—_ o U VUV N

. o1
e -
. 4

.Biblio heque natlonate

Nafional Library’
: . du C nada ‘

of Canada

Canadlan Theses Servnce

)

_ dttawa. Canada ‘. o
_K1A ON4 -
AIAS

\\“

~ .

NOTICE L

. The quality of this. microfiche as“’heavﬂy dependent upon the

_quality of the orjginal thesis subm»tted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-
tion possubte N\

Lo :
.

Alf pages are missing, contact the. umvers&ty wmch granted the
degree. :

Some ‘pages may have indistinct print especially if the originaf

pages were typed with a poor typewriter ribbon or if the univer-
sity sent us an inferior photocopy.

Previously copyrighted materials (Journal amcles pubhshed
tests etc) are not filmed. :

= Reproduction in full or in part of this film is Qoverned by the

Canadian Copyright Act, R.S.C. 1970, ¢."C-30. Please redd

- the authorization forms which accompany this thesis.

N

_THIS DISSERTATION
HAS BEEN MICROFILMED
~ EXACTLY AS RECEVED

NL 339 (1 86/01) .

_site qui a eonferé le grade’

. Serwces des.théses canadiennes

N

H

THESES CANADIENNES -

N . o

| AVIS .
La qualité de cette microfiche dépend grandement de |a qualité -
- de la these soumise au microfilmage. Nous avons tout fait pour
assurer une quahté supéneure de reproduchon poo

S'il manque des pages, veuillez communiquer avec Tuniver-

?

La qualité d'impression de certaines pages peut laisser &
désirer, surtout si les pages originales ont été dactylographiées’
4 l'aide d'un ruban usé ou si 'université nous a talt parvemr
une photocopie de quallté inférieur®.

4 - ) . . . S

“Les documents-qui tont déja l'objet 'd'un droit d'auteur (articles .
de revue, examens p'ubliés, etc.) né sont pas mi‘crof,ilmés.

ka reproductibn, méme partielie; de ce, mlcrofllm est soumise
ala Loi canadienne #8r le droit d'auteur, SRC 1970, c. C-30.
Veuullez prendre Connatssance des formules d'autorisation qui

_ accompagnent cette thése

~

LA THESE A ETE
- MICROFILMEE TELLE QUE
NOUS L'AVONS REGUE

Canadi



Bibliotheque nationale .
.du Canada .

" National Library
> ot Canada ‘

Canadian Theses Division

6‘\ © Ottawa; Canada S

Divisioh des theses canadiennes | . -

K1A ON4 ‘ ,
PERMISSION TO MICROFILM — AUTORISATION DE MICROFILMER
. ) ‘ . ' .‘ ) : R N
. . . ~ -~ ‘ - . [,
e Please print or type — Ecrire en lettres moulees ou dactylographier ¥
5 . ;
Fuli Name of Adthor — Nom complet de I'auteur ’ N
- e ,. L B - . . - ’
i P 7l e / ' ! N A /: (‘ CT e /'/"vb : - . . R 3
B w s ‘ - - : : ] N i ]
Date of Birtti — Date de naissance Country of Birth — Lieu de naissance - ‘ \ )
N+ L e T PV ‘ " Coa e N ' o
Lo + . - . ¢ \\, o7 ( L
Permanent Address,— Résndei’fe fixe - S : i
o 1 !"J ,.;‘ .' o ‘r_a ' N st L0 » /‘)
i R A L e P . .
/ v . ' . -
Title of Thesis — Titre de la these ’
B ! ’ ’ E
23 il ‘ ! i A
o - Y N ' * - z A - N
CE Sy e
N v ) '
: }/< .
. N B "‘ . '\&
‘University — Universite . /
l]
Dyl T e L, T
!

. Degree for which thests was presented —

[N R -
A

Grade pour lequel cette these fut prg’asemée

s

Year this degree conferred — Année d obtention de ce grade

N : .
. N . ",
\

Name of Supervisor — Nom du directeur de these

oy :'f 4 .
, R < N
: j , - Yoo ; . :
/ e

Perrpiséloniis hereby granted to the NATIONAL LIBRARY OF
CANADA to-‘-'mlcrofilm»this thesis and to lend or sell copies of
.the film.. ' ) " . . .

"\ The author reserves other publication rights. and neither the;
thesis nor extensive éxtracts from it. may be printed or other:
. ‘wise reproduced without the author's written permission.

’

Ve
Yoo~

 ,/,‘ L'autorisation est, par la présente, accordee a la BIBLIOTHE-
QUE NATIONALE DU CANADA de microfilmer cette these et de
préter ou de vendre des exemplaires du film.

. L'auteur se réserve les autres droits de publication: ni la these
Al de longs extraits de celle-ci ne doivent étre imprimes - Qu
autrement reproduits sans "autorisation écrite de |auteur. ’

R .,
A }/ . [

Date -

Signature’ .




THE UNIVERSITY OF ALBERTA

SEISMIC TOMOGRAPHY'OF ng LITHQS?HEﬁE ,

1

by

.(:::>~STEPHEN KAM-LING CHIU - R

\ N
S THESIS |
\\7 SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
LOIN PARTIAL FULFILMENT OF THE REQUIREMENTS' Fé@ THE DEGREE
- OF DOCTOR OF PHILOSOPHY‘
C IN

* GEOPHYSICS

DEPARTMENT OF PHYSICS

EDMONTON, ALBERTA

: FALL 1985 o,



H;ﬂ Qm?a[ S oclety
6 Carlton House(rmawl.ono(on S”WIy 546
]'eLephmw 01-839 5501 ' ‘]—;(er t)178’76

t

P1276/RGT/VWC

31st May 1985

/

AIRMAIL L J

Mr .S. Chiu
Phy51cs Department
University of Alberta
"EDMONTON

Alberta

Canada

T6G 2J1 -

Dear Sir,

Thank you for your letter dated 18th May 1985 requestlng
permission to reproduce material from the Royal Society's
Philosophical Transactions.: The Society w1ll have no objectlonA
provided: -

1. You have obtained the author's permission’

.2. A reference is made to the.original'publication{

Yours faithfully,

' R.G.THEQGBALD 5
,Publlcatlons Sales Officer

N



| CANADIAN. SUPERIOR OIL LTD. ;
Y | 1985 03 29

Physics Department
University of Alberta

Edmonton, Alberta ’_ T o ‘ .
T6G 2J1° : : : . . SR q
Attention: Mr. Stephen Chiu . . . ‘ , | )

Dear Mr. Chiu:/
‘ Subject: The Western Canada Sedimentary Basin U
S . - Permission to use Fig. 2 R -

A

)

o . Thank you for your letter concerning the subject request.

I personally have no objections, but it is my understanding that you
shall have to obtain official permission from the Royal Society. The,
“publication in which the subject paper is contained is entitled The
Evolution of Sedimentary Basins. Tc quote from the fly leaf,."'request
for the copying or reprinting of .any article for any. purpose should be
sent to the Royal Society". Their address is: Royal Society, 6
Carlton House Terrace, London SW1YSAG.. : :

Sincerely,

 Three Calgéry Place, 355 Fourth. Avenue SW. Calgary, Alberta T2P 0J1 -Telephone: (403) 267-4110°



T R . Physxcs Department
' ' University of Alberta:
S ©_ Edmonton, Alberta
co -' IR July 2, 1985
- , . - ' | . ’,'\ ‘ .': ‘ o
Dear C. Macrldes S - o .'? ‘f.g,'./.

-

, 1 would like to use two .of your dlagrams .in - my Ph. D thesis.
Can I have your written permission to use Figures 32 and 35 in
your . Master's thesis- 'Interpretat1on of seismic 'reiraction
‘proflles it southern Saskatchewan”, Un1ver51ty of Alberta. '

<

. 5
E)

T greap}yvapprecxate‘your‘assistance,a

-'Slncerely, '

. vn 7‘,1/1/\1.\_‘ (/\‘w
§tephen Chiu

&

/(’f'é /‘7 1) /b€ M,,j /)p?u(rSJ/o"l
E s@fzw Cli o sty Fues
2 0“4/ 35 OF Wﬁ /L/fc }éos/g /"M’

e

JS/aj 6 /t/q(,z-,«;/éj




T~ ,

Physics.Department
University of Alberta

e T Edmonton, Alberta
c \ Canada
‘ . . March 19, 1985
,‘. ' - ’
Earth Phy51cs Branch .
Ottawa, Ont. - ) ®

K1A 0Y3

Dear Dr. A. G. Green, |
I would like to use two.of your d1agrams in my Ph.D thesis.

Can I have your written permission to use the figure 4 and 5 in

your paper- "Evolution of the Churchill Province and Western

margin of the Superior Province in Canada 'and the North- Central-

Un1ted States , Tectonophys1cs, 1985 (1n press)

I greatly apprec1ate your ass1stance in this matter.
SincereLy, i
e N R '_J/’J}«Ai"r\' Cliru

Stephen Chiu




' o

o Co - Physics Department .
C University of Alberta :
oo ) Edmonton, Alberta
‘ ; Canada - _
) T6G 2J1 o
. , " March 19, 1985
Earth Physics Branch ' —_— i
Ottawa, Ont. e o _ .
K1A 0Y3 . ' . N g ,

Dear Dr. P. A. Camfield, ®

I would like to use one'sf. your diagram im my Ph.D thesis. .l
Can 1 ‘have your wFitten .permigsion. to-use the figure 2 in your. s
paper- "A possible Proterozoic-plate boundary in North America”, ooy
Can. J. Earth Sci. 14, 1977. : . .

I gréa;ly appreciate yourféssistance in this matter. ‘ M/>
: . : 2 -

»

~

Sincerely,

) : “ | ﬂ!h /"/‘./n Ch o |

I8 ) e Stephen Chiu
~ . N o .
. . .
- »
4
& -~
- - ! . : .
y"\,'/_," 27 :
1
s . .
i /Oﬂ (4w
4
7 ; ! // - / //
(¥ A aprre P ’ g 7 a0l ’/ e //, y
m
o 4 / .
; . ] frr v /
/T //44,'4: vy 4 A 2 "%4-(7’J/»~.1’ » ! S et e
~ : v ) N
v
. - ’ . ’ ! / v 7 " !
. 7 7 .
; Lz A, S / %,, /bﬂL,_V g 201 T Vi < » / /,1 ‘ot
) // ,‘ /
. - -~ : i s
Apri  at 70 L tev o A iued  aeTdtt Sen ST T ‘i (oo F of LTT
/ / ! N o
, LA
o : ,
/ K o, r '/,"'}‘ Yz
g - ’ —/‘ P
7 ///4 ye g //I ! TR A
;7 / o
/ A A e ) f// }/ 2L
‘7 i -~
_ “2iu Sl roy
-



THE UNIVERSITY OF ALBERTA

RELEASE FORM

_NAME OF AUTHOR ' STEPHEN KAM-LING CHIU
. TITLE OF THESIS 'szxsmc TOMOGRAPHY OF THE LITHOSPHERE

DEGREE FOR WHICH THES1IS WAS PRESENTED DOCTOR OF PHILOSOPHY

YEAR THIS DEGREE GRANTED FALL 1985 |
Permlssxon ‘is hereby granted to THE UNIVERSITY‘ OF
ALBERTA LIBRARY to reproduce single cepies of this
thesis and to lend or sell such copies for private,
scholarly or scientific research purposes only
The author reserves other publication rlghts, and
neither the 'thesis nor extensive extracts from it may

be printed or otherwise reproduced without the author's

L

(SIGNED) . Sf‘f/‘l"' : C/“M ceee

PERMANENT ADDRESS:

written permission. -

DATED }“/7819 5



0\

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

~

The undersigned certify that they have read, and
recommend to the Faculty of Graduéte Studies and Research,
for acceptance, a thesis entitled SEISMIC TOMOGRAPHY OF THE

LITHOSPHERE submitted by STEPHEN KAM-LING CHIU in partial

fulfilment of the requirements for the degree of DOCTOR OF

&R Koot

Supervisor ,

DHILOSOPHY in GEOPHYSICS.

External Examiner



!

ABSTRACT

A tomographic method has been developed to obtain
simultaﬁeously body wave velocities . and three-dimensional
structure of interfaces from seismic refraction or/and
reflection data. The 'medium consists of layers with .
piecewise = continuous arbitrary three-dimensional curved
interfaces‘separating homogeneous material w%th different
elastic properties, The interface is defined by a polynomial
surféce. | |

The elastic waves are assumed to be refracted or
reflected at curved interfaces in which the ray paths
satisfy Snell's law. The ray ﬁracing for each
source-receiver pair is determined by solving a system of
non-linear equatiohs. This method of three-dimensional ray
tracing is fast, accurate, and efficipnt in computing a
large group of seismic rays including'convérted phases and
multiples. , i

A damped least—sqﬁares inversion scheﬁe is formulated
to reconstruct the interval velocity and three-dimensional
structure of the interface by minimizing the difference
betwéen the observations and -computed travél times. The
results from synthetic models indicate that the solutions
conQerge quickly to the true model. In addition, it has been
found to give rapid conbeégende even in the case of complex
faulted models using noisy data. Typically, thefe are three

to six iterations.

iv



A Spatial Se;smic Ref;action Recordihg method (S*R*)
was suggested by E. R. Kanasewich as a means of delineatifg
the three-dimensional | strucéure of any lithospheric
interface sﬁch as the Moho discontinuity. The'S‘g’ produces
'a superabundance of common ray iﬁtersections at the target
horizon. In this thesis the tomographic 'method .has been
developed to permi% reliable imaging of three-dimensional
structures with elastic wave data from spatial seismic
refraction recordinéﬁ

‘A crustal model of a portion of Ehe Williston Basin in
sohth-centrai Saskatchewan was obtained by seismic
tomography; It indicates sighificént faultin? in the crust

and several normally faulted blocks at the Moho

discontinuity. The faults are aiso ‘associated with linear

1

1

aeromagnetic -anomalies. The area is notable for its thic
crust, local seismicity, and a linear conductivity anoﬁaly.

Furthermore, the seismic tomographic method was applied.
to a Vibroseis seismic sectioﬁ‘obtained in 1984 on Vancouver
Island as a part of PROJECT. LITHOPROBE. It jhas been
demonsfrated that this method 1is pa;ticularlyv useful fof
imaging | the three-dimensional subsurface of subducting
plates by taking advantage of crooked lines in a nominally

two-dimensional seismic reflection survey.

\ !
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(a) Pr1nc1pal phy51ograph1c divisions in
Western Canada and the study area
(rectangle). (b) The Wéstern Canada
sedimentary basin. Total preserved
thickness of Phanerozoic¢ rocks. Contours
are in Kilometers.” (from Porter et al.,

Page.
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1982, w1th permlsslon)........,........;....Y(...;.ZB

Complled aeromaqnet1c map for Manitoba

- and Saskatchewan in Canada and parts of

North and South Dakota, Montana and
Wyoming in the United States. Dotted
lines show the important tectonic
boundaries of the geological units. (from

1

Grecn, et al., 1985, with perm1551on) .........)....32 e

&

Compiled Bouguer gravity anomaly map .for

. Manitoba and Saskatchewan in Canada and

parts of North and South Dakota, Montana~

- and Wyomlng in the United States.

Tectonic boundaries are the same as shown :
in Figure 3.2, (from Green et al., 1985,

with permlssxon)_.............................Q.....34ki&
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Location of the conductive body called
. the North American Central Plains
anomaly, shown by the shaded strip. (from

+

~Camfield et al., 1977, with perm1551on) veevsesesnaadd
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Tectonic map of the study area show1ng

the locations of the shots and receivers
used for this study' cc - Churchlll

craton, CLZ - Cree Lake zone, FF-SL - @
Flin Elon-Snow Lake belt, FRB - Fox River
belt, GL - Glennie Lake domain, KG -
Kisseynew belt, LR-LL - La Ronge<-Lynn

Lake Belt, R-SI - Reindeer-South Indian
Lake belt, SC - Superior. craton, TF -
Thompson boundary fault, TFF - Tabbernor
fault/fold zone, TNB - Thompson belt, W-C

-~ Wathaman-Chipaweyan batholith, WC -

_wYomlng craton. (from .Green, Chiu and
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3.6 A spatial seismic refraction recording
: array to obtain a three-dimensional
‘structure .on the Moho discontinuity. The
triangle of receivers has dimensjons of
350 km and a receiver spacing of 2.5 km.
. The lines are surface projections of .rays
traversing below the Moho. Each source is
recorded by all the receivers. I 10
' . W Vo L
3.7 . A spatial seismic refraction recording
array to obtain a three-dimensional
structure of intermediate crustal
interfaces. T lines are surface
" projections  of the head waves over v
one-third of the array shown in Figure

306. .l;.I..'...l.....l‘.l.'..!..‘......lI..O,.'.D.l.OI41

~

3.8 .Compiled Moho depths in the study area. S
Dotted lines are magnetic trends from -
. Fig. 3.2.  Lines A, B and C define the ,
. §*R? profiiles for this Study. ..c.eevevenencaoenn. .. bl
. oo - o : .
, ; S

3.9 (a)'Plot of raw data, (b) Power spectrum

estimate of record (5,5,1). The distance :
is 273.9 kmfrom.the shot. .....0'......‘.......9...'48

3.10 (a) Plot of raw data, (b) Power spectrum
. estimate of record (6,9,1). The distance _
is 272.4 km from the shot. A PP 3

3.11_ (a) Power spectrum of noise for record
(5,5,1), (b) Power spectrum of noise for \
record (6’9,1)0 l..'.l;.".i.'..lDOOOOOI;GOQ.Ol;t'QOl00.51

4.1 Record section of inline refraction line
- B in southern Saskatchewan (from o
Macrides, 1983, with permission). cesesesescscesessesdl



Figure . Page

4,2 crustal model of inline refraction
profile B (from Macrides, 1983). Shot 3
is the model from the source ‘near Wynyard
to the southwest. Shot 4 is from the
source near Swift Current to the = o

northeast. -..ao-o-uoc_QOUOQcooo-oi‘o’-‘coo-'.'-vuoo‘onooooss

W

4.3 Refracted (solid line) and reflected
(dashed line) ray paths and the
coordinate system. The direction cosines
 for the planes are a, b and ¢, and 4 is -
the distance of the normal to the origin. ceeeseen..58

-

4.4 (a) 3-D test model. The location of the
receivers are shown as crosses along a
triangular array on the surface. The

sources are indicated as stars at the
vertices. The -three faulted blocks are
marked as 1, 2, 3. (b) to (d) are the
reduced travel times of the head waves D
from Moho discontinuity for sources S1 to
S3. The dotted line is the computed ‘
initial assumption to the least-squares
inversion. The dashed line is the first
jteration, and the solid is the ' R
theoretical value. J A AR P )

.

4.5 (a) to (c) Reduced travel-time diagrams
for .S1 to S3 versus azimuth for both
refracted and wide-angle reflected
seismic rays. No noise is included. (1)
Initial computed assumption for refracted
arrivals; (ii) theoretical curve and
final iterations for refraction arrivalsj
(iii) initial computed assumption for
reflected arrivals; (iv) travel time for
reflected waves after first iteration;

(v) theoretical curve and second :
iteration for reflected waves. P Sl -1

4.6 The same results as in Figure 4.5 but
' with the introduction of random noise
into the theoretical times. The standard - :
deviation for -the noise is 0.1 sec. P X

xi xR
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4.7

4.8

4.9 -

) . Pagé

surface projections of rays traversing

‘below the Moho in Saskatchewan experiment

(1981)- .Ocl....l.....ll...l......."‘toovcti‘r.._.Ol0.00065

\

Reduced seiéhic refraction travel-time
plots versus azimuth for the three

. ®droadside lines. The first curvilinear -

1ine (H) marks the Moho head wave, the
other line (R1) marks the wide-angle
reflections from the crust, and the third ) o ,
one the wide-angle Moho reflection (R3). P -1

v . _ o
Reduced seismic refraction travel-time
plots versus azimuth for the three
broadside lines. DT is defined as normal
moveout correction. The line (R1) marks
the wide-angle reflections from the

" crust, and the second one the wide-angle , :
Moho reflection (R3). ......‘l...'.'.....‘.q.l‘..“l..ls-?

Map of southern Saskatchewan Showing‘the"

location of the sources (small stars) and
receivers (crosses) for spatial seismic
refraction data. Aeromagnetic- trends and
faults are dashed lines. A, B, and C are
refraction profiles. R, Reindeer-South

. Indian Lake belt; LR, La Ronge-Lynn Lake

belt; GL, Glennie Lake domain; T,
Tabbernor fault; FF, Flin Flon-Snow Lake
belt. Earthquakes are shown as large

Stars. t.‘.}ll'l.‘..."'l'»ivtDO‘.'."Il!:...“li..l.0..0.‘...69'
P o . L - 8

Locations -of the reflection points. A, B,

‘and C are broadside refraction profiles

corresponding to -shot numbers 5, 9 and 2.

.The numbers on the outside triangle are

the receiver station numbers; the numbers

of the inside triangle are the.

corresponding projections of reflection

mid-points from shots to receivers. .
Faults are Solid 1iNES. ceveecesocesoneosssosnennsnsll

xii
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(a) The strueture of the reflected branch -
R1. Travel-time curves for: (b) shot2;

- (¢) shot9; and (d) shotS5. The solid line

is from the field obserwvations. The

- dashed line is the final value from the
least-squares iteration assuming only two :
faulted planes. '..‘..I‘.‘..ﬂl........l.l..‘.'. ‘.._l..l73.

(a) The structure of the reflected branch
R2. Travel-time curves for: (b) shot2:

(c) shot9; and (d) shot5. The solid line
is from the field observations. The
dashed line is the final 'value from the

" least-squares iteration assuming only two

4.15

>(a) The structure of ‘the Moho (R3) using

faulted planes. .....:,.........,..............;..

wide-angle reflections only. Travel- time
curves for: (b) shot2; (c) shot9; and (d)

_shot5. The solid line is from: the field

observations. The dashed line is the
final value from the least-squares
iteration assuming only two faulted

planes. Oo..--00...Ooco.ot.ooo.o’-ooneeo'.li..;lctoo.o77:

(a) The structure of the Moho from
refraction data. Travel-time curves of
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1 . INTRODUCTION

The purpose of this thesis is to describe a new
tomographic method for obtaining three-dimensional structure
and velocity information of the earth's lithosphere. The
Eoncept of seismic tomography has become an important tool
for seismic modelling. The essence of seismic tomography is
to extract information about the earth's structure and
phys{cal parameters of the media through which the seismic
rays travel. By minimizing the difference between
observations and computed travel times obtained by tracing
the ray paths through an initial model, the initial model 1is
modified . iteratively by inverting a linearized version of a
set of léast-squares eqﬁations. The method handles both the
refraction -and/or reflection data.

The lithosphere is the colder, stroﬁger, and more rigid
outer shell, about 100 km thick, includfng the earth's crust
and upper mantle. The crust is always defined.as the region
above the Mohorovicic 'd}scontinuity (or Moho). This
discontinuity is the intervening boundary between ‘the low
velocity, very heterogeneous érust, about 5 to 60 km thick
and a higher velocity, more homogenebus substratum called
the mantle. Furthermore, this disconﬁinuify has been found
to be almost universally- present beneath continents and
oceans where the compressional wave velocity inéreasgs
rapidly or diécontinuously from deep crustal velociﬁies of
6.5 to 7.3 km/s to mantle velocities between 7.7 and

8.4 km/s. Below the lithosphere is the asthenosphere which

4



is usually thought to be a partially molten zone and is
identified with a decrease in shear wave velocity, and
sometimes, also the mantle compressional velocity. This
thesis concentrates only on a determination of the structure
of the crust and Moho discontinuity.

A knowledge of the composition ‘and geometrical
configuration of the crust and its relationship to features
at or near the earth's surface is essential to understanding
the geological and tectonic framework of the continent.’ This
knowledge, in turn, is useful in the exploration of buried
mineral and fossi; fuel resources as well as in formulatigé
on hypotheses on the nafure, origin and ’history of large
horizontal and vertical hovementé that are'manifested to-day
in earthquakes, mountain building ahd continental drift.

che bulk of this thesis is divided into four major
chapters. Chapter 2 describes the formulation, the neﬂetical
aspect of the seismic tomographic techniqdé@ Chapter 3
describes. in detail the geological and geophysical setting
in Saskatéhewan /region as well as the spatial seismic.
refracgion recording method (S*R?).
| Chapter 4 and 5 demonstrate the application of seismic
tomographic methods to S2R* data acgquired in Saskatchewan
and to seismic data obtained én vancouver Island. The
results of the application of these methods are also
discussed. Howevér, the results in Chapter ¢4 will Dbe
discussed in greater detail because it is the main objective

of this thesis. Finally, in Chapter 6 a summary of the major

-
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coriclusions is presented.



2. FORMULATION OF SEISMIC TOMOGRAPHY

2.1 Introduction ‘

The aim of this chapter is to describe a procedure for
obtaining a three-dimensional structural and velocity model
from seismic refraction or/and reflection data. Tt involves
a new iterative processing method based on the least-squares
inversion technique. A computationally efficient algorithm
for tracing rays through a laterally inhomogeneous g;:?i;
with . curved interfaces was develgped as part bof a
tomographic method for inverting travel-time data. This
ray-tracing method may be used as a stand-alone tool for
forward modelling. The linear inversion is formulated as an
iteratively damped least-squares technique (Levenburg, 1944;
Mafquardt, 1963). The damping factor, which adds to the
diagonal parémeters of the matrix for stabilizing the
solution, 1is computed automatically for each iteration
(Hoerl and Kennard, 1970; Hoerl et al., 1975).

Tomography is a method for obtaining an image of the
medium by mathematicallf combining information from numerous
raypaths which travel through the media. Medical tomography
has been»successfully used to reconstruct an image of organs
within the body by X-rays or by ultrasonic waves. Some of
the medical studies of tomograph include: the éomputerized
tomography with X-ray emission and ultrasound sources (Kak,

1979); the reconstruction of an image by ultrasonic

reflectivity tomography (Norton and Linzer, 1979)} the

t
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‘inversion‘and;optlmum‘}

A'problems.

Ay (

ihvestigatlon 0¥ computerized tomography by d1rect Fourier

'-,rpolatlon;(Stark and Paul, 1981).

- In geophysics the process of. "selsmlc tomography

‘ynvolves- the construction- of . an image of subsurface

AN

structures. using seismic waves reflected or critically

refracted from-several horizons. Seismic “tomography has been
applied to‘”variousﬂ geophysical problems. Cutler‘-et al.
(1984) 'preSented a ditscussion ofﬂ.the formulation and
methodology of fseismic .tomography.‘;wThe least-squares}

ihversion of travel tlmes ‘can also be ‘treated as a "seismic

;tomography problem (See ‘e.g. Ak1 and Lee 1976; Hawley et

al., '1981) They 1nverted the.vteleseiSmic travel-tlme

wobservatlons to obtaln a . three dzmen51onal model -of :the

arth. Some of the studies that are relevant to the present

N

‘1nvest1gatlon 1nclude' the nver51on of three- dlmen51onal'

4

selsmlc data (Gjoystdal and Ur51n 1981) the reconstructlon

- of a seismic velocity proflleirrom offset vertical seismic

L profiling and wellftofwell boreholes (Devaney, 1984); the

dlscu551on of well- determlned and poorly determlned features

‘in selsmlc tomography (Bube and Resnlck 1984) Retently,

E)

L1nes andaTrletel (1984) gave a detalled rev1ew ‘of linear

least—squares 1nver51on and its appllcatlons to geophy51cal

¥



2.2 The forward modelling

The earth s structure in thlS study will~ egﬁmodelled by
piecewise polynomial surfaces of arbitrary shape.;The medium
between each succe551ve pair of 1nterfaces is assumed to ‘be
homogeneous, 1sotrop1c and perfectly t‘elagoic.' g%gs
assumption is only an approximation‘of ‘the true structure in
terme of tractable mathemat1cs.{$1nce the study involwves in
determining the' gross earth's ‘structure with an average

DA

seismic wavelength of 1. O km, 1t is a good approximatlon to
#assume a homogeneous ‘medium between'interface5~because-of
the- large seismic wavelength in ‘the crustal study. Thus, 'at
most, two kinds of signals.can propagate 1n the body of such
‘a medium, compreesional'and shear waves.. Their veloc1t1es,g

¥ S .
of ,course,'_differ in different media. However, any ray.

connectingbtwo-points within a layer is a straight line. It

" found that .the ray path ‘between source and receiver.pair
is traced through by solv1ng a system of | nonlinear
equatlons. - |

A three dimen51onal ray- trac1ng algorithm was developed?fi
by Chander(1977) ~ for planar 1nterfaces. It has Dbeen
generalized in thie the51s to allow for curved interfaces as‘
vell as 1ntersect1ng surfaces of planar 1nterfaces. This’
formulation provides a simple and flexible way of computing
reflected and. critically refracted waves through’ a 3-D
structure. The critically refracted wave is limited to
planar interfaces 5: arbltrary orientation. Furthermore,

this algorithm includes some desirable features in solving
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seismic problems, the algorithm'éllows for: (1) shot and
receiver locatiéns‘ at any depth, (2) any number of layer
interfaces with arbitrary éhape, (3) low” velocityf layers
‘interbedd;d with higher velocity layers, (4) multiples and

converted phases along the ray path, (5) the 1incorporation

of geological éohstraints, and (6) the lateral variation of

. velocity in the model.

Let the source location and receiver location be (xo,
Yo, Zo) and (x., ya, z.) respectively. The travel time, t,
along the ray is: |

t = »Z[(xi‘-.xi-1)z+'(,Yi—Yi-1)2 +(zl;\z\\i-1)2 12 /vy,

i=1 (2.1)

where n is the'ﬁumber of ray segments, V, and v, represent
the velocities at the source and receiver respectively, and
vV, are the constant velocities between interfaces (i-1) and
i, |

‘The L 1interfaces bounding eaCﬁ layer are defined by a

polynomial surface of the form

z, = d, + £,(x,y), i=1, 2, «.. L, (2.2)

where d, is the distance of the nofmal to the ori&fn - and
fi(x,y)‘is a functibn of k and»y.‘

According to Férmat's'principle, partial derivativés of
t .wiﬁh respect to x and y yield the ray path having a
mininum time. Therefore, we havé to solve a system of  2n-2

equations simultaneously for t to be stationary (i.e. the



ray path satisfies Snell's law): .

at/axi = [x,-x,., + 23z,/0x, (i|'2|-1)]_ VDO xi-x,.4)2

+(Y|‘Y|-1)’” +(z,=2,-4)21" 2% +lx-x,,.q * 3z, /9x, (z,-z;.,,)]
'/Vi¢1[( X=X, .40 +(y:- )?‘+(z;-z|,,)i]’/2

=0, ' i=1, 2, +... D=1,

bt/aY; = [y,-yi.y +3z,/3y: (2,-z,.1)] “/VF{(v, Xn'x}-1)’

+(&;-y.-1)’ +(z‘-z;-1)’]"2 +[YI_YI+1' ;azl/aYI (ZI'Z}.1)]-
/Yo [ Xa'x}‘1)z +(Y|'Yi»1)z.+(z|‘z|¢1)z]j/z

=0, : i=1,'2, ... n-1. G (2.3)

. . FS
This system of nonlinear equations can be written in a

1 Fd

-

cémpacted form as: .

f{(x,i) ='f{(x,,xz,... xn-,,y1,yg,.,r. Yi-1) =0,
or in an alternative form with 2n-2 variables
f.(x);= £(Xq,%X2,00000 X2n-2) = 0, i=1.... 2n-2, (?.4)

This system of eqﬁations can be solved by Newton's
method. In the classical Newton's method a guess, x, is made
" of the solution of the system (2.4), and we calculate the

elements of the Jacobian matrix,

2
- ) .
#T ey N

Av, = 3f,(x)/3x, . (2.5



at the guess. Next, we obtain a correction vector, Ax, by

solving a system of linear equétions,

2n-2 ‘ '
z Ak,Ax, = -f,(x), k=1, 2,.... 2n-2, (2.6)
j=1 " . o . o

and ve complete: the 1terat1on by replac1ng ‘the vector x by
the vector (x+Ax). The success of this method is due to the
fact that the correction is calculated so that, if the
Jacobian is non-singular at: the solution and if the
functlons f,(x) are twice d1fferent1able, then.the Newton's
iteration converges rapidly when the guess 'is a suff1c1ently
good one so that it is near the-solution.

It is well known that the classical Newton's iteration
often fails when the initial model is not a godd estimate of °
the £final solutien (Stark,,1970). As in the case of all 3-D
pFoblems, it is difficult to obtain a good estimate for the
initial model. Hence, we adopted the apptoach of Powell
(1970) to overcome this difficultyf The principle idea in
. 'Powell's method 1is to make a compromise between Newton's
method and the Steepest descent method by introducing a
parameter = k into the normal ieast-squares formulation of
(2;6) (Levenberg, 1944; Marquardt, 1963?.*’Equation- (2.6)

" becomes:
(A'A + kI)Ax = -A‘f, (2.7)

where the parameter k is calculated by a search process

which tries to make the estimate (x+kAx) better than the
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estimate x.so that F(x+kx)<F(x) and F(x) is defined as:

Fix)= I {fe(x)}?.
ka1 .

T
The essent1al featupa in thls algorlthm is to guarantée
- a _decrease -fn the sum of squares of the res1dual via the
steépest descent direction when x is far from a mimimum and.
to'switch to the rapid cohvergenée of Newton's method as_rhe
minimum is approached The parameter Kk is known - as  a
f“damping factor" and wlll be discussed in more deta11 later.
2.3'1nversion'procedurg .
‘The travel-riﬁe function is a noniihear ﬁunction in
terms of the poefficienis of the layer interfaces }and fhe‘
veloc1ty parameters. - We- can' approxlmate the travel-time
function by a first order Taylor series expansion to form a

set of linear equations for the observed data:

. o ‘
T| zltl(x°) “"2 : atl/aXJ (xj —xjo)’ 4 . .
, j=1 , x=x"° ‘ - (2.8)

where,
: T. = observed travel time,

x°’= initial est1mate of model parameters,

t, (%) = computed travel time from an’ 1n1t1a1 >est1mateb of

the model parameters. Then we deflne,



Ax,l‘ X - XJ' } j'1, eewes Mo

% . . N
Aij.' at./axj," j-1, se e m-l (2-9)
At| = Tl - t|(x|.), i"1, ...,. N-

)
2

N is the total number of observed ‘data and m the total
number of model peggmeters. We rewrite equation (2.8) in

vector and matrix noéﬁﬁ&bn:
At = A Ax, | C(2.10)

where At is a (N#*1) vector,‘Ax is a»(m*1) vector and A is a
(N*m) matrix containing the partial derivatives.

In general) there are more obseivetions than model
parametefs. An eiECt~solﬁ£ion is usuellyvnot available, thus
we hay apply a least?squeres procedure to minimize the
cumulative squared error, ete, where e = At - AAX with

respect to parameter vector Ax. The least-squa:es

formulation (Gauss-Newton) is:

.A‘A‘Ax = A'At, | | S (2.11)
and the solution is,

Ax= (A'A)" ACAL. : | (2.12)

Equation (2.12) represents a system of normal equations. The

matrix A'A is always symmetric and its eigenvalues are not
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only real but nonnegative. By applying the least-squares

s

method, we have a much better and smaller set of equatlow&

W

to solve. ' : 5

N

The Gaussian elimination scheme known as Cholesky's .

method is simple, fast, and economical"fof solvingy/ the

normal equatlons. Unfortunately, th1s method for the llnear.,
least squares problem is also. known to be numerlcally

unstable (Miller and Wrathall 1980). The algorithm is based‘
on the following decompos1t10n. If A A is a symmetr1c,\

nonnegative definite matrlx, it can be decomposea unlquely"

into LL‘ where L is a lower trxangular matrlx with positive

dlagonal elements (Forsythe and Moles, 1967, p.29)

‘Let A'b = h,  and we ‘apply the »decompos1t1on in normal

equations (2.12),»it becomes,‘t'

LL* Ax = h

This represents two triangular sYStems:lt

Ly = h, and L'Ax =y, .

which are very easily solved by fOrward elimination and»hack»

substltutlon for the unknown y and Ax.

I

As was mentioned earller, ‘the Gaussian elimination

method has the distinct advantage of be1ng the fastest ‘known -

technique for solving a set of linear equatlons. The total
count of multiplicative operatlons for Cholesky s method in

solving the normal equations is nm*/2 + m*/6 (Lawson, 1974,

RV
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'P.122), where. n and m are the  number of egquations and
unknowns in métrix A, respectively.

One disadvantage df the elimination scheﬁe occurs when
thé original matrix A is ill-conditioned; that 1is singular
or nearly singular. Perhaps even more dangerous is the case
of neaf singularity when the algérithm wiil convérge to a
‘solution, however the solution consists of rapdom numbers:
unrelated to the original problem. of éourse, this does not
always  happen; it may just happen often enodigh to make this
apprqééh unreliable. Another disadvantage 1is that highly
correlated or nearly linearly dépendeﬂt basis vectors
(columns of A) create a failure in this approach.

"In many applications it is necessary to determine the
rank of a matrix or to determine whether or not the matrix
is “deficient 1in rank. Theoretically, one can use Gaussian
elimination to reduce the matrix to row echelon form ;and
then . count ,the.,number of nonzero 'rows. However,; this
~approach is not practical when working in finite precision
ariﬁﬁmetic. 1f "R is rank deficient, and U is the computed
»echglon form; thén‘be&ausé of the rounaing errors in the
eliminétion prdcess, it is wunlikely that U will have the
proper number of nonzero rows. In'ptactise the coefficient
matrix A usually 1involves some errors. This may be due to
errors in the data or to thé finite number system. Thus, it
is generally more practical to ask whether A is "close" to a
rank deficient matrix. However, it may well turn out that A

is <close to beihg rank deficient and the computed echelon
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form, U , is not. ' ; -

2.4 Singular Value Decompostion (SVD}

Another computational scheme known as SVD can be used
to determine how close A is to a matrix of smaller rank.
This method requires more computations (total - count of
arithematic operations 2nm?’ 4‘ 4m®), but provides more
information on various aspects of the solution. It is
especially important in cases where a matrix is
ill-conditioned, that is; singular or neérly singular. Much
of the fundamental work of this approach was done by Golub
and his colleagues (such as Golub and Businger, 1965, and
Golub and Reinsch, 1970). Recent books by Stewart (1973) and
Forsythe et al.(1977) discussed the cqmputationél aspects of
SVD as well as many related topics. |

The motivation of this method involves facto;ing A into

(Golub and Reinsch, 1970):
A = UAV', - (2.13)

where U is N*N data space array,

A is an Nxm array of m singular values,

vV is a m*#m solution space array.
A more detailed description of the SVD method in solving- the
least-squares problems can be found in the book by’ Lawson

and Hanson (1974), and Aki and Richards (1980).
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The following observations are useful when we apply the
SVD to solve linear least-squares problems. Let A be a N=m
matrix with a singular value decomposition:

d ~

A = UAVY,

v, be the column vectors of Vv, and u; be the column vectors
of U. P .

I3

(1) Since
A'A = V A'A VY,

" and A'A is a msm diagonal matrix containing at most m
positive squérés of the eigenvalues, XA’ of A'A, and since
A\, 1is a nonnegative square root of tﬁ;’gigehvalues of A'A,
they are unigue and eqdél to the singular values. However,
the orthogonal matrices U and V may not be unique; |
(2) Singe V diagonalizes A'A, it follows that vi's éée

eigenvectors of A'A and

¢

viv = VW' = I;
(3) Since
AA' = UAA'U',

it follows that U diagonalizes AA' and that wu,'s are
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eigenvectors of AA' an

Uty = I;

(4) Since multiplying a matrix on either side by a
nonsingular matrix does not alter its rank, it follows that
A and A have the same rank. Thus, if XA, > Nz >....\, >0 and
Nieteee = Am =0, then A has rank S, for the rank of a

matrix is the number of nonzero singular values;

(5) the least-squares solution in equation (2.12) becomes:

Ax = (VAU'UAV') 'VAU'At

(VA?VY) "' VAU'At : (2.14)

VA~ 2V' VAU'At

VA~ 'UAt.

The solution Ax is the weigqted vector product sum as

¥

m 1 :
Ax= I - v,u,‘'at. m " (2.15)
i=1 )\|
If we let y, = u,'at (i =1, ... m) be the magnitude of the

projectibn of the discrepancy vector At onto ith observation

eigenvector U;, sO

-
[o)
n

N

>

Thus the solution vector is seen to be composed of a sum of

wveighted eigenvectors of the matrix A'A in the model space.
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The weights are in turn, composed of the data vector
transformed by the eigenvectors. df the maérix A'A in the
daté space .and multiplied by the inverse of the singular
values of the matrix A. In particular, if y. /A, is small,
the term (y,/\,)v, has little influence on the solution.
Furthermore, if A, is very small, the term (y:/N)v, will be
large (unless y; is simultaneously very sméll) and has the
dominant influence on the scolution. The solution in general
is stable and accurate unless A\, is so small that we may
question its numerical accuracy.

In nénlinear least-squares problems, the éolution is a
linear approximation to a nonlinear ~problem, thus the
solﬁtion must be computed iteratively. The speed of
convergence of the normal equations decreases as the
relative nonlinearity of the problems increases. If this
nonlinearity is too large the method may not converge at
all. Another disadvantage is that if the matrix A does not
have full rank or A is ill-conditioﬁéd, the performance of
the Gauss-Newton method deteriorates badly. The next section
wiil give a discussion on hew t§ stabilize the solution in
cases of an ill-conditioned maﬁrix.

3
2.5 Treaiing'the ranking deficient case

An ill-conditioned matrix manifests itself if small or

zero singular values of the matrix exist. If some of the

eigenvalues of-the matrix A are small, random errors in data

could cause strong fluctuations .in the solution. One way of
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'suppfessing the - undesirable effect of small eigenvalues is
to use the damped least-squares approach or known as the
"ridge regression”, to modify the small eigenvalues of the
system. In order to reduce the difficulties when the matrix
A'A is nearly singular or singular, a constraint, say E, can
be added to the diagonal elements of the matrix A'A. The
effe¢t~ of this constraint is to prevent the solution from
being out of bounds. This approach was first inﬁroduced by
Levenberg (1944) and later described in detail by Marquardt
(1963).

The constrained normal equations become
(A*A +. kI)Ax = A‘At,
and the solution is
Ax = (AfA + kI) 'AtAt, | (2.16)

By adding a constant, k, to the main diagonal of the matrix
A'A, we have effectively added a DC level.to the eigenvalues
of the matrix A'A so none of the eigenvalues approaches
zero. Levenberg (1944) terms the constant k as a fdampingt
factor', since it prevents the matrix A'A becoming singular
or nearly singular by damping out the hegligibl§ small

eigenvalues. We write (A'A + kI) in terms of U, A, and V

(AtA + kI) = VA?V' + kI
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= V(A?+KI)V*.
. "‘ ‘ . E'S
Tﬁe inverse of this matrix is,
CC(A'A + KI)T' = V(A*+ kI)T'VY g |
= v diag [1/(x;?+k) V" (2.17)
We then substitute (2.17) into (2.16)
’ : ﬁ" . o b3
Ax = V diag [1/(h;*+k) JV'VAU'At |
= V diag. [A;/(\;2+k)]UtAt. | (2.18)

/

By comparing the equations (2.14) and (2;J8),Q the

éigenValues‘in the damped least-squares férmulation are

replaced by

v A |
—_— (2.19):
A+ kI . ‘

where k is a_damping féétof.,However, a large positive'k

increases the stability of the solution but decreases the

~resolution of mddel parameters. Hence, it is desirable to

- choosé k as small as'pCSSiBle to achﬁbve max imum resélution
but large enough to stabjlize the solution. :
. R A‘ o s i - : . )
The selection of k for a particular problem is

" .important in controlling the resolution of the inversion.
Theobald (1974) showed that there alwgysrexiéts4é range of k
values ‘for which the ‘damped least 'sguares has smaller

variances than the leést—squares method. A . theoretical



o g B . 20

. N ] L. /‘ v‘
condition that will guarantee that the damped least-squares

method is better than the least squares is
0< k < 0*/ Ax‘Ax, '

where o¢* 1is the wunknown error Variance, and Ax is the
unknown parameter vector. B : |
'Unfortunateiy, the optimal values of Kk cannot Dbe.
determined with certainty because it depends on the unknown
parameter vector, ' Ax, and unknown error varlance, c*. In
practise, k must be determlned emplrlcally or estlmated from
the data. Hoer1<and Kennard (1970) originally suggested that,ﬁ
k can be determined from an 1nspectlon of the "ridge trace"

- (a plot of Ax(k)'s versus a range of k). They used certain

]
kY

guldellnes involving sign reversals, stablllty and 1increase
in_  the residual sum of squares to determlne the damping
factor k. Hoerl et al. (1975) further developed an algorithm

for the automatic selection of k. They proposeéfthe/est%mate

of kas follow: ' : , _ _>

"k =mo*y/ X'X,

where o04° isfthe least-squares estimator of the variance in
‘the data, X 1is the least-squares solution, and m is :the

o

number of elgenvalues. The quantlty of 04? is,obtained by

?

~\‘ . . ’ -

- o0) / (N-m), -
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vhere N is number of observations and @(0) is the residual
sum of squares for the least-squares estimate and is defined

by
2(0) = (at-AX)® (At-A%).

The ridge-type es;imation of k developed by Hoerl el al.
' (1970,1975) is widely used in statistical applications of
data fitting. Lawless and‘Wang (1976) further concluded that
vi.ridge-type estimatofs were far superior toO least—Squares‘

methods. Therefore, I adopted Hoérl‘S'techniqde to compute

the damping factor, k,mautomaticalli. .

LIS
T e

In addi;igp to tWe damping factor, scaling can.be used
to speed the congrgencb when solving the normal .equétions
and also to av&id "i11 conditioning” caused bf diffefent
scales in which the model - parameters are' expressed. Each

column of théq matrix A 1is scaled by a root mean sum of

squared values d,, and d; is defined as follows:

N
di=( Z’Aij’)”z,.
P ;

1

h

A =Aij/ d;j’- ’ o E % (2.29)

The effect of the scaling 1s to reduce numerical
inaccuraciés such that all the model ﬁgarameter5~ will be
- scaled alike. The bestimates of the parameters from the
.scaled matrix aré then transformed bagk . to eriginal

parameiers by:
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Ax = Ax,;/d;, ' i=1, ... m ‘ (2.21)

2.6 Resolution and covariance matrices

The solution of the damped iéast‘squares problém is
ambiquous without the description of its wuniqueness ond
reliability. In this section we investigate what constitutes.
a good oolution, réalizing that there are uncertainties in
both the model and data. The unigueness and reliability have
~been thoroughly discussed in the 'geophysical literature
(Backus angi Gilbert, 1968, 1970; Jackson, 1972, 1979; and.
Aki and Riohards: 1980). The treatment here foliows “an
-approach 'given by Aki and Richards (1980, p. 675-699). We
first derive the resolution and covariance matrices from the
normal. equations and then modify the eigem)alues to get ' :
resolution and covariance matrices of the constfained norma v

. .;.é} "1‘
equations, R

The normal equations from (2.11) are:
A'A Ax = A'At, _ ' : .. (2.22)
where Ax is a (1#m) vector in the model space,
At is a (1sN) vector in data space,
A is a (N#m) matrix."

By singular value decomposition, we obtain -

A= UnAnV, ', : " (2.23)
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where A has a complete set of m nonzero singular values and

U, and V., are made up from the eigenvectors with m nonzero

eigenvalues of A,. Substituting equation (2.23) into the
normal equations, 'we obtain the least-squares solution (or

generalized inverse)
ki

Ax, (AA)" " A'At,

Velm™ V' VoAnUn'At,

L}

VmAm ™ 'Um AL,

=\A,"'At. | (2.24)

Ax, 1is the generalized least-squares solution, and A, is
called the generalized inverse operator. The equation (2.24)

can be written as:

.
Ax, = A, 'AAx,

~ A :

using ‘equation (2.23), the equation above becomes, .

Ax, VeoAm ™ 'Un' UpApVae'Ax,

= vam‘Ax. ’ ' (2.25)

The matrix V,Va' is'called the resolution matrix R. If
Vme' is’ ﬁhe identity matrix I, resolution is perfect and
the generalized inverse is equal to the true solution. If
the row vectors 6f V;Vm‘ have components spreadlaround the
diagonal (with 1low values elsewhere), the generalized

inverse represents a smoothed solution over the spread, and
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is expressed as a weighted average by summing weighting
coeffic;ents of the row vectors of the resolution matrix.
Therefore, fhe diagonal elements of the resolution matrix
can be used as a rough measure of the resolution in model
space. |

Since we introducé the damping factor into the
solution, the resolution matrix R becomes (Aki and Richards
' 1980, p.698):

An?

R =V v.t. . | (2.26)

——————
Am? + kI
The contributions ofﬂeigenvectors with. eigenvalueé smaller
than k are suppressed in the damped least?squares‘solutioh;
thus, the introduction of the -damping factor, k, will
' degrade resolution but stabilize the solution by reducing
the covariance. o

The reliability of the solution can be measured by its

covariance matrix. The covari#nce matrix C is:

v v

< Ax,Ax,'> = A, '< AtAt'> (A,')"'.

Assuming that all the components of the data vectors are
statistically independent and share the same variance o047,
we have ) | : A ,i}

< Ax,Ax%,'> = 04%A,"" (A,Y)77,

putting A.“#f (A,*A,) 'A,' we have,
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<Ax,0x,'> = 04° (A,'A,)"" (2.27)
e

‘This is the variance of the solution for the least-squares

solution. In general, putting A,”' = VoAn 'Un' gives

C = Udzvam_1um' HmAm.1vm‘r

= Og zvah- sz" . .

Obviously, the covariance of the solution becomes largé when
séme"bf the eigenQalues are small. Since the diagonal
'elemeﬁt of the 'covariénce matrix is proportional to the
squa;e of the standard error of the correspoﬁding element of
the solution vector, large standard errors are ‘an indicator
of an iil-conditioned matrix. The ‘introduction of the
damping factor, k, into the solutidn»'will degrade the 
rgSolution in both quel and data spaces, but also decrease
the covariance by damping out the small eigenvalues.
The covariancg matrix is:
A,

C = 0,4 Vyme——— Vo', - (2.28)
(Am?+kI)? |

) .

Again, from the equa;ions«(z;ZS) and (2.28) the wuse of a
~damping factor, k, introduces a tradeoff betweeh résolution
and covariance. As the resolution is degraded it acts to.
dampen the inverse matrix (A'A+kI)-' and thus improve ﬁhe

covariance matrix.
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2.7 Conclusions

The singular value decomposition has advantages over:
the Gaussian elimination for solving the normal ‘equations.
I1f the matrix is well-conditioﬁed, Gaussian elimination is
fast and efficient in solving the normal equaiionsl However,
the matrix of the nofmal equations is not well-conditioned
in most geophysical problems, the singular valﬁe
decomposition provides more insight into.the_stability and
uniqueness of the least-sQuares solution. Therefore, the
singular value dec&mposition approaéh is used to-solve for.
the least-squares problems

Two computer programs weré written to implement thé
theory of seismic tomography (see Appenéix). The first
computer program  mainly déals with sﬁatial seismic
refraction data. It ‘allows head waves and vwide—éngle
reflections to propagate through normally faulted planes.
The damped leaét;squares formulation.inverts the travel-time
data from. head waves and/or wide-angle reflections to
reconstruct a crustal mgdel, with the constraint of several
’ ho;mal faults. The interfaces/i{ this computer program are
limited to plane layérs, but interfaces can intersect each
other. The second computer program mainly deals gwith
zero-of fset and nonzero-offset reflection d;ta.. It traces
the rays from .sou:ces to receivers through a number of
polynomial surfaces. ?he damped least-squares formulation
“inverts the refiection data to reconstruct interval

velocities as well as polynomial surfaces of the reflectors.



3. REGIONAL SETTING, DATA ACQUISITION AND PROCESSI*G IN THE

SASKATCHEWAN REGION

3.1 Geology of the-Williston Basin

The Williston Basin is a major intracratohic feéture on
"the North American coﬁtinent. The term "Williston ﬁasin" is
vérlously ééblled to much of the sedlmentary sdccession in
Saskatchewan and Manitoba, but in a structural context it
'denotes the circular depression on the Precamb;)an
crystalline basement cen;ered in North Dakota ag”a}awn in
Fig. 3.1. Its shape and size is not well defined. Rocks
deposited during most periods of Phanerozoic times are
present in the basin. The stratigraphy consists of early
Paleozoic clastic rocks ‘(marine sandstones and shales),
folloﬁed by mainlY'Paleozoic carbonates and_evapor%tes, and
finally . by Mesozoic apd Cenezoic clastics. Glacial drift
covers much of the nearly horizontal bedrock in this region.
The thickness of the sedimentary basin, in general,
increases towards the southern ﬁart of the basin and thﬁns
towards  the exposed Cénadian Shield in northern
Saskatchewan. The thickest section in the sedimentary basin,
at. about 4,875m, is iocated in southeastern North Dakota
(Gerhard; 1982). The variations of basin thickness probébly
represent different regional sedimentation, erosion and
subsiaence of the basin at various times throughout,
Phanerozoric time.  However, the basin has undergone
relatively mild tect&nic distortion during Phanerozoic time.

J

!
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The distortion is largely related to movement of Precambrian
basement rocks. Furthermore, Porter (1982) has provided a

detailed study of the evolution of the Williston Basin.

3.2 Deep structures'

Beneath the sedimentary sequences of the Williston
Basin 1is the Precambrian crystalline basement, a covered
portion of the Canadian Shield. The Shield is a relatively
stable portion of the continent and forms the basement of
the western part of the North American craton. It has Dbeen
relatively undisturbed since Precambrian t;me, except for
‘gentle warping.yThe rock units are Eharacterized by granitic
and high-grade metamorphic rocks, as well as highly déforméd
and metamorphosed .§ediment§ and volcanic rocks, which
implies a series of inéense mountain making episodes in the
Precambrian Era. The Shield “also includes some very old
sediments that were hardly touched by deformation and
metamorphism. Most geologica;_information on the Precambrian
rocks comes from studies of the exposed Shield together with
a féw core samples. Some studies included Bell (1971), Prfce
and Douglas (1872), Burwash et -al. (1873, 1976), Lew:y
et al. (1978, 1981, 1983); Ermano?ics et al. (1978, 1983).
From the pattern of geologic rock types, fault zones,
gravitj and magnetic_aﬁomalies, and from radibmeﬁric age
determinations, the ° Canadian Precambrian Shield is
subdiyided into a number of provinces. Each province has its

own distinct geological and geophysical characteristics.
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However, only one major tectonic pnovincé, the Churchill

province, is significantly involved in this study area, SO

‘discussions focus mainly on - this tectonic province. The
Superior province is just to the west of the study area and
will be mentioned briefly.

The Churchill provipce is a vast region of the Canadian
Shield wunderlain predoﬁinantly by gneissic and grantitoid
rocks of great structural and petrological - complexity. It
contains linear“ or curved belts of variably deformed and
metamorphosed (lower Proterozoic) - supracrustal rocks.
Remnants of plutonic rocks of Archean age, recognized in a

few places within the province, have been invoived in two

major orogenies, the Kenoran and Hudsonian. The predominant

Hudsonian structural grain trends northeast to north in the
western part of the province and changes gradually through
east to éoutheast in the eastern part. Large masses . of
we;kly foliated g{anitic rocks are common. Radiometric age
determinations suggest that the Hudsonian orogeny, the
structures of which define the province; occurred mainly
between 1,850 and 1,550 m.y. ago.

The Superior Province is by far the largest and oldest
crustal &nit of Archean rocks with ages clusterjng about
2,500 m.y., corresponding to an orogeny called Kenoran. It
cdntains an usually broad range of piutonic and supracrustal
rocks ranging from granulite complexes of uncertain origin
through migmatite to zeolite-bearing lava flows and

sediments. ~The distinctive characteristics of the Superior
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province are: (1) predominance of crystalline rocks in the
form of migmatite and plutons relative to supraciustal
rocks; (2) supracrustal rocks of low to medium‘metamorphic
rank; (3) complex and varied structural styles dominated by
steep isoclinal folds and extensive wrench faulting; (4)
prevailing east-trending structure; (5) numerous, highly
mineralized, volcanic-rich greenstone belts.
3.3 Geéphysical chgracteristics

A good correlation -generally exists between surface
geology and Bouguer gravity and magnetic anomalies.
"Relatively posiéive Bouguer anomalies occur over greenstone
belts, granulites, and mafic to ultramafic intrusions;
negative- anomalies characterize. granitic rocks. The more
infensive, linear magnetic anomalies coincide with volcanic
sedimentary belts and granulites; low intensity ahomalies
correspond pole} non-ferromagnetic granites and some
sedimentary and volcanic rocks. Thus} both gravity and
magnetic anomalies provide reliable ‘information for
delineating major geological units where outcrops are not
available. As a result of extensive regional gravity and
aeromagnetic surveys, Green et al. (1985) compiled all

-

available aeromagnetic and gravity data in this regioen. The

. . . . . -:" .
aeromagnetic map (Figure 3.2) shows one distinctive magnetic

rth

eature: the remarkable parallelism between the margin of
he Superior craton, the margin of the Churchill craton and

the boundaries of intervening terrains. ?he , - magnetic
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Figure 3.2 Compiled aeromagnetic map for Manitoba and
Saskatchewan 1in Canada and parts of North and South Dakota,
Montana and Wyoming in the United States. Dotted lines show
the important tectonic boundaries of the geological units.
(from Green, et al., 1985, with permission)
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3

anomalies dohihate mostly in N-S _trends in the southern p
portion and 1in a(NE-Sw directioh.jn the ﬁorthern p@rtion of
ﬁhe Imap. Across most terrains the gravify contours
(Fig.‘3.3) are also parallel to both regional geologicél
units and the dominant magnetic trends. The most prominent
positfve gfavity anomély'associated with the transition zone
from .the Churchill to the Superior Province is knewn as the
Nelson Front. It eX£2nds.from the Hudson Bay Bésin in the
hortheastv across a large part of the Shield to a poéition
béneath the Williston vBéSin in south-cenﬁral"Ménitoba.
'Geoﬁagnetic depth sounding methods aisél provide further
insights on the deep crustal'structure;4A highly conductive
zone, knowh’ 55' the North American Central Plains anomaly
(NACP) extends from thé northern part 1n »Mont?na to - the
expo§éd Shi;ld in Saskatchewan (Fig. -3.4)'(tamfie1d and
Gough, 1977). This long narrow low resistivity zone has been
traced - at a longitude:of about 105°W. Thig\anomaly might be
reléted eithér'to a zone of conductive mineralization of

.o

graphite or .to saline water migrat

héithrbugh a fault zone
i

¢

in the basement. ¥ o / R
3.4 Extension of Canadiaﬁ Shield beneath the Williston Basin

vThé westward‘extepsion of the Canadian Shield beneath
thgi Phénérozoic vcerred rocks of“ the Interior Platform
provides the basic tectdnic framework of the Wi;listbn ﬁﬁ
. Basini“ The geologicai knowledgé of. thebnorthern exposed

Shield has impro&ed substantially over the"past decade (eg.
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Lewry and Sibgald, 1977; Lewry et al., 1978 and 1983 and
Bailes and McRitchie, 1978), but there is little tectonic

information of the southern region of the Canadian Shield.
Based on the regional geophy51cal 1nformatlon, 1nclud1ng
aeromagnetic, gravity,“‘seismic, electromagneti; ‘induction
data, Green et al. (1984)::extended 4the Canadian Shield

beneath the Phanerozoic williston qufﬁmﬁmﬁg south-central

Canada to the north- -central . United Sa@?::foig. 3.5).

The seismic refractlon profiles in this study are
labelled as A, B, and C. These three proflles are underlaln
by the geologlcal units 6£ Wyomlng craton, the

Relndeer Southﬂlndlan belt and the La- Ronge Lynn Lake belt.

onge-Lynn Lake belt is a granite/greenstone
gfoterozoic age. It consists. of four main
‘a1 sequen?es, the Amisk group of metavolcanic
nd- éssociated metasediments, the late-to post-Amisk
intrusive roéks, the Missi—gfpup of .alluvial deposits and
pos;-Missi intrﬁsive rocks. In ;ddition té the
characteriétic'lithologies i£ also displays rare earth trace
_elements similar to those observed in modern volcanic island
,érds Multlphase deformatibn. and metamorphism are also
present. However, internal 'structures are mostly parallel to
the ‘trend of the belt, belng E-W to the north of the
Kisseynew belt and changing to NE-SW along its southwésﬁern,
' region(’ | _

The ReindeerfSoutH Indian Lakes belt is wedged between

the north and Ehgmnorthweste;n margins of the La-Ronge-Lynn
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Lake belt and the Wanbamah—Chiperan batholith. Its_‘rock
units are mainly graywecﬁes,‘siltstones and mudstones that
have been subjected to high grades of metamorphism to form
paragneisses ‘and migmatite. These rocks originated as
volcanic detritus from the nearby island arcs; they were
deposited contemporaneously with volcan1c activity. Quartz
dlorlte to granodlorlte intrusions are relatively common in
thlS terraln. Internal structures generally follow the trend
of the belt simillar to that described for the La-Ronge-Lynn
Le;e belr.

Finally, the Wyoming Prov1nce underlies the -hestern
United States and Canada and is exposed mainly in the cores
of‘young mountain ranges in ﬁyoming and Montana. Because of
inadequate exposure the boundaries of the. province are
poorly known. It is comprised principally of gneisses,
migmatite, and granltlc plutons. The greenstone belts are
- not well preserved and their remnants make up most of the
remalnder of the province. The structure of Wyomlng Prov1nce
is very _ complex . and ' no overall structural trend
characterizes 'the .province. The metamorphic grade ranges

from the upper greenschist to the lower granulite facies.

3.5 Ideal theoretical refraction recordings (S’R;)

The igealwseismic refraction experiment 1is one that
yields accurate, high resolution,  three-dimensional
structure with a miﬂ?mom number of sources. 'An effective

method for obtaining the three-dimensional crustal structure
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was suggested by E. R. Kanasewich at a COCRUST meeting in
1979, This three-dimensional recording method is called
Spatiai Seismic Recording Refraction (S*R?) in this ;heSis,
Elastic wave sources are placed at the vertices and

mid-points of an equilateral triangle of receivers and each

source is recorded simultaneously by all the receivers

// A
around and interior to the triangle (Figure 3.6). Ih an

P4

actual field experiment, the deployment of receivers and

sources would be constrained by the availability of access

routes. However, the method is 'Qéry robust and major

variations 'in the geometry do not complicate the inversion
»

process. The reversed - in-line refraction data gives a

7

control on the velocities while the broadside refraction and
wide-angie reflection data yield the detailed structure over
the area of interest. In continental crustal refraction
experiments the deepest horizon of interest (Moho) may . vary
in depth from 30 to 60 km. Therefore, source to receiver
distances may need to extend to a maximum of 300 to 400‘ km.
HoweVet, intérmediate layers at depths of 10 to 25 km are
also of great interest to tie together . near -veftical
incidence rgflection surveys and geological @utcrops. This
objective may be met with sources at the miczoints of the
triangle of receivers. The projectioh of +=he head wave
portion of the ray path for one third of the z:ea 1is shown
in 'Figgre 3.7. In marine refraction surveys., "ne role of

source and receiver is often reversed. A limited number of

ocean

bottom seismometers is used together with a mobile
& ’ .

5

\)

s
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Figure .3.6 A spatial seismic refraction recording array
obtain'. a three-dimensional structure on the MO@"
discontinuity. The triangle of receivers has dimensions of
350 km and a receiver spacing of 2.5 km. The lines are
surface projections 6f rays traversing below the Moho. Each
source is recorded by all the receivers.
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Figure 3.7 A spa ial seismic refraction recording array to
obtain a three-dimendional structure of intermediate crustal
interfaces. The 1linas are surface projections of the head
waves over one-third ¢f the array shown. in Figure 3.6.
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(air gun) source moving along the triangular path. On land a
large number of identical independent évent recording'
instruments are desirable to reduce the enviromental and
monetary cost of chemical sources. There is also a
scientific advantage to having only one or two‘explosions at
each source location sinée this reduces the cqmplication of
‘making many difficult source corrections. For good phase
cbrrelation, the spacing og receivers for crustal gtudies
should be less than 0.5 km and ceftaﬁnly less than 3 km,
because thé average seismic wavelength is about 1,0 km in
‘the deep crustal seismic study. For a 350-km equilateral
‘triangle and ! km spacing, about 1100 recorders - are
required.' Thi;' is about five times the capability of any
national seismic resource-base at the present time. Present
plans 1in Canada call for the acquisition of 240 identical
digital recording seismic refraction instruments for PROJECT
LITHOPROBE. Scienﬁists in the United States are recommending
that 1000 such instruments be made available (Report to the
National Academy of Sciences, the Panel on Seismologic&l
‘AStudies of the Continental Lithosphere, Committee on
Seismology, Ged;ge Thompson, Chairman). In Figures 3.6 and
3.7, an example of the depioyment of ’480  (2x240) such
instruments is shown with a receiver spaciné of 2.5 km.
Duplicate shot sources are requlred at seven locations to
perform the experiment with each source being recorded by

240 recorders.
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3.6 Previous seismic studies

previous seismic studies reveal that the crust in this
région ranges from é minimum of 37 to a maximum of 55 km 1n
Montana. Fig 3.8 shows the compilation of Moho depths in
this region. The early analyses of seismic data to obtain
crustal structures wer; from Maureau (1964) and Chandra and
Cumming'01972). They provided some crustal depths mainly
west of Swift Current. In addition, McCamy and Meyer (1964)
obtained thick, multi-layered crust from 50 to 55 km in
Montana. Recent seismic studies include Sereda (1978), Green
et al. (1980, 1981), Delandro and Moon (1982), Shahriar
(1982), Macrides (1983), Hajnal et al. (1984), aﬁa
Kanasewich and Chiu (1985). Some of the important results
can be summarized as follows: ‘(a) the upper crust is
laterally heterogeneous wiFh P-wave velocities ranging from
5.9 to 6.5 km/s; (b) characteristic low velocity'zqnes may
occur in the upper to mid-crustal regions (Shahriar, 1982
and Macrides, 1983); (c) mid-crustal velocities are
relatively uniform, ranging from 6.5 to 7 km/s; (d) the
p-wave velocities of the Moho ranges from a minimum of 7.8
to a maximum of 8.5 km/s.

The combined refraction and reflection interpretations
also indicate the existence of a major crustal fault within
the Churchill province (Green et al., 1979, and Kazmierczak,
1980), at a‘ longitude of 103°. The fault is easily
delineated by the magnetic data and the change of crustal

thickness across the fault is a least 5 km. Another
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Figure 3.8 Compiled Moho depths in the study area. Dotted

lines are magnetic trends from Fig. 3.2. Lines A, B and C
define the S'R? profiles for this study.
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lineament of some tectonic significance possibly extending
into the study area from the west is a major crusﬁal rift
discovered by Kanasewich et al. (1969). It trend%v
approximately east-west through southern Alberta betweeﬁ
latitudes 50°N and 51°N. The Moho depth§ of the crustal rift
are similar to those in Saskatchewan. It is gystulated that

this crustal rift may extend into the’ Saskatchewan region.

3.7 Data acquisition

In August 1981 the CO-CRUST group conducted a field

program in Saskatchewan to "evaluate the Spatial Seismic

Refraction* Recording (S*R?). ' The COCRUST group inciuded
scientists from fUhiversities’ of Albefta, Saskatchewan,
British Columbia, Manitoba, Western Ontario, Toronto, and
the Department of Energy, Mines and Resources, Ottawa. "The
fiela exper iment consisted"of three’ reversed refraéfioh

profiles and three broadside refraction profiles 'in va

configuration of a triangle (Fig. 3.8). The three refractfé@“:”

4

D B

profiles were labelled as A, B and C and. each had. ‘total

lengths ' of 287.9_km,)288.6 km, 288.4 km respecﬁivel&, Bglyﬁ;;

45 stations were avalaible for one profile at a time, f?ﬁswgf

’,3‘

&
three shots were required for each line, two inline s%%t

plus a broadside shot. All recording sites were selec%f

along available roads and no location deviates more}éhanﬁ

5]

oy
1 km from the straight lines defining the equilateral y

3 5'{:

triangle. The average separation between recording sitesiwas

6.5 km, because the number of receiver stations was 11

"
AR
it
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to 45 stations in this field experment. Elevations,
latitudes and longitudes of all recordimg sites, and shot
locaﬁions were taken from a 1:50,000 topographic map. Time
of shots, receiver coordinates and elevations as well as
instrumentation and shot point information were compiled by
Dr. Hajnal of the Geological Department from the University
of Saskatchewan.

All field data were recorded on magnetic tape and were
redigitized at a rate of 60 Hz because of different
recording systems used in the field experiment. Each record
contains 7200 samples (abbut 120 sec.); and the first three
data words provide information concerning re.eiver number,

shot number, and orientation of the seismometer. The data

~were written in format (5E16.6) with a block length of 1200

samples (4808 bytes). Thus each event con;ists of 6 Dblocks

of data on magnetic tape.

”«

N

P

g,
fAA{¢%gism1c trace is a time representation of ground

.

velocity following the explosion of the source. The

-application of a Fourier transform converts the time-domain

measurements of the seismic trace into frequency domain

measurements and thus the amplitude of each frequency

- components cah be evaluated. A power spectrum is a smoothed

measure of the square of the amplitude for each frequency.
Knowledge of frequency, amplitude, and phase characteristics

are extremely important in designing digital processing
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{

techniques to improve seismic data. ¢

‘The . finite length of seismic data represents the

‘truncation of the infinite data:by a rectangular function.
The dlscont1nu1ty between ‘the beginning and the end of the
~-data creates undesirable sxde lobe effects in the frequency
domain, thus the’ power spectrum of the truncated data may be
negative: at ~ some frequencies. A Daniel window, which
represents the closest inverse of a rectangular window *in
the".frequency domaln, is useful to apply on data to
elimfnate the undesirable effect of the truncated data and

to- reducew the variance of the power estimate. Kanasewich

(1981, P. 121-1124) presented a detailed discussion of the

: theory and vthe computation procedure of Daniel power
‘ . ‘

estlmates and he recommended the use of the Danlel spectral
‘estimate when the data set had 100 to 4000 samples.
A computer program: written by Baxter and Kanasewlch

'-(1984 »perSOnal' communication) was used o compute the

Danlel power spectrum 1n this study. The parameter, m, Which

determlnes the resolutlon was taken to be 4. 1f the-number

.of samples is not’ equal to a powen of 2 zeros are padded at.

the. tail to make the time series a power of 2. Fig..3.9 and

"Fig. 3.}0 show the appllcatlons of a Dtnlel window on

’records (5,57J) “nd (6, 9 1) of the broadside data. Most of

the seismic energy is concentrated between the frequencies 4

and .15 Hz. Singe the receivers of the broadside data were
. ) . » L : : o o -+

all approximately the same distance from the shots, we

: . O . . :

concluded that the frequency content of 'useful' signal

s
: \

W
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- Fiqure 3.9 (a) Plot of raw data, (b) Power spectrgm’éSﬂimate
- of record (5,5,1). The distance is 273.9 km from the'sHot.’

At

)



o RAW DATA RECORD 6, S, 1 [/ it

" 50

—_—

signal

AMPL I TUDE
0

-50

5 g 10 !
T - X/8 (SEC)

b POWER ESTIMATE FOR RECORD 6, S, !
WIN- 4 WIN WIDTH- 2.11 HZ OT- 0.01667

r

-—

LOG AMPLITUDE

o
'

A ]

0 5 10 15 20 25 30
~ FREQUENCY

Figure 3.10 (a) Plot of raw data; (b) Power spectrum

estimate of record (6,9,1). The distance is 272.4 km from
 the shot. :

{

A EEK{‘

C;“



energy was restricted to a range of 4 to 15 Hz,

Furthermore, the power spectrum of the background noise
will be hseful for the filtering of the records. The pover
spectra of several records were computed; Fig. 3.11 shows
'-.two typical ex;mples of such spectfal estimates. The energy
of . the background noise concentrates bmainlY‘ in the
frequencies 0 to 5 Hz énd gfédually decreases beyond 17 Hz.
The abové conclusion suggests that it is appropriate to
apply a bandpass filter of 5 to 15 Hz on all records.

= N
3.9 Bandpass filtering. ‘

A bandpass‘filter is a freguency filter designed to
paés, signal frequencies ih a éarticular band and"tb
attenuate all other freQuencieg.vThe purpose of applying a
banapas§“7filfer .tb seismic signals 1is to extract useful
signais'from a noise background. The dperation of filteriﬁg

is especially effective 1in cases .whgre signal and noise
.?spectra do not overlap over a wide freguency band. Digital
recutsive filters allow the - greatest flexibility in
frequency smoothing, thus a recursive zero-phase bandpass’
Buttgrwof;h filter is wused in .this“study. A Qetéiled
analysis of the'eightbole bandpass gﬁtterwo:th‘filter can béj
foS;d' in Kanasewich (1981,.p. 23;-2770. E%&éi&*{ a bandpass
filter of 5-15 Hz was applied to éil recO%@g v?ollpwing‘ the
conclusions of the power spectral analysis discussed iﬁ the

o

previous section. o : T s

ad
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4. INVERSION OF SASKATCHEWAN SPATIAL REFRACTION DATA

4.1 Comments on refracted waves from the crust

Based ’on tfavel—time analysis, three dominant geismic
waves are observed from the surface down to the upper
mant;é:

1. Pg 1is usually considered to be a refracted wave in the
upper crust, which has a typical velocityvof 5.5 to 6.1
km/s. fhe Pg phase is usually observed up to a Qistance
of 60;100 km. In general, the amplitude of the ég phase
decaxs Ainversely as the square of the distance from the
sourée; beyond 100 km its amplitude becomés very small,
and sometimes is not even observable.

2. The next pfominent phase, which travels in thé lower
crust, is designated as B¥. However,*\;his prominent
phase is only observed iﬁ some regions.(Berry, 1973).
The absence of the P* phase is probably due to lateral
heterogeneities in lower crustal layer. The typical
velocity is between 6.8 to 7.1 km/s.

3. Pn 1s generallfpconsidered to be a head wave which
travels directly beneath the Moho discontinuity. In
general, the Pn ghase is obseryed ta be a first ‘arrival
at distances beyond 200 km.‘Because of the attenuation
and absorption of elastic waves thrbugh tﬁe earth the
~amplitude of a @ure head wave decays raﬁigly beyond the

critical distance. The typical Pn phaseﬂyelbcity in this-

study area is between 7.8 to 8.5 km/5.§w??\

52
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In the region just beyond the critical angle the

. reflected wave and head wave interfere resulting in large

) amplitude arrivals (Cerveny, 1966). The head wave  separates

Lo

t2

from the reflected wave at the end of an interference zone,
and its amplitude is usﬁally about one-order of magnitude
weaker than tne amplitude of the reflected wave. However,
the amplitudes of the head waves observed in field data are
often larger than the theoreﬁital value. Waves interpreted
as. head waves are, In most cases, likely reflected
réfractionsvwhich have trével-time characteristics very near
puré head waves but with much Piarger amplitudes. The
appreciable amplitude of "head waves" imply positive
velocity gradients or curvature of the refracting 1interface
(Cerveny, 1966, and 1971). Thus, an interpretation based
solely on the kinematic characteristics of the waves may not
be .unidug in cases of n-layered media; the dynamic
parameters of.the waves, such as the aﬁplitudes~ and the
shape of  the waves, may help to réduce the émbigbitg of the
solution obtained from *he kinematic propettyw'only. %ince
this study involves on;y the inversion of travel-time data,
it is assumed that the first arrivals observed on field
‘records are pure head waQes.

L

1

4.2 Summary of 1nl1ne refractxon dat%&Q ' ' .

The 1nterpretatlon~ of n11ne v‘gfract on. proflxes from
Macrides (1983) reveals a very compﬂbx..s,ructure- in the
. ) . ’ %& o : . o
crust Dbelow Souén Central Saskatchewad. Figure 4.1 sW8ws a
‘ ‘ ) [ o 'E . ‘ e ‘ - Y " ‘ - ‘. "‘ .

S
:

3 I
2T,
il
.
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section of the refraction profiles from éhot 4 of 1line B.
There are several prominent reflections - (R3 to R8) are
observed in this record section. In general, a very low
noise .level and clear first breaksiare observed on most
record sections. In addition to the’énxlysis of head waves,
the secondary arrivals caniwbelcorrélated and analysed to
,obtain additional information g&*trustal létructure. R3 1is
the reflection from the basement; R4 and R5, the reflections
from the upper crust; R6 and R7, the reflections from tﬁe
top and bottom of a low velocity zone situated in the middle
crust:; R8, the reflection from the Moho. Figure 4.2 shows
the corresponding model of ﬁpot 4. The resulté of
intérpreting (Macrides, 1983) inline refraction profiles
indicaﬁe: (1) low velocity layers occur below the profile A;
(2) there is no evidence of substantiél véria!icn in ;he Pn
velocity which 1is close to 8.13 km/s; (3) the existence §§
crustal f;uiting underlies B and C; (4) crustal thickness
below the study area varies from 37 km to 47 km. In genergi,
the crustal structure in this study area is rather compfex
with significant crustal faulting as well as the existence

of one or two low velocity zones.

4.3 Teét model : ) v ' @J,

The data processing and analysis  of the fie@@fﬂ
:’} .l{

observations are as important as the initial acquisition &f
[

the structural model is to be relatively wunambiguousg: We.

"y

assume that we have both observations of reflected and
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critically refracted waves (Figure 4.3). The objective is to-
test the tomographic¢c method on a synthetic model which
consists of a number of plane interfaces.

The L plane interfaces bounding each layer are defined by
a :
‘a|X5+b;Y|+C|Z|+d| = O, 'l=1, .o . M,

where a,, b,, c, are direction cosines and d., 1is the
distance of the normal to the origin. The strike is given by
o, where.ténai = a,/b, and the dip is B where cosf. = c..

A three-dimensional test model with block faulting 1s
shown in Figure 4.4a. It 1is presumed that the crustal
velocities have been determined previously, and the model 1!s
a horst type of structure, with Moho head wave velocities of
8.2, 8.0 and 8.3 km/sec, respectively, beneath he
three-faulted planes. The spatial séismic refraction
recording was arranged in a 380-km equilateral triangle, and’
each source was only at one of the wvertices. A sparse
receiver network with only 33 stations was modelled as shown
on the surface (Fiéure 4.4a) to simulate a sub-optimal
recording pattern unlike that illustrated in Figure 3.6.
Therefore; in the test model, a sparse network isvsuffi:ientw
because there are no errors 1in the correlation of phases.
Three refraction profiles are arranged in a triangluar forﬁ
and each is shot broadside. In the investigation of thé Mohe
structure, we wuse only the critically refracted and

wide-angle reflected waves in the - damped least squares:
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Figure 4.4 (a) 3-D test model., The location of the recelvers
are shown as crosses along a triangular array on the
surface. The sources are indicated as stars at the vertices.
The three faulted blocks are marked as 1, 2, 3. (b) to (d)
are the reduced travel times of the head waves from Moho
discontinuity for sources St to S3. The dotted line is the
computed initial assumption to the least-squares inversion.

The dashed line is the first iteration, and the solid is the
theoretical value..
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inversion.
g
. - _ ) .
_The ifitial model comprises f%hree horizorfsal planes at

@ )

1ehdepth of 30 km. The maximum difference of depth between
the 1initial model énd tbe'theoretical model is 14 km. We .
consider three cases: (1) the inversion of critical
refraction data only with no error in the data; (2) the
inversion ¢of both critical refraction and wide-angle
reflection éeta; (3) the inversion of both refraction and
reflection data with noise whicﬁ has a standard deviation of
100 msec from the theoretical time.

Figure 4.4b show% the arrlval times of head waves from
sour-e S1. The results from the other two sources are very
similar (ﬁigures 4.4c and.§,4d). In two iterations the model
respcnse timeS'coqyerge within a standard error of 1.5 msecC
from the rbeOEEtécéiirimes. This accuracy is" considered toO
be excelient '/fq:ﬂ crustali‘ seismology- The’ wide-angle

r v . ‘
reflection>aate*constgaiqsithe mode 1 parameters in addition
to 'the heed wave;.. Ig thise'particular model, all the
wide- angle reflectlons are confioed to planes 2 and 3.
Therefore, thé ﬁodel parameters assoclated with planes 2 and
3 can rbe»~determ1ned more accurately because of the

) addltlonal reTlectlon data. Conversely, the model parameters
for plane,1 become less accurate because of the relative
decrease of observatlons. In twositerations, the standard
error from the theoretlcal times is 8.8 msec which is higher

than. the one from refraction data only. However, the

iterated model converges to the theoretical model after

Y
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' 819ht 1teratlons. Flgure 4.5, a to c shows the arrival times

-for both head and reflected waves for: source S1 SZVand s3,
respectl%ely After ‘two 1teraty%ns, the theoret1cal curves
from each source are matched by the damped least squares
‘inversionaprocedure so that it is difficult to d;splay:.the

‘differenoes graphically.
i Furthermore, we tested the hdamoed least—sopares
invers1on for' noisy data. Random numbers having a standard
;.deviation of_100‘ msec ‘weze added to’ the data. In; two
, 1teratlons, the standard error of the data was 94 msec and_A
it remalns aporoxlmately the same up to the flfth 1teratlon.
k‘The model is acceptable after the second 1teratlon Ssince the‘
standard error is 1ower.than the noise level , of 100 msec.
Similar results are ;ohtained if the standard deviation of
‘the n01se 1s 1ncreased by a, factor of 5. The 1terated model
. parameters- are ' reasonably close to(wthe~ theoretlcal‘
parameters,»Fignre«4.6, a to o shows the travel t1me curves .
for"somrceani,x SZV and{,S3,: respectively: At the seCOnd.

LY

1teratﬁbn, {thg “dampédJ &east;squares 'model‘ curves start
Kl .

v%matchrng closely the theoretQCal cuses. In general the~

damped least squares 1nver51on produces\ robust . parameter
ng-factor¥coné%ols the

‘R
.

stlmates-for the model and the dam

I

‘stabllrty and resolutaon of yhe solution. '
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‘Figure 4.5 (a) to (c) Reduced travel-time diagrams for S1 to

83 versus azimuth for both ‘refracted and .wide-angle.

reflected seismic rays. No noise is included. (i) Initial
computed assumption for refracted arrivals; (ii) theoretical

curve and final iterations for refraction arrivals; (ifi)

“initial computed assumption for reflected arrivals: (iv)
travel time for reflected waves after first iteration; (v)
theoretical curve and second iteration for reflected waves.
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4.4 Presentation and comments on spatial refraction data ‘u ®
The spatial seismic refraction recording method was
tested in a sub-optimal experiment over the Williston Basin

in Saskatchewan (1981). Since only 45 recording instruments

were available in an eguilateral triangle 288 km on each
side, there Qere_some notable gapé due to- topography or
instrumental difficulties. Figure 4.7 1llustrates the

surface projections of raysptravérsing below the Moho " 1in

“ this ‘experiment. This technique  produces a high

N

: i . - o ; N :
concentration of common rays intersecting at the centre, as
' . 3 .

well as the area adjacent to the ye

re. From the redundant
B , :

s . 8 _ -
Ne-angle reflectlions we-
h £

expect to yvield a detailled structure at)the target horizon.
I Yy _ g

information ¢f both head waves an

. Ay ° . )
Two methods have been®deployed to display the broadside

. . e . ™ - . .
refraction profiles., The first a l1s to plot

amplitudes of #irst arrivals 'as a functian reduced travel

time versus azimuth (Figure 4.8). The profiles have the time
axlis increasing’ to the bottom to simulate a "weighted.
refraction crustal section™ of the Moho horizon. This form

of presentation simulates a structural section if the head

’ L4

wave and average crustal velocities do not vary greatly

along the three broadside profiles. It is very successful in

identifying travel-t1me\dlscpntxnuftles ahd probable faults

\

on the targét hofﬂﬂ%ﬁ.- . . :

The second approach is to plot amplitudes of ‘wide-ang@
reflection as a function of reduced travel time versus

azimuth (Figure 4.9). If normal  moveout corrections are
. ! A
- . 4] .‘ ) .

AY
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L & meflected wave from the lower ' crus.t and R3 is A;_r‘xe'

subtrSCted, from the observed reflection times, the

dtime-shifged signals for a reflected ‘branch tend to lineup

horizontally. This form of presentation is also successful

~. .
in identifying travel time, dlSCOﬂtthltleS from wide¥ahéle

.

reflection data. Both presentatxons compllment each other to
\5d : A
identify possible fault locatlonshj vEurthermore, the

:f?aw&oﬁatlons of travel time dlSCOﬂtlﬂUltles correspond to major

trends of grav1g§ and?

b

@onf@rm 'tﬁﬁy 90551bie ”‘ault ‘locations in the study area.

Flgure 4.'0 shows the location of the-sources and recerxérs,,

T I

local gravity .and aeromagnetic‘ﬂtrends;"and‘“dhe5 fault
locations which are -‘defined by the giscontinuitiés of
) ’ e}

travel-time data.

Three secondary arrivals have been identified in

Figures. 4.8 and 4.9 as Ri, R2, and R3. Only R' and R3

el

correlate through all sections. In general, R is

1nterpreted as a reflected wave from the miidle crust R2 is

- wlde-angle reflecflon from- the Moho. Detailed analysis of

Ehe secondary arrivals will be discussed 1in the next

@ﬁﬁﬁ sectlon. _ ' - -

J

'.

4.5 Analyses of wide- angle reflect1ons

ﬁmagnetlc anomalxes and this may

-

From the dlscontlnultles in the broad51de data and the

trends of anomalles on grav1ty and aeromagnetic maps, we

Ly

d1v1ded she:,reglon ‘beneath the. study area into three

normally'faulted planes. Figure 4.11 is the expanded map
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Figure 4.10 Map of southern Saskatchewan showing the
location of ‘- the "sources (small stars) and receivers
(crosses) for spatial seismic refraction data. Aeromagnetic
trends and faults are  dashed lines. A, B, and C are
refraction profiles. R, Reindeer-South Indian Lake bé&lt; LR,
La Ronge-Lynn Lake belt; GL, Glennie Lake domain; T,
Tabbernor. fault; FF, Flin Flon-Snow Lake belt. Earthquakes

are shown-as large stars. - :
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showing the locations of receivers and reflection mid-points
as well as fault locatiens. Obviously, there 1s no
reflection data cqmin¢ from plane 1; mest of the feflection
data concentrates on plane 2; and only a reasouable amount
of reflection date comes from plane 3. Therefore, the
,wzde}angle ref ectqous can be used to determine the interval
velocity and structure of planes )2 and 3. However, the

| ;Adamped__leastésquares solut1on of plane 2 is expected to be

Bétter and more reliable than plane 3 because of having more -

‘observatlons

The Object‘ve is to invert the <travel times of

1
\

e‘lectlon E branches R, 3 and R3 by the damped

“ .

.least squa.es algorx*hm dlscussed previously to establish

- %,
.~“the structure of the crust and its interval velocities. The:

inversion procedure f,rst,sclves for the upper "ayers and

then freezes ,the‘ model parameters of the upper layers 1nf

order to §olve'for the lower layers. This approach i's often
termed a "layer‘s;}@pping" method, and it provides speed and
stability in the inversion procedure. Although freezing 1is

. '
not essential, it is wuseful in avoiding 'some model

ambiguities by using fewer variables when ihvertfng travel -

times for deeper‘layers.* . ' Y

s

1 From the analy51s of well logs as well as first-break
;atr1vals, the two sedlmentary layers have the depths “of 3
and 4.1 km and velocities are 3.4 and °© 5.72 km/s,

1 5\ . .

respeétively. These upper two sedimentary layers correspond

to the base of the Mesozoic clastic sequence and the top of
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the crystalline basement. Since the interval velocities and
depths have been determined, the parameters of the two
sedimentary layers remain constant in solving for lhwer
layers,.

Quite prominent amplitudes of the reflected branch RI
were observed 1n ali rhree broadside refraction profiles
(F:g 4.9). In most cases, this horizon can be correlated
through all sections and the discontinuities pf wide-angle
reflections are clearly visible on profiles B and C. Since
no wide-angle reflections reach plane 1, only coefficients
of plane 2 and plane 3 are determined by the daQPed
least-squares inversion. Travel-time data were then picked
from bandpass-filtered broadside sections as well as a
selected portion from inline data. The frequency interval of
the bandpass ueed is between 5 and 15 Hz.

The 1initial modelAconsists of three layers: two upper
sedimentary layess and a third horizehtal layer. The
parameters of the }wo sedimentary layers are assumed %Elbe‘
constant for the inversion. The third layer is the initial
guess"for the ryeflection branch-R1. Its initial interval
veloclity and depth are 6.5 km/s and 16 km, respectively. The

least-squares inversion procedure was then used to determine
PN

the orientation, the depth, and interval velocity of the

plane ?igure 4 12a adlsplays the .structure of the m1ddle;¥f

crust as a result of the 1nver51on of regEected branch R1.
o

The contours. (km) show th deﬁ%ﬂs from the surface to 'the

interface of R1. The travel time data fitted qu1te well with

X

A
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the observations (Figure -4.12, b tbhd)ﬂwyt shows a normal

fault with down thrown side on pl%he ¢3. After Adef

. "m L ‘l‘
iterations, the standard error is 110 msec. jﬁ&s accuracy 18
. . & .

i quite good considering the 'uncertainty in picking the

E ;idé-angle reflections. Furﬁhermore, the standard error
reﬁains appréximately the same at the gffth iteration. This
.implies that the damping factor stab}iizeS‘the solution but
it may not -improve the residuals. This 1is wusually the
tradeoff. between resolution ‘and stability. The interval
velocities on both plane 2 and plane 3 are 6.64 km/s and
6.67 km/s, respectively. This indicates that the formations
on both faulted planes may have similar lithological units.
Plane 2 dips about 5.7° to the north and blane 3 dips about
4.4° to the northeast.
‘ N
Thé inversion procedure continues to model the
travel—t{me data towards greéter depth.” The inversion, of
reflected branch "R2 1is aéhieved» by freezing the model
parameters Of the ‘upper three la&ers. The amplitudes of R2
are quite prominent. In ggneral, the correlation of this
hdrizon is relatively reliable through the sections, and the
discontinuities of trauvel—times afﬁvéigo clearly visible at
line B and C (Fig 4:9). Xfter five ;fératigns, the stahdard )
error 1is also 110 msec. Figure 4.13a éhows the structure of
the reflected brancthZ. The coﬁtpﬁrs»i}?{ showr the Adepths‘
“T‘f%bﬁéwtﬁél;gﬁxﬁhéégiﬂofﬁgﬁé'interfscé'o}/R2. The tfaJLl- ime
. .

curves computed fgom the iterated model matched  thé

observations gquite well (Figure 4.13, b 'to d). The interval

R
4

/

. .
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: zones on both profiles A, B, and C.

l ) .
f‘ /"76

\

velocities on both plane 2 and plane 3 “are  5.92° km/s and
6,1 km/s, respectively The exlstence of low/velocity zones
is also reflected in the 1nl1ne 1nterpretat1on by Macrides.

‘(1983) in -whiCh he found the existence otrthe low velocity

£
{
’

Flnally, ;we carr1ed ti' 1nver51on procedure further to
model the deepest layer - of the Moho. Although the
supercrltlcal Pn arriuals have duite promlnent amplltudes,e
che correlation of Pn’ arr1vals 1s d;fflcult 1n some ‘casesr
_The  locations for the Pn on bpth ends of each broad51de
proflle are guided by the Pn arrléals of the 1inline data.
After four 1teratlons, the standard error is 120 msec.
VFlgure 4.14a shows the structure of the Hoho determined by

- the damped least-squares~ inversion usxng wide-angle

"“wwreflectlons only. The contours (km) show the depths from the

surface to. the ‘1nterface of R3. Next we Wlll analyse the
Moho structure in more detall by¢ 1nclud1ng .the ‘head wave
»arr1valsg}:§he objectlve here’ is to determine the interval
velocitiesJabove the Moho dlscontlnu1ty The .travel-time
curves computed lfrom the‘ 1terated model matches the
observat1ons reasonably well (Flgure 4.14, ¢ to .4d) desplte
'the dlfflcultles and uncertalnty in picking the Pn arrivals.
The ‘1ntervalﬁ‘veloc1t1es forf plane 2 and plane 3 are
6.72 km/s Jﬁa 6.85, km/s,.respectively;‘Plane 2 dips 1.5°
gently to the north and plane 3 also dips approxlmately 1.2°

to the north.-p f
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Figure 4.14 (a) The structure of the Moho (R3) using
“wide-angle reflections only. Travel-time curves ‘for: (b)
shot2; (c) shot9; and (d) shot5. The solid line is from the
field observations. The dashed line-is the final value from

the - least-squares iteration assuming only two faulted
planes. ‘ .
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4. 6 Detetmxnatxon of structure of the Moho

The main ob)ect1ve of this experzment is to attempt to
‘delineate ‘the structure of the Moho. qu concentratlon of
~ common rays 1ntersect1ng ‘at the centre as. weLl as the
adjacent areas prov1des sexsmlc information to construct a
three- d1menszona1 structure of the Moho d1scont1nu1ty Tbe'
first-break arr1vals from the Moho are relatively clear. In
most cases, the observed amplitudes are l:rge enough to
permit reasonably good estimates of the first- break energy. \
The d1scont1nu1t1es of travel times are clearly v151ble on
.proflles B and C .(Flgure 4.8). Head wave arrxvals from
broadside data as well as a selected portxon of 1nlrne data
were picked from the original records. As before, the MomOw
diSCOntinuity in thisnstudy area has been divided~int6~three‘
vnormally faulted planes. .

The head waves (flrst~break arr1vals) were .first'fused
in the damped least-squares inversion process. The . 1n1t1al
'modei consisted of two upper sed1mentary Layers1‘and 'two
intermediate crustal interfaces as diséuSsed previously in
addition to the Moho dlSCOﬂtlﬂUlty The damped least squares
inversion procedure wes used to determ1ne the orlentatLon,
the depth,‘amd velocity of the Moho d}scontlnu1ty for the
three faulted hlocks.‘t | | | o

Figure 4. 15a shows the structure of the Moho- obtained
from the damped least squares inversion of the refract1on'

data. The contours (km) show the depths from the surface to .

the interfaces of the Moho dlscontlnulty Figure 4. 15 b to
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the field observations. The dashed line is the final value

from the least-squares iteration assuming only three faulted
.planes. : -



e . . 80

d, shows the travel-time curves from éach shot. In general,
the computed travel-time curves match with the observations
quite well. In\‘four.iterations,‘ﬁhe standard error is 110
msec and it stayé appf;ximately tbé same . up. to the fifth
fﬁefation:, As before, this implieé that the damping factor
-stabl1zes the solutlon but it may not 1mprove the residgals.
This is wusually the tradeoff between the resolution and
stabality. ;The wide- angle Moho rqflection data may be.
included with the fxrst arrxval head vave data. This opens
the possibility of mlsCOXrelatxon as 1t_1s performed as a
second stage in the inversion procedure, because .a clear and
unigue identification aflwide:aﬁgle' reflections is mostly
doubtful, due to the geological complgxity. Figure 4.16a
shows the nbho structure from both reflection and tefréétioq
data. Thelcontours (km) show the depths from the surface to
thg\interfaces of the Moho discontinuity. This model is-
similar to Figure 4.15a. Figure 4,16, b.to d, shows the
‘travel-time curves from each shot. The computed reflection
and criticél 'refraction curves match quite well with the
observatlons. The standard error after four iterations is
130 msec. On the whole, desplte n01sy data and unceflalnty
in pickiﬁg arrival times, the damped leaét-squares 1nverstpn
pe:forms reasonably well and produces a stable soluﬁion. The
locations of the reflection mid-points are shown in_
F1gure '4.15,'to‘ indicate where thé reflection data is

controlling the structure. The velocities beneath the

" faulted blocks 1, 2, anq(; are 8.20, 8.28, and 8.31 km/s,



* 1
120 160 180
Azimuth degrees
SE 3 :
b "shot 2 d shot 5
o~ o u
gl) : 8 bt TR ! oo
~ (XLJ ‘.
B B
3 3
. 2 I
-4 -t —
80 30 0 300 270 240
o) [ o () o~ "
QO Q
)] n
© @
™~ N ‘
C? C? NG =~ ol
.E-‘ @ LY '~. . E—‘ ® RJ
80 30 0 300 ¢ 270 240
Azimuth degrees Azimuth degrees

1
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. ‘ R . L
respectxvely In general, all three fault planes dip

slightly to the north to northweat w1th dxps of 0.25°*, 1.6°,
Aand 1.58° respecfxvely. 'S
"The,'reliability of the damped least-squares solution
can be measured by its resolutxon and éoveriance matrices.
Aki and Richards (1980 ’p. 675 -699) qave an informative
descrfﬁtion of the upiduesss and rellabllxty of the
least-squares sﬁlutibn. Y The diagonal elements of the
resolution matrix are useful measures ot resolu&@%ﬁxﬁtiﬁ the

»_.lw ‘\'.
Ty, all

diagonal elements of the resolution matrix are'\
model pardme;;rs are uniquely determined. Otherwlée the
estimatee 55 the mode} parameters are expressed as a
weighted average of true values. Figure 4.17a is the
resolutidn matrix for the Saskatchewan model from both~head
waves and wide-angle reflections. The peaks represent the
magnﬁtude, qf ,the diagonal elements./fMost of the seismic
observations are concentrated on the central block, and
their associated parameters are well detefmined since the-
magnitude of the diagonal elements for the reso;ution are
fairly close to 1. Plane 3 has a reasonable amount of
seismic observations, and its solution is reiatively stable.
The estimates of resolution for a,'ahd d,; have values of
0.52 and 0.48. This implies that these two model parameters
cannot be determined as achrately as the other two which
are 0.88 and 0.95. Their estimaies are the weighted' average

of the true vvaluesa Plane 1 has only a few partial rays

passing under it, and 'its solution tends to be unstable. The:
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a resolution matrix

057

~ Figure 4.17 (a) The resolution matrix - from Saskatchewan
spatial seismic refraction data. (b) The corresponding
covariance matrix. Both matrices have dimensions of 12#12,
The order of the elements from 1 to 12 for the model
parameters on blocks 1, 2, and 3 is a,, by, 4., Vi, a3, b,,
dlr Vz. a,, b:lr d!l and vl- ’ )
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model parameters, corresponding to the depth and velocity
for plane 3, fluctuate significantly with each iteration.
Because of this instability, the ridge regression tends to

™ produce a\g relatively large common damping factor to
établilize the solutions, for all three planes. This
decreases the resclution and variances of the solution. Thi;
is also reflected in the covariance matrix (Figuce‘4.17b)

In stmary, the v;riance of the solutions are
relatively small, the maximum being only 0.33, and ve
concluded that the computed model was fairly reliable.
Because of the sparse aata bank and the uncertainties in the

upper Structure, we have opted to accept this model as an

approximation to the real structure.

4.7 Discussion of the results
The three-dimensional crustal structure‘obtained by the
damped least-squares inversion generally agree§ with the
crustal model’from the inline’ refraction model (Macrides,
1983). Since Qq,’have only a small set of ‘ﬁide?angle
reflection data éof determining the structure of the crust,
"Wthek,crustél interfaces in Figures 4.12a and 4.13a are
considered to form a tentative model. The depths to the
middle crust and to "the 1low velocity zone show a slight
discrepancy between this study and the inline refraction
interpretation (Macrides, 1983); The discrepancy is possibly

due to a relatively high interval velocity of the reflection

branch R! obtained by the damped least-squares inversion in-



. 85

this study, The average interval velocity on both plane 2
and 3 is agftt 6.65 km/s. This relatively high interval
velocity causes the interface to be placed at a greater
depth. On the whole, dedpite the nature of the refraction
data and different interpretation techniques 'between the two
studt%s, the crustal structure obtained by this study shows
a similar structure as the inline crustal model (Macrides,
1983) . '

The orientation, and depth of the Moho can be expected
to be-variable from one location to another; The Moho
discontinuity (Figure 4.16a) has depths ranging from 43 km
to a maximum of»49 km in this study area. By comparing the
Moho depths from the inline refraction model, the Moho.
depths in this study -are generally consistent with the
inline interpretation, despite the nature of the refraction
data and differentvmodelling technigues used between the two
studies. However, the Mbho depth at the north end of profile
A shows a significant dif erenéé. The depth obtained by‘
Macrides (1983) was 37 km as cdmpared with the depth between
47 to 48 km in this study. This discrépancy is possibly due
to the poor signal-to-noise ratio of the head waves obtained
from the inline profile A. Hajnal et al. (1984) analysed
another refraction profile just east of profile A by
synthetic hodellings. He concludgd that the Moho ~depth was
between 45 to 46 km (figure 3.8). This confirms that the

minimum depth of the Moho at the north end of profile A is

likely over 45 km as'opposing to 37 km obtained by Macrides
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(1983).

Ferthermore, the horst type structure of the Moho
discontinuity correlates with the geological §nd geophysical
features underlying this portion of central North America.
The study area 1s an area with many prominent features
showing significant activity from the earliest Archaen to
the present time.'ﬁhring‘the Phanerozoic Era the Williston
Basin evolved as one of the largest circular basins on any
cbntinegt with a deposition of nearly 5 km of sediments. It
is pisected by a north-south zone oé small earthguakes
(Figdre 4.10) which are coincident with the fault betgfen
blocks 2 and 3 in Figures 4.15 and- 4.16. Many of the
features on gravity and aeromagnetic maps can be traced from
outcrops in northern Saskatchewén ér in Wyoming so it 1is
possible to ~Zxtrapolate the Precambrain terrain to this
area. The fault between blocks 2 and 3 lies along the
extension of the boundary Dbetween the La Ronge-Lynn Lake
greenstone belt of Proterozoic age and the Reindeer—South

ndian Belt of highly metamorphosed gne1sses and m1gmat1tes
It also marks the North American Central plains electrical
conductivity zone (Camfleld and éough, 1977)7 The fault,
between bloéks 1 and 2, may mark the northern edge of theb
Wyoming Archaen Crétor (Green et al., 1984) or the eastern
limit of the Southern Alberta Rift (Kanasewich et al.,

1969) . \ /

~



“4.8 Conclusions .

The method of spatial seismic refractiqn recording has
been shown to be very promising in yielding
three-dimensipnal strocture. This has been demonstrated by a
sub-optimal field experimei@ ovér theLWilliston sasin in
Saskatchewan. The discontiAuities of travel-time data
correléte quite well to the méjor boundaries of gravity and
aeromagnetic anomalies which in turn idenetify the possible
fault locations.

The derived crustal structure for the study area
reveals significant crustal faulting as well as the
existence of a low velocity zone. The upthrown biock of the
fault is located at the central plane. Faulting‘in the upper
mantle may be related to the faults in the crust. The Moho
discontihuity was found to consist of three fawvlted planes.
The Pn velocities beneath the three faulted planes suggest
that the upper mantle aensity varies as a result of
Jdifferent lithological blocks of the Moho discontinuity.

The above results have illustrated the usefulness of
this new spatial seiémic refraction recording as well as the
tomographic method to determine a complex crustal structure.
The algofithm is fast and efficient in terms of iterations
in producing a stable and plausible model in both test data

and real field observations.
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5. 3-D IMAGING|OF VANCOUVER ISLAND REFLECTION DATA

A

g

5.1 Introduction

The aimo“of ;this chapter is to demonstrate a SElSmlc
tomographic - technique forr_ -obtalnlng 51multaneously
compréssional melocities ‘and threeadimensional ‘structure
' from elastic"waves“reflecged at,anglesV%of incidence " below
the critical _ one. The medium 'consistsl'of‘ piecewise,
homogeneous,‘ and‘ arbltrary three—dimenSionally Curved
1nterfaces of dlfferent elastic propertles. The 1nter£ace is
deflned by a polynom1al surface. The selsmlc waves are
assumed "to be transmltted through or reflected by curved
1nterfaces in which the ray paths satlsfy Snell’ s law. The
-wray trac1ng for each source- recelver pa1r is determlned by
fsolv1ng a system of non- lxnear equatlons and may be used
. @ stand- alone ‘tool for forward modelllng ThlS method- of
~three dlmen51onal trac1ng is fast accurate and eff1c1ent in
,computlng a large group of selsmlc rays 1nclud1ng converted
tphases and multlples. A damped least- squares inversion
"scheme is formulated to construct 1nterval veloc1t1es and a
three- dlmen51onal structure of the reflector by 'm1n1m1z1ng'
t» dlfference between the observatlons ‘and computed travél
ftlmes. This inversion algor1thmv can handle both nonzero

offset and/or zero offset travel-time obserVatlons.

- 88
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“

5,2 Synthetic model

s o

The synthetic . model in this study will be constructed

from pieéegise polynomial surfaces of arbitrafy shape. Since

the medium between ~each successive pait”ﬁf;interfaces is
.’*assumed;tofbe hdmoéeﬁeous,.isotropic and perfectly elastic,
any ray ,connéctihg ;Qd points within a iayer‘isya straight
line (Figure 5.1). The L intérﬁaces boUndingmeach iayer are

defined by polynomial surfaces of ‘the form .
zZ;, = di + fi(x,yj, i = 1, 2, .-.‘.L.

where d; 1is the distancé“qfﬁthe normal to the origin, and
£,(x,y) is a function of x and vy.
| To demonstréte how the method ﬁotks in practice, we /
3 haQe‘included one 'synthétic' model example. ?orf a give?{
geologick model; we genefaged the theoretic;l arrival ti@és
by thfee-dimensional séismiq ray tracing and then apgfied
these data’ tos the inversion procedure. Our technigﬁé has

involved solving the model 'parameters associated /with. a

, R ' ./
polynomial interface and interval velocity between, two

~interfaces by minimizing ‘the difference betﬁeeq the
obsefvationsw and 'Eomputed travél‘ﬁimes.vfhe qombuted model
éag be compared to<-the_‘original ‘and furthgrmore the
performanggi of the method can be evaluatédiby introducing

knowh raqum noise td theiobservations. | |
For the purboSé of this study, pnly_reflected~P ﬁaves

S

are considered; the converted phases and multipiés\ can be

‘o hd



Figure 5.1 Reflected and transmitted ray paths and the
coordinate system used in the ray-tracing algorithm. The

.sol1

d circle is the shot and the square is the receiver.
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" included with a slight modification of the algorithm. The
three -dimensional SynthEth model and ray paths from shots

. to receivers are shown 1n Flgure 5.2. The model consists of

_three reflectors: (1) a dipping Qlane, (2) a cubic-order =

polynbmial surface, and (3) a second-order polynomial
sutfacq,'and glsqthe/gédium is assumed to be ‘homoggneous
and isétropi;, The/;intervai velocities between interfaces
arekZ.O; 3.5 and 4.5“km/5; respectively. Figures 5.3a and
5.3b afe the éxpanded‘ map§ showing‘the shot and receiver
confxgurat1ons in this synthetic model for shots locate at vy
and x1 direction respectlvely Figure 5.3a shows that the
shots locate at the centre of the profiles and each shot
generates five o?servations in the x.direction, including
observations of ze%o offset‘and nonzero offset reflection
data. Siﬁilarly, eécﬁ shot'generates only seven observations
ih the y direction (Figure 5.3b). As an examplé’ of the
efficiency of the ray traéingbalgorithm5it'takes 6.2 seconds
’(E?U time on the Amdahl 470/v6) to trace :70 source and
receiver pairs in this $ynthetic-model} |

The inversion procedure first solves forb the upper
- layers and; then freezes the‘ﬁodel parameters of the upper.
1ayérs in‘ofaéf‘tévsolve;for the lower iayers. For éxample;
in the test model the target horizon is the third interface.
Thus theuupper.two "reflectors are éssumedk to have been
determined; and the coefficients of the upper two interfaces‘
remain cbnstanﬁ in the inversion prpéedure. The travel-time

data reflected from the third interface are generated by
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Figure 5.2 Three-dimensional plot of syn;hetic model and ray
paths from shots to receivers. The solid circles are shots

and the squares are receivers,
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tracing the rays from shots to raceivers through the known

model. Figures 5.3c and 5.3d display' the isochron maps

correspond1ng to .shot and receiver conflguratlon for shots

in y and x direction respectively. The travel-time » data are
’then.appliéd touthe»inver519n algorithm. We first assume the
_initial mbdela of the third interface to be a third-order
polynomlal surface. The objeétive is ;o reconstruct‘ the

interval velocity and second-order polynomial surface of the

\

“third ;nterface startlng from an initial thlrd ~-order

‘polynomial surface. In other words, we try to invert the

travel-time data by the damped least-squares formulation to
'reconstfuctythe interval velocity and structure of ,the third :

1nterface start1ng from an initial guess. The computed model

N

should approach the theoretical model as the number of

/-{”_"\

1terat10ns 1ncreases. Figures 5. 4a to 5.4f show how'/fhe
residual times between the computed and known/m/del change
- after each 1terat1on.vThe residual times decrease rapidly in

the first three ‘1teratlops, and gradually reduces

approxlmately to zero at the 51xth iteration. The resulting

i

7{¥5f' model~ converges exactly to the known model. It requires

13.5 seconds (CPU time on‘the Amdahl 470/v6) to perform éix
iterations in this synthetic model@ |
Furtharmora, we tested the effect of random noise on
the dampad least-squares inversion. Random numbers having a
standard‘deviaﬁion of 20 msec were added to the ~data
éenerated from the known model. In four iterations, the

standard error of the data was 19 msec, and it remained
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;pproximately the same for fifth iteration. Figure 5.5,'a to
f displays the decrease in residual times Dbetween the
computed and the known model for the first three iterations.
The residual timeﬁ,decrease rapidlf éven in the case of the
addition of random noise. The resulting model (Figure 5.6),
with the.;ddition of 20 msec noise to the observations:
converges closély to tﬁe known model (Figure 5.2). In
general, the performance of .this damped . least-squares
inversion is stable and reliable in producing a robust

estimate of the model in the case of data with and without

noise.

5.3 Application to Vancouver Islana reflection data

The tomographic. method is now applied to the
travel-time data from one of a set of fosr Vibroseis ' lines
obtained in 1984 on Vancouver Island as a part of PROJECT
LI;I'HOPROBE. PROJECT LITHOPROBE is a Canadian collaborgtive
gebscientific project 1involving a coordinated program of
geophysical, geological and geochemical'techniques'to obtain.
the three-dimensional properties of tﬁe lithosphere. The
seismic instrumentation consisted of a 120 channel DFS-5
digital recording system employing four synchronized
vibrator sources aldng a geophone layéut with a 90 m group

spacing. The selected vibroseis sections used in this study

~were along a very crooked road. Figures 5.7 is an expanded

map showing the shot and receiver locations. Although it is

' Registered trademark of Continental 0il Company.
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% ' Ve | 4.57 KM/S

Figure 5.6 Three-dimensional plot of ray paths and the model
obtained from the inversion procedure with the random noise

added to the observations.
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Figure 5.7 The expanded map of southern Vancouver Island
shows the shot and receiver locations used in this study.
Solid squares are sources; squares are receivers; crosses
indicate an approximate surface projection of sub-surface
reflecting points.
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a two-dimensional reflection survey, it is possible to
obtain a th:ee—dimensional structure, Pecause the sources
and receivers are on a Erboked line. The reflection .
mid-points, indicated by +'s in Figure 5.7 cover a
three-dimensional subsurface.

Figures 5.8 and 5.9 show two selected records of the
eicellent original field data. Thérg are two prominent bands
of reflectors located approximately at. 5 and 8 seconds.
These two major reflectors are quite Qniform and consistent
throughout ‘all the sections. The first reflector, (C),
around 5 seconds has been called decbllement zone, It Has
Beén interpreted as a detached plate of oceaﬁic cfust that
was emplaced in the Miqcene, about 18 m.y. ago. The second
reflector, (B), is 'fhe top of the underthrusting oceanic
crust which is currently'subducting under the west coast
(Yorath et al., 1985). Both records clearly indicate that
the subduction zone bdips towards the northeast of the
reflection profile. Figure 5.10 displays  the
frequency-domain migratea section in this region. Both the
decollement and the subduction zoﬁes indicate dipping to the
northeast of the reflection profile. |

The analyses of firﬁt—break arrivals and previous
seismic refréction ftudies (McMechan and Spence, 1983,
Spence, 1984, and sﬁhers) indicate that the sedimentary
layer'in this gegion is nearly horizontal and 'its velocity
and thickness.ére 6 km/s and 1.5 km respectively. Therefore,

the sedimentary layer/is‘assumed to be horizontal, and its
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parameters remain constant in'sclving“for'lower layers.

The objective is to determiue the interval velocity as
well as the structure of Both the deéoliement zone and
subductlon zone by 1nvert1ng the trauel—time data. Travel °
times. were picked for both reflectors from. original
recordings. The accuracy of picking the arrivals is about
f10 msec. fo' invert the second reflector, we flrst assumed
uthe initial model to be a cubic,polynomial surface. However,
we found thar several eigenvalues were zero during the -
inversion process. Since we used a small set of vdata, we
expected that the observatlons -mrght not be adequate to
determine the model parameters of\\a\ cubic polynoﬁial
surface. By eliminating all zero eigenqelues, we found that

‘ B
~a plane interface was adequate to model this small set of

data. Durinéz the inversion process the eﬁgenvalue
| correspondiné to the velocity paramerer was quite small,
therefore, two approaches were used to determiue the mocel_
_parameters of the plane iayer: (1) excluding the velocity
parameter in the inversion procedure, (2) including velocity
paramerer"in the inversion procedure. Both approaches
yielded very similar results. I will display only the result
from the second approach, and also I show an example later
how rhe damping (factor ‘affected the resolution matrix in
‘these‘two‘cases; Figure 5.11 -shows the’ structure of the
decollement zcne obtained. from the damped least-squares

inversion. In four iterations the standard error is 14 msec

and this ‘accuracy is excellent in crustal seismology. The
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Figure 5.11 The structure of the decollement zone obtained
from the inversion procedure. '
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decollement zone dips approximateiy 1.6° to thevﬁortheast,'
with a minimqm‘depth of about 14 km. ’

The inversion of the} subduction zone is achieved by
freézing the model paramters of the first two layers. As
before, a plane interface is adequate to fit the
observations and also the eigenvalue corresponding to the

velocity parameter is small. Figure 5.12 displays the

structure of the subduction zone obtained from the inversion

procedure. In five'iterationé the standard error is 24 msec

and this accuracy is acceptable because of the difficulty
And ‘uncertainty in picking the travel times. The subduction
zone dips approximately 8.4* to the northeast and has " a
minimum depth of about 25 km.

The reliability ofvthe damped least-squares golution

can be measured by its resolution and covariance matrices.

The diagonal elements of the resolution matrix are a useful

measure of resolution. As before, if the diagonal elements

Ty ‘
_ of the resolution matrix are unity, all model parameters are

uniquely determined, Otherwise, the estimates of the model
parameters are expressed as a weighted average of ’the true
values, Figures 5.13a and 5.13b are the resolution matfices‘
for the subduction .zone in two cases: (1)' excludinq¥ the
velbciﬁy paramete;~ in the inversion procedu;e, and (2)
including the velocity parameter. The peaks reﬁresent the
magniﬁude of the diagonal elements. If the Qelocity
parameter is not included in the inversion procedure, the

fluctuation of the solution due to the small eigenvaluefis
‘:’\
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Figure 5.13 The resolution matrices for the subduction zone.
The order of model parameters from 1 to 4 is 4, b, a, and V.
(a) velocity parameter is not included; (b) velocity

parameter is included.
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eliminated. Therefore, all the parameters of the plane
should be well determined. This reflects in the resolution
matrix, for the magnitude of the diagonel eibments for the
resolution matrix are fairly close to 1]J(Figure 5.13a).
However, the model parameters are not uniquely determined
for the addition of the velocity parametef in the inversion
process. The estimates of the resolution for the parameters
a and b are 0. 84 and 0.93 respectively, but the estimates
for the parameters d and V have the values 0.52 aqd 0.48
respemtiVely (Figure " 5.13b). This implies that - their
estimates are a weighted average of the true solution‘and
also the paremeters d and V are correlated to each other.
The corresponding covariance matrices in these two cases are
shown in Figures«5.14a and 5.14b. The magnitude of the
diagonal elements’for the covariance matrices are relatively
small, we concleded that the computed model was fairly
reliable.

Seismic data are often displayed in a form such that
the reflection "events" appear to be directly below the
receiver stations as if the elastic waves have travelled
vertically down and back to the surface. This will represent
the true sﬁbsurface positiom only if the reflecting zones
are horizontal. Where there .is dip the true reflecting
‘postion may be found by "migrating" the dipping segments to
such a position that the ray paths are normal to the
refletting surface. The change in reflection time between

adjacent traces (apparent dip) can be used to determime the
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4 The covariance matrices for the subducted plate.

Figure 5.14
The order of model parameters from 1 to 4 is'd, b, a, and V.
(a) velocity parameter is not included; (b) velocity

parameter is included.
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actual posiﬂion along the profile of the reflecting surface..
The true reflecting points are displaced bo:h'laterally and
vertically from their recorded positions. Transformation of
apparent reflecting‘positionsvto true positions is referred
as migration. Because of the crooked lines, each
source-receiver pair had to be considered individually in
the migratidn process.. An algorithm that had as its input
the northing, easting of each source and receiver, _tﬁé
travel time and tﬁe stepout time(i.e. the first derivative
with respect to horizontal distance) was written.

Structural maps of both the decollement and subduction
zones are generated by simple ray migration. The dipping
segﬁentsb of reflection ‘'events' are migrated back to a
position that the ray paths are normal to the reflecting
surface. The migrated positions of depths are displayed on
Figure 5.15 and 5.16. The structural maps of the top of the
decollement and subduction zones (Figures 5.15 and 5.16) may
be more complicated because of the existence of faults. In
general, both horizons dip to the northeast. The contours of
both structural maps are generated by linear extrapolation
among the depths obtained by the simple migration of four
reflection profiles. Because of the sparse data in this
region, the maps only indicate the approximate structure of
both'zones. To confirm the usefulﬁess of the inversion
procedure, we Afound that £he computed model obtained from
the " inversion ; procedure was consistent with the

interpretation from the structural maps.
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"Figure 5.15 Structural map of the decollement zone obtained
by simple migration. ‘ :
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5.4 Conclusion

The three-dimensional ray-tracing ,aigorithm has been
shown to be fast, accurate, and efficient in tracing seismic
rays from sources to receivers - through a number of
polynomial surfaces. The seismic tomographic technique has
demonstrated in both synthetic data, with or without noise,
and with real’ field»observations,‘to produce a stable and
plausible model within a few iterations. ?urthermore, this
technique is particularly useful for 'imaging the
three-dimensional subsurface when the seismic lines are
constrainted to paths along crooked mountain roads.

The quality of the %ancouver Island reflection record
sections is much better than those obtained in deeper
crustal studies anywhere in the world. This has allowed us
to image clea;ly the modern underthrusting oceanic plate and
an older sléb making up the crust of Vancouver Island. The
process of crustal  thickening by overthrusting and
underthrusting is demonstrated clearly in Figure 5.10. A
schematic diagram of the underthrusting slab is also shown

in Figure 5.17.
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6. CONCLustNs

' 'The major accomplishments and conclusions of this ~

the51s are summarlzed here,

1. ‘A nevw three d1mens1onal ray traclng algorlthm has been
developed for use in‘ seismic tomography’ where ‘the

1nterface.'can be modelléd by'discontinuous, or faulted,

A

plane surfaces described by a. polynomlal of any degree.

,“TheL method 1is fast, accurate and efficient in tracing
; . . 3

;eismic'rays fromhsourceS”to receivers through a = number
of polynonial surfaces,;including intersecting surfaces
of plane interfaces. . |
2. The ‘inversion scheme. demonstrates the pviability__of
’constructlng . the . three dlmen51onal structure and
velocity from seismic refraction and/or reflectlon data.
3. The new spatlal refraction recordlng developed by E. . R.
;Kanasew1ch proves to be ~very promlslng in locatlng'

L

‘possible faults and dellneatlng the three—dimensional

.\A‘

‘structure of»the crust.
' 4., The large separation between recording sites”ﬁZbout
6.5 km) for the Saskatchewan data and the use of only a

'small portlon of * Vancouver Island -data 11m1t us to
assumlng a plane layered model in . both cases.
L}
5. The crustal structure beneath southern Saskatchewan

oo

shows the existence of a low velocity zone and
significant crustal faults, defining a series of
north-south trending blocks. This anomaly correlates

well with the gravity and aeromagnetic anomalies. The
. . *h \\ - - - '
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faults on the Moho are clearly}defined by the seismic

"‘data and have vertical displacement of up to 5 km in a

crustal.sectlon nearly 50 km thick. °

The‘:tomographic‘ technique has been used effectively to
obtain three-dimensional strncture and Qe;ocity from
seismic reflection data obtained during PROJECT
LITHOPROBE" Phase 1, on’Vancouver Island. Imaging by the

seismic tomographlc technlque has deTonstrated that the

El

subductlng plate under Vancouver Island dlps at® 8° to

10° wunder -the North Amer1can contlnent and shows some

significant curvature that needs ‘to be, studied in

greatervdetail.

. The magnitude of the singular values indicate how well’

the model parameters -are deg?rmined; The eigenvalues
corresponding to the velocity 5parameters in both the .
Saskatchewan and Vancouver Island data were an order of
magnltude "smaller than the parameters of the planes.

Thus the parameters of the plangs are relatively

, well-determined compared to the velocity parameters.

Furthermore, the velocity - -ameters correlate with the
depths‘of the planes. The resulting models were we%ghted

averages of the true structures“of the earth..

)
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APPENDIX ---COMPUTER PROGRAMS

THIS PROGRAM DESIGNED TO DETERMINE THE CRUSTAL
STRUCTURE OF SASKATCHEWAN SPATIAL REFRACTION DATA.

IT COMPUTES SEISMIC RAY TRACING WITH SPECIFIED
END POINTS IN LAYERS OF CONSTANT VELOCITY AND PLANE
LNTERFACES.

IMPROVEMENT OF MODEL BY DAMPED LEAST-SQUARES ITERATIONS

DIMENSION X1(40), A(20), B(20), C(20), D(20)
DIMENSION X(40), (20) v(20) VT(ZO) F(50),FCN(20)
DIMENSION XRCR(100) YRCR(100) ZRCR(100) AZM(100)
DIMENSION DIST(100), RMATR(3OO 20), w(20)

DIMENSION TOBS(140),T(140), TERR(BOO) TNPT(20)
DIMENSION WK(3000), PAR(ZO) AJINV(SO 50), COEFF(20)

REALAAMATRX(3OO,20), U(300, 20) (300 20)
REAL FLOC1(4), Froc2(4), SCALE(ZO)
INTEGER IFACE(ZO),IFAULT( 0),INDEX(10),IDER(20)

INTEGER IVDER(20), JCHAR(70), ID(140)
COMMON/ABCD/ NP, A, B, C, D, IFACE

COMMON X
COMMON,XYZ/ X0, YO ,™
COMMON /FCEPT/X 1CERT XN

, XN1, ¥YN1, IN1
EPT,X2CEPT, Y2CEPT, XF 2LCN

EXTERNAL CALFUN
DATA INDEX/10%0/

UNIT 1 -- OUTPUT FOR JACOBIAN MATRIX
UNIT 2 -- OUTPUT FOR RESOLUTION MATRIX
AND COVARIANCE MATRIX
UNIT 3 -- OUTPUT FOR PLOTTING TRAVEL TIME CURVES
UNIT 4 -- %SINK#*
UNIT 5 -- INPUT DATA
UNIT 6 -- OUTPUT DATA
UNIT 7 -- INPUT DATA FOR ITERATION IF IREAD=9S
UNIT 8 -- TEMPORARY STORE FILE FOR UNIT 7
FORMAT(1016)

FORMAT(1016)
FORMAT(I5, F14.6, 10E16.6 )
FORMAT(12F12.6)

FORMAT (216, 6E16.6)

FORMAT('0 NSO1A ROUTINE IS USED' )
FORMAT('O NLSYST ROUTINE IS USEZ')
FORMAT(1016)

FORMAT(A4)

FORMAT( 10F14.6)
FORMAT(10F 14.4)
FORMAT(12F9.4)

129



33 FORMAT(I6, ?k 12F9.4) : g

. (
40 FORMAT( 16 5F12.4).
45 FORMAT( I7, 10F12.4)
50 FORMAT(I6, T0F12.4)
55 .FORMAT('0 INPUT OF X, Y, v ,17, 4F10.4)
54 FORMAT (' THE INDEX OF . 1 FROM NLSYST =', 13)
67 FORMAT('O TIME FROM MODEL ', 10F10. 4)
68 FORMAT('O TIME RESIDUALS ', 10F10.4)
69 FORMAT('STANDARD ERROR ESTIMATE= ', (F10.5,
&, "ERROR MEAN=' F10.5)
70 FORMAT(" DAMPING FACTOR =', F10.5)
71 FORMAT(' ERROR -- NPTS .LE. NC' )
72  FORMAT(' ERROR RETURN FROM SVD ROUTINE', I6)
73 FORMAT(' ERROR ESTIMATE FROM SVD/, F12. 5)
74 FORMAT(' OLD COEFF OF MODELS ', 40F9.4 )
76 FORMAT('INPUT IRC: (I6)'/,. S

00

L

@ OO(\OZO(")(')OOOOOOOOOOOG'OOO,O_OOOO

+ ' INPUT NPARS(I6) ')
77 FORMAT(1016) '
79 FORMAT(2E12.6) ,
80 'FORMAT(' NEW COEFF OF MODELS ', 10F9.4 )

2]

WK -- WORK VECTOR LENGTH
_ MODIT -- NUMBER OF ITERATIONS FOR THE MODEL
MAXIT -- MAX NUMBER OF ITERATIONS TO SOLVE THE NONLINEAR

DELT =

DMAX =
ACC =
IDIM =
KLAYER

SYSTEMS.

THE STEP SIZE FOR THE PARTIAL DERIVATIVE
THE TOLERANCE OF X °
THE . TOLERANCE OF FUNCTION CALFUN

MAX NUMBER TO CALL FUNCTION CALFUN

GENERAL ESTIMATE OF DISTANCE FROM SOLUTION

D

=

NP = MAX

 INDEXF
IFAULT
ISCASE

% RELERR

n

U

ACCURACY

IMENSION OF THE PROBLEM

THE K- LAYER(PLANE) TO START WITH
NUMBER OF PLANE IN THE MODEL

NUMBER FO THE FAULT PLANE .
CONTAIN E INDEX OF FAULT PLANE

- SPECIAL SE IF ISCASE .GT. O

SED FOR GEN RALIZED INVERSE TQ DELETE

- SMALL EIGENVALUES.
IF (ISCASE.EQ.1) THE 1ST PLANE NOT USE IN THE SOLUTLON
OF THE ITERATION IN THE MODEL CONTAINING 2 FAULTS.
IF (ISCASE.EQ.2) THE 2ST PLANE NOT USE IN THE SOLUTION
OF THE ITERATION IN THE MODEL CONTAINING 2 FAULTS
VR -- THE REDUCTION VELOCITY

IF (JVR.GT.0) TOBS = TOBS + DIST/VR

IF. NORFL.GT.0 DON'T 'COMPUTE DERIVATIVE OF VELGRITY

NUFAUL -- THE FAULT INFO. FOR CRUSTAL LAyga%

MDIM
NDIM
RAD =

8.0

3.

300
50
14159/180 0

@
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IUNIT = 7
READ IN PARAMETERS FOR.THE NONLINEAR EQNS

DO 19 1=1,40

X(1) = 0.0 |
F(1) = 0.0 o - -
CONTINUE

READ(5,11) IFLAG,ISUB,IPRINT,JACOB,NSHOT ,NUPLAY,
& ° IHOERL, ISCASE ‘ ‘ _
"READ(5,15) MODIT, MAXIT, DELTA, XTOL, FTOL, TTOL

WRITE(6,15) MODIT, MAXIT, DELTA, XTOL, FTOL, TTOL

READ(5, 12) MAXFUN, DMAX, 'ACC,RELERR,CONST,DFACTR
"WRITE(6,12) MAXFUN, DMAX, ACC,RELERR,CONST,DFACTR

READ(5, 10) IDIM, KLAYER, NP, INDEXF, NORFL '

WRITE(6,10) IDIM, KLAYER, NP, INDEXF, NORFL,

"

READ THE PLANE COEFFS -

MAKE SURE ALL THE COEFFS OF c(1) = 1.0

IF ( ISUB .EQ. 1) WRITE(6,16)
IF ( ISUB .EQ. 2) WRITE(6,17)

\
~ READ IN INTERFACE INFORMATION

300

21

22

23

DO 300 I= 1, NP
READ(5,14) A(1), B(I),
WRITE(6,14) A(1), B(I),
CONTINUE :

c(1), D(1), VT(I)
( (1), vT(1)

(1), DI
c(1), D
READ IN.LOCATIONS OF THE FAULTS

READ(5,14) (FLOC1(I), I=1,4)

READ(5,14) (FLOC2(1), I=1,4)
N \ - ‘

READ IN THE FAULT INFORMATION

IF (INDEXF) 21, 21, 22

IFAULT(1) = 0 ’

GO TO 23 o

READ(5,20) (IFAULT(I), I= 1, INDEXF)
WRITE(6,20) (IFAULT(I), I= 1, INDEXF)

CONTINUE -
L1 = 1

DO-400 L= KLAYER, NP
IF( L .EQ. IFAULT(L1!) ) GO TO 330

DO 395 J=1,20
DO 395 I=1,MDIM,
. AMATRX(I,J)=0.0
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395 CONTINUE
NEQ = POINTS OF VERTICES IN THE PLANE
NPTS = NUMBER OF RECIEVERS
NFPTS = NUMBER OF FAULT POINTS TO BE DELETED
NC = &
NCMAX = ¢
ERSAV = -999
ITER = -1
499 ITER = ITER+!
' TMEAN = 0.0
ERROR = 0.0
ICNT =0
ICT = 0
NPDMAX = O
o
1F (ITER) 406,406,403
403 NUM = 6+NP+INDEXF
*  REWIND 5 .
C
DO 404 JJ1 = 1,NUM
. READ(5,24) DUM
404 CONTINUE
C .
C . READ IN UPDATED INPUT IF ITER>O
C o :
REWIND 7
REWIND 8
406 CONTINUE
o
DO 460 JJ=1,NSHOT
NPDER -- NUMBER OF PARTIAL DERIVATIVE ,é :
ISORIG -- = 0 IF SHOT 1§ AT L.H.S OF THE ORIGIN
= 1 IF SHOT IS AT R.H.S OF THE ORIGIN
TSRCR -- INTERCHANGE THE SHOT WITH THE RECIEVER
IREAD =99 - READ IN INPUT FROM FILE 7 )
IF IFSHIF.LE}0 THE.LOCATION OF FAULTS NOT CHANGED
IF IFSHIF.GT.0 FAULT 2 IS.SHIFTED TO FAULT !
1F IREFR .GT. 0 -- REFRACTION DATA
IF IREFR .LE. 0O -- REFLECTION DATA
1F NOBEL,¢§@.O‘INNERTﬁREFUECTION DATA ONLY
IF NdﬁF@ﬁ%@E.o INVERT BOTH REFRACTION AND REFLECTION
" g z
JVR_é&ﬁ ;
READ(5, 10)NEQ,NPTS ,NFPTS,NPDER, ISORIG,ISRCR,
& IREAD, IFSHIF ’ o e
READ(S5,10) IREFR, JVR, NUFAUL , T4
IF (NPDER .GT. NPDMAX) NPDMAX=NPD%§§
o CX
¢ | A
C (£0,Y0,20) -- SOURCE. (XN1, ¥YN1, ZN1) -- DETECTOR
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READ(5,30) X0, Y0, z0, VN1

XSAVE = X0
YSAVE = YO
ZSAVE = 20

DO 401 K = 1, NPTS e : .
READ(5,40)ID(K),XRCR(K), YRCR(K) ,AZM(K) ,DIST(K) ,TOBS(K)
IF ( JVR.GT.0) TOBS(K) = TOBS(K) + DIST(K)/VR
ZRCR(K) = 0.0

C CONTINUE . "7 = 33, i

= NEQ+1

v o e |
ég¥\{REFR LE.0 .AND. NPDER.EQ.2) '
+ CALL LINE(X0,Y0,XRCR(1),¥YRCR(1),FLOC2,X2CEPT, Y2CEPT)

INDEX(1) INDICATES .THE NUMBER OF POINTS TO INSERT

OR DELETE TO A VECTOR. E.G. INDEX(1)=1 , THE
X VECTOR IS ADDED OR DELETED AT X(I), AND X(NEQ+I)
BY PAR(1) AND PAR(INDEX(1)+1)

DO 402 I1=1,10
"INDEX(1) = 0

‘IF (NFPTS ) 35, 35, 36 g
" READ(5,20) (INDEX(I), 1=1,NFPTS)
NPAR = 2*xINDEX(1)

CONTINUE

IF (NPDER) 38,38,37 -
READ(5,20) (IDER(I),I=1,NPDER)
CONTINUE ‘ '

INPUT HERE HAS TO INCLUDE ALL LOCATIONS OF THE FAULTS.
‘-THOSE FAULT LOCATION (X VECTOR) WIL BE DELETED BEFORE
CALLING ROUTINE NSO1A. =

IFACE AND V VECTORS STILL CONTAIN THE INFORMATION OF
THE FAULT AND WILL NOT BE. DELETED.

INDX = 0 : ’ :
IF (IREFR.LE.O .AND. NPDER.EQ.2) INDX=IDER(2)-
DO 410 I = 1,NEQ ‘
READ(5,50) IFACE(I1), XX, YY, V(I)
- X(I) = XX : ,
X(NEQ+I) = YY
IF (I.EQ.INDX) X(I)=X2CEPT
IF(I.EQ.INDX) X(NEQ+I) = Y2CEPT
WRITE(6,55) IFACE(I), XX, YY, V(I)
CONTINUE '

IF. (IREAD.EQ.99) GO TO 415
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56
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53

IF (INDEX(1)) 412, 412, 413
CALL DELETE( X, NEQ, PAR, INDEX)

4

LX = 2sNEQ
CONTI&UE '
N 3-D NEED TO SOLVE NEQ*2 LINEAR EQUATIONS

NEQ1 = NEQ .
IF (IDIM .EQ. 3) NEQI= NEQ¥2

!

""CONTINUE

DO 430 J= 1, NPTS
 ZN1 = XRCR(J)
YN1 = YRCR(J)
ZN1 = ZRCR(J)
IDUM = 0
IF (ISRCR) 306,306,305 .

INTERCHANGE THE BETWEBy SHOT AND RECIEVERS

X0 = XN1

Y0 = ¥NI! E o : \
20 = IN1 N : ‘
XN1 = XSAVE

YN1 = YSAVE .

ZIN1 = ZSAVE » -
CONTINUE _ . e

IF (IREAD.EQ.99) CALL READF (IUNIT,NEQ, IFACE X, VN,
+ NFPTS,PAR, INDEX, NPDER, IDER)

NEQ1 = NEQ |

IF (IDIM.EQ.3) NEQ1 = NEQ%*2

11 = 10 |

WRITE(6,32) (V(I), I=1,NV)

IF (ITER) 58,58,56

DO 57 I=1,NPDER.

IVPT = IDER(I) _ , )
1IF ( 1.EQ.!1 .AND. IREFR.GT.O0) IVPT=1VPT+1
J1 = IFACE(IDER(I))

IDF = J1 :

IF (I.EQ.2 .AND. NPDER.EQ.3) J1 = J1 -1
1F (IREFR.GT.0) V(IVPT) = VT(J1)

THE CASE OF FAULT IN CRUSTAL LAYERS FOR REFLECTION DATA

IF (IDF-IABS(NUFAUL)) 52, 53,52
IDIFF = ISIGN(1,NUFAUL)



52

C
C
C

C
908

C

C

c 91

57
58

310

315

320

321

v 323

324

IDF = “IDF + IDIFF
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IF ( IREFR.LE.O .AND. NORFL.GT.0) V(IVPT) = VT (IDF)

GO TO 908
CONTINUE

ADD THESE 2 STATEMENTS FOR REFLCETION

IF ( IREFR.LE.O .AND. NORFL.GT.0) V(IVPT) = VT(J1)

1IF ( IREFR.LE.O .AND. NORFL.GT.0) V(IVPT+1)
CONTINUE

WRITE(6,910) IVPT, J%, Cv(IVPT), VT(J1)
0 FORMAT(' VTEST ', 215, 2F10.4)
CONTINUE ‘
CONTINUE

WRITE(6,32) (V(I), I=1,NV)
IF (INDEX(1).LE.0) GO TO 435
COMPUTE THE LOCATION OF THE FAULT

IF (IFSHIF) 310, 3l0 315

XF2LCN = FLOC2(1)

CALL LINE(X0,Y0,XN1,YN1,FLOC!,X1CEPT, Y1CEPT)
CALL LINE(XO,YO,XN1,YN1 FLOC2,X2CEPT,Y2CEPT)

GO TO 320

XF2LCN = FLOC1(1)

cALL LINE(X0,Y0,XN1,¥N1,FLOC2,X1CEPT,YICEPT)
CALL LINE(X0,Y0,XN1,YN1,FLOC1,X2CEPT,Y2CEPT)
CONTINUE

IF (INDEX(1).EQ.0) GO'TO 325

II = INDEX(1)

GO TO (321, 324), II

IK = INDEX(2)

12 = IFACE( IK)

ITEST = IABS( 12 - IFACE(IK 1))
IF ( ITEST.EQ.2) GO TO 323
PAR(1) = X1CEPT

PAR(2) = YICEPT . )

GO TO 325

PAR(1) = X2CEPT

PAR(2) = Y2CEPT

GO TO 325 '

PAR(1) = X1CEPT

PAR(2) = X2CEPT

PAR(3) = YICEPT : E .
PAR(4) = Y2CEPT :

= VT(J1)

i

q
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325

IN RABINOWITZ
NONLINEAR ALEGRAIC EQUAT

CONTINUE

SOLVE THE SYSTEM OF NON-LINEAR EQUATION

ROUTINE NSO1A CAN BE FOUND IN THE FOLLOWING
REFERENCE:
POWELL, M. J., A HYBRID METHOD FOR NONLINEAR EQUATIONS,
P., ED., NUMERICAL METHODS FOR
1ONS, GORDON AND BREACH INC.

435 IF (ISUB .EQ. 1)

ANO00ONONONNN0O000Nnn0n

440

(@]

OO0 n0n

445

c

+ CALL NSO1A(NEQ1,X,F,AJINV,NDIM,
+ MAXFUN, IPRINT, WK, PAR, INDEX) |

+ CALL RAYM(NEQ,X,IFACE,
+ IDER,ISRCR,ISORIG,NU?LAY IALTR)

LAST USE FOR THE LAST SEGMENT I

IF ( ISUB .EQ. 2)'

136

Q
5

DELTA ,DMAX,ACC,

+ CALL NLSYST(CALFUN NEQ1,MAXIT, PAR, INDEX,X,F,DELTA,

+ XTOL, FTOL, 11)

CHECK FOR THE DIFFERENT CONFIGURATIONS OF THE
FAULT MODELS

IF (ITER.GE.0)

IDUM= IDUM+1

IF (IALTR.EQ.1 .AND. IDUM.LT.2) GO TO 435

D,V,VT, NFPTS, INDEX PAR NPDER, %

IF (INDEX(1) .GT. 0) CALL INSERT(X, NEQ, PAR, INDEX)

LX = 2#NEQ |
WRITE(6,32) (X(1), I=1,LX)

DO 440 I=1,NEQ
2(1) = ZF(I)
WRITE(6,33) 1D(J), ( 2(I), I=1,NEQ)

CALL TIME(X, Z, V, NEQ,‘TSUM, TNPT)
T(J) = TSUM

SET UP THE JACOBIAN MATRIX 3
IDF -- THE ID NUMBER OF THE INTERFACE

IF ( JACOB-99) 449,445,439
IF( NPDER.LE.0) GO TO 44§
ICNT= ICNT+1

DO 446 IK = 1,NPDER
. K1 = IDER(IK)

IDF = IFACE(K1)

IVPT = K1

IF ( IK.EQ.1 .AND. IREFR.(0.0) IVPT=IVPT¥1

LAST = NPDER-IK

N MODEL .OF 2-FAULTS
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IF (NPDER.EQ.!) LAST = 99

PDERR -- ROUTINE TO COMPUTE PARTIAL DER) OF 2-FAULTS OF
REFRACTION DATA : :

PDERL -- ROUTINE TO COMPUTE PARTIAL DER{ OF REFLECTION
DATA. NO FAULT IS CONSIDERED.

IF (IREFR.GT.0) CALL PDERR(X,Z,NE 'K1,IVPT,FCN,
& LAST,NPDER)
1F (IREFR.LE.0) CALL PDgRL(x,z,NE ,K1,IVPT,FCN, IDF)

\\FHE CASE OF FAULT IN CRU;f;L LAYERS FOR REFLECTION DATA

442

sXeXeXe!l

OO0

C

C

C

443

I

444
446

449

330
335

337

IF (IDF-IABS(NUFAUL)) 443,442/443
IDIFF = ISIGN(1, NUFAUL) -
IDF = IDF + IDIFF

. CONTINUE

. ' .
THIS 1S SPECIAL CASE OF MIDDLE LAYER OF THE HORST
IF (LAST.EQ.1 .

. DER.EQ.3) IDF=IDF-1
IF ( IDF.EQ.ICASE)

‘TO 446

NCOEF = 4
NCOEF1 = 3

F NOPERV = 0 -- NOT INCLUDE VELOCITY AS A PARAMETER

NOPERV = 1
IF (NOPERV.EQ.0) NCOEF = 3
IF (NOPERV.EQ. Q¥ NCGEF1 = 2

k2 = ( IDF-(NUPLAY+1) )#NCOEF + 1
NCC = K2 + NCOEF1 ‘
11 = Q

IF ( NCC .GT. NCMAX) NCMAX=NCC
DO 444 I=K2, NCC
I1 = I1+1
 AMATRX(ICNT,I) = FCN(I1)
" CONTINUE

"WRITE(1,32) (AMATRX (ICNT,I),1=1,NCMAX)
CONTINUE .
H
 WRITE(S,20) NEQ, NFPTS, NPDER
1IF (NFPTS) 335,335,330
NPAR = 2%INDEX(1)
WRITE(8,20) (INDEX(I), I=1,NFPTS) é}"
CONTINUE o B -

.IF (NPDER) 338,338,337
WRITE(8,20) (IDER(I),I=1,NPDER)
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c

0O o 0o annon

0

345

430

CONTINUE

ITEST = NEQ-NUPLAY
INDEX (NFPTS+1) = 0
JD = 2

DO 3451 = 1, NEQ
1DUM = INDEX(JD)

WRITE(8,50) IFACE(I), X(I) X (NEQ+I

IF ( I.GT.NUPLAY .AND.

1IF ( I1.EQ. INDEX (JD)) WD=JD+1

CONTINUE

IF (NFPTS .GT. 0) CALL DELETE(X, NEQ, PAR,

CONTINUE
WRITE(6,54) II
WRITE(6,67) (T(I),

DO 450 1 = 1, NPTS
ICT = ICT+1

1=1,NPTS)
) COMPUTE ERROR ESTIMATE

 PERR(ICT) = TOBS(I)- T(I)
TMEAN = TMEAN + TERR(ICT)
ERROR = ERROR + TERR(ICT) *%2

450

460

" CONST = CONST#DFACTR

USE FOR PLOTTING 3 D TRAVEL TIME CURVES

&

IDD = ID(I)
IF (IREFR.LE.O .AND.

IDD.GT.0) IDD = ID(I)#(-1)

WRITE(3,45) 1DD,XRCR(I), YRCR(I),AZM(I),DIST(I

TOBS (1), TERR(ICT)
CONTINUE

CONFINUE

"TAVE TMEAN/ICT

WRITE(6,68) (TERR(I), I=1

ERROR = (ERROR/ICT)**O 5
WRITE(6,69) ERROR,TAVE
WRITE(4,69) ERROR,TAVE
IF (ERROR .LE. TTOL) GO TO 400

( ,1CT)
WRITE(4,68) (TERR(I), I=1,

1CT)

IF (ERROR .GE. ERSAV ) CONST =

WRITE (6, 70) CONST
WRITE (4,70) CONST

CONST/DFACTR

),v(1),2(1)

)

1.LE.ITEST .AND. 1.NE.IDUM)
+ WRITE(2,50) IFACE(I) (1), X(NEQ+I),V(I),Z(I)

INDEX)

,T(1),

138



465

OO0

466

467

461

F

NnNONOOOOO O

473 CALL SVD(MDIM,ICNT,NCMAX,AMATRX,W,.TRUE.,U,.TRUE.,O

10

OO0nnNnnNnon

468

eNeXe! (@]

a0

ERSAV = ERROR
CONTINUE

IF (ITER .GE. MODIT) GO TO 710

IF (JACOB-99) 469,466,469

1F( ICNT .GE. NCMAX) GO TO 467

WRITE(6,71) ICNT, NCMAX
STOP

CONTINUE

IF ‘( IHOERL .LE. 0) GO TO 473

CALL SCALM(AMATRX,ICNT;NCMAX,MDIM,SCALE)

DO 461 I=1,ICNT

WRITE(1,32) (AMATRX(I,LK), LK=1,NCMAX)

CONTINUE

CALL DAMPR(AMATRX,ICNT,NCMAX,MDIM,TERR,SCALE,COEFF,

& DAMPF, ITER)

1F ( IHOERL .GT.O Y\gs TO 472

THE ROUTINE SVD CAN.BE FOUND AT THE

REFERENCE:

R

COMPUTE THE EIGENVALUES 'AND EIGENVEGTORS

ksSfLOWING

ORSYTHE, G. E. MALCOLM, M., AND MQLER,

& V1, 1IERR, WK)

DO 1000 I=1,ICNT

WRITE(1) (AMATRX(I,I1), I1=1,NCMAX)

0d CONTINUE

N
X

WRITE(1) (TERR(I),I=1,ICNT)

IF (IERR .EQ. 0) GO TO 468
WRITE(6,72) IERR

STOP

CONTINUE

SOLVE FOR LEAST SQUARE SOLUTION

t

Jd.

COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS:
PRENTICE HALL, ENGLEWOODCLIFFS, N.

-

1877,

139

CALL SOLSVD(MDIM,ICNT,NCMAX,W,U,V1;COEFF,TERR,RELERR,

& CONST, RMATR)

COMPUTE_THE'STANDARD ESTIMATE FROM SVD
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432

@]

(@] O0O0O0

480

471

469

496

494
455

CALL SDERR(MDIM,ICNT,NCMAX,AMATRX,COEFF,TERR,RERR)
WRITE(4,73) RERR _
WRITE(6,73) RERR

UPDATE THE CHANGE OF THE PARAMETERS

CONTINUE

. IK = NUPLAY+1
_ NMODEL = NCMAX/NCOEF + IK - 1

DO 471 K1 =IK,NMODEL

K2 = (K1-(NUPLAY+1) )=* NCOEF + 1
WRITE(4,74) A(K1), B(K1), D(K1), VT(K1)
WRITE(6,74) A(K1), B(K1), D(K1), VT(K1)

THIS IS A SPECIAL CASE NOT TO CHANGE THE COEFFS
OF THE THIS LAYER

IF (K1.EQ.ISCASE) GO TO 480

A(K1) = A(K1)+COEFF(K2).
B(K1) = B(K1)+COEFF(K2+1)
D(K1) = D(K1)+COEFF(K2+2)

IF(NOPERV.NE.O) VT(K1) =~VT(R1)%COEFF(K2+3)v
CONTINUE

WRITE(4,80) A(K1), B(K1), D(K1), VT(K1)
WRITE(6,80) A(K1), B(K1), D(K1), VT(K1)
CONTINUE , :

CONTINUE

WRITE(4,76)
READ(4,77) IRC, NPARS
IF (NPARS .GT. 0) READ(4,738) ACC

( IRC .LE. 0) GO TO 800

REWIND 7
REWIND 8

UPDATE THE INPUT INFORMATION FOR RAY~TRACING

DO 494 I=1,999
READ( 8,496 ,END=495) ICHAR
WRITE(7,496) ICHAR
FORMAT(100A4)

CONTINUE

CONTINUE

GO TO 499

140
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390
400
700
705
710

715
800

- 808

810
820

830
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L1 = L1+ o
IF (L1 .GT. INDEXF) IFAULT(L1) =0

CONTINUE

GO TO 800 t

WRITE(6, 705) L, ITER '
FORMAT('PREVIOUS ERROR ','LAYER =',13,4%,'ITER= ',13)
GO TO 800

WRITE(6, 715) L |
FORMAT ( 'MODEL ITERATIONS ','LAYER = ',I3,4X)
CONTINUE

WRITE(6,808) ITER

FORMAT (' THE NUMBER OF ITERATIONS =', I3)
WRITE (6, 810)

FORMAT('0 FINAL MODEL OF PLANE COEFFS )
WRITE(6, 820)

FORMAT(10X A' 3%, 10X%,'B',3%, 10X,'C',3%X, 10%,'D
& 10X, 'VELOCITY') ‘
DO 830 I =1, NP

WRITE(6,14) A(I), B(I), C(1), D(1), VT(I)
STOP

END

REAL FUNCTION ZF(I)

DIMENSION X(40), A(207, 3(20), c(20)., . “0), v(20)

INTEGER LFACE(20)

COMMON/ABCD/ NP, A, B, C, D, IFACE

COMMON /VV/IDIM, NV v, IFLAG, IREFR,NORFL , NUFAUL , NUPLAY i

COMMON X ,ﬁ}

NEQ = NV-! <

J = NEQ+I

K = IFACE(I)

ZF = -( A(K)*X(I)+B(K)#*X(J)+D(

F (IFLAG .EQ.1 ) WRITE(6,10)

O FORMAT('O FROM ROUTINE ZF (1)

RETURN

END

R) )
J, K, ZK-
, 218, F12.5)

L}

2

SUBROUTINE CALFUN( X, ? N, PAR, INDEX)

DIMENSION X(1), F(1), 20), B(20), C(20), D(20), Vv(20)
DIMENSION PAR(l)

INTEGER IFACE(20), INDEX(1)

COMMON/ABCD/ NP, A, B, C, D, IFACE
COMMON/X¥Z/ X0, Y0, 20, XN1, ¥N1, 2ZN!
COMMON /VV/IDIM,NV,V, IFLAG, IREFR, NORFL NUFAUL , NUPLAY

CALCULATE THE JACOBIAN MATRIX FOR X(T)fAND ¥(1)
F(1 TO NEQ ) STORE THE PARTIAL DERIVATIVES
~ OF X(I)

. F( NEQ+1 TO 2%*NEQ ) STORE THE PARTIAL DERIVATIVES
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25

220

225

230

o o RO @

&
&
&
&

&
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142

“QF Y(I) .

NEQ =
IF (IDIM .EQ. 3) NEQ=N/2

IF ( IREFR.LE.O .AND. NEQ.EQ.1K GO TO 310
IF (INDEX(1) .GT. 0) CALL INSERT (X, NEQ¥¥PAR, INDEX)

DO 225 K=1,NEQ

| ]

I K
J NEQ+I

- 11 = IFACE(I)

IF (1 .EQ. 1) GO TO 20
IF ( I .EQ. NEQ) GO TO 25

F(K)=( X(I)-X(I-1) -A(IT) =*( ZF(I) -ZF(1-1))) /

(( R(1)-X(1-1))
%2 +(X(J)~X(J-1))**2+(ZF(I) -ZF(I-1))*%x2)*x0. 5/V
C+( X(1)-X(I+1) -A(11) *( 2ZF(I)- ZF(1+1)))/

(( X(I)~X(1+1))*=*2

( (J)-X(J+1)) x*x2+(2F (1)~ ZF(I+1))**2)**0.5/V(I+1)
GO TO 220 .

F(K)=(X(1)-X0-A(II)*(ZF(1)-20) )/ (( x (1)-X0 )**2
+(E(J)~Y0)*%2 + (ZF(I1)-20)**2 )*x0.5 / V(1)
+( X(1)-X(I+1) -A(I11) *( 2ZF(I)- ZF(1+1)))/
(( X(I)=-X(I+1))*%2 -
‘+(X(J)-X(J+1))**2+(ZF(I)-ZF(I+1))##2)**0.5/V(I+1)
GO TO 220 ’ g

F(K)=( X(1)-X(I-1) =a(I1) *( ZF(I)- ZF(I-1)))/& .
(( X(1)-%(I-1)) ~
32+ (X(J)-X(J-1)) *%2+(2F (1)-ZF (I ))**2)**0“5/V(L'
+(X(1)-EN1-A(I1)*(ZF(I)-2IN1) ) / (X(1) ) -XN1HR%2

+(X(J)-YN1)**2 + (ZF(I1)-IN1)*%2 )**0 5 /»VC1+1)

IF(IFLAG.EQ.1) WRITE(6,30) NEQ,I,J,K, IT AﬁII) F(K)
IF (IFLAG.EQ.1) WRITE(6 35). (X(LL) LL =1, H) T
CONTINUE S coe e T

IF (IDIM .EQ. 2) GO TO 300
IF (IDIM-3) 300, 230, 300

N2 = NEQ#*2

NEQ1 =, NEQ+1

DO 245 K = NEQT1, N2

1 = K-NEQ

J = NEQ+I

II = IFACE(I) . '

IF ( I .EQ. 1) GO TO 40
1IF (1 EQ NEQ) GO TO 50
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C
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40

50

240
245
300

30
35

F(K)=( X(J)-X(J-1) -B(II) *( ZF(1)-2ZF(1-1)))

g /(( X(1)-X(I-1))

& **2+(X(J)-X(J-1))**2+(ZF(I)-ZF(I—1))**2)**0.5/V(I)

g +( X(J)-X(J+1) -B(II) *( ZF(1)-2ZF(1+1))) M

g /(( X(I)-X(I+1))*%2

& +(X(J)- X(J+1))**2+(ZF(I)—ZF(I+1))**2)**0.5/V(I+1)
GO TO 240 ™

F(K)=( x(J) vo -B(II)*(2F(1)-20))/( (X(I)-X0)**2

g +(X(J)-Y0)**2 + (2ZF(I)-20)*%2 )*x0.5 / V(1)

g +( x(J) X(J+1) ~B(I11) *( ZF(I)-2F(I+1)))

& /(( X(I)-X(I+1))*%*2 ,

& +(X(J)- (J+1))**2+(ZF(I)-ZF(I+1))**2)**0.5/V(I+1)
GO TO 240

F(R)=( X(J)-X(J-1) -B(II) =*( ZF(I)—ZF(I—1)))

& /(( X(1)-X(1-1))

g *x%2+(X(J)-X(J-1))*%2+(2F(1)-ZF (I~ 1)) *%x2)%xx0.5/V(1)

g +( X(J)-YN1-B(I1)*(ZF(1)-2N1))/((X(1)- ~XN1)%x%2

&g +(X(J)-YN1)*%2 + (ZF(I)-2ZN1)*x2 )%%x0.5 / V(I+1)

IF(IFLAG.EQ.1) WRITE(6,30) NEQ,I,J, K,II, A(II),F(K)
IF (IFLAG.EQ.1) WRITE(6 35) (X(LL) LL = 1 N)
CONTINUE

CONTINUE ' )

FORMAT(' PARS -- CALFUN', 516,2F8.2, F14.6)
FORMAT('X VALUES- CALFUN' 6F12.6)

N1 = NEQ

1F (INDEX(1) .GT. 0) CALL DELETE (X, NEQ, PAR, INDEX)
IF (INDEX(1) .GT. 0) CALL DELETE(F, N1, PAR, INDEX)
RETURN '

g *

THIS IS A SPECIAL CASE FORkhEFLECTION
IN ONLY ONE LAYER

310

IN1) %2 )«*

F(2)=( X(J)-Y0 -B(II) *(ZF(I)-20) ) /( (X(I)-X0)*x%x2
+(X(J)-Y0) *%x2 + (ZF(R% 20)*x%2 )**0 5 / v(1)
+( X(J)-¥N1 - B(II) yA
+(X(J)-IN1)*%x2 + (ZF(I) ZN1)**2 )*%0.5 / V(I+1)
!

o = R

143

F(1) -- PARTIAL DERIVATIVE FOR X(I)
F(2) -- PARTIAL DERIVATIVE FOR Y(1)
1 = NEQ
J = NEQ+I
II = IFACE(I)
F(1)=( X(1)-%0 -A(11) * (ZF(1)-20) ) /(( X(I)-X0 )*%2
& +(X(J)-Y0)*x2 + (ZF(1)-20)*%*2 )**0.5 / V(1)
& +( X(I)-%XN1 -A(II) *(2ZF(I1)-2ZN1) ) /( (X(I)-XN1)*%2
& +(X(J)-YN1)**x2 + (ZF(I)- x0.5 / V(I+1)

F(I)-2N1) )/ ( (X(I)-XN1)**2
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RETURN

4

SUBROUTINE READF(IUNITJNNEQ,IFACE,'X1VN1,NFPTS,PAR,
+ INDEX,NPDER, IDER) G o

ROUTINE TO READ THE DATA FROM FILE 7

DIMENSION X(1),. PAR(1), V(20) |
INTEGER - INDEX( 1) ,~LDER(1), IFACE(1)
COMMON,/VV/IDIM,NV,V} IFLAG, IREFR,NORFL, NUFAUL, NUPLAY s

READ(IUNLT,100) NNEQ,~NFPTS, NPDER
IF- (NFPTS) 20,20,10 :
READ(IUNIT, 100) " (INDEX(I),I=1,NFPTS)
CONTINUE :

1F (NPDER) 40140;30', : o
READ(IUNIT,100) (IDER(I), I=1,NPDER)
CONTINUE v .

- FORMAT( 1016) S

DO 50 I=1,NNEQ , o
READ(IUNIT,110) IFACE(I), X(I), E(NNEQ+I), V(I)
FORMAT(16, 10F12.4) : ‘
CONTINUE

NV = NNEQ+! S |
V(NV) = VNI = . - . Y

IF ( NFPTS .GT. 0) CALL DELETE(X,NNEQ,PAR,INDEX)

~ RETURN

END s , o
'SUBROUTINE TIME(X, 'Z, V, NEQ, SUM, TNPT)

FUNCTION TO COMPUTE THE TRAVEL TIME

REAL X(40), 2(20), Vv(20), TNPT (209
COMMON/XYZ/ X0, Y0, 20, XN1, YNT1, ZNI

"NEQ1 = NEQ+1

SuM = 0.0
DO 100 I=1,NEQ1
J = NEQ + I

IF (I .EQ. 1) GO TO 10
IF (I .EQ. NEQ1) GO TO 20 :
SUM = SUM*( (X(I)-X(I-1))##2 +(X(J)-X(J~1))*%*2

& #(Z(1)-2(1-1))%%2 ) %%0.5/V(I)

10

CTNPT(I) = SUM =
GO TO.100 .. ‘ a

SUM = SUM+( (X(I)-X0)*%2 +(X(J)-Y0) **2

& +(2(1)-20)*x2 )*%0,5/ V(I) RN ’
TNPT(I) = SUM ' ‘ e
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- 6o TO 100

20

C

0 00

seXsXsieisksXeke

-

SUM = SUM+( (XN1—X(I-1))**2'+(YN1—X(J-1))t*2
& +(ZN1—Z(I-1))**2 ) **Q.S/ v(I) o

TNPT(I) = SUM

100 CONTINUE
RETURN
END | o
SUBROUTINE INVERS(NDIM, N, B) '
THIS SUBROUTINE COMPUTES THE INVERSE OF MATRIX B
THE OUTPUT OF INVERSE MATRIX IS A
NDIM--THE DIMENSION OF B AS DEFINED IN THE MATN PROGRAM
N--THE ORDER OF MATRIX B (I.E. THE NUMBER OF COLUMNS)
B--INPUT MATRIX TO BE INVERTED ,
A-- OUTPUT INVERTED MATRIX
. RE-ASSIGN A INTO B MATRIX AS OUTPUT
DIMENSION B(NDIM,N), A(40,40), R(100), c(100)
DO 10 1=1,N
Do 10 J=1,N
10 a(1,3) = 0. J
DO 40 L=1,N ;
DEL = B(L,L)
DO 30 I=1,L
c(1)=0. ° Ve
R(1)=0.
" po 20 J=1,L | |
C{1)=DBLE(C(I))+DBLE(A(I,J))*DBLE(B(J,L))
20 ' R(1)=DBLE(R(I))+DBLE(B(L,J))*DBLE(A(J, 1))
30 DEL = DBLE(DEL) -DBLE(B(L,I))*DBLE(C(I))E
c(L)=-1. . | | |
R(L)=-1.
DO 40 I=1,E
C(1)=C(1)/DEL d |
DO 40 J=1,L f
A{1.J)=DBLE(A(I,J))+DBLE(C(1))*DBLE(R(J))
40 |

(@]

anaan

& CONST, RMATR)

l

B(1,3) = A(1,J)

RETURN
END

SUBROUTINE SOLSVD(MDIM,M, N, W,U,V,X}B,RELERR;
— S -

4

' THIS ROUTINE:SOLVES FOR X(N) SUCH THAT

|B-AX|| = MININMUM LI
' & .
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I :

REAL U(MDIM,N),V(MDIM,N) ,RMATR (MDIM,N) ,W(N) X(N),B(M)
o . -
DO 32 I=1, | o
2 WRITE(6, 352) (V(1,3), 3=1,8)
2 FORMAT(' MATRIX V ', 6F12.6)
WRITE(6,323) (W(1), I=1,N)
FORMAT(' VECTOR W ', 6F10.4)

COMPUTE THE ABSOLUTE TOLERANCE, RELERR IS THE RELATIVE

"ERROR IN THE DATA

340
50

60

*70

's¥els

C

c
C

~ 345

350

90

100

o
" ..

TAU = RELERR#W(1)
COMPUTE THE RANK OF A

IF (W(1) .GE. TAU) GO TO 50

WRITE(6,340) wW(1), TAU , ' .
FORMAT(' THE MAX SING. ', F10.6,' LT TAU ', F10.6)
STOP

CONTINUE

DO 60 I =2,N

1IF ( W(I) .GE. TAU) GO TO. 60 :

NRANK = I-1 ‘ - e : e
COND = W(1) /W(NRANK) ' ‘
GO W 789

CONTINUE

'NRANK = N :
COND = W(1)/W(N)
CONTINUE :

WRITE(6 345) w(1) TAU . R
FORMAT ( ' THE- MAX SING.= F10@§®SX" TAU= ', F10.6)
WRITE (6&,350) NRANK, COND ’
FORMAT(‘PSEDUO RANK= ',14,5X%, COND NUMBER- ',E14.6) .

COMPUTE THE SOLUTION

CALL ZERO(X,N)

DO 110 J=1,NRANK

s = 0.
DO 90 1 = 1,M
S =S5 * DBLE(U(I J))*DBLE(B(I))
"CONTINUE .

APPLY MARQUART DAMPING FACTOR |

IF (CONST.LE.0.0) S = S/W(J)
IF (CONST.GT.0.0) S=S#W(J)/ (W(J)**2 + CONST)
DO 100 I = 1,N :
X(1) = DBLE(X(I))+S*V(I J)
CONTINUE :

o s



00040000000

eNeXe!

110
360

370

380

365
120

10

147

CONTINUE
WRITE(6,360)
FORMAT(' THE SOLUTION ARE ')

WRITE(6,370) (X(I),
FORMAT(4(F10.4,2X))

I=1,N)

CALL VVT( V, MDIM, N, NRANK, W, RMATR, 0)

WRITE (6, 380)
FORMAT( ' ' THE RES
DO 120 I= 1,N v ,
WRITE (6,365) (RMATR(I,J); J=1,N)
FORMAT( 12F8.4) » ;
CONTINUE

OLUTION MATRIX .ARE')

A

RETURN
END

SUBROUTINE zaRo(x N)
DIMENSION X(N)
DO 10 1 1, N

%(1) = 0. : R
CONTINUE :

. RETURN

100

105

10

END .
SUBROUTINE INSERT(X 'NEQ, PAR, INDEX)
INSERT THE, ELEMENTS FORM VECTOR PAR INTO X VECTOR

.REAL x(40) PAR(20),
INTEGER INDEX(10)

XSAVE(40)

(INDEX(1) EQ 0) RETURN

LXY = 2*NEQ

DO 100 I=1,LXY =
XSAVE(I) = X(I) ‘
CONTINUE.

NPAR = INDEX(1). .
LX = NEQ+ NPAR ~ 7

L =1 : ) ’ ’ ‘ \ ./

LL = 1 ¥ o L &4

NUM = INDEX(:1)+2 FO .

DO 105 I = NUM, 10 7 Py

INDEX(I) = 0 ?@,'w

DO 110 I=1,LX ¥ -

IF ( INDEX(L+1) -1) 10, 20, 10

X(I) = XSAVE(LL) & ‘

X(I+LX) = XSAVE(LL+NEQ) - °

LL = LL+1 Ay

GO TO 110
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e

X(1) = PAR(L)
X(I+LX) = PAR (L+NPAR)
L =L+1.

110 ‘CONTINUE

100

10
40

110

OO -

OOOON0

NEQ = NEQ + NPAR
RETURN
END

SUBROUTINE DELETE(X, NEQ, PAR, INDEX)
REAL X(40), PAR(20), XSAVE(40)
INTEGER INDEX(10) J ‘

1F (INDEX(1).EQ.0) RETURN

LXY = 2*NEQ o
DO 100 I=1,LXY , |
x5A¥gx1) = X(I)
CONTI'NUE

ey

L =1
LE
LX

1
NEQ-INDEX( 1)

non

NUM = INDEX(1)+2
DO 105 I = NUM, 10
INDEX(I) = 0

DO 110 I=1,NEQ ,
IF ( INDEX(L+1) .EQ. 1) GO TO 10

X(LL) = XSAVE(I)

X(LL+LX) = XSAVE(I+NEQ)
GO TO 40

L = L+1
CONTINUE .

CONTINUE

NEQ = NEQ - INDEX(1)

RETURN = - .
END \

SUBROUTINE LINE(xw,Yw,XN1,YN&,FLOC,XCE#%T?CEPTw

REAL FLOC(1)

. R ‘ : S
THE PROGRAM FI RST FINDS THE EQUATION OF. 2 LINES
Y = AX + B, THEN SOLVE THE I NTERSECTION POI NT
BETWEEN THESE Tw0D LINES

X2
Y2

FLOC(1)
FLOC (2

148
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XN2 = FLOC(3) * ~
YN2 = FLOC(4) . @

IERR = 3 ,

1F (ABS(XN1-X1).LE. ,1E-5 .AND. ABS (XN2-X2).LE. .1E-5)
+ IERR = 1 - .
IF (ABS(¥YN1-Y1).LE. .1E-5 .AND. ABS (YN2-Y2) .LE, .1E-5),
+ 1ERR = 2 .

Go T0 (1,2,3), IERR

WRITE(6,100) :

FORMAT (' ERROR RETURN, BOTH LINES // TO Y AKXIS ")
RETURN :

WRITE(6,110) .

FORMAT(' ERROR RETURN, BOTH LINES // TO X AXIS ")
RETURN .

CONTINUE '

F (ABS(XN1-%1).LE. .1E-5 .OR. ABS(XN2-X2).LE. .1E-5)
+ GO TO 10

¢ (ABS(YN1-Y1).LE. .1E-5 .OR. ABS(YN2-Y2).LE. . 1E-5)
+ GO TO 20 '

(YN1-Y1)/( DBLE(XZN1)-DBLE(X1))

Al =

A2 = (¥N2-Y2)/( DBLE(XNZ)-DBLE(KZ))'
B1 = Y1- A1%X! ’
B2 = Y2- A2*X2

XCEPT = (B2-B1)/(A1-A2)
YCEPT = (A2*51—A1*BZ)/(DBLE(AZ)—DBLE(A1))

GO TO 30

IF (ABS(XN1-X1) - .1E-5 y 11, 11, 12
Al = 999.

B1 = X! .

A2 = (YN2-Y2)/( DBLE (XN2)-DBLE(X2))
B2 = ¥2- A2%X2 ,
XCEPT = X1

YCEPT = A2%X1 + B2

GO TO 30

A2 = 999.

B2 = X2 ' o

At = (YN1-Y1)/( DBLE (XN1)-DBLE(X1))
Bl = Y1- A1*X1 :

XCEPT = X2°

v YCEPT =-A1%X2 + B

GO TO 30

IF (ABS(YN1-Y1) -.1E-5 y 21, 21, 23 s
At = 0.0 | - - wx
Bl = Y1

A2 = (¥YN2-Y2)/( DBLE (XN2)~“DBLE(X2))
B2 = Y2- A2sX2 S

YCEPT = Y1

 XCEPT = (YCEPT-B2)/A287 o




GO TO 30 | »
C " | ///

23 CONTINUE
A2 = 0.0
B2 = Y2 ‘
Al = (YN1-Y1)/( DBLE(XZN1)-DBLE(X1))
Bl = Y1- Al1*X1
YCEPT = Y2
XCEPT = (YCEPT-B1)/A1

30 CONTINUE

c )
RETURN
END : _ . ,
‘ SUBROUTINE VVVT(V, MDIM, M, N, W, DAMP, SIGMA2) -
C ‘ u | g
C . COMPUTE THE PRODUCT OF TWO MATRIX
C C = V % V(TRANSPOSE)
C RW -- EIGENVALUE OF THE RESOLUTION MATRIX
C CW -- EIGENVALUE OF THE COVARIANCE MATRIX
c .
DIMENSION V.(30,30), RMATR(30,30), CMATR(30,30), W(

: REAL SUM ‘ . '
C‘ . ' ‘ '
: \

- DO 50 I =1,M ‘ ' f

DO 40 J= 1,M ' :
SUM = 0.0
SUM! = 0.0
C
DO 30 K = 1,N
RW = W(K)/ (W(K)+DAMP)
CW = W(K)/ (W(K)+DAMP)#**2
SUM = SUM + V(I,K)*V(J,K) *RW
SUM1 = SUM1 + V(I,K)*V(J,K) =*CW
., 30 CONTINUE .
RMATR(I,J) = SUM P . Lot
" CMATR(I,J) = SUM1 x SIGMAZ’ 3
40 CONTINUE o
S0 CONTINUE - .
o

' ¢ WRITE OUT THE COVARIANCE AND RESOLUTION MATRIX
¢ _ ,
' WRITE(2,500) M, N
DO 100 I=1,M o
WRITE(2,510) (RMATR(I,J), J=1,N)
100 CONTINUE o :
C L ‘
, WRITE(2,520) "4 . o
.520 FORMAT(///,“'C%&;RIANCB MATRIX')
C . s G o .
"DO 110 I=1

,M - ‘n . h - ) . «
. WRITE(2,510) (EMATR(I,J}, J=1;N)
110 CONTINUE . @ “® . . - 7 7
c e R e B A
& RIS SORPTREAE SEREIRNEIE TR

A5 vy . . - B . oW e
o . r. 0, . T a0,
- o W Yoo - 2 vl

. - i . e BN e ,
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500 FORMAT(2I5) . | o

eXeXeoieXeXeXekekse R

NOOOn

s XeXo B

510 FORMAT(12F9.3) '

RETURN
END
SUBROUTINE PDERR(X,Z,NEQ,ILAYER,IVPT,FCN,LAST,NPDER)

ILAYER --LAYER TO COMPUTE THE IMPROVEMENT OF SOLUTION
FCN -- STORE THE PARTIAL DERIVATIVE

THIS ROUTINE IS DESIGNED FOR THE LAYER WHICH HAS"

TWO FAULTS. ’ '

_IF LAST = 99 -- HEAD WAVE PROPAGATE ONE PLANE LAYER
)/ WITHOUT ANY STRUCTURE | |
{F LAST = 1 -- COMPUTE THE PARTIAL DERIVATIVE OF THE

MIDDLE LAYERaﬁoa THE HORST STRUCTURE

DIMENSION X(1), 2(1), FCN(1), vt20)
COMMON/XYZ/ X0, Y0, 20, XN1, ¥N1, ZN1 |
COMMON/VV/IDIM,NV,V, IFLAG, IREFR, NORFL,NUFAUL, NUPLAY

T3 = 0.0
DO 5 K =1,4 ©
FCN(K) = 0.0

CONTINUE

MAKE SURE THE P.DERATIVE TAKEN AT THE RIGHT POINT

DESIGN FOR 2D FAULT HAVING 3 DERIVATIVES.

- IMID = -99
IF ( NPDER.EQ.3) IMID = !

I
J

ILAYER
NEQ+1

LAST = IMID -- ONLY THE DERIVATIVE OF THE VELOCITY
OF THE MIDDLE LAYER OF THE HORST STRUCTURE™

IF ( LAST.EQ.IMID) GO TO 50
IF ( 1.EQ.1) GO TO 20
1F ( I,EQ.NEQ) GO TO 30

T1=-(z(1)-z(1—1))/((x(1)-x(1-1))**2+(x(J)-x(JPm))*?2
& +(2(1)-2(1-1))**2)*%0.5/V(I) :

T2=(2(1+1)-2(1))/((R(I+1)-X(1))##2+(X(J+1)-K(J))**2
& +{2(1+1)-2(1))*%2) *x0.5/V(I+1) =~

T3 IS USED FOR PLANE LAYER

I = I+2
J = J+2 _
IF “( LAST.EQ.S99) ' :
& T3=(Z(I)°Z(I‘1))/((X(I)‘X(I-1))**2+(X(J)-X(J-1))**2

ok +{Z2(1)-2(1-1))%%2)*x0.5/V(I).
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GO TO 40 ,
20 =-(Z(I)-ZO)/((X(I)-XO)#*Z*(X(J)-YO)*#2*(Z(I)'ZO)ttZ)
& *20.5/V(I)
T2=(Z(I+1)—Z(I)L{((x(1+1)-x(1))tt2+(x(J*1)-x(J))**2
& +(Z(1+1)-2(1))*%2) *20,5/V(I+1)
I = I+
J = J+1
IF ( LAST.EQ.QQL
& T3=(ZN1—Z(I))/((XN1—X(I))**2*(YN1-X(J))**2
& +(IN1-2(1))%%2 ) *:O.S/V(;*‘)
GO TO 40 .
0 Ti=—{( I)-z(z—w))/((x(I)—x(1—1))t:2+(x(J)—x(J-1))
(Z(1)-2(1-1))%%2) xx0.5/V(1) .
T2=(ZIN1-2 (I))’((XN1—X(I))**2+(YN17X(J))**2+(ZN1~Z(I))
& %x2)*20.5/V(I+1)
40 CONTINUE
~1F LAST=99 MEANS ONLY THE HEAD WAVE PROPAGATE THRU
A PLANE
1 = ILAYER
J = NEQ+I
T = T1+T2
FCN(1) = X{I)*T" + . X(1+1) = T3
FCN(2) = X(J)*T! = X(J+1) = T3
FCN(3) = T = T
" .
COMPU”P THE DER VATIVE OF THE VELOCITY
50 CONTINUE.
I = IVPT
J = NEQ+I
\ o ‘ @ . o
Td=-((X(I)-%(I-1 J 2+ (X(2)-X(J-") ) *%%2 S
& ~(z(I)-z(I-1) ttZ)t#C 5, V(I)*=*2 @@%Q%
50 T3=-((X(I)—XO)#*Z*(X(J)-YO)**2*(2(1)—ZO)**2)
& *x0.5/ V(I)=*=*2 '
GC T0O 70
60 T3=-((X(I)-X(I-1))*#2+(X(J)-X(3-1))
g +(Z(1)-2(1-1))%%2) *x0,5/V(1)*%2 -
70 CONTINUE _ .
FCN(4) = T4
L) )

RETURN ‘ ’ v Qj 5
END ‘ : . e
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SUBROUTINE PDERL(X, Z, NEQ, ILAYER, IVPT, FCN, IDF)

ILAYER --LAYER TO COMPUTE THE IMPROVEMENT OF SOLUTION
- FCN -- STORE THE PARTIAL DERIVATIVE
THIS ROUTINE IS DESIGNED FOR' THE REFLECTED DATA

DIMENSION X(1), Zz(1), FCN(1), v(20)
COMMON,/XYZ/ X0, Y0, 20, XN1, YN1, ZNI
COMMON/VV/IDIM,NV,V,IELAG,IREFR,NORFL,NUFAUL,NUPLAY

MAKE SURE THE'P.DERATIVE TAKEN AT THE RIGHT POINT
1 = ILAYER
J = NEQ+I

1IF ( I.EQ.1) GO TO 20
1F ( I1.EQ.NEQ) GO TO 30

T1ee(2(1)-2(1-1)) /¢ R(1)-X(1=1) )*%2+(R(3)-K(I=1))**2
& +(z(1)-z(1—1))**2)**0.5/V(I)

T2= (z(1+1)—z(1))/((x(1+1)—x(1))**2+(x(J+1)~x(Jh)**2
& #(2(1+1)-2(1))*%2) *x0.5/V(I+1) '
T3=~-((x(I)—X(I—1))**2+(X(J)—X(J—1))**2

& +(z(1)-z(1—1))**2)**0.5/ V(I)**2

T¢= ~( (X(I+1)-X(I))**2+(X(J+1)—X(J))**2

& +(Z(1+1)=-2(1))%%2) *%x0.5/V(I+1)%%2

GO TO 40

20 Ti= -(Z(I)-ZO)/((X(I)-XO)**2+(X(J)-YO)**2+(z(I)-ZO)
& *x2) *x0.5/V(1) '
T2= (z(I+1)—z(I))/((x(1+1)—x(1))**2+(x(J+1)—x(J))**Z';’f
& +(2(1+1)-2(1))*%x2) *x0.5/V(I+1) '
T3= -((X(I)—XO)**2+(E(J)‘YO)**2+(Z(I)-ZO)**2)
&  ¥%0.5/ (V(I)*%2)
T4= —((X(I+1)—X(I))**2+(X(J+1)—X(J))**2
& +(Z2(1+1)-2(1))*%2) *x0.5/ (V(I+1)%%2) .

GO TO 40

30 Ti= —(Z(I)-Z(I—1))/((X(I)-X(I-1))**2+(X(J)-X(J—1))**2
& +(2(1)-2(1I-1))#%%2) £x0.5/V(I) '
T2= (2N1—z(1))/((xN1-x(1))**2+(YN1~X(J))**2+(ZN1—2(I))
& xx2)%x0.5/V(I+1)
T3= -((X(I)-X(I—1))**2+(X(J)-X(J-1))**2
& +(2(1)-2(1~1))*%2) *%0.5/ (V(I)*%2)
T4= -((XN1-X(I))**2+(YN1~X(J))**2+(ZN1-Z(I))**2)
& *x0.5/ (V(I+1)%%2)
40 CONTINUE

IF NUPLAY.EQ.Q0 -- SPECIAL CASE : NO UPPER LAYER
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IF (NUPLAY.NE.O) T1=T1+T2
IF(NUPLAY.EQ.0) T1=T1%2
FCN(1) = X(I)=%T1

FCN(2) = X(J)=*T1

e Xe X BB

FCN(3) = T7
C
FCN(4) = T4 + T3 ' :
IF (NORFL LE.0) FCN(4) = 0.
THE CASE OF CRUSTAL FAULT FOR REFLECTION DATA
IF ( IABS(NUFAUL)- IDF) 43:42,43
42 FCN(1) = 0.0
FCN(2) = 0.0
FCN(3) = 0.0
FCN(4) = T3
43 CONTINUE
C ]
C S
IDUM =1
IF (IDUM.EQ.1) GO TO 80
1 = IVPT - 1
J = NEQ+I ‘
IF ( 1,EQ.1) GO TO 50
IF ( 1.EQ.NEQ) GO TO 60
T3=-((X(I)-X ( I-1)) %2+ (X(J)-X(J~1))**2
& +(Z(I)-Z(I-1))*%2)*x0.5/ V(I+")=*x2
C 1= I+1 :
C Tg=-( (X(I)~X(I-1))s*2+(X(J)-X(5-"))**2
C & +(Z(1)-2(I-1))*x2)x%0.,5/ V(I)**2
GO TO 70 :
C

50 T3=-((X(I)-XO)**2+(X(J)-YO)t*2*(2(1)—ZO)**2>
& *%0.5/ V(I)*=*2
T4 = -(( XN1—X(I))**2*(YN1-X(J))**2*(ZN‘—Z(:)3::2;
& *x0.5/ V(I+1)*%x2

60 CONTINUE
GO TO 70

X(I-1)) %2+ (X(J)-X(2-1))*%=%2
1))x%x2) *=x0.,5/V(I1)*x=%2

OO0

60 T3=-((X(I
& +(2(1)-12(
70 CONTINUE

) -
I-

O

FCN(4) = T3 + T4

80 CONTINUE
RETURN
END
SUBROUTINE SDERR(MDIM, M, N,

A, X, B, RERRJ
DIMENSION A(MDIM,N), X(M), B(M)
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RSQ = 0.
DO 20 I=1,M
RI = 0.
DO 10 J=1,N ,
RI = RI+X(J)*A(I,J)

10 CONTINUE

RSQ = RSQ + (RI-B(1))*%2

20 CONTINUE

RERR = SQRT(RSQ/FLOAT(M))
RETURN
END

SUBROUTINE SCALM(X, NROW, NCOL, 1%, D)

%X -- ROW DIMENSION OF X IN THE CALLING PROGRAM
D -- SCALING FACTORS OF IN EACH COL. OF X MATRIX

REAL X(IX,NCOL), D(NCOL)

DO 50 J =1,NCOL
SUM = 0.0 °
DO 40 I=', NROW
SUM = SUM+X(I,J)*x%2
40 CONTINUE ~
" D(J)= SQRT(SUM) \
DC 30 I=1,NROW
: X(1,J) =X(1,J)/D(J)
30 CONTINUE
S0 CONTINUE
RETURN
END

SUBROUTINE DAMPR -~ COMPUTE THE DAMPING FACTOR OF THE
RIDGE ESTIMATOR FROM HOERL & KENNARD METHOD( 1975)

SUBROUTINE DAMPR(X,NROW,NCOL,IX,Y,D,B,DAMP,ITER)

SOLVE FOR LEAST SQUARE SOLUTION OF Y= 4B

v -- NUMBER OF OBSERVATION = NROW

-- JOCABIAN MATRIX (IN THIS CASE)

-- THE SOLUTION, OF THE LEAST SQUARE MATRIX (OUTPUT)
-~ THE COLUMN SCALE FACTOR (INPUT)

-- DAMPING RIDGE FACTOR

REAL X(IX,NCOL), B(NCOL), Y(NROW), D(NCOL)

REAL XTX(30,30), XSTAR(300,300), WORK(300)"

REAL V(30,30), VT(30,30), C(30), w(30), ALPHA (30)
REAL ALPSQ(30) ' _ t
REAL VK(30)

y
G
X
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IXX = 300 R
IW = 3 0 .‘i“ ’ & 7 ‘,‘f

COMPUTE X(TRANPOSE)*X VMULFM -- FROM IMSL LIBRARY "

CALL VMULFM(X,X,NROW,NCOL,NCOL,1X,IX, XTX,1C,IERR) * N
1? !

COMPUTE SINGULAR VALUE DECOMPOSITION ’ (

CALL SVD(IC NCOL,NCOL,XTX,W, .TRUE.,V, .TRUE., VT, v
& IERR, WORK)

IF ( IERR.EQ.O) GO TO 10

WRITE (6,100) IERR

FORMAT( ' ERROR FROM SVD IERR=', 14)

RETYRN ’

CALL VMULFF(X,V,NROW,NCOL,NCOL,IX,IC,XSTAR,IXX,IERR)

DO 101 I=1,NROW

WRITE(6, 102) (XSTAR(1,J), J=1,NCOL)
2 FORMAT(‘ XSTAR=', 12F9. 5)
1 CONTINUE

L
M

NCOL
NROW

H o

COMPUTE XSTAR#Y

CALL VMULFM(XSTAR,Y,NROW,6NCOL, 1,IXX,NROW,C,IC,IERR)

ALPSUM = 0.0

DO 20 I=t1,

ALPHA(I) = C(I1)/W(I)
ALPSQ(I) = ALPHA(I)=*x2
ALPSUM = ALPSUM+ALPSQ(I)

WRITE(6,160) ALPHA(I), C(I), W(I)
CONTINUE

CALL VABMXF(ALPSQ, L, 1, JV, VMAX)

. YSUM = 0.0
DO 30 I=1,NROW
YSUM=YSUM+ Y(I)=*¥Y(I)
CONTINUE

TSUM = 0.0

DO 40 I=1,NCOL

TSUM=TSUM + C(I)* ALPHA(I)
CONTINUE

RSQ = YSUM-TSUM
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SIGMA2 = (YSUM-TSUM)/(NROW-NCOL) o

C
C THE DAMPING FACTOR
C

t

: KSUM = 0.0:% , u
; RKSU Y. .
DO 45 J=1, NCOL '
VK(J) = SIGMAZ/ALPSQ(J)
45 CONTINUE
C &

WRITE(6,106) (VK(J), J=1,NCOL)
106 FORMAT(,' K VALUES= ', 5F15.5)

C l ‘
C TEST WHETHER TO USE DAMPING FACTOR OR LS wo
C

ERROR 0.05

TEST1 (ERROR #*2) *NROW

DAMP = NCOL*SIGMA2/ALPSUM

WRITE(6,110) DAMP, SIGMA2, RSQ

WRITE(4,110) DAMP, SIGMA2, RSQ !

IF (RSQ.LT. TEST1!1) DAMP = 0.0
WRITE(6,110) DAMP, SIGMA2, RSQ
~ MRITE(4,110) DAMP, SIGMA2, RSQ -
11,0, FORMAT(' DAMPING FACTOR =', F9, 6 SIGMA2= ', E11.4,
B &d"‘p_ RESIDUAL SUM= ', E11.4)

N cALLaVVVT(v, IXX, NCOL, NCOL, W, DAMP, SIGMA2)

td

C
C . .
. C " COMPUTE THE SOLUTION OF B
<L

¢ . DO 50 J=1,NCOL
* ALPHA(J) = w(J)/ ( WtJ)+DAMP) =« ALPHA (J)
50 CONTINUE

& WRITE(1,160) (ALPHA(J), J=1,NCOL).
?160 ‘FORMAT(' ALPHA=', 4F12.5) |

DO 170 I'= 1., NCOL ~ ‘

& ) ’ S

WRITE(1,180) (v(I,J), J=1,NCOL)

" ‘180 FORMAT( 'V', 12F10.5)
{./1170 CONTINUE

" WRITE(6,120) (W(J), J=1, ,NCOL)

" 120 FORMAT( ' EIGENVALUES=', 4r12. 5)

_CALL VMULFF (V,ALPHA,L,L, 1,IC,IC, B,L,IERR)

TRANSFOR THE SOLUTION FROM STANDARDIZATION TO

o
C .
,C  THE ORIGINAL MODEL .
'C

DO 60 J = 1,L
B(J) = B(J)/D(J)
60 CONTINUE



[§)

WRITE(6,130) ('E(J)
FORMAT(' SOLUTION='

RETURN .
END

[ 4
’

J=1,L)
4F12.5)

158



159

C
C THIS PROGRAM (G PUTES SEISMIC RAY TRACING WITH SPECIFIED
' C END POINTS OF NSTANT {VELOCITY AND POLYNOMIAL
C SURFACES.
C : .
¢ IMPROVEMENT OF MODEL BY DAMPEDVLEAST-SQUARES ITERATIONS
C . .
C ' L
DIMENSION X1(40), A(10,10)
DIMENSION X(40), 2(20),V(20), VT(ZO) F(40), FCN(ZO)
DIMENSION xncn(woo) YRCR(100) ZRCR(?OO) AZM(100)"
DIMENSION DIST(100Q),RMATR(300, 20),wW(20)
 DIMENSION TOBS(100),T(100), TERR(BOO),TNP@&ZO
DIMENSION WK(3000),PAR(20), AJINV(40340) eom(ﬁ‘
REAL AMATRX(300, 20) U(300,20). V1(300, 20 *
REAL SCALE(20), RANDM( 100) - e
' INTEGER IFACE(20),IDER(20).
, - JNTEGER IVDER(20), ICHAR(70), 1D(140)
: - COMMON/ABCD/ A, NSURF, 1FACE
3 COMMON X | L .-
o, COMMON/XYZ/ XC, Y0, 20, XN}, ¥YNT, ZNT T .
. COMMON/VV/ V, NV, IFLAG . ' :
© EXTERNAL CALFUN . - : - :
. . +DATA COEFF/ZO*O o/
e ;
c - UNIT 2. -- QUTPUT FOR RESOLUTION' MATRIX
, c - AND COVARIANCE MATRIX =
C uNiT.3 - OUTPUT FQ§ PLOTTING TRAV?L TIME CURVES
C YNIT 4. =7 *SINK* ¥ . . ,
¢ ®NIT sﬁﬁgﬁ'ﬁpuqm Wi’fz; SR S " SRR
»C UNIT 6 -~ oUTPUT R@TA R .
C UNIT 7 #- INPUT DATA FOR ITERATION. IF IREAD=99
C UNIT 8 -- TEMPORARY STORE FILE FOR UNIT 7
C
2 € - L
-0, T(1016)

12 FORMAY(15, F14,6, 10E16.6 )
14 - FORMA (12F10 5).

Y137 (10F10:5)n. .
15 FORMAT(2I6, 6E16 6)

o, 2 FORMAT (aaf o

% 30 FORMAT( 12F10. 6

S 31 FORMAT(10F14.4) Cor

" 32 FORMAT(11F11.3) . 2 o
33 FORMAT(16,2K,12F9.4). o L
37 FORMAT(I6,12F9. 3/12F9. 3) A , ,a
40 FORMAT( 16, 10F12.4)" R
'55° FORMAT('0 INPUT OF X, Y, v, 17, 4F10.4) - sy ®fun, .
54 . FORMAT. (' THE INDEX OF. 1 FROM NLSYST =T, 13 R e s
67 FORMAT('0 TIME FROM MODEL ', JOF10.4) L e o
68 FORMAT('0 TIME RESIDUALS ', 10QF10. 1)y o e

69 FORMAT(' STANDARD ERROR= F10 5,' ERROR MEAN-' e
‘% -F10.5) | L/



70 ¢

71
72
73
74
76

77
79
80

"
c
C-
. C
c
C
C
- C
. C
® C
C
c
- C
C
.C'
C
o
C
c
f’&é,
C
c -
c

2

s

OO0

).

19 (

160
2

FORMAT (' DAMPING FACTOR =', F10.5)

FORMAT(' ERROR -- NPTS LE. NC' )

FORMAT(® ERRQR. RETURN FROM SVD ROUTINE', 16)

FORMAT(' ERROR ESTIMATE FROM SVD', F12.5)

FORMAT (' OLD COEFF OF MODELS ', 5F10.5 )

FORMAT (' INPUT IF IRC'/,.
+ ' INPUT NPARS(I6) ')
FORMAT('1016)
FORMAT(2E12.6) .
FORMAT (" NBEW COEFF-OF MODELS ', SF10.5 )

/

WK -- WORK VECTOR LENGTH
MODIT -- NUMBER OF ITERATIONS FOR THE MODEL
MAXIT -- MAX NUMBER OF ITERATIONS FOR THE NONLINEAR

SYSTEMS.
DE£T5= THE STEP .SIZE FOR THE PARTIAL DERIVATIVE
XTOL = THE TOLERANCE OF X .
FTOL = THE TOLERANCE OF FUNCTION CALFUN

MAXFUN = MAX NUMBER TO CALL FUNCTION CALFUN ,
DMAX = GENERAL ESTIMATE OF DISTAN®E FROM SOLUTION
ACC = ACCURACY , .

KLAYER = THE K-LAYER(PLANE) TQ START WIT
NSURF = MAX NUMBER OF PLANE I THE MODEL

By

" IF (NRANDOM .LE.0) NO RANDOM NOISE APPLIED TC DATA -

RDELT -- STANDARD DEVIATION OF RANDOM NOISE

IORDER -- ORDER OF- THE POLYNOMIAL | %G

IA = 0

_NCMAX = 11 '
MDIM = 300 - i

NDIM- = 40 _ ,

RAD = 3.14159/180.C.

IUNIT = 7 .

READ IN PARAMETERS FOR THE ﬁONLINEAR‘EQNS

}

oy READ(5;10)'IFLAG,IPRINT,JACOB,NSHOTVNUPLAY,IHOERL

'READ(5,15) MODIT,MAXIT,DELTA,XTOL,ETOL,TTOL,RDELT
WRITE(6,15)‘MODIT,MAXIT,DELTA,XTOL,FTOL,TTOL;RDELT
READ(5,12) -MAXFUN, DMAX, ACC, RELERR,CONST,DFACTR
WRITE(6,12) MAXFUN, DMAX, ACC, RELERR,CONST,DFACTR S

'+ READ(5,10} KLAYER, NSURF, NRANDM, ' IORDER

WRITE(6470) KLAYER, NSURF, NRANDM, LORDER

L4
GENERATE RANDOM NOISE

=y

IF (NRANDM.GT.0) CALL RANDOM( NRANDM, RDELT, RANDM) . .7

k)



NeYoXeXe)

OO0y

NCMAX1 = NCMAX -1
DO 105 I= 1,

DO 100 J=1,IA
100 A(I,J) = 0.0

READ(5, 14) (A
WRITE(6,14). (
105 CONTINUE

(1,d
A(l

14

C

C- .
DO 110 J=1,20

DO 110 I=1,MDIM
AMATRX(1,J)=0.0

110 . CONTINUE .,

NEQ =
NPTS = NUMBEH@

o

NnOoAao0

e 1F (ITER)
403 ‘NUM. = 4+NSURF
| REWIND 5

0  04~JJ1 -
 READ(5,24) DUM
404 - CONTINUE

_ REWIND 7 °
REWIND 8 7
406‘ CONTINUE

fﬁ‘ ”“DO 410 JJ=1, NSHOT

" IOFSET
IOFSHT

0

READ THE SURFACE COEFFS

NSURF

» DO 400 L= KLAYER, NSURF

406,406,403

1,NdM‘

READ IN INTERFACE INFORMATION

A),
A),

N

VT (
VT

¢ READ IN UPDATED INPUT IF ITER>0

"

&

1
(

)
1)

 POINTS. OF VERTILES IN THE PLANE
RECIEVERS
[\

NPDER -~ NUMBER OF PARTIAL DERIVATIVE

ISRCR -- INTERCHANGE THE SHOT WITH THE
IREAD =99 READ IN INPUT FROM FILE 7 ‘
0, USED IN ROUTINE CHGMOD AS ZERO OFFSET
‘. MAKE SHOT AND RCR THE SAME LOCATION w

v

£

W

ECIEVER |

161

[



OO0

00

137
138

B

g @

162

Wk
"

READ(S C)NEQ, NP”S NPDER,ISRCR,;READ,.NDEX IOFSET
& IOFSHT ‘
IF (NPDER .GT. NPDMAX) NPDMAX=NPDER

IF (IREAD.EQ.99) GO TO 143

IF (NPDER) 138,138,137 - ' ,
. READ(5,10) (IDER(I),I=1,NPDER)

CONTINUE .
(X0,Y0,20) -- SOURCE (XN', YN1, IN1) -- DETECTOR
IF 20 1S NEGATIVE -- 20 1S ABOVE SEA LEVEL

Ca
2

EAD(5,40) ITEMP, X0, Y0, Zff VN

BXSAVE = X0 i
YSAVE = Y0
ISAVE = zyﬂﬁ.'
| X @
IF ZRCR IS &EGAT%&E -- ZRCR 1S ABOVE SEA LEVEL +

a
50 112 R = 1, npfs © |
READ(5,40) hD( K), XRCR( K) Yi@h , ZRCR(K), TOBS(K)
ZRCR(K) = G- 0 7 . S
b ‘ .o e 5 ,
B T, ‘

READ IN INITIAL SOLUTION FOR THE RAY-TRACING

DO 140 I =:1,NEQ -
(NEQ+I) v

READ(5,40) IFACE(I), X(I), , V(L)
WRITE(6,59%) JIFACE(I), X(1),X(NEQ+I), V(I)
CONTINUE .

.CONTINUE

8 ‘ '..
F (NRANDM. LE.O) GO TO 119

DO 118 K—1 NPTS
KR = KR+1
TOBS(K) = TOBS(K) +RANDM(KR)

18 CONTINUE
9 CONTINUE

= ‘ {,

NV 1 ‘ N . ) S

DO 430 J= 1, NPTS T



.~ 157 CONTINUE" <

o

XN1 = XRCR(J) R
YN1 = YRCR(J) , ' »
ZN1 = ZRCR(J) .

« IDUM = O

IF (ISRCR) 306,306,305,

INTERCHANGE BETWEEN SHOT ‘AND RECIEVER LOCATION

OO0 n

305 X0 = XNT .
Y0 = ¥N! e ‘ ' .
20 = IN1 ¥
YN1 = YSAVE
© IN1 = LSAVE
306 CONTINUE

1F (YBFSHTY 423, 422,423
0422 = XN'i, ’

] = w‘
423 CONTINUE

¥

“(IREAD.EQ

- CALL ‘READF (16128 b3, [FACE, X, VN1,

\)
c we .
C. IN 3-D NEED TO .SOLWE!NEQ#2 LINEAR- EQUATIONS

NEQ1 = NEQ :
IF (INDEX .EQ. 3) NEQ1= NEQ#2 ' |
WRITE(6,32) (V(I),I=1,NV) . AN

C . - -
‘ IF (ITER) 158,158,156 !lh - S
. 156 DO 157 I=1, NPDER PR e
IVPT = IDER(I) | ~ ) \\
31 = IFACE(IDER(ig) ‘

C  ASSIGN VELOCITY FOR REFLCETION . ‘ BT ;)
C 8 N - R . . .

cERwe JYEE S V(IVPT) = VT(I1) o o o
- S0 v(IVPTH+1) = VT(J1): ‘ - - .
C i N o - ‘ R
C . ..* ‘ % ~ R ' .,
o | WRITE(6,90) IVPT, J%, V(IVPT), VT(J1)
C 90, FORMAT(' VTEST ', 2I3 .4)

158 CONTINUE . o S ”
B | - N PR
SOLVEquE SYSTEM OF ON LINMARNEQUATION i "

REFERENCE: , I
POWELL, M. J., A HYBRID METHOD FOR NONLINEAF EQUATIONS,

¥

“C

C

C . .

C ROUTINE NSO1A CAN BE FOUND 'IN THE FOLLOWfNG
C

C



OO0

C

- C

‘. ) C
.’:ﬂ‘”% C

%%w

£

IN RABINOWITZ, ., ED., NUMERICAL METHODS FOR
NONLINEAR ALEGRAIC EQUATIONS, GORDON AND BREACH INC.

440 2

445

C

c

C

»

00

a O 0o

444
446

449

337

338 .

CALL NSO1A(NEQ1,X, F AJINV,NDIM, DELTA DMAX ACC,
+ MAXFUN, IPRINT ‘WK, INDEX) o

a -'J,\i'!."'

LX = 2sNEQ

WRITE(6,32) (X(1), I=1,LK) -, . e

DO 440 I=1,NEQ
(1), = ZF(I) . |
WRITE(G 33) LD(J)'O( 2(1), I=1,NEQ)

WRITE(1,37)ID(J),X0,Y0,ZO,(X(I),X(I+NEQ)

& Z(I),If1,NEQ)5XN1,YNJ, ZN1

‘CALL TIME(X, Z, V, NEQ, TSUM, TNPT)
T(3) = TSUM o 3»%

SET UP THE JACGBIAN MATRIX *x
IDF -- THE ID NUMBER OF. THE I TERFACE

gf
IF (. JACOB-99) 4491445,449
1F( NPDER,LE.0) GO TO 449
ICNT= ICNT+1 S .

DO 446 IK = 1,NPDER o

K1 = IDER(IK) |

1D@p= IFACE(K1)

% .

PDERL . - - ROUTINE TO COMPUTE DERIVATTVES

DF(IORDER EQ.1)CALL PDER1 X,Z, NEQ K1 FCN, INDEX,
& NCMAX,IOFSET) ¢

IF(IORDER.EQ.2)CALL Pnznz(x Z,NEQ,K1,FCN,INDEX,
& NCMAX,IOFSET)
. IF(IORDER EQ.3)CALL PDER3(X Z, NEQ K1, F&ﬁ INDEX
& NCMAX,IOFSET)
O 444 1=1,NCMAK :
AMATRX(ICNT I)jﬁ FCN( 1)
CONTINUE s o

WRITE(1,32) (AMATRX(ICNT,I),I=1,NCMAX)

CONTINUE ‘ - S
. . . RN .

WRITE( 10) NEQ, NPDER INDEX, ID(J)

1F (NPDER) 338,338,337

WRITE(8,10) (IDER(1),I=1,NPDER)
CONTINUE - &

DO 345 1 = 1, NEQ - - 2 -

164



° &
w2

C

165

-

'WRITE(8,40) IFACE(I),X(I),X(NEQ+Iq,Vv(I),2(1)

345 CONTINUE

430

e

.COMPUTE ERROR ESTIMATE

 TAVE_ = TMEAN/ICT

CONTINUE

WRITE(6, 675 (T(I), 1=1,NPTS)

“\ S :
DQ. 450 I = 1, NPTS ' ’
ICT. = ICT+1 :
TERR(ICT) = TOBS(I)‘ T(1)

TMEAN = TMEAN . + TERR(ICT)

:ERROR = ERROR f&TERR(ICT)**Z

'Usa FOR PLOTTING 3-D TRAVEL TIME CURVES

R WgITE 3 40)10(1),XRCR(I),YRCR(I) ZRCR( T(I),TOBS(I),
,& " )

TERR(ICT)

CONTINUE

CONTINUE oot ‘ - ," ’ -‘_.‘ . ‘ ‘ w;o;. ' 1‘9‘»1.,;;;1‘1‘?,,., S Y

WRITE(6,68) (TER@I), I=1,1CT)
WRITE(4,68) (TERR(I), I=1,ICT)
ERROR = (ERROR/ICT)#*#0.5

' WRITE(6,69) ERROR,TAVE

WRITE(4,69) ERROR,TAVE
IF (ERROR .LE. TTOL) GO ‘TO 400

CONST = CONST*DFACTR
C IF (ERROR .GE. ERSAV ) CONST = CONST/DFACTR
WRITE (6,70) CONST '
WRITE (4,70) CONST 4 ~ s
. ERSAV = ERROR ‘ “ , ' .
465 ''CONTINUE - | -
\ )  f \ ¢
IF (ITER:@GE MODIT) GO TO 710 . oo
C . 1
4 IF (JACOB- 99 469,466,469 -
466 IF( ICNT .GE. NCMAX) GO TO 467
WRITE(6, 71) ICNT NCMAX
STOP
C . e ’
467 CONTINUE |
c . S
{ . IF ( IHOERL .LE. " 0) Go TO 473 - i
C a- . - b
. CALL SCALM(AMATRX,ICNT, NCMKx MDIM, SCALE)
DO 461 I=1,ICNT
c WRITE(1, 32) (AMATRX(I, LK) LK=1;NCMAX)

/
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461 CONTINUE |
CALL DAMPR(AMATRX,ICNT,NCMAX MDIM, TERR, SCALE, COEFF,
%  DAMPF, ITER)

(@]

IF ( IHOERL .GT.0 ) GO TO 472
COMPUTE THE EIGENVALUES AND EIGENVECTORS

COMPUTE THE EIGENVALUES AND, EIGENVECTORS
THE ROUTINE SVD CAN BE FOUND AT THE FOLLOWING
REFERENCE:
FORSYTHE, G. E. MALCOLM, M., AND MOLER, C., 1977,
COMPYTER METHODS FOR MATHEMATICAL COMPUTATIONS:
‘hﬁsTICE HALL, ENGLEWOODCLIFFS, W. J.
ﬂ473./EALL SVD(MDIM ICNT,NCMAX, AMATRX , W, .TRUE. , U, TRH§
*s?&agm;é; 1ERR, wx)

COoOONONOOO00N

o n“'%90 T=1,1CNT
M WRITE( 1) (AMATRX(L,{l), 11=1,NCMAX)
199%4& CONTINUE S

«@ﬁ£WRITE (TERR 1) 1=1,ICNT)

"i-

nA‘nnqnmo

5‘ (IERR .EQ. 0) GO TO 468
‘« 3 ITE(6,72) IERR

TOP
w4£3’46§“ CONTINUE
g& éomva FOR LEAST SQUARE SOLUTION
'%?f cmBL SOLSVD (MDIM, ICNT,NCMAX,W,U, V1, COEFF TERR,
&!RELERR cousw RMATR) .
E“ CdMPUTE TH; STANDARD ESTIMATE FROM SVD }

CALL SDERR(MDIM ICNT,NCMAX,AMATRX , COEFF, TERR, RERR) °
WRITE(4,73) RERR
WRITE(6,73) RERR ' '

C ) t_ i ] 7
C UPDATE THE CHANGE OF THE PAhAMETERS -
C ' ,

472 CONTINUE "
C- i ' ©

. IK = NUPLAY+1 : c .
C NMODEL = NCMAX/NCMAX + Ik - 1 . .
C .

IF(IORDER EQ.1)CALL" CHGM1(IK A IA,NCMAX, VT, COEFE,
& INDEX,IOFSET)

IF(IORDER EQ.2)CALL CHGMZ(IK,A}IA,NCMAX,VT,COEFF,
& INDEX,IOFSET) '



IF(IORDER.EQ.3)CALL CHGM3(IK,A,IA,NCMAX VT, COEFF,

& INDEX,IOFSET)

C L]
469 CONTINUE
c
c
WRITE(4,76)
READ(4,77) IRC, NPARS
IF (NPARS .GT. 0) READ(4,79) ACC
1F ( IRC .LE. 0) GO TO 800
c :
ﬂ;, . REWIND 7.
. REWIND 8
C L ~
C  UPDATE THE INPUT INFORMATION
DO 494 I=1,999
READ (8,496 ,END=495) ICHAR
" WRITE(7,496) ICHAR
496 FORMAT( 100A4)
494 CONTINUE
495 CONTINUE
C .
Ch '
-~ GO TO 499
e .
N :
i 4400 CONTINUE
:"_ ”3 C
(Y [

s gemo 800
sh, - WRITE (6, 705) L, ITER.

'705. FORMAT(' ERROR',' LAYER .= ', 13,4%,

GO TO 800
710 WRITE(6, 715) L

715 FORMAT('MODEL ITERATIONS ', 'LAYER

%&0 CONTINUE -
-
"~ WRITE(6, 808) ITER

808 FORMAT(' THE NUMBER OF ITERATIONS

WRITE (6, 810)

' ITER=

14

=, 13,

=', 13)

810 FORMAT('O FINAL MODﬁi OF PLANE COEFFS' )

WRITE(6,820)

820 FORMAT(10x,'Af,3X, 10x;'B',3x; 10%,'C

& 10X, 'VELOCITY')

DO. 830 I =1, NSURF ©
830 WRITE(6,14) (A(I,J), J=1,1a), VI(I)
STOP : ' \
_ END ,
c . . B

. REAL FUNCTION ZF(I) . :

" DIMENSION X(40), Aa(10,10), v(20)
_INTEGER IFACE(ZO) :
“COMMON/ABCD/ A,NSURF,IFACE
COMMON/VV/ V, NV IFLAG

L

' r3xr

Y 13)

b2

*

10X,

o

4x)

|Dl ,

» .

167



& +2*A(K,5)*x(1)*x(J)+A(K,6>*x(f

COMMON X

NEQ = NV-1

J = NEQ+I , )

K = IFACE(1) ‘ O

Y
7F = -(A(K,2)*X(J)**3+A(K, 3>*x 7)xx2+A (K, 4)*xX(J)
& +A(K 5)*X(I)*K(J)tt2+A(K 6)tX(J)*X(I):t2
& +A(K, 7)2X(1)*X(J) + A(K, 8)*X(I)**3
& ~+A(K,9)*X(I):t2 + A(K, O)*X(I) ) - A(K,)
1F (IFLAG .EQ. ) WRITE(6, O) J, K, IF

FORMAT('Q FROM ROUTINE ZF(1) 218, F12.5)
RETURN

END

REAL FUNCTION DZX(I)

DIMENSIQN X(40), A

INTEGER IFACE(20)

*OMMON/ABCD/ A,NSUR

COMMON/VV/,V, NV, IFLAG

COMMON & @

NEQ = NV-!

'J = NEQ+I

K = IFACE(I) '

DZX =A(K,5)$X({J )**2+2*A “fb X(1)*X(J)+A(K,7)*X
A(K,8 **E// Z*A K,9)*X (1) *+ A(K,1

¥
Dz§£5;3}1)*nzx
RETU -

END

(J)
Q)

REAL FUNCTION N
DIMENSION X(4 e

COMMON/ABCD/

COMMON/VV/ V,

COMMON X

NEQ = NV-1

J = NEQ+I

K & IFACE(I) . .

DY = 3*A(K,2)*X(J)**2 + 2%A(K,3
)

) * ,4)
**2+A(K 7)*X(I)
DZY = (-1)*DZY

>

RETURN

END }

SUBROUTINE CALFUN( X, F, N, INDEX)
DIMENSION X(1), F(1) A(10 0), v(20)

INTEGER TFAFF(ZO) B
COMMON/ABCD/ A, NSURF, IFACE -
COMMON /%YZ/ X0, YO, 20, XN1,

COMMON/VV/ V NV IFLAG -

%4

‘68
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CALCULATE THE JACOBIAN MATRIX

-

-~ X DIMENSION ONLY . . e
-~ Y DIMENSION ONLY
_- BOTH X AND Y DIMENSIONS

IF INDEX
IF INDEX
IF INDEX

non oM
w

NEQ = N

IF (INDEX .EQ. 3) NEQ=N/2 -

IF ( NEQ.EQ.!) GO TO 310

100 K=1,NEQ
K

NEQ+1I

1 = IFACE(D)

F (I .EQ. 1) GO TO 20

F ( I .EQ. NEQ) GO TO 25

( Z£(1)-X(1-1)+ DZX(I)=*( ZFP(1)=-2F(1-1)))
R(1)-X(I-1))
(X(J)-X(J-1)5x%2+ (ZF( x%x2) %20 ,5/V(
(1)-%(1+1)+ DZX(1)x( 1))
R(I)-X(I+1))%x%2

) =X

J*i))**2+(ZF(I)~ZF(I¢1))*X?)**O.S/V(I+1)

)-X0+0ZX(I)*(ZF(1)-20))/((X
YO)**2,+ (ZF(I1)-20)*%2
x(1+1x+ DZX(I)*(ZF(1)-ZF(I+]

SgF(1+1))%%2)%%0.5/V(I+1)
0 120

i

FeK)=(X(1)-X(I-1)+ DIX(I)=*( ~ZF(I-1)))
/(0 X(1)=-X(I-1))
%2+ (X(J)-X(J~1))**2+(ZF (1)~

+( X(1)-

IF (1)

72F(I-1))«*2 )*x0.5/V(I)
XN1 + DZX(1)*(ZF(1)-2ZN1))/( (X(1)- -XN1)xx2

o R0 Ro RO

+(Z(J)-YN1)*%2 +

XTEMP = DZX(I)

IF(IFLAG.EQ.1) WRITE(6,30) NEQ,I

(zF(1)-2ZN1)**2¥xx0.5 / V(I+1)

J,K,XTEMP,F (K)

IF (IFLAG.EQ:1) WRITE(6,35) (X(LL), LL = 1,N)
CONTINUE ,
IF (INDEX-3) 300, 230, 300
N2 = NEQ#2 N
\NEQ1 = NEQ+1 = . : ‘ o ' owd
DO 245 K = NEQ1, N@ - LY
I1'= K-NEQ _ R RPN .
J,,- NEQ+I» ST AN
%F%CEJ@”a;f“ ;
: o

i~



IF ( 1 .EQ. 1) GO TO 60
I .EQ. NEQ) GO TO 70

x(J~1)+ DZY(1)*(ZRB(I)~ZF(1-1))})
(1 1)) :

))**2+(ZF( I)-ZF(I-1))=*
1)+ DZY(I)*( 2F(1)-2F(1+

£2)%%0.5/V(I)
+ 1)
+1))**2
)

))

-YQ+DZY(I1)*(ZF(1)-20))
0)*%¥2 + (ZF(I)-20)=*%*2
(J+1)+ DZY(I)*(ZF(I)-
X(I+1))*=2
+

1)) xx2+(ZF (1) -ZF(I+1))*x2)*x0, 5/V( I+T)

/ -X(J-1)+ DZY(1)*(ZF(1)-ZF(I-1)))
& x(1—1))
& p*2 XLJ -1))*x2+(2ZF (1

A X(J9 YN1* DZY(1)*(ZF (I

& +(X(J)-YN1)*x2 + (ZF(I)-2

1)) %x2)*xx0, S’V(I)
) /((X(I)-XN1)*x%x2
Yxx0.5/V{(I+1)
) .

I
) WRITE(6,30) NEQ,I,J,K,YTEMP,F (K)
1) WRITE(6,35) (X(LL), LL = 1,N)

B 240 vrEwp - DIV
¢ L ~w,, IF(IFLAG.EQ.1
‘ "~ 4 1F (IFLAG.EQ.
% 245 CONTINUE
V c ‘ |
300 CONTINUE L
c :
| 30 FOBMAT( PARS -- CALFUN' 416,2516.5, F14.6)
' 735 FORMAT('X VALUES- CALFUN', 10F10.4)

)

RETURN

THIS IS A SPECIAL-CASE FOR REFLECTION ;
~IN ONLY ONE LAYER : : !

NOOnOon

e

310 I
- . J
I

T

NEQ
NEQ+1I
1 = IFACE(I) .
F(1)=¢ X(1)-X0+" DZX(I
& +(X(J)-Y0)*%2 + F(
: & +( X(I)-XN1+ DZX(I)*
e & +(X(J) YN1)**2 + (ZF
S E C , - ’
Cf3?y‘ " 4 N
L F(2) = xca@ ?Q%*nzx
e & +H(X(3)- YO)i*z ¥ (Z
A TR X(J)-¥N1+:DZY (I
- % +(X(J)-YN1)*%2 + (
RETURN .

(ZF(1)~-20)) /(( X(I)-XD )*x*2
zo)**z )%x0.5 / V(I) ,
(1)~-2ZN1))/( (X(I)-XN1)*%x2

)
1
(
( ZNJ)**Z )*%x0,5 / V(I+1)

E 4
)=
IF
1)~

(q)*(ZF Iﬁ”z@ )Y/ (x(I) XO)**Z
F{I)-20)%%2 )**o 5%/ V(1) ’
)*(ZF(I) IN1))/( (R(I)=XN1)*%2
CF(1)-IN1)%*x2 )*%0.5 / V(I+1)

xx2+ (2 F(I)-ZF(I+1))**2)**0,5/VL1+1)%<%
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1,

END .

REAL FUNCTION DFX(1) .
DIMENSION x(40), 'A(1€,10), v(20)
INTEGER IFACE(20) 3
COMMON/ABCD/ A,NSURF,IPACE
COMMON/VV/ V,NV,IFLAG

COMMON X P
NEQ = NV-1 s
J = NEQ+I

K = IFACE(I) -
DFX = A(K,s)*x(J)**2+2*A(K,6)*x(1)*x(J)+A(K,7)*x(J)
& +3%A(K,8)*X(I)*x2 + 2xA(K,9)*X(1) + A(K,10)

RETURN
END

REAL FUNCTION DFY(I)

DIMENSION X(40),.A(10,10), V(20)

INTEGER IFACE(20)

COMMON/ABCD/ A ,NSURF,IFACE

COMMON/VV/ V,NV,IFLAG

COMMON X .
NEQ = NV-1 ‘ - y
J = NEQ+I !'
K = IFACE(I) e
DFY = 3%A(K,2)*X(J)*%2 + 2%A(K,3)*X(J) + A(K,4)

g +2%A(K,5)*x(1)*Xx(J) +A(K,6)*X(1)*%x2 + A(K,7)*X(1)
RETURN

END ¢

SUBROUTINE XOFF (NEQ,X,XNT,¥NT1)
DIMENSION X{(1) '
DO 10 I=1,NEQ
X(I) =XN1 -
X(NEQ+I) = ¥YNI
CONTINUE
RETURN
END .
SUBROUTINE XYGRIp(ID,XO,YO,NGX,NGY,DX,DY,XRCR,
& YRCR, DIST) DI
pimMeENSION. xRAR®1Y, YRCR(1), DIST(1), 1D(1)
JJ = 0 ’
DO 20 I = t, NGX
“ po 10 J=1,NGY :
33 = 33+
S IDEJI) = JJe e :
XRCR(JJ) X0+ (I-1)*DX
YRCR(JJ) = Y0+ (J-1)*DY ‘5 7
DIST(JJ)=SQRT((XRCR(JJ)—XO)**2+(YRCR(JJ)-Y0)F*2)

¢
o
el

- 1

- . : | /
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.10~ CONTINUE
'20  CONTINUE

RETURN . | . :
END o - ‘ .
. C ' , S
- SUBROUTINE CHGM3(IDFACE4A,IA,NCMAX,VT,COEFF,INDEX,
-~ & IOFSET) . ST : ‘ _
-C - FOR THIRD- ORDER SURFACE 7 . . S
c .
B DIMENSION A(10, 10),VT(1) COEFF(1)
. C - .
! 1000 FoRMAT(f OLD COEFF OF MODELS ', 6F10.5 ) ,
1010, FORMAT (' “NEW COEFF OF MODELS ', 6F10.5 ) . .
. IK = IbFACE . N
C ' :

I Go TO (10,20,30), INDEX = e
10 WRITE(4,1000) (A(IK,K2), K2=1,IA), VT(IK)
WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK)

A(IK,1) = A(IK,1)+COEFF{1) .
\ = A(IK;B) = A(IK,8)+COEFF(2) o L
E: . ~'A(IK,9) = '

A(IK,9)+COEFE(3) - T
-A(IK,10) = A(IK 10)+CQEFF (4) Co
IF (IOFSET.NE. 0) VI{IRQs VT(IK)+COEFF{5)
 WRITE(451010) (A(IK,K2),JK2=1,IA), VT(IRK) -
 WRITE(6,1010) (A(IK,K2), K2=f};Al, VT(IK)
GO, TO 50 ' _ .

;20 WRITE(4,1000) (A{IK,K2), K2=1,IA), VT(IK)® e
i . WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK) .
: A(IK,1) = A(IK, 1) +COEFF (1) :
‘.. .* K(IK,2) = A(IK,2)+COEFF(2)
: A(IK,3) = A(IK,3)+COEFF(3)
A(IK,4) = A(IK,4)+COEFF(4) ° R
IF (IOFSET.NE. 0) VT(IK)= VT(IK)+COEFF(5)
WRITE(4,1010) (A(IK,K2), K2=1, IA) VT(IK)
WRITE(6,1010) (A(IK,K2), K2=1,IA) VT(IK)
o GO TO.50 : Tt ,
> C

30 WRITE(4,1000) (A(IK,K2), K2=1}IA), VT(IR)
- WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK)

C :
S DO 35 K2 = 1,IA
. 35 A(IK,K2) = A(IK K2)+COEFF(K2)
. IF (IOFSET NE, 0) VT(IK)= VT (IK)+COEFF(IA+1)
WRITE(4 1010). (A(IK,K2), K2=1,IA), VT(IK)
_ WRIT? 6,1010) (A(IK, K2) K2=1,IA), VT(IK)
50 CONTINUE = c . g
C ¢

» RETURN

§UBROUTINE CHGMZ(IDFACE A,IA,NCMAX,VT,COEFF, INDEX'_ =
. IOFSET) ‘ 2



ey -

N OO0

1000
1010

(9]

10

~ .

~ FOR ssconn ORDER SURFACE |

20

DIMENSION A(10,10),VT(1), COEFF (1)

FORMAT(' OLD COEFF OF MODELS ', 6F10 5 )
FORMAT(' NEW COEFF OF MODELS ', 6F10.5 ) .

Lt
x :

IK = IDFACE ‘ J
GO TO (10,20,30)8 INDEX. T
WRITE (4, 1000) (MK, K2), K2=1,IA),
WRITE(6,1000) (A(IR, K2), K2=1,1A),
A(IK,Y) = A(IK 1)+COEFF(1)

A(IK,4) = A(IK,8)+ 0.0 =
A(IK,5) = A(IK 9)+COEFF (2)

A(IK,6) = A(IK, 10) +®OEFF (3)*

VT (IK)
VT(IK)

IF (IOFSET NEVO) VT(IK)=" VT(IK)+COEFF(5)‘;

). CONTINUE

f?RETURN

~ END*

<

WRITE(4,1010) (A(IK,K2), K2=1,IA), VT (IK)
WRITE(6.1010) (A(IK,K2), K2=1,IA), VT{IK)
GO TO 50 ° - ' o
WRITE(4,1000) (A(IK,K2), K2=1,IA), VT(IK)
~WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK)

A(IK,1) = A(IK, 1)+COEFF(1) : / ‘

A(IK,2) = A(IK,2)+ 0,0

A(IK,3) = A(IK, 3)+COEFF(2)

A(IK,4) = A(IK, 4') +COEFF (3)

IF (IOFSET.NE. 0) VT(IK)= VT(IK)+COEFF(5)

WRITE(4,1010) (A(IK,K2), K2=1,IA)y VT(IK)

wn1x3(6,1010r (A(IK,KZ), K2=1, IA)» VT{IK),
~ GO. TO- 50

WRITE(4,1000) (A(IK xz) K2=1,IA),. VT(IK)

WRITE(6, 1000) (A(IK,K2), K2=1, IA) VT(IK)

A(IK,1) = A(IK 1)+COEFF(1) -/

A(IK,2) = A(IK,2)+ 0.0 Vi

A(IK,3) = A(IK,3)+ CQEEF(2) -

A(IK,4; = (IK,4)+ EOEEF(3)
. A(IK,5) = A(lK,5)+ 0.0 \

A(IK,6) & A(IK,6)+ 0.0 "~

A(IK,7) = A(IK,7)+ ‘COEFF (4) e
Aa(IK,8) = A(IK,8)+ 0.0 o i

A(IK,9) ='A(IK 9)+COEFF(5) ‘ /

A(IK 10) A(IK 10) +COEFF (6)

IF (IOFSET NE.O). VT(IK)— (IK)+COEFF(7)

WRITE(4,1010) (A(IK,K2), K2=1,IA), VT(IK)

WRITE(6,1010) (A(IK,K2), K2=1,1A), VT(IK)
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SUBROUTINE CHGM1(IDFACE A IA,NCMAX,VT, COEFF INDEX
& IOFSET)

FOR FIRST ORDER SURFACE = S
| DIMENSION A(10,10), VT(1) COEFF(1)

1000wFORMAT(’ OLD COEFF OF MODELS ’ 6F10 S );
1010 FORMAT(' NEW COEFF OF MODELSt o 6F10 5 )

1K = IDFACE

. GO TO (10,20,30), INDEX o - ‘
10 WRITE(4 1000) (A(IK K2), K2=1,IA), VT(IK).
WRITE(G 1000) (A(IK,K2), K2=1,IA), VT(IK) -
A(IK,1) = A(IK, 1)+COEFF(1) e
- A(IK,4) = A(IK,8)+ 0.0~
{ . A(IK,S) A(IK,9)+ 0.0 .
A(IK,6) = A(IK,10)+COEFF(2) .

* IR (IOFSET.NE. 0) VT(IK)e/NT(IK)+COEFF(3) :
WRITE(4,1010) (A(IK,K2), K2=1,IA), VT(IK)
WRITE(6,1010) (A(IK,KZ), K2=1,IA) VT(IK) '
GO TO 50 L

20 WRITE(4,1000) (A(IK,K2), K2=1,IA), VT(IK)
WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK)

A(IK,1) = A(IK,1)+COEFF(1) I i
- A(IK,2) = A(IK,2)+ 0.0 : : .

A(IK,3) = A(IK,3)+ 0.0

A(IK,4) = A(IK,4)+COEFF(2)

IF (IOFSET NE. 07 VT(IK)= VT(IK)+COEFF(3)
WRITE(4,1010) (A(IK,K2), K2=1,IA), VT(IK)
WRITE(6,1010) (A(IK,KZ), K2=1,IA), VT(IK)
GO. TO 50 ’

30 WRITE(4,1000) (A(Ix,kz), K2=171A),,VT(IK) 
WRITE(6,1000) (A(IK,K2), K2=1,IA), VT(IK)

C
. A(IK,1) =tA(IK,1)+COEFF(1)
A(IK,2) = A(IK,2)+ 0.0
A(IK,3) = A(IK,3)+ 0.0
A(IK,4) = A(IK,4)+ COEFF(2)
A(IK,5) = A(IK,5)+ 0.0
A(IK,6) = A(IK,6)+ 0.0
A(IK,7) = A(IK,7)+ 0,0 °
A(IK,8) = A(IK,8)+ 0.0
) A(IK,9) = A(IK,9)+ 0.0 ’
: A(IK,10) = A(IK 10)+COEFF(3)
C

IF (IOFSET.NE.0) VT(IK)= VT(IK)+COEFF(4)
WRITE(4,1010) (A(IK,K2), K2=1,IA), VT(IK)
WRITE(6,1010) (A(IK, K2) K2=1,1a), VT(IK)
50 CONTINUE | |
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RETURN
END

SUBROUTINE PDER3 (X, Z,NEQ, ILAYER, FCN, INDEX,NCMAX, IOFSET)
FOR THE THIRD-ORDER SURFACE ' | -
THIS ROUTINE IS DESIGNED FOR THE REFLECTED DATA

DIMENSION X(1), 2(1), FCN(1), v(20)
COMMON/XY2Z/ X0, Y0, 20, XN1, YN1, INI
COMMON/VV/ NV, V, IFLAG ' .

I = ILAYER
J = NEQ+I

. IF ( 1.EQ.1) GO TO 20
IF. ( 1.EQ.NEQ) GO TO 30
T1=*(Z(I)-Z(I%1))/((X(I)-X(I-1))**2+(X(J)-X(J~1))**2

& +(Z(1)-2(1-1))*x2)*%0.5/V(I) - ,
Tzs‘(z(1+1)—z(I))/((x(r+1)-x(1));*2+(x(J+1)~x(J)):*2

& +(Z(1+1)-2(1))*=%2) x%0.5/V(I+1) .
T3=_-((x(I)ex(1-1))**2+(x(J)-x(J—1))**2~

¢ +(Z(1)-2(1-1))#%2)%x0.5/ V(I)*%2
ma= —( (R(1+1)-X(I))*#2+(X(J+1)-X(J))**2

& +(Z(1+1)-2(1))*%2) xx0,5/V(I+1)%%2

GO TO 80 _ , -
20 Ti= -(z(I)-ZO)/((X(I)—xb)**2+(xCJ)-Y0)**2+(z(I)—ZO)
& *32) #x0.5/V(I) - ' B :
T2=(Z(I+1)-Z(I))/((X(I+1)-X(I))**2+(X(J+1)-X(J))¥*2
¢ +(2(1+1)-2(1))*%2) #%0.5/V(I+1)
T3=—((X(I)-XO)#*2+(X(J)-Y0)**2+(Z(I)‘ZO)**2)
& +%0.5/ (V(I)*%2)
T4= -( (X(I+1)-X(1))*%*2 +(X(J+1)=-X(J) ) *=*2
& +(2(1+1)-2(1))%#2) *%0.5/ (V(I+1)*%2)

o

"GO TO 40

30 T1sf(z(1)fz(1*1))/((x(I)-x(1—1))**2+(x(J)-x(J—1))
& x%2+(2(1)-2(1=1))**2) *%0.5/V(1) )
T2=;(ZN1-Z(I))/((XN1-X(I))**2+(YN1-X(J))**2
& +(ZN1—Z(1))**2)**0.5/V(I+1) -
T3= -((X(1)-X(I-1))*#2+(X(J)-X(J-1))**2 ‘
L +(z(1)-2(1-1))%%2) *%0.5/ (V(I)#*x2) _
Tae —((XN1-E(1))*s2+(IN1-X(J))##2+(ZN1-2(1))*32) .
& *#20.5/ (V(I+1)%%2) '

'40 CONTINUE

T12 = T1+T2 - s
T34 = T3+Té ‘ | o



C

- C

C

eXe

OO0

. 50 NCMAX = 5

60 ‘NCMAX = 5

70

90

., GO TO (50, 60'70), INDEX

IF (IOFSET.EQ.0) NCMAX-NCHAX-

FCN(1)
FCN(2)
FCN(3)
FCN(4)
FCN(5)

GO TO 9!

K20 B RN I

T12

T12tx(1)s.3
T128sX(1)*%2
T123X(1) '

T34

IF (IOFSET.EQ.0) NCMAX=NCMAX-1

FCN(1)
FCN(2)

FCN(3)-
FCN(4)

FCN(5)

-»
=
=
=

co TO 90

T12

T12#X(J)*#3
T124X(J)*%2

T34

T12sX(J)

IF (IOFSET. EQ 0) NCMAX-NCMAX-
FCN(1) = T12

FCN(2)

FCN(3)

FCN(4)
FCN(5)
FCN(6)

FCN(7)

-'FCN(8)
FCN(9)

T12
T12

T2

T12
T12
T12
T12
T12

PN S AR AR 2R 2R

E(J)##3°

X(J)**2
X(J) '
X(I)* X(J)%%2

"X(J)s X(I)=%%2

X(1)+ X(J)
X(1)*=%x3
X(1)%%2

FCN(10) = T12 * X{I)

CFCN(11) = T34
CONTINUE
RETURN -

END
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SUBROUTINE PDERZ(X,Z,NBQ,ILAYER,FCN,INDEX,NCMAX;Jfx

& IOFSET)

FOR ssconn ORDER SURFACE

THIS ROUT%&E fS DESIGNED FOR THE REFLECTED DATA

DIMENSION*

COMMON/XYZ /
COMMON/VV/ NV, V, IFLAG

I = ILAYER
J = NEQ+I

st;%sz(1) FCN(1),
0, EN1,



IF

&

&

&

L

L

&

&

IF

Tim
T2=
T3=

Té=

- ’ ,

( 1.BQ.1) GO fo 20.
( I.BQ.NEQ) GO TO 30

“(Z(I)‘Z(I‘1))/((Z(I)‘X(I~1))**2*(X(J)‘X(J'1))*12
+(2(1)-2(1-1))%#2)%%0,5/V(1) ' '
(Z(I+1)-Z(I))/((X(I+1)-x(I))**2+(X(J+1)-X(J))t#Z
+(Z(I+1)-Z(I))t#2)‘#tO,S/V(I+J) .
—((x(I)-x(I—1))tt2+(x(J)-x(J-1))tt2
+(2(L)-z(1—1))tt2)tt0.5/ V(1)ss2
- (x(I+1)—x(I))t~2+(x(J+1)—X(J))*tz

S+ (2(1+1)-2(1)) *%2) «#0.5/V(I+1) %2

GO T

*
T2=

T3=
*
Té=

0 40 S '
20 T1--(Z(I)-ZO)/((x(I)-XO)t32+(x(J)-Y0)t*2+(z(I)-ZO)

Al

22)%%0.5/V(1) \ o
(2(1*1)‘2(1))/((X(I+1)‘X(I))**2+(X(J+1)‘xi€))**2

+(Z(1+1)-2(1))#s2) *50,5/V(1+1) \
-((x(I)“BO)*#2+(x(J)-Y0)**2+(Z(I)-ZO)*:z)‘

£0.5/ (V(1)=%s2) . o

=( (R(I+1)-X(I))##2 +(X(J+1)-X(J))**2

% 4(2(I+1)32(1)hes2) £%0.5/ (V(I+1)*%2)

GO TO 40

30 T1a-(2(1)-2(1-1))/((X(1)=E(1-1))#¥2+(X(I)-K(J=1))##2

40

- 50

60

&

&

&

T2=

+(2(1)-2(1-1))*x2) *20.5/V(I1) :
(2N1-z(1))/((xn1-x01))*~2+(YN1—x(J))**2 )

+(ZN1-2(1))%%2) %20.5/V(I+1)

T3=

S((R(I)-X(1-1))%%2+(X(J)-X(J=1))%#2
+(2(1)-2(1-1))*%2) *%0.5/ (V(1)*%2) -

. T¢= '((XN1-X(I))**2+(YN1‘X(J))**2+(ZN1FZ(I))**2)
. & B - .

*20.5/ (V(I+1)#%22) ,
CONTINUE B —

T12
T34

= T1+T2 .
= T3+T4

G0 TO (50,60,70), INDEX L,
NCMAX = 4 ' L e

IF (IOFSET.EQ.0) NCMAX=NCMAX-1
FCN(1) = T12- ‘ s

d

FCN(2) = T12xX(I)%*2 .,
FCN(3) = T12#X(I) ' : -

FCN(4) = T34

GO TO 90

NCMAX = &

IF

(IOFSET.EQ.0) NCMAX=NGMAX-1 .

FCN(1) = T12

FCN(4) = T34

GO

FCN(2) = T12#X(J)**2
FCN(3) = T12#X(J)

TO 90
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70 NCMAX = 7 . '
IF (IOFSET EQ.0) NCMAX-NCMAX-1 ‘

- C

PCN(1) ='T12
FCN(2) = T12 # X(J) 882
FCN(3) = T12 » X(J)
“PCN(4) = T12 & X(I)* X(J)
FCN(5) = T12 % X(I)##2
FCN(6) = T12 # X(I) .
FCN(7) = T34
-~=— . 90 CONTINUE %
- .C { ‘
: - RETURN
END e
SUBROUTINE PDER1(X,Z,NEQ,ILAYER, PCN, INDEX, NCMAX,
& qxopsmw) ‘
J gl '
 FOR FIRST ORDER SURFACE
* THIS ROUTINE IS DESIGNED FOR THE REFLECTED DATA °

sXsXeEeKg)

. DIMENSION X(1), 2(1), FCN(1), V(20)
 COMMON/XYZ/ X0, Y0, 20, XN1, YN1, ZN1
COMMON/VV/ NV, V, IFLAG B

0 0'

I = ILAYER
J = NEQ+I

"1F ( 1.EQ.1) GO TO 20
IF ( I.EQ.NEQ) GO TO 30

(X(1)-X(1~- 1))**2+(X(J) X(J- 1))#*2

: T1--(Z(I) z(I 1 (
t:z)*:o L5/V(1)
]

& +(2(1)-2(I-
T2- (z(1+1)-2(1 (x(1+1)-x(1))**2+(x(J+1)-x(J))**2 '
& . +(Z(1+1)-2( *2) xx0.5/V(I+1)

T3= ~((X(1)-X(I-1))*x2+(X(J)-X(J-1))*=2

& #(2(1)-2(1-1))%%2)%%0.5/ V(1)**2

T4= -( (x(1+1)-x(1))*:2+(x(a+1)-x(J))*az

& +(2(1+1)~- z(I))**z) *20,.5/V(I+1)#%2

))/
1))
)Y/
1))

1)

GO TO 40 ' o

20 Ti1= -(2(I)- ZO)/((X(I)-XO)**2+(X(J) YO)**2+(Z(I) 20) -
& *%2) *%0,5/V(I)
T2=(2(I+1)- z(1))/((x(1+1) —X(1))#22+(X(J+1)-8(J))*#2 ~
& +(2(T+¥D)=2(1))**2) *20.5/V(I+1)
T3= = ((X(I)-X0)##2+(X(J)-Y0)**2+(2(1)- -20)#%2)

& *%0.5/ (V(I)=*%2)

T4= =( (X(I+1)=X(I))*#2 +(X(J+1)-X(J))#s*2
& w(Z(I+1)-2(1))*%2) *%0.5/ (V(I+1)#%%2) '

GO TO 40

30 T1--(§}I) Z(I 1))/((x(1)-x(1 1))**2+(X(J) -X(J- 1))::2



40
4" C

-

C

60

90

50 “

70

-

CONTINUE .
T12 = TI+T2

T34 = T3I+T4

GO 10 (50,60,70), INDEX
NCMAX = 3

IF (IOPSET.EQ.0) NCMAX=NCMAX-1

PCN(1) = T12"
PCN(2) = T12sX(I1)
PCN(3) = T34

GO TO 90

CMAX = 3

P (IOPSET.EQ.0) NCMAX=NCMAX-1

FCN(1) = T12 .
FCN(2) = T12sX(J)
PCN(3) = T34 :
GO TO 90

NCMAX = 4

IF (IOFSET.EQ.0) NCMAX=NCMAX-1

FCN(1) = T12
ECN(2) = T12 & X(J)

‘PCN(3) = T12 = X(I
PCN(4). = T34

CONTINUE

RETURN
END

+(2(1)-2(1-1))es2) #30,5/V(I)
2= (ZN1-2(1))/((XN1-X(1))se2+(IN
¢ +(ZN1-Z(1))es2) pe0.5/V(I+1)
‘\g}?3! ~((X(1)-X(1-1))ve2+(X(J)-X(J=1))s
- +(2(1)-2(1-1))es2) »80.5/ (V(I:)%s ‘
T4= -((xN1—x(I))tt2+(rn1-x(J))tc2+(zn1—z(1))caz)
L $20.5/ (V(I+1)es2 ;

1-X(J)) 8s2
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