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Abstract

In this thesis, we generalize the notion of asymptotically hyperbolic mass (first

introduced by Wang in 2001) to manifolds with toroidal ends. Using this gen-

eralized definition, we show that under a normalized Ricci flow with asymptot-

ically hyperbolic, conformally compact initial data with a well-defined mass,

the mass will decay exponentially in time to zero, in contradistinction to the

constant behaviour of asymptotically flat mass under Ricci flow. We then

use this result for the evolution of asymptotically hyperbolic mass to prove

that there does not exist a breather solution to the normalized Ricci flow with

non-zero mass. Further, we provide a proof of the rigidity case of the Positive

Mass Theorem in the asymptotically hyperbolic setting, using Ricci flow. We

note that this result for the exponential behaviour of asymptotically hyper-

bolic mass provides support for a conjecture in general relativity stated by

Horowitz and Myers.
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Chapter 1

Introduction

In the early 1980’s, Richard Hamilton developed the Ricci flow as a means by

which he hoped to obtain a proof of the three dimensional Poincaré Conjecture.

Though Hamilton was unsuccessful in obtaining such a proof, his Ricci flow

approach to such a proof was nonetheless an ingenious technique. In the

early 2000’s, Grigori Perelman released a series of preprints [28, 30, 29] based

on Hamilton’s work which provided conclusive Ricci flow arguments for the

validity of the three dimensional Poincaré Conjecture.

Soon after Hamilton introduced his Ricci flow, several mathematicians began

to ask natural questions such as “What topological properties, geometric prop-

erties, or invariants of the initial data are preserved under the Ricci flow?”.

One of the many qualities of the initial data that was investigated was the

property of asymptotic flatness. From [27] and [13], it is known that solutions

to the Ricci flow on asymptotically flat manifolds remained asymptotically

flat. Additionally, an invariant of asymptotically flat manifolds that has been

analyzed is the notion of mass. It was also shown in [27] and [13] that the

Arnott-Deser-Misner (ADM) [5] mass of an asymptotically flat manifold is

preserved under Ricci flow. One may then wonder, “Do similar results hold

for Ricci flow on asymptotically hyperbolic manifolds?” (see definition 2.2 and
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2.4). Very recently, it has been proven in [8] that the curvature-normalized

Ricci flow given by

∂gij
∂t

= −2Eij := −2[Ric[g]ij + (n− 1)gij] , (1.1)

g(0) = g0 , (1.2)

exists for a short time, given asymptotically hyperbolic initial data (M, g0);

further it was also noted that its solutions g(t) remained asymptotically hy-

perbolic. As well, analogously to asymptotically flat manifolds, there exists

an invariant of asymptotically hyperbolic manifolds, called the mass (see def-

inition 2.7). Thus, it is natural to address the question “Is the mass of an

asymptotically hyperbolic manifold preserved under this curvature-normalized

Ricci flow?”. In this paper, we will show that in general the answer is “No.”.

Curiously, in contrast to the asymptotically flat case, we have found that the

mass of an asymptotically hyperbolic manifold is not preserved under this

Ricci flow in general, but rather evolves exponentially to zero. That is, we

prove the following theorem:

Theorem 1.1: Let (M, g0) be an asymptotically hyperbolic manifold of dimen-

sion n ≥ 2, with well-defined mass m0. If (M, g(t)) for t ∈ [0, T ) is a solution

of (1.1) arising from initial data (M, g0), then the mass m(t) of (M, g(t))

obeys

m(t) = m0e
−(n−2)t .

From Theorem 1.1, we further deduce two immediate corollaries:

Corollary 1.2: Let (M, g0) be as in Theorem 1.1. Consider solutions to (1.1)

arising from initial data (M, g0). Then there exist times t1 < t2 such that

m(t1) = m(t2) ⇐⇒ m(t1) = m(t2) = 0.

Corollary 1.3: (Non-existence of massive breathers). Let (M, g0) be as in
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Theorem 1.1. Let g(t) for t ∈ [0, T ) be a solution of (1.1) arising from initial

data (M, g0). Suppose that g(t2) = ϕ∗(g(t1)), for t1 < t2, where ϕ is a diffeo-

morphism such that ϕ − IdM = o(ρ
n
2 ), for ρ a defining function of M . Then

m(t2) = m(t1) = 0.

Back in the asymptotically flat setting, recall we have the famous Positive

Mass Theorem, proven by Schoen-Yau [36] and subsequently by Witten [40],

as well as others (see also [34], [25] [12]), which states that given a complete,

asymptotically flat manifold with non-negative scalar curvature, the ADM

mass of the manifold is non-negative. Schoen and Yau obtained their proof

for the Positive Mass Theorem by minimal surface arguments, while Witten

adopted an approach from the perspective of spin structures. It is of interest

to obtain an alternative, Ricci flow proof for the Positive Mass Theorem. As

of the date of this thesis, no one has yet obtained such an argument. However,

in 2010, Haselhofer [20] provided a Ricci flow argument for a corollary of the

Positive Mass Theorem, referred to in the literature as the Rigidity (or Scalar

Curvature Rigidity) statement (see [36] and [40]). The Rigidity statement

asserts that for an asymptotically flat manifold M satisfying the conditions in

the Positive Mass Theorem, if further the ADM mass of M is zero, then M is

isometric to Euclidean space.

Analogous to the asymptotically flat case, we also have Positive Mass Theo-

rems for asymptotically hyperbolic manifolds, proven in [2] and [11]. It is also

known that Rigidity statements hold in the asymptotically hyperbolic setting,

as shown in [2], [11], and [26]. All of these results were obtained from meth-

ods other than Ricci flow. However, we follow Haselhofer’s idea and similarly

obtain a Ricci flow argument for the Rigidity statement in the asymptotically

hyperbolic case:

Proposition 1.4: (Rigidity). Let (M, g0) be a asymptotically hyperbolic man-

ifold of dimension 3 ≤ n ≤ 6. Further, let (M, g0) be such that the boundary-

at-inifinity of M (see definition 2.2) is isometric to Sn−1, the scalar curvature
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of M is bounded below by −n(n − 1), and (M, g0) has a well-defined mass

m0 := m[g0]. If M is not spin, further suppose that M has a mass aspect

(see definition 2.7) of semi-definite sign. If m0 = 0, then M is isometric to

standard hyperbolic space.

This proposition, as well as Corollary 1.3, then leads us to the following state-

ment:

Corollary 1.5: Let (M, g0) be as in Proposition 1.4 but with non-negative

mass, and let g(t) be a solution to (1.1) arising from initial data (M, g0). If

g(t2) = ϕ∗(g(t1)), for some t1 < t2 and ϕ as in Corollary 1.3, then (M, g0) is

isometric to standard hyperbolic space.

We mention here that our Theorem 1.1 provides support for a conjecture put

forth by Horowitz and Myers in [22]. Namely, the conjecture states that in

the class of all the asymptotically hyperbolic, n-dimensional manifolds which

have scalar curvature greater than or equal to −n(n − 1) and asymptote to

an Anti-deSitter (AdS) soliton (see example 2.5) outside a compact set, the

AdS solitons minimize mass. This conjecture may be thought of as a “pos-

itive” mass theorem for asymptotically hyperbolic manifolds with boundary-

at-inifinity isometric to an (n− 1)-torus. We give the details of how Theorem

1.1 supports this conjecture in chapter 5 of this thesis.

This thesis is organized as follows. In section 2.A, we introduce models of hy-

perbolic space and define standard hyperbolic space. In section 2.B, we define

conformally compact manifolds and asymptotically hyperbolic manifolds. In

section 2.C, we motivate and define asymptotically hyperbolic mass. In section

3.A, we give a brief introduction to Ricci flow. In section 3.B, we introduce the

normalized Ricci flow (1.1) on conformally compact manifolds, and calculate

the asymptotic behaviour of this flow arising from asymptotically hyperbolic

initial data. Then, we calculate the asymptotic behaviour of the Eij term in

(1.1), and prove that (1.1) preserves the asymptotic behaviour of the initial

data. Finally, we prove Theorem 1.1. In chapter 4, we prove Corollaries 1.2,
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1.3, and 1.5, as well as provide our Ricci flow argument for Proposition 1.4.

In chapter 5, we provide a discussion of our results and mention applications

of our results and areas of future work. We also provide appendices A-D on

Riemannian geometry, the equivalence of the Chruściel-Herzlich and extended

Wang masses, an alternate proof to Theorem 1.1 using Ricci-DeTurck flow,

and the Riemann curvature tensor under a conformal change, respectively.

Conventions: In this thesis, we use Einstein summation notation through-

out. Thus an appearance of an index in both an up and a down position implies

a sum over that index (for example, EijEij :=
∑

i

∑
j E

ijEij), unless explicitly

stated otherwise. On a Riemannian manifold (M, g), norms of tensors T on

M are given by the Euclidean norm |T | := [tr(T · T ∗)] 12 , where T ∗ denotes

the metric-dual tensor to T and tr denotes the trace. Further, we define the

(rough) Laplacian of a tensor T as ∆T := gij∇i(∇jT ), where ∇ denotes the

Levi-Cività connection associated to g. Lastly, we mention that we choose

the sign of the Riemann curvature tensor by defining Rm[g](W,X, Y, Z) =

Rm[g]ijklW
iXjY kZ l =: g(R(W,X)Y, Z), where R(X, Y )Z := ∇Y∇XZ −

∇X∇YZ +∇[X,Y ]Z.
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Chapter 2

Asymptotically Hyperbolic

Manifolds

2.A Hyperbolic Space

As motivation for our definition of asymptotically hyperbolic manifolds, we

first introduce the notion of hyperbolic space. We call any representative of

the isometry class of simply-connected, complete, n-dimensional Riemannian

manifolds which possess constant sectional curvature equal to −1 (up to rescal-

ing) hyperbolic n-space. In this section, we shall present a “canonical” model

for hyperbolic n-space, which we will define to be standard hyperbolic space.

However, there are in fact several approaches one may take to model hyper-

bolic space; an excellent introduction to hyperbolic geometry and several of

the models for hyperbolic space is given in [9]. For the purposes of this thesis,

we will describe just two approaches to describing hyperbolic space, resulting

in the hyperboloid model and the Poincaré ball model. We note that each of

the models of hyperbolic space we present are isometric; thus one may choose

any one of them to be the “canonical” reference of hyperbolic space.
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We first present the hyperboloid model. To begin, consider

Rn+1 = {(t, z) = (t, z1, z2, . . . , zn) : t , zi ∈ R} .

Let Hn ⊂ Rn+1 denote the “upper” sheet of the embedded hyperboloid t2 −
[(z1)2 + · · ·+ (zn)2] = 1. That is,

Hn := {(t, z) = (t, z1, . . . , zn) : t > 0, zi ∈ R, t2 −
[
(z1)2 + · · ·+ (zn)2

]
= 1} .

Now, Rn+1 may be equipped with a pseudo-Riemannian metric given by

η = −dt2 + (dz1)2 + · · ·+ (dzn)2 .

The pair (Rn+1, η) is often referred to as n+1-dimensional Minkowski space.

Even though η is not a Riemannian metric (in particular, η(X, Y ) may be less

than zero, or we may have η(X, Y ) = 0 for non-zero X, Y ), we may still use

it to induce a Riemannian metric on Hn. To achieve this induced Riemannian

metric on Hn, consider the “spherical coordinates” imbedding

F : Hn → Rn+1 , F (w, θ1, . . . , θn−1) = (t, z) ,

where

t = coshw ,

z1 = sinhw cos θ1 ,

z2 = sinhw sin θ1 cos θ2 ,

. . .

zn−1 = sinhw sin θ1 sin θ2 · · · sin θn−2 cos θn−1 ,

zn = sinhw sin θ1 sin θ2 · · · sin θn−2 sin θn−1 ,
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and where w ∈ R, θi ∈ [0, π] for i = 1, . . . , n − 2 and θn−1 ∈ [0, 2π]. We will

use F to pull-back η to a metric on Hn.

We thus compute the differentials

dt = sinhwdw ,

dz1 = coshw cos θ1dw − sinhw sin θ1dθ1 ,

dz2 = coshw sin θ1 cos θ2dw + sinhw sin θ1 cos θ2dθ1 − sinhw sin θ1 sin θ2dθ2 ,

...

dzn−1 = coshw sin θ1 · · · sin θn−1 cos θn−1dw

+ sinhw sin θ1 cos θ2 sin θ3 · · · cos θn−1dθ1 + · · ·+

− sinhw sin θ1 sin θ2 · · · sin θn−2 sin θn−1dθn−1 ,

dzn = coshw sin θ1 · · · sin θn−1 sin θn−1dw

+ sinhw cos θ1 sin θ2 sin θ3 · · · sin θn−1dθ1 + · · ·+

− sinhw sin θ1 sin θ2 · · · sin θn−2 cos θn−1dθn−1 .

As well, we find

dt2 = sinh2wdw2 ,

(dz1)2 = cosh2w cos2 θ1dw2 − coshw cos θ1 sinhw sin θ1(dθ1)2

− coshw cos θ1 sinhw sin θ1dθ1dw + sinh2w sin2 θ1dwdθ1 ,

...

(dzn)2 = cosh2w sin2 θ1 · · · sin2 θn−1 sin2 θn−1dw2

+ coshw sinhw sin θ1 cos θ1 sin2 θ2 · · · sin2 θn−1dwdθ1

+ coshw sinhw sin θ1 cos θ1 sin2 θ2 · · · sin2 θn−1dθ1dw + · · ·+

− sinh2w sin2 θ1 sin2 θ2 · · · sin2 θn−2 cos2 θn−1(dθn−1)2 .
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Then, the pull-back of η by the mapping F is the Riemannian metric

gH := F ∗(η)

= F ∗(−dt2 + (dz1)2 + · · ·+ (dzn)2)

=
(
− sinh2w + cosh2w cos2 θ1 + · · ·+ sinh2w sin2 θ1 · · · sin θn−1

)
dw2

+ · · ·+ sinh2w sin θ1 · · · sin θn−1(dθn−1)2

= dw2 + sinh2w · g(Sn−1, can) ,

where of course g(Sn−1, can) denotes the round metric on the sphere Sn−1

with constant sectional curvature equal to +1. We call Hn endowed with the

Riemannian metric gH the hyperboloid model of hyperbolic space. Indeed,

(Hn, gH) is a Riemannian manifold. By construction, (Hn, gH) carries the

topology of Rn, and hence (Hn, gH) is simply connected. Further, the metric

gH is is equivalent to the flat Euclidean metric δ = dx21 + · · · + dx2n, in the

sense that there exists a constant C > 0 such that C−1 · δ ≤ gH ≤ C · δ;
hence since δ is complete, gH is complete. We shall now show that (Hn, gH)

has constant sectional curvature equal to −1, and thus affirm that (Hn, gH) is

indeed a model of hyperbolic space.

For computational ease, express gH = dw2+gw, where gw = sinh2w·g(Sn−1, can),

and re-label the coordinates as x1 = w, xi+1 = θi, i = 1, . . . , n − 1. We will

require the identities

L ∂
∂w
gw = 2Hessw , (2.1)

∇ ∂
∂w

Hessw + L ∂
∂w

Hessw = Rm[gH ]i11j . (2.2)

Here Hessw denotes the Hessian of the function w, ∇ denotes the Levi-Cività
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connection of gH , and L denotes the Lie derivative. We then compute

2Hessw = L ∂
∂w
gw

=
∂

∂w

(
sinh2w

)
+ sinh2w · L ∂

∂w
g(Sn−1, can)

= 2
coshw

sinhw
· gw ,

∇ ∂
∂w

Hessw = ∇ ∂
∂w

(
coshw

sinhw
· gw
)

=
∂

∂w

(
coshw

sinhw

)
· gw +

coshw

sinhw
· ∇ ∂

∂w
gw

=

(
1− cosh2w

sinh2w

)
· gw +

coshw

sinhw
· 0

= gw −
(

coshw

sinhw

)2

· gw ,

and

L ∂
∂w

Hessw = L ∂
∂w

(
coshw

sinhw
gw

)
=

∂

∂w

(
coshw

sinhw

)
· gw +

coshw

sinhw
· L ∂

∂w
gw

=

(
1− cosh2w

sinh2w

)
· gw +

coshw

sinhw
·
(

2
coshw

sinhw
· gw
)

= gw +

(
coshw

sinhw

)2

· gw ,

We therefore obtain by equation (2.2) that the Riemann curvature of (Hn, g)

has components

Rm[gH ]i11j = (gw)ij ,
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which gives

Rm[gH ]i11l = (gw)il 6= 0 if i, l 6= 1, (2.3)

Rm[gH ]i11l = 0 if either of i, l equals 1 . (2.4)

To compute the other components of Rm[gH ] we employ the Gauss and Co-

dazzi equations, which are respectively

Rm[gw]ijkl = Rm[g]ijkl +KilKjk −KikKjl ,

Rm[gH ]ijk1 =∇jKik −∇iKjk ,

where Kij := (Hessw)ij is the extrinsic curvature of the w = constant hyper-

surfaces of Hn, and i, j, k, l 6= 1.

Since Kij only depends on w, the Codazzi equation tells us Rm[gH ]ijk1 = 0;

the symmetry properties of the Riemann curvature tensor of gH then im-

ply Rm[gH ]ijkl = 0 if any one of the indices i, j, k, l is 1. Also, since the

(n− 1)-sphere with the canonical round metric g(Sn−1, can) has constant sec-

tional curvature +1, and gw = sinh2w·g(Sn−1, can), we have Rm[gw]ijkl =

1
sinh2 w

[(gw)ik(gw)jl − (gw)il(gw)jk]. Thus from Gauss’ equation, for i, j, k, l 6= 1

we have

Rm[gH ]ijkl = Rm[gw]ijkl +KikKjl −KilKjk (2.5)

=
1

sinh2w
[(gw)ik(gw)jl − (gw)il(gw)jk] (2.6)

+
coshw

sinhw
[(gw)ik(gw)jl − (gw)il(gw)jk]

=
1− cosh2w

sinh2w
[(gw)ik(gw)jl − (gw)il(gw)jk] (2.7)

= − [(gw)ik(gw)jl − (gw)il(gw)jk] . (2.8)
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Thus, since gH = dw2 + gw, from (2.3), (2.4), and (2.8) we find

Rm[gH ]ijkl = − (gikgjl − gilgjk) .

This implies that (Hn, gH) has constant sectional curvature equal to −1. As

well, we note that the Ricci curvature obeys Ric[g] = −(n−1)g and the scalar

curvature obeys R[g] = −n(n− 1).

We now derive a re-expression of gH which will be a useful reference in later

chapters. First, define the diffeomorphism

G : Hn → Hn , G(x, θ) =

(
log

(
ex + 1

ex − 1

)
, θ

)
=: (w, θ) ,

where θ = (θ1, . . . , θn). Then, pulling gH back by G, we get another Rieman-

nian metric on Hn, isometric to gH , given by

h = G∗(gH)

=
1

sinh2 x

(
dx2 + g(Sn−1, can)

)
.

This now leads us to our first definition.

Definition 2.1: Throughout this thesis, we define the model of hyperbolic

space given by (Hn, h) as standard hyperbolic space.

Alternatively, we may construct another model of hyperbolic space, called

the Poincaré ball model. To construct the Poincaré ball model, consider again

Hn = {(t, z) = (t, z1, . . . , zn) : t > 0, zi ∈ R , t2− [(z1)2+ · · ·+(zn)2] = 1}, but

now equipped with the pseudo-Riemannian metric η restricted to Hn. As well,

consider the n-ball Bn := {y = (y1, . . . , yn) : yi ∈ R, (y1)2 + · · · + (yn)2 < 1}.
Again, we will derive a hyperbolic, Riemannian metric on Bn by pulling back η

by a diffeomorphism. The diffeomorphism we shall employ is the stereographic
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projection

S : Bn → Hn , S(y1, . . . , yn) =

(
1 + ||y||2

1− ||y||2
,

2y

1− ||y||2

)
=: (t, z) ,

where ||y||2 := (y1)2 + · · ·+ (yn)2.

We compute the differentials dt, dzi, i = 1, . . . , n to be

dt =

∑n
k=1 2ykdyk

1− ||y||2
+

(1 + ||y||2)
∑n

k=1 2ykdyk

(1− ||y||2)2
,

dzi =
2dyi

1− ||y||2
+

2yi
∑n

k=1 2ykdyk

(1− ||y||2)2
.

Hence,

dt2 =
16(
∑n

k=1 2ykdyk)2

(1− ||y||2)4
,

(dzi)2 =
4(dyi)2

(1− ||y||2)2
+

8(1− ||y||2)yidyi
∑n

k=1 2ykdyk

(1− ||y||2)4
+

16(yi)2(
∑n

k=1 2ykdyk)2

(1− ||y||2)4
.

The metric pulled-back via the diffeomorphism S is then

gP := S∗(η)

= S∗(−dt2 + (dz1)2 + · · ·+ (dzn)2)

= −16(
∑n

k=1 2ykdyk)2

(1− ||y||2)4
+

4||dy||2

(1− ||y||2)2
+

8(
∑n

k=1 2ykdyk)2

(1− ||y||2)4

−8||y||2)(
∑n

k=1 2ykdyk)2

(1− ||y||2)4
+

16||y||2(
∑n

k=1 2ykdyk)2

(1− ||y||2)4

=
4||dy||2

(1− ||y||2)2
.

We call (Bn, gP ) the Poincaré ball model of hyperbolic space. Considering the

diffeomorphism

G ◦ F−1 ◦ S : Bn → Hn ,
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we have the pullback satisfies

(G ◦ F−1 ◦ S)∗(h) = S∗ ◦ F−1∗ ◦G∗(h)

= S∗ ◦ F−1∗(gH)

= S∗(η)

= gP ;

hence (Bn, gP ) and (Hn, h) are isometric as Riemannian manifolds. Thus,

(Bn, gP ) is also a model of hyperbolic space.

Switching perspective slightly, we highlight here that, given the Poincaré model

(Bn, gP ), we may obtain a smooth metric g̃P := (dy1)2 + · · ·+ (dyn)2 extended

on the closed ball Bn := Bn∪∂Bn = Bn∪Sn−1, upon multiplying the hyperbolic

metric gP by the square of the smooth function ρ(y) := 1
2
(1− ||y||2). Alterna-

tively, from the hyperboloid model point-of-veiw, by conformally transforming

h by the smooth function ρ(x) := sinh x, we achieve a smooth metric h̃ on Bn,

given by

h̃ := ρ2(x)h = dx2 + g(Sn−1, can) ,

which we may smoothly extend to the closed ball Bn. Thus, in some sense,

we have just “compactified” these models of hyperbolic space given by either

the open manifold (Bn, gP ) or the open manifold (Hn, h), to the respective

closed manifold (Bn, g̃P ) or (Bn, h̃) , by a conformal transformation. We will

elaborate on this observation in the next section.

2.B Asymptotically Hyperbolic Manifolds1

Let (M, g) be a smooth, n-dimensional Riemannian manifold.

There are two main approaches to defining an asymptotically hyperbolic man-

1A version of this section has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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ifold. One method is to first define what is called a conformal completion of

the manifold (see [21], [11], and [2]), and then impose certain restrictions on

the conformal completion. The alternative is a coordinate-dependent approach

which specifies an asymptotic expansion for the Riemannian metric in a given

neighbourhood of infinity. This latter method is presented in [21] and [11].

In [21], it is proven that these two definitions are equivalent. Thus, we may

view asymptotically hyperbolic manifolds (M, g) as either Riemannian mani-

folds which possess a conformal completion with restrictions, or alternatively

as Riemannian manifolds for which the metric g realizes a certain asymptotic

expansion in some local coordinate system. We shall take the conformal com-

pletion approach.

Definition 2.2: We say that the manifold M is (smoothly) conformally com-

pactifiable if there exists a smooth, compact, n-dimensional manifold with

boundary M̃ := M ∪ ∂M , and a smooth function ρ : M̃ → R satisfying

ρ(p) = 0 ⇐⇒ p ∈ ∂M and dρ(p) 6= 0 ∀p ∈ ∂M , such that the metric g̃ := ρ2g

extends to a smooth metric on M̃ . In this case, we call the triple (M̃, g̃, ρ)

a conformal completion of the manifold M . The manifold ∂M is referred to

as the boundary-at-infinity of M ; we also refer to the function ρ as a defining

function for M .

Example 2.3: The compact Riemannian manifold (Bn, g̃P ), as given in sec-

tion 2.A, along with the function ρ(y) := 1
2
(1 − ||y||2) defines a conformal

completion (Bn, g̃P = δ, ρ) of the Poincaré ball. Likewise, (Bn, h̃, ρ) where ρ is

the function ρ(x) = sinhx is a conformal completion of standard hyperbolic

space (Hn, h).

Now, suppose (M, g) is a conformally compactifiable, n-dimensional mani-

fold.

Definition 2.4: Given a conformal completion (M̃, g̃, ρ) of our manifold
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(M, g) as above, if we have in addition |dρ|2g̃ = 1 + O(ρl), 2 3 for some l ≥ 1

on ∂M , we define (M, g) to be asymptotically hyperbolic (of order l).

Remark 2.5: If (M, g) is asymptotically hyperbolic with defining function ρ,

and ρ satisfies |dρ|2g̃ ≡ 1 on a neighbourhood of ∂M , then ρ is called a special

defining function. However, for the rest of this thesis, we will generally not

assume that the defining function of an asymptotically hyperbolic manifold is

special.

We now provide the motivation behind the above definition of “asymptotically

hyperbolic”. From a standard calculation (see appendix D), we have that in

a nieghbourhood of some p ∈ M , if g̃ = ρ2g, the Riemann curvature changes

according to

Rm[g]ijkl =
1

ρ2
Rm[g̃]ijkl +

1

ρ4
|dρ|2g̃(g̃ikg̃jl − g̃ilg̃jk)

+
1

ρ3

[
g̃jk∇̃i∇̃lρ+ g̃il∇̃j∇̃kρ− g̃ik∇̃j∇̃lρ− g̃lj∇̃i∇̃kρ

]
.

Hence, the components of the sectional curvatures of any 2-plane at p may be

expressed as

Rm[g]ijkl
gikgjl − gilgjk

= |dρ|2g̃ + ρ2
Rm[g̃]ijkl

g̃ikg̃jl − g̃ilg̃jk
(2.9)

+ρ
g̃jk∇̃i∇̃lρ+ g̃il∇̃j∇̃kρ− g̃ik∇̃j∇̃lρ− g̃lj∇̃i∇̃kρ

g̃ikg̃jl − g̃ilg̃jk
.

Now, since g̃ extends smoothly to ∂M , if we take the limit as ρ → 0 (or

equivalently the limit as p → ∂M), we obtain that the sectional curvature,

denoted sec(X, Y ), of a 2-plane at the point p spanned by tangent vectors X,

Y , obeys

sec(X, Y ) = −1 +O(ρl) ,

2We define |dρ|2g̃ := g̃ij∂iρ∂jρ.
3Here u = O(ρs) means |u| < C|ρs| as ρ→ 0 for some constant C > 0.
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for some l ≥ 1 if and only if |dρ|2g̃ = 1 + O(ρl) for some l ≥ 1. It is this be-

haviour of the sectional curvatures that leads to our notion of “asymptotically

hyperbolic”.

We further comment that if |dρ|2g̃ = 1 +O(ρl) for some l ≥ 1, the components

of the Riemann curvature tensor satisfy

Rm[g]ijkl = −(gikgjl − gilgjk) +O(ρl) ;

and so we have also

|Eij| := |Ric[g]ij + (n− 1)gij| = O(ρl) .

In other words, the Ricci curvature of asymptotically hyperbolic manifolds

satisfy Ric[g]ij = −(n−1)gij+O(ρl) and scalar curvature satisfies R = −n(n−
1) +O(ρl), where l ≥ 1.

Example 2.6: (Examples of Asymptotically Hyperbolic Manifolds) Let g be a

Riemannian metric on a conformally compactifiable manifold M of dimension

≥ 3, such that in local radial coordinates, g may be expressed as4

g =
dr2

r2
(
1− 1

rn

) + r2

[(
1− 1

rn

)
dξ2 +

n∑
i=3

dθ2i

]
, (2.10)

where r ∈ [1,∞), ξ ∈ [0, 4π
n

], and θi ∈ [0, ai] for some parameters 0 < a1 ≤
· · · ≤ an. We call the family of Riemannian manifolds (M, g) Anti-de Sitter

(AdS) solitons5, since they are spacelike hypersurfaces of the Anti-de Sitter

soliton spacetimes presented in [22] (see also [1] and [17]). AdS solitons are

conformally compactifiable, with defining function ρ = 1
r

and boundary-at-

infinity given by an (n−1)-torus equipped with the flat metric dξ2 +
∑n

i=3 dθ
2
i ,

4The expression for g often contains a parameter r0, which we have scaled away. As well,
in the literature the expression (2.10) may also be written with a parameter `, called the
radius of curvature at infinity, which we have normalized to 1 in (2.10).

5Note that the noun “soliton” as used in this setting does not refer to Ricci solitons.
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where the coordinates parametrizing the cycles of the torus take values in

ξ ∈ [0, 4π
n

] and θi ∈ [0, ai], for 0 < a1 ≤ · · · ≤ an. From the expression of the

AdS soliton metric in (2.10), we see |dρ|2g̃ = 1 + O(r−n). Making the change

of coordinates x = 1
r

for comparison purposes, we obtain |dρ|2g̃ = 1 + O(xn).

Hence, AdS solitons are asymptotically hyperbolic.

Again, let (M, g) be a conformally compactifiable, n-dimensional manifold. In

an end6 of M given by (0, ε)×∂M , we may define coordinates (x, yA)A∈{1,...,n−1}

with respect to the boundary-at-infinity. That is, we choose x so that ∂
∂x

defines a normal vector to ∂M , and (yA)A∈{1,...,n−1} define coordinates on the

boundary ∂M . For notational convenience, we will occasionally write x1 = x,

xi = yi−1, i ∈ {2, . . . , n}.

Let ĝ be the metric induced by g̃ on the boundary-at-infinity ∂M . If (M, g) is

asymptotically hyperbolic, we may express the metric g as the expansion

g = ρ−2
(
dx2 + ĝABdy

AdyB +
xl

l
κijdx

idxj +O(xl+1)

)
(2.11)

for some l ≥ 1 and functions κij := κ(y)ij of the coordinates y := (yA), A =

1, . . . , n − 1, such that κ = κijdx
idxj defines a symmetric (0,2)-tensor on the

x = constant hypersurfaces of M . In this setting, a tensor v = vijdx
idxj ∈

O(xp) means that the component functions vij are such that |vij| ≤ C|x|p as

x→ 0, for all i, j, where C is a positive constant.

For the majority of this thesis, we will be concerned with the class of asymp-

totically hyperbolic manifolds (M, g) for which ∂M may be equipped with

either the round (n−1)-sphere metric (and thus (∂M, ĝ) is isometric to Sn−1),

or a metric of constant sectional curvature 0. In these cases, we have that the

6also called a collar neighbourhood of ∂M .
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metric induced by g on ∂M is ĝ = g(k), for k = 0 or 1, where

g(1) = the canonical round metric on Sn−1, and (2.12)

g(0) = a metric of constant sectional curvature 0. (2.13)

As motivated by the calculations in the previous section, and as shown in [2]

and [11], in these cases we may choose our defining functions to be respec-

tively

ρ(1)(x) = sinh(x) , and (2.14)

ρ(0)(x) = x . (2.15)

Thus in these special cases the metric takes the form

g = ρ−2(k)

(
dx2 + g(k)ABdy

AdyB +
xl

l
κijdx

idxj +O(xl+1)

)
, (2.16)

for k = 0, 1 respectively, and for some l ≥ 1.

Now, for this restricted class of asymptotically hyperbolic manifolds for which

∂M can be endowed with a metric of constant sectional curvature 0 or +1, we

may make the change of coordinates

yA → yA +
xl+1

(l + 1)l
gAC(k) κ1C , (2.17)

x → x+
xl+1

2l2
κ11 , (2.18)

to re-express the metric from the form as given in (2.11) into the form

g = ρ−2(k)(x)

[
dx2 + g(k) +

xl

l

(
κAB +

κ11
l
g(k)AB

)
dyAdyB +O(xl+1)

]
(2.19)

= ρ−2(k)(x)

(
dx2 + g(k) +

xl

l
σABdy

AdyB +O(xl+1)

)
. (2.20)
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Note here we have slightly abused notation by denoting our new coordinates

also as (x, yA)A∈{1,...,n−1}.

2.C Asymptotically Hyperbolic Mass

To motivate the definition of mass on an asymptotically hyperbolic manifold,

we provide the following heuristic explanation. Consider a closed physical

system. In such a physical system, one can define the notion of mass as the

total mass of matter contained in the system plus the total energy contained

in the system. Since the physical system is closed, conservation of energy tells

us that, regardless of the physical interactions taking place within the system,

the mass of the system is invariant. Now suppose the physical system we wish

to analyze exists in some (pseudo-) Riemannian manifold M . According to

Einstein’s theory of general relativity, the physical mass-energy in the system

determines the geometry of M . So from a geometrical point of view, the

notion of the mass of the physical system must be a quantity which broadly

tells us something about the geometry of M . Further, if the notion of mass is

viewed as a geometrical quantity, it should be an invariant of M , and hence

not depend on which coordinate system of M we choose to work with.

Following along the lines of the above heuristic argument, when the physical

system is represented by an asymptotically hyperbolic manifold, the extension

of the notion of mass as the total material mass contained in the system plus

the total energy contained in the system gives rise to the idea of asymptot-

ically hyperbolic mass. Geometrically speaking, in the case where M has a

boundary-at-infinity isometric to a round sphere, due to the Rigidity state-

ment (see [11], [2], [26], or chapter 4 of this thesis) we therefore may think

of asymptotically hyperbolic mass as a measure of “how much” the geometry

of an asymptotically hyperbolic manifold with non-zero mass differs from the

geometry of standard hyperbolic n-space.
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2.C.1 The Extended Wang Mass7

Let (M, g) be an asymptotically hyperbolic, n-dimensional manifold whose

boundary-at-infinity is diffeomorphic to the (n − 1) sphere. As explained

previously, we may write the metric in the form

g = sinh(x)−2
(
dx2 + g(1)ABdy

AdyB +
xl

l
σABdy

AdyB +O(xl+1)

)
where g(1) is the canonical round metric on Sn−1 and σ = σABdy

AdyB is a

symmetric (0, 2) tensor on ∂M . Suppose l = n. In [39], Wang defined the

invariant

mW [g] :=

∫
Sn−1

gAB(1) σAB dµg(1)

as the mass of the manifold (M, g).

We also would like to consider the case where (M, g) is an asymptotically hy-

perbolic, n-dimensional manifold whose boundary-at-infinity is isometric to a

flat (n− 1)-torus. A notion of mass which takes into account the cases where

the boundary-at-infinity of M can be equipped with a metric of constant sec-

tional curvature −1, 0, or +1, has been introduced by Chruściel and Herzlich

in [11]. In [11], it is noted that the Chruściel and Herzlich definition of mass

coincides with Wang’s definition in the case when ∂M ≡ Sn. We also note that

Chruściel and Herzlich’s definition has the advantage of being expressed with-

out a need for a coordinate basis [11]. As well, by first proving that there exists

a conformal isometry (possibly only defined for sufficiently small x) from one

conformal completion of (M, g) to any other conformal completion of (M, g),

Chruściel and Herzlich’s definition of asymptotically hyperbolic mass is seen to

be independent of the respective conformal completion chosen for (M, g) [11].

However, despite these advantages, the Chruściel and Herzlich’s mass defini-

7A version of this subsection has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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tion is somewhat inconvenient for our calculations. Therefore, we will extend

Wang’s definition above to include the case where ∂M can be equipped with

a metric of constant sectional curvature 0.

Definition 2.7: Given an asymptotically hyperbolic, n-dimensional manifold

(M, g) for which the metric can be written in the form of (2.20) with l = n,

we define the mass of (M, g) as the finite quantity

m[g] :=

∫
∂M

σ dµg(k) , (2.21)

where dµg(k) denotes the volume form on ∂M with respect to the metric g(k).

Here σ := gAB(k) σAB is referred to as the mass aspect of (M, g).

Of course, we must verify that our extended mass definition remains an invari-

ant of the manifold; in other words, we must check that our mass definition

is independent of the coordinate system chosen on M . To confirm coordinate

independence of our extended Wang mass, we show in appendix B that our

mass definition coincides with the definition of mass given by Chruściel and

Herzlich.

Example 2.8: Let (M, g) be an AdS soliton of dimension n ≥ 3, with g given

as in (2.10). Scaling the parameters ai appropriately, one may compute that

the mass of the soliton is m[g] = −4π
n

∏n
i=3 ai (see [22]). Note that the mass is

negative! For physical interpretations of what this negative mass may mean,

see [22]. In addition, for an explicit calculation of the mass of a 3-dimensional

AdS soliton, please see appendix B.
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Chapter 3

The Ricci Flow

3.A Hamilton’s Ricci Flow and DeTurck’s Trick

In efforts to construct a proof of the 3-dimensional Poincaré Conjecture, Hamil-

ton devised a means by which one could attempt to deform the metric of a

given compact manifold to an Einstein metric [19]. He called the deformation

a Ricci flow. A Ricci flow on a given manifold (M, g0) is a 1-parameter family

of Riemannian metrics g(t) on M which satisfy

∂g

∂t
(t) = −2Ric[g(t)], (3.1)

g(0) = g0 . (3.2)

Notice that the fixed points (up to homothetic rescaling) of the Ricci flow

equation satisfy Ric[g] + kg = 0 for some constant k, and thus are Einstein

manifolds.

One drawback of the Ricci flow is that it is not parabolic; indeed, the lineariza-
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tion of the right-hand-side of equation (3.1) is

∂Ric[g]ij
∂s

∣∣∣∣
s=0

= −∆LRic[g]ij +∇i(∆
kRic[g]jk) (3.3)

+∇j(∆
kRic[g]ik)−∇i∇j(R[g]) ,

where ∆Laij := ∆aij − Ric[g]ki ajk − Ric[g]kjaik + Rm[g]klijakl + Rm[g]kljiakl is

the Lichnerowicz laplacian. One may compute that the principal symbol of

the operator in (3.3) is only semi-definite; by definition, this means that the

Ricci flow equation is not parabolic. This lack of parabolicity implies that

one cannot use standard theory for parabolic partial differential equations to

prove existence or uniqueness of solutions to the Ricci flow (Hamilton invoked

Nash-Moser theory to obtain existence). However, in 1983, DeTurck provided

a solution to the inconvenience of the non-parabolicity of the Ricci flow, which

became known as “DeTurck’s Trick” [14].

DeTurck’s approach was to first consider a time-independent background met-

ric on M , which we may take to be the initial metric g0. Then, define a vector

field on (M, g := g(t)) by X(t) = Xk∂k = gij(Γkij − Γ̊kij)∂k, where Γkij and Γ̊kij

are the Christoffel symbols with respect to g = g(t) and g0 respectively. Let ϕt

be a family of diffeomorphisms generated by X(t); that is, ϕt solves the initial

value problem ∂ϕt
∂t

= −X(t), ϕ0 = Id (we know solutions exist to this partial

differential equation due to Picard’s Existence Theorem). Instead of directly

looking for solutions to the flow in (3.1), DeTurck considered the system

∂q

∂t
(t) = −2Ric[q(t)] + LX(t)q(t),

q(0) = g0 .

(Here LX(t)q(t) is the Lie derivative of q(t) with respect to the vector field

X(t).) This new system is called the Ricci-DeTurck flow. DeTurck then

showed that Ricci-DeTurck flow was parabolic. This was the most crucial

step; once DeTurck verified parabolicity, using standard partial differential
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equations theory he readily obtained existence and uniqueness of solutions

q(t), t ∈ [0, T ], to the Ricci-DeTurck flow.

DeTurck’s next move was to then show that the pullback metrics g(t) :=

ϕ∗t (q(t)) were unique solutions to the original Ricci flow in (3.1). This is

straightforward to check. Indeed, by the definition of the Lie derivative, we

obtain for F (u, v) := ϕ∗u(q(v)),

∂g

∂t
(s) =

∂

∂t
F (s, s)

=
∂

∂u
ϕ∗u(q(s))

∣∣∣∣
u=s

+
∂

∂v
ϕ∗s(q(v))

∣∣∣∣
v=s

= ϕ∗s
(
L−X(s)q(s)

)
+ ϕ∗s

(
∂

∂v
q(v)

∣∣∣∣
v=s

)
.

Then, we further compute

∂g

∂t
(t) = ϕ∗t

(
LX(t)q(t)

)
+ ϕ∗t

(
∂

∂t
q(t)

)
= −ϕ∗t

(
LX(t)q(t)

)
+ ϕ∗t

(
−2Ric[q(t)] + LX(t)q(t)

)
= −ϕ∗t (−2Ric[q(t)])

= −2Ric[g(t)] .

Hence g(t) := ϕ∗t (q(t)) is a unique solution to the Ricci flow.

Now that we know solutions to (3.1) exist, let g(t) be such a solution. In some

cases, it is useful to hold certain properties of the solution g(t) (such as volume,

if defined) which would otherwise be time-dependent to be constant under the

Ricci flow. Alternatively, one may find it useful to rescale the time interval for

which g(t) exists. In either situation, one may do this as follows: Let (M, g(s))

be a Riemannian manifold with g(s) a solution to ∂g
∂s

= −2Ric[g(s)] for s ∈
[0, S]. Set s = B(t) for a smooth re-parameterization B(t) : [0, T ] → [0, S],

and define a new metric on M by g(t) := A(t)g(B(t)), where A(t) is a smooth,
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time-dependent function on M . Then, we calculate

∂g

∂t
(t) = A′(t)g(s) + A(t)

∂g

∂s
(s)B′(t)

= A′(t)g(s) +
∂g

∂s
A(t)B′(t)

=
A′(t)

A(t)
g(t)− 2Ric[g(s)]A(t)B′(t)

=
A′(t)

A(t)
g(t)− 2Ric

[
g(t)

A(t)

]
A(t)B′(t) .

Since the Ricci tensor is invariant under rescaling, we have derived the flow

∂g

∂t
(t) =

A′(t)

A(t)
g(t)− 2Ric(g(t)) . (3.4)

Equation (3.5) is called a normalized Ricci flow. In the case where (M, g0) has

defined volume, if we choose B(t) = t and A(t) =
∫
M
R[g(t)]dµg(t), we obtain

a flow whose fixed points have the same volume as (M, g0), namely

∂g

∂t
(t) = −2Ric(g(t)) +

[∫
M
R[g(t)]dµg(t)∫
M
dµg(t)

]
g(t) . (3.5)

This flow is called the volume normalized Ricci flow equation.

In the next section, we will turn our focus to a Ricci flow normalized such that

fixed points to the flow have sectional curvature equal to −1. However, for

more information about Ricci flow and its properties, please see the excellent

resources [10] and [38].

3.B A Normalized Ricci Flow1

We are ultimately interested in studying Ricci flow arising from asymptotically

hyperbolic initial data. Given this motivation, we first consider the Ricci flow

1A version of this section has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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(3.1) with initial data given by a smooth, n-dimensional, conformally compact

Riemannian manifold (M, g0). Setting

A(t) := e−2(n−1)t and B(t) :=
e2(n−1)t − 1

2(n− 1)

in equation (3.5) gives us the curvature-normalized Ricci flow of M as in

equation (1.1), restated below for convenience:

∂gij
∂t

= −2Eij := −2[Ric[g]ij + (n− 1)gij] ,

g(0) = g0 .

In [37], Suneeta studied perturbations of hyperbolic space, and showed that

the perturbed metrics converged to a hyperbolic metric on Hn under linearized

approximations of the flows (1.1) and (3.1). Li and Lin in [24] also analyzed

the normalized flow (1.1) in the case where the initial data was a slight per-

turbation of hyperbolic space, and obtained both existence and convergence

results if the perturbation decayed exponentially. Later, Schnürer, Schulze,

and Simon [35] extended the non-linear results of Li and Lin to more relaxed

perturbations of hyperbolic space. Recently, using the DeTurck trick, Bahuaud

[8] has proven that short-time solutions to the flow (1.1) with smooth confor-

mally compact initial data exist and are unique. In [8], it has also been shown

that the short-time solution of the flow given in (1.1) preserves the quality of

conformal compactness. In other words, if (M, g0) has a conformal completion

(M, g̃0, ρ(0)), and if g(t) is a solution to (1.1) for some t ∈ [0, T ), then there

exists a conformal completion (M̃, g̃(t), ρ(t)) of (M, g(t)). Further, Bahuaud

noted that if in addition we have |dx|2g̃0 = 1 on ∂M , then at each time t one

can choose a defining function such that the flow given by (1.1) preserves this

property. That is, if (M, g0) is asymptotically hyperbolic with l = 1, then

Bahuaud showed (M, g(t)) for t ∈ [0, T ) will also be asymptotically hyper-

bolic with l = 1. Further, Bahuaud [8] proved long-time existence of solutions
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to (1.1) under certain asymptotic assumptions. Assuming certain initial cur-

vature and volume bounds, Qing, Shi, and Wu were also able to prove in

[33] both short-time and long-time existence of solutions to the normalized

flow (1.1), and in addition, obtained convergence results for solutions of (1.1)

arising from asymptotically hyperbolic initial data with certain curvature and

volume bounds.

In what follows, we will show that for solutions g(t) to the flow (1.1) aris-

ing from initial data given by an asymptotically hyperbolic, n-dimensional

manifold (M, g0) whose conformal completion (M̃, g̃0, ρ0) has the boundary-

at-infinity isometric to either a flat (n−1)-torus or Sn−1 (and hence g0 is of the

form (2.16)), the initial defining function ρ0 := ρ(k), as given by (2.14), (2.15)

respectively, remains a good defining function for (M, g(t)). Further we will

calculate the asymptotic behaviour of Eij for an asymptotically hyperbolic,

n-dimensional manifold (M, g0) with g0 expressed as in (2.16). In addition,

we will use this calculation of the asymptotic behaviour of Eij to show that,

more precisely, the flow (1.1) preserves the asymptotic structure of the initial

data — if (M, g0) is asymptotically hyperbolic with an expansion beginning

at order l, then (M, g(t)) for t ∈ [0, T ] will also be asymptotically hyperbolic

with an expansion beginning at order l. We ultimately will use these results

to prove Theorem 1.1.

3.B.1 The Local Expression of Solutions

Consider the flow (1.1) arising from initial data given by an asymptotically hy-

perbolic, n-dimensional manifold (M, g0) whose conformal completion (M̃, g̃0, ρ0)

has the boundary-at-infinity isometric to either a flat torus or Sn−1. We set

ρ0 := ρ(k), for ρ(k) given respectively by (2.14) or (2.15). We provide the follow-

ing argument first noted in [8], which asserts that our initial defining function

ρ0 is also a defining function for (M, g(t)), where g(t) is some solution to

(1.1).
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In [8], Bahuaud proves existence and uniqueness of solutions to such a flow

by employing the DeTurck trick. In his choice of local coordinate system, he

obtains solutions to the Ricci-DeTurck flow of (1.1) are of the form

g(t) =
dx2 + ĥ+ v(t, x, yA)

x2
,

where ĥ is a metric on the boundary-at-infinity ∂M , (yA) are coordinates on

∂M , and v(t, x, yA) = O(x2).

Let X = Xk ∂
∂xk

denote the DeTurck vector field of the associated Ricci-

DeTurck flow to (1.1), and let ϕt denote the 1-parameter family of diffeo-

morphisms induced by the vector field X. We compute that the pullback

metric ϕ∗t (g(t)) is given as

ϕ∗t (g(t)) =
ϕ∗t (dx

2 + ĥ+ v(t, x, yA))

(x ◦ ϕt)2
,

=
dx2 + ĥ+ v(t, x, yA) + (ϕ∗t − Id)(dx2 + ĥ+ v(t, x, yA))

(x ◦ ϕt)2
,

=
dx2 + ĥ+ v(t, x, yA)

(x ◦ ϕt)2
,

where v(t, x, yA) := v(t, x, yA) + (ϕ∗t − Id)(dx2 + ĥ + v(t, x, yA)). From [8],

X ≡ 0 on the boundary-at-infinity, and so in Bahuaud’s chosen coordinate

system, the components of X must obey Xk = O(x2); thus we deduce

∂(xk ◦ ϕt)
∂t

= O(x2) ,

and integrating with respect to t we find the pulled-back coordinates are of

the form

(xk ◦ ϕt) = xk +O(x2) ,

where u = O(xs) means |u| < c(t, yA)|xs| as x→ 0 for some constant c(t, yA) >

29



0 and t ∈ [0, T ]. Then, differentiating with respect to xi, we get

ϕ∗t = δki +O(x) .

Hence, we obtain that the pullback ϕ∗t satisfies

(ϕ∗t − Id)kj = O(x) .

Therefore, the pulled-back metric ϕ∗t (g(t)) remains asymptotically hyperbolic.

Further, in our choice of local coordinate system, we obtain

ϕ∗t (ρ(t)) = ρ0 +O(x) .

So, we may express the the solutions g(t) to (1.1) in the general form

g(t) = ρ−2(k)

(
dx2 + g(k)ABdy

AdyB +
xl

l
κij(t)dx

idxj +O(xl+1)

)
(3.6)

where 1 ≤ l, where κ(y, t)ij is as in (2.11), and g(k) is as in (2.12), (2.13), and

ρ(k) is as in (2.14), (2.15), respectively.

3.B.2 The Asymptotic Behaviour of Eij

Let (M, g) be an asymptotically hyperbolic, n-dimensional manifold whose

conformal completion (M̃, g̃0, ρ0) has the boundary-at-infinity isometric to ei-

ther a flat (n − 1)-torus or a round Sn−1. Write g as in the form of (2.16).

Now let ĥ denote the metric induced by g̃ on the x = constant hypersur-

faces of M̃ . Thus ĥ = g(k)ABdy
AdyB + xl

l
κABdy

AdyB + O(xl+1). Further,

define the following “curvature” quantities KAB := Hessx = 1
2
∂xĥab + O(xl)

and H := ĥABKAB + O(xl) (note these quantities only approximate extrinsic

and mean curvature, respectively, since ∂
∂x

is not a unit vector). To compute

Eij = Ric[g]ij + (n− 1)gij, we will require the following standard equations:
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The Ricatti equation:

R1
A1B = KACK

C
B −

∂

∂x
KAB +O(x2l−2) . (3.7)

Gauss’ Equations:

Rm[ĥ]ijkl = Rm[g̃]ijkl +KilKjk −KikKjl +O(x2l) , (3.8)

Ric[ĥ]AB = Ric[g̃]AB −Rm[g̃]1AB1 +HKAB −KACK
C
B +O(x2l) . (3.9)

The Codazzi Equation:

Rm[g̃]ABC1 = ∇BKAC −∇AKBC +O(xl) . (3.10)

The Conformal Change of Ricci Curvature Equation:

Ric[g]ij = Ric[g̃]ij +
1

ρ

[
(n− 2)∇̃i∇̃jρ+ g̃ij∆̃ρ

]
− (n− 1)g̃ij

|∇̃ρ|2

ρ2
. (3.11)

For computational convenience, denote

Bij =
1

ρ

[
(n− 2)∇̃i∇̃jρ+ g̃ij∆̃ρ

]
− (n− 1)g̃ij

|∇̃ρ|2

ρ2
.

Then equation (3.11) can be succinctly rewritten as

Ric[g]ij = Ric[g̃]ij +Bij . (3.12)

Now, using (3.7), (3.8), we obtain

Ric[g̃]11 = −(l − 1)

2
ĥABκABx

l−2 +O(xl−1)

= −(l − 1)

2
g(k)

ABκABx
l−2 +O(xl−1) .
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Using (3.10),

Ric[g̃]1A = ∇BKAB −∇A(ĥBCKBC) +O(xl)

= O(xl−1) ,

and by (3.7), (3.8), as well as using Taylor’s theorem, we have

Ric[g̃]AB = k(n− 2)g(k)AB −
(l − 1)

2
κABx

l−2 +O(xl−1) .

In a similar fashion, we calculate the the Bij term in (3.11):

B11 = −(n− 1)

ρ2(k)(t)
+

[
1

2
g(k)

ABκAB −
(n− 1)

2
κ11

]
xl−2 +O(xl−1) ,

B1A = O(xl−1) ,

BAB =

[
k − (n− 1)

(dρ(k))
2

ρ2(k)

]
g(k)AB +

[
(n− 2)

2
+

(k − 1)(n− 1)

l

]
κABx

l−2

+

[
1

2
g(k)

CDκCD −
1

2
κ11 +

(n− 1)

l
κ11

]
g(k)ABx

l−2 +O(xl−1) .

Therefore by (3.12), we compute

Ric[g]11 = −(n− 1)

ρ2(k)(t)
−
[
l − 2

2
g(k)

ABκAB +
(n− 1)

2
κ11

]
xl−2 +O(xl−1) ,

Ric[g]1A = O(xl−1) ,

Ric[g]AB = (n− 1)

[
k −

(dρ(k))
2

ρ2(k)

]
g(k)AB +

[
(n− l − 1)

2
+

(k − 1)(n− 1)

l

]
κABx

l−2

+

[
1

2
g(k)

CDκCD −
1

2
κ11 +

(n− 1)

l
κ11

]
g(k)ABx

l−2 +O(xl−1) .
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Then, given Eij = Ric[g]ij + (n− 1)gij, we obtain the expansions

E11 = −
[
l − 2

2
g(k)

ABκAB +
(l − 2)(n− 1)

2l
κ11

]
xl−2 +O(xl−1) , (3.13)

E1A = O(xl−1) , (3.14)

EAB =

[
1

2
g(k)

CDκCD −
1

2
κ11 +

(n− 1)

l
κ11

]
g(k)ABx

l−2 (3.15)

+
(n− l − 1)

2
κABx

l−2 +O(xl−1) .

We immediately obtain from the above calculations that asymptotically hy-

perbolic, Einstein manifolds with a boundary-at-infinity is isometric to either

a round sphere or a flat torus cannot have a non-zero mass. We note that this

result was shown in [4] for the case where the boundary-at-infinity is isometric

to a round sphere.

Lemma 3.1: Let (M, g) be an asymptotically hyperbolic, Einstein manifold of

dimension n ≥ 2. Then (M, g) has a well-defined mass m[g] = 0.

Proof: If (M, g) is Einstein, then Eij = 0 by definition. In particular, E11 = 0.

From equation (3.7) with l = n, we have E11 = n−2
2
σ. Thus E11 = 0⇒ σ = 0,

and hence m[g] = 0.

3.B.3 The Ricci flow of Asymptotically Hyperbolic Man-

ifolds

Now that we know that ρ(k) is a good defining function throughout the flow

(1.1), and have determined an expansion for Eij in terms of x, we prove the

following:

Proposition 3.2: Let (M, g0) be asymptotically hyperbolic of order l ≥ 1 and

g0 of the form of (2.16), with κ11 = κ1A = κA1 = 0. If g(t) is a solution to
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(1.1) arising from initial data g0, then g(t) is also asymptotically hyperbolic of

order l.

Proof: Suppose g(t) has an expansion beginning at order m ≥ 1. From

(1.1), we have xm

m

∂κij
∂t

= −2Eij. Then, by equations (3.13) – (3.15), we obtain
∂κij
∂t

= Aij
klκkl, where A is a matrix with components

A11
11 = (m− 2)(n− 1) +O(x) ,

A11
AB = m(m− 2)g(k)

AB +O(x) ,

A1A
kl = O(x) ,

AAB
11 = [−m+ 2(n− 1)]] g(k)AB +O(x) ,

AAB
CD = −mg(k)CDg(k)AB −m(n−m− 1)δCAδ

D
B +O(x) .

Thus at each order,
∂κij
∂t

= Aij
klκkl is a linear, partial differential equation in

the functions κij. Take the limit as x → 0. For m < l, we have κij(0) = 0;

thus by uniqueness theory for linear partial differential equations, κij(t) = 0

for m < l. This gives the required result.

3.B.4 The Evolution of Asymptotically Hyperbolic Mass

Now we have the necessary information to enable us to prove Theorem 1.1,

which we restate below.

Theorem 1.1: Let (M, g0) be an asymptotically hyperbolic manifold of dimen-

sion n ≥ 2, with well-defined mass m0 := m[g0]. If (M, g(t)) for t ∈ [0, T )

is a solution of (1.1) arising from initial data (M, g0), then the mass m(t) of

(M, g(t)) obeys

m(t) = m0e
−(n−2)t .
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Proof: By Proposition 3.2, we know (M, g(t)) has a well-defined mass. Now,

recall that the mass aspect is defined as σ = gAB(k) σAB = gAB(k) κAB+ n−1
n
κ11.

We first calculate the evolution of the κ11 component:

∂κ11
∂t

=
n

xn−2
(−2E11)

=
−2n

xn−2

(
−(n− 1)(n− 2)

2n
κ11 −

n(n− 2)

2n
gAB(k) κAB

)
xn−2 +O(x)

= (n− 1)(n− 2)κ11 + n(n− 2)gAB(k) κAB +O(x)

= n(n− 2)

(
gAB(k) κAB +

n− 1

n
κ11

)
+O(x)

= n(n− 2)σ +O(x) .

The trace term evolves as

∂

∂t

(
gAB(k) κAB

)
=
∂gAB(k)

∂t
κAB + gAB(k)

∂κAB
∂t

= 0 · κAB + gAB(k)

(
−2nxn−2EAB

)
+O(x)

= ngAB(k) κAB − n(n− 1)gAB(k) κAB

−(n− 1)(n− 2)κ11 +O(x)

= −n(n− 2)

(
gAB(k) κAB +

n− 1

n
κ11

)
+O(x)

= −n(n− 2)σ +O(x) .
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Therefore, we obtain

∂σ

∂t
=

∂

∂t

(
gAB(k) κAB +

n− 1

n
κ11

)
=

∂

∂t

(
gAB(k) κAB

)
+
n− 1

n

∂κ11
∂t

= −n(n− 2)σ +
n− 1

n
[n(n− 2)σ] +O(x)

= −n(n− 2)σ + (n− 1)(n− 2)σ +O(x)

= −(n− 2)σ +O(x) .

Hence, integrating with respect to t, we have the mass aspect evolves under

the normalized flow (1.1) according to

σ(t) = σ0e
−(n−2)t +O(x) ,

where σ0 = σ(0). Therefore, integrating over ∂M , gives us the final result

m(t) = m0e
−(n−2)t , (3.16)

where m0 = m(0) is the initial mass.
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Chapter 4

Consequences of the Mass

Evolution1

From Theorem 1.1, we immediately deduce the following consequences. The

first consequence is that if the mass is zero initially, then throughout the flow

(1.1) the mass remains zero..

Lemma 4.1: Let (M, g0) be an asymptotically hyperbolic manifold of dimen-

sion n ≥ 2, with well-defined mass m[g0] = 0. If (M, g(t)) is a solution of

(1.1) arising from initial data (M, g0), then m(t) = m[g0] = 0.

Proof: We have m(t) = m[g0]e
−(n−2)t = 0.

We also are able to prove

Corollary 1.2: Let (M, g0) be as in Theorem 1.1. Consider solutions to (1.1)

arising from initial data (M, g0). Then there exist times t1 < t2 such that

m(t1) = m(t2) ⇐⇒ m(t1) = m(t2) = 0.

Proof: Let m0 := m[g0] denote the initial mass. Suppose that there exist

1A version of this chapter has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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times 0 ≤ t1 ≤ t2 such that m(t1) = m(t2). Then by Theorem 1.1 we have

m0e
−(n−2)t1 = m(t1) = m(t2) = m0e

−(n−2)t2 ⇐⇒ m0 = 0.

Now, Theorem 1.1 not only provides us with the behaviour of asymptotically

hyperbolic mass under our curvature-normalized Ricci flow, but it also allows

us to deduce results about the existence of breathers and solitons of the flow

(1.1). We recall the definition of breathers and solitons of (1.1) below.

Definition 4.2: Let M be a conformally compactifiable manifold, and let

ϕ : M → M be a smooth diffeomorphism on M . Consider a solution g(t)

of the flow (1.1), for t ∈ [0, T ). We say that g(t) is a breather of (1.1) if

g(t1) = ϕ∗(g(t2)) for some times t2 6= t1. If we have g(t) = ϕ∗(g(0)) for all

t ∈ [0, T ), then we call g(t) a soliton of the flow (1.1).

Keeping in mind the above definition, and using Theorem 1.1, we obtain that

there do not exist breathers to (1.1) which have non-zero mass. We note that

a version of this result was found in [16].

Corollary 1.3: (Non-existence of massive breathers). Let (M, g0) be as in

Theorem 1.1. Let g(t) for t ∈ [0, T ) be a solution of (1.1) arising from initial

data (M, g0). Suppose that g(t2) = ϕ∗(g(t1)), for t1 < t2, where ϕ is a diffeo-

morphism such that ϕ − IdM = o(ρ
n
2 ), for ρ a defining function of M . Then

m(t2) = m(t1) = 0.

Proof: Given ϕ is a diffeomorphism such that ϕ−IdM = o(ρ
n
2 ), from Theorem

2.3 of [11] (see also Theorem 3.4 of [21]) we have m(t2) = m(ϕ∗(g(t1))) =

ϕ∗(m(t1)) = m(t1). Then, by Corollary 1.2, we obtain the result.

In addition to the above results, the behaviour of asymptotically hyperbolic

mass under (1.1) also enables us to provide a Ricci flow proof for the Rigidity

statement of the positive mass theorem. We now set out to provide this argu-

ment. For reference, the Positive Mass Theorem for asymptotically hyperbolic
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manifolds is stated below. In preparation for the statement of the theorem,

we mention that the mass aspect σ is called semi-definite if for all p, q ∈ M ,

we have σ(p)σ(q) ≥ 0.

Theorem 4.3 (Positive Mass). Let (M, g) be a complete, asymptotically hy-

perbolic manifold of dimension 3 ≤ n ≤ 6. Further, let (M, g) be such that

the boundary-at-infinity of M is isometric to Sn−1, R[g] + n(n − 1) ≥ 0, and

(M, g) has a well-defined mass, m[g]. If M is not spin, further suppose that

the mass aspect of M is of semi-definite sign. Then m[g] ≥ 0.

Proof: For the case where M is a spin manifold, see [11], [21], and [39]. For

the case when M has a mass aspect is of semi-definite sign, see [2].

Proposition 1.4: (Rigidity). Let (M, g) be as in Theorem 4.3. If m[g] = 0,

then M is isometric to standard hyperbolic space.

Proof: If we have E[g]ij = Ric[g]ij + (n − 1)gij ≡ 0, then by the Einstein

rigidity result of Qing [32], we have M is isometric to standard hyperbolic

space, so there is nothing to show.

Thus, for contradiction, suppose E[g]ij 6= 0 at some p ∈ M . Let E[g] :=

R[g] + n(n− 1), where R[g] denotes the scalar curvature of g. Without loss of

generality, we may suppose that at p ∈M , we have E[g]|p > 0. Else, consider

the flow g(t) arising from (1.1) with g as initial data. By Theorem A of [8],

g(t) exists for some t ∈ [0, T ]. Let 0 < t1 < T . Recall by Proposition 3.2, g(t1)

is asymptotically hyperbolic, and by Theorem 1.1 and Lemma 4.1, g(t1) has

well-defined mass m(t1) = 0. Using the facts that ∂
∂t
gij = −gikgjl ∂

∂t
gkl, and

that Ricci curvature Ric[g] := Rijdx
i ⊗ dxj evolves under (3.1) according to

∂
∂t
Rij = ∆Rij + 2RkijlR

kl− 2RikR
k
j (see [10]), we compute that under the flow
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(1.1), Eij evolves as

∂E

∂t
=

∂

∂t

(
gijEij

)
= gij

∂Eij
∂t

+
∂gij

∂t
Eij

= gij
(
∆Eij + 2RkijlR

kl − 2RikR
k
j

)
+ EijEij

= ∆E − 2(n− 1)E + EijEij ,

where Rkijl denotes the components of the Riemann curvature tensor in local

coordinates. So if initially we have E|p(0) ≥ 0, by the maximum principle

E|p(t) ≥ 0 for all t ∈ (0, T ). Further, if E|p(0) = 0 and Eij|p(0) 6= 0, then

we observe from the evolution of E that E|p(t) > 0 for all t ∈ (0, T ). Thus,

taking g to be g(t1), our supposition is valid.

Thus we are in the situation where (M, g) is as in Theorem 4.3 with m[g] = 0,

and there is a p ∈M such that E[g]ij|p 6= 0 and E|p(t) > 0.

Consider now the conformal change g = w
4

n−2 g, where w is a smooth, positive

function on M which solves the so-called Yamabe problem:

∆g(t)w −R[g]w = n(n− 1)w
n+2
n−2 ,

w|∂M = 1 .

By [6] and later [3], there exists such a function w on M . Note that (M, g) still

satisfies the properties required in Theorem 4.3. By Proposition 3.13 of [2],

we obtain that the mass aspects of (M, g) and (M, g), denoted σ[g] and σ[g]

respectively, obey σ[g] < σ[g] pointwise. Integrating over ∂M , we find m[g] <

m[g] = 0. This violates Theorem 4.3. So we obtain a contradiction; hence our

supposition was incorrect and we must have had E[g]ij = 0 pointwise. Again,

applying the Einstein rigidity result of Qing [32] proves the claim.
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From Proposition 1.4, we readily obtain a Rigidity corollary:

Corollary 1.5: Let (M, g0) be as in Theorem 4.3, and let g(t) be a solution to

(1.1) arising from initial data (M, g0). If g(t2) = ϕ∗(g(t1)), for some t1 < t2

and ϕ as in Corollary 1.3, then (M, g0) is isometric to standard hyperbolic

space.

Proof: By Corollary 1.3, we have m(t1) = m(t2) = 0. Proposition 1.4 gives

the required result.
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Chapter 5

Discussion1

In section 3.B, we have shown that solutions g(t) of the curvature-normalized

flow (1.1) arising from an initial asymptotically hyperbolic manifold (M, g0),

where g0 is of the form (2.20), may be also written in the form of (2.20) (via

the coordinate change given by (2.17) and (2.18); see Proposition 3.2). We

have also shown that, under the curvature-normalized flow (1.1) arising from

an initial asymptotically hyperbolic manifold (M, g0) with a well-defined mass

m0, the mass evolves exponentially as m(t) = m0e
−(n−2)t (see Theorem 1.1).

In chapter 4, we then used these two results to deduce various corollaries,

including one that proved the non-existence of breathers with non-zero mass

of (1.1). We mention here that, as alternatively argued in section 4.3 of [16],

our result for the non-existence of massive breathers of (1.1) facilitates the use

of the associated Ricci-DeTurck flow to construct an algorithm for numerically

finding Einstein metrics on asymptotically hyperbolic manifolds. Further, we

also recall that our result that asymptotically hyperbolic mass must evolve as

m(t) = m0e
−(n−2)t under (1.1) allowed us to provide an alternative, Ricci flow

argument for the Rigidity statement of the Positive Mass theorem.

In particular, our result that asymptotically hyperbolic mass must evolve as

1A version of this chapter has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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m(t) = m0e
−(n−2)t implies that the mass is in general not preserved under the

flow (1.1), in contrast to the behaviour of the ADM mass under Ricci flow on

asymptotically flat manifolds (see [27], [13]). While at first this is somewhat

surprising that asymptotically hyperbolic mass is not conserved under (1.1), we

highlight in the following situations that the monotonic behaviour of the mass

under (1.1) is indeed natural, and fits with current physical theories.

We first note that our result for the behaviour of the mass under the curvature-

normalized Ricci flow (1.1) supports a conjecture first made by Horowitz and

Myers in [22]. We motivate this correspondence below.

Recall from example 2.6 that an AdS soliton is a constant-time slice of an

Anti-de Sitter soliton spacetime (see [22]); it is an asymptotically hyperbolic

manifold M of dimension n ≥ 3, with an induced metric of the form (2.10) in

any local radial coordinate system (r, ξ, θi){i=3,···,n}. As mentioned in example

2.8, the mass of such an AdS soliton is given by −4π
n

∏n
i=3 ai. In a paper by

Horowitz and Myers [22], it is noted that AdS solitons are static solutions to

Einstein’s field equations. As well, Horowitz and Myers conjectured that these

static solutions of Einstein’s field equations minimize mass amongst the class of

all locally asymptotically hyperbolic manifolds equipped with a metric which

asymptotes to an AdS soliton at large r, and which possess scalar curvature

R ≥ −n(n−1). In other words, if (M, g) is a locally asymptotically hyperbolic

manifold with scalar curvature R ≥ −n(n−1), and further g is a metric which

asymptotes to an AdS soliton at large r, then m[g] ≥ −4π
n

∏n
i=3 ai.

Now, consider the flow (1.1) arising from initial data given by an asymp-

totically hyperbolic manifold (M, g0) with scalar curvature R ≥ −n(n − 1),

and where g0 is a metric which asymptotes to an AdS soliton at large r.

Since boundedness below of scalar curvature is preserved under Ricci flow (see

[38], [19]), it is preserved under the flow given by (1.1); thus we could ob-

tain a new asymptotically hyperbolic manifold (M, g(t)) with scalar curvature

R ≥ −n(n − 1), and further employing Proposition 3.2, g(t) is still a metric
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which asymptotes to an AdS soliton at large r. However, if our Theorem 1.1

were not true, say the mass m(t) was monotonically decreasing under (1.1),

then one obtains that m(t) < m0 = −4π
n

∏n
i=3 ai, and hence contradicting

Horowitz and Myers’s conjecture. On the other hand, if instead the mass m(t)

remained constant under (1.1), then by [6] and [3] there exists a unique, pos-

itive solution w to the Yamabe problem on (M, g(t)). Consider then (M, g),

where g = w
4

n−2 g(t). Applying Proposition 3.13 of [2], we would again ob-

tain m(t) < m0 = −4π
n

∏n
i=3 ai, and hence a contradiction to Horowitz and

Myers’s conjecture. Therefore, since Theorem 1.1 in particular shows that

under the flow (1.1) the mass is initially strictly increasing, both of the pre-

vious arguments are not valid. Indeed, Theorem 1.1 confirms the intuition

that if Horowitz and Myers’s conjecture were true, the mass should be in-

creasing.

The monotonicity of the mass under (1.1) also enables us to provide a heuristic

derivation of the constancy of the ADM mass in the asymptotically flat setting.

Let (M, g0) be an asymptotically hyperbolic, n-dimensional manifold, with

boundary-at-infinity ∂M isometric to either the unit (n − 1)-sphere or a flat

(n− 1)-torus. Recall that we may express g0 in the form of (2.20). However,

writing the metric g0 in this form assumed that the sectional curvatures of

∂M were normalized to 1 or 0, respectively. Let us undo this normalization:

replace g on M with g0 = g0/`
2, for some ` > 0. Then, we have that the

sectional curvatures of ∂M are equal to 1/`2. Consider again the flow given

in (1.1), with (M, g0) as initial data. Parabolically rescaling t→ t/`2 gives us

the flow

∂gij
∂t

= −2

[
Ric[g]ij +

(n− 1)

`2
gij

]
,

g(0) = g0 ,

and from Theorem 1.1 we compute m(t) = m0e
− (n−2)t

`2 .
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Now, if we fix some t and take the limit as ` → ∞, then m(t) → m0. So

heuristically, as the sectional curvatures tend to zero, the mass tends to the

initial mass. This mimics the behaviour of the ADM mass under Ricci flow.

In this setting we have that (M, g(t)) is asymptotically flat, and thus the sec-

tional curvatures tend to zero as one moves out towards infinity. As well,

under Ricci flow, the ADM mass remains constant; that is, m(t) = m0. Al-

ternatively, we may consider taking the limit as t → ∞ first. To do this,

let points pt ∈ (M, g(t)) be such that limt→∞ pt = p for some point p in the

limit manifold. We compute the limit limt→∞m(t) = 0; so in the limit, any

compact neighbourhood of p is a compact set of standard hyperbolic space. If

we then take the limit as ` → ∞, the sectional curvatures go to zero; hence

the neighbourhood of p now is a compact set of flat space. Therefore, taking

the limit as t→∞ and then the limit as `→∞ of the solutions to the above

flow, we obtain flat space with zero mass, again reproducing the behaviour of

Ricci flow on asymptotically flat manifolds.

In terms of future work, there is both physical and geometrical motivation to

compute the evolution of other invariants of asymptotically hyperbolic man-

ifolds. Our work has led others [7] to investigate the evolution of a quantity

called the renormalized volume. Like the mass, renormalized volume is also

defined as a term appearing in an asymptotic expansion (as described in [15],

[18]) of the metric of a conformally compact Einstein manifold. For confor-

mally compact Einstein manifolds of even dimension, renormalized volume is

a conformal invariant [18]. As communicated to us by [7], the definition of

renormalized volume may be extended to asymptotically hyperbolic manifolds

of even dimension. As of the date of this thesis, the Ricci flow of renormalized

volume and possible consequences thereof are not yet known.

It would also be of value to investigate the existence and behaviour of breathers

with an undefined mass to the flow (1.1). Another direction one could take for

future investigation would be to analyze under what conditions (if any) singu-

larities may occur during the flow (1.1) arising from asymptotically hyperbolic
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initial data. Further, if singularities may occur under such a flow, one may

work to classify what type of singularities the flow (1.1) might exhibit. As

mentioned in section 3.2, Qing, Shi, and Wu [33] have obtained long-time ex-

istence of the normalized Ricci flow (1.1) under certain curvature and volume

assumptions, and Bahuaud in [8] also proved long-time existence of solutions

under certain asymptotic constraints. However, in comparison to the varied

results known for Ricci flow on compact manifolds, there is still much to be

yet understood about Ricci flow on open manifolds; thus addressing any one of

these topics would be valuable to enhancing the general understanding of the

behaviour of open manifolds under Ricci flow or its normalized variants.
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1–33.
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[22] G T Horowitz and R C Myers, The AdS/CFT correspondence and a

new positive energy conjecture for general relativity, Phys. Rev. 026005

(1999), no. D59, 1–12.

[23] J Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics,

Springer, 2003.

[24] H Li and H Lin, On stability of the hyperbolic space form under the nor-

malized Ricci flow, Int. Math. Res. Not. IMRN (2010), no. 15, 2903–2924.

[25] J Lohkamp, The higher dimensional positive mass theorem I,

arXiv:math/0608795v1 [math.DG].

[26] M Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin

manifolds, Math. Ann. 285 (1989), 527–539.

[27] T A Oliynyk and E Woolgar, Asymptotically flat ricci flows, Commun.

Anal. Geom. 15 (2007), 535–568.

[28] G Perelman, The entropy formula for the Ricci flow and its geometric

applications, arXiv:math/0211159v1 [math.DG].

[29] , Finite extinction time for the solutions to the Ricci flow on cer-

tain three-manifolds, arXiv:math/0307245v1 [math.DG].

49



[30] , Ricci flow with surgery on three-manifolds,

arXiv:math/0303109v1 [math.DG].

[31] P Petersen, Riemannian geometry, second ed., Graduate Texts in Math-

ematics, Springer, 2006.

[32] J Qing, On the rigidity for conformally compact Einstein manifolds, Int.

Math. Res. Not. 21 (2003), 1141–1153.

[33] J Qing, Y Shi, and J Wu, Normalized Ricci flows and conformally compact

Einstein metrics, arXiv:1106.0372v1 [math.DG].

[34] M Rieris, Energy and volume: a proof of the positivity of ADM energy

using the the Yamabe invariant of three-manifolds, Comm. of Math. Phys.

287 (2009), 383–393.
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Appendix A

A Review of Riemannian

Geometry

In this appendix, we give a review of some of the key concepts in Riemannian

geometry. Our aim is not to go into detail, but rather to provide a handy

reference for some of the background knowledge assumed in the main body of

this thesis and the other appendices.

Let M be a second-countable, Hausdorff topological space. Recall we can

define coordinate charts on M as pairs (U, φ), where U is an open subset of

M and φ : U → V, φ(p) = (x1(p), . . . , xn(p)) is a homeomorphism from U to

some open subset V ⊂ Rn. We hence call the functions xi(p) the coordinates of

p ∈ M . Further, we mention that two charts (U1, φ1), (U2, φ2) are called C∞-

compatible if either U1 ∩ U2 = ∅, or the change of coordinates map φ2 ◦ φ−11 :

φ−11 (U1 ∩ U2)→ φ2(U1 ∩ U2) is a smooth diffeomorphism.

Now let A := {(Uα, φα)}α∈I be a maximal collection of all C∞-compatible

charts on M . If A is such that M = ∪α∈IUα, we call M := (M,A) a (smooth)

differentiable manifold.

Examples of differentiable manifolds:

1. Rn, with A = {(Rn, Id)}, is a differentiable manifold.
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2. The n-sphere Sn = {x ∈ Rn+1 : ||x||2 = 1}, with A = {(U±, π±)}, where

U± = Sn \ {(0, . . . , 0,±1)}, and π±(x1, . . . , xn+1) = 1
1∓xn+1 (x1, . . . , xn), is a

differentiable manifold.

3. Hyperbolic n-space Hn = {(w, x) ∈ Rn+1 : w2 − ||x||2 = 1}, where A is

obtained by restricting a maximal collection of all C∞-compatible charts on

Rn+1 to Hn.

If M is a differentiable manifold, then we define a tangent vector to M at a

point p ∈M to be a linear map X : C∞(M)→ R satisfying

X(fg) = g(p)X(f) + f(p)X(g)

for all f, g ∈ C∞(M). The set of all tangent vectors at p is a real vector space,

and is denoted by TpM . Then, the tangent bundle of M , denoted TM , is

the disjoint union of all vector spaces tangent to M at some p ∈ M ; that is,

TM := tp∈MTpM .

Now that we have defined the tangent bundle of our differentiable manifold

M , we would like to construct a way to measure the angles between vectors

and lengths of vectors. We may do this as follows. For all p ∈ M , since the

tangent space TpM is a real vector space, we may equip TpM with an Euclidean

inner product gp : TpM × TpM → R. We then may define the smooth tensor

g : M → R by g(p) := gp. We call the tensor g a Riemannian metric (or simply

a metric) on M , and call the pair (M, g) a Riemannian manifold.

Then given a Riemannian metric g on M , we may define the length of a tangent

vector X at p ∈M to be the non-negative number

||X|| :=
√
g(X,X) =

√
gp(X,X) ,

and find that the angle θ between two tangent vectors at X, Y at p obeys

cos θ =
g(X, Y )

||X||||Y ||
.
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In some local coordinate system (xi), i = i, . . . , n = dim(M), we often write

the metric g as the line element g := gijdx
idxj =: ds2. The functions gij are

called the components of g in the chosen coordinate system. Alternatively,

we may also write g in matrix notation: g = (gij). These expressions for the

metric are completely equivalent; they are simply a matter of notation.

Now consider the space dual to the tangent bundle, called the the cotangent

bundle, which we denote by T ∗M . On the cotangent bundle of M , we may

also define the inverse (Riemannian) metric, g−1 as the unique tensor such

that g ◦ g−1 = Id and g−1 ◦ g = Id, where Id denotes the appropriate identity

map.

Examples of Riemannian manifolds:

1. Rn, with the standard dot product. Note that in local coordinates, we may

represent the dot product by either the identity matrix In, or equivalently, by

the line element δ = (dx1)2 + (dx2)2 + · · ·+ (dxn)2, where (x1, . . . , xn) are the

coordinates on Rn.

2. Let {r, φ1, . . . , φn} be spherical coordinates on Rn+1. The unit n-sphere

Sn := {(1, φ1, . . . , φn) ∈ Rn+1} can be equipped with the Riemannian metric

g = dφ2
1 + sin2 φ1dφ

2
2 + sin2 φ1 sin2 φ2dφ

2
3 + · · · + sin2 φ1 · · · sin2 φn−1dφ

2
n. This

metric is called the round metric on Sn. It is often denoted by g(Sn, can).

3. Hyperbolic n-space Hn = {(w, x) ∈ Rn+1 : w2−||x||2 = 1, x = (x1, . . . , xn)},
with the metric g = dξ2 + sinh2(ξ)g(Sn−1, can), where g(Sn−1, can) is the

round metric on Sn−1, w = cosh(ξ), and xi = sinh(ξ) sin(φ1) · · · sin(φi) for

φi ∈ [0, 2π].

Not only does a Riemannian metric g on M allow us to quantize things such

as lengths of tangent vectors, but it also enables us to define a distinguished

generalization of differentiation on M . This generalization is achieved via

the Levi-Cività connection. The Levi-Cività connection is the unique map

∇ : TM → T ∗M ⊗ TM , such that for X, Y, Z ∈ TM , f ∈ C∞(M), and

a, b ∈ R, ∇ satisfies
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(i) Tensoriality: ∇aY+bZX = a∇Y (X) + b∇ZX,

(ii) Linearity: ∇(X + aY ) = ∇(X) + a∇(Y ),

(iii) The product rule: ∇Y (fX) = (DY f) ·X + f · ∇YX,1

(iv) Torsion-free: ∇XY −∇YX = [X, Y ],2

(v) Metricity: ∇Xg = 0.

We note that in a local coordinate system, the components of the Levi-Cività

connection are given by the Christoffel symbols, Γkij, where

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij) .

The Levi-Cività connection allows us to define one of the key notions in Rie-

mannian geometry —curvature. While we may define many quantities which

characterize the curvature, we will briefly recall notions which quantify the in-

trinsic curvature of Riemannian manifolds — that is, curvature notions which

are independent of any embeddings of the manifold. In particular, we thus do

not require our Riemannian manifold (M, g) to be embedded in any Rm for

some m.

The first notion of curvature we introduce is the Riemann curvature of (M, g).

The Riemann curvature of (M, g) is a (0,4)-tensor Rm[g] defined by

Rm[g] : ⊗4TM → R, Rm[g](W,X, Y, Z) := g(R(W,X)Y, Z),

where R(X, Y )Z := ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z,3 and ∇ is the Levi-Cività

connection of g. We call the tensor Rm[g] the Riemann (curvature) tensor of

(M, g). The Riemann curvature tensor obeys the symmetry properties

(i) Rm[g](W,X, Y, Z) = −Rm[g](X,W, Y, Z),

1Here DY f denotes the directional derivative of f .
2Where [X,Y ] is the Lie bracket.
3Some authors instead choose to define R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
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(ii) Rm[g](W,X, Y, Z) = −Rm[g](W,X,Z, Y ),

(iii) Rm[g](W,X, Y, Z) = Rm[g](X,W,Z, Y ),

as well as the 1st Bianchi identity, which is the symmetry relation

Rm[g](W,X, Y, Z) +Rm[g](Y,W,X,Z) +Rm[g](X, Y,W,Z) = 0 .

Intuitively, one may think of this tensor as a measure of how the connection on

our manifold M differs from differentiation in Rn. We also note that in local

coordinates, our definition relates the components of Rm[g] and R(X, Y )Z,

respectively denoted by Rijkl and Ri
jkl, by Rijkl := glpR

p
ijk.

Another notion of curvature is sectional curvature. Let X, Y be tangent

vectors to M at a point p ∈M . The sectional curvature of the 2-plane spanned

by X and Y is the ratio

sec(X, Y ) :=
Rm[g](X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )g(X, Y )
.

We may also define various averages or traces of the Riemann curvature tensor

to obtain coarser descriptions of the curvature of the manifold (M, g).

One average of curvature is Ricci curvature. We define the Ricci curvature of

(M, g) to be the tensor Ric[g] : TM ⊗ TM → R, given by taking the trace of

the Riemann curvature tensor with respect to the metric g:

Ric[g] := trg(Rm[g]) = tr(X → R(X, Y )Z).

From the symmetry properties of the Riemann tensor, the Ricci tensor obeys

the property

Ric[g](X, Y ) = Ric[g](Y,X) .

Heuristically, the Ricci curvature of (M, g) is a measure of how the volume of

a ball in (M, g) differs from the volume of the same ball embedded in (Rn, δ).
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It should also be noted that if Ric[g] ≡ 0, the manifold (M, g) is often said to

be Ricci flat. As well, from the definition of sectional curvature, we see that in

a local orthonormal, coordinate system (xi), the diagonal components of the

Ricci tensorRic[g] = Rijdx
idxj are given by sums of sectional curvatures:

Rii := Rk
iki

=
∑
k

Rikik

=
∑
k

sec(∂i, ∂k) .

Lastly, we may also characterize the curvature of the manifold by its scalar

curvature. We define the scalar curvature as the trace of the Ricci curvature

with respect to the metric g. That is, the scalar curvature of (M, g) is the

real-valued map R[g] : M → R, R[g] := trg(Ric[g]). In local coordinates, this

may be expressed as R[g] = gijRij, where Rij denotes the component functions

of Ric[g].

We conclude our review of Riemannian geometry by mentioning a special

class of Riemannian manifolds — Einstein manifolds. We appropriately call

a Riemannian manifold (M, g) of dimension n > 2 which satisfies Einstein’s

(vacuum) field equation Ric[g] + kg = 0 an Einstein manifold.

For further investigation into Riemannian geometry, please see [23] and [31].
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Appendix B

Equivalence of the Extended

Wang Mass and the

Chruściel-Herzlich Mass1

In this appendix, we show that our extended definition of Wang’s mass (see

Definition 2.7) and the definition of asymptotically hyperbolic mass of Chruściel-

Herzlich are equivalent.

For convenience, we present below the definition of asymptotically hyperbolic

mass as given by Chruściel-Herzlich in [11].

Chruściel-Herzlich mass definition: Let M be an n-dimensional Rieman-

nian manifold, and let g and b be any two Riemannian metrics on M . De-

note by ∇ and D the Levi-Civitá connections with respect to the metrics b

and g, respectively. Let K be a compact subset of M , and consider the end

Mext := M \K. Further, let N be a compact, boundaryless Riemannian mani-

fold, and let φ−1 : Mext → NR := [R,∞)×N be a smooth diffeomorphism. We

then define the Chruściel-Herzlich mass of (M, g) with respect to the reference

1A version of this appendix has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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metric b as

mCH [g] := lim
R→∞

∫
NR

Ui(V ◦ φ−1)dSi (B.1)

where V : M → R is a smooth function such that V = O(r) for r ∈ [R,∞) the

radial coordinate of NR, dSi := ~ni dAR, where ~ni is the outward unit normal

of N and dAR denotes the volume form on NR with respect to the metric b,

and finally, Ui is the operator

Ui :=
√
g
{
V (gikgjl − gijgkl)∇jgkl + (DiV gjk −DjV gik)ejk

}
,

where ejk := gjk − bjk.

When M is an asymptotically hyperbolic manifold with boundary-at-infinity

∂M isometric to a round sphere or a flat torus, we have N = ∂M . In accor-

dance with [11], we choose

V :=
√
r2 + k ,

where k = 0 if ∂M has an induced metric of constant sectional curvature 0,

or k = 1 if ∂M has an induced metric of constant sectional curvature +1 (i.e.

∂M ≡ Sn−1).

Our strategy shall be to compute term by term the Chruściel-Herzlich mass

for asymptotically hyperbolic manifolds (M, g) whose metric can be written

in the form of (2.20) with ` = n, and show that the Chruściel-Herzlich mass of

(M, g) is equal to our extended Wang mass, as defined in Definition 2.6.

Thus, suppose g is written in the form of (2.20). We obtain via the transfor-

mation to radial coordinates 1/r = ρ(k),

g = ρ−2(k)

(
dx2 + g(k)ABdy

AdyB +
xn

n
σABdy

AdyB +O(xn+1)

)
=

dr2

r2 + k
+ r2

(
g(k) +

1

nrn
σABdy

AdyB +O(1/rn+1)

)
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Appropriately, we choose as the reference metric

b =
dr2

r2 + k
+ r2g(k),

for k = 0, 1.

Now for notational convenience in the calculations that follow, enumerate the

coordinates as (xi) := (r, yA). As well, set

Ai =
(
gikgjl − gijgkl

)
∇jgkl (B.2)

Bi =

(
DiV

V
gjk − DjV

V
gik
)
ejk (B.3)

=
(
gilgjk − gjlgik

) DlV

V
ejk . (B.4)

Then we may write

Ui =
√
g V

{
Ai + Bi

}
. (B.5)

Recall the Christoffel symbols of the Levi-Cività connection of the metric b

are given by

Γkij =
1

2
bkl(∂ibjl + ∂jbil − ∂lbij) .

By the metricity condition ∇b = 0 of the Levi-Cività connection of the metric

b, we find

∇jgkl = ∇j(ekl + bkl) = ∇jekl .
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Thus,

∇jgkl = ∇jekl (B.6)

= ∂jekl − emlΓmkj − ekpΓ
p
lj (B.7)

Note that, for either of the cases where the boundary-at-infinity of M is

isometric to a round sphere or a flat torus, we have ejk = gjk − bjk =

1
nrn−2σjk +O(1/rn−1) and using (B.7) and (B.2), we calculate

Ai =
(
gikgjl − gijgkl

)
∇jgkl

=
(
gikgjl − gijgkl

)
∇jekl

=
(
gikgjl − gijgkl

)
∂jekl −

(
gikgjl − gijgkl

)
emlΓ

m
kj

−
(
gikgjl − gijgkl

)
ekpΓ

p
lj

=
(
giAg1B − gi1gAB

)(
−(n− 2)

nrn−1
σAB +

1

nrn−2
∂1σAB

)
δ1j

− 1

nrn−2
(
gikgjlσkpΓ

p
lj + gikgjlσplΓ

p
kj

)
+

1

nrn−2
(
gijgklσkpΓ

p
lj + gijgklσplΓ

p
kj

)
+O(1/rn)

=
(n− 2)

nrn−1
gAB(k) σABδ

1
j δ
i
1 −

1

nrn−2
(
giAgjlσABΓBljδ

B
l δ

1
j

)
− 1

nrn−2
(
gikgjAσABΓBkjδ

k
Bδ

j
1 + gikgjAσABΓBkjδ

1
kδ
B
j

)
+

2

nrn−2
(
gijgABσACΓCBjδ

1
j δ
C
B

)
+O(1/rn)
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Therefore, for k = 0, 1 we get

A1 =
(n− 2)

nrn−1
gAB(k) σAB −

1

nrn−1
gBA(k) σAB +

2

nrn−1
gAB(k) σAB +O(1/rn)

=
(n− 1)

nrn−1
gAB(k) σAB +O(1/rn) ,

AC = O(1/rn) .

Similarly as above, using now (B.4) in place of (B.2) and ejk := gjk − bjk, we

compute

B1 =
(
g1lgjk − gjlg1k

) DlV

V
ejk

=
(
g1lgAB − gAlg1B

) DlV

V

1

nrn−2
σAB +O(1/rn)

=
1

nrn−1
gAB(k) σAB +O(1/rn)

BC =
(
gClgAB − gAlgCB

) DlV

V

1

nrn−2
σAB +O(1/rn)

= O(1/rn) .

From (B.5), we therefore obtain

Ui =
√
g V

{
(n− 1)

nrn−1
gAB(k) σABδ

i
1 +

1

nrn−1
gAB(k) σABδ

i
1 +O(1/rn)

}
(B.8)

=
√
g V

{
1

rn−1
gAB(k) σABδ

i
1 +O(1/rn)

}
. (B.9)
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Plugging (B.9) into the Chruściel-Herzlich mass definition, we get

mCH [g] = lim
R→∞

∫
NR

Ui dSi

= lim
R→∞

∫
NR

√
g V

{
1

rn−1
gAB(k) σABδ

i
1 +O(1/rn)

}
dSi

=

∫
N

gAB(k) σAB dµg(k)

= m[g] .

We have therefore deduced that our extended version of Wang’s mass defini-

tion and the Chruściel-Herzlich mass definition are equivalent. This verifies

coordinate independence of our mass definition.

B.1 The Chruściel-Herzlich Mass of an AdS

Soliton

We now turn our attention to computing the mass of an AdS soliton. Recall

from equation (2.10), the metric of an AdS soliton2 (M, g) may be written in

a radial coordinate system as

g =
dr2

r2
(
1− 1

rn

) + r2

[(
1− 1

rn

)
dξ2 +

n∑
i=3

dθ2i

]
.

where the radial coordinate r takes values in [1,∞), and the angular coor-

dinates θi take values in [0, ai] for 0 < a3 ≤ . . . ≤ an. The domain of ξ is

determined as follows.

2Note by “AdS soliton”, we mean a time-constant slice of the Anti- de Sitter soliton
space-time given in [22].
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Let W = r2
(
1− 1

rn

)
. To ensure that the AdS soliton is a smooth manifold,

to avoid a singularity in the above metric near r = 1, we require the θi =

constant, i = 3, . . . , n submanifold of the AdS soliton to obey

dr2

W
+Wdξ2 ' d(∆r)2

W ′(1)∆r
+W ′(1)∆rdξ2 (B.10)

= du2 + u2dv2 , (B.11)

where u ∈ [0,∞] and v ∈ [0, 2π]. This leads us to the equation

d(∆r)√
W ′(1)∆r

= du ; .

integrating, we obtain u = 2√
n

√
∆r. Thus, to obtain the metric form in equa-

tion (B.11), we must have n
2
v ∈ [0, 2π].

Therefore, to avoid the metric becoming singular at r = 1, we require the

coordinate ξ = n
2
v to take values in [0, 4π

n
].

We remark here that the AdS soliton metric g as above is actually one of many

representatives of a congruence class in the moduli spaceM =
Met{AdS soliton}

Diff0
,

where Met{AdS soliton} is the set of all AdS soliton metrics, and Diff0 is the

set of all diffeomorphisms on an AdS soliton which, when smoothly extended

to the conformally compactified manifold, act as an isometry on the boundary-

at-infinity (which are flat (n − 1)-tori). The reason for viewing g as such a

congruence class representative is the following. In an AdS soliton, at each

value of the coordinate r, we wish to attach an (n− 1)-torus with cycles coor-

dinatized by θi ∈ [0, bi], i = 2, . . . , n, for some parameters 0 < b2 ≤ . . . ≤ bn.

As the above argument demonstrates, for the AdS soliton to be non-singular,

we must scale one of the cycles of the flat (n − 1)-torus we wish to attach at

r to have a period of 4π
n

. However, by rescaling, we are free choose any one of

the (n−1) cycles to have the period of 4π
n

! Once we have made our choice and

scaled appropriately, the other cycles then have lengths 0 < a3 ≤ . . . ≤ an, for

which we have no freedom to specify. Thus, to eliminate the ambiguity in the
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choice of which one of the cycles we distinguish to be [0, 4π
n

], we identify those

AdS soliton metrics which have isometric tori attached at r. (See further [22],

[17], and [1].)

The above remark aside, we shift our attention back to computing the mass of

an AdS soliton. For considerable simplification of the calculations, we restrict

to the case of a 3-dimensional AdS soliton. For n = 3 dimensions, an Anti-de

Sitter (AdS) soliton metric (please see example 2.6) is given by

g =
1

W 2
dr2 + r2dθ2 +W 2dφ2

where W 2 = r2(1 − 1
r3

), for r ∈ [0,∞). We fix a representative of the AdS

metric moduli class by choosing φ ∈ [0, 4π
3

] and θ ∈ [0, a
4
] for some a > 0.

The appropriate reference metric is given by

b =
1

V 2
dr2 + r2dθ2 + V 2dφ2

where V :=
√
r2 + 0 = r, r ∈ [0,∞), θ ∈ [0, π

2
], and φ ∈ [0, 4π

3
].

As before, for computational convenience, we enumerate the coordinates as

(x1, x2, x3) := (r, θ, φ), and further set

Ai =
(
gikgjl − gijgkl

)
∇jgkl

Bi =

(
DiV

V
gjk − DjV

V
gik
)
ejk ,

where i, j, k, l ∈ {1, 2, 3}. Again, we may succinctly write

Ui =
√
g V

{
Ai + Bi

}
.
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We calculate the components of the difference ejk = gjk − bjk to be

e11 =
1

r2(r3 − 1)

e33 = −1

r
ejk = 0 for j, k 6= 1 or 3.

Then, the Christoffel symbols with respect to the metric b are given by

Γkij =
1

2
bkl(∂ibjl + ∂jbil − ∂lbij) .

Since b11, b22, and b33 are the only non-zero components of b, we obtain

Γ1
11 =

1

2
V 2∂1b11 = −1

r
,

Γ1
22 = −1

2
V 2∂1b22 = −r3 ,

Γ1
33 = −1

2
V 2∂1b33 = −r3 ,

Γ2
21 = Γ2

12 =
1

2

1

r2
∂1b22 =

1

r
,

Γ3
31 = Γ3

13 =
1

2

1

V 2
∂1b33 =

1

r
,

are the only non-zero Christoffel symbols. Now, since ejk = gjk − bjk, by

metricity we obtain ∇jgkl = ∇j(ekl + bkl) = ∇jekl. Hence we compute

∇jgkl = ∇jekl

= ∂jekl − emlΓmkj − ekpΓ
p
lj

= ∂1ekkδ
1
j −

1

r2(r3 − 1)

(
Γmkjδ

1
mδ

1
l + Γpljδ

1
kδ

1
p

)
+

1

r

(
Γmkjδ

3
mδ

3
l + Γpljδ

3
kδ

3
p

)
.
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So Ai becomes

Ai =
(
gikgjl − gijgkl

)
∇jgkl

=
(
gikgjl − gijgkl

)
∂1eklδ

1
j −

1

r2(r3 − 1)

(
gikgjl − gijgkl

) (
Γmkjδ

1
mδ

1
l + Γpljδ

1
kδ

1
p

)
+

1

r

(
gikgjl − gijgkl

) (
Γmkjδ

3
mδ

3
l + Γpljδ

3
kδ

3
p

)
=
(
gi1gj1 − gijg11

)
∂1e11δ

1
j +

(
gi3gj3 − gijg33

)
∂1e33δ

1
j

− 1

r2(r3 − 1)

(
gikgjlΓmkjδ

1
mδ

1
l + gikgjlΓmlj δ

1
kδ

1
m − gijgklΓmkjδ1mδ1l − gijgklΓmlj δ1kδ1m

)
+

1

r

(
gikgjlΓmkjδ

3
mδ

3
l + gikgjlΓmlj δ

3
kδ

3
m − gijgklΓmkjδ3mδ3l − gijgklΓmlj δ3kδ3m

)
= 0 · ∂1e11 − gi1g33

(
1

r2

)
− 1

r2(r3 − 1)

(
gikgj1Γ1

kj + gi1gjlΓ1
lj − 2gijgk1Γ1

kj

)
+

1

r

(
gikgj3Γ3

kj + gi3gjlΓ3
lj − 2gijgk3Γ3

kj

)
.

Given the above Christoffel symbols and our calculation of ejk, we find the

only non-zero term is when i = 1. We thus compute A1:
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A1 = −g11g33
(

1

r2

)
− 1

r2(r3 − 1)

(
g1kgj1Γ1

kj + g11gjlΓ1
lj − 2g1jgk1Γ1

kj

)
+

1

r

(
g1kgj3Γ3

kj + g13gjlΓ3
lj − 2g1jgk3Γ3

kj

)
= −W 2 1

W 2

(
1

r2

)
− 1

r2(r3 − 1)

(
−g11g11Γ1

11 + g11g22Γ1
22 + g11g33Γ1

33

)
+

1

r

(
−g11g33Γ3

13

)
= −

(
1

r2

)
− 1

r2(r3 − 1)

(
−W 4(−1

r
) +W 2 1

r2
(−r3) +W 2 1

W 2

1

r

)
+

1

r

(
−W 2 1

W 2

1

r

)
= −

(
1

r2

)
− 1

r2(r3 − 1)
W 2

(
r − 1

r2
− r +

1

r3 − 1

)
− 1

r2

= −2

(
1

r2

)
− 1

r4(r3 − 1)
W 2 − 1

r3(r3 − 1)
.

Now we compute the components of B. For i = 1, we obtain the follow-

ing:

B1 =

(
D1V

V
gjk − DjV

V
g1k
)
ejk

=
1

V

(
D1V g33

)
e33

=
1

V

(
g11 · 2r · g33

)
e33

=
1

V

(
V 2 · 2r · 1

V 2

)(
−1

r

)
= − 2

r2
.
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When i = 2 or 3, we have

B2 =

(
D2V

V
gjk − DjV

V
g2k
)
ejk = 0 ,

B3 =

(
D3V

V
gjk − DjV

V
g3k
)
ejk = 0 .

Therefore we have

Ui = U1δi1

=
√
g V

{
A1 + B1

}
δi1

=
√
r2 V

{(
−2

(
1

r2

)
− 1

r4(r3 − 1)
W 2 − 1

r3(r3 − 1)

)
− 2

r2

}
δi1

=

{
−2− 1

r2(r3 − 1)
W 2 − 1

r(r3 − 1)
− 2

}
δi1

=

{
−4− 1

r2(r3 − 1)

(
r3 − 1

r

)
− 1

r(r3 − 1)

}
δi1

=

{
−4− 1

r3
− 1

r(r3 − 1)

}
δi1 .

Thus the limit of U1 as r →∞ is

lim
r→∞

U1 = −4 .
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Hence, the Chruściel-Herzlich mass of our 3-dimensional AdS soliton is

m(g) = lim
r→∞

∫
Sr

Ui(V )dSi

= lim
r→∞

∫ 4π
3

0

∫ a
4

0

U1dθdφ

= lim
r→∞

4π

3
· a

4
· U1

=
4π

3
· a

4
· (−4)

= −4π

3
· a .

For comparison, please see the calculation of the mass of an AdS soliton as

given in [22].
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Appendix C

Calculation of the DeTurck

Vector Field1

In this appendix, we provide proofs for versions of Proposition 3.2 and Theorem

1.1, using the associated Ricci-DeTurck flow to equation (1.1).

We have chosen to depart from the notation and coordinate system presented

in the body of this thesis and instead write the metric in the coordinate system

presented in [8] for easier comparison with the approach taken by Bahuaud in

[8].

For what follows, let (M, g0) be an asymptotically hyperbolic manifold equipped

with a metric g0 of the form

g0 =
1

x2
(dx2 + g(k) +

xl

l
κABdy

AdyB +O(xl+1)) ,

for k = 0, 1, where we set

g(0) = a flat metric on T n−1, and

g(1) = (1− x2)2g(Sn−1, can) .

1A version of this appendix has been published. T Balehowsky, E Woolgar 2012. Journal
of Mathematical Physics. 53: 072501.
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Note, for this chosen coordinate system, a conformal completion of (M, g0)

is given by (M̃, g̃0, ρ), with ρ(x) = x and g̃0 = dx2 + g(k) + xn

n
κABdy

AdyB +

O(xn+1).

In this appendix, we consider the Ricci DeTurck flow associated to (1.1) of

(M, g0), which is defined as

∂gij
∂t

= −2Eij + (Lxg)ij (C.1)

:= −2[Ricij + (n− 1)gij] + (Lxg)ij , (C.2)

g(0) = g0 , (C.3)

where X = Xk ∂
∂xk

is the DeTurck vector field and LXg denotes the Lie deriva-

tive of the metric g with respect to the vector field X.

For computational ease and comparison with the notation of [8], we write the

flowing metric as

g = g(t) := g0 + v(x, yA, t) ,

where v(x, yA, t) := xm−2

m
w(yA, t)ijdx

idxj+O(xm−1) for m ≥ 1, is a symmetric,

time-dependent (0, 2)-tensor on M .

In order to prove Proposition 3.2 for Ricci DeTurck flow, we require the compo-

nents of the Lie derivative LXg. We now present the step-by-step computation

of the Lie derivative components.

First, we choose the initial metric g0 as the background metric. Let ∇ and ∇̊
denote the Levi-Cività connection of g and g0 respectively. Also, denote by

Γkij and Γ̊kij are the Christoffel symbols with respect to g and g0, respectively.

Then, the components of the DeTurck vector field are given by

Xk = gij(Γkij − Γ̊kij) .

71



Rewriting, we obtain the DeTurck vector field components

Xk = gij(Γkij − Γ̊kij)

=
1

2
gklgij

(
∇̊igjl + ∇̊jgil − ∇̊lgij

)
=

1

2m
gklgij

(
∇̊i(x

m−2wjl) + ∇̊j(x
m−2wil)− ∇̊l(x

m−2wij)
)

= gklgij
1

m

(
∇̊i(x

m−2wjl)−
1

2
∇̊l(x

m−2wij)

)
.

We also compute

gij =

[
g0 +

xm−2

m
w(t)

]ij
= gij0 −

xm−2

m
gil0 g

jm
0 wml +

x2(m−2)

m
(g0 + xm−2w(t))jlgim0 gpq0 wlpwmq .

Thus

gijgkl =

[
g0 +

xm−2

m
w(t)

]ij [
g0 +

xm−2

m
w(t)

]kl
= gij0 g

kl
0 +O(xm+4) .

Therefore, up to sufficient order, we have the components of the DeTurck

vector field are

Xk = gklgij
1

m

(
∇̊i(x

m−2wjl)−
1

2
∇̊l(x

m−2wij)

)
= gkl0 g

ij
0

1

m

(
∇̊i(x

m−2wjl)−
1

2
∇̊l(x

m−2wij)

)
+O(xm+2) ,

and hence the corresponding components of the associated DeTurck 1-form
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g(·, X) = Xkdx
k are

Xk = gij0
1

m

(
∇̊i(x

m−2wjk)−
1

2
∇̊k(x

m−2wij)

)
+O(xm)

= x2g̃ij0
1

m

(
∇̊i(x

m−2wjk)−
1

2
∇̊k(x

m−2wij)

)
+O(xm) .

Secondly, we note that the Christoffel symbols of g are given by

Γkij = Γ̊kij +
1

2m
gkl
[
∇̊i(x

m−2wjl) + ∇̊j(x
m−2wil)− ∇̊l(

xm−2

m
wij)

]
= Γ̊kij +O(xm+1) .

Let now g̃0 = x2g0, and denote by
˜̊∇ the Levi-Cività connection of g̃0, and

by
˜̊
Γkij the Christoffel symbols of g̃0. By the conformal transformation of the

Christoffel symbols,

Γ̊kij =
˜̊
Γkij −

1

x

[
δki δ

1
j + δkj δ

1
i − g̃k10 (g̃0)ij

]
;

therefore,

Γ̊1
11 =

˜̊
Γ1
11 −

1

x
,

Γ̊B1A =
˜̊
ΓB1A −

1

x
δBA ,

Γ̊1
AB =

˜̊
Γ1
AB +

1

x
g̃110 (g̃0)AB ,

and all other Christoffel symbols are of order O(1) in x.

By definition of covariant derivatives,

∇̊iwjk = ∂iwjk − Γ̊lijwlk − Γ̊likwlj .

So, we finally calculate that the components of the DeTurck 1-form are given
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by

Xk = x2g̃ij0
1

m

(
∇̊i(x

m−2wjk)−
1

2
∇̊k(x

m−2wij)

)
+O(xm)

=
x2

m
g̃ij0

˜̊∇i(x
m−2wjk) +

x

m
g̃ij0
[
δliδ

1
jwlk + δljδ

1
iwlk − (g̃0)ijw1k

]
xm−2

+
x

m
g̃ij0
[
δliδ

1
kwjl + δlkδ

1
iwjl − (g̃0)ikwj1

]
xm−2 − 1

2m
x2g̃ij0

˜̊∇k(x
m−2wij)

− x

2m
g̃ij0
[
δlkδ

1
jwli + δljδ

1
kwli − (g̃0)kjwi1

]
xm−2

− x

2m
g̃ij0
[
δliδ

1
kwlj + δlkδ

1
iwlj − (g̃0)ikwj1

]
xm−2 +O(xm)

=
x2

m
g̃ij0

(
˜̊∇i(x

m−2wjk)−
1

2
˜̊∇k(x

m−2wij)

)
+

1

m
[w1k + w1k − nw1k]x

m−1

+
1

m

[
δ1kg̃

ij
0 wij + w1k − w1k

]
xm−1 − 1

2m

[
w1k + δ1kg̃

ij
0 wij − w1k

]
xm−1

− 1

2m

[
w1k + δ1kg̃

ij
0 wij − w1k

]
xm−1 +O(xm)

= −(n− 2)

m
w1kx

m−1 +
x2

m
g̃ij0

(
˜̊∇i(x

m−2wjk)−
1

2
˜̊∇k(x

m−2wij)

)
+O(xm) .

In particular, we have obtained

X1 = −(n− 2)

m
w11x

m−1 +
(m− 2)

m

[
w11 −

1

2
g̃ij0 wij

]
xm−1 +O(xm) ,

XA = −(n− 2)

m
wA1x

m−1 +
(m− 2)

m
w1Ax

m−1 +O(xm) .

Thirdly, we compute the components of the covariant derivative of the DeTurck
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vector field:

∇1X1 = ∂1X1 − Γk11Xk

= −(n− 2)w11x
m−2 + (m− 2)w11x

m−2 +O(xm−1) ,

∇AX1 = ∂AX1 − ΓB11XB

= −(n− 2)

m
wA1x

m−2 +
(m− 2)

m
wA1x

m−2 +O(xm−1) ,

∇1XA = ∂1XA − Γk1AXk

= −(n− 2)(m− 1)w1Ax
m−2 + (m− 2)w1Ax

m−2 +O(xm−1) ,

∇AXB = ∂AXB − Γ1
ABX1

= −(n− 2)

m
w11(g̃0)ABx

m−2 +
(m− 2)

m
(g̃0)AB

[
w11 −

1

2
g̃ij0 wij

]
xm−2 +O(xm−1) .

Lastly, we then compute the components of Lie derivative of g with respect to

X. Noting (LXg)ij = ∇iXj +∇jXi, the components are

(LXg)11 = −2(n− 2)w11x
m−2 + 2(m− 2)

[
w11 −

1

2
g̃ij0 wij

]
xm−2 +O(xm−1) ,

(LXg)1A = (LXg)A1

=
(m− n)(m+ 1)

m
w1Ax

m−2 +O(xm−1) ,

(LXg)AB = −2
(n− 2)

m
w11(g̃0)ABx

m−2 +
(m− 2)

m
(g̃0)ABw11x

m−2

−(m− 2)

m
(g̃0)AB g̃

CD
0 wCDx

m−2 +O(xm−1) .

Now we are finally in the position to provide an argument for a Ricci-DeTurck

version of Proposition 3.2:

Proposition 3.2: Let (M, g0) be asymptotically hyperbolic with g0 of the form

as above. If g(t) is a solution to (C.1) arising from initial data g0, then g(t)

is also asymptotically hyperbolic of order l.
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Ricci-DeTurck approach: Let g = g(t) have an expansion beginning at

order m ≥ 1. From the Ricci-DeTurck flow (C.1) associated to (1.1), we have

xm

m

∂wij
∂t

= −2Eij, where Eij := Eij− 1
2
(LXg)ij. Then, again by equations (3.13)

– (3.15), we find
∂wij
∂t

= Aij
klwkl, where A is a matrix with components now

given by

A11
11 = (m− 2)(n− 1)−m[2(n− 2) +m] +O(x) ,

A11
AB = −m(m− 2)g(k)

AB +O(x) ,

A1A
kl = O(x) ,

AAB
11 = −m

[
−2 + 2

(m+ 1)(n− 1)

m

]
g(k)AB +O(x) ,

AAB
CD = −2(m− 1)g(k)

CDg(k)AB −m(n−m− 1)δCAδ
D
B +O(x) .

Hence, at every order, we once again find that
∂wij
∂t

= Aij
klwkl is a linear, partial

differential equation in wij. So, for m < l, we have wij(0) = 0; uniqueness

theory for linear partial differential equations gives wij(t) = 0 for m < l.

In addition to proving a version of Proposition 3.2 with equation (1.1) replaced

by equation (C.1), we note that the proof of Theorem 1.1 also carries through

in the Ricci-DeTurck flow setting. Once more, let (M, g0) be as above, but

now suppose that l = n. Then, the Lie derivative contribution to the evolution

of the mass aspect σ = g(k)
AB(κAB + wAB) +

(
n−1
n

)
(κ11 + w11) in the Ricci-

DeTurck flow is given by
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g(k)
AB (LXg)AB +

(
n− 1

n

)
(LXg)11 =

{
(2n− 4)

n
(n− 1)w11

−(2n− 4)

n
(n− 1)

[
w11 −

1

2
g(k)

ijwij

]
+

(
n− 1

n

)
(2n− 4) [−w11 + w11]

−
(
n− 1

n

)
(n− 2)

[
g(k)

ijwij
]}

xn−2

+O(xn−1)

= O(xn−1) .

Thus we see that the Lie derivative term (LXg)ij in the Ricci-DeTurck flow of

g0 makes no contribution at significant order O(xn−2) to the evolution of the

mass aspect σ. Hence, the argument provided in section 3.B for Theorem 1.1

also verifies Theorem 1.1 from the Ricci-DeTurck flow point-of-view. Further,

since the diffeomorphisms induced by the DeTurck vector field X, denoted ϕt,

satisfy ∂ϕt
∂t

= −X, we have the pull-back obeys ϕ∗t = Id + O(xn). Therefore,

we note that if we instead choose to evolve g0 under Ricci-DeTurck flow and

then pull-back to the normalized Ricci flow (1.1), the act of pulling-back also

does not add any terms to the evolution of the mass aspect, and hence the

evolution of the mass as computed in Ricci-DeTurck flow and the evolution of

the mass as computed in the normalized Ricci flow (1.1) are equivalent.
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Appendix D

Conformal Change of the

Riemann Curvature Tensor

Here we provide the calculation of how the components of the Riemann cur-

vature tensor changes under a conformal transformation.

Let (M, g) be a Riemannian manifold, and let ρ : M → R be a positive, smooth

function. Consider the new Riemannian metric on M given by g̃ = ρ2g. Let

∇, Γijk be the Levi-Cività connection and corresponding Christoffel symbols of

the metric g, and similarly let ∇̃, Γ̃ijk be the Levi-Cività connection and corre-

sponding Christoffel symbols of the metric g̃. We will denote the components

of the curvature (1, 3)-tensor R(X, Y )Z := ∇Y∇XZ−∇X∇YZ+∇[X,Y ]Z in a

local coordinate basis by Rp
ijk and components of the corresponding curvature

(1, 3)- tensor of (M, g̃) in a local coordinate basis by R̃p
ijk. The components

of the respective Riemann curvature (0, 4)-tensors will thus be denoted by

Rijkl := gplR
p
ijk and R̃ijkl := g̃plR̃

p
ijk.

We compute that the Christoffel symbols obey

Γijk = Γ̃ijk −
1

ρ

[
δij∂kρ+ δik∂jρ− g̃isg̃jk∂sρ

]
(D.1)

:= Γ̃ijk − Ci
jk . (D.2)
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As well, the components of R(X, Y )Z = ∇Y∇XZ − ∇X∇YZ +∇[X,Y ]Z in a

local basis are calculated to be

Rp
ijk = ∂jΓ

p
ik − ∂iΓ

p
jk + ΓpmjΓ

m
ik − ΓpmiΓ

m
jk . (D.3)

Therefore, from equations (D.2) and (D.3), we have

Rp
ijk = ∂j(Γ̃

p
ik − C

p
ik)− ∂i(Γ̃

p
jk − C

p
jk) + (Γ̃pmj − C

p
mj)(Γ̃

m
ik − Cm

ik ) (D.4)

−(Γ̃pmi − C
p
mi)(Γ̃

m
jk − Cm

jk)

= R̃p
ijk − ∂jC

p
ik + ∂iC

p
jk − C

m
ik Γ̃pmj − C

p
mjΓ̃

m
ik + Cm

jkΓ̃
p
mi + Cp

miΓ
m
jk(D.5)

+Cp
mjC

m
ik − C

p
miC

m
jk

= R̃p
ijk − ∇̃jC

p
ik + ∇̃iC

p
jk + Cp

mjC
m
ik − C

p
miC

m
jk . (D.6)

Now, the covariant derivatives of Cp
jk are

∇̃iC
p
jk = − 1

ρ2
∂iρ
[
δpj∂kρ+ δpk∂jρ− g̃

psg̃jk∂sρ
]

+
1

ρ

[
∇̃i(δ

p
j∂kρ) + ∇̃i(δ

p
k∂jρ)− ∇̃i(g̃

psg̃jk∂sρ)
]

= − 1

ρ2
∂iρ
[
δpj∂kρ+ δpk∂jρ− g̃

psg̃jk∂sρ
]

+
1

ρ

[
δpj ∇̃i∂kρ+ δpk∇̃i∂jρ− g̃psg̃jk∇̃i∂sρ

]
.
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Substituting this into equation (D.6), we have

Rp
ijk = R̃p

ijk −
1

ρ2
∂iρ
[
δpj∂kρ+ δpk∂jρ− g̃

psg̃jk∂sρ
]

(D.7)

+
1

ρ

[
δpj ∇̃i∇̃kρ+ δpk∇̃i∇̃jρ− g̃psg̃jk∇̃i∇̃sρ

]
+

1

ρ2
∂jρ [δpi ∂kρ+ δpk∂iρ− g̃

psg̃ik∂sρ]

−1

ρ

[
δpi ∇̃j∇̃kρ+ δpk∇̃j∇̃iρ− g̃psg̃ik∇̃j∇̃sρ

]
+

1

ρ2
[
δpm∂jρ+ δpj∂mρ− g̃psg̃mj∂sρ

]
· [δmi ∂kρ+ δmk ∂iρ− g̃msg̃ik∂sρ]

− 1

ρ2
[δpm∂iρ+ δpi ∂mρ− g̃psg̃mi∂sρ] ·

[
δmj ∂kρ+ δmk ∂jρ− g̃msg̃jk∂sρ

]
.

By multiplying through, using Rijkl := gplR
p
ijk, and grouping like terms, we

compute

Rijkl =
1

ρ2
R̃ijkl −

1

ρ3
g̃ik

[
∇̃j∇̃lρ−

1

ρ
g̃ms∂sρ∂mρg̃lj

]
(D.8)

− 1

ρ3
g̃lj∇̃i∇̃kρ+

1

ρ3
g̃jk∇̃i∇̃lρ

+
1

ρ3
g̃il

[
∇̃j∇̃kρ−

1

ρ
g̃ms∂sρ∂mρg̃jk

]
.

Re-grouping terms in equation (D.8), we obtain that the components of the

Riemann curvature tensor of (M, g) and the components of the Riemann curva-

ture tensor of the conformal Riemannian manifold (M, g̃) are related as

Rijkl =
1

ρ2
R̃ijkl +

1

ρ4
|dρ|2g̃(g̃ikg̃jl − g̃ilg̃jk)

+
1

ρ3

[
g̃jk∇̃i∇̃lρ+ g̃il∇̃j∇̃kρ− g̃ik∇̃j∇̃lρ− g̃lj∇̃i∇̃kρ

]
.
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