National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliograpbiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

if pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

il

Canada

385, rue Wellington
Ottawa (Ontario)

Yoo fler Volre reference

Qur e Notie idlerenes

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuille”
communiquer avec lurivarsité
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d'un
ruban usé ou si P'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNIVERSITY OF ALBERTA

WIRING SPACE OPTIMIZATION
IN
INTEGRATED CIRCUIT FLOORPLANS

BY

{ g\))
YUEJIUN YANG A ’/

A thesis submitted to "~ Faculty of Graduate Studies and Research in partial fulfillment
of the requirements fo: ...c degree of Master of Science.

DEPARTMENT OF ELECTRICAL ENGINEERING

Edmonton, Alberta
FALL, 1993

Bl i

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Weillington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Weliington
Ottawa (Ontario)

Your e VOlre toléence

Qur tle Noltre relodrence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-88359-6

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Yuejiun Yang
TITLE OF THESIS: Wiring Space Optimization in IC Floorplans
DEGREE: Master of Science

YEAR THIS DEGREE GRANTED: 1993

Pern:ission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholasiy or scientific
research purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

W
#126, Royal Terrace
106 Street 27 Avenue
Edmonton, Alberta
Canada

Date: chﬂ /. /;;f.}

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Wiring Space Optiniization in
Integrated Circuit Floorplans submitted by Yuejiun Yang in partial fulfillment of the
requirements for the degree of Master of Science.

Qr» o P bl

Supervxsor Dr.J.T. Mowchcn

Mum/ f/’

Dr. B F Cockburn

,J% L /\///vw

.Y C‘u@erson

~
Date: C)r;f. . /56 0

Acknowledgements

I wonld Tike to express my special thanks to my supervisor, Dr. Jack Mowchenko,
for his valuable gnidance through out the project. Also, 1 would like to thank Mr.
Norman Jantz for his patieut help and technical support.

As well, T would like to acknowledge the financial support of the Natural Sciences
and Engincering Rescarch Council. The Canadian Microclectronics corporation is
also acknowledged for providing the computers and the Cadence VLSI CAD package.

Also, 1 would like to thank my parents and my wife Jie for their understanding

and support.

Abstract

Floorplanning a VLSI circuit is a very complicated problem. Trade-ofls hav o
be made between the quality of the floorplan and the execution time required to
produce the floorplan. One of the major concerns of floorplanning is to minimize
the total chip arca. In this thesis, two algorithms aimed at minimizing total chip
area are presented. The first one is a branch-and-bound algorithm, and the other is
a heuristic algorithm derived from the branch-and-bound algorithm. Although the
branch-and-bound algorithm always gives the optimal solution to the problem, the
time complexity of the algorithm is such that it is only practical for small cirenits. On
the other hand, .l heuristic algorithm does not necessarily give an optimal solution
to the problem, but it can give a reasonably good solution in a practical amount
of time. One ~f the key features of the algorithms is thal the wiring is taken into
consideration during the floorplanning process. A new method for estimaling the
wiring space, called the space profile method, is also proposed in this thesis.

The effect of the algorithms is evaluated by applying them to some henchmark
circuits. The floorplans, both before and after optiinization, are ronted Lo evaluate

the effect of the optimizing algorithms and the results are promising.

Contents

1 Introduction

2 Background

2.1 Floorplan Data Structures .«o v oo oo oo
2.2 Wiring Space listimationo oo
2.9.1 PBmpirical estimationo L oo
2.2.2 Stochastic Estimation 000
2.2.3 Procedural Estimationo o000 oL
2.3 Existing Floorplanning Algorithms
2.3.1 Stockineyer’s Algorithm
2.3.2 The Woug and Liu Algorithm
2.3.3 Performance-Driven Placement Algorithm
2.4 Discussions and Conclusionso

3 New Wiring-Space Optimization Algorithms

3.1 Introduction e e e e e e e e e e e e

3.2 The Problem

3.3 A Lower Bound on the Wiring Space Estimate

3.3.1 DBstimating Wiring Space

3.3.2 The Minimum Bounding Box of a Net

3.3.3 Lower Bound on Wiring Demand Profile 00000000
3.1 The Pre-processing Algorithm .. . oo oo oo
3.5 The Branch and Bound Algorithm oo 00000
3.6 The teuristic Algorithm ... oo oo oo oo oo
3.7 Scarching Strategies oL

4 Implementation and Experimental Results

4.1 Implementationo oo
4.2 Ixperimental Results oo oo
4.2.1 Time performance of the algorithms
4.2.2 Routing Results of the Floorplans

5 Conclusions and Future Work

349

16

19

ni

T

60

ih]

List of Figures

3.3

3.1

3.5

3.6

3

The routing resulte of two floorplans obtained with different strategy

An example slicing floorplan and its slicing tree
An example floorplan and its polar-graphs
The shape function of a single module

An illustration of path delay and timing requirement

Relative position adjustmento L.
The problem solution space tree L.
Various space profilesof acircuit L L.,
Space profile operations L L Lo
Pscudo-code for calculating wiring demand profile along the X axis

Calculation of the upper bound for the empty space profile along the
Xaxis . .. e
Calculationof aman() L 0 L L

Pscudo-code of the Pre-Processing algorithm

6

10

12

19

3.9 Pseudo-code of the Branch and Bound algorithm o0 0000000

3

3.10 Updating of the minimum bounding box
3.11 Pscudo-code of the UPDATIL algorithm

3.12 Pseudo-code of UPDATE algorithm . .

.................

3.13 Breadth-first and depth-first queues of an example shicing tree

3.11 Tewer-child first queues of an examiple

fcing bree oL

List of Tables

The statisties of the benchmarks . . o0 000000
Time performance of the branch and hound algorithm
Time performance of the heuristic algorithm
The optimization results on the wiring space estimate
Fstimated arcas before and after optimization

Actual areas of the routed floorplans before and after optimization .

~I
-1

79

81

82

83

Chapter 1

Introduction

As the size and density of VLSI (Very Large Scale Integration) inereases, the task
of designing an 1C (Iategrated Cirenit) becomes more and more complicated. An
efficient way of handling the complexity of the civenit is hierarchical design. In hi
crarchical design the whole circuit is divided into several functional units, such as a
multiplier, a divider, etc.. Then these functional units are in turn divided into simpler
units. This process repeats until the functional units are simple enough to be handled
easily; these functional units are referred to as modules.

The task of integrated circuit design can be divided into two parts: behavioral
design and physical design. Behavioral design takes as its input the functional specifi-
cations of the circuit and realizes these functional specifications v. ith functional units
such as transistors, logic gates, ete.. The output of behavioral design is a deseription

of the circuit, for example, a circuit schematic and a performance specification of the

cirenit. Physical design takes the circuit description produced by behavioral design
as its input, and produces a physical realization of the circuit. The output of physical
design is the mask data for fabricating the circuit.

‘The physical design of a VLST circuit can also be referred to as the layout design of
the circuit. The task of laying out an integrated circuit consists of placing the circuit
modules in a two dimensional finite space and of interconnecting the module terminals
according to the circuit schematic. The goal of this process is to complete the place-
ment and interconnection of the design in the smallest possible arca while satisfying
a set of design constraints. One way to address the problem of laying cut a VSLI is
to break the problem into three phases: partitioning, floorplanning/placement, and
rouling.

Given a circuit, the first problem to be solved is partitioning. Partitioning is the
task of decomposing the circuit into groups of modules such that a certain objective
function is optimized. The objective function takes into account such factors as
the amount of interconnection between the groups, the difference in the numbers of
modules in each group, etc.. During partitioning, modules are grouped and assigned
to blocks with fixed (or variable) dimensions. The main purpose of partitioning is to
decrease the complexity of floorplanning and placement.

After a civcuit has been partitioned, the next problem to be solved is floorplan-
ning and/or placement. Floorplanning and placement are closely related problems

and sometimes these two words are used interchangeably. In fact, floorplanning can

be interpreted as a generalization of the placement problem. In order to define floor

planning problem, we need the following definitions:

e A terminal of a module is a point on the module that s used to connect an
input /output signal of the modules to other inodules. The position ol a terminal

on a module can be either fixed or floating.
e A net is a set of terminals that are electrically connected together.
o A netlist of a circuit defines all the interconnections hetween the terminals.

e In most cascs, a module is designed in a rectangular arca. The rectangle can
be either fixed or flexible. The shape function of a module gives all possible

dimensions the rectangle can take.
¢ The aspect ratio of a module is the ratio of the module’s width to its height.

Generally, floorplanning can he defined as follows:

Given:

The netlist of the circuit;

o A sct of design constraints;

Possibly a circuit partition;

The shape functions of the modules;

Possible terminal positions on the modules.

3

Determine:

o Locations of the modules on the floorplan;

Aspect ratios of the modules;

¢ Positions of the terminals on corresponding modules.

Minimizing: An objective function.
Satisfying: The design constraints.

The objective function gives a measure of the quality of the floorplan. It can take
into consideration such factors as total arca of the floorplan, total wire length of the
interconnection, and the time delay along critical paths, etc..

As can be seen from the above definition, there can many kinds of floorplanning
problems, depending on the given information. For example, the dimension of mod-
ules can be cither fixed or flexible; the position of terminals on the modules can be
cither fixed or floating; the modules can be either partitioned or not, etc..

The last step in laying out a VLSI design is routing. Routing is the task of
implementing the interconnections between the modules in the circuit. The goal of
this step is to optimize an objective function while satisfying the interconnection
requircments and design constraints. The objective function gives a measure of the
quality of the routing. Specifically, it takes into consideration such factors as the
total chip area, the total wire length of the interconnections, and the time delay

along critical paths, etc.. It should be noted that the position of the modules could

be moved during the routing process. For example, if thereis a lot of emply space after
the floorplan has been routed, the router may t.y to squeeze the modules together
to reduce the total chip arca. On the other hand, il the empty space left over during
the floorplanning process is not enough to accommodate the wiring, the router may
move the modules apart in order to make enough room for routing.

In this thesis, we are mainly concerned with integrated circuit loorplanning. In
our problem, it is assumed that the dimension of the modules is fixed. Also it is
assumed that the positions of the terminals on the modules are fixed.

Floorplanning is a very complicated task. Many algorithms have been proposed
but few of them can give an optimal solution in a reasonable amount of time. Trade-
offs have to be made between the computation time and the quality of the floorplan.
As mentioned before, one of the objectives of floorplanning is to minimize the total
chip area. In a floorplan there are two kinds of areas: module arca and emply arca.
Module area is the area occupied by the modules of the circuit. This arca will be
constant once the layout of each module is finished. Some of the emply arca left over
by floorplanning will later be used for routing, and the rest of the empty arca will be
left empty after routing, and therefore, is wasted. Some carly proposed algorithins
took the minimization of the empty space in the floorplan as the only objective.
This may not be a good choice because the quality of routing depends heavily on
the quality of the floorplar. Fig 1.1 gives an example. In the figure, floorplan A was

obtained by considering only the area of the floorplan, while floorplan B was obtained

by considering both the floorplan arca and the routing of the interconnections between
the modules. It can be seen from the figure that although floorplan A is smaller than
floorplan 13, the total arca of floorplan A after routing is larger than that of floorplan
BB. Also the total wire lcngthbf floorplan B is much smaller than that of floorplan
A. In ihe last few years. more and more work has been done that takes routing into

consideration during the floorplanning phase.

b A
. * 'n r' C. -1 .‘
e
L] ® o o ¥
3 B .
D "
__ Floorplan B
e T
» C L hd
11
T A [A A
> C L
— —— —=—=—1 1 h 400
@ hd] 5 N g
» B .
[D
& & & » L » D -«
Ly B
=
Routing result of floor-paln A Routing result of floor-plan B

Figure 1.1: The routing results of two floorplans obtained with different strategy

In this thesis, we will present two closely related algorithms which re-arrange
a given floorplan such that an estimate of wiring space is minimized. One of the
algorithms is a branch and bound searching algorithm. This algorithm always gives
the optimal solution to the problem, but the time complexity of the algorithm is such

6

that it is only practical for small circuits. The other algorithm is a heuristic algorithm
derived from the branch and bound algorithm. Although the heuristic algorithim does
not necessarily give the optimal solution to the problem, it can give a reasonably good
solution to the problem in a practical amount of time.

In chapter 2, we give some background knowledge of floorplanning. Some widely
used data structures representing a floorplan are explained. Also, some existing algo-
rithms for both floorplanning and wiring space estimating are discussed. In chapter
3, the two new algorithms aimed at minimizing wiring space are presented. The time
performance and experimental results of applying the two proposed algorithms to

some benchmark circuits are presented and discussed in chapter 4. Conclusions and

some possible future work are included in chapter 5.

Chapter 2

Background

The purpose of this chapter is to introduce background knowledge of floorplanning
and related topics. In section 1, data structures used to represent a floorplan are
explained. Wiring space/length estimating techniques are introduced in section 2.
In section 3, we describe some existing floorplanning algorithms. The last section
evaluates the existing floorplanning algorithms and a brief introduction to the new

algorithms proposed in this thesis.

2.1 Floorplan Data Structures

In order to manipulate floorplans, we need a data structure to represent them. In
this section, we introduce two of the most popular data structures for floorplans: the
slicing tree [24] and the polar-digraph [25).

A slicing floorplan is a partitioning of the IC surface into rectangular areas by

recursively slicing the surface with vertical and horizontal lines. The partitioning
procedure starts with a rectangle representing the whole chip arca. This rectangle is
split into two sub-rectangles with cither a vertical or a horizontal slice. Then, these
sub-rectangles arc in turn sliced into smaller sub-rectangles. This process continues
until there is one rectangle for cach module in the circuit. The rectangles that are
not further sliced are called leaf rectangles. The other rectangles which arve further
sliced are called inlernal rectangles. Fach module in the circuit is assigned to a leal
rectangle.

A convenient way o represent a slicing floorplan is with a slicing tree. A slicing
tree is an oriented binary tree in which each node, v, represents a rectangle in the
floorplan. The leaf nodes correspond to leal rectangles, and the internal nodes corre-
spond to internal rectangles. For each internal node, v, its left and right child, v and
v, respectively, represent the two sub-rectangles produced by slicing v's rectangle.
Node v; represents v's left sub-rectangle in the case of a vertical slice and the bot-
tom sub-rectangle in the case of a horizontal slice. Similarly v, represents the right
sub-rectangle in the case of vertical slice and the top sub-rectangle in the case of a
horizontal slice.

In addition to representing a rectangle in the floorplan, a node v in a slicing trec
also represents the set of modules that fall into v’s rectangle. Such a set of modules
are referred to as a cluster. 1f v is a leaf node, then the corresponding cluster consists

of only one module.

A label D(v) is attached Lo cach internal node to describe the slice direction of the

node. (w) == 11 il the slice is horizontal, and D(v) = V if the slice is vertical. Each

leaf node is labeled with the name of the module assigned to the node’s rectangle.

Figure 2.1: An example slicing floorplan and its slicing tree

Figure 2.1 gives an example of a slicing floorplan and the corresponding slicing
tree. In the figure the shaded blocks represent the modules in the circuit. Unless
otherwise specified, we assume that the modules are always placed at the center of

the respective leaf rectangles.
There are several features about the slicing floorplan that make it attractive: (1)

‘The representation of a slicing floorplan is simple and easy to manipulate. (2) It

10

is ideally suited to the hierarchical design style. (3) There arve efficient partitioning,
algorithmns that are best suited for slicing floorplans [26. 7]. (1) There are algorithms
that can find the optimal shape and the orientation of the modules for a slicing
floorplan. (5) The structure of a slicing floorplan makes the problem of routing
much easicr [28]. One of the major limitations to the slicing structure is that not all
floorplans can be represented by a slicing structure [24).

The other commonly used floorplan representation is the polar-digraph [25]. Whether
the floorplan is a slicing structure or not, it can always be represented by a pair of
dual directed graphs: the vertical polar-graph and the horizontal polar-graph. In a
floorplan, the whole chip area is partitioned into rectangular areas and cach rectangle
is assigned a module in the circuit. The vertical polar-graph defines vertical relative
positions of the modules while the horizontal polar-graph defines the horizontal rel
ative positions of the modules. Consider the vertical polar-graph as an example. In
this graph, the nodes correspond to with horizontal boundaries of the rectangles in
a floorplan. In particular, a node corresponds to a single horizontal line which may
bound several rectangles that share the same Y coordinate. The node corresponding
to the top boundary of the whole chip arca is called the source node, and the node
corresponding to the bottom boundary of the chip is called the sink node. The rest of
the nodes are called internal riodes. A directed edge from node @ to node 3 represents
the fact that there exists a rectangle in the floorplan with its top boundary at the

location represented by node i and its bottom boundary at the location represented

11

by node 7. Fach of the rectangles in the floorplan uniquely corresponds to an edge in
the polar-graph. The edge is labelled with the name of the module assigned to the
rectangle.

The horizontal polar graph is constructed in a similar manner except that the
nodes correspond Lo the vertical boundaries of the floorplan, and the direction of the

edges is from left to right. Figure 2.2 gives an example floorplan and its polar-graphs.

Figure 2.2: An example floorplan and its polar-graphs

The two polar graphs uniquely define a rectangular floorplan. If we label each edge
in the pair of polar graphs with the vertical/horizontal dimension of the corresponding

rectangle, then the longest path from the source node to the sink node determines

12

~

the minimum Y/X dimension of the floorplan.

2.2 Wiring Space Estimation

In order to minimize the wiring space during floorplanning, we need to evaluate a
floerrlan from the routing point of view. It is definitely impractical to actually route
ca -t rossible floorplan in order to evaluate it. Therefore, we need to analyze the
interconnection of the circuit and the floorplan to estimate the wiring space.

Wiring analysis and arca estimation is a very complicated task. A compronise
has to be made between accuracy and compulational complexity. Generally speaking,
wiring space estimation can be classified into three categories: empirical eslimalion

[29); stochaslical estimation [10, 13] and procedural estimation 8, 11, 23, 9.

2.2.1 Empirical estimation

Empirical estimation of wiring spacc is based on the experience of previous designs.
Some empirical relationships and the related parameters are drawn from previous
experience and are used to analyze the circuit under consideration. The initial em-
pirical work on the subject was made in an unpublished study by F.1°.Rent at iBM
in the early 1960s [29]. His formulation of what is now called Rent’s Rule was passed
along to researchers both inside and outside IBM. Rent’s rule is given by the formula
P = AS x M7, where P is the number of pins in the circuit, AS is the average size

of the modules, M is the number of modules in the circuil, and r is a mysterious

13

quantity called the Rent erponent. The value of 7 is determined from previous design
experience. Although the wiring space is not explicitly given in the formula, it can
be calenlated by the formula WS = AS < M - vM m; where WS is the estimated
wiring space, and m; is the space occupied by module 7. Since empirical estimation is
hased on previous experience, its acenracy depends heavily on the circuits from which
the parameters are drawn. Also, the characteristics of the circuit and its floorplan
are not taken into consideration. Therefore its applicability is restricted. Usually this

type of estimation is used before physical layout in order to cvaluate the feasibility

of the circuit under development.

2.2.2 Stochastic Estimation

Stochastic methods attempt to construct statistical models of various estimates such
as chip area, wire length, wiring space, etc.. Some assumptions are made to simplify
the complexity »f the problem. Most of the work on this type of estimation has
focused on regular structures such as standard cell and gate array design styles.

A typical stochastic method of estimating wiring space in a standard cell layout
was proposed by Kurdahi and Parker [10]. In their method, it is assumed that each
net has only two terminals. Also, it is assumed that the circuit is first arranged in a
single row, and is then folded into multiple rows. Based on these assumptions, wiring
arca estimation is doue first on the single-row structure. Terminals are assumed to

be evenly distributed along the entire row. The length of a net is assumed to be a

14

ran'dom variable with Poisson distribution. At cach position of the row. the expected
value of the munber of wires crossing the position is calculated, so the channel density
at the position is obtained. Then the result is modified based on the configuration of
the folded muliiple row structure.

The stochastic method is good at estimating layout characteristios ol a circuit as a
whole. The advantage of the method is that it can give a reasonable estimate prior to
actual physical layout process. The disadvantage of the method s that it only gives
a statistical estitnate. Information about the floorplanning is not considered. Also,
the accuracy of the result depends heavily on the value of the parameters determined
for the various distribution models. Therelore, its applicability to the problem of

evaluating a floorplan is questionable.

2.2.3 Procedural Estimation

Procedural estimation methods attempt to give a more accurate estimate by integral-
ing the estimate with the floorplanning process. This is more difficult than the other
two methods because we have to predict the hehavior of the future floorplanning and
routing in the layout process.

Most of the wiring space estimate methods use a bottom-up strategy along the
hierarchical tree of the circuit {8, 11, 23]. The method used by Thomas and Miller
[23] in their floorplanning algorithm traverses the hicrarchical tree in a botlom-up

manner. At each node during the traversal, a global router is invoked to ront the

interconnections between the children of the current node. Channel area is calculated
based on the result of the global routing. Then the dimension of the node is expanded
accordingly to make enough room for the channels. This method can give a relatively
aceurale estimate at the pf‘i(;(t of increased computation time.

Pedram and Preas proposed a simpler method to estimate wiring space {11]. For
cach net, a hounding box is calculated which encloses all the terminals attached to
the net. Then the channels that intersect with the bounding box or are included
by the bounding box are marked with a probability. This probability represents
the likelihood that the wiring of the net will actually go through the channel. The
density of cach channel is calculated by summing up all the probabilities assigned
to the channel by cach net. Then the width of the channel is calculated according
to the estimated density. This method is faster than the previous one, but it is less
accurate.

It is more difficult to estimate wiring space in a top-down manner. In order to
estimate wiring arca, we have to predict the future behavior of the floorplanning
process. Dai and Kuh [9] proposed a method that recursively refines the estimate as
the algorithm moves [rom the top of the hicrarchical tree downward. At each level of
the hierarchical tree, a connectivity matrix C is constructed with each entry c(z, j)
representing the number of interconnections between block ¢ and block j at that
level. ANl the channels on the shortest topolegical path between block ¢ and block j

are marked with a probability representing the likelihood of the wiring actually going

16

through the channel. Thus, for cach chanuel, a probability matrix I’ is constructed
with cach entry p(7,7) denoting the probability that the interconnections hetween
block 7 and block j will actually go through that channel. The width of cach channel
is estimated by the formula

ko k

w="T, % }:Z(‘(l,]) X p(ty)

i=1 j=1
wiere T 1= 1 faclor l‘cprcscn‘ting track sharedness, and & is the number of blocks at
that level. The main problem with this mcthod is that as we proceed top-down in
the hierarchical tree, the shape function and the terminal positions of the hlocks at

lower levels are not yet known. Some assumptions about these characteristics have

to be made and this could seriously affect the accuracy of the estimate.

2.3 Existing Floorplanning Algorithms

Floorplanning is not an easy task. It is impractical, if not impossible, for a floor-
planning system to produce the optimal solution to a problem of interesting size in
a reasonable amount of time. Therefore, most algorithms proposed for the floorplan-
ning problem are either heuristic or some assumptions and for restrictions are made
so that the problem is much simplified. Heuristic algorithms can give a solution to
the problem in a practical amount of time, but the solution 1s not necessarily optimal.
In this section, we introduce several Moorplanning algorithms. Some of them restrict

the problem to a certain kind of floorplan and give the optimal solution with respect

17

to a speciflic cost function. Some of them use a heuristic method to approximately

optimize a floorplan.

2.3.1 Stockmeyer’s Algorithm

The algorithm proposed by Larry Stockmeyer [20] computes an optimal orientation
of the modules in a slicing floorplan. While it has been proved that optimizing the
orientations of the modules in a general floorplan is NP-complete [20], this algorithm
can give an opilimal solution to a slicing floorplan in a polynomial amount of time
with respect to the number of modules in the floorplan.

Before discussing the algorithmn, let us first introduce the concept of shape function
of a node in aslicing structure. The shape function of a node v in a slicing tree consists
of a list of pairs (h;,w;) which gives the lower bound on possible dimensions of v’s
rectangle in the floorplan. That is, for any pair (h;, w;), there is an arrangement m;
of the modules enclosed by v’s rectangle such that the height of the rectangle equals
h; and the width of the rectangle equals w;. For any other arrangement 7, suppose
that the height and the width of v’s rectangle under the arrangement 7 are k and w,
respectively, then w; < w or h; < h or both.

Iigure 2.3(a) gives an illustration of the shape functions of a node with a single
module. In the figure, the shaded area contains all possible dimensions of the node’s
rectangle. There are two pairs describing the shape function of M;: (1,3) and (3,1).

The shape functions for the nodes in a slicing tree are calculated in a bottom-up

18

¥y kan T
M 2t
- M
11 « M2 I'T
1 ——t——t—+ B e an Sty
pe—— 1 2 3 4 P— 1 2 3} 1
1 1
(a) Shape function of module 1 (b) Shzlp.c function of module 2
v 41
3 -
2 e
o l <4 Miistadadsiss
M M:

(c) The slicing tree
(d) The shape function of V

Figure 2.3: The shape function of a single module

manner. The calculation of shape function for a leaf node is straightforward, and
therefore will not be discussed here. To calculate the shape funciion for an internal
node v, consider the case where v has a vertical slice. Suppose the shape function
of v's left child consists of m pairs (A}, w;) for 1 < i < m, and the shape function
of v’s right child consists of k pairs (h'j',w;-') for 1 <3 < k. Then m » k pairs can
be constructed for the shape function of v. Each pair is constructed by the equation
hij = max(h;,h;') and w;; = w; + w;'. In the example of figure 2.3, the shape
function of the node consisting of module 1 and module 2 has four pairs: (3,3), (3,2),

(2,4) and (1,5). It should be noted that not all the new pairs are necessary for the

19

corresponding shape function. In our example, it is obvious that the pair (3,3) is not
necessary because there is another pair (3,2) which gives a better combirnation. The
slicing tree and the shape function of the internal node are illustrated in figure 2.3(c)
and 2.3(d). The shape function of the root of a slicing tree gives all the possible
dimensions of the chip, cach pair (hi,w;) corresponding to the chip dimension of an
arrangement, of modules. The one which gives the minimum chip area is chosen as
the final floorplan.

As mentioned above, the algorithm constructs a list of pairs (h;, w;) for each node
in the slicing tree in a bottom-up manner. Let v be a node in the slicing tree. The list
of shape pairs constructed for v satisfies following conditions h; > hiys and w; < Wiyp.
The rncaning of the conditions is that we do not keep the dimension (h(m), w(r)) of
an arrangement # if there is another arrangement 7' that is better than = in either
h or w (or both) dimension and is not worse than 7 in the other dimension. The key
feature of ﬁ.ll(t algorithm is the way the shape pair lists are constructed for internal
nodes. Consider an example of an internal node v with a vertical slice and its left
and right child being vy and v, respectively. Assume there are k pairs in v/’s shape
function and m pairs in v,'s shape function. As mentioned before, there are k x m
possible pairs for v. In fact, we do not have to consider all these k x m possibilities
because some of them are obviously suboptimal. For example, suppose we have a pair

"

!] . . " .
(h; w;) from v;’s list and another pair (hj,wJ) from v,’s list, then we can construct

"

a new pair (max(h;, h;’),w; + w;) for v. If h; > h;-’, then there is no need to consider

. . ' ! . " 1" . ’

the combination of (hy,w;) with (h,.w,) for any = > j because max(hi b)Y = h; and
! 1 1] H
w; +w, > w; + w;.

Stockmeyer proved that for each node v in the slicing tree, the following relation

is true: m < |L(v)| + 1, where m is the number of shape function pairs for node v

and |L(v)] is the number of modules enclosed by »’s rectangle. Also he proved that

the time complexity of the algorithm is C{nlgn), where 2 is the number of modules

in the circuit.

2.3.2 The Wong and Liu Algorithin

The algorithm proposed by Wong and Liu [3] uscs a heuristic scarching strategy called
simulated annealing Lo produce a slicing floorplan. Before discussing the algorithm
itself, let us first introduce the concept of simulated annealing.

The idc-w of simulated annealing comnes from Boltzmann’s probability distribution
of atomic configurations as a function of temperaturc. By Boltzmann’s law, the
probability of any configuration 7 of atoms is given by e~ EOIRT) where [(7) is
the energy associated with configuration ; ky is Boltzmann constant; and T is the
temperaturc. Therefore, at a certain temperature the most likely configurations of
the atoms are those with the lowest energy. Suppose a solid-state material is heated
to a high temperature until it reaches a liquid state so that the atoms can move
freely. Then it is cooled down slowly. As the temperature cools down, the freedom

of motion of atoms becomes smaller and smaller. If the cooling is slow cnough so

21

that the material reaches its thermal equilibrium state at cach temperature, then the
atoms will arrange themselves in such a way that the total energy is minimized. This
process is called anncaling.

Simulaled anncaling is an optimizing algorithm that simulates an annealing pro-
cess. Given an initial floorplan and an initial temperature Tg, the simulated annealing
algorithim gradually decrcases the temperature according to a certain schedule. At
ecach temperature 7', a number of modifications to the floorplan arc gencrated ran-
domly. Such madifications to a floorplan are referred to as moves. If a move results in
a decrease in the cost function, it is accepted unconditionally. If the move increases
the cost function, it is arcepted with a certain probability. The acceptance proba-
bility is a function of the temperature and the change the move made to the cost
function. The more the cost is increased by a move, the less likely that the move will
be accepted. The number of moves made at each temperature is determined by the
annealing schedule. The algorithm stops when a certain terminating condition is met.
For example, the terminating condition can be that the number of moves accepted
exceeds a pre-determined value.

Now let’s come back to the Wong and Liu algorithm. The algorithm is based on a
new represeniation of slicing floorplans. The representation is called the normalized
Polish cxpression. Assume that the n modules are each labeled by a number 2 : i <
i < n, and the vertical and horizontal slices are represented by * and +, respectively.

The idea of a Polish expression comes from the observation that a traversal of a slicing

22

tree results in an “arithmetic expression™ with * and + as operators, and the module
labels as operands. A Polish postfix notation for this “arithmetic expression” can be
constructed by a pre-order traversal of the slicing tree. A Polish expression is said
to be normalized iff there are no consccutive *'s or +'s in the sequence. Wong and
Liu proved that there is a one-to-one correspondence between the set of normalized
Polish expressions of length 2n — 1 and the set of slicing structures with 12 modules.

In a normalized Polish expression, a sequence of operators is called a chain. From
the definition of normalized Polish expression, we know that there are only two kinds
of chains: + % -+ % + % ... or * + % + ... The complement of a chain is defined to be
the chain obtained by interchanging opcrators * and +.

During the optimizing process, the following three kinds of moves are used to

modify a given normalized Polish expression:
e M1. Swap two adjacent operands.
e M2. Complement some chain of operators.
e M3. Swap an operand with an adjacent operator.

Wong and Liu proved that these three kinds of moves are suflicient to ensure that il
is possible to go from any normalized Polish expression to any other via a sequence
of such moves.

The cost function takes both the total chip area of the circuit and the total wire

length into consideration. The total wire length T'L is computed by the formula

23

T'Lo=: §oiijan Cig 7 dij, where ¢ijis the number of interconnections between module
i and module j, and d; ; is the Manhattan distance between the centers of module ¢
and module 7. The algorithm starts from an arbitrary initial floorplan and an initial
temperature Ty, At cach temperature, enough moves are made until either there are N
downhill moves or the total number of moves exceeds 2N where N is a predetermined
constant. The algorithin terminates if the number of accepted moves is less than 5%

of all moves made at a certain temperature or the temperature is low enough.

2.3.3 Performance-Driven Placement Algorithm
Jackson and Kuh [6] proposed a placcinent method that optimizes the performance
of a circuit by considering such factors as pin capacitance, intrinsic el delay, inter-

connect processing parameters and chip timing requirements.

The method mainly solves the long path problemn. The lorg g2in probiem is
concerned with paths that have the greatest delay. Consider a path p, izt [deroio
the end ccll of the path, r; be the time a signal is required to arrive at thzinp i of
I, and a; is the actual arrival time of the signal at the input of L The path ¢ .: at !
is defined as 8; = 1, — a;. In order for the circuit to operate correctly, & = * has &
be true for all I. The path whose endpoint cell has the ininimum slack is the most
critical path in the circuit. Maximizing the slack of the critical path is equivalent to

maximizing the clock frequency or the time performance of the circuit.

The proposed algorithm optimizes the placement in a ":archical manner. The

24

algorithm moves from the top level of the hierarchy downward. At ca ™ level of the
hierarchy, a lincar programming algorithm is used to determine the -1 placement. It
is unavoidable that some overlap will exist between modudes =24 <7 frcar programming
(LP), so a partitioning process is invoked after cach LP to = vid of the overlaps.
Then the LP algorithm is re-run at the next level of the hierarchy with the feasible
regions of the cells constrained to reflect the most recent partitiomng. This process
is repcated until the chip arca is divided into suitably small regions that contain a
small number of cells.

The key idea of the method is the lincar program. The timing requirements
and other related information is included in the lincar constraints. The first set of
constraints is on the bounding boxes of the nets. The bounding box of a net 7 is
defined by four parameters: t;,b;,r; and ;, which represent the top, bottom, right,
and left boundarics of the bounding box, respectively. Suppose the net 7 has &
terminals attached to it. For cach terminal, let (a;;,9i;) denote its position in the
floorplan. The constraints on the bounding box of net 7 is determined by the following
equation:

b <yi; <
i<z <m

The electrical behavior of the interconnection is modeled by a lumnped capacitance

that depends on the dimension of the bounding boxes of each net. The constraint of

25

the lumped capacitance of each net 7 is determined by the equation

(/',' = "/(1,‘ b T,') + ﬁ(l,’ —_ b,)

where ¥ and 3 represent unit capacitance of horizontal and vertical metal lines re-
spectively.
Suppose a single delay and an equivalent resistance exist for cach cell, then the

delay model of the examp’e sircuit in Figure 2.4 is defined by the following expressions:

asy Z ay + (11 + R]CH

az > az + dy + RaC,

where a; denotes the arrival time at the input of cell ¢, d; represents the intrinsic
delay of cell ¢, R; represents the equivalent resistance of cell 7, and C; represents the
lumped capacitance of net j. The timing requirements are defined by the following
constraints:

ma2a+d+R[C+ M
ma>ar+dy+ RCo+ M

where 7; ; is the required arrival time of a signal at the input of j through path s, and
M is a variable introduced to every delay equation for path endpoints. The value of
M represents the minimum slack in the design. The objective function of the linear
programming formulation is

max(M — aW)

26

Cell

Figure 2.4: An illustration of path delay and timing requirement

In the formula, a = L—zi where k is a user-defined weight constant, I is the average
resistance of the nets, and n is the number of nets. Also in the formula, W is the total
interconnection capacitance. The objective function reflects two important features
of the circuit. M reflects the timing performance of the circuit, while oW reflects
the weighted average interconnect delay. Maximizing M minimizes the delay of the
paths, while maximizing —aW minimizes the sum of the hall-perimeter of all nets,
and therefore, minimizing the total wire length.

Following linear programming, a partitioning algorithm divides the chip arca into

two times the number of regions that existed at the previous hierarchical level. This

27

partitioning assigns the cells to specific regions according to the LP result. As men-
tioned bhefore, the purpose of partitioning is to get rid of the overlaps resulting from
lincar programmning. Fach time a partition is finished, a new set of constraints is

introdiced to specify feasible positions for cach module.

2.4 Discussions and Conclusions

Floorplanning and routing are two closely related phases in the physical design of an
integrated cirenit. The quality of a floorplan has a profound impact on the quality of
the routing. One of the ma’or concerns in floorplanning is to arrange the modules in
such a way that final chip arca is minimized. In order to achieve this goal, we have
to take routing into consideration during the floorplanning stage.

As mentioned before, wiring space estimating methods fall into three categories:
empirical cstimales, stochastic estimates and procedural estimaltes.

Empirical and stochastic estimates depend heavily on the previous experience of
design and on the parameters of the statistical models. Such methods can only give a
rough idea of wiring space. They do not take the current floorplan into consideration.
Also they do not provide detailed information about wiring such as wiring space
distribution. Therefore they are of little help to guide the floorplanning.

Generally speaking, procedural estimation methods are more accurate than empir-
ical and stochastic methods in that they take the actual floorplan into consideration.

The main disadvantage of procedural estimation is the time complexity of the method.

28

In the last few years, more and more work has been done attempting to reduce the
time complexity of procedural estimation methods.

Several floorplanning algorithms were presented in this chapter. They try to
floorplanning problem from different points of view. Stockmeyer’s algorithm gives
an optimal solution to the orientations of the modules in a slicing floorplan. The
algorithm is of polynomial time complexity (O(n?)), and therefore, is guite efficient.
On the other hand, the algorithn does not consider the wiring aspects, therefore the
solution it produces may not be optimal from the wiring point of view.

The most important feature of Woug and Lin's algorithny is the normalized Polish
expression for floorplan representation. Some represciitations, such as a shicing trees,
can have a number of representations for a single slicing structure. This can canse two
problems for simulated annealing: (1) There is an unnecessary increase in the mimber
of solution states. (2) The st of slicing structures is uncevenly distributed over the
set of representations, leading to undesirable biascs toward some slicing struetures.
Because of the one-to-one correspondence between the set of slicing structures and
the set of normalized Polish expressions, the above problems are eliminated. 'The
disadvantage of the algorithm is that updating of the cost function 1s comparatively
{ime consuming,.

The method proposed by Jackson and hli'uh directly optimizes the timing perfor-
mance of the circuit. Since it minimizes the time slack of each path, it theoretically

guarantees proper operation of the circuit. Of course, in practice such factors as

29

operating temperature and simplification of the timing model will weaken the guar-
antee. Still the method can give the placement with the best performance because
it provides the greatest margin for the variations on the performance. On the other
hand, it is likely that the algorithm will result in a larger chip area compared with
other algorithins because the arca aspect of a floorplan is not explicitly addressed in
the algorithm.

As mentioned before, wiring quality should be one of the major concerns dur-
ing the floorplanning process. Stockmeyer’s algorithm, although it gives an optimal
orientation solution to a slicing floorplan, does not consider wiring at all. In Wong
and Liu’s algorithm, the wiring length was included in the cost function, but the
estimation is not accurate. Also the wiring space was not directly addressed. Jackson
and Kuh’s algorithni optimizes the circuit performance, but its total chip area of the
result may not be satisfactory. It is likely that there will be much empty space left
unused in the final layout.

The main difficulty in dealing with wiring during the floorplanning process is the
lack of an accurate yet eflicient method to estimate the routing behavior. Most of the
existing floorplaning algorithms [, 3, 6, 15] address wiring by only using wire-length
in the objective function, instead of wiring space. Although some algorithms can
give fairly good floorplans, there is still quite a lot of empty space left unused after
routing. We believe there is still room for improvement.

In this thesis, we propose a new method that re-arranges an existing slicing floor-

30

plan such that the exira space needed for wiring is minimized. The main idea of the
method is to place the modules in such a way that the router can take full advan
tage of the empty space lefl over during floorplanning to route the interconnections.
Also, a new method for estimating wiring space is proposed which provides some

information about wiring space distribution.

Chapter 3

New Wiring-Space Optimization

Algorithms

3.1 Introduction

Two algorithms for wiring space minimization are introduced in this chapter. The
first algorithm uses the branch and bound method. This algorithm always gives the
best solution in terms of the wiring space estimate, but its time complexity is such
that it is only practical for small circuits. For large circuits, we introduce a heuristic
algorithm derived from the branch and bound algorithm. The heuristic is a greedy
algorithm in that the decisions are made based on local information instead of global
information. That is, instcad of considering all possible alternative solutions each

time a decision is made, only those solutions that are most likely to lead to the best

solution are considered. The algorithim docs not necessarily give the best solution,
but it can usually finish the search in a reasonable amount of time.

In the next section, we give a formal definition of the problem. The solution
space of the problem is also discussed in this section. The new method for estimating
wiring space and a lower bound on the estimate are described in section 3. In section
4, we discuss o pre-processing procedure which provides some necessary information
for the branch and bour ! algorithm. In scctions 5 and G, the beanch and bound
#gorithm and the greed heuristic algorithm are introduced, respectively. Some
search strategics aimed at speeding up the scarch process are discussed in section 7.

The chapter ends with a summary in section 8.

3.2 The Problem

As mentioned before, the objective of the algorithins proposed in this thesis is to
adjust the arrangement of an existing slicing floorplan so as to minimize the wiring
space. The adjustments to module positions in a slicing floorplan are restricied to
interchanging sibling rectangles and mirroring (flipping) modules in leafl rectangles.
The relative position of rectangles in an adjusted floorplan is indicated by a label
A(v) attached to each node in the slicing tree. For internal nodes, A(v) can take on
two values: F and R. The value F indicates that v’s two children are in the j'orwa?'d
or normal relative position. That is, the rectangle corresponding to v’s left child vy

is placed to the left of the rectangle corresponding to v’s right child v, in the case of

33

vertical slice, or below v,’s rectangle in the case of horizontal slice. Conversely, the
label U indicates that v's two children are in the reverse relative position. That is,
u’s rectangle is placed to the right of v,’s rectangle in the case of vertical slice, or
above v,’s reclangle in the case of horizontal slice. For leaf nodes, A(v) consists of
two letters which deseribe the mirroring applied to module M(v). The first letter of
A(v) can be cither R (reverse) or F (forward or normal) indicating that the module
is mirrored or not mirrored about the Y axis, respectively. Similarly, the second
letier can be cither U (upside-down) or R (right-side-up) indicating that the module
is mirrored or not mirrored about the X axis, respectively. The four possible labels
for A(v) al a leaf node are FR, FU, RR and RU.

Figure 3.1 illustrates the relative position adjustment of an example floorplan
with its slicing trees. For the sake of simplicity, the slice direction is not marked
for the nodes. Instcad, the nodes are marked with their relative position A(v). As
can be seen from the figure, the rectangle containing module A was interchanged
with the rectangle containing module C; the rectangle containing module D and F
was interchanged with the rectangle containing module E; modules F and D were
swapped; modules B and C were mirrored about the X axis; and modules B and F
were mirrored about the Y axis.

The problem being addressed here will be referred to as the Relative Module

Position, or RMP, problem. The problem is formally defined as follows:

34

Given:
o A slicing floorplan dcfined by a slicing frec.

o A circuit netlist which specifics the intcrconnections belween the modules in the

floorplan.
o Module dimensions and lerminal locations for cach module in the circuil.

Determine:
A(v) for all internal and leaf nodes in the slicing trec so thal the wiring space

estimale is minimized.

Each combination of relative positions zssigned to the nodes in the shcing tree
constitutes a possible solution to the problem. The set of all possible solutions s
referred to as the solulion space of the problem. The solution space can be represented
by « solution tree. The root of the solution tree represents the initial state where no
relative position has been assigned to any nodes in the slicing tree. Iach internal node
n in the solution tree other than the root represents a partial solution where relative
positions have been assigned to some of the nodes in the slicing tree. Fach of n’s
children represents a diflerent possible relative position assignment at a node in the
slicing tree. A path in the solution irce from the root to a leaf node gives a complete
solution to the problem. Such paths are referred to as solulion paths. The length
of the solution paths, i.c. the depth of the solution tree, is cqual to the number of

35

a) Initial layout

13
(3
A

F D C A

¢) The slicing tree of the initial floorplan d) The slicing tree of the adjusted floorplan

Figure 3.1: Relative position adjustment
nodes in the slicing tree. The objective of our algorithm is to, among all the possible
solutions, pick up the one which yiclds the minimum wiring space estimate.
The RMP problem is very difficult. Consider a circuit with n modules. There
are n leaf nodes in the corresponding slicing tree. Each leal node has four possible
assignments, so the number of combinations for leaf node assignment is 4" = 22n,

The number of internal nodes in a binary tree is n — 1. Each internal node has two

36

possible assignments, so the number of possible combinations of the a signments for
the internal nodes is 2771, Therefore, the total number of possible combinations of
the assignments for the whole floorplan is 27!, That is, the number of solutions

to the problem is 231,

Figure 3.2 illustrates an example slicing loorplan and its
solution tree. The floorplan consists of only two modules placed one on top of the

other. Yet there are 32 possible solutions.

Initial state

Node A

Figure 3.2: The problem solution space tree

A straightforward method to find the best solution, called crhaustive search, com:
pares all the possible solutions and sclects the one that yields the minimum wiring
space estimate as the final solution. Although it is guaranteed to give the hest so-

lution, the method is too time consurning to be practical for problems of interesting

size.

Quite a few techniques have heen invented to speed up the scarch process. One of
the most well known is called the branch and bound algorithm. Instead of searching
all the way down through a solution path to get an exact value of the cost function for
that solution, the bhranch and bound algorithm cvaluates the prospect of the scarch
along the current solution path and abandons any further search along the path if
the path can not lead to a better solution than the best solution found so far. In this
case, the algorithm cuts oflf the current path, hacks up a node in the solution tree,
and starts to scarch along a new path. ‘This process is repeated until there are no
more new solution paths to scarch. At this point the best solut - 1 {ound so far is

indeed the best solution to the problem.

3.3 A Lower Bound on the Wiring Space Esti-

mate

A good branch and bound algorithim can cut a lot of unnecessary search {rom a
solution tree, and thus, dramatically reduce the search time. A key factor for a
successful branch and bound algorithm is an efficient way to calculate a tight lower
bound. I the lower bound is not tight enough, the algorithm still has to search
along many paths much further before it realizes that such paths can not yield a
better solution. On the other hand. if the lower bound is tight, but very complicated

to calculate, the algorithm spends a great deal of time calculating lower bounds,

38

therefore slowing down the search process. In this section we discuss how the fower
bound on wiring space estimate is calculated for the RMP problem. Before disenssing,

the lower bound, we must first explain hooo wiri g space s estimated.

3.3.1 Estimating Wiring Space

As mentioned before, the main idea behind our wiring space minimization algorithms
is to take full advantage of empty space left over in the floorplan for wising the cireuit.
Onc way 1o take advantage of empty space is to make the wiring space distribution
match the empty space distribution as closely as possible. Tn this way, much of it
wiring can be placed in the emnty arca left over by the floorplanning process and
thus, extra space required for wize e o ed,

In order to take space distribution intu aceoust, we introdice the concept ol a
space profile. A space profile is a histogram which defines the amount of empty space
or wiring spacc along the X or Y axis of a floorplan rectangle. Fach interval in a
space profile histogram is defined by a triple (s, ¢, h), where s is the starting point of
the interval, ¢ is the ending point of the interval, and b is the height or the amonnt
of space in the interval.

In our estimate method, a space profile is used to describe one of three kinds of
space: empty space, wiring space, and wiring demand spuce. We will discuss cach
kind of spac, and the corresponding space profiles in the following paragraphs.

Empty space is defined to be the space in a floorplan that is not ocenpicd by any

39

module of the cirenit, and can be used for wiring the interconnections between the
modules. An empty space profile of a node v, denoted by EP(v), along the X/} axis
is a histogram which defines the empty space distribution along the X/Y axis.
Wiring space is estimated as follows. For cach net, a minimum bounding box is
computed that encloses all the terminals of the net. For cach portion of the horizon-
tal(vertical) interval of a net bounding box, there is at least one piece of wire that
covers that interval, We assume that cach net is routed by a horizontal wire and
vertical wire that cover the horizontal and vertical extent of the net’s bounding box.
Then the space taken by these two picces of wire is the minimum wiring space for
the net. Thus, a wiring space prefile of a node v, denoted by W P(v), along the X/Y
axis is a histogram of the minimum wiring space distribution along the X/Y axis.
The emply space profile describes the empty space distribution, and the wiring
space profile describes the minimum wiring space distribution. By comparing the two
profiles, we are able to tell il the existing cinpty space is enough to accommodate the
wiring space. If the empty space is insufficient, we can compute the distribution of
minimum extra space required for wiring along the X/ axis. This gives rise to our
third kind of space profile, the wiring demand space profile. A wiring demand profile,
denoted by W D P(v), describes the minimum amount of extra space needed for wiring.
In other words, the height of each interval in a wiring demand profile along the X/Y
axis gives the minimum amount of extra space needed to make enough room for

wiring in that interval. The wiring demand profile is constructed by subtracting the

empty space profile from the corresponding wiring space profile for a given rectangle.
The details of the subtraction will be discussed Tater. Figure 3.3 illustrates various
space profiles for an example floorplan. In the figure, the rectangles with dashed lines

represent net bounding boxes.

G|

sixe £ oy Juojz ojijos] 9ovdg Fum
sixe & fuofe optjoif sondg Adur

o

Empty Space Profile along the X axis

T T o N
— = N

Wiring Space Profile along the X axis

Figure 3.3: Various space profiles of a cireuit.
| I

Since the wiring demand profile specifies the extra amount of wiring space re-
quired, it is taken as our wiring space estimate. The objective of onr wiring space
minimizing algorithms is to minimize the maximnum height of the wiring dessnand
profiles along both the X and the Y axes. In doing this, the estimated extra space

41

required for wirtng the netsin the floorplan is minimized.

In order to manipulate space profiles, we need 1o specify some operations on
them. "The operations used in our algorithin include FLIP. MAX, MIN, ADD, SUB
and CONCAT. We will discuss cach operation in the following paragraphs.

A I°LIP operation, denoted by FLIP(p), mirrors an existing profile p about the
center of the profile.. A MAX operation, acnoted by MAX(py, p2), takes two space
profiles py and py as its operands and the result of the operation is a new profile. The
resulting profile is such that at any point along the X/Y axis, the height of the point
in the resulting profile takes the maximum value of the heights at the same point
in the two operand profiles. A MIN operation, denoted by MIN(py. pp), is similar to
MANX operation except that the height at cach point in the resuliing profile takes
the minimum value of the heights at the same point in the two operand profiles. An
ADD operation, denoted by pp + py, adds two profiles together. It is similar to that
ol MAX operation except that, the height at any point in the resulting profile is the
sum of the heights at the same point in the two operand profiles. A SUB operation,
denoted by py - pa, subtracts profile p, [rom the profile p,. It is similar to that of Add
operation except that, at any point along the X/Y axis, the height in the resulting
profile at the point is the difference of the heights in the two operand profiles at the
same point. A CONCAT operation, denoted by CONCAT(py, p2), produces a new
profile by appending profile py to the end of profile p;. Figure 3.4 illustrates various

operations on space profiles.

Profile A

Profile B
I
!
|
i
]
L.,
!
|
]
1
]

b XY

MIN(A.B) MAX(A.B) FLIP(A)
=
\
i
I

ADD(A,B)
|
1
!
|
—
!
-
|
|

CONCAT(A.B) SUB(A-B)

Figure 3.4: Space profile operations

Having introduced the concept of a space profile and the

X/

operations on space

profiles, let’s now discuss the algorithm for caleulating the wiring demand profile

for the circuit. The algorithm is called WDPC(Wiring Demand Profile Caleulation).

Figure 3.5 is the pscudo-code of the algorithm that caleulates the wiring demand

profile along the X axis. [t should be noted that thereis a new kind of profile in the

algorithm, PWP(N). the pscudo wiring space profile. A pscudo wiring space profile

of a node N is the wiring space profile of those nets whose terminals completely lie

43

inside N rectangle but not completely inside any rectangle that is a child of N.

WDPC(N)

N: The currenl node lo be processed;

IP(N): Fmply space profile of node N;

WPIN): Wiving space profilc of node N;
WDIP(N): Wiving demand profile of node N;
PPWI(N): Pseudo wiring space profile of node N;

If (N is a leaf node) {
Calenlale 1XP(N);
Caleulate WP(IN);
WDP(N) = WP(N) - IEP(N):

;',v'/.w; { /* An intcrnal node */
Cied Ns Icft ehidd Ny:
WDPC(N):
Ciet Ns vight child N,;
WDPC(N,);
Caleulate PWP(N):
If (N has vertical slice) {
If (N and N, arc forward positioned)
EP(N) = CONCAT(EP(N).EP(N,)):
} WP(N) = CONCAT(WP(N),WP(N;)) + PWP(N);
ELSE
EP(N) = CONCAT(EP(N,), EP(N,));
WP(N) = CONCAT(WP(N,), WP(N,)) + PWP(N);

}
WDP(N) = WP(N) - EP(N):

lse { /* the slice is horizontal */
IEP(N) = EP(N;) + EP(N,);
WP(N) = PWPIN) + WP(N) + WP(N,):
WDP(N) = WP(N) - EP(N);

Return;

Pigure 3.5: Pseudo-code for calculating wiring demand profile along the X axis

The algorithm traverses the slicing tree in a bottom-up manner to calculate the
wiring demand profile for cach node in the tree by recursively calling itself. Consider
a recursive instance of WDPC(n) processing node n in the slicing tree. If nis a

44

leaf node. then we know the dimension of »'s rectangle as well as the dimension of
the module m assigned to n. We can casily calculate the empty space profile of »
from this information. For the wiring space profile at a leal node, we only consider
those nets whose terminals all lic inside n's rectangle. Then the wiring space profile
is calculated from the bounding boxes of these nets. The wiring demand profile is
obtained by simply subtracting the EP(n) from WP(n).

If nis an internal node, the calculation is a little more complicated. First, let ns
discuss the calculation of the wiring space profile for n. The nets in n can be classified
into three categories: the nets with some, but not all, of their terminais inside '
rectangle; the nets with all their terminals inside #'s rectangle, but not all inside
any of n's children’s rectangles; and the nets whose terminals all Tie inside one of w’s
children’s rectangles. For those nets in the first category, v - - an not determine the
bounding boxes of these nets because we do not know the positions of those ternyinals
outside n’s rectangle at this point. Therefore, we will not consider such nets until
we encounter a node whose rectangle completely encloses their terminals, For the
nets in the third category, the wiring space is already included in cither u's or n,'s
wiring space profile W P(n;) or W P(n,). Thercfore, there is no need to re-caleulate
the wiring space profiles of these nets at n. The nets in the second category are
the only nets that nced to be considered. We can easily calculate the wiring space
profile of these nets by projecting the corresponding bounding hoxes. As mentioned

above, we call the wiring profile of these nets the pseudo wiring profile W /P2 (n) of

node n. Irom this we can caleulate the wiring space profile WP (n) for node n. If
the slice at n is horizontal, we just add WP (n), WP(n,), and PW P(n) together
to get WEP(n) along the X axis. If the slice is vertical, assume n’s two children are
forward positioned, we first concatenate W 2(n,) to the end of WP (n), then add the
resulting profile to PW P(n) to get W P(n) along the X" axis. If the children are in the
reversed position, the caleulation is similar except that the order of the concatenation
is reversed.

The empty space profile along the X axis at an internal node n, IZP(n) is casy
to caleulate. 1T the slice is horizontal, we add EP(n;) and E1’(n,) together to get
I:1°(n) along the X axis. If the slice is vertical, we concatenate I P(n,) to the end of
1 P(n) Lo get 15P(n) along the X axis, provided that n’s two children are forward
positioned. Otherwise, the order of the concalenation is reversed. The wiring demand
space profile WD P(n) is calculated by subtracting the empty space profile EP(n)
from the wiring space profile W P(n).

The various space profiles along the Y axis are computed in a similar manner.

3.3.2 The Minimum Bounding Box of a Net

As mentioned before, the wiring space profile is computed based on the minimum
hounding box of the nets. In this sub-section, we discuss the computation of these
hounding boxes.

The minimum bounding box of a net n can be described by four parameters: I(n),

16

r(n), 1(n). and b{n), which give the “best case™ positions of the Boxs feft vight, top
and bottom boundarics respectively. In order to precizely define these paranmeters, it

is necessary to first make the following supporting definitions.

e The expression { € » means that terminal £ is ouc of the terminals connected

by net n.

o 7(v) is a set of relative position assignments, A(r;). for all the nodes ¢y in the

subtree rooted at node o,

o Sis the set of nodes in the slicing tree whose relative positions have already be

assigned.

o C(S) is the set of all possible arrangements w(/7) which contaimn the arrangement
defined for the nodes in S as a subsct. Here If represents the root of the whole

slicing tree.
The minimum bounding box parameters 1(n) and r(n) are defined as follows:

n) = max min (!
[(n) ,,’Jg,-‘(‘;?) min (L,)

: = mi ax (!
r(n) min, max (1, m)

v re z(t, w) is the X position of terminal [in arrangement 7. Described informally,
[(n) is the rightmost position possible for the leftmost of #'s terminals, given the
assignments in S. Similarly, r(n) is the leftmost position of the rightmost of n's termi-

nals, given the assignments in S. The definitions of t(n) and b(n) are similar to that

47

of r(u) and I{(n), respectively, except that they are based on the vertical position of
the terminals,

To caleulate the initial bonnding boxes of each net, as well as to update them
during the branch and hound process, two other parameters need to be computed.
‘They are wmin() and gmin(). Before defining these parameters, we need the following

defimtions:

o d,(»,1,7) is the X distance from the left side of v's rectangle to terminal { in

the floorplan defined by the arrangement =

o d,(v,1,m) is the y distance from the top side of v's rectangle to terminal ¢ in

the floorplan defined by the arrangement 7.
e P(v)is the set of all possible arrangements for the subtree rooted at v.
xmin() and ymin() are defined as follows:

emin(v,n) = min max dz(v,l, 7
(’) me (V) tenAlev .T(')

ymin{v,n) = min max d,(v,t,7
Y ()) reP(v) tenAtey y(s by)

In other words, #min(v,n) is the shortest possible distance from the left side of v's
rectangle to the rightmost terminal of n that is inside v’s rectangle, over all possible
arrangements of the modules inside ©'s rectangle. For each arrangement n(v), there
is another arrangement 7/(v) that is 7(v) mirrored about the Y axis. Therefore, it
does not matter whether wmin is measured from the left side or the right side of v’s
rectangle, the values will be always the same.

48

The value of vmin() is determined similarly, except that the distance is measured
vertically from the bottom or top of v's rectangle.

As can be scen from the above discussion, the values of xmin() and ymin() for
cach node in the slicing tree are independent of the relative position ol the node.
Therefore, they can be computed before the branch and bound process.

The computation of the net minimum bounding boxes using the parameters of

xmin() and ymin() will be explained later in section 3.5,

3.3.3 Lower Bound on Wiring Demand Profile

In order to use the branch and bound algorithm to minimize the maximum height
in the wiring demand profiles of the circuit along both X and Y axis, we need Lo
compute Jower bounds on these profiles.

As explained before, the wiring demand profile is constructed by subtracting the
empty space profile from the wiring space profile. In order for the wiring demand
profile to be a lower bound, the empty space profile must represent the maximum
empty space available for wiring, while the wiring space profile must be the minimum
space required for wiring. Thus, the problem of computing a lower hound on wiring,
demand profile is transformed into the problems of computing an upper bhound on
empty space profile, and of computing a lower bound on the wiring space profile. We
will discuss cach problem in the following paragraphs. For the sake of simplicity, we

will only discuss the case of profiles along the X axis. The case of the profiles along

49

Y axis is dealt with ina similar way.

‘The computation of the upper bounds on the empty space profiles in a slicing tree
is done in a bottom-up manncer. Since we know the exact dimensions of a leaf node’s
rectangle and the dimensions of the module assigned to that node, it is straightforward
to compute the empty space profile of a leaf node.

AL cach internal node v, it is assumed that the upper bound of the empty space
profiles of its children is known. If the node has a horizontal slice, we just add the
two empty space profiles of the children together to get an upper bound of empty
space profile of the node. If the node has a vertical slice, the process is a little
more complicated. Since we don’t know whether the two children will ultimately
he forward positioned or reverse positioned, we have to consider both possibilities.
First we concatenate #P(i) to the end of EP(1) lo get the empty space profile
for the forward positioned profile P (»). Next we flip EPr(v) to get the reverse
positioned profile £££,(v). Finally these two profiles arr MAXed together to give
12 P(0). Il £2P(v) and [2P(v,) are the upper bound empty space profiles of v; and v,
respectively, then [£2(v) is the upper bound empty space profile of v. Since ti: empty
space profiles for the leal nodes are computed according to the actual dimensions of
the modules and the relative position of the leal node does not affect the empty space
profile, these empty space profile are indeed the upper bound empty space profiles
for these leal nodes. Thus, it is guaranteed that I P(v) is the upper bound empty

space profile of . Figure 3.6 illustrates how the upper bound empty space profiles

N
N

& \\‘R&\ NN \

[——
Prof!: Concatenation of the two children profiles — - I
——J— l,_ Profile A
Prof2: flipp(profl) Profile B
Upper bourd profile = MAX(profl. prof2) Upper bound profile = prolA + protl
a) A node with vertical slice b) A node with a horizontal slice

Figure 3.6: Calculation of the upper bound for the empty space profile along the X
axis

are calculated. To update the the upper bound space profile during the branch and
bound process, either £ P;(v) or EP;(v) is used as the sper bound once it has heen

decided which relative position to assign to v.

The computation of a lower bound wiring space profile is similar to that for the

upperbound empty space profile. If the node » being processed is a leal node, the,

the minimmum bonnding boxes of those nets whose terminals all lie inside ©’s rectengle
are projected ornto the X axis to give the lower bound wiring space profile. For an
internal node v it is assumed that the lower bound wiring, space profile of v’s chil-
dren, vy and v,, are known and are represented by W P(w;) and W P(v,) respectively.
Suppose the node v has a vertical slice. First, we concatenate W P(v,) to the end
of WP(w) to get a the wiring space profile W Pi(v) for the case where v; and v,
arc in the forward position. Note that this wiring space profile only contains the
wiring ol those nets whose «rminals all lie inside either v)’s or v,’s rectangle. Then
we compute PW P(v), the pscudo wiring space profile of v, by projecting the min-
imum bounding boxes of those nets whose terminals all lie inside v’s rectangle but
not all inside cither vp’s or v,’s rectangle. The final forward positioned wiring space
profile, WPy (v), is obtained by adding PW P(v) and W Pi(v) together. The reverse
positioned wiring profile, W P, (v) is obtained by flipping W P;(v). Since W P(uv;)
and W P(v,) are the lower bound wiring space profiles of v; and v, respectively, and
I'W P(v}) is constructed by projecting the minimum bounding boxes of the related
nets, it is clear that WP (v) and WP, (v) are the lower bound profiles of the forward
positioned and reverse positioned w:iring spaces profile respectively The final lower
bound wiring space profile, 1" P(v) is ~onstrucved o, . *-:ng WP/(v) and W P,(v)
together. From the explanation of MIN operation, we can sec that ¥/ P(2! +- .adeed a
lower bound on wiring space profile of the node v. To update the lower boui:d wiring

space profile during the branch and bound algorithm, either W P;(v) or WP, (v) is

52

used as the lower bound, depending on the relative position assigned to e,

3.4 The Pre-processing Algorithm

Before applying the branch and bound algorithm to a slicing tree, the sheing tree
needs to be pre-processed to prepare some information needed by the branch and
bound algorithm. The following information about cach node is computed in the

pre-processing algorithm:
o L(v): A list of nets whose terminals lie both inside and outside of ©’s reciangle.

o Li(v): A list of nets whose terminals all lic inside v's rectangle but not com

pletely inside any of v’s children’s rectangles.

Initial 1(), r(), t{) and b() for cach net.

Various initial space profiles for cach node.

zmin() and ymin() for cach net at cach node.

The pre-processing algorithm traverses the slicing tree boltom-up to compute the
above information for cach node. The computation of various initial space profiles is
the same as the algorithm W DPC(v) explained in section 3.3.1. The censtruction of
the lists L(v) and L1(v) is straight forward and ther~fore, will not be discussed here.
In this section, we will discuss how the initial values of 1(), r(), t(), and h(), as well

as rmin() and ymin() are computed.

Lot us first explain the computation of zmin{). The computation of ymin() is
handled in a similar manner and will not be explained in detail.

Al any given node v, the pre-processing algorithm needs only to caleulate zman(v, n)
for nets nel(v). Suppose the node v being processed is an internal node with a verti-
cal slice. Sinee the slicing tree is processed in a bottom-up manner, it can be assumed
that mmin(v;, 1) and xmin(v.,n) are alrcady known, where vy and v, are v’s left and
right child respectively. At this point we do not know whether vy and v, will ul-
timately be forward positioned or reverse positioned, so we have to consider both
possibilities. The xmin() value for the case where v and v, are forward positioned is
determined by:

aming(v,n) = W{v) + amin(v,,n) = a

where W (w) is the width of v's rectangle. Similarly, the xmin() value for the case

where v and v, are reverse positioned is determined by
xring(v,n) = W(v,) + amin(v,n) = b

where W (v,) is the width of v,’s rectangle. The final value of amin(v, n) is determined
by taking the minimum value of aming(v,n) and amin,(v,n). The relationship
among the above equations is illustrated in Figure 3.7.

It is possible that net » has terminals lying inside either v/’s rectangle or v;’s
rectangle. but not both. Suppose n has no terminals inside v’s rectangle. In this
case, the value of @min(v,n) does not exist. Under such conditions, the value of
rmin(e.n) will take the value of amin(v,, n).

31

\7

e

‘

‘
'

b=W(V,) + xmin(Vv:,n)

|

a=W(Vi)+ XOlin(v, ,n)

xmin(v , ,n)

FFigure 3.7: Calculation ol wmin()

The valve of ymin(v,n) is determined by

ymin(v,n) = max(ymin(v,n), ynon(e.,n))

If v is a leal node, amin(v,n) and ymin(v,n) are determined divectly from the
layout of the module m(v). Two cases need to be considered to determine the value
of zmin(v,n); that is, whether the module M(v) is mirrored or not mirrored about
the Y axis. Xmin(v,n) is computed for both cases, and the minimum of the two
values is taken as the final value of zmin(v,n). The value of ymin(v,n)is calculated
similarly except that the cases considered are whether the module is mirrored about.
the X axis or not, and the distances are measured vertically.

Now let us discuss the computation of the initial I(n), r(n), t(n), and b(n). During

pre-processing, we do not know the ultimate relative position of the nodes, therefore,

we have to consider both forward and reverse relative positions for each internal node.
Suppose the node v has a vertical slice, then the bounding hox parameters of net n

arc computed by the following equations:
r(n) = min(W (o) + amin(v,,n), W(e,) 4+ amin(v,n))

l(n)=W(v)—r1r(n)
1) = max(ymin(v,,n), ymin{vy,n)hspacc0.2em)

b{n) = H{e)—1(n)

Pre-Process(v)
‘l{?.' a node in lhe slicing tree.
If{ v is an internal node) {
v = v's left child;
v, = v'’s right child;
Pre-Process(v);
Pre-Process(v,);
Construct L(v) and L1(v);
Calculate the various inilial space profiles;
For each nel njcl(v)
Calculale amin(v,n;) and ymin(v,n;)

}
Ilse /* a leaf node */
Conslruct L(v) and L1(v);
Culculate the various initial space profiles;
For cach nel njcL(v)
Calculate amin(v,n;) and ymin(v,n;)

}

refurn;

Figure 3.8: Pscudo-code of the Pre-Processing algorithm

It should be noted that. at the stage of pre-precessing, we don’t know the ultimate
position of cach node’s rectangle. Therelore, the above values are calculited with

56

respect to the tewer-oft corner of ¢'s rectangle. Onee the position of s rectapebe s
known during the branch and bound vrocess. these values are transtormed wto the
global coordinate system.

Figure 3.8 is the pseudo-code for the preprocessing algorithm. The algorithm

recursively calls itself to process cachi + oe in the sling tree in post order,

3.5 The Branch and Bound Algorithm

After the whole slicing tree has been pre-processed, the branch and hound algorithm
can be applied to the problem. In this section we discuss the algorithim in detail.
Figure 3.9 is the pseudo-code of the branch and bonnd algorithm, BandB().

Taking a queuc ol the nodes, A, in the slicing tree as its input, BandB() operates
by recursively processing the queue A, The only restriction to the order in which
the nodes appear in A is that a node must appear before any of its children. The
reason for this is that whencver BandB() picks up the next node from the head of
the queue A for processing, the parent of this node will have already been processed.
Consequently the exact position of the parent is known. To simplify the discussion.
we assume that the algorithm only optimizes the wiring demand profile along the X
axis. The way to optimize the profile along the ¥ axis is the same.

As mentioned before, the objective of BandI3() is to minimize the maximum height
of the wiring demand profile of the whole circnit; that is, the maxinnim height of

WDP(R), where R is the root of the slicing circuit. Let P orepresent the maximum

(Wl
-~

height in WDP(R). BaudB() glohally maintains two measures associated with the
wiring demand profile. The first one is Py, that is, the best value of P found so far
by BandB(). The other oneis Pp,.. the lower hound on 2 given the current relative
positions assigned to those nodes that have been already processed. The initial value
of 17, is the maxinmm height of WD Py (R), the initial wiring demand profile of
the rool of the slicing tree, computed by the pre-processing algorithm. The initial
valne of Dy can he st Lo a large value. Also maintained by BandB() is a set of
pavameters 10), r(), 1) and b() for cach net in the civeuit. The initial values of these

parameters are provided by the pre-processing algorithm.

Band3(\)
X a quene conlaining all the nodes in the slicing lree in
parcnt-first order.
Py Lower bound on wiring demand space profile.
P The best value of wiring demand profile oblained so far.
{
If X is ol emply {
iy, = nexl node in A;
Remove vy, from A:
If(vy is an intcrnal node) {
For A(v,) € {F, R} {
Update(r,):
If{ Pow < Pacst) then BandB(A)

Undo all the changes made to vy;

}
Else { /% a leaf node */
For cach possiblc relative position {
Update(v,):
If{ Prow < Pocst) then BandB())

Undo the changes made to vy;

}
Flse { /* the queue is emply /)
I Prow < P)4
Pyest = DProw:
Save the curvent sel of relalive posilion assignmand
as the best solulion found so far,

Figure 3.9: Pscudo-code of the Branch and Bound algoritim

BandB() starts from an initial state where the quene A s full, and no relative
position has been assigned to any of the nodes in the slicing tree. BandB() proceeds
from the initial state, assign.ng relative positions to the nodes in A, one node at a
time. A recursive instance of BandB() begins by removing the next node v, from
the queue A. For the present, assume that o, is an internal nede. First BandB()
assigns the relative position I to v, and updates the related information affected
by the assignment, particularly, Pow. If 1. < Phes then it is possible to get a
better solution than the best one found so far if BandB() scarches along the current
solution path. In this case, BandB() calls itself to process the remaining nodes in A
Alternatively, if Py > Ppin, then the current solution path cannat lead to a better
solution, and further searching along the solution patl is abandoned. Regardles. of
the result of comparison between £, and Py, BandB() will always backtrack up
to the current node, assign the relative position R to v, re-compute Py, and repeat
the comparisen of P, and Py Each time a backtrack is made, the changes to the

related information due to the abandoned relative position assignments are undone

59

so that these assigmmnents will have no impact on the future search.

The leal nodes are processed in a manner similar to that of an internal node.
The only difference is that BandB() tries all four possible relative positions which are
possible for a leal node: FROFU, RR and RU.

Fventnally, the quene A will be empty. At this point, every node in the slicing
tree has been assigned a relative position and Py, is no longer just a lower bound.
Instead, it is the actual maximum height of the global wiring demand space profile
in the floorplan defined by the assignments. I P < Piegr, then the current sct
of assignieents of relative positions has the best wiring space profile found so far.
Therefore, Band3() sets P equal to P, and saves the current set of assignments
as the best assignment found so {ar.

One of the most important aspects of the branch and bound algorithm is updating
the relative information cach time a relative position is assigned to a node v,. The
information which requires updating includes: the bounding box parameters of nets
whose terminal positions are affected by the assignment; the empty space profile of
vp; the wiring space and wiring demand profiles of v,; and tis r'obal wiring demand
profile of the whole circuit. In the following paragraphs w-. - .il discuss how this
information is updated.

The way to update the bounding box parameters during BandB() is slightly dif-
ferent from the way the initial values were calculated in the pre-processing algorithm.

Now. the exact position of v,’s rectangle is known, so we can use the global coordinate

60

svstem to specily the positions of the net hounding boxes. Consider a vy with its left
and right children being vy and ¢, vespectively. Suppose ¢, has a vertical slice and
is assigned a forward relative position. The minimum bounding boxes of the nets in

L(v;) are updated as follows:
r'(n) = X(v,) -+ emin(egn)

Toew (1) = max(ry(n). r'(n))
I'(n) = N(v,) + W) = emn(en)
Lew = min{loa(e), I'(n))

where X (v) is the X position of the lower-left corner of o's rectangle, and Wi(e)is
the width of v's rectangle. Similarly, the bounding boxes of the nets in L{n,) are

updated as follows:
r(n) = X(v,) 4+ W)+ amin(v.,n)

Tnew (1) = max(rou(n), r'(n))
U(n) = X(vy)+ W{v,) — amn(e. n)
lll(.‘”l = mhn’ ’,(;lvl(7")» Il('“))

Since the relative position assignment at a node with a vertical slice does not
change the Y positions of the terminals, there is no need to update t{n) and h(n).
Figure 3.10 gives an illustration of how the bounding box of a net in L0,) is updated.
If the node is assigned a reverse relative position, then the updating is similar except

61

Vy

xmin(v.,n;)
3 w(v.)
xmin(v.,n,)
Vi Vv,
f f
X(vy) r)

Figure 3.10: Updating of the minimum bounding box
that the roles of v; and v, are interchanged. In the case of a node with a horizontal

slice, b(n) and t(n) will be updated in a similar manner.

If node v, is a leal node on the slicing tree, once A(v,) has been assigned a
value, the exacl positions are known for all of the terminals on modules m(v,). As
a consequence, it is trivial to update the minimum bounding box for a net n; which
has terminals in v,. The exact position of cach terminal ¢ is simply compared with
the positions of the sides of ;s minimum bounding box, and the minimum bound
box is enlarged as required.

If a net’s minimum bounding box is expanded as a result of the above update,
the expanded sections of the bornding box are recorded and are later used to update
various space profiles and £,,.. One exception to this rule occurs when I(n;) > r(n;).

62

In this case, the minimum bounding box is assiuned to have zevo width and no changes
are made to P

Now let us discuss how the wiring demand space profiles are updated. Consider the
case where the node v, is an internal node with a vertical slice, and we are updating its
wiring demand profile along the X axis. As mentioned hefore, onee a relative position
has been assigned to vy, the dimensions of some of the minimum bounding boxes may
be expanded. All the sections of the expanded minimum bounding hoxes are recorded
and a wiring space profile is constructed from these expanded sections. We call sueh
a profile EW SP(v,). Note that the nets involved in caleulating WS P(e,) ave those
nets in L(v;) and L(v,), where v and v, are v,)’s left and right children respectively.
Assume that v, was assigned a forward relative position, in this case the new wiring

space profile is updated as follows:
W Prew(vy) = concal (W P(uvg), W P(v.)) + PW P(e,) + WS P(0,) (3.1)
The new empty space profile of v is updated by the equation
I Pr(v) = CONCAT (15 P(wy), I:P(v,)), (3.2)
and the new wiring demand profile of v is updated by
WDP, ., (v) = WP (v) — I P (0). (3.3)
Substituting equation 3.1 and 3.2 into 3.3 we get
WD Prw(v,) = CONCAT(W P(uv), W P(v,)) = CONCAT (1 P(o), I ()

+ PWP(v) + EWSP(v)

63

Sinee

concal(W P(v), WP () = concal (15 P(v), 12P(v,))

= concal(WP(w) — EP(v)), (WP(v,) = I2P(v,)))

¢
I

= concal(W DP(v;), WDIP(v.)),
equation 3.4 is equivalent Lo
WDP,w(ip) = concal(WDP(v), WDP(v,)) + PWP(v) + EWSP(v)

That is, the wiring demand profile of v,’s right child v, is concatenated to the end
of that of v,’s left child v Then the expanded wiring space and the pseudo wiring
space profiles of v, are added to the result of the concatenation to get the new wiring
demand profile. Since the ultimate purpose of updating is to update the wiring
demand profile of the root, we don’t have to update the empty space and the wiring
space profile separately. Thus, the computing time is reduced. The case where v,
was assigned a reverse relative position is handled in a similar manner except that
the roles of v; and v, are interchanged. Since the assignment of a relative position to
v, has no effect on parameters () and b() when the slice direction is vertical, there
is no need to update the various profiles along the Y axis.

Since Py is computed based on the wiring demand profile of the whole circuit,
W DP(R), this profile also needs to be updated each time a relative position is as-
signed to a node. As explained in the previous section, each node v in the slicing
tree contributes to WD P(R) with its own WDP(v). The root wiring demand pro-

64

file is then updated by substituting ©'s contribution to WDP(R), which was the
old W DP(v), with its updated wiring demand profile WHLP, . (0). The updating s

expressed by the following equation:

WDP(R) = WDP(R) = WD () + W DP(v)

Of course, some extra sections with zero height have to he appended to both the
start and the end of W DP(v) so that ©'s profile will be added to the right position
in WDP(R) where v's rectangle is placed.

Figure 3.11 is the pseudo-code of the UPDATE algorithm. For the sake of simplic
ity, only the updates to the wiring demand profiles along the X axis are explaimed.

UPDATE(v)

ExpdSec: a list of expandcd scctions of bounding borcs,

{

initially emply.

If(v is an internal node with a vertical slice) {
For each net nj in L(v) and L(v,) {
Calculate Lyew(n;) and vyen(,);
If the minimum bounding bor was crpanded
Pul the expanded seelion(s) inlo lupdSee;
}
Calculate EW S P(v) from FapdSec;
Calculate W D Ppew(v);
}
Flse iffv is a leaf nodc) {
For cach net mj in L{v) {
Culculate Lye,(n;) and re,(1,);
If the minimum bounding bor was cepanded
Pul the cxpanded scclion(s) into IirpdSee;
}
Caleulate LW S P(v);
‘alculate WD P, (v)

WDPR) =WDP(IR) = WDP,(v)+ WDE,.. ()
Iteturn;

Figure 3.11: Pscudo-code of the UPDATL algorithm

3.6 The Heuristic Algorithm

Although the branch and bound algorithm is much faster on average than exhaustive
scarch, it still requires exponential time to solve the RMP problem. Therelore, 1t is
only practical for relatively small circuits. For large circuits, we need a faster algo-
rithin that does not necessarily give the best solution, but rather gives a reasonably
good solution in a practical amount of time. In this section, we describe a heuristic
algorithnm derived from the branch and bound algorithm.

The heuristic algerithm is basically a greedy algorithm with look-ahead. The
main idea is that, as we process cach node in the slicing tree, the relative position
that will most likely lead to the best solution is assigned to the node as part of
the final solution. Tn order to take more global information into consideration, our
algorithim looks several nodes ahead while making the decision for the current node.
specifically, cach time a relative position is assigned to a node v, the next k-1 nodes
in the queue A are also taken into consideration. The branch and bound algorithm is
applied to the & nodes to produce a best solution for these nodes. Then the relative

position of v in the best solution is recorded as part of the final solution, and the k-1

66

HEURIS(v. k)
A A qucue of the nodes in the slicing tree.
M : A qucue of k nodes for the look-ahead scarch.

{

Remove the nert k nodes from XN and put them into N,
While (X is nol emply) {

BandB(\1)

Remove the first nodc v from M.

Record A(v) as part of final solulion.

Remove the nerl node vy (if any) from \:

Put vy to the end of N1,

}

Save the relative positions of the last k nodes in N1
assigned by BandB3() as part of the final solulion;

Figure 3.12: Pscudo-code of UPDATI algorithm
nodes following v are put back into the queue A, The algorithm repeats this process
to assign relative position to the next node in the A, and so on.

Figure 3.12 is the pseudo-code of the look-ahead heuristic algorithm.

We can control the number of nodes to look ahcad by adjusting the valne of A, In
fact, if k is set to the number of nodes in the whole slicing tree, then HISURIS() acts
exactly as BandB().

HEURIS() does not necessarily give the optimal solution of the problem, but it
can give a reasonably good solution in a practical amount of time. Suppose we have
a slicing tree with n nodes. As mentioned before, the complexity of BandB() for the
problem is O(23*~1). While in HEURIS(), the problem is divided into n - k 41 sub-

problems each of the complexity O(2*-). Therefore. the complexity of HEURIS()

67

Cothe problem is O(-~ £)23%=1). Since k is a constant, HEURIS() runs in linear

tioe with respect to n,

2.7 Searching Strategies

The main problem with BandB() is the searching speed. In this section we will discuss
some scarching strategies aimed at speeding up the search process.

As mentioned before, the relative positioning of nodes with a vertical slice in the
slicing tree, as well as mirroring the modules about the Y axis, has no effect on
the various space profiles along the ¥ axis. This means the optimization of wiring
demand profiles along the X and the Y axis can been done separately. This can
dramatically reduce the search time. Suppose a slicing tree with n nodes is such that
hall of the internal nodes have vertical slices and half have horizontal slices. If the
problent is solved as a whole, (that is, horizontal and vertical optimizations are done
together) the complexity of the problem would be O(2*"~!). On the other hand, if the
horizontal and vertical optimization are done separately, the problem is then divided
into two sub-problems each of the size of n/2, that is, the complexity of the problem
would be O(2 x 230/2-1),

Another way to speed up the search process is to adjust the ~rder in wi ch nodes
appear in the queue A, As mentioned before, the only restriction on the or 1s that
a parcent node must appear before any of its children. On the other hand, the order

of the nodes in A can affect the searching speed of BandB().

68

Breadth-first queue: (R, A,B,C,D,E,F.g,e, h, f,¢, a,d,b)
Depth-first queue: (R, A, C,g,e,D,h,f, B, E, c,a, F, d,b,)
Bottle-neck-first queue: (R, B, E, ¢, a,F,d, b, A, C,e, g, D, f,)

Figure 3.13: Breadth-first and depth-first queues of an example slicing tree

Typically there are two ways to arrange the nodes in the guene: breadth-fivst,
and depth-first. A breadth-first queue is constructed by putting the nodes into the
queue level by level in the slicing tree. That is, the root is the first node in the quene
followed by two of its children in left to right order, and so on. A depth-first quene
can be constructed by putting the nodes into the queunc in preorder. That is, put
the current node into the queue, then recursively process the subtree rooted at the
currents node’s left and right child respectively. Figure 3.13 gives an example shicing

tree together with it’s breadth-first queue and depth-first queune,

69

Some new ways are proposed for constructing the depth-first, queue so as to speed
up the search. As can be scen from Figure 3.13, the conventional way to construct the
gquene is 1o always put the the nodes in the subtree rooted at the current node’s left
child hefore these in the subtree root at the current node’s right child. In the example
of Figure 3,13, there is less empty space in node I3%s rectangle than in A’s rectangle.
If the order in the queuce is such that the nodes in the subtree rooted at A come
helore the nodes in the subtree rooted at B, then BandB() will always assign relative
positions Lo A's subtree first before trving to arrange B’s subtree. Since B's rectangle
contains less empty space, it is more likely that the situation Py, > Phest will occur
when BandB3() processes 13’s subtree. That is, BandB() may have to assign relative
positions to all the nodes in A’s subtrec and some of the nodes in B’s subtree before it
realizes that the current arrangement can not lead 1o a better solution. If we put those
nodes in 13's subtree before those in A’s subtree, the situation P, > Phest will occur
while BandB() is arranging the nodes in 3’s subtree. Thus BandB() will realize that
the current arrangement can not lead to a better solution before it tries to arrange
those nodes in A’s subtree and some unnecessary scarching would be saved. We call
this scarch stra‘l.cgy bottleneck-first search. The name comes from the fact that those
nodes that are likely to contain a wiring bottleneck are processed first. The queue for
bottleneck-first search is constructed in a similar way as the conventional depth-first
queue, except that those nodes with a tighter wiring demand profile are processed

before their siblings because bottlenecks are more likely exist in those nodes with a

7
77

,
i
g
i
A A !
;

7

25

L
]

i //’ '/‘
: % ’;’f// Z
i
Gt

Fewer-children-first queue: (R, B,a. b, A, D, ¢, d, C, f, E, g, ¢)

Figure 3.14: Fewer-child first queues of an example shicing tree
tighter wiring demand profile. The bottle-neck-first queuc for the example slicing tree
in Figure 3.13 is

(R, B, I c,a, ',d.b, A, Ceya, D, [, h)

In some floorplans, the slicing tree can be quite unbalanced. The lower hound 15
very loose as BandB() is processing the internel nodes at higher levels of the shicing
tree. As it searchs towards the lcaf nodgs, the lower bound gets tighter and tighter.
If we put those nodes with fewer childrén before their siblings into queue A, Band3()

would process some leafl nodes in the slicing tree carly during the scarching process

71

throngl a solntion path. Thus the lower bound becomes tighter more quickly as
BandB3() scarches throngh a solution path, and hopelully BandB3() can prunc away
many nnnecessary scarches carlier. We call such a scarch strategy the Fewer-children-
Jirst scarch. Figure 3.14 gives an example floorplan together with its slicing tree and

the fewor-children-firs! queue.

Chapter 4

Implementation and Experimental

Results

The majority of the implementation of the project consists ol three parts: the branch
and bound algorithm BandB(), the henristic algorithm Heuris(), and an interface
program Yal2edge(). The total size of the programs is about, 5000 lnes, including,
comments. The programs were developed on Sun Spare Station 2 machines running
the UNIX operating system. Most of the programs were writtenin G4

There are several reasons for choosing C4+ to implement the programs. First,
C++ provides some machine level fealures. As mentioned before, execntion time is
one of the major concerns of our algorithms. Il the machine level features provided by
C4+ are used Lo advantage, the efficiency of the programs can he greatly improved.

Secondly, C++ supports object-oriented-programming. The eluss construct in G-+

provides an encapsulation mechanisin to implement abstract data types. The imple-
mentation details of a data type can be made inaccessible to client code that uses
the type. Therefore the programs are casier to change and maintain. Finally, C4++
is one of the most popular languages used in the field of software development. Most
of the existing machines and systems have C++ compilers, thus programs writlen n
C-++ are highly portable.

The algorithims were evaluated by applying them to several benchmark circuits
provided by the Microclectronics Center of North Carolina (MCNC). The resulting
floorplans produced by the algorithms, as well as the original {loorplans, were routed
by the routing programs ol Cadence EDGE, a VLSI CAD software, to evaluate the
effectiveness of the algorithms.

The wiring space oplimization programs take two files as their input. The first one
is a.yal file written in YAL format which describes the geometry of the circuit modules
and the interconnections between these modules. Although a YAL file can describe
the floorplan of a circuit, it can not describe the slicing structure of a floorplan. The
second input file, the .tre file, gives a description of the slicing tree of the floorplan.

The output of the wiring space optimization programs is a YAL file. In addition to
the description of module geometry and interconnections of the circuit, the floorplan
of the cironiv, i.e, the position of each module, is also described in the YAL output file.
The interface program yal2edge, along with some other interface programs provided

by Cadence, translates the resulting floorplan from YAL format to EDGE format

~1
..
LN

which is used by the Cadence system to route the floorplans.

4.1 Implementation

In this section, we explain the structure of three programs BandB(), Heuris(), and
Yal2edge(). The programs BandB() and Heuris() were written in Co-, while Yal2edge()
was written in C.

The program BandB() implements the branch and bound algorithm. The program
consists of five parts: fnpul, Init, Prep, Bandb, and Yaloul. Vivst, Inpul is invoked
to read in the .yal file. After the .yal file is read in, Inil is invoked to read in the
tre file and to construct the slicing tree of the floorplan. Next [nil traverses the
slicing tree to compute the dimension of the rectangles for cach node in the shicing
tree. After that,h Prep is invoked to pre-process the slicing tree. It performs all
the functions of the preprocessing algorithm as described in the previous chapter.
Following the preprocessing, Bandb executes the hranch and bound scarch. The final
solution is recorded as the labels A(v) for cach node v in the slicing tree. Finally,
Yalout computes the position of cach module in the resulting floorplan and saves the
result in a YAL file.

The program [curis() is quite similar to the program BandB3() except that the
subroutine bandb is replaced with heuris which implements the hewristic algorithm
explained in the previous chapier.

In order to evaluate the result of the wiring space optimization algorithms, we need

75

Lo route several benchmark cirenits to compare the routed floorplan before and after
optimization. Cadence routing programs were used to route the floorplans. Before
being processed by Cadence routing programs, the circuit and floorplan data need
to be transformed from YAL formal into a format accepted by Cadence. Yal2edge
perforins this transformation.

Cadence uses its own data format, called the EDGE format, to represent the
cirenits and floorplans. We can not directly transform YAL data into EDGE format
Lecause [EDGE Tormal is not open to users. Several interface programs are provided
by Cadence 1o Tacilitate the transformation between the IDGE format and several
other standard data formats. One of these programs is IXDIFIN which transforms
1D (Klectronic Data Interchange Format) data into FDGFE data. The problem is
(that the ZDIFIN only translates the network information of the circuit described in an
DI file, and the programs for translating module geometry from EDIF into EDGE
format have not yet been implemented. Fortunately, Cadence provides a language
called SKILL to access and manipulate the EDGE data base.

Our interface program, Yal2edge, takes the YAL file as its input, and generates
two outpul files. The first one is a SKILL file which describes the module geometries
in the civcuit. The other one is an EDIEF file which describes the interconnections
between the modules. After running Yal2edge, the SKILL file is executed by Cadence
to generate the module representations, and the EDIF file is read by EDIFIN to

generate the net representations. After this, the circuit is ready for routing.

76

Benchmark | Number of modules | Number of 11(‘; \mnlmol terminals
Apte 9 10 21
Xerox 10 203 TH6
Hp 11 56 26-1
Ami33 33 89 AR0
Ami49 19 108 031

Table 4.1: The statistics of the benchmarks

4.2 Experimental Results

Five MCNC benchmarks were used to test the algorithms. The statisties of these
benchmarks are shown in table 4.1. In this scction, we will first examine the time
performance of the optimizing algorithms, then we will present the experimental
results of applying the optimization algorithms to the above benchmark circuits and
the area results of routing the floorplans both before and after optimization.

The initial floorplans of the benchmark circuits were obtained from the paper pub
lished by Onodera et al. [22]. The mirroring of the leal nodes can not be determined

from the paper, therefore, they were assigned arbitrarily.

4.2.1 Time performance of the algorithms

Table 4.% sives the cpu time used by BandI3() to optimize the floorplans of the three

smaller . ¢ ~wrks. Note that those henchmarks with the suffix “ 97 are similar to

77

‘”(ll(h_l:l'l—ulk S((n:h CPU time (s) || Benchmark | Search | CPU time (s)

D 11.8 D 38.9

Apte B 10.3 Aple.2 13 219
1'C 15.3 1C 19.8

BN 9.1 BN 10.4

D 38.9 D 159.1

Hp B 501.6 Hp.2 B 560.8
I°C 197.1 IFC 204.0

BN 24.5 BN 30.3

D 598.6 D 595.6

Xerox B 1150.8 Xerox2 B 580.1
LC 66.8 LC 53.6

BN 47.5 BN 46.1

Table 4.2: Time performance of the branch and bound algorithm
the corresponding benchmarks without the suffix except that one third of the sibling
pairs of nodes were interchanged in the “.2” version. In the table, D represents
depth-first scarch; B represents breadth-first-search; FC represents fewer-children-
first scarch; and BN represents bottleneck-first search. The user time was measured
in seconds.
From table 4.2, it can be scen that bottle-neck-first search outperforms the other

three scarching strategies in all cases. In some cases such as hp and xerox, the improve-

78

Benchmark | k=11 k=1 | k=N k=16

Apte 1.9 5.5 15.5
Hp 27 1 9.8 1 39.9
Xerox 4.8 | 4.5] 43

Ami33 12.0 | 52.4 | 25011 9116.0

ami19 48.0 § 2117 Y OT7H.T | 13524.0

Table 4.3: Time performance of the heuristic algorithm
ments arc quite substantial. In most cases, the fewer-child-first scarch outperforms
depth-first and breadth-first scarch. There is no clear evidence as to which is better
between depth-first scarch and breadth-first scarch. BandB() was also applied to
the two larger benchmarks, amid3 and ami49, but the program failed to finish after
several hours.

Table 4.3 gives the time performance of the heuristic algorithm on the henchmark
circuits with various values of k, the number of nodes to look ahead. As can be seen
from the table, the search time increases dramatically with the value of & Another
interesting thing about the table is that when k=6, lleuris() spent more Liime on
the small circuits such as Apte than BandB3() did. The rcason for this is that as k
approaches n, the number of nodes in the slicing tree, the heuristic algorithm performs
more and more like a branch and bound algorithm. Since the heuristic algorithin has
to spend some time on the overhead, it can he even slower than the branch and bound

algorithm. As the size of the circuit increases, the heuristic algorithm will be much

79

faster than the branch and bound algorithm.

4.2.2 Routing Results of the Floorplans

Both the initial floorplans and the floorplans after wiring space optimization were
routed by the Cadence routing program. Before discussing the results of the routing,
let. us first examine the wiring space estimates of the benchmark circuits before and
after optintzation.

Table 4.4 gives the wiring space estimates before and after wiring space optimiza-
tion. In the table, P (X/Y) and P, (X/Y) represent the maximum height of the
wiring demand space profile along the X/Y axis before and after optimization, re-
spectively. The negative value means that there is more empty space in the floorplan
ihan the minimum wiring space required. Let’s take Apte-2 as an example. The
table shows that P2, (X) is 148, that means the initial floorplan must be expanded
vertically at least by the amount of 148 microns te make enough spacce for the wiring.
On the other hand, P, (X) = —92 means thal there is no need to expand the op-
timized floorplan vertically because there is enough empty space in the floorplan to
accommodate the wiring. In fact, the narrowest margin between the empty space and
the required wiring space over the entire horizontal extent of the floorplan is 92. Of
course, this conclusion is based on the assumption that the wiring space estimate is
L00% aceurate. In reality, the floorplan will always need te be expanded to accommo-

date wiring. First, our wiring space estimate only gives the minimum space required

Benchmark | P (X)) | Fope(X) 1’,,,,,()) I’,,())
Apte 44 -92 150 | l")l)
Apte2 148 -92 198 150
Hp 194 122 162 96
HP_2 194 122 162 96
Xerox 228 1841 391 358
Xerox.2 300 1841 394 358
Ami33 99 -5l 83 5
Ami49 440 112 28 -H20

Table 4.4: The optimization results on the wiring space estimate
for wiring and the actual wiring space is in fact larger than estimated, and secondly,
some of the empty space can not be used for wiring because of the mismatceh between
the empty space and the wiring space distributions. Therefore it is impossible for the
floorplan to get smaller after routing.

As can be seen [rom table 4.4, the wiring dei. and profiles have been improved by
the optimizing algorithms in all cases. The heuristic algorithm was also applied to
the three smailer benchmarks Apte, Hp, and Xerox, with several values of k- In most
cases, Lthe optimal solution was achicved by the heuristic algorithm.

Table 4.5 gives the estimated arcas for the benchmark cirenits. The total area of
a circuit is computed as follow: The width of the cireuit is computed by adding the

width of the unrouted floorplan and the maximum height of the corresponding wiring

8]

~ Total Arca Wiring+Emply arca
Beuchmark hefore After Improv. || Before After Improv.
w Aple 51190520 | 50832440 | 0.7% 4628892 | 4270812 | 7.74%
Apte 2 522700696 | 50832440 | 2.75% 5709068 | 4270812 25%
Ip 10630100 | 10158272 | 4.46% 1799516 | 1327688 26%
1Hp2 10630100 | 10158272 1 4.46% 1799516 | 1327688 26%
Xerox 25168048 | 24769164 | 1.59% || 6120728 | 5118868 | 6.86%
Nerox.2 25471024 | 24769164 | 2.76% 6120728 | 5118868 11%
Amiss 1829250 | 1591352 13% 672801 434903 45%
Amit9 50109768 | 45577000 | 9.05% || 14664344 | 10131576 31%

Table -1.5: Lstimated areas before and after optimization
demand profile along the Y axis. The height of the circuit is computed by adding the
height of the unrouted floorplan and the maximum height of the corresponding wiring
demand profile along the X axis. The estimated wiring + empty area is computed
by subtracting the total module area from the total estimated chip area.

In order to evaluate the ultimate effect of the algorithms on the floorplans, we
need to compare the routed floorplans before and after the optimization. Table 4.6
gives some statistics for the routed floorplans.

In the table, the total chip area and the empty+wiring area, before and after wiring
space optimization. ave given for cach floorplan. The percentage of iinprovements were

calculated for cach kind of area. Although the improvement over the total chip area

(o9}
[QY]

Total Arca

16333670

Benchmark before After Improv. Before Il After
Apte 51891508 | 51092072 | 1.51% 5325);8({ -I:')ii()ili‘H
Apte2 51088336 | 51092072 | 5.51% 7526708 | 4530111
Hp 11516940 | 11175368 | 2.96% 2636356 | 231528
Hp_-2 11559338 | 11175868 | 3.32% 2728751 | 2305281
Xerox 26796505 | 26511994 | 1.06% TT16209 | 7161698
Xerox-2 20870244 | 26511994 | 11.24% || 10519948 | TIG1GHS
Am33 2390016 | 2273383 | 4.88% 1233567 | 1116939
Ami49 51779094 | 50543038 | 2.39%

15097614

Wiring+Empty arca

lmprov.

15.0%

39.8%

12.7%

11.5%

7.55%

31.92%

9.51%

7.56%

Table 4.6: Actual arcas of the routed floorplans before and after optimization

is not very significant, the improvement over the wiring arca plus emply arca, which

ranges from 7.55% up to 39.8% is quite significant.

By comparing tables 4.5 and 4.6 we can sce that the estimated arca is consistent

with the actual area. In some cases, such as APTE, the estimated arca is close 1o

the actual area. Buti in some other cases, such as Amid3, the difference hetween

the estimated area and the actual area is considerable. There are several reasons for

the errors in the estimate. First, our estimate only gives the minimam arca of the

floornlan. While estimating wiring space, for cach net we assumed that there was
g g 5] .

only one horizontal wire and one vertical wire covering the horizontal and the vertical

extent of the net’s minimum bounding box. In reality, there can be several wires

83

covering a certain interval of a bounding box. The second reason is that our estimate
of cinpty and wiring space is one dimensional. That is, all the empty spaces and
the wiring spaces are projected on to the X/Y axis to construct the corresponding
profiles. Even though the empty space profile and the wiring space profile may match
perfectly, this does not necessarily mean that all the empty space can be used for

W.Il'ill roo L orea l Aere Wi always sorne space elt unused.
g In reality, (] Il alway pace loft unused

Chapter 5

Conclusions and Future Work

Most existing algorithms that take wiring into consideration during foorplanning, take
wire length as a measure for wiring. In this thesis, we presented two closely related
algorithms aimed at minimizing wiring space in a cireuit. One of themis the hranch
and bound algorithm which gives the optimal solution to the probleni The other is
a heuristic algorithm derived from the branch and bound algovithm. ‘The hearistic
algorithm is not guaranteed to gives the optimal solution to the problem, hut i can
give a reasonably good solution in a practical amount of time for large cirenits,

The experiment of applying the above algorithm to some benchmark circuits shows
that the algorithms are effective. In all cases. the total chip arca Tor ronted floor-
plan was improved. An interesting phenomenon worth noting is that the heuristie
algorithm was also applied to the small benchmark cirenits; in most cases oplimmal

solutions were obtained.

Some scarching strategios aimed at speeding up the search process weve alsontro
duced, and experiments show that they are effective, The most impressive scarching,
strategy is the bottle-neck-first search which reduced the searching time by up to a0
compared with ordinary depth-first scarch.

Also introduced in this thesis is a new method of estimating wiring space. Most ol
the existing wiring space estimation methods cither estimate wire length or estimate
wiring space based on statistics or previous design experience, The new method
presented in this thesis gives some information about the distribution of wiring space
along the X and ¥ axis. Therefore. it can give more guidance to the Hoorplanning,
process.

Although our wiring space estimating method ¢ v e some information about
wiring space distribution, it is onc dimension oriented. 14 car only give the Jdistribu
tion of empty spacc and wiring space along the X and Y axis. Fven if the wiring space
profile matches the empty space profile closely, it does not necessarily mean that the
actual wiring space distribution will match the empty space distribution. The reason
for this is that the space profiles describe space distribution in one dimension, while
in reality the space is distributed in two dimensions. One way Lo solve this problem
is to generalize our space estimating method to two dimensions so that it can give
a more accurate estimate. Another way to solve the problem is Lo estimate channel
density. In this way we can get a more accurate estimate of wiring space distribution.

Another possible application of our new algorithin inchides using it in standard

86

cell Tavonts, Sinee the colls are arrauged in rows and the space between rows is used
as chamels for wiring, we can maintain a space profile for cach channel: therefore,
the two dimensional problem is ehirminated.

Another possibility for future work is to generalize our algorithm so that, in ad-
dition to Oipping the modules and swapping sibling rectangles, it can also take the

orientation of the modules and the direction of slices into consideration. In doing this

the total chip area could be farther reduced.

oD
-1

Bibliography

[1] D. P. Lapotin and S. W. Director. “Mason: A Giobal Floor planning Approach
for VLST Design™ in IEEE Trans. on CAD ol 1Cs and Systems, Vol CADH. No.

4, pp. 477-489, 1980.

(2] W. Dutton and L. Sha, “An Analytical Algorithm for Placement of Arbitrary
Sized Rectangular Blocks™ in Proc. of HIEE 22nd Design Automaltion Confer-

ence, pp. 602-608, 1985.

[3] C.L. LiuandD. F. Wong, “A New Algorithm for IFloorplanning Design™ in Proc.

of IEEL 23rd Design Automation Conference, pp. 101-105, 1956

[4] P.G. Paulin and J.P.Knight, “Force-Directed Floorplanuing in Automatic Data
Path Synthesis” in Proc. of ACM/IEEL 24th Design Automation Conference,

pp- 195-202, 1987.

[5] A. A. Azepienicc, “Integrated Placement/Routing in Shiced Layonts™ i Proc. of

23rd Desgin Automation Conlerence, pp. 300-307, 1986,

88

1]

[9]

0]

[]

M.AL B Jackson and E. S, Kuby, # Performance-Driven Placainent of Cell Based
77 0 Proc. of ACM/HERE 26th Design Automation Conference, pp. 370-375,

1084,

A. Herrigel and W Fichtner, “An Analytical Optimization Technique for Place-
ment of Macro-Cells™ in Proc. of ACM/IEEE 26th Design Automation Confer-

cnee, pp. 376- 381, 1989,

(. Zimsmerman, “A New Arca and Shape Function Estimation Technique for
VLSI Layonts” in Proc. of ACM/IEEL 25th Design Automation Conference,

pp.60-65, 1983,

W. M. Dai and E. §.kuh, “Simutaneous Floor Planning and Global Routing for

Hierarchical Building Block Layout™ in IEEE Trans. on CAD, Vol. CAD-6, No.

hH, Sept. 1987.

1. J. Kurdahi and A. C.Parker, “PLEST: A Program for Arca Estimation for
VLSE Integrated Circuits™ in Proc. of IEEL Intl. Conference on Computer Aided

Design, pp. 167-473, 1986.

M. Pedram and B. Preas “Accurate Prediction of Physical Design Characteristic
for Random Logic™ in Proc. of IEEE Intl. Conference on Computer Design, pp.

100-108. 1938.

[12]

[13]

(1]

[17]

[18]

W, M. Dai. B. Escherman. and . S. uh. “Hicravchical Placement and Floor
planning in BEAR™ in IEEE Trans. on Computer- Aided Design. Vol 80 Noo 12

1989.

A. AL Bl Gamal, “Two-Dimensional Stochastic Moder i vrconnection in Mas
ter Slice Integrs d Cireuit”™ in IEEE Trans. w07 it and System Design. Vol.

CAS-28, No. 2, 19381,

A. A. Gamal Bl and 7. A. Aved, *A Stochastie Model for Interconnection in
Custom Integrated Civenits™ in IBEE Trans. on Civenit and Systeon, Vol CAS

28, No. 9, 1931.

D. Jepsen and D. Gelatt. “Macro Placement by Monte Carlo Anncaling™ in Proc.

of IEEE Intl. Conference on Computer Design, pp. 495 498, 1983.

S. Kirkpatrick, C. D. Gelatt, and M. P. Veechi, “Optimization by Simulated

Annealing® in Sicence, Vol. 220, No. 4598, pp. 671-680, 1983

B. Lokananthan and E. Kinnen, “Performance Optimized Floorplanning bu
Graph Planarization” in Proc. of 26th Design Antomation Conlerence, pp. | 16
g)

121, 1989.

S. Prasitjutrakul and W. J. Kubitz, “Path-Delay Constrained Floorplanning: A
Mathematical Programming Approach for Initial Placement” in Proc. of 26Lh

Design Automation Conference . 364-369, 1989.

90

t

9]

[20]

[21)

(' Sechen end AL Sanjiovanni-Vincentelli, “The TimberWolf Placement and
Rontig Package” in HEEE Journal of Solid State Circuits, Vol se-20. No. 20.

pp. H10 522, 1985,
L. Stockmeyer, “Optimal Orientation of Cells in Slicing Floorplan Designs™ in
Information and Control, Vol 59, pp. 91-101, T983.

A I Newlon and AL L. Sangiovauni-Vincentell, “Computer-Aided Design for

VESE Cirenits™ in TEEE COmputer, Vol 19, No. 4, pp. 38-63, 1986.

1. Onodera. Y. Taniguchi, and X, Tamaru, “Branch-and-hound Placement for
Building Block Layout”™ in Proc. of 28th Design Automation Conference, pp.

433139, 1991,

L. Thomas and R. Miller, *A Robust Framework for Hicrarchical Floorplanning
with Integrated Global Wiring™ in Proc. of TEEL Intl. Conference on Computer

Aided Design, pp. 148-151, 1990.

A. A. Szepienicc and R.Otten, “The genealogical approach to the latout problem”

in Proc. 17th Design Automation Conference, pp. 535-542, 1980.

T. Ohtsuki, N. Suzivama, and 1. Kawanishi, “An optimization technique for

integrated circuit layout design™ in Proc. 1CCST-Kkyoto, 1970, pp.67-68.

91

6] S. Kernighan and 5. Lin, “An Eticient Hewristic Procedure for Partitioning,
Graphs™ in Bell Systems Tehnical Journal Vol 19 Noo 20 pp. 201 307, Feb,

1970.

[27] S. Kirkpatric, C. D. Gelatt and M. 1. Veechi. =Optimization by Simudated An

nealing” in Science. Vol. 220, No. 1508, pp. GT1-6800 13 Nay TOSS.

[28] W. M. Dai. T. Asano. and 1S Kuh. “Routing Region Definition and Ordering
Seheme for Building:Block Layout™ in HEEE Trans, Compnter Aided Design,

Vol. CAD-1, No. 3, pp. 189-197. July 1985

[29] D. W. Hanson “Interconnection Analysis™ in Physical Design Antomation of
VLSI Svsters, Chapter 2, pp. 31-61. Benjamin Cumimings, Mento Park, A,

1988.

92

