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Abstract When working with contemporary spatial ecological datasets, statistical
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models with the flexibility to accomodate directional patterns of anisotropy; and

(II) the computational effort demanded by high-dimensional inverse and determinant

problems involving the covariance matrix ®+ . In the case of rectangular lattice data, the

spatially separable covariogram is a longstanding but underusedmodel that can reduce

arithmetic complexity by orders of magnitude. We examine a class of covariograms

for stationary data that extends the separable model through affine coordinate trans-

formations, providing a far greater flexibility for handling anisotropy than that offered

by the standard approach of using geometric anisotropy to extend an isotropic model.

This motivates our development of an extremely fast estimator of the orientation of

the axes of range anisotropy on spatial lattice data, and a powerful visual diagnostic

for nonstationarity. In a case study, we demonstrate how these tools can be used to

analyze and predict forest damage patterns caused by outbreaks of the mountain pine

beetle.

Keywords bisymmetry · covariogram · geometric anisotropy · lattice · separable

covariance

1 Introduction

In the analysis of large scale spatial ecological data, researchers frequently encounter

special statistical challenges that preclude the use of more traditional models. Ex-

amples include incomplete data (Nakagawa and Freckleton 2008); extremely large

datasets (Simpson et al. 2012); complex dependencies among model residuals (Leg-

endre 1993); an inability to replicate measurements; and complex underlying ecolog-
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ical systems that obscure the relationship between covariate and response (Inchausti

1998).

A large number of spatial regression methods have been developed to address

these challenges, including generalized least squares (GLS), the autoregressive model

family, generalized additive mixed models, as well as fully Bayesian approaches. In

fact some authors (eg. Beale et al. 2010; Hawkins 2012) suggest the sheer diversity of

methods in the literature and resulting paralysis-by-analysis has been an impediment to

the widespread adoption of spatial techniques by ecologists. A framework that is both

immediately intuitive and easy to implement will therefore be useful to researchers

outside the field of statistics.

We believe the geostatistical approach is appropriate for this role. Geostatistics,

whose name reflects early origins in the mining industry, has over time grown into a

quite general and mature spatial statistical framework (see eg. Cressie 1992; Baner-

jee et al. 2014). Its theory is built from regionalized random variables / (®B) whose

properties depend on a location index ®B that varies continuously through some spatial

domain D. Covariances among the = sample points / (®B8) are explicitly specified by

the covariogram (also known as a covariance function or kernel), which maps coor-

dinate pairs ®B8 , ®B 9 to the entries of the = × = covariance matrix ®+ . In applications,

covariograms that decrease with separation distance can serve as convenient models

for data exhibiting spatial autocorrelation (SAC).

While this transparent representation of covariance has intuitive appeal, it can

lead to computational difficulties with large sample sizes (=), owing to the O(=3)

complexity of important matrix computations involving ®+ (Simpson et al. 2012). If,
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however, the sample sites form a rectangular lattice, the structure of ®+ can often be

simplified and these computational difficulties largely avoided. Such sampling designs

are increasingly common in ecology today with the widespread adoption of remote

sensing methods (Wulder et al. 2006).

Computational shortcuts relying on a gridded layout of sampling locations, such

as Kronecker product decompositions of ®+ for separable models (Martin 1979), are

often tailored for the parsimonious scenario of isotropic and stationary covariance

– ie. where the covariance structure lacks directionality and location-dependence.

However, departures from isotropy and stationarity are the norm in ecological data

analysis, particularly when the model covers large geographical areas (Dale and Fortin

2014). Some of this may be due to unaccounted-for trends, which can be remedied

by improving the mean model. More commonly, however, they are an important

and intrinsic feature of the error-generating process, such as dispersal (in models of

ecological populations). This demands a refinement of the covariance model.

Geometric anisotropy, in which a transformation ( ®�) of coordinates deforms the

circular contours of an isotropic model, is one of the more common refinements

for introducing directionality into covariograms. However, this characterization of

anisotropy has several drawbacks. It requires a rather inflexible assumption that ®�−1

produces an isotropic covariance function (ie. contours of constant covariance are

assumed to be ellipses). Sill anisotropy is therefore neglected (Zimmerman 1993).

Moreover, in practice, the angle of anisotropy is unknown, so it must be somehow

inferred from the data. Finally, by transforming the coordinate system of a separable
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covariogram, one typically loses the Kronecker product structure in ®+ that would

otherwise be exploited for computational efficiency.

In this paper, we explore the problem of introducing anisotropy (both range and

sill) into separable covariance models using the transformation ®�. This leads to a fam-

ily of covariograms with improved flexibility for handling departures from isotropy,

compared with the standard approach of geometric anisotropy. We show how a care-

ful subsampling of gridded datapoints allows modellers to retain the computational

advantages of the Kronecker product under a rotated coordinate system. This is crit-

ically important in applications, as it allows the covariogram to be applied to large

and/or densely sampled geographical areas, wherein the sample size of the gridded

survey is too large to (feasibly) use standard O(=3) complexity techniques for variable

selection, model fitting, prediction, etc.

This idea leads to a novel and fast estimator of the direction of range anisotropy

in geometrically anisotropic data. By applying this estimator in a blockwise fashion

to spatial data, we show how the (computationally fast) separable covariogram can

be repurposed as a graphical tool for studying nonstationary covariance structures.

Though we emphasize ecological data and SAC, the computational simplicity of these

models makes them attractive in broader applications.

1.1 Why model spatial autocorrelation?

SAC describes the extent to which the random components of measurements that are

near in space tend to be more (or less) similar than expected for a spatially distant

pair. This phenomenon is extremely common in ecological studies, where the data-
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generating process is often driven by environmental factors shared among nearby

sites, and/or demographic processes intrinsically tied to distance, such as aggregation

or dispersal (Beale et al. 2010).

It is widely accepted that neglecting SAC (in favour of an independence as-

sumption) amounts to pseudoreplication, and leads to precision issues for inference

(Legendre 1993). Though some authors dispute the importance of this misspecifi-

cation, it is clear that SAC should be examined in the course of model development

(Keitt et al. 2002). Examples from our research area include Klutsch et al. (2009), who

used SAC as a model diagnostic in a study of environmental predictors for outbreaks

of the mountain pine beetle, and Robertson et al. (2009), who improved their outbreak

model with a simple SAC model.

The autocorrelation patterns themselves are sometimes of scientific interest. For

example, Aukema et al. (2008) used nonparametric covariance functions to study how

spatial synchrony drives different stages of beetle outbreaks. SAC may illuminate

features of the underlying ecological system that generates a dataset. We will touch

on this idea in a case study of beetle outbreak data in Sect. 4.

1.2 Covariograms in practice

In explicit covariance models, all =2 entries of ®+ must be specified, of which up to

=(=+1)/2 can be distinct (by symmetry). Since these values are typically unknown, ®+

is constructed using a parametric covariogram 2 : (®B8 , ®B 9 ; ®\) ↦→ Cov
{
/ (®B8), / (®B 9 )

}
,

and the parameters ®\ inferred from the data.Many functional forms have been proposed

for 2, but some care is required to ensure a well defined distribution (Guillot et al.
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2014). In particular 2 (and ®+) must be symmetric and positive definite (SPD). The

reader is directed to Roberts et al. (2013) for a discussion of design principles and

admissible forms for 2.

In spatial ecology, modellers tend to choose covariograms that are a functions of

separation distance 38 9 = ‖®B8 − ®B 9 ‖ only, ignoring directionality and position. This

reflects the assumption that the / (®B8) are drawn from a second-order stationary (SOS)

and isotropic random field (Chen et al. 2019); that is, the covariance structure is

invariant to translations and/or rotations of D. A popular example is the Whittle-

Mátern (WM) covariogram which, in 2-dimensional (2D) space, can be written:

2
(
38 9 ;f, _, a

)
= f2

(
21−a/Γ(a)

) (
2
√
a38 9/_

)a
�a

(
2
√
a38 9/_

)
, (1)

where �a is the modified Bessel function of the second kind of order a. Figure 1

(top-left) illustrates the type of spatial patterns generated by theWM.This covariogram

hasmany names, andmany desirable properties, as chronicled inGuttorp andGneiting

(2006). Given its ubiquity and importance in statistics, we will make use of the WM

later on as a reference model for generating data in our simulation studies.

Isotropy is however seldom justified, except as a means to a parsimonious model.

A more robust model should allow directionality, and one of the simplest ways of

building this into a covariogram is to assume geometric anisotropy. This extends the

isotropic SOS covariogram by applying an affine transformation ®� to the coordinate

system, andmeasuring distances by 38 9 := ‖ ®�(®B8−®B 9 )‖. In 2D, ®� can be understood as

the product of a diagonal scaling matrix ®((BG , BH), and a rotation matrix ®'−U: Circular

contours of constant covariance get mapped to ellipses whose axes are stretched by
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Fig. 1 Examples of covariograms in 2D illustrated by heatmaps of the correlation with the central point.

The two leftmost panels illustrate isotropy (top) and geometric anisotropy (bottom). The others illustrate

separable (top) and rotated product (bottom) covariograms, as introduced in Sect. 2.1-3. The two rightmost

panels are examples of separable kernels fitted in simulations in Sect. 2.2, 3.3

factors BG , BH , and which are oriented along the counterclockwise rotation of the G, H

axes by angle U. Figure 1 (bottom-left) illustrates the resulting pattern of SAC.

1.3 Computations with covariance matrices

Among the simplest implementations of the covariogram in regression is GLS. This

extends ordinary least squares (OLS) on the residuals vector ®/ , when ®+ is given. The

model is:

®. = ®V ®- + ®/ where E
(
®/ | ®-

)
= ®0 Cov

(
®/ | ®-, ®\

)
= ®+ ( ®\) (2)
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GLS uses the Cholesky factor ®! of ®+ to define a transformed response ®̃. = ®!−1 ®.

for which the problem of estimating ®V reduces to OLS. However since ®+ is seldom

known, a parametric form ®+ = ®+ ( ®\) is often proposed, and ®\ estimated by numerical

likelihood maximization. For example, when / is multivariate normal (MVN), we

minimize:

− logL
(
®\, ®V | ®-, ®. = ®H

)
∝ log | ®+ ( ®\) | +

(
®H − ®V ®-

)∗ ®+ ( ®\)−1 (
®H − ®V ®-

)
. (3)

Note that here (and throughout the paper) we use an asterisk to denote transposes.

When = is large, evaluations of (3) can be computationally demanding because

®+ ( ®\) is usually dense, and analytic forms for ®+ ( ®\)−1 and | ®+ ( ®\) | are rarely available.

Thus each time the optimizer adjusts ®\, it must solve a factorization problem with

arithmetic complexity O(=3). This problem arises in universal kriging interpolation

methods (Simpson et al. 2012), aswell as inmore sophisticated extensions ofGLS such

as spatial generalized estimating equations (Dormann 2009); spatial generalized linear

mixed models (Heagerty and Lele 1998); and Bayesian MCMC based techniques

(Banerjee et al. 2014).

The autoregressive model family (CAR, SAR) avoids this problem by defining

®+ implicitly. A weights matrix is used to specify partial correlations rather than

covariances, thus constructing the precisionmatrix ®+−1 directly. Ver Hoef et al. (2018)

and Beale et al. (2010) make compelling cases for the autoregressive approach. There

are drawbacks, however. The implied correlation structure in ®+ is often unclear (Wall

2004); and some unintuitive restrictions on the weights are required to ensure a valid

joint distribution for ®/ .
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Authors preferring the more intuitive covariogram approach have developed var-

ious structured forms for ®+ that avoid the large-= difficulties (Banerjee et al. 2014,

chap. 12). These include Gaussian predictive process models (Banerjee et al. 2008),

approximate likelihood (Vecchia 1988; Stein et al. 2004), fixed-rank kriging methods

(Cressie and Johannesson 2008), kernel convolution and stochastic partial differential

equation based methods (Simpson et al. 2012), as well as low-rank or sparse approxi-

mations of ®+ (Ambikasaran et al. 2016), such as covariance tapering (Kaufman et al.

2008). Following Genton (2007) we will be interested in the highly patterned forms

of ®+ generated by a separable covariance model.

1.4 Paper outline

We begin with a review of separable covariance structures in Sect. 2, demonstrating in

a simulation study their flexibility as surrogates for more common isotropic models.

In Sect. 3 we propose a broader class of covariograms incorporating range anisotropy,

and use them to develop a novel estimator of the angle of geometric anisotropy.

Sect. 4 demonstrates themethod on a spatial ecological dataset, to reveal nonstationary

patterns of covariance in mountain pine beetle damage patterns.

2 Covariograms on the rectangular lattice

A randomfield is called SOS (or weakly stationary) when its covariogram has the form

2(®B8 − ®B 9 ; ®\), and the data are detrended (E {/ (®B8)} = `), for all ®B8 , ®B 9 ∈ D (Cressie

1992, sec. 2.3). We focus on the application of this model to 2D lattice data, where
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the random field has been sampled at a fixed set of locations G ⊂ R2 that together

form a spatially regular =H × =G rectangular grid (with sample size = = =G=H).

For notational convenience we assume that ®/ := {/ (®B1), . . . / (®B=)}∗ is in column-

vectorized order, so that Vec−1=H
(
®/
)
recovers the natural =H × =G matrix representation

for the data (ie. as a raster image). This ordering introduces computationally useful

patterns in ®+ . For example, in an important early paper, Zimmerman (1989) showed

that for SOS models on G, the covariance matrix ®+ is block-Toeplitz with Toeplitz

blocks (BTTB). He concluded with an algorithm that reduces the O(=3) arithmetic

complexity of solving ®+−1 by a factor of =G . Dietrich (1993) subsequently showed that

the Cholesky factor of ®+ can be computed for the same complexity cost, providing a

shortcut for the determinant and quadratic form in (3). In a similar vein, Jun and Stein

(2008) showed how, for axially symmetric processes, the SOS property introduces a

block-circulant structure which can be exploited using the Discrete Fourier Transform

(DFT) to reduce the complexity of factorizations by a factor of (=G)2.

In the appendix (Online Resource 1), we show that a related property, bisymmetry,

can be exploited to directly block-diagonalize ®+ into a pair of =/2-dimensional blocks,

thereby reducing algorithmic complexity by a factor of four, while avoiding potential

issues of numerical rounding errors associated with FFTs and Cholesky factorizations.

However, with large enough =, constant factor improvements like these are of little

consequence (numerical stability notwithstanding) and even the O(=G) and O((=G)2)

improvements of Dietrich (1993) and Jun and Stein (2008) may be inadequate to

make computations feasible. In that case we suggest that modellers consider an a

priori assumption of separability in order to exploit computational efficiency in the
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well-known algebra of Kronecker products (Van Loan 2000). In Sect. 2.2 we provide

some justification for the robustness of these models and in Sect. 3 we extend them to

include a parametric model for anisotropy.

2.1 Separable SOS covariograms

The idea of separability is to disentangle the G and H component distances by applying

1D covariograms (say 2G and 2H) to each component separately, before taking their

product. Thus if ®B8 = (G8 , H8), a SOS separable spatial covariogram can be written:

2(®B8 − ®B 9 ) = f22G
(
G8 − G 9

)
2H

(
H8 − H 9

)
, (4)

where the marginal variance parameters from 2G and 2H have been combined

into f2 (as they are not separately identifiable). The resulting covariance matrix

decomposes into a Kronecker product ®+ = ®+ G ⊗ ®+ H . Whereas the (=×=) matrix ®+ has

one row per sample site, matrices ®+ G and ®+ H (=G × =G and =H × =H , respectively) have

only one row per grid line; They are themselves covariance matrices, for a pair of 1D

processes with covariograms f2G and f2H . Indeed this is how separable covariance

was originally formalized by Martin (1979), though he presented it in the framework

of autoregression.

Martin recognized a number of desirable computational properties in (4), and we

will mention some of them before moving to less familiar results. In brief, most of the

matrix algebraic computations on ®+ that arise in spatial inference and prediction can

be applied instead to the lower-dimensional components ®+ G and ®+ H . This includes

the inverse and determinant; as well as matrix-vector multiplications; and the SVD,
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Cholesky, and spectral decompositions. For example, the negative log-likelihood for

an observation of ®/ ∼ N( ®̀, ®+) is proportional to:

=H log| ®+ G | + =G log| ®+ H | + ( ®/ − ®̀)∗vec
{
( ®+ H)−1vec−1=H ( ®/ − ®̀)( ®+ G)−1

}
. (5)

Comparing with (3), this reduces the arithmetic complexity from O
{
(=G=H)3

}
to O

{
(=G)3 + (=H)3

}
. Computer memory requirements are also reduced; Only the

components ®+ G and ®+ H must be stored in memory, and never the full covariance

matrix ®+ . Moreover since ®+ G and ®+ H are bisymmetric, they can be block-diagonalized

to further speed computations by a factor of four (as described in Online Resource 1).

Formula (5) is often exploited in analyses of spatio-temporal datasets, where a

Kronecker product of spatial and temporal covariance matrices is commonly viewed

as the simplest baseline model (Genton 2007). It is also well-established in pattern

recognition applications of machine learning (Wilson et al. 2014). We are however

aware of very few examples in the applied statistics literature of spatially separable

covariograms.

Statisticians may prefer non-separable isotropic models like the WM (or its ge-

ometric anisotropy extension) for reasons of parsimony. However the more compu-

tationally attractive separable covariogram seems to mimic these standard models

quite well, as we demonstrate next in a simulation study. In the appendix (Online

Resource 1), we address computational aspects of marginal distributions, since these

are characterized by submatrices of ®+ that lack separability.
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2.2 Simulation study comparing separable and isotropic covariograms

Given the scarcity of empirical results on the comparative performance of separable

spatial covariograms, we sought to evaluate their flexibility in a simulation study.

Using simulated spatial datasets with a known ("true") covariogram, we fit the linear

model (2) using five different candidate covariogram families; Only one of these five

contained the true covariogram (as a special case), while the other four served to

illustrate the (more commonplace) scenario of a covariogram misspecification.

The simulations were set up as follows: For each of 300 replicates, we generated

a pair of 40 × 40 lattice datasets from the linear model (2), corresponding to two

different types of Gaussian spatial error terms: The first ( ®/iso) was generated from the

isotropic WM covariogram (a = 5, _ = 2; Figure 1, top-left); and the second ( ®/sep)

from the separable (and highly anisotropic) product of two 1DWMs (aG = 5, _G = 1,

aH = 5, _H = 3). In each replicate we drew regression coefficients ®V uniformly at

random from (−1, 1), computed the linear predictor ®- ®V, then added the spatial errors

( ®/iso and ®/sep) to form a pair of simulated response vectors (®Hiso and ®Hsep). The design

matrix ( ®-), comprised four covariates: two independent standard normal variates (-1

and -2); and twoMVN variates (-3 and -4) drawn from the isotropicWMwith strong

SAC (a = 6, _ = 4). Thus we produced 300 different pairs of simulated datasets, of

the form
{{
®-, ®/iso

}
,

{
®-, ®/sep

}}
:
, for : = 1, . . . 300.

We fitted ®̂V, ®̂\ to each dataset by maximum likelihood using the model (2), using

each of the following five candidate covariance models: OLS (independence); expo-

nential; WM; a separable product of 1D exponentials; and a separable product of 1D

WMs. The log-likelihood functionwas optimized numerically using the Hooke-Jeeves
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algorithm (Hooke and Jeeves 1961), as implemented in the R package dfoptim (Varad-

han et al. 2016). Notice that in each replicate, one of the five candidates covariogram

families included, as a special case, the true covariogram for ®/iso, while the others did

not (and similarly, for ®/sep). This facilitated a comparison of precision and predictive

ability among the candidate covariograms. We estimated the root mean-squared pre-

diction error (RMSPE) for each of the models trained on ®/iso and ®/sep, by randomly

generating a new (test) dataset from the same distribution, selecting half of the points

to condition over (uniformly at random), and predicting on the other half.

These results, and the errors in parameter inference, are summarized in Figure

2. For brevity we plot only the regression parameter estimate of the first covariate,

-1, and omit the OLS errors. Unsurprisingly these OLS errors were extremely large

by comparison, making it difficult to discern differences among the boxplots for the

other four models. Results for the autocorrelated covariates (-3 and -4) showed little

difference among the five candidate models.

Although the exponenential is nested in the WM family (a = 0.5), it did relatively

poorly in nearly all of our simulations, outperforming only the naive OLS estimates.

Nevertheless, the separable product of exponentials produced surprisingly robust

MLEs for both types of spatial error. Indeed, when the data were generated from

an isotropic WM covariogram, both of the separable covariograms were about as

precise in their estimates of V1 as the correct one (Figure 2, bottom-left). Meanwhile,

in datasets generated from separable covariograms (Figure 2, bottom-right), both

isotropic models performed noticeably worse than the separable ones.
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Fig. 2 Inference and prediction on simulated data (= = 40 × 40) from a linear model with either of two

covariograms: the WM (left); and a separable product of 1D WMs (right). In each of 300 replicates, we fit

MLEs for 5 covariogram families. We plot errors in one of the estimated regression parameters (bottom,

corresponding to covariate -1); and RMSPEs in predictions on a second simulated dataset (top)

The RMSPE results were also favourable to separable covariograms. In datasets

from the isotropic WM (Figure 2, top-left), the separable product of 1D WMs did

nearly as well as the correct model. The separable product of 1D exponentials per-

formed worse than the correct model, but better than the isotropic exponential. This

was surprising given the markedly anisotropic nature of the fitted covariograms from

this family (Figure 1, top-right).
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These results suggest a remarkable flexibility in separable products of the 1D

WM. In our simulations they did well to approximate their isotropic counterparts,

but the converse was not true. Moreover, the likelihood maximization problem was

far simpler with separability. The reduction in computational complexity is borne out

even on this relatively small dataset, where separable models fit around 400X faster

than nonseparable ones.

3 Product anisotropic covariograms

In Sect. 1.2 we saw that isotropic covariograms can be generalized to incorporate

directionality by a modification of the coordinate system, called geometric anisotropy.

What happens if we do the same with separable covariograms?

Separable covariograms are already equipped to handle some degree of range

anisotropy, since 2G and 2H can be assigned different range parameters. However,

the directionality is constrained to align with the coordinate system, making this

approach relatively inflexible. This motivates an extension that wewill call the product

anisotropic covariogram (PAC), in which we compose a separable covariogram with

an affine transformation ( ®�) of coordinates. Using the notation of Sect. 1.2, we write

the general 2D spatial PAC as a function of the transformed coordinate differences:

2(®B8 − ®B 9 ) = f22G
(
G̃8 − G̃ 9

)
2H

(
H̃8 − H̃ 9

)
where (G̃8 − G̃ 9 , H̃8 − H̃ 9 )∗ = ®�(®B8 − ®B 9 ). (6)

This formulation was briefly outlined by Allard et al. (2016), who called it compo-

nentwise anisotropy. Some examples are illustrated in Figure 1 (middle and righthand

panes). Note that while geometric anisotropy assumes that ®�−1 leads to an isotropic
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process, the PAC model assumes it leads to a separable process (which is seldom

isotropic). However, if we take the simulation results from Sect. 2.2 as an indication

that the (unrotated) exponential PAC adequately approximates the WM, then it fol-

lows that its rotated analogue should adequately approximate geometric anisotropy.

We propose that the former can serve as a computationally efficient surrogate in

situations where the latter is a reasonable model.

This approach allows farmore flexibility in covariance structure than does standard

geometric anisotropy. For example, 2G and 2H need not be from the same covariogram

family; the contours of constant covariance are not restricted to ellipses; and sill

anisotropy is naturally accommodated in addition to range anisotropy. These are

highly desirable features since, as discussed in Zimmerman (1993), subtly different

types of anisotropy can have important consequences for predictions. However, one

potential weakness of the PAC deserves mention here: if 2G and 2H have different

asymptotic behaviour near zero, then the resulting covariogram is inadmissible as a

model for a fractal random field (Allard et al. 2016). This result, and its implications

for the physical realism of the model, are explained further in the discussion.

The covariance matrix defined by (6) is BTTB (and bisymmetric), by the SOS

assumption. However, it will usually not be separable. Moreover, since the angle

of anisotropy is seldom known a priori, we have an additional model parameter to

estimate, introducing additional computational complexity. Thus in generalizing the

separable covariogram we seem to have lost its main selling point of computational

efficiency. However, for MVN data – whose marginal covariances are simply sub-

matrices of ®+ – it turns out we can partition the data into subsets whose marginal
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covariance is separable. This idea can be used to solve both problems, as we show

next.

3.1 Special transformations of the coordinate system

The key insight here is to consider transformations ®� for which U, BG , and BH satisfy:

U = arctan (UH/UG) , where UG , UH ∈ Z+, and BG = BH = ‖(UG , UH)‖. (7)

The scaling B = ‖(UG , UH)‖ ensures that the entries of ®� are integers, so that the

transformed coordinates lie in the square lattice Z2. Thus if the original coordinate

system G is an # H × # G regular rectangular grid then we can always choose a subset

of locations G ®̂ ⊂ G that forms a =H × =G regular rectangular grid with respect to

the transformed coordinates, provided # G and # H are large enough. Specifically, in

order for the transformed coordinates to not land outside of the original domain G, it

is necessary that:

# G − 1 ≥ UG (=G − 1) + UH (=H − 1) and # H − 1 ≥ UH (=G − 1) + UG (=H − 1). (8)

For example, Figure 3 (left) shows how U = arctan(1/2) produces a 3 × 4 rotated

inner subgrid within an 8 × 9 outer grid. Notice for this choice of =H = 3 and =G = 4,

the bounds (8) are tight, and thus the outer boundaries of G ®̂ are perfectly inscribed

by the outer boundaries of G (black lines).

It is fairly straightforward (though tedious) to find the indexing vector ®̂ that pulls

this rotated subgrid from G in column-vectorized order, so we state the general case

here without proof and refer the reader to the appendix (Online Resource 1) for a

derivation. Let ®+ be the covariance matrix for MVN vector ®/ , as in (6), with ®�
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Fig. 3 Special transformations of lattice coordinates. The left diagram illustrates the geometry of a rotation

by U = arctan(1/2) and a scaling of B =
√
5. The shaded rectangle is the rotated =H × =G subgrid G ®̂ ,

which lies on the (unrotated) # H × # G grid G. The right panel shows G ®̂ (black cells) on a much larger

domain. The gray and black cells together make up the full set of subgrids corresponding to the 12 special

angles in (12). Our proposed range anisotropy estimator uses these shaded cells to fit covariograms to each

of the 12 angles, and their complement (white cells) to estimate error.

defined as in (7). Assuming the subgrid dimensions =H × =G satisfy (8), we define the

indexing vector ®̂ associated with rotation U by:

[
vec−1=H ( ®̂)

]
?@
= 1 + UH (=G − 1) + (# HUH + UG) (? − 1) + (# HUG − UH) (@ − 1). (9)

where the indices ? ∈ {1, . . . , =H} and @ ∈ {1, . . . , =G} refer to the rows and columns

(respectively) of the =H × =G raster (matrix) representation of the rotated subgrid G ®̂.

Referring to Figure 3 (left), if the unshaded rectangle is G, then the indexing ®̂

selects the rotated (3 × 4) rectangular lattice G ®̂ of grey points, whose data vector

we denote by ®/ [ ®̂]. For example, the point located on the lower left corner of G ®̂ is

the third element of ®/ [ ®̂]. This corner point lies on the third row (? = 3) of the first

column (@ = 1) of G ®̂; Therefore by (9), its index in the full domain G is given by
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1 + 1(4 − 1) + (8 + 2) (3 − 1) + (16 − 1) (0) = 24, ie. it is the 24th element of the data

vector ®/ associated with the full lattice G.

By construction, ®̂generates the column-vectorized ordering of points with respect

to the rotated coordinate system. The covariance matrix ®+ ®̂ (of ®/ [ ®̂]) is therefore a

Kronecker product (of =G × =G and =H × =H matrices), similar to that of G except with

smaller dimensional component matrices, and the spacing of grid lines increased by

a factor of B.

Notice that, as a consequence of Pick’s theorem, it is possible to partition the

entire integer latticeZ2 into B2 disjoint subsets of the form ®�) ®B + ®g: , for : = 1, . . . B2,

where ®B ∈ Z2, and ®g: is an integer-valued translation vector (Oliveira et al. 2005).

From each subset, one may select a rectangular grid G ®̂(:) of sample sites that lies in

G, by a suitable choice of inner subgrid dimensions =G and =H .

For example, with reference to Figure 3 (left), suppose we start by defining a

smaller 3× 3 subgrid G ®̂(1) with the same lower-left corner point as the 3× 4 example

G ®̂. Its indexing in the full domain G is ®̂(1) , as defined by (9) with =G = 3 instead

of =G = 4. Now suppose we translate this subgrid upwards by one unit. This yields

a different subgrid of points, say G ®̂(2) , whose indexing in G is ®̂(2) = ®̂(1) − 1. Yet

another can be found by translating one (or two) units to the right, or equivalently by

adding # H = 8 (or 2# H = 16) to ®̂(1) . In total, one can find B2 = 5 (disjoint) subgrids

of G in this manner, each with the same orientation, and (by stationarity) the same

separable covariance matrix ®+ ®̂(1) .
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3.2 Applications of product anisotropic covariograms

An immediate application for the ideas of Sect. 3.1 is in analyses where a MVN

with geometric anisotropy is a suitable model, and the angle U is known or has

been estimated (eg. from directional semivariograms). If # is large enough that

computational complexity becomes an issue, we suggest using a PAC with a nearby

special angle of the form (7). Separability can then be exploited over the subsets G ®̂(:) .

Of course when using one of the G ®̂(:) and discarding points from G \ G ®̂(:) , we

lose efficiency. However much of this efficiency can be recovered by using a composite

marginal likelihood function L� (Lindsay 1988) that combines information from all

B2 subsets:

L�
(
®̀, ®\ |

{
/8; ®B8 ∈ ∪B

2

:=1G
(:)
®̂

})
=

B2∏
:=1
L

(
®̀, ®\ | ®/ [ ®̂(:) ]

)
. (10)

This can be evaluated using (5), with the factorization of ®+ ®̂ reused for all B2 terms.

Typically the direction of range anisotropy U will be unknown and so must be

estimated from the data. We propose a simple cross-validation-like method for this

estimation problem. The idea is to assemble a set of test angles U 9 ( 9 = 1, . . . <),

each of the form (7), that define a suite of candidate PAC models. We then fit each of

these candidates to its corresponding rotated subgrid G ®̂ (U 9 ) as defined in (9). The

model-fitting points ∪<
9=1G ®̂ (U 9 ) do not cover all of G, so from the unused portion

we can select at random a test set, Gpred to predict over, conditional on the remaining

data. Figure 3 (right) illustrates this partition of G into test and training data.

Having estimated the prediction errors for each U 9 , a preferred angle can be

chosen by lowest RMSPE. Alternatively one can compute the circular mean of the
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U 9 ’s, inversely weighted by their RMSPE; Letting l 9 denote the 9 Cℎ weight, the

circular mean is defined as:

Û ®l = (1/2) arg

<∑
9=1
l 9

(
cos(2U 9 ) + 8 sin(2U 9 )

) . (11)

This simply maps each angle to a vector on the unit circle, scaling lengths according

to RMSPE, before finding the angle of the resulting vector sum. Note that because

covariance functions are symmetric, we cannot distinguish between U and U ± c.

Hence we double each U 9 ∈ [0, c) before mapping it to the unit circle in equation

(11), dividing the final result by 2 to return to [0, c).

The more conventional method of investigating the angle of range anisotropy

involves studying empirical directional (co)variograms for ad-hoc sets of angles and

spatial lags (Sherman 2010). This method is both computationally fast and intuitive,

and remains an important part of model selection. However, as an informal graphical

diagnostic it suffers from issues of subjective interpretation (Guan et al. 2004). By

comparison our method requires very little calibration on the part of the user. It also

appears quite robust to model misspecification, as we demonstrate in the next section.

3.3 Simulation study for range anisotropy detection

We examined the performance of the range anisotropy direction estimator of the pre-

ceding section using simulated data. As we are mainly interested in situations where

the covariance structure is unknown, we considered a situation of model misspecifi-

cation: simulating data from a WM covariogram with geometric anisotropy (a = 3,

_ = 1, BH/BG = 2), but using exponential PACs to fit each candidate angle.
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Weused the experimental setup of Sect. 2.2: a linearmodelwith two autocorrelated

covariates and two independent ones, on a 40×40 spatial domain. We tested 50 values

of U ∈ [0, c) for the true spatial error covariogram (chosen uniformly at random). For

each of these angles we replicated the simulation with new data 50 times, following

the procedure outlined in the previous section to construct two angle estimates per

replicate. Our candidate models comprised the 12 angles of the form (7) for which

the interpoint distance B ≤ 5, or:

U 9 = {arctan(UH/UG) | UH , UG ∈ {1, . . . , 4} , ‖(UG , UH)‖ ≤ 5}
⋃
{0} . (12)

From this list we constructed the subsets G(U 9 ) using equation (9). In the case of

U 9 = 0, we defined G(0) by simply omitting all even-numbered gridlines from G.

For the nonzero angles, note that the dimensions # H × # G of the full dataset can be

decremented by discarding outer rows/columns, and the dimensions =H × =G of the

subgrids G(U 9 ) adjusted as needed, until the dimensional constraints (8) are met. In

a more cautious implementation, (9) can be adjusted to ensure equal sample sizes in

each G(U 9 ). However we found this had little impact on our simulation results.

Because we used the same covariogram family for 2G and 2H (the 1D exponential),

the model for G(U 9 ) simultaneously tests both U 9 and U 9 + c/2. Our test set (12)

therefore encompasses 24 angles, whose positions on the (mod c) compass rose are

indicated by the gray bars in Figure 4 (left). For a given fitted covariogram, we

distinguished U 9 and U 9 + c/2 by taking the larger of the two fitted range parameters

(_̂G or _̂H) to indicate the major axis direction.

In the final step, we selected from the unused data (white cells in Figure 3, right)

a subset of size
√
=G=H = 40 to set aside as a conditioning set, and predicted the
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Fig. 4 Rose diagrams summarizing estimates of the angle of range anisotropy over 50 simulation replicates.

Datasets were generated from a model with a geometrically anisotropicWM covariogram, oriented at angle

≈ 105◦. Estimates by least RMSPE select the best performing angle from 24 specially chosen candidates

(grey bins, left). Weighted circular mean (right) combines information from all 24 candidates to form a

continuous estimate
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Fig. 5 Errors in two estimators of the angle of range anisotropy for data generated from a model of

geometric anisotropy (WM covariogram). Left and right histograms are the pooled results over the same

set of simulations, with 50 repetitions for each of 50 randomly chosen true angles

remaining points Gpred under each of the 12 candidate models. We then determined

the angle with least RMSPE, and the weighted circular mean Û ®l , and recorded the

error (mod c) in each case. Figure 4 plots the results for one of the 50 tested angles.

In Figure 5 we show the pooled errors over all 2500 simulations.
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While Figure 5 suggests that both estimators are reasonably unbiased, least-

RMSPE tended to favour angles with higher sampling density (specifically U 9 = 0,

c/4, c/2), leading to a multimodal error distribution. Moreover, the individual his-

tograms often exhibited an interesting (but unwanted) dip near the true angle, as in

Figure 4, left.

Weighted circular mean performed far better. Its pooled error distribution appears

unimodal, as do the individual histograms, and there was noticeably less variance.

Even for the worst performing simulation angle (in terms of error variance), Û ®l fell

within 15◦ of the true angle in 70% of the repetitions. Over all simulations it was

within 45◦ of the true angle 99.1% of the time, and 77% of the time it was within 15◦

(Figure 5). This is remarkable given that our estimator derives from only 12 candidate

angles. Recall that an empirical rose plot over 12 evenly spaced angles in [0, c) would

have a detection tolerance of 15◦. Intuitively, one would expect the precision of Û ®l

to increase with sampling density – both in terms of the number of candidate angles,

and the resolution of the grid – however this remains a topic of future reseach.

By design, the computing resources needed to estimate U are quite reasonable for

large sample sizes. A desktop PC required only around 1-3 seconds with the 40 × 40

sample size. Moreover the algorithm is completely automated. Unlike the empirical

rose plot there is no need to pick an ad-hoc collection of spatial lags or contour levels,

nor does the output rely on any kind of subjective visual inspection.

Needless to say, these estimators are only meaningful if it is reasonable to assume

a SOS process with range anisotropy. A number of nonparametric tests can detect

departures from isotropy (Weller and Hoeting 2016), but we are aware of few such
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tests for stationarity. Modellers will more often seek to detrend the data using a careful

constructed mean function. This is not always possible however, and sometimes it is

informative to study the nonstationary covariance structure itself, particularly with

ecological data.

For example, Sampson and Guttorp (1992) described how nonstationarity can be

explored visually using smooth nonlinear deformations of the spatial domain. We will

do something similar with Û ®l . Suppose that the spatial process over the # H × # G

domain G is nonstationary, but exhibits local stationarity on the scale of a much

smaller =H × =G subgrid. We propose using our range anisotropy detection method

repeatedly on a sliding window of size =H × =G that moves across G, estimating at

each position the angle Û ®l and the range parameters _̂G , _̂H . These values define a

pair of orthogonal vectors for each location. Plotted together, these depict graphically

how the covariance changes through space, much like a biorthogonal grid. This idea

is demonstrated in the following case study.

4 Case study: mountain pine beetle damage

We applied our angle detection method to analyse damage to pine forests caused by

the mountain pine beetle (MPB). Populations of this tree-killing bark beetle have in

recent decades grown to unprecedented levels, leading to an epidemic of mortality in

pines throughout its vast native habitat in Western North America. The economical

and ecological consequences of the epidemic will be severe and long-lasting (Dhar

et al. 2016).
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In response, a large body of research has sought to reveal the factors that give rise

to MPB outbreaks and allow them to spread, including microclimate, altitude, pine

density and proximity to infested stands (Duan et al. 2011). Nevertheless, the large-

scale dispersal habits of the MPB are difficult to assay, and remain poorly understood.

We applied our methods here to better understand the movements of this forest pest,

in the hope that spatially explicit predictions of future outbreaks can be improved.

Monitoring efforts by theCanadian province of BritishColumbia (BC) are a source

of unusually detailed and comprehensive spatial data onMPB activity (Westfall 2005).

These data comprise yearly sketch maps of the severity of damage by the beetle (%

of pines killed per hectare). We rasterized these maps to produce regular gridded data

covering almost the entire treed area of the province, at a one hectare resolution.

In the preliminary analysis we looked at a 300×300 subset, using the linear model

(2) with an exponential PAC. To avoid the complications of temporal dependence, we

only fitted the spatial process from a single year, C = 2007 (around the peak of the pine

beetle epidemic in Southern BC). Our response variable.C (®B8) is the logit-transformed

beetle damage measurement for site ®B8 in year C, after adding a small offset nC to adjust

for zeroes (Warton and Hui 2011) (Figure 6, left). The design matrix ®- comprised

29 covariates – mostly climate and weather related – known to influence MPB attack

dynamics (The full list can be found in the online supplement.)

To begin we fit the covariogram to the full 300 x 300 domain by maximum

likelihood, given an initial set of OLS estimates for ®V. We then used GLS, as described

below equation (2), to obtain ®̂V�!( , and refitted the covariogram using the updated

regression parameters. Next, to examine nonstationarity we constructed a 12 x 12
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observed damage (year 2007)
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Fig. 6 Beetle damage data from 2007 (left) used to fit a nonstationary covariance structure (right). Arrows

indicate the directions Û ®l identified by a blockwise application of the angle-detection technique of Sect. 3.1

to model residuals. Black arrows indicate the major axis direction (largest _̂) and arrow thickness indicates

the magnitude of the sill (f̂)

layout of spatial blocks, each of size 80 x 80, with an overlap of 60 cells in each

direction. Within each block (and with ®V fixed to ®̂V�!() we fitted the linear model (2)

using exponential PACs corresponding to each of the angles in (12). We estimated the

within-block angle by Û ®l using the method of Sect. 3.3, picking the nearest special

angle from the set (12) and using its corresponding fitted covariogram to predict over

the unseen data in that block. We then compared RMSPE values of these blockwise

predictions with those of the separable model fitted to the full domain.

Lastly, to gauge future predictive ability we used the 2007 (blockwise) models

to estimate damage in the year 2008 (Figure 7, left), conditional on a subset of the

response data from that year. The conditioning set comprised a random subsample of

20% of the points from the non-overlapping 20 x 20 subsets at the center of each block

(black grid in Figures 6 and 7).We then predicted on the unobserved points to compute
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observed damage (year 2008)
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Fig. 7 Observed pine beetle damage in a 30 x 30 km area of Southern BC in year 2008 (left). A random

sample of 20% of these datapoints was used to predict the remainder (right), using a linear model with

rotated product anisotropic covariograms fitted blockwise to previous-year data

RMSPE. This arrangement ensured that the spatial locations of the predictions lay

entirely within the subset used to fit the covariogram of the previous year. Again, we

formulated blockwise predictions from both the PAC (within block) and the ordinary

separable covariogram (full domain) models, and compared prediction error.

The fitted values of Û ®l (Figure 6, right) revealed an interesting pattern of range

anisotropy varying through space, indicating non-stationarity. The likely physical ex-

planation for these patterns is that they are driven by attributes of the topography

and forest structure in our study area that have not been incorporated into the mean

model; Clusters of MPB damage will naturally track corridors of pine-rich forestland,

and may be skewed in the direction of prevailing winds during the summer dispersal

period (Duan et al. 2011). However, large parts of the study area exhibited a consistent

directionality and effective range, suggesting that an assumption of local stationarity

is reasonable over these areas. This is reflected in the within-block predictions for
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the model fitting year, for which the product covariogam (RMSPE = 0.026) outper-

formed the (full domain) separable covariogram (RMSPE = 0.027). Unsurprisingly,

both spatial models improved on the nonspatial OLS predictions (RMSPE = 0.032),

highlighting the strong SAC in these data.

If the same spatial covariance structure persists to some degree between years,

we can expect to improve 2008 predictions by incorporating information from the

blockwise estimated covariograms from the previous year. This was indeed the case,

with OLS estimates producing much larger errors in next-year predictions (RMSPE

= 0.069) when compared with kernel-based predictions from the separable (RMSPE

= 0.044) and PAC (RMSPE = 0.046) models.

Note that overall, the separable covariogram outperformed the blockwise PAC

on these next-year test data. This could be a consequence of the decreased sampling

resolution induced by (9) (see discussion), or of year-to-year changes in the covariance

structure. The PAC, however, performed far better on blocks heavily damaged by the

pine beetle, producing the lowestMSPE in 40 of the 64 blocks (63%) forwhich damage

extended over 25% or more of the area. Nevertheless, in spite of the variability in

Û ®l , both spatial models performed adequately. The predicted sizes and shapes of

the beetle damaged areas in 2008 appear quite reasonable given the sparsity of the

conditioning set.

Computationally, this analysis was very simple. The entire process - including

GLS, anisotropy estimation, covariance model fitting, and prediction, for both models

on all 144 blocks - was completed by an ordinary desktop PC in about 7 minutes.

By contrast it took closer to an hour to fit a standard model of geometric anisotropy
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to a single block, even with U known. Moreover, the blockwise approach is easily

parallelized, and thus if needed it could be sped up even further by using a cluster of

computers. In summary, while the RMSPE performance of the PAC was comparable

to the more standard nonseparable alternatives, it allowed model-fitting to complete

with remarkable computational speed and a minimal computer memory footprint.

5 Discussion

The computational complexity involved with explicit representations of covariance

can be a formidable obstacle. Building upon work by Zimmerman (1989), we have

argued for the unconventional solution of using covariograms that are separable in

space. Thesemodels are not without their drawbacks. Stein (2005) noted issues related

to ridges along the coordinate axes that lead to undesirable correlations in linear pre-

dictors. These ridges are visible as orthogonal patterns in the plot of the exponential

product covariogam in Figure 1 (top-right), for example, as well as in the predicted val-

ues in Figure 7. Moreover, separable covariograms are never mathematically isotropic

(except in the special, but problematic case of the Gaussian covariogram).

Lastly, if 2G and 2H have different asymptotic behaviour near the origin, the re-

sulting PAC will be incompatible with fractal random field representations of the

underlying physical process. The behaviour of a covariogram near the origin, or its

regularity, is closely tied to (probabilistic) notions of continuity and differentiabil-

ity in the spatial process (Chilès and Delfiner 2012). A detailed discussion of this

relationship is beyond the scope of this paper, so we direct the interested reader to

work by Matheron (1962), Rathbun and Stein (2000), and Davies and Hall (1999).
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However, in the interest of transparency and completeness, we note that in Allard

et al. (2016) it was proven that if the regularity parameters of 2G and 2H are different

(eg. two WM covariograms with different shape parameters), the resulting random

field cannot be fractal. As fractals are a popular mathematical representation of spatial

patterns in ecology (Goodchild andMark 1987), somemodellers may view such PACs

as physically unrealistic.

In many applications, however, we believe the foregoing issues have minimal

impact on prediction and inference, and that the drawbacks are outweighed by the

substantial reduction in computational complexity. In ecology, this complexity often

prevents a SAC-corrected analysis in the first place – here it bears repeating the

observation of Keitt et al. (2002), that "making any correction is more important than

quibbling about which correction to make". Our simulations suggests that separable

WM product covariogams are adequate surrogates for more conventional isotropic

models. Thus we suggest them as a simpler alternative to the more sophisticated

approximations developed in Genton (2007) and Hirano (2014).

On simulating data exhibiting range anisotropy with a known direction, we found

that separable covariograms substantially improved MSPE compared with isotropic

ones, in spite of a model misspecification. This kind of flexibility will be desirable to

modellers with reason to doubt the assumption of isotropy in their data, a common

situation in ecology. Note that the separable product of WM covariograms limits to a

Gaussian (as a →∞), so not only is this extremely commonmodel well approximated,

it is generalized to include a range of heavier-tailed alternatives. Readers interested in

separable approximations are directed to (Wilson et al. 2014), who showed that any
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SOS covariogram can be approximated to arbitrary precision using sums of separable

covariograms.

While the direction of range anisotropy will rarely be known a priori, we showed

in Sect. 3 how separability leads to a fast estimator of this angle, Û ®l . The simulation

results in Sect. 3.3 demonstrated a satisfactory level of accuracy and precision, in

spite of model misspecification. We believe this method will nicely complement

more standard data exploration techniques such as windrose plots, and formal tests of

anisotropy, such as in Guan et al. (2004). It could be used to automate the analysis

of a large number of datasets; to identify specific angles and lags to study in more

detail using directional (co)variograms; and to provide an objective verification of the

conclusions of the graphical analyst.

Note that because the dimensional constraints in (8) preclude large values of

UG , UH , not all angles of the form (7) can be feasibly tested in a given domain G.

Moreover the interpoint distance B of points in the rotated subgrid increases with

both UG and UH , making its sampling layout increasingly grainy, and hindering the

detection of small-scale covariances over the data in G ®̂. For example, in our case

study the largest interpoint distance was B = 5. At a one-hectare resolution this was

acceptable, given that the clusters of beetle damage of greatest concern were much

larger than 500 metres. However, depending on the application, modellers may need

to upsample their raster data, or shrink the set of candidate angles (12), until the scale

of interest is smaller than the largest B. Alternatively one could modify the composite

likelihood function in (10) to incorporate information on both the large and small

scale, much like the hybrid method proposed by Varin et al. (2011).
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By building Û ®l into a sliding-window estimator, we revealed a remarkably smooth

pattern of directional dependence resembling a vector field (Figure 6) in the pine beetle

damage dataset. This figure is reminiscent of the graphical depictions of nonstation-

arity in the kernel-convolution covariance models of Higdon (1998) and Paciorek and

Schervish (2006), for example. Future extensions of our approach might look at com-

bining these methodologies, for example, by replacing the local Gaussian convolution

kernel in the Higdon (1998) model with the more flexible PAC covariogram.

An ecological explanation for these spatial patterns would be another interesting

topic for further research, as it could shine a light on the dispersal habits of the beetle

and assist in future predictions. In future work we hope to explore the connection

between local estimates Û ®l and local covariates such as wind direction or connectivity

of forest corridors - both likely drivers of directionality in pine beetle damage patterns

(Aukema et al. 2006).

Though Û ®l served as an exploratory tool in our demonstration, it could be useful

in other roles. For example, covariance plots like Figure 6 might lead to a graphical

means of model selection similar to that described in Das et al. (2002); candidate

covariate sets can be compared in terms of fitted covariograms, with the aim of

finding aminimal set of explanatory variables that yields a stationary process. Another

interesting avenue of research would be to construct a predictor that incorporates

information from nonlocal covariance estimates. For example, one could take an

average of the blockwise predictions, weighted by distance to the block centroid, to

obtain a smoothed prediction surface, similar to the method of Higdon (1998).
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We have throughout this paper used the WM covariogram in demonstrations

because it is extremely common in spatial statistics. However in future research it

will be important to compare against other covariance families to get a more complete

picture of the robustness of the product-form alternatives proposed here. Although our

empirical results are promising, a healthy skepticism of Û ®l is wise until its statistical

properties are investigated more formally in a theoretical setting.

Until then we would simply argue that separable PACs are a viable means of

accounting for SAC,while speeding up analyses bymany orders ofmagnitude on large-

= problems. Though our focus here is spatial, we remind the reader that Kronecker

product decompositions also apply to separable spatio-temporal covariance matrices.

It is our hope that by adopting this trick in the spatial domain, practitioners can

continue to use the easily interpreted geostatistical model in the rapidly developing

world of big data.
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