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A Matrix symmetries

All covariance matrices are symmetric about their diagonal, but a regular arrangement of sampling loca-
tions can lead to additional useful structures in ~V :

Definition 1 (Toeplitz structure) ~A is Toeplitz when its entries satisfy ~A[i, j] = ~A[i+ k, j+ k] for all fea-
sible k. Equivalently, the entries along its k-diagonals are all equal. ~A is called block-Toeplitz when it has
identical blocks along all of its block-diagonals.

Definition 2 (The exchange matrix ~Jm) Also called the counteridentity, ~Jm is the m×m matrix with 1’s
on the counterdiagonal and zeroes everywhere else.

~Jm
m×m

=


0 . . . 0 1
... 1 0

0
...

...
1 0 . . . 0


Note ~Jm is symmetric and orthogonal. When left-multiplied by matrix ~A, it reverses the order of the
columns in ~A, and when right-multiplied it reverses the order of the rows. This leads to the following
symmetry definitions:

Definition 3 (Persymmetry and bisymmetry) ~A is persymmetric if ~Jm~A~Jm =~AT . This is symmetry about
the counterdiagonal. If ~A is symmetric then ~A~Jm and ~Jm~A are both persymmetric, and vice versa. ~A is
bisymmetric if it is both symmetric and persymmetric.

Definition 4 (Centrosymmetry) ~A is centrosymmetric if ~Jm~A~Jm = ~A. This is symmetry about the centre
of the matrix. Centrosymmetric matrices need not be symmetric, but when they are, bisymmetry is implied.
If ~Jm~A~Jm =−~A then ~A is called skew-centrosymmetric.

B Kronecker products

the Kronecker product of m×n matrix ~A (with entries ai j) and p×q matrix ~B is the matrix:

~A⊗~B︸ ︷︷ ︸
mp×nq

:=


a11~B . . . a1n~B

...
...

am1~B . . . amn~B

 . (1)

Kronecker products admit the following useful identities (Iserles et al., 1990):

Proposition 1 (Determinant) If ~A is order m and ~B is order n, then |~A⊗~B|= |~A|n|~B|m.

Proposition 2 (Inverse) If ~A and ~B are nonsingular, then
(
~A⊗~B

)−1
= ~A−1⊗~B−1.
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Proposition 3 (Mixed product) If the products ~AC and ~BD are conformable, then(
~A⊗~B

)(
~C⊗~D

)
=
(
~AC⊗ ~BD

)
.

Proposition 4 (Decompositions of Kronecker products) If ~A = ~UA~CA~VA and ~B = ~UB~CB~VB,

~A⊗~B =
(
~UA⊗~UB

)(
~CA~VA⊗~CB~VB

)
=
(
~UA⊗~UB

)(
~CA⊗~CB

)(
~VA⊗~VB

)
.

Proposition 5 (Matrix equation representation) If the product ~ABC is conformable, then

vec
(

~ABC
)
=
(
~CT ⊗~A

)
vec(~B).

C Indexing via selection matrices

We use the square-bracket notation of Poularikas (2014) to refer to submatrices and subvectors: If ~A is M×
N, and ~κ indexes a subset of rows and ~γ a subset of columns, then we write ~A[~κ,~γ] for the corresponding
submatrix. However we also allow duplications and re-orderings of rows and/or columns in ~A[~κ,~γ] when
this is indicated in ~κ and/or ~γ . This concept is likely familiar already to users of the R programming
language, in which arrays can be manipulated by this syntax. Let us make this precise:

Definition 5 (Selection matrices) If ~γ is a length-n vector with entries γi drawn from {1, . . . ,N}, and~eN
i

is the ith standard basis vector ofRN , the N×n selection matrix ~S~γ is:

~S~γ :=
(
~eN

γ1
~eN

γ2
... ~eN

γn

)
(2)

Thus if ~κ (length-m) has entries drawn from {1, . . . ,M}, and ~γ (length-n) has entries drawn from

{1, . . . ,N}, then we write ~A[~κ,~γ] to mean the m×n matrix product ~Sκ

T~A~Sγ .
Using square-bracket notation we can also express (1) as a Hadamard (entrywise) product. Writing

1m for the length-m vector of ones, and letting ~m = (1, . . .m)T denote the column vector of the first m
positive integers (and similar for~n, ~p, and~q), we write

~A⊗~B = ~A[~m⊗1p,~n⊗1q]�~B[1m⊗~p,1n⊗~q]. (3)

This will be convenient when dealing with submatrices of Kronecker products, such as in the marginal
covariance formula of Section E. We present this idea in a lemma:

Lemma 1 (Selections) Suppose ~A is m×n; and ~B is p×q; where M = mp, N = nq. If ~γr (length-r) has
entries drawn from {1, . . .M}, and~γc (length-c) from {1, . . .N}, then

(~A⊗~B)[~γr,~γc] = ~A[(~m⊗1p)[~γr],(~n⊗1q)[~γc]]�~B[(1m⊗~p)[~γr],(1n⊗~q)[~γc]]. (4)

Proof This is immediate from (3) on recognizing that the square-bracket indexing admits a composi-
tion rule ~X [~κr,~κc][~ηr,~ηc] = ~X [~κr[~ηr],~κc[~ηc]], as well as a distributive rule over Hadamard products(
~X�~Y

)
[~κ,~η ] = ~X [~κ,~η ]�~Y [~κ,~η ]. These properties become obvious upon switching to the selection ma-

trix representation in (2).

D Distance matrices for rectangular grids

We will focus on covariance models for lattice data where the random field variable Z(~s) is observed at a
fixed set of locations G = {~sk}k=1,...n ⊂R2 that together form a spatially regular ny×nx rectangular grid in
the Cartesian plane (where n = nxny). Assuming our random vector ~Z := (Z(~s1), . . .Z(~sn))

∗ is in column-
vectorized order, the position (i, j) in the grid is mapped to the index k = vecny (i, j) := i+ny( j−1) in ~Z.
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For convenience we will assume that G has been scaled/translated to lie on the integer lattice Z2 with its
bottom-left corner on the origin, so that its point coordinates are given by~sk = (xk,yk) = ( j−1,ny−1).

In this configuration, pairwise distances between points in G can be succinctly represented using Kro-
necker products. To see this, number the grid lines of G using vectors ~gx = (1, . . .nx)∗ and ~gy = (ny, . . .1)∗,
so that if ~sk is at the (i, j)th position in the grid, its x and y coordinates are xk =

[
(1ny )(~gx)∗

]
i, j and

yk =
[
(~gy)(1nx )∗

]
i, j (where 1m is the length-m column vector of ones). Vectorizing these outer products,

one obtains the full set of coordinates for G (in column-vectorized order) as the vectors~x = (x1, ...xn)
∗ =

~gx ⊗1ny and ~y = (y1, ...yn)
∗ = 1nx ⊗ ~gy. Denote the matrix of differences among the x coordinates as[

~δ x
]

i, j
:= xi− x j , and similar for y. Then a straightforward application of Property 3 yields:

~δ x =~x1∗n−1n~x∗ =
(
~gx1∗nx −1nx~gx∗

)
⊗ (1ny (1ny )∗) , (5)

~δ y =~y1∗n−1n~y∗ = (1nx (1nx )∗)⊗
(
~gy1∗ny −1ny~gy∗

)
. (6)

This reveals a (nx× nx) pattern of (ny× ny) blocks in both matrices: in ~δ x the i, jth block is (i− j)I;
and in~δ y it is ~gy1∗ny −1ny~gy∗. These matrices provide an algebraically convenient decomposition of~si−~s j
into its projections along the x and y axes, leading naturally to the idea of separability. They also allow us
to write the matrix of pairwise Euclidean distances

[
~D
]

i j
= di j as the (entrywise) square root of:

~D�~D = ~δ x�~δ x +~δ y�~δ y. (7)

D.1 Structure in covariance matrices for nonseparable SOS models

Note that both of the coordinate difference matrices in (5)-(6) are block-Toeplitz with Toeplitz blocks
(BTTB). This is because ~g1∗m−1m~g∗ expresses the differences between adjacent entries of the length-m
vector ~g, and therefore becomes Toeplitz when the entries of ~g are regularly spaced (eg. as when G is a
regular grid).

In an SOS isotropic model, where covariance is defined by applying the covariogram function c to
the vector ~si−~s j = (

[
~δ x
]

i, j
,
[
~δ y
]

i, j
)∗, the covariance matrix ~V inherits the BTTB structure. This is be-

cause the entrywise application of any function to a matrix (for instance to ~δ x and ~δ y) preserves all of
its unsigned symmetry structures. Thus the entrywise squares, sums, and square-roots implied in (7) are
all structure-preserving, which means that ~D inherits the BTTB property from ~δ x and ~δ y, and ~V inherits
it from ~D in turn. These arguments also apply with geometric anisotropy, where the ~δ x and ~δ y terms in
(7) are replaced by linear combinations sx(cos(α)~δ x + sin(α)~δ y) and sy(cos(α)~δ y − sin(α)~δ x). Linear
combinations preserve BTTB structure, and thus ~V is also BTTB.

The BTTB result was proven in more generality by Zimmerman (1989). However by emphasizing
more directly how matrix symmetry patterns emerge from the regular spacing of grid lines, we believe our
description has pedogogical value to readers unfamiliar with lattice designs. Moreover (5)-(7) holds more
generally for irregular grid lines (with spacings defined in ~gx, ~gy) and so could prove useful in expressing
the block structure in ~V common to any SOS model for gridded data.

E Covariance matrices for marginal distributions

Applications often call for marginal distributions over subsets of the data. Examples include cross-validation;
conditional expectation, such as in Kriging; and inference with missing data. We will consider the Gaus-
sian case, for which subsets of ~Z are themselves Gaussian with covariances given as submatrices of ~V . Let
~κ denote the indexing vector for the subset of interest, so that ~Z~κ =~Z[~κ] is the subset, and ~Vκ =~V [~κ,~κ] is
its covariance matrix.

Generally speaking ~V~κ inherits neither separability, BTTB structure, nor bisymmetry from ~V , unless
the subset in question forms a regular rectangular grid (note that the angle estimator from Section 3 of
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the main text exploits this exception.) Thus ~V~κ may be more difficult to work with than ~V , in spite of its
smaller dimensionality. However if the subset is not too small, one can use a shortcut suggested in Ver
Hoef et al. (2018): Leting ~κc index the observations not in ~κ , the determinant and inverse of ~V~κ can be
computed using:

~V−1
~κ

=~V−1[~κ,~κ]−
(
~V−1[~κ,~κc]

)(
~V−1[~κc,~κc]

)−1(
~V−1[~κc,~κ]

)
(8)

|~V~κ |= |~V ||~V−1[~κc,~κc]|. (9)

When it is computationally cheap to evaluate the inverse and determinant of ~V , but not ~V~κ , these
formulae can lead to substantial speedups; If m is the length ~κ and n the length of ~Z, we trade a problem
of dimension m for one of dimension n−m (the length of ~κc).

These formulae are proved as follows. Suppose {1, . . .n} is partitioned into sets of size m and n−m,
identified by the index vectors ~κ and ~κc, respectively. Then if ~V is any n× n matrix, the permutation
~P = (~S~κ ~S~κc ) takes ~V and its inverse to the block forms:

~PT~V~P =

(
~V~κ ~V [~κ,~κc]

~V [~κc,~κ] ~V~κc

)
, ~PT~V−1~P =

(
~V−1[~κ,~κ] ~V−1[~κ,~κc]
~V−1[~κc,~κ] ~V−1[~κc,~κc]

)
(10)

Writing [~A]i j for the four blocks of a square partitioned matrix ~A, the matrix ~A/[~A]22 := [~A]11 −
[~A]12[~A]−1

22 [
~A]21 is called the Schur complement of [~A]22 in ~A. Ver Hoef et al. (2018) note that [~A]−1

11 =
~A−1/[~A−1]22, and suggest this identity as a shortcut to invert a block of a covariance matrix, after having
computed its full inverse. Thus equation (8) follows from letting ~A = ~PT~V~P and writing its inverse in the
form (10). Equation (9) follows from the identity |~A/~B|= |~A|/|~B| for Schur complements.

E.1 A Bayesian perspective

A more general version of (8) due to Pukelsheim is presented in Glaser and Friston (2003, pp. 447-452),
in the context of likelihood functions for hierarchical models. Before discussing applications, let us revisit
this Bayesian perspective. Suppose we put an improper prior on the mean of ~Z. In particular consider the
normal hierarchical model,

~Z |~µ ∼ N(~X~κc~µ,~V ) with µi
iid∼ unif(−∞,∞), (11)

where the n× n design matrix ~X~κc has a one at each diagonal entry indexed in ~κc, and is zero otherwise.
Using (2) we can write ~X~κc =~S~κc (~S~κc )T where the N× (N−n) selection matrix ~S~κc is generated from the
length-(N−n) indexing vector for unobserved datapoints.

The likelihood function L (~V |~Z =~z) is then equal to L (~V |~Y =~y) for the model~Y ∼ N(~0,~V~κ ), over
all~z for which~z[~κ] =~y. This is because the effect of ~X~κc~µ is to add noise to the mean-zero version of
~Z, but only to those components indexed in ~κc. As the variance of this noise increases, the corresponding
entries in the precision matrix for (11) shrink, and in the limit of unbounded variance they vanish.

The improper Bayesian posterior likelihood completely ignores these components of~Z, as their values
are washed out by the noise of the flat prior. From an information-theoretical perspective, it is equivalent
to simply omit the noisy, unreliable components. Indeed the likelihood function for (11) contains exactly
those formulae (8)-(9) that specify ~Z~κ .

E.2 Applications of the marginal covariance formula

Equations (8)-(9) will speed evaluations of the MVN likelihood function (for a marginal distribution)
whenever it is computational simpler to find the inverse and determinant of ~V and ~V−1[~κc,~κc] instead of
~V~κ . This happens when n is large and the number (n−m) of points omitted from ~κ is relatively small.
For example if we consider only the highest order (cubic) terms in the arithmetic complexity, then com-
putation time is reduced whenever ~V (but not ~V~κ ) is bisymmetric and (n−m)/n < 3

√
(m/n)3−1/4, or



5

(approximately) (n−m)/n < 0.37. If ~V (but not ~V~κ ) is separable and we assume for simplicity that G is a
square grid, the bound becomes (n−m)/n < 3

√
(m/n)3−2/n(3/2). Asymptotically (for large n), the bound

is (n−m)/n < 0.5.
An obvious application is in analyses where the locations D lie on a lattice, but do not form a complete

rectangular subset. In this case one simply formulates ~V over a grid ~G covering the bounding box for the
data, by introducing empty cells and indexing them in ~κc. Other applications include cross-validation and
leave-one-out estimators, where subsets of the data are withheld and the marginal distribution over the
remainder is of interest. For example Ver Hoef et al. (2018) implemented (8)-(9) in a predictions over
unobserved data. More generally these formulae can simplify computations of the conditional expectation
when a partial observation ~Z~κ is used to inform estimates of the unobserved components ~Z~κc , since the
conditional distribution of ~Z~κc given ~Z~κ =~z[~κ] is:

N
{
~µ[~κc]+~V ∗~κ~κc~V−1

~κ
(~z[~κ]−~µ[~κ]) ,~V~κc −~V ∗~κ~κc~V−1

~κ
~V~κ~κc

}
, (12)

where ~V~κc is the marginal covariance matrix for ~Z~κc , and ~V~κ~κc is the cross covariance of ~Z~κ and ~Z~κc . Note
that in the case of separable covariance, the computationally prohibitive step of forming the N×N matrix
~V =~V x⊗~V y can be avoided. The required matrices can easily be computed directly from ~V x and ~V y using
the identity (4), which leads to

~V~κ~κc =~V [~κ,~κc] =~V x[~κx,~κx]�~V y[~κy,~κy], (13)

~V~κc =~V [~κc,~κc] =~V x[~κx,(~κx)c]�~V y[~κy,(~κy)c], (14)

where the sites indexed in ~κ have x-coordinates ~gx[~κx] and y-coordinates ~gy[~κy], and the ~κx, ~κy can be
found using the inverse vectorization operator: (~κx[i],~κy[i]) = vec−1

ny (~κ[i]),

vec−1
ny (k) = (ik, jk) =

(
k−ny

(⌈ k
ny

⌉
−1
)
,
⌈ k

ny

⌉)
.

E.3 Symmetry structures in covariance matrices for lattice data

When ~V is numerically singular, both the FFT-based methods of Jun and Stein (2008) and the BTTB-
based algorithm of Dietrich (1993) can become inaccurate due to numerical rounding errors (Iserles et al.,
1990, sec. 2.7). This problem is not uncommon with large-n covariance models. For example the popular
Gaussian covariogram (the ν → ∞ limit of the WM) is known for generating matrices with extremely
large condition numbers. It may be prudent in this situation to avoid explicit inversions and Cholesky
factorizations in favour of more robust and numerically stable methods. A common workaround involves
the singular value decomposition (SVD) (Neumaier, 1998), however this has O(n3) complexity.

We can nevertheless speed computations by appealing to bisymmetry in ~V . This is symmetry about
both the diagonal and counterdiagonal. More precisely, if ~Jn is the n× n exchange matrix (with ones on
the counterdiagonal and zeros otherwise), then ~V is bisymmetric if ~V = ~Jn~V~Jn and ~V = ~V ∗. The SOS
assumption implies bisymmetry in ~V , since the BTTB property implies persymmetry (symmetry about the
counterdiagonal).

For bisymmetric covariance matrices ~V , a unitary similarity transformation cuts the dimensionality
of factorizations in half, speeding up computations by a factor of four. We present the even-n case here,
and refer readers to Abu-jeib (2002) for the odd case. Suppose that n = 2m, and ~V is n× n and bisym-
metric. Writing ~Va for the (m×m) top-left block and ~Vb for the bottom-left block of ~V , we have the
block-diagonalization:

~Hn~V ~H∗n =

(
~Va + ~Jm~V ∗b

~Va−~Vb~Jm

)
, where ~Hn =

1√
2

(
I Jm
−Jm I

)
. (15)

For example let us consider the simple case of m = 2 (a 2× 2 layout of gridpoints, with n = 4). A
general covariance matrix for this layout, given the SOS assumption (but not necessarily isotropy) is:
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~V =


a b c d
b a e c
c e a b
d c b a

=

(
~Va ~V ∗b
~Vb ~Va

)
, where ~Va =

(
a b
b a

)
and ~Vb =

(
c e
d c

)
.

One easily verifies that we obtain the desired form:

~H4~V ~H∗4 =
1
2


1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1




a b c d
b a e c
c e a b
d c b a




1 0 0 −1
0 1 −1 0
0 1 1 0
1 0 0 1

=


a+d b+ c 0 0
b+ c a+ e 0 0

0 0 a− e b− c
0 0 b− c a−d

 .

The diagonal blocks of ~Hn~V ~H∗n have two important properties: They are symmetric, as a consequence
of persymmetry in ~Vb and symmetry in ~Va; and the union of their spectra is the spectrum of ~V , since ~Hn is
orthogonal and ~Hn~V ~H∗n block-diagonal. This implies that both blocks inherit positive definiteness from ~V ,
and hence their Cholesky factors exist. It also implies that their condition numbers are as good or better
than that of ~V .

Equation (15) therefore stably converts an n-dimensional factorization problem in~V into a pair of n/2-
dimensional ones in ~Hn~V ~H∗n . In statistical applications, the O(n3) complexity of the relevant factorization
(eg. SVD, spectral, Cholesky) is therefore reduced by a factor of 23/2= 4. Moreover since ~Hn has only two
nonzero elements per row/column, the overhead of performing this transformation is O(n2), a negligible
cost compared to the factorization step when n is large.

E.4 A geometrical perspective on bisymmetry

The action of ~Hn on vectorized lattice data from Gaussian random fields leads to an interesting theoretical
aside. Since ~Va + ~Jm~Vb and ~Va− ~Jm~V ∗b are SPD, we can view them as covariance matrices for a pair of m-

dimensional random vectors, ~Z1 and ~Z2. Indeed by standard MVN theory, if ~Z ∼N
(
~µ,~V

)
then ~Hn~Z :=

(~Z∗1 ,~Z
∗
2)
∗ ∼N

(
~Hn~µ, ~Hn~V ~H∗n

)
.

When vector ~Z represents a raster image, the transformed components ~Z1 and ~Z2 have a simple ge-
ometrical interpretation. Let ~ZF denote the transformation of the raster ~Z by a left-right, and an up-down
reflection. Then ~Z1 is simply the left half of the superimposition ~ZF +~Z. Similarly ~Z2 is the right half of
the superimposition ~ZF −~Z.

Despite a striking symmetry between the left and right halves of ~Hn~Z, they are statistically independent
under the Gaussian model, since by (15) their cross-covariance matrices are zero. While Gaussian data can
always be linearly transformed into independent subsets using eigenvectors of ~V , (15) shows that for SOS
lattice data, half of these eigenvectors are symmetric and the other half are skew-symmetric (Abu-jeib,
2002).

E.5 Indexing of the rotated sublattice

Here we derive the indexing vector ~κ for the rotated subgrid in G described in Section 3.1. Without loss
of generality we will assume that Nx, Ny, nx, and ny have been suitably chosen to satisfy the boundary
constraints in equation (8) of the main text.

Begin by applying the transformation ~AT to the coordinates ~sk of points in the ny× nx sublattice G0
with grid line vectors~gx

0 = (0, . . .nx−1)T and~gy
0 = (ny−1, . . .0)T . By construction, these new coordinates,

~AT G0 =
{
~̃sk = ~AT~sk;k = vecny (p,q), p = 1, . . .ny,q = 1, . . .nx

}
are a subset of Z2 that forms a regular rectangular grid in the rotated coordinate system Dα ={

~Rα~vk;~vk ∈R2
}

, with inter-point spacing s = ‖(αx,αy)‖. Thus if we apply equation (6) of the main
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text to the ~̃sk , we recover a separable kernel, since ~A~AT = I. It follows that after rescaling the coordinate
difference matrices ~δ x and ~δ y by the new inter-point distance s, we obtain

c(~̃si−~̃s j) = σ
2cx(s

[
~δ x
]

i j
)cy(s

[
~δ y
]

i j
)

which implies the Kronecker product representation.
Now let us track one of the grid points along the transformation. The position~sk = (q−1,ny− p)T of

the (p,q)th element in G0 gets mapped to the new position ~̃sk = ~AT~sk = (αx(q−1)−αy(ny− p),αx(ny−
p)+αy(q−1))T . In order to find the row/column index in~V corresponding to ~̃sk ∈~AT G0, we must identify
the element of G that coincides with~̃sk . However, following the transformation by ~AT , some of the leftmost
points of ~AT G0 will have fallen out of G (they have negative x coordinates). So, we simply translate all of
the points ~AT G0 to the right by distance αy(ny−1) to ensure that the least x coordinate becomes zero. Note
that such translations of coordinates have no bearing on the covariance matrix for points in ~AT G0 under
the SOS assumption.

Following this translation, the new positions are (x̃pq, ỹpq) = (αx(q− 1)+αy(p− 1),αx(ny− p)+
αy(q− 1))T , where p = 1, . . .ny, q = 1, . . .nx. With reference to G , we identify their row and column
indices as p̃ = Ny− ỹpq and q̃ = 1+ x̃pq. This simplifies to p̃ = 1+αx(p− 1)−αy(q− 1)+αy(nx− 1)
and q̃ = 1+αx(q− 1)+αy(p− 1). The vectorized index for the element of G in row p̃ and column q̃ is
vec−1

Ny (~κ)[p,q] = p̃+Ny(q̃−1). Substituting the above expressions for p̃ and q̃, and collecting terms, we
obtain: [

vec−1
ny (~κ)

]
i j = 1+α

y(nx−1)+(Ny
α

y +α
x)(p−1)+(Ny

α
x−α

y)(q−1) (16)

=⇒ ~V~κ =~V [~κ,~κ] = σ
2cx
(

s(~nx1∗nx −1nx~nx∗)
)
⊗ cy

(
s(~ny1∗ny −1ny~ny∗)

)
(17)

where ~nx is the length-nx vector (1,2, . . .nx)∗ (representing the grid lines of G0), and similar for y.
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F Mountain pine beetle covariates

Category Covariates Notes

topography altitude, slope, aspect, lakes indicator

host quality tree density, pine density, stand age baseline 2001 estimates from Beau-
doin et al. (2014), with pine density
adjusted for cumulative mortality

beetle activity beetle pressure (200, 400, 800, 1600, 3200
metre radius)

a (WM) kernel convolution of the
product of the previous year beetle
damage and the host pine density.
Radius indicates the effective range
of the kernel

beetles/host (200, 400, 800, 1600, 3200 me-
tre radius)

beetle pressure divided by pine den-
sity (attack density)

microclimate seasonal precipitation (winter and spring);
precipitation as snow; degree days (below 0,
below 18); seasonal temperatures: mean in
coldest winter month; min, max, & averages
(spring, winter)

weather station data interpolated
using ClimateBC software (Wang
et al., 2007)

Table 1 Covariates included in the linear regression model for mountain pine beetle damage patterns.
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