX AX # XD

and (AX-DX) = O



Pex equation 5 to bs trxue,
det |A-D| = O
since " dot IX| = 1

Now, in the present instance et

gt '
, 204 196 ‘)
A= \19e 204

and the eigenvalues of A are 8 and 400. The corresponding teo
eigenvectors are a(l,-1) and b(1,1) where a and b are any two
scalars. .mu two vectors form the matrix X: ;

| 11

X =a 1 -1 : R

. | ‘

From equation 2, XX~ = I

SR 3 B G ~

and a=

5
71 .71
X=\ .11-.1

If the axes are rotated counterclockwige through 45° so that one

so X must be:

passes through (.71,.71) while the other passes through (.71,-.71)

then the new variables become by equation 1: . ‘
-11- -9 -14.2 -1.42
1 -1 .71 .71 0.0 1.42
* = ' =
0 s 1 J\.11 -7 %.2. -1.42
1 -1 0.0 1.42

From equation 1 it can be seen that,

p* = *g*x‘



or

11 -9 -14.2 -1.42 .
-1\ 0 1.42 ('.n \ 1
1 132 -1.42 7n -7
-1/ . 0 1.42
-10.0-1.0 -10. °‘l<§f ‘
. 0. 0+1.0 a.0-1.0 |
- 10.0-1.0  10.041.0
0.0+1.0  0.0-1.0

o
L 4

If the original temperatures were read to an accuracy of 1° or
if an accuracy of 1° s acceptable, then on%y the first eigenvector
with its coefficients plus the means can be 1'rdlto represent all

the data of Table 1.

i.e.
-14.2 -10 ~-10 .
pr = O b(71 .7M) - o o
14.2 10 10
0 o o0
[ 3
and
L-30 -10 20 20 10 10
I o o) f o o) f20 2
10 10 20 20 10 30
o o 20 20 20 20

Hence the number of variables can be reduced if the slight
errors that result are assumed to be noise and not liqﬁificant

values. The representation is in fact very good since it can be

@ shown that over 98% of the variance of the data is explained by



the first eigenvector.

Can the next day's temperature be pnd.l_c’t'od‘r If the eigenvec-
torldkro thought of As the spatial components of the t.np;r.turo
then tlb‘coofuclonu can be thought of as the time component.
1t "d is the day number, then based on four days' data, the first
time function can be written as -14.2co-(Ndr/2). which has a period
of 4 days, and the second as -1.42cos (M,r) which has a period of 2 |
days. bay gour's temperature would then be expected to be (10,10)
using only the first eigenvector and its associated time function.

There is no need to restrict the number of stations to two or
the number of different variables to one. The number of stations
and varjables is limited only by the ability to find the ciqonvaiue-
and eigenvectors of a square matrix with dimension equal to ‘the number
of stations times the number of variables. The data need not be fit-
ted to any sort of grid, and the spacing of the data points depends
on the scale of the features being studied. The time intervals also
need not be equal. With each statjion‘can be associated any number
of parameters and if the units of the parameters differ it is best
to normalize them before analysis.

If there ath- SO stations measuring 3 variables each then the
eigenvalues of a 150-square matgiy will have to be found. Though
no easy feat, with today's and tohbrrov'- computers and moq;}n
numerical methods even a matrix of this size can be handled fairly

efficiently.



-~ CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Lorens, E.N. (19%6¢)

Lorenz's paper of 1956 was one of the first to show how and why
empirical orthogonal functions can be used in meteorology. He looked
at the problems of representing a predictand, x(t), by a set of pre-
thQorg pl(t),...,p"(tl, where t may be time or any other variable,
by us£n§ the method of lia-t squarey, and po(qf.d out that prediction
formulae derived from different samples will ﬁ;t in general be simi-
lar, ana that any one of them will not necessarily be the best formula
for the whole population. Th.l; are the dangers that a formula good
fér one sample may be poor for the population, and a formula that
"Is not the best one for a sample may be the best one for the popula-
tion, d’nqor- which are inescapable unless the whole population is
available. If the entire population is not available then the number
of “‘predictors should be limited. By using statistical and practical
results lorenz denoqltrated the need to keep the ratio of t;e number
of predictors to the number of observations low. :

As a method of roduéinq the number of predictors, Lorenz derived
the representation of them by empirical orthogonal funct n:. and
pointed out that this method is analogous to factor analysis as used

by other disciplines, psychology in particular. 4



S e

10

As & test, sea-level prefsures from 64 stations in southern
Canada and the United lth:. as observed at 1230% each day in
February from 1949 to 19353 "nu fused to combute the firet 16 eiqen-
vectors. It was found that the first 8 functions specified 91N oOf
the variance and that 16 specified 978, When tnr firet 8 were uood to

chculatc the time coefficients for an independe t set of data (the

yeasp 1947 and 1948), it was found that again 918 of the mean square

{

When the eigenvecters were drawn up, one p ular not)\ was made

error could be explained.
that is observed in almost all anal riricyl ortho-

Y bﬁ-'
gonal functions: the loﬂr—n_boro&nvo to 1.4;. wave-

lengths and represent large-scale features while higher-numbered

eigenvectors have short wavelengths and represant smaller-scale
features or perhaps only noise.

Lorenz next attempted to predict the sea-level pressure field
of the 64 stations by using the field 24 hours earlier as a predic-
tor. This was accomplished by using the first K eigenvectors to
represent the pressure field on day |, calculating the first J time
functions for day i+l (J=1 to 8) for values of K=1 to 8 and then
combining the first J time functions with the first X eigenvectors
to get the pressure field on day i+l. Predictions for both the
development sample and the independent sample were attempted. For
the development sample a maximum reduction of variance of SO% resulted
from using 8 predictors and 8 predictands, while for the independent
sample a reduction of 31%\ was seen for J=4 and Kk=5. For the 8 ;nd 8

combination the reduction was 308,



u

Although the results were not especially encouraging, lorens

pointed out that this was only & fessibility study and betteg results

most certainly would have been obtained if the two sampley
larger, if predictore for stations on the boundarv had not bton in-
cluded in the calculation of redection of error, and {f a better scheme
using more variables had been used.

In conclusion Lorens suggested that empirical orthogonal functions

could have more usesg than just representing a series of prodicton by

a smaller set. Clapeifying metecrological phencmena, simplifying noh-
linear statistical prediction and perhaps offering a tool in dynamical

prediction were

f‘

1t by the author to have promising apvlications.

2.2 Gilman, D.L. (1957)

Utilizing monthly mean sea-level pressures and monthly mean sur-
face temperatures, Gilman's objectives were: a reduction in the
number of paramsters needed to specify the monthly mean circulation
in the northern hemisphere and the monthly mean surface temperature
in the United States, an auto-correlation and cross-correlation of
the two variables at lags zero and one wonth, and a study <.>f the
linear regression formulae derived from the correlations.

After proving sowme results from least-square fitting and ortho-
gonal functions, and discussing some other researchers' work with
orthogonal functions, the author derives the method of empirical
orthogonal functions in two ways, mentions some nomenc lature
and points out Loreaz's proof that empirical orthogonal functions

provide an optimal representation of data as compared to any other

{



type of function.

Prom the Northern Nemisphere Nistorical Map Beries, 1899-19)9,
monthly msan sea-level pressures end temperatures were obtained fos
the months December, January and Pebruary, and a test seample was
acquired for the wonths December to March, 1947 to 19%6. The pres-
sure data were treated firet.

The Lnitial grid consisted of points separated 10° latitudinally,

and 20° longitudinally from 20 to so°u; «° longitudinally from
70° to 00®N. Analysis of some daily mape in the RNistorical Series.
Rowever, showad that the data in some areas were suspeqs and there-
fore the number of qgrid points was rbucod to 90. The computer
available to G&lm in 1997 was insufficient to diagonalise a

‘)0th order matrix, s0 a method was used where the first )2 eigen-
vectors could be generated by first partitioning the correlation
matrix. The means were first removed from the pressure field "in
order to spare the systeam of orthogonal functions the trouble of
having always to reconstruct the pormal bsfore being able to proceed
to the abnormal.” Th\u was done by subtracting the 10-year December
means from the mean monthly December pressures, the January means froma
the January pressures, and the Pebruary msans from the February pres-
sures.” Then the pressure deviations were divided by the standard de-
-vutiom to produce standardized variables, under the assumption that
the variances of monthly ssan pressures remained mearly unchanged through-
out the winter. This was performed because the highest value of the

variance was approximately thirty-times greater than the lowest value.



™e )2 elgenvectere obiained frem the standardised precevres
sscounted for 90.30 of she varianse with the fires centributing
only 12.00, (Gee Pigure ) for & vepreduction of pressure olgenveo-
tor number 1.) Ollman comments that, on the bhaste of plots of the
firet 8 elgenvectors, the ecale of the pattern decreases 48 the
order of the elgenvectore (AcTeanes, with the petterns becoming ante
c-cuulu. and aloo that ... they tend to emphasise the chul.eol
‘centers of action', losland, Alaska and the Aleutisns, the Central
Pecific, Cengsl Asia. the Assves -.in spite of the m;’ux
waighting of all Yrid peimte...*

Cilman pointe out that prediction egquations for temperature, or
other atmoepheric vuubho: will be more oubl.o if the variablee
are represented by empirical orthogqonal functions, since the unpre-
dictable compohente, such as small-ecale effects and noise, can be
filtered out. Using ¥ outlono‘(n the United States (shown in
Pigure 4) he then proceeded to -uuhrd.gu the aonthly msan, tempera-
tures and qenerate the )O eigenvectofrs and their time coefficients.

The firet function contributed M.\ of she variance while the

first three increased thip to 81.1%, and eix scesunted for over 90N.

Gilman concluded that for the regressioa squations to be developed in

this study, the first tAree efigenvectors would suffice, since the
higher -numbered eigenveqtors coatribute only small amounts to the to-

tal. variance, and may or may not be predictable.

The author now endsavored to formulate regression equations

§

using up to 20 leading time coefficients of the standardised monthly
®ean pressure field as predictors (20 eigenvectors of the pressure

field specified 84.6% of the var{ance) and the first six time

1
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Figure ). Haemispheric function I. (After lilman, 1957)



Figure 4. Temperature function I. (After Gilman, 1957)

coefficients of the standardized monthly mean temperatures as
predictands for the same month as the pressufe time coefficients,
and then one month later. Prediction of the pressure time coeffi-
cients at lag one month was also attempted. Figures 5,“% and 7
show Gilman's results for the development sample, as well as the
values expec;ed by chance. He points out that the variation in

results was not surprising, but Ehe‘gxplanation of the good speci-

‘fication results in physical terms was difficult. The author sug-

gested that one possible explanation was "simple linear advection
to and from the climatologfcal sources and sinks of heat"; and

another’ plausible cause was large-scale horizontal eddy transport

in the monthly mean circulation pattern. The reasons for the poor

15
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Figqure 5. Specification of the temperature

functions. (After Gilman, 1957)
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Figure 6. Prediction of the temperature

functions. (After Gilman, 1957)
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Figure 7. Prediction of the pressure

functions. (After Gilman, 1957)
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predictability of the time functions as well as the small variation
of predictepility with respect to time-function number was explained
by the "complexity of the full hemispheric monthly pressure pattern
and the relative ffeedom of action of their different limbs..."
After diqtessinq on prediction by climatoloqy, persistence and
chapce, Gilman applied the regression equations to the test data of
1947 t9 1956, and made comparisons between these results and the
results from the aforementioned prognostication methods. As before,

the time functions for the pressures and temperatures were first

obtained, although this time unstandardized pressure anomalies were

employed. The results are presented in Figure 8 for tempefMture
function No. 2, the one best predicted. Time functions No. 4 and

’

higher showed unpromising results. Interestingly, the second tem-
perature eigenvector in the test sample accounted for about 40% of

the variance, while the first and third explained 27% and 10%,

respectively. The equations for the specification of the tempera-
ture functions were also applied, with the outcome that although

there was little difference between the results from the development

. -

and -test samples for the first three temperature functions, numbers

»
~

four to six were well below the expected values. Gilman comments

that "the optimum number of pressure functions with which to speci-
*.

fy the national temper‘*e field again seems to lie...somewhere

between 12 and 16."

Gilman then reconstructed the station values of the temperature

M ’

from the first three eigenvectors. Calculating and plotting the

18
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Figure 8. Prediction of temperature

function II. (After Gilma: 1957)

reduction in variance or error for the thirty stations, he concluded,
because of the similarity between the independent and dependent

¥
samples, that the temperature eigenvectors "main;ain almost perfect
mutual orthogonality when applied to the independent dafa." Gilman
1180 surmised that the synoptic conditions represe;ted by the

?&fferent eigenvecéors have "largely independent physical causes." 4

Utilizing three temperature time functions spegified and pre-
Y

dicted by the regression equations, QQd using 16 pressure functions

for specification and 12 for prediction, reductions of error or



¢

Predictor 12 Empirical Reduced Chance
functions Persistence

Dependent sample +.14 +.04 -- -

Independent sample +.12 +.035 -.13

Table 3. Prediction of station temperatures.

(Afteg Gilman, 1957}

variance were again calculatod'ahd plotted for the 30 stations for
the development and test samples. For the specificatién map, the
average reduction of error was 0.43 for the test sample, and 0.48

for the development sample. The values for the prediction data are
shown in Table 3; all values are "above" climatology. Gilman remarks
on the results that: "because of the very modest, though positive,
levels of verification obtained in this work, a serious attempt at
physical interpretation is probably not justified."

Since thirty-day forecasts of the United States Weather Bureau
seemed to have about the same consistency as persistence, which is
almost always negative with respect to climatology, Gilman concluded
that the regression equations from empirical functions are probably

better thirty-day predictors.

2.3 Craddock, J.M. and Flood, C.R. (1969)

Craddock and Flood attempted "to reduce the raw material of
the long-range forecaster to manageable proportions by removing

redundancies, and representing important fields in terms of the

20
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smallest possible number of mutually ipdependent variables." Using

[

the 500-mb field over the Norther isphere, they hoped not only

to reduce the amount of data by using orthogjnal functions but also
to filter out most of the noise. ‘,

The actual data consisted of daily 500-mb heights at 130 stations
scattered throughout the Northern Hemisphere north of 30°N for the
years 1965 to 1967. It could have been possible to use 540 points
and the years 1949 to ]‘67, but Chiliwll not feasible because of
too much data lacking at some points and the shortcomings of the
available computer. a 106-point grid however, was processed. Even
with 130 points many values were missing, especially over the
Pacific, and these were replaced by values observed one day earlier.

Craddock and Flood computed the eigenvectors of the 50 largest
eigenvalues and found that 97.1% of the variance was explained by
these 50 eigenvectors. The matrix of 50 x 1095 time coeffigients
was also calculated, with the mean, standard deviation, coeffi-
cients of skewness and kuftosis, and the first 60 serial correla-
tions being calculated for each series of 365 coefficients corre-
sponding to each year and each eigenvalue.

Craddock and Flood now examined the patterns formed by the
main eigenvectors with notes on some of the.time functions. The

easiest to explain was the first pqttern‘(ieg,Figure 9) which was

very similar to the map of the total variance of the 500-mb field,

had no strong gradients and a time function which closelv resembled
/

a sine wave of period one yYear. The rest of the eigenvector diagrams
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showed progressively stronger qradients with no readily explain-
able patterns, and time series with no vieibly interpretable qraphas.

The authors naxt considered the problem of the optimum re-
presentation of the data by the minimum number of eigenvectors
without any 12!. of "meteorological content” and still filtering
out a substantial part of the nofse. Since 1% eigenvectors repre-
sented 85% of the total variance while 50 represented 97. 1%,
Craddock and Flood suggested that 15 would be enough for some pur-
poses such as forecasting, while 50 would Certainly be a maximum.
Although their next arqument, that the difference between the re-
combination of 50 eigenvectors and their coefficients and the ori-
ginal data will be within the errors of chart analysis and the s
reading of values, is true, their procedure is perhaps faulty.
"When a similar analysis was carried out on data for the same grid,
but excluding the Pacific area, thg‘;esidual variance not accounted
for by the first S0 eigenvectors was only 1.1 per cent, so that the
2.9 per cent observed here must largely arise from errors in esti-
mating missing values in the Pacific sector.” Definitely some of
the errors derived from estimating values contributed towards the
unexplained variance, but if the Pacific area had 80 stations, then
1008 of the variance would have been explained by the first S0
eigenvectors, regardless of errors in estimation.

The logarithms of the eigenvalues were plotted versus the eigen-
vector numbers as further proof that eigenvectors above approximately
number 50 were principally noise. (Figure 10) The authors noted

that after roughly 50 eigenvectors, the logarithms of the eigenvalues

23
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Figure 10. The relation between eigenvector number
and the natural logarithm of the corresponding

eigenvalue. (After Craddock and Floed, 1969)

closely fit a straight line and hence, "...although the theoretical
justification is rather obscure, our work afford practical support
for the statement 'In meteorolod& noise eigenvalues are in geomet-
r1c progression'”. Thus the conclusion that the first 20 to 25
eiqenvectors are almost all true data and that tﬁe ones qreater
than 40 are almost all noise.

After transforming the autocorrelation coeffici;ﬁts at a lag
of one day for each series of time coefficients into Fisher's
Z-statistic® and averaging each Z over the three years, Craddock

and Flood found that the Z-values dropped fairly rapidly and were

e%%—{—f%' where r is the correlation coefficient and s.»’

* 2 = Ylog
distributed normally with a variance of 1/(N-3), where N is the

number of observations.
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extrapolated to be almost sero after eigenvector number ¢0. Since a
low Z value implies a low correlation and hence no harmonics of the
annual variation, they concluded that about 608 of the to;nl variance
was due to baaically annual varfations and 408 to non-periodic pro-.
cessea.

The quality of the data was examined by two methods: calculation
of the cooff}ciontl of kurtosis of the eigenvector coefficients, and
by comparing the original field of January 2, 1963 with the recombined
field ueing eigenvectors from 1 to 49. The first method was applied
to the coefficfynts from the 106-point grid and the years 1949 to
1967. An impossible value {n the coefficient of kurtosis resulted
for a number of ¢harts ahd the authors found major errors in those
charts. The number of extreme coefficients decreaseg with the vears,
however, and none were found in the 1965-1967 data.

Using the comparison method, when 35 eigenvectors were used, ‘
two points Lp~£pe Pacific Ocean were shown to be wrong although the
errors were within three standard doviationl and might have been
hard to find by other means. If only tables of 5S00-b heights were
available and not charts, it may have been difficult to reject
these values. Craddock and Flood tcuirkx "The question of deciding
whether any such feature is rare but genuine, or as usual due to an
incorrect observation, is a matter for human iudgqment in each indi-
vidual case.” ‘
After some comparisons with other work the authors state their

dain conclusfon: “the number of degrees of freedom of the planetary

PL)
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airflow ovesr the Northern Memisphere is somewhat less than %0.°

2.4 Cradddck, J.W, and Plintoff, S, (1970)

Using the same qrid and the same time neriod as Craddock and
Plood (1969), Craddock anq Plintof! analysed with empirical ortho-
qonal functions the 1000-mb heights and the 1000-3500-mb thickness
lines with the objective of comparing the resultant eigenvectors
with those from the S00-mb field as determined by Craddock and Flood.

Although the first eigenvector of the 1000-wmb field accounted
for only 21.6% of the variance, the variance attributed to the first
S0 eigenvectars totaled 93.78. The figures for the thlckno;. lines
were 73.10% and 96.8\, roipoctivoly. A plot of the logarithms of

the eigenvalues of the two sets of data was presented with the values

'of Figqure 10 also shown. Since the two new qraphs likewise became

linear after approximately efigenvector number 50, the authors con-

cluded that as in the 500-mb case, "... the eigenvectors which

represent nothing but noise are those numbered from about 50 upwards.”
Noting that the contours of the first.olqonvoctor of the

500-mb heights and the first eigenvector of the thickness lines were

similar, and that those of the second 500-mb, second 1000-mb and

seventh thickness patterns ware similar, Cra&dock and Flintoff in-

vestigated the possibility ;! representing one set of eigenvectors

in terms of another. Since any eigenvector in one set can be com-

pletely specified by 130 eigenvectors of another set, the authors

tried to determine how well the first SO thickness eigenvectors and
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90 1000-mb eigenvectors could be Johesrated frem the .nul
20 or the firet 30 etlgenvectors of the 300-wd analyels.
Although the firet 20 elgenvectors were not very satisfactory
n r;kcounttm any thickness .or 1000-mb eigenvectors numbe rad
higher than about 15, the firet %0 eigenvectore of the %00-mb
field gave convincing results for the firet 4% eigenvectors in both
the other fields. ‘Table {368 the remainder of the authors’
reaults.
Craddeck and Plin conclude that the use of the %0 300-mb
eiqenvectoks (s very oﬂflc.hnt {n the sense that %0 eigenvectors can

ROore accurately qenerate three 4different f{elds than can the three

best sets of )5 eigenvectors. EBaphasized also was the sdvantaqe of

using Oﬂ..bll(' for three separate fields when all three were be ing

studiad aimultanecusly, o
Data 500-mb 1000~ 1000- 1000-mb 1000-mb
Heighte S00-mb S00-mb Heights Heights

Thickness Thickness

e

presented

1000-mb S00-mb

by so Heights | Lines Heights | neights Y Meiqhts
Eigenvectors

from:

\ Variance

Explained 97.1 960 9s.8 93.7 89.4

o/ .
Table 4. Comparison of variables represented by

eigenvectors generated from the variables themselves

and from other variables.

3!
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L Eusabech, J.F: (AveY) ’ y
Rutshach'e odjective wae the nvudy of the vembined elgonvevtor
tepresentation of annthly mman ses-level preseure, surfece teapere-
ture and precipitation in 43 regions ef Morth Americe fos 2% Janu-
aries and “an examination of their ’(!h' combined representation’s)
Wynaptic consistency.” Aftes a review of Previous work he used
mthod of Lagrange msultipliere 1o derive the theory of empirifal
orthogonal fumctions. Kutshech aleo gave a gecmetsicel intbrpreta-
.~ tion of the gigeavestors Uerived tram o set of dete. °
' Since only ‘;o'qvo mstricee could be diagonalized by the thea
available techniques, & maximm of 2) pointe could be used (f the
required three variables ware to be sseocciated with each point .
The points were chosen to bo near the centere of 2) toughly equal-
area reqions out of a total of 46 covering North America. (The
points are distinquishable {n Piqure 11.) The monthly mean sea-
level pressure, surface teamperature and proclp“auon values assigned
to each point were from the Januaries of 1941 to 1963 and wore the
average of 2 to 5 climstological gtations within each region. The
variables ware normalized, not only to weight each veriable oequally,
but also because the mormalized fields of temperature and precipi-
\r::ton resemble the climstological classifications of below normal,
normal, etc. more closely than the departure fields of those two
variables. -
lu.t:b.ch generated eigenvectors of pressure, which he denoted as

(), temperature m, precipitation (R), pressure and temperature (PT)

40
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and pressure, temperature and precipitation {(PTR). After pointing
out similarities between his T-eigenvectors amd the temperature
eigenvectors of Gilman (1957) and remarking on the similarities of
the‘%ombined and separate representa@ions, Kutzbach commented on
the "synoptic consistency of the departure patterns of the climatic

>

variables in the combined eigenvector representations."
2

Figure 11 shows the first e}genvectors of PT while Figure 12,
those of PTR, where the eigenvectors of P are solid lines, of T
dashed lines and of .R dashed-dotted lines. One "synoptic consist-
ency" is easiiy discernible in Figure 11l. Kutzbach noted that
with a more northerly than "normai" flow from the north-west, a
region of negative temperature departures occurs in southwestern
Canada and the northwestern United States. Other interrelation-
ship; are discussed as well. Thd' author comments that, in general,
the interrelationshipé between the first five eigenvectors of PTR
could be explained synoptically.

Kutzbach also examined the variances explained by the different
eigenvectors, the limitations of the patterns and the time coeffi-
cients of the eigenvectors.

Thé cumulative variances of the different eigenvector repre-
sentations are shown in Table 5. The author noted that in order to
explain a specified amount of variance in a combined representation,
PT or PTR, fewer eigenvectors were needed than thé total number of
separate eigenvectors required to explain the same amount of variance,

and thus he concluded that the_combined representation is more

efficient. Kutzbach also commented that "for a given set of M
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0¥

Figure 1. I'lrst eigenvector of sea-level pressue and
surface temperatureg. The isolings of pressure are the solid
lines, those of temperature are the dashed lipes. Regions

of maxima or minima in the temperatui‘ patterns are
v

identified by stippling or hatching, respectively.

.

(After Kutzbach, 1967)
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Figure 12. First eigenvector of sea-level pressure, surface
temperature’d precipitation.
temperature and precipitation are indicated by solid lines,

dashed lines and dash-dotted lines, respectively.
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Isolines of pressure,

Regions

of maxima or minima in temperature are as in Fiaure 11.

(After Kutzbach, 1967)
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Eigenvectors
P T R PT PTR
Number of climatic ‘
variables specified
at each point J 1 1 1 2 3
Number of points
on map K 23 23 23 23 23
Total number of
variables M,
M=J times X 23 23 23 46 69
Cumulafive per cent of
total variance vk
k
1 36.2 36.4 21.0 28.6 24.3
2 58.7 56.2 34.9 47.8 40.5
3 N 73.0 70.8 46.8- 63.0 53.5
4 79.6 82.6 55.8 72.4 62.0
5 85.6 87.9 63.6 79.4 69.0
6 69.8 83.5 73.0
7 73.5 76.7
8, 79.1 80.0
9 re 83.0
10 85.5
<.

Table 5. Summary of the number of climasic variables and

the total number of variables used in various models (top);

and the cumulative per cent of total variance V

k

explained

by the eigenvectors associated with the k largest eigen-

values of their respective correlation matrices.

Kutzbach, 1967)

(After



variables, the number of eigenvectors required to explain a speci-
fied portion of the total variance is inversely related to the de-
gree of intercorrelation between the M variables."

Kutzbach listed four reasons why difficulties might arise in
interpreting the patterns: the numbor.of observations was small,
the number of points was small; "the distribution of explai;ed
variance using only, say, the first five eigenvectors of PTR is
not uniform from meteorological variable to meteoralogical
variable or from point to point"; and normalization was perhaps
not the optimum weighting scheme. With respect to the last point,
Kutzbach repeated his calculations after first weighting the
variables so that their average variances were equal, and fJund
that the features of the first several patterns were similar to
the previous patterns, though the gradients were greater around
points with larger variances. Q

Kutzbach examined the time coefficients of the PTR eigenvectors
and commented that, since only the first four eigenvectors resembled
the actual observed normalized departure fields, perhaps the higher
order eigenvectors were a result of the orthogonali&y constraint.

He also pointed out that the mean monthly averages are the sum of
many weather regimes and hence more than one eigenvector is needed
in.most cases to represent any one map.

In conclusion, Kutzbach emphasized the interpretability of the
eigenvector patterns of the normalized departure fields and suggested

their use in "...descriptive or diagnostic studies in which the
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interrelationships between fields of several variables are not

clearly understood."”

2.6 Wallace, J.M. and Dickinson, R.E. (1972)

wallace and Dickinson extended the application ofgempirical
orthogonal functions to the analysis of the cross-spectra of filtered .
time saries, a procedure they called “complex eigenvector analysis".
Their aim was. to find "some objective way to define the number of
significant wave disturbances present in certain frequency intervals
and to separate the total disturbance field into individual wave
components".

Since the cross-spectrum contains the power spectrum of each
time series as well as their co-spectra and quadrature spectra,
they also noted that "...this method should fully exploit the sta-
tistical information contained in the cross-spectrum matrix”.

After reviewing the usmal theory of empirical orthogonal func-
tions, Wallace and Dickinson derived the theory of employing the
complex eigenvectors of the cross-spectrum matrix té represent an
augmented time series which was derived from the original data.

The augmented time series, which was complex, was used instead of )
the original data in order to generate time coefficients which were
real rather than complex, and hence facilitate further cross-spec-

trum analysis of the time series. The authors pointed out that the

method used to derive the theory applied only at one frequency and

so, if other frequencies were to be studied, different eigenvectors
[ 4




would have to be qenerated for each frequency, or each froquoncy .
interval. Also mentioned is the need for some form of normalization
if time l.ti.; of different variables were to be analyzed, though
the work of Wallace (1972) seems to indicate that the results ob-
tained are independent of the normalization lcﬁome used.

Wallace and Dickinson also examined the interpretation of the
wave structures represented by the complex eigenvectors. Noting
that some modes can be showrto be statistically significant and
the rest rejected as noise, the authors point out that "statistical
significance does not necessarily guarantee physical significance"
an& that the results have to be compared with results from "synoptic
and/or dynamical modeling studies". If one wave structure were
present, then the first mode should represent all the information
about the wave, with the higher modes representing noise, but {f
two waves were present then complex eigenvector analysis may or may
not be able to separate them, and ordinary eigenvector analysis
would be incapable of detecting one of the waves under certain condi-
tions. In view of the fact that th® results of complex eiqenvectqf
analysis may or may mot be interpretable, Wallace and Dicki;son
looked ?t two situations.

First they asked if it were possible to determine if any wave
structures at all were present in a set of data, in a given fre-
quency band, by the use of complex eigenvector analysis. If the
first eigenvalue turned out much larger than any of the others,
then, Wallace and Diékinson reasoned, one wave structure must sure-

ly be present. Alternatively, if the first few eigenvalues were

<
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larger than the following ones, several wave structures Qay be
present and, in order to separate them, more input paramotorl( .
would likely be required,

The other situation commented on was the testing of hypotheses
concerning wave structures. Wallace and Dickinson infer that it
should be possible to select input parameters which will produce
information about the composition of the waves and hence produce
a means of testing hypotheses.

The authors remark that the selection of input parameters is
important, since the wrong choice may yield wave structures which are
not highly orthogonal and therefore indistinguishable. Orthogonal
wave structures were explained by the following example.

Suppose two superimposed waves, one with a long wavelength,
the other with a ghort wavelength are moving eastward, and the area
of data points is such that it encompasses at least one wavelength
of the shorter wave, yet small enough so that changes in the longer
wave are simultaneous at all stations. If the input parameters
consisted of observations of stations on a north-south line or of
observations of one station at different levels, the two wave
structures would be indistinguishable and hence "the wave structures
would have no orthogonality with respect to this particular set of <
input parameters".

Wallace and Dickinson comment that if an optimum combination of
input parameters camnot distinguish two or more wave structures by
means ‘of complex eigenvector analysis, then any other method would

also fail,



Soma of the problems dealt with by real eiqgenvector analysis
could possibly be better handled by the camplex method, the authors
conclude, since more information is provided by complex eiqenvector
analysis and the information can be limited to one froqu-ncy.lntox—

val.

2.7 wallace, J.M. (1972) ‘q~

As an example of the possible application oY complex eigenvector
analysis, Wallace analyzed data from 12 stations in the tropical
Pacific region for the period July to October, 1967. Using conveg-
tional cross-spectrum analysis the author previously found three -/
distinct disturbances of periods 4 to 5 days: “mixed Rossbysgravity
waves"{ "synoptic-scale, westward propagating disturbances associated
with the intertropical convergence zone", and "synoptic-scale, west-
ward propagating disturbances of subtropical latitudes”.

The available input data consisted of daily values of the
zonal wind component, the meridional wind component, the temperature
at ;he surface and at 22 pressure levels from 950 to 70 millib?rs,
the satellite viewed cloud brightness, the vertically averaged rela-
tive humidity, the total cloud cover, thg‘opaque cloudiness and the
precipitation. The data were normalized to unit variance in the
frequency interval of interest.

Without going into the specifics of Wallace's results, it is
sufficient to mention that the author's conclusions were consistent

with his previous work using cross-spectrum analysis, as well as



with the work of other researchey

soma differencea betwpe

and some

uncer

s using other methods. Moreover,
n early and recent studies were clarified

tainties in the author's past results were resolved.

v



S:Ea CHAPTER )

APPLICATIONS

3.1 Introduction

An analysis of 4 sets of data was performed in order to demon-
strate the use of empirical orthogonal functions in a Canadian
context and to draw some conclusions from the results. The data
include a simple hypothetical wave pattern, ten years of monthly
mean temperatures from Western Canada, ten years of 500-mb contour-
height summer data from Western Canada and the North-wWestern u.S.
and ten years of precipitation data for the same area and boriod as

the 500-mb heights.

3.2 A Simple Wave Pattern

The wave pattern of Figure 13, representing a pressure field
moving from left to right was analyzed for the nine indicated sta-
tions (black dots) and two cycles (24 time units). The input values
were read from the figure rather than calculated.

The first two time functions are plotted in Figure 15 with the
corresponding two eigenvectors shown in Figure 14. These two eiq.r-
vectors explained over 96 per cent of the variance v;th the other 4
per cent being explained by inaccurate readings of values from the
initial data. ‘.

At least two dnclusions can be drawn from this exercise. One .

is that if two time functions correlate fairly highly at some lag

39
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Variation of the Time Punctions

111 . .

(a) (b)
rFigure 14. Efigenvector No. | (a), and eigenvector No. 2

(b) derived from the wave pattern of Pigure 1).

riﬂo 15. Time functions of the oiqonvoctu"

Pigure 14. Time ‘tion No.l and time function

No. 2 are the s0lid and dashed lines, respectively.
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then there 1a ¢ poasibility that oa. typs ,of weve phonamsnon s
boing cheerved. BSuch ¢ carrelation wee attenplted with same of the
later 4ate but vith pour resuits. Another poeeibility fe thet 1f
the two eigenvectors of rlquio 14 represent Pigure 1) then perhape
other eimple patterns lihe those formed by the eigenvectere Lh Pigure
14 may oniat and can afd in the Ldentification of sume predom|nggt
yeot not chbwious phenomench. PFor emasple, If & set of dats praduced
sOme eigenvector pattern, say & eeries of paraboles, and (f & com-
pletely Jifferent set of data produced the uﬁ parebnlias, then
perhaps the same sort of structure may be preeent and observed in

both sets of data.

).) Ten Yegre of Monthly Mean Temperatures

tenperatures wore entrgetad for the twenty=five

stations Pigure 16 for the yeare 196) to 1972, inclusive.

2

The veria 17, and msans., Fiqure 18, show the expected
spatial distributions:; variances lowest along the cm. then in-
creasing inland, while the means exhibit their Custamary negrth-
south gradient with an easterly tilt due to oceanic effects.

The twenty-five eiqenvectors were calculated after the neans
were removed as well as all the time coefficients. The first five
eigenvectors are displayed in Pigures 19 through 2) and the first
three years of the first three time coefficients are qraphed 1‘
Figure 24. Pigures 2% to, 28 show the periodograms of the first
four time functions. Also, Table 6 shows the contribution of each

eigenvector to the total variance.
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-Figure 16. The 25 stations used in Qhalyzing

10 yrs. of monthly mean temperatures.

43



*
Figure 17. Variances of monthly

. 2
mean te’)eratures ir ‘JOF) .
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Figure 18. Means of monthly mean temperatures in ©F.
)
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2
Figure 19. Eigenvectaor No. 1 of the temperature data. (x10°)



Figure 20. Eigenvector No. 2 of the temperature data.

(x102)

4?7
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(xlOz)

Eigenvector No. 3 of the temperature data.

Figure 21.




Figure 22.

Eigenvector

No. 4 of the temperature data.

49
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(x102)

Eigenvector No. 5 of the temperature data.

Figure 23.
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Kigenvector Pei (ent Cumulative
usber var {anoe Variance
#é ) .4 .4
P .0 0.4
) 0.6 9.0
I} 0.9% )
L] L) 0.3 9.9
[ 0.1 9.6
’ 91 9.7
. 0.} 9.8
v 0.1 99.0
10 0.0 9.0
11 0.0 99.9
14 0.0 9.9
33 0.0 .9
14 0.0 9.9
19 0.0 .9
16 0.0 100.0
» 17 0.0 100.0
18 Q.0 100.0
19 0.0 100.0 *
20 0.0 100.0
21 0.0 100.0
22 0.0 100.0
2) 0.0 100,0
24 0.0 100.0
29 0.0 100.0 ,

Table 6. Variances and cumulative variances explained by 6 o
ey
successive sigenvectors of the monthly msan Wratu‘

L)

s N “{ ' '.

The first o'tq;nnctor, rigure 19, closely resembles the variance
map. Such a similarity was polnted out previously by Craddock and
Flood (1969). This eigenvector accounted for ovor'?_s per cent of
the total variance and its associated time function exhibited a
stronqg yearly cycle as shown by the periodogram of Pigure .

The second eigenvector, Pigure 20, contributed only 2 per cent

to the total vagédance, but its time function exhibited some
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interesting properties. First, the periodogram of the time function

(Figure 26) indicates a strong yearly variation coupled with a

»

weaker six-month variation which is unusual and not easily explained.

Second, the eigenvector pattern has a zero line running from the

3

north-west to the south-east which means that for part of the year

~

this eigenvector raises/lowers temperatures towards the north-east
and lowers/raises them towards the south-west by about lOoF.

Eigenvectors No. 3 and 4 do not seem to show any readily recog-

ef .
nizable features although, the time function of eigenvector No. 4

shows a strong semi-annual variation. Eigenvector No. 5, although

-

explaining only 0.2 per cent of the variance, bears some discussion

since it could possibly be representing a real phenomenon. Although
>
the network of stations is not dense enough to allow any definite

conclusions, it appears that the trough at the top of the pattern
A

almost exactly follows the MacKenzie River. Considering the signs
of the eigenvectors, the temperatures along the river are a bit
higher when the temperatures to the east and west are lower, and are
lower when the temperatures to the east and west are higher, anywhere
from less ghan a degree to about IOOF. If, indeed, this is the case,
then the é;oblem of what is to be considered as noise and what is to
be be considered as "real" must be re-examined, since even with 99.5
per cent of the variance exﬁlained,real processes might be rejected.
The eigenvectors and time fpnctions were now recombined in

order to examine the errors that would result if not all the functions

were used. When only the first eigenvector was used 113 errors
S——

resulted that weré greater than 10°F, 20 that were greater than 15°F
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and one a maximum of 22°F. Using two components, explaining 98.4

per cent of the variance, only 19 errors greater than 10°F were

o [
produced, with one err 15"F. By the tenth component, ex-

plaining 99.8 per ce . e variance, there were 38 errors over
2.5°F, none‘being more than 4°F.

If these errors are assumed to be "noise", possibly caused
by faulty data handling and tabulation, rather than actual anomalies,
then orthogonal functions are ideal for storing these sorts of
climatological data. Instead of storing ten years x twelve months/
year x 25 values/month = 3000 values, only the eigenvector matrix of
10 x 25 = 250 values plus the first ten time coefficients of 1200
values need-be stored, resulting in a saving of space of over 50 per
cent. As more data are gathered, only the time functions need be
stored as the eigenvectors are not expected to change, so that the
percentage of storage space saved increases with time.

The critical question still remains: what if the 6ext eigen-
vector represents a real phenomenon? If data storage by use of
eigenvectors were to be adopted then any data assumed to be noise,

ﬂ

correctly or incorrectly, would be irretrievably lost.

3.4 Analysis of 500-mb Heights during the Summer Months

For this study nineteen stations (shown in Figure 29) were
- .
chosen in western Canada and the north-western United States. The

stations were far enough.apart so that there would be no redundancy
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of data, yet close enough together to possibly permit study of
smaller-scale effects. The 500-mb heights were obtained from the
00002 and 1200Z radiosonde reports for each déy from May 1 to
September 30, for the year 1963 to 1972, inclusive

Figure 30 shows the mean 500-mb field, with the gradient
being in the ex;ected north-#outh direction. The variances a;e
presented in Figur; 31. An interesting note is that the minigum
variance occurs to the west of the Rocky Mountains while the
maxima appear to be in the Gulf of Alaska and to the north-west of
Manitoba, perhaps over Hudson's Bay. The isolines of variance
shown by Craddock and Flood (1969) run almost.perpendicular to those
of Figure 31. This may be caused by either the difference in data
(craddock and Flood used 500-mb heights for the full year) or by
the coarse grid of Craddock ;nd Flood being unable to pick out
what may be an anomaly.

The means were removed and the data were analyzed as before.
Table 7 shows the contribution of each eigenvector to the total
variance.

Figure 32 illustrates eigenvector No. 1 and shéws a positive
or negative addition to the mean field, depending on the sign of
the time function, centerea in southern British Columbia. Its
associated time function is plotted in Figére 33 for two years:
it appears that jt ;ay be part of a yearly cycle. Eigenvector No. 1

®

is peculiar fq”t&o;reasons; it shows little resemblance to the

variance fielJ of Pigure 31 and it shows little resemblance to

60
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<
[ Eigenvector  Per Cent Cumulative
Number Variance Variance
1l 57.4 57.4
2 16.3 73.6
3 12.2 85.8
4 5.5 91.3
5 2.7 93.9
6 2.1 96.0
7 1.1 97.1
8 0.7 97.8 v
9 0.5 98. 3
10 0.4 98.6
11 0.3 98.9
12 0.3 99.2
13 0.2 99.4
14 0.2 99.5
15 0.1 99.7
16 0.1 99.8
17 0.1 99.9
‘ 18 0.1 99.9
19 0.1 100.0 N

Table 7. Variances and cumulative variances explained by

successive eigenvectors of the 500-mb heights.

eigenvector No. 1 of Craddock and Flood (see Figure 93).

Eigenvector No. 2 is displayed in Figure 34, It shows a strong
north-west to south-east gradient with a larger bositive/negative
contribution in the mid-northern United States. Eiqenvector No. 3,
Figure 35, shows an almost perpendicular gradient to that of eigen-
vector No. 2 with a positive/negative addition south-west of Van-
couver Island, and a ne;ative/positive addition over northern
Manitoba. Eigenvector Nos. 4, 5, 6 and 7 are presented in Figures

36 to 39, inclusive.
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Eigenvector

Figure 35.

3l of S00-mb fleld.

No .

(x 102)
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Figqure 36.

Eigenvector

4 of 500-mb field.

No.

(x 10%)
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The time coefficients in themselves were not p::;IEEparly

fnteresting. However, an attempt was made to discover any wave- b
type phenomena as in Section 3.2 by cross-correlating the first
ten time functions using lags from -30 to +30 days. The results
were disapg;intinq, with a maximum correlation coefficient of
approximately 0.3. Hence no further investigations were carried
out in this direction. . .-
The only practical use Jl onpirj} or arl funccxonl
mentioned so far was the possibility of edd 1ca11y storing climat-
ological variables. Another use of these functions, pointed out by T
Ccraddock and Flood (1969), concerns the detection of errors in the
data.
As suggested by Craddock and Flood the c icients og kurtosis

were calculated for the first eight time coefficients. Even with a

few boguﬁ values placed in the data no guspicious values for the
']

-

Ne‘xt' the first eight eigenvectors, accounting for 97.8 per cent
of the vaéiance, were combined with ‘their time coefficients and the
results were compgred with the ihput data. Djifferences greater -
than 50 gpm. were Whecked against the otiginai radiou;nde reports
and o} the 390 values chacked, 5ll,t:ors ucrévfound and correctéd.
Combining nine eigenvectors and their time functions, as derived
from the corrected data, 290 differences greater than 50 gpd. were

-8
tofind with 13 errors being detected and corrected.

9

Using the same eigenvectors as calculti;od‘ trér t‘\n yeags o

-

-
. . A 2 e ii
a ) . i

Id

. "“ L Y .



Eigenvector var. Explained Change After
Number (with Errors) Errors Removed
{ 1 57.398 +0.043
2 16.267 +0.016
3 12.205 +0.003
4 5.460 +0.005
- S 2.671 +0.007
6 2.068 -0.003
7 1.142 -0.003
~ .8 0.653 -0.003
9 0.476 -0.009
10 0.358 -0.003
1 0.276 -0.007
12 0.266 -0.003
13 0.154 «0.010
14 0.150 -0.006
* 15 0.129 -0.005
16 0.105 -0.007
17 . 0.086 -0.005
18 0.081 " =0.002
. 19 0.057 -0.005

Table 8. Changg'in the variance explained by successive

eigenvectors after remozP1 of errors from the 500-mb field.

' . .-
1963 to 1972, the time coefficients for an independent sample from

1973 were computed. utilizing the first eight eigenvectors to
check for errors, nine were found out of a total of 57 differences
greater than 50 gpm. .

An interesting result of the removal ef the errors was that the
amdunt of variance explained by the lower-numbered eigenvectors
increased while that 'xplainpd by the higher-numbered eigenvectors

i .
decreased a:\shown in Table 8. The dkfferences, though small,
support the contention that the highet-nunhcred eigenvectors are

———

most 1likely nothing but nBise. There were also slight changes

in the eigenvectors themselves, qsyginq from 0.005 per cent for

-

4 .
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eigenvector Nd. 1 to over 6 per cent for number 8,

Empirical orthogonal tu;ctiona thus appear a good tool for
error detection in some of the data but,®nfortunately, they have
their limitations. Even with over 97,8 per cent of the variance
explained, over 10 per cent of the recombined values had differences
of about 10 per cent from the sample values. Certainly some of

these differences were introduced by instrument malfunction when

recording the raw data, and in the subsequent handling of the -

data, but some of these differences must have been caused by real

processes. .

This whs evidenced by studying the difference fields and noting

)
in some plgces, the errors tended to clump in groups. By

iinq 500-mb maps on the corresponding days it was found that a
shdden low or small trough moved through the northern United States.
This further points out the problem of where to draw the line in
an eigenvector representation, since to O‘gcard eigenvectors
higher than number nine .would have meant filtering out a real
phenomenon. Perhaps one of the higher-numbered eigenvectors
could have helped to explain most of the differences caused by
these gudden lows.

Two other investigations were carried out, using only one
value per day, and using only two zsprs of data. Utilizing one
value per day, the first eight eigenvectors stayed the same‘with‘
approximately the same amount of variance explained by each, in-

dlcating perhaps that the first eight represent a time
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Eigenvector Per Cent Cumulative
v Number Variance Variance
1 26.0 26,0
2 15.7 41.7
3 7.9 49,6
4 5.8 55.3
) 5.7 61.1
6 5.1 66.1
7 4.5 70.6
8 » 3.4 74.0
9 2.9 77.0
' 10 2.7 79.7
11 2.5 82.2
12 2.4 84.6
13 2.1 ¢ B6.6
14 2.0 88.6
15 1.8 90.5
6 1.6 92.1
7 1.6 3.6
18 1.5 95.1 @
19 1.2 96.3
20 1.1 97.4
', 21 1.1 98.5
Y 22 0.9 99.¢
23 0. .0
r).‘ 6 JOO

. Table 9. Vd‘!ances and cumulative variances explaimed by
e ]

success‘e eigemwectors “‘ the precipitation data. .
’. .
. - fa &
. a .
scale greater than 12 hours. Using two years of data resulted in
&
the first four eigenvector patterns being almost identical to the
first four derived from ten years of data, indicating that g

» .
first four rearount .some basic deviations from the mean inherent

in the 500-mb field during the summer. ‘

3.5 Analysis of Precipitation

Using 23 stations almost entirely in Alberta, eigenanalysis

® .
was performed on ten years of 24-hourly precipitation data cor-

- )
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rolpondLﬁq to the datgp of tho"nalylil of the 500-mb heights. Table

9 shows the variances explained by the various ‘gonvoctor-.
Day-to=day variations in precipitation toﬁd to be very

erratic. This was evident in the low amount of variance explained

by t?o lower-numbered eigenvectors as well as by the irfeqular

ti-‘icoofficientn. Detailed analysis might havc produced some

ugeful results, but such further work was not carried out.
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CHAPTER 4 '
' CONCLUSION
v . .
*
4.1 Comments and Considerations for Future Work » ¢ e '

-
!iqenm‘lysis is a means of recording data with relacy.u

large sa\‘/inqt in the space roquireﬁ\for storage. Problem-.l;iu
lbocauu of the possibility of filtering out not only noise (which
is desirable) but also'real physical occurrences. Before any use
is made of eiqmvectog‘!:r this purpose, more work must be carried
out on where the line ‘oulg be drawn between noise and real data.
One corollary of the above problem is that if the higher num-

-»

”»
bered eigenvectors 4o not represent Pandom variations or errors,

then by studying tpese patterns an ’i‘ht may be gained into
v

uhusual or rare phenomena. . ) ¢

A problem arises also with the first eigenvector pattern and -

its similarity to the variance map, exce in the one case of theq ‘.-

500-mb field. If t{\e data are analyzed mtthout removing the means,

the first eigenvector will represent the mean field. 1If the means ]
are removed and®the variances are not removed through normalization, . \‘
then the first eigenvector will resemble the variance field. 1If - ‘

two or more different variables are to hg analyzed then normalization

is a must. It is the opinioh of this author that norMmdization

»

should always be carried out when eigenanalysis is performed no

wh



eigenanalysis should prowe one of the best methods of filling in

matter how many variables are a‘&kyzod.

Error detection played an f{mportant role in this paper and
empirical orthoqonal fumttions showed a real application in the
detection of false valu..\‘pﬂf?’ $00-mb hqiqghts. Out of a total
of about 600 possible .rrorl- checked, 34 faulty values were dis-
covered. Whether or not these were all the errors in the data is
difficulq.to Atermine since thbre may have been erronecus values
in the original data and also the 3060 values were not verified,
but if there were only 34 .r£0tq then verifying 600 values seems
much easier than verifying ovorVEQOO. )

An unde;q&anding of.the ct;;;vecggr]patESEni it necgssary ip .
order tg lend some "re;lit;" when working with them. Interpretation
has always ﬂ'.n a problem and §no possible investigation which may
olucidat; their meaning would be to combine each eigenvector sep-
arateiy with the mean field and display the results on.a screen as
a "movie". The cumulative patterns could also be displayed: the mean
field plus eigenvector No. 1, then the mean field plus eigenvector
No. 1 plus eigenvector No. 2, etc.

Because data collecting points are seldom on an evenly spaced
grid, empirical orthogonal functions ease analysis since the spatial‘
distribution of stations need ndi be regqular. This could also be
important where a large-scale flow is required, say over mountains,
with studies being conducted in a smail area on the lee side.

If many values in a long series of observations of a fairly

smooth variable [not as discontinuous as precipitation) are missing,

78
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these spaces, since the values computed will be derived from the past
and future history of the vnrhplo, not climatologv, persistence,
etc. PEmpirical orthogonal fungtions may also prove to he efficient
in interpolating and axtrapolating variables both {n time and space.
In the solution of differential equations where the qrid‘cs
not encompass the earth but rather where there are boundary condi-
tions to contend with, eigenanalysis may offer a better scheme for
filling in these values than, s.iy, assuming steady state conditions.

For exqmple, if the equations of a weather p»diction model were

boinr; solved numerically on a grid encompassing Alberta and one of

’

the parameters was the 500-mb field, then using the mean field »

plus eigenvector No. 1 would give a more realistic picture of the
pattdrn at the boundaries than, say, the mean field alone. ¢ L d

tne brightness of clouds as obtained frof® satellite images is
affected across each scan py both the angle of the sun from the
zenith and the position of She satellite, as well as whether the sa-
tellite is scanning towards the sun or away from it. The problem
of correcting for this ba- so far not been solved satisfactorily,
but if many satellite images were to undequo eigenanalysis, then
possibly a matrix of correction values could be obtained in order
to compensate fol these d{fferences in brightness.

One of the most promising developments im the uge of empiri-
cal orthogonal functions appears to be in complex eigenvector ana-
lysi‘l as shown by Wallace and Dickinson (1972). By utilizing the
cross-spectrum matrix instead of the covariance or cross-correlation

matrix information is obtained about both the phase angle and the
N

pv]

[

. F’

A"
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amplitude of the correlation hetweeh different variables. One une
of complex eig#nvector analysis was shown by wallace (1972) and
many other applications are feasible such as the analysis of
micro-meteorological variables. since cross-spectrum analysis
®is often performed on data observed close to the ground (and
these Measurements may involve variables such as amoufit of pol-
lutants), complex eigenvector analysis seems ideal in aiding 1in
the study of the correlations, b@h in amplitude and phase angle,
of these variables.

4.2 Concluding Remarks

Empirical orthogonal functions have seen little use in meteor-
ology primarily because eigenanalysis is relatively unknown. Also,
® .

1n the study of different variables and how théy interact, dynamic

v

procedures are favored over statistical ones. The equations of

meteorology are complex and at present ungolvable analytically: Y

-

not even all the physics of the atmosphere is clearly undefschd. .
. .

Statistical methods have the advantage of taking a set of numbers
representing variables and analyzing them in a way that perhaps
sheds some light on the actdil dynamic processes, thus paving the

way for comprehending sme of the phenomena which are not now
A}
apparent.
L)
The use of eigenvectors and their associated time coefficients
.

may be just such a statistical method for unravelling some of the

interrelationships of different meteorological variables though muap

pore basic work must be done in the understanding of these Creatures.

-
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APPENDIX |

A BRIEF SUMMARY OF
T

LORENZ'S DERIVATION OF EMPIRICAL ORTHOGONAL PUNCTIONS

If the set of M variables to be analyzed is represented by
pl(”""PN(t)' observed at the N times tl""tN then the total

variance of the variables can be written as:
" e———
V-z p'2 S §
n
me)

where the star indicates departure from the mean.

- ry

17 14 ql(”""qx(t) be any K quantities such that K 1s less
than M and let K oo

. - LN )
patt,) E U RO .2

where the Yem °F° chosen to minimize the error r.(t‘) for esch

m and hence to minimize the total "unexplained” variance R, /v\

. <
R-z r: ... 3
=l ' ' 3
Once the y _ are chosen, the q, have tc be picked so that . .

the minimum value of R is minimized and the quantity (V-R)/V
becomes the fraction of the total variance which cqn be represented

by the X quantities.

Ey
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APPENDLY 11
L

» -

AN INTRODUCTION TO PERIOCDOGRAMS

Y

Any variable p(t) cen be expressed as ‘ er series as

followe: ’
a0
p(t)no/z . 2 (lnooo(zmt . bnltnlzmt/‘r))...l

nel

with Octc?
where T is the lenqth of saspling.
If p(t) is sampled at uniform intervals tt then equation 1

becomes: "

p(t)-lo/J 4 z (nnCOO(Zont/T) + bnlln(2.nt/1‘))...2
nel
L

with NeT/ (ti:)-tl) '

and the coefficients - and .n are dcto&)inod by,

N
a -(2/1')2 p(t )cos(2ent /T) S |
n =1 i i
- “ * R
: b_=(24T) & p(t,)sin(dwnt, /T) .4
n 1=l i i

2, b: versus the period T/n is called a

2
The plot of .n' .n
periodogram and gives an indication of the contributiom of each

perio@ %/n te the total variance of p(t).
T R .. o
0 '.“,ﬁ:“ .. v e ’ y .

. !

‘.



° X

. . .
P.(‘, .;‘ YuQ (t) v"‘

where 'h %(t) 419 chosen such that
2 Y-y o} ..
-l Rm i@ Ry
L]
and nthO .‘I.’ .6
. where a.z .lull 0.

Theoe Q°'s satisfy the requirements for the q's and (t can

alsc be shown that

V-(X/I)z N ' ...7~

: k=l

and V-Re (1/%) 2 a8
ke)

[ 4
The 0°‘s are the same as thoee in Chapter 1 while the Y'e
are the same as the X's. Proofs of these results can be found
(Lor

in Lorenz's paper. o 1956)
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APPENDIX III !
|

A LISTING OF THE SUBROUTINES USED TO FIND

THE EIGENVECTORS OF A REAL, SYMMETRIC MATRIX

”
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