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Abstract

The advent of Industry 4.0 integrates advanced digital technologies and Artificial In-

telligence (AI) into system engineering. This research explores the potential of AI in

smart automation for industries, bridging it with physics-informed approaches, par-

ticularly through Explainable Artificial Intelligence (XAI) and transfer learning from

physics to AI. The study unfolds across three interconnected phases, each target-

ing a specific aspect of industrial automation, with a focus on the bitumen extraction

process from oil sands. The solid form of oil sands presents a complex challenge in pro-

ducing Synthetic Crude Oil (SCO), a process characterized by natural disturbances

from ore quality and plant scheduling capacity in upstream mining. The Primary

Separation Vessel (PSV), central to the extraction process, is interconnected with the

secondary separation unit, with both impacting each other’s optimization and con-

trol. Our focus is on the digital twin development and autonomous operation of the

PSV, including autonomous Real-Time Optimization (RTO) and advanced control.

The multi-input multi-output, nonlinear, high-dimensional state-action spaces, and

constrained processes present additional challenges that we aim to tackle.

The first phase develops a high-fidelity digital twin for an industrial-scale bitumen

extraction facility, incorporating multiparticle settling under non-ideal environments.

Modifying the PSV model and integrating it with adjacent units, this plant-wide

model accurately captures process dynamics, bitumen quality, and potential losses.

High-dimensional parameters in the first-principle model are addressed using sys-

tematic parameterization techniques, Bayesian optimization, and sensitivity analysis

to fully utilize industrial data. High-fidelity modeling proves crucial for automa-
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tion validation and significantly contributes to the field of Explainable Reinforcement

Learning (XRL).

The second work focuses on developing autonomous control strategies, introduc-

ing a Model Predictive Control (MPC) for multimode operation with disturbances.

Plant-model mismatches causing fluctuations in MPC motivate the integration of Re-

inforcement Learning (RL) for model scheduling and multitasking in the third work.

Alongside MPC, this work showcases the capabilities of Reinforcement Learning-based

Controller (RLC), achieving performance comparable to MPC with less controller ef-

fort. Notably, RLC speeds up computation 10 times faster than MPC. This work

extensively tests the continual learning of RLC in multi-mode operations, ensuring

their adaptability to changing environments.

To enhance the feasibility of RL in real-world training, this study employs trans-

fer learning approaches such as imitation learning and Simulation-to-Real (Sim2Real)

pretraining. This strategy significantly reduces process trips during online training.

Generative Adversarial Imitation Learning (GAIL) and Sim2Real pretraining decrease

trip count by factors of 8 and 27, respectively, compared to direct agent training.

GAIL opens new training pathways for agents in startup and shutdown tasks. The

proposed “MPC Safeguarded Exploration” approach strategically uses the alarm sys-

tem and existing MPC controllers to further decrease trips during online training

while maintaining agent explorability and adaptability.

The third phase shifts to supervisory RTO in bitumen extraction, tackling the

complexities of multivariable decision making and the interconnected extraction pro-

cess under disturbances. This phase pioneers a novel framework that uses RL for

setpoints optimization and multi-MPC scheduling. It combines the robustness of

MPC with the adaptive optimization capabilities of RL to outperform existing op-

erational strategies. First principle analysis elucidates and verifies the RL ability to

manage trade-offs in microscale particle settling and balancing workload distribution

across each unit to optimize the overall recovery rate. A key finding is that the RL

iii



agent anticipate MPC control policy and optimize its strategies accordingly. This

ability to foresee and integrate decisions across control layers enhances collaboration

among decision-making layers and optimizes operations in the context of plant-wide

connectivity. Furthermore, the agent manages a second objective in control perfor-

mance by scheduling MPC models based on operational changes. The RL policy

reveals that operational modes depend on factors beyond ore grades, such as tail-

ings density. These insights underscore the significance of Explainable Reinforcement

Learning (XRL) in enhancing the acceptability of RL in complex industrial appli-

cations. The exploratory power and explainability of RL policies open new avenues

for real-world implementation, transitioning RL from a learning agent to a teaching

agent approach in industrial automation.
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\Great things are done by a series of small things brought together."

-Vincent Willem van Gogh
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Chapter 1

Introduction

This research covers the concepts of digital twin modeling and smart automation in

Industry 4.0, exploring the integration of advanced digital technologies and Arti�cial

Intelligence (AI) into process engineering. AI has made substantial strides in tackling

complex tasks across diverse domains such as computer vision [1{6], video gaming [7{

10], autonomous driving [11{17], robotics [18{20], and real-world autonomous control

[21, 22]. In this transformative phase, the oil and gas industry, known for its complex

and large-scale operations, stands to bene�t signi�cantly from these technological

advancements.

At the core of this revolution lies the advent of autonomous systems | engineered

for adaptive operation and minimal human intervention. It heralds a pivotal shift

in how operations are conducted, positioning digital transformation as the primary

driver of innovation. Thus, this digital evolution represents more than just a technical

upgrade, but rather a strategic shift, setting the stage for the future landscape of

industrial automation.

This research contributes to this transformative era by exploring AI potential and

bridging them with physics-informed approaches, powered by data science and Ma-

chine Learning (ML). Our focus extends beyond exploring innovations to devising fea-

sible solutions for smart automation in industrial applications. Incorporating physics

knowledge is pivotal, achieved through the implementation of Explainable Arti�cial
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Intelligence (XAI) and the transfer of learning from physics to AI systems.

Our approach leverages various ML methodologies, including supervised, unsu-

pervised, and reinforcement learning (RL). Supervised learning is employed for data-

driven system identi�cation using closed-loop industrial data and for behavioral cloning

as a precursor for RL pretraining. An unsupervised generative adversarial framework

is utilized for RL agent pretraining. While both supervised and unsupervised learn-

ing have laid foundational ground in AI, RL stands out for its unique human-like

learning capabilities. RL is characterized by temporal decision-making and adaptive

development through environmental interaction. A recent breakthrough in RL has

showcased its potential in exhibiting metacognitive abilities [23]. RL is primarily

applied for autonomous control and optimization in this research.

1.1 Motivation

The surge of AI and ML in Industry 4.0 has brought forth new opportunities and

challenges in the process engineering domain. These technologies, particularly ML,

hold the potential to analyze vast data sets, identify patterns, and make predictions,

thereby driving innovation and operational e�ciency. However, integrating advanced

computational tools with existing industrial processes, especially in sectors like oil

and gas, necessitates novel approaches that consider the realism and safety concerns

for industrial applications.

1.2 Thesis Objectives

This research aims to demonstrate feasible and safe automation strategies in real-

world settings, pushing the boundaries of process intensi�cation and automation in

the era of Industry 4.0. The objective is multi-faceted, with the initial focus being

on developing a high-�delity digital twin to accurately represent the dynamics of in-

dustrial processes, enabling rigorous testing and validation of autonomous strategies.
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Second, to design and implement advanced control strategies like MPC and RL-based

controllers that handle dynamic changes and disturbances within industrial processes.

Third, to explore autonomous decision-making at the supervisory level, optimizing

economic and operational objectives using Explainable RL (XRL).

1.3 Thesis Outline

This thesis is structured in a three-paper format. It begins with an introduction and

progresses through key areas as follows:

Chapter 2 delves into the mathematical foundation crucial for the main works

of this research: Modeling, System Identi�cation, Machine Learning (ML), Process

Control, and Optimization. System identi�cation covers various methods in �rst-

principle and data-driven approaches modeling, including both open-loop and closed-

loop systems, and discusses di�erent types of surrogate models with their strengths

and weaknesses. Additionally, it encompasses ML and conventional methods used

in this research. Advanced control theories, starting from the fundamentals of opti-

mal control and progressing to MPC, are also examined. The chapter discusses the

principles of RL, including fundamental learning techniques based on dynamic pro-

gramming, Monte Carlo, and TD learning, as well as a literature review of various

RL algorithms, highlighting their characteristics, advantages, and limitations.

Chapter 3 introduces a modi�cation in a primary separation model based on �rst-

principle modeling techniques. This model realistically simulates the separation mech-

anism, capturing both interface level, density dynamics, and recovery rate. This

model is expanded to a plant-wide process reecting actual process con�gurations,

serving as a digital twin of the bitumen extraction facility. Challenges in identifying a

vast set of parameters are addressed through systematic optimization and sensitivity

analysis. Digital twin enables the realistic replication of the process's steady-state

and dynamic behavior. The model is then utilized to understand the process and to

develop an autonomous control and optimization framework based on advanced tech-
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niques like MPC and RL. This paper was presented at the 2023 INFORMS Annual

Meeting and has been submitted to the Computers & Chemical Engineering journal

(Manuscript ID: CACE-D-24-00011).

Chapter 4 explores autonomous control supporting the transition of oil sands oper-

ations to the Industry 4.0 standard. It details the design of an MPC with disturbance

augmentation into model prediction, along with bias correction. The chapter assesses

the safety and feasibility of RL-based controllers in both the training and the testing

phases. Addressing feasibility issues with imitation learning and Simulation-to-Real

(Sim2Real) pretraining approach. The proposed MPC safeguarded exploration en-

sures the safety integrity of RL deployment. This work suggests that RL is potentially

safe for real-world implementation, given its self-learning and adaptive abilities, mak-

ing it suitable for smart industry applications. This work was presented at the 2023

INFORMS annual meeting.

Chapter 5 focuses on autonomous operation in industrial processes with Explain-

able Reinforcement Learning (XRL). The RL agent demonstrates multitasking ca-

pabilities by orchestrating optimization and control tasks. This framework employs

RL for MPC model scheduling and setpoint optimization. The agent, harnessing

the power of RL, outperforms existing operational strategies in various scenarios

and simultaneously discovers optimal policies. These policies, though complex, are

explainable through physical knowledge, showcasing RL model-free learning capa-

bility and its potential in process intensi�cation. Explainable policies open up new

paradigms in RL application, not just for learning from the environment, but also for

teaching optimal strategies. This work was presented at the 2023 INFORMS annual

meeting. The �nal section concludes the work, paving the way for Industry 4.0 and

recommending future work to ensure the implementation of these �ndings in smart

industrial automation.
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Chapter 2

Background
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2.1 System Identi�cation

System identi�cation uses �rst principles, data-driven approaches, or a combination

of both to capture the dynamics of physical systems. Modeling is the critical ini-

tial step in process design, optimization, and control. Developing an accurate yet

tractable for its application requires balancing model �delity and complexity. Refer-

ence [24] classi�es the modeling spectrum based on the degree of knowledge of the

underlying physics (�g. 2.1). First principles modeling necessitates an understand-

ing of the fundamental physics governing a process. This scienti�c knowledge can

be limited by the complexity of many chemical processes, governed by conservation

laws, reaction kinetics, and thermodynamics [25]. Developing mechanistic models is

resource-intensive. However, they reveal the underlying physics required to under-

stand the actual phenomena. While physics de�nes the model structure, the physical

parameters often need estimation from experiments or data. This combined approach

is called grey-box or �rst principles data-driven modeling [24]. On the other hand,

data-driven modeling, known as the black-box approach, identi�es the system purely

from experimental data. Data-driven methods o�er a relatively quick and inexpensive

model development. However, they require substantial data to avoid over�tting or

wrong models which output unreasonable physics values. Black-box models cannot

be tuned and do not provide scienti�c insights. In practice, data-driven models often

complement the element of the �rst principles model that lacks physical knowledge.

This modeling technique is called a hybrid modeling approach [26].

Models can be parametric and non-parametric. Parametric models have a de�ned

structure with a relatively small number of parameters to describe the true process

dynamics. Nonparametric models use less rigid structures, requiring potentially in�-

nite parameters for exact representation [27]. Both conventional and machine learning

algorithms estimate parameters of the prede�ned structure, which can be linear or

non-linear. Examples of linear model structures include autoregressive with exoge-
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nous inputs (ARX), autoregressive moving average with exogenous inputs (ARMAX),

box-jenkins (BJ), and output error (OE). They are considered as adynamic model

that captures the time-dependent behavior. Nonlinear model families include Gaus-

sian processes (GPs), fuzzy models, and nonlinear ARMAX (NARMAX). GPs and

fuzzy models are static, while NARMAX is a dynamic model. Neural Networks (NNs)

can be linear or nonlinear based on the activation functions, such as sigmoid, tanh,

and ReLU. Based on neuron connections, NNs can also be static or dynamic.

Model selection depends on data availability, process complexity, and application

requirements. Deep neural networks (DNNs) have revolutionized data-driven mod-

eling through deep, convoluted structures that serve as universal function approxi-

mators. DNNs capture complex mechanisms of decision-making policies, process dy-

namics, generative AI, image processing, and other intricate phenomena [1, 28{32].

The prevalence of DNNs can be attributed to backpropagation, a simple yet powerful

technique that recursively adjusts the strength of neuron connections to progressively

reduce the de�ned cost function [33].

Figure 2.1: Modeling approaches from black-box to �rst principle
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2.1.1 First Principle Model Parameter Identi�cation

We used the constitutive relationship and mass conservation to develop the digital

twin of the bitumen extraction process. Section 3.2 goes into detail on modeling. The

�rst principle-based model was developed to study the particle separation mechanism

and maintain high �delity. The model includes empirical parameters that should

be identi�ed by �tting the model output to the real process data. However, a large

number of parameters must be identi�ed due to plant-wide modeling and high-�delity

requirements. These parameters are not available in the literature as we modi�ed,

scaled up, and expanded to the adjacent units that are tailored to the true physical

system. We o�er a systematic parameterization that makes use of three rounds of

optimization in place of trial-and-error methods.

Steady-State Model Parameters

The digital twin model involves parameters that a�ect both steady-state and dy-

namic behavior. A steady state is the special case of a dynamic state that reaches the

equilibrium point. While we aim to develop the dynamic model, �tting the steady-

state output to the actual process roughly estimates some of the parameters that

work for the dynamic condition. The steady-state behavior was validated against

nine di�erent scenarios to ensure a universally applicable model across operating con-

ditions rather than over�tting to particular cases. The process design speci�cation

provides the actual steady state of the process. The model steady-state output is

determined by solving a system of equations obtained by setting the time derivative

term in the dynamic model to zero. Concurrently, the Tree-structured Parzen Esti-

mator (TPE) optimization algorithm identi�ed parameters that minimized the error

between model outputs and industrial steady-state data. TPE evaluates multiple pa-

rameter sets, with each parameter lying within speci�ed feasible ranges. Additionally,

the tree structure inherently models conditional dependencies between parameters,

making TPE well-suited for complex models with coupled parameters that must be
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simultaneously solved. Hard constraints were imposed on feasible parameter ranges

informed by physics and prior literature. Output constraints were incorporated as

soft penalties on physically infeasible values as shown in eq. (2.1).

� � = arg min
�

�
(y � ŷ (� ))T W (y � ŷ (� )) + pT max(0; g(� ))

�
(2.1)

s.t. � L
i � � i � � U

i

where � � is the set of optimal parameters, and� L
i and � U

i are the lower and upper

bounds for parameters� i , respectively. ŷ (� ) is the model output vector, y is the

corresponding industrial data vector,W is the weighting matrix, p is the penalty

coe�cient vector, and g(� ) is the inequality constraints on model outputs.

Dynamic Model Parameters

Initial parameters from the previous section approximate the optimal parameter val-

ues. Nonetheless, not all parameters a�ect steady-state behaviors; some are exclu-

sively related to dynamic behaviors. These speci�c parameters, such as the volume

of each modeled layer, can only be determined by �tting them to dynamic data. We

�x the initial parameter value from the previous section and use TPE to identify the

volume parameters. The objective is to �t the dynamic behavior of the model with

the actual process.

The dynamic behavior is typically represented by process gain, time constant, and

time delay. They are calculated using the method in section 2.1.2. In the true process,

some variables behave like integrating processes, where the variables will not reach a

steady state due to their slow dynamics and limited step testing time. Consequently,

our focus shifted to comparing the rates of change. Speci�cally, the linear rate of

change derived from the model step response, calculated asK p

� , was compared to the

integrating process gain obtained from the actual process step tests.
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Sensitivity Analysis

To �ne-tune the model parameters, local sensitivity analysis was performed by varying

parameters and calculating percent changes in outputs. Derivative-based methods

explore how model outputs are a�ected by perturbations in a single input around a

nominal value. These methods are local using one-at-a-time (OAT) sampling [34].

Each parameter� i was perturbed� 2% and� 5% from its baseline�� i , which is set to

be � �
i as identi�ed in the section 2.1.1.

The sensitivity index Si of output Y to input � i can be represented by the partial

derivative evaluated at the nominal baseline�� (eq. (2.2)).

Si (�� ) =
@Y
@�i

�
�
�
�
��
Ci (2.2)

where Ci is a scaling factor. Here,Ci = �� i =Y(�� ) scales the sensitivity to be the

percent change in output over the percent change in input.

Since the analytical form of@Y=@�i is unknown, a �nite di�erence approximation

is used:

SY;� i �
Y(� 1; :::; � i + � � i ; :::; � n ) � Y(� 1; :::; � i ; :::� n )

� � i
�

�� i

Y(� 1; :::; � i ; :::� n )
(2.3)

where � � i is the perturbation of � i .
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2.1.2 First Order Plus Dead Time (FOPD) Model Identi�-
cation

The step test is a typical procedure for identifying the First Order Plus Dead Time

(FOPD) model of a physical system. A step input change is introduced, typically

amounting to 1% of the input range of the actual process. Despite inherent non-

linearities and the higher-order nature of the system, the FOPD model captures the

step response dynamics of the system. FOPD model is a simpli�ed representation of

a dynamic system (eq. (2.4)).

�
dy~(t)

dt
+ y~(t) = K pu(t � Td) (2.4)

whereK p is the process gain,� is the time constant, andTd is the dead time. Process

gain determines the magnitude of the steady-state output change in response to a

step input. The time constant represents the duration for the process to reach ap-

proximately 63% of its process gain, while the dead time signi�es the delay between

the input and the onset of the output response (�g. 2.2). Practical applications of

FOPD parameters include Proportional-Integral-Derivative (PID) controller tuning,

setting control interval, safety design in delayed systems, stability analysis, and model

validation (section 2.1.1). TheK p, � , and Td parameters are identi�ed by �tting the

system step responseŷ(t) to the FOPD model output y~(t), formulated as follows:

min
K p ;�;T d

TX

t=1

(y~(t) � ŷ(t))2

s.t. � > 0;

Td � 0

(2.5)
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Figure 2.2: FOPD model step responses

2.1.3 Linear Time Invariant (LTI) Discrete State-Space Model
Identi�cation

Identifying a system from step tests is common when there is a su�ciently high

signal-to-noise ratio (SNR). In signi�cant noise environments, alternative input sig-

nals such as Random Binary Signal (RBS), Pseudo Random Binary Signal (PRBS),

and Random Gaussian Signal (RGS) are more suitable. RBS and PRBS are essen-

tially sequences of multiple step inputs, each designed to capture the system time

constant, delay, and gain e�ects. It is important to sequence these inputs in a man-

ner that does not prioritize one parameter over another to avoid biased identi�cation

[35]. This randomization approach helps in reducing systematic errors and noise ef-

fects. Characterized by its normal distribution, RGS provides extensive frequency

coverage. This continuous signal is particularly valuable in identifying nonlinear dy-

namics, which might be missed by discrete bi-level signals like RBS and PRBS [36,

37]. Input design follows certain rules of thumb. the sampling time is set between 0.1

and 0.2 times the smallest time constant, and the frequency bandwidth is chosen to

encompass slow dynamics at lower frequencies as well as the faster dynamics of the
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process. The frequency range extends from zero to three times the process Nyquist

frequency. The amplitude of input changes is adjusted to be both below and above

the unit change used in step tests. In our speci�c control application, we identi�ed

the model with four input variables including three manipulated variablesQm , Qdil ,

Qt , and one disturbance variableQfd (�g. 2.3).

Figure 2.3: Random Gaussian signal inputs

We introduced the RGS inputs to the system to obtain open-loop dynamic re-

sponses, collecting 1,440 data points. We allocated 70% of this dataset to train a

state-space model, with the remaining data split evenly for model validation and

testing. Using Akaike Information Criterion (AIC) to balance model accuracy and

simplicity, we identi�ed the optimal model order with minimum AIC within the val-

idation data. This state-space model enables the prediction of system trajectories

within a model predictive control (MPC) framework for the multi-input multi-output

(MIMO) control problem. Capturing the MIMO dynamics in state-space form allows

e�ective prediction while keeping the model structure simple enough for online opti-

mization. Additionally, compatibility with Kalman �ltering facilitates real-time noise

mitigation in the future. The state-space model takes the following mathematical
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form:

x_ (t) = Ax(t) + Bu(t) (2.6)

y(t) = Cx(t) + Du(t) (2.7)

where the vectorsx 2 Rnx , u 2 Rnu , and y 2 Rny denote the states, inputs, and

outputs of the system, respectively. The matricesA 2 Rnx � nx , B 2 Rnx � nu , and

C 2 Rny � nx are the identi�ed model parameters. The dimensionnx of the hidden

states is adjusted based on the Akaike Information Criterion (AIC).A is the state

matrix, B is the input matrix, C is the observation or output matrix, and D is the

feedforward matrix which is set to zero due to zero-order hold in the sampling time.

Discrete time models are often convenient if the system of interest is sampled at

discrete time. If the sampling rate is chosen appropriately, the behavior between the

samples can be safely ignored.

2.1.4 Long Short-Term Memory Closed-Loop Identi�cation

An LSTM model is employed as a simulator for the o�ine training or pretraining

of reinforcement learning (RL) agents. It is essential for the model to accurately

capture the dynamics of the variables used in the RL agent states, rewards, and

inputs. The intricate connections arising from a large number of input variables, the

prediction output, and the system delay are key reasons for utilizing dynamic Deep

Neural Networks (DNNs) as a surrogate model. Long Short-Term Memory Networks

(LSTMs), a specialized class of Recurrent Neural Networks (RNNs), are adept at

capturing temporal dynamic behavior. LSTMs e�ectively address the vanishing and

exploding gradient problems, common in traditional RNNs, by incorporating input

and forget gates. These gates facilitate better control over gradient ow and enhance

the preservation of long-range dependencies [38]. An LSTM architecture employs

speci�c equations to manage information ow and update cell states.

To accurately represent the true process, the simulator must account for actual
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process disturbances such as ore grade and feed ow rate. These factors introduce

delayed e�ects and signi�cantly impact the dynamics of the system. The combination

of these disturbances, along with variations in ow rate, can cause rapid divergence in

the open-loop system. In an open-loop system, the interplay of these disturbances and

ow rate changes can lead to rapid dynamic divergence. Consequently, conducting

open-loop experiments to cover a wide range of operational modes, based on di�erent

grades and plant capacities over extended periods (months or even years), poses

substantial challenges. To address this, we utilize a direct closed-loop identi�cation

method. This approach applies open-loop identi�cation techniques but leverages data

from a closed-loop system, which operates under feedback control. The following

equations describe the closed-loop system:

yt = Gput + Glet (2.8)

ut = � Gcyt + Gcr t (2.9)

This equation can be rewritten as:

yt = Gput + Glet (2.10)

yt = � Gcut + r t (2.11)

Figure 2.4: Closed-loop system

The correlation between unmeasurable noiseet and the input ut can lead to biased
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estimates in closed-loop system identi�cation (eq. (2.9)). When analyzing closed-loop

data, the identi�ed model might �t between both equations in section 2.1.4, whereas

the objective is to identify the dynamic model of the processGp only. To improve

the �t with eq. (2.10), it is crucial to introduce su�cient disturbance. In the absence

of external excitation r t and noiseet , the process model and controller should have

di�erent structures. In our case, we employ Deep Neural Networks (DNNs) for the

process model. The DNNs are assumed to be close to the real process due to their

distinct structure from the controller. However, the presence of external excitations

remains the most reliable condition for closed-loop model identi�cation.

In our experiments, the closed-loop system is randomly perturbed with grade and

feed owrate changes every hour, mimicking real operational conditions. Simultane-

ously, the setpoints of both controlled variables are randomly changed within their

normal operation range. Furthermore, the surrogate model is designed to include at

least a one-step delay, meaning the predictionyt uses inputs fromut � 1� n to ut � 1,

where the indexn is the lookback period. These external excitations, coupled with

the delay, ensure that the process model is identi�able and acts as a consistent es-

timator [35]. The consistency of the identi�ed model is equivalent to simultaneous

consistency in both the process and disturbance models. For this purpose, DNNs, as

universal function approximators, are highly suitable.

The LSTM unit is based on a series of gates that control the information ow

(eq. (2.12)).
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f t = � g (Wf x t + Uf ht � 1 + bf )

i t = � g (Wi x t + Ui ht � 1 + bi )

ot = � g (Wox t + Uoht � 1 + bo)

c~t = � c (Wcx t + Ucht � 1 + bc)

ct = f t � ct � 1 + i t � c~t

ht = ot � � h (ct ) (2.12)

The LSTM equations assign a speci�c role to each variable:

ˆ x t 2 Rn : The input vector for the LSTM unit at time step t.

ˆ f t 2 (0; 1)h: Activation vector for the forget gate.

ˆ i t 2 (0; 1)h: Activation vector for the input/update gate.

ˆ ot 2 (0; 1)h: Activation vector for the output gate.

ˆ ht 2 (� 1; 1)h: The hidden state vector, also known as the output vector of the

LSTM unit.

ˆ c~t 2 (� 1; 1)h: Cell input activation vector, representing potential updates to

the cell state.

ˆ ct 2 Rh: Cell state vector, constituting the unit memory.

Activation functions utilized within the LSTM unit are as follows:

ˆ � g: Sigmoid function, yielding values between 0 and 1.

ˆ � c: Hyperbolic tangent function, with an output range between -1 and 1.

ˆ � h: Typically a hyperbolic tangent function; however, variations such as the

identity function � h(x) = x are also considered, based on speci�c LSTM adap-

tations [39].
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The initial values for the cell state c0 and the hidden stateh0 are set to zero.

� denotes the Hadamard product, an element-wise multiplication operation. The

subscript t indexes the time step, reecting the sequential nature of LSTM operations.

During the training process, learned parameters include weight matrices for the input

connectionsWk 2 Rh� n , the recurrent connectionsUk 2 Rh� h, and the bias vector

bk 2 Rh. Here,n and h denote the number of input features and the number of hidden

units, respectively. The subscriptk speci�es the LSTM gate component, which can

be the input gate i , output gate o, forget gate f , or memory cell c. We employ

vector notation to represent the multiple hidden units within a single LSTM cell.

The number of hidden units is a tunable hyperparameter, allowing for adjustments

in the trade-o� between model complexity and accuracy.

Figure 2.5: LSTM unit

2.2 Optimal Control

Classical control, typi�ed by the Proportional-Integral-Derivative (PID) approach,

predominantly employs frequency response techniques, focusing on achieving system

stability, robustness, and consistent performance under disturbances and uncertain-

ties. The widespread application of classical control is attributed to its simplicity and

proven e�ectiveness, particularly in univariate control or where linear approaches are

applicable. Subsequently, modern control theory emerged in the 1960s by formulat-
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ing dynamic and control problems in state space, introducing concepts of controlla-

bility and observability, and designing state feedback controllers. By transitioning

to the time domain and vector-matrix representations, modern control provided a

solid mathematical foundation for classical techniques and broadened the range of

controllable systems.

Optimal control formulates the control task as an optimization problem. It seeks

to determine control signals that optimize certain performance metrics while adhering

to system dynamics and physical constraints. Optimal control is especially valuable

in scenarios with clearly de�ned and quantitatively modeled performance criteria.

It is ideal for complex, multivariable, or constraint-laden environments. The Linear

Quadratic Regulator (LQR) is a fundamental method in optimal control for linear

systems, aiming to minimize a quadratic cost function that typically represents a

balance between control e�ort and deviations from the desired zero state. Globally

optimal state feedback laws for in�nite horizons can be derived by analytically solving

the Algebraic Riccati Equation. The Linear Quadratic Gaussian (LQG) control is

another advanced control strategy that combines two major aspects of control theory:

Linear Quadratic Regulator (LQR) and Kalman Filter. The Kalman Filter �rst

provides an estimation of the current state. This estimation, despite the presence of

noise, is then used by the LQR to compute the optimal control action. LQG control

is used in scenarios where the system model is linear, and both the process and

measurement noises are assumed to be Gaussian. Dynamic programming provides a

broader framework for addressing optimal control problems by decomposing complex

decisions into simpler, recursive stages. It entails deriving and solving Bellman's

optimality equation to obtain an explicit feedback law o�ine. However, the curse of

dimensionality has limited its applications. Model Predictive Control (MPC) achieves

an optimal feedback control law by typically using numerical optimization to address

open-loop, �nite-horizon control problems in real time. MPC functions as a feedback

control law by recalculating optimal control inputs at each sampling time based on
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state updates from new measurements. Consequently, MPC is often synonymous

with receding (or moving) horizon control, in which an explicit prediction horizon is

optimized based on a dynamic process model. MPC adeptly handles complex systems

with constraints, a challenging feat for purely analytical optimal control methods.

It typically aims for local rather than global optimality, considering computational

practicality.

Reinforcement learning, in contrast, seeks to discover the optimal control pol-

icy rather than a sequence of optimal control actions. The overarching goal is to

learn a policy that maximizes quantitatively modeled rewards from environments but

unknown system dynamics. While model-based RL might utilize estimated system

dynamics for more e�cient learning, policy learning fundamentally relies on interac-

tions with the real environment. The optimal policy is \learned" through continual

and \reinforced" interactions with the environment. RL algorithms are discussed in

section 2.3.

2.2.1 Performance Measure and Constraints

The objective of an optimal control problem is to identify control signals that guide

the system along trajectories minimizing a speci�ed performance metric, while also

adhering to certain constraints. Optimal control problems are thus described by

their objective function and constraints. The table below summarizes common objec-

tive function types that can de�ne an optimal control problem. Terminal Control

Problem minimizes the deviation of the �nal state from its desired value att f . Min-

imum Time Problem seeks to transition a system from an initial statex(t0) to a

speci�ed target in the shortest possible time.Minimum-Control-E�ort Problem

moves the system from an initial statex(t0) to a target set S with a minimum con-

trol e�ort. Tracking Problem maintains the system statex(t) as close as possible

to a desired stater (t) over the interval [t0; t f ]. Regulator Problem is a special

case of the tracking problem where the target state values are zero or constant. It is
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Table 2.1: Performance Measure in Optimal Control

Performance Measure Description

Terminal Control Problem J = [ x (t f ) � r (t f )]T H [x (t f ) � r (t f )]

Minimum Time Problem J =
RT

0 dt

Minimum-Control-E�ort Problems J =
Rt f

t0

�
uT (t)Ru (t)

�
dt

Tracking Problem J =
Rt f

t0
(x(t) � r (t))T Q(t)(x(t) � r (t))dt

common to combine di�erent performance measures in the formalization of optimal

control problems.

Constraints are another component of optimal control formulation. Manipulated

inputs (such as valve positions, throttle, current, voltages, and torques) in most phys-

ical systems have limits. If these input constraints are not respected by the controller,

they are enforced by the physical system. Rate of change constraints avoid abrupt

change that might cause reaction runaway, circuit short, water hammer, and other

undesirable operations. Constraints on states or outputs are often imposed for reasons

like safety, operability, or product quality. An important function of a controller is to

determine in real-time whether output or state constraints are achievable and to relax

them satisfactorily if not. Thus, the optimization problem is typically set up with

hard constraints for input constraints and soft constraints for output or state con-

straints. This approach ensures that state constraints do not cause infeasible control

problems, as they can be relaxed by choosing large values for the relaxation factor.

However, large values may be undesirable as measured by the stage-cost function.

Dynamic Programming

The Dynamic Programming (DP) technique is based on theprinciple of optimality.

This principle states that in an optimal trajectory, the remaining path from any state

is an optimal subtrajectory. Consider an optimal policy� � = f � 0; � 1; : : : ; � N � 1g

where stateX i has nonzero probability of occurrence at timei . In formulating con-
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trol from X i at time i onwards, the segmentf � i ; � i +1 ; : : : ; � N � 1g constitutes optimal

control for this subproblem. A key idea of DP is that optimal solutions are incremen-

tally constructed from optimal solutions to smaller subproblems. The process involves

de�ning a series of value functionsV1; V2; : : : ; Vn , where eachVi (x) corresponds to the

value of statex at time i . The values are computed in reverse, using the Bellman

equation which de�nes a recursive relationship (eq. (2.13)). Backward calculation

proceeds untilV1 optimal solution is obtained.

Vi � 1(y) = max
�
gaini � 1 + Vi (new state)

�
(2.13)

While DP was originally developed for discrete problems, Bellman extended this

concept to continuous control problems. Control theory aims to solve an admissible

control policy u � that minimizes a performance measure along a desired system tra-

jectory x_(t) = g(x(t); u(t); t). One way is by solving the Hamilton-Jacobi-Bellman

equation (eq. (2.14)).

� J �
t = min

u
f f (x(t); u(t); t) + J �

x g(x(t); u(t); t)g (2.14)

where J �
x = @J�

@x and J �
t = @J�

@t . For discrete systems, the Bellman equation is refor-

mulated as eq. (2.15).

J �
k (xn� k) = min

u n � k
f f̂ (xn� k ; un� k) + J �

k� 1(ĝ(xn� k ; un� k))g (2.15)

applied at the k-th stage ofn discrete time intervals.

2.2.2 Model Predictive Control

Model Predictive Control (MPC) emerged in the late 1970s and 1980s to handle con-

strained multivariable control problems, commonly encountered in process industries.

MPC circumvents the challenges of solving Bellman's optimality equation, which is

often intractable for nonlinear systems and in the presence of inequality constraints.

The fundamental concept of MPC involves using a dynamic model to predict system
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behavior over a �nite prediction horizon. It optimizes this forecast by producing a

series of optimal control decisions. Within a control horizon, only the �rst control

move u0 is implemented at the current time. At each time step, MPC uses current

measurements to estimate the initial state of the system. The process repeats att +1

with the new state measurementx t+1 . This de�nes an implicit control law ut = U(x t ),

whereU represents the solution operator for the minimization problem.

Explicit MPC (EMPC), in contrast, pre-computes the control law for every pos-

sible state, reducing online computational demands. A traditional (implicit) MPC

controller is �rst designed to generate an explicit MPC controller. EMPC requires less

computational e�ort and provides faster solutions in real time. However, its heavier

o�ine computational load and larger memory footprint may restrict its applications

to scenarios with relatively low dimensions, short prediction horizons, and few output

constraints. A general MPC problem is formulated in eq. (2.16).

min
u

J =
1
2

N � 1X

k=0

�
xT

k Qxk + uT
k Ruk + � uT

k S� uk
�

+ Vf (xN ) (2.16)

s.t. xk+1 = f (xk ; uk);

x0 = x(t);

u 2 U;

x 2 X ;

xN 2 X f ;

� uk = uk � uk� 1:

wherexk and uk denote the state vector and control input vector at stepk, respec-

tively. The matricesQ, R, andS are weighting matrices that de�ne the cost associated

with the state, control e�ort, and control input changes, respectively.Vf (xN ) is the

terminal cost function, a function of the �nal state xN at the end of the horizon.

f (xk ; uk) is the system dynamics function, withU and X being the admissible sets
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for the control inputs and states, respectively.Xf is the terminal constraint set for

the �nal state, and � uk is the change in control input from the previous time step.

Output feedback, often implemented as bias correction, aligns model predictions

with actual system behavior. This correction accounts for plant-model mismatches

by adjusting model predictions using recent measurements. The model output is

added with a bias term, which is the di�erence between current measurements and

predicted values. Under certain disturbances, this feedback approach might lead

to suboptimal responses, necessitating the exploration of alternative feedback and

disturbance estimation techniques.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on training

algorithms to make a series of decisions that maximize cumulative reward over time.

RL agents learn by interacting with an environment, where they learn from trial and

error to achieve a goal or maximize a cumulative reward signal. This learning process

is driven by the experiences and environmental feedback. RL is particularly e�ec-

tive at solving complex control and optimization problems that challenge traditional

methods. In control systems, RL can adaptively manage the autonomous control of

dynamic systems like autonomous vehicles, robots, or heating, ventilation, and air

conditioning (HVAC) systems in buildings. RL introduces a paradigm for de�ning

optimal control policies di�erently from model predictive control (MPC). Rather than

solving optimal control actions sequentially, RL employs machine learning to learn

policies directly from experience. This facilitates developing o�ine and model-free

solutions. Techniques like Q-learning and policy gradients are model-free, enabling

e�ective policies for complex sequential decisions without relying on accurate system

models. Incorporating models addresses sample e�ciency limitations in model-free

methods. Exploration allows avoiding local optima and ensuring adaptability. For

optimization, RL provides a framework to �nd robust solutions in uncertain, changing
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environments for multitasking problems like supply chains, power grid managements,

and chemical processes [40{43]. The adaptability and autonomous learning of RL

make it well-suited to continually improve e�ciency and outcomes across applica-

tions.

Learning methods in RL are mainly based on dynamic programming, Monte Carlo

methods, and temporal di�erence learning. These provide mathematical frameworks

to solve sequential decision-making problems in Markov decision processes. We will

discuss each of these key components for formulating an RL problem in the subsequent

sections.

2.3.1 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) provide a framework for managing dynamic

decision-making processes in stochastic environments. In this research we focus on

discrete-time models, observing the system at timest = 1; 2; :::; n, wheren is the hori-

zon, which can be �nite or in�nite. The former is called �nite horizon MDPs, while

the latter is called in�nite horizon MDPs. Finite MDPs represent episodic tasks that

terminate when a certain terminal state is reached. Each episode has a clear beginning

and ending. In�nite horizon MDPs are typically applied to continuing tasks. In these

scenarios, the policy-maker interacts with the environment inde�nitely, without a pre-

determined endpoint. The policy evaluation and improvement processes consider the

long-term consequences of actions, potentially extending to an in�nite time horizon.

However, continuing tasks can be formulated as �nite MDPs by setting an arti�cial

termination point that can be time-based, resource-based limits, performance bench-

marks, and other criteria. The term \continuing task" in reinforcement learning, is

often confused with \continuous task" and \continual learning." \continuous task"

denotes tasks with continuous action spaces, while \continual learning" describes an

agent ongoing learning process through continuous interaction with the environment.

MDPs follow Markovian dynamics where the next state depends only on the cur-
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rent state and action. The system transitions probabilistically between states as a

function of current states and actions. Actions also inuence immediate rewards and

future rewards. Many applications can be cast as MDPs and solved by dynamic

programming, Monte Carlo, Q-network, and other algorithms including RL.

In Fully Observable MDPs (FOMDPs), the agent has complete visibility of the

system state at every decision point. This full observability simpli�es decision-making

processes. A FOMDP is de�ned as a tuple (S; A; P; R;  ) whereS is the set of states,

A is the set of actions,P is the state transition probability matrix with P(s0js; a),

representing the probability of transitioning to states0 from states after taking action

a, R is the reward function, and is the discount factor.

Partially Observable MDPs (POMDPs) extend MDPs to scenarios where the agent

does not have full visibility of the system state, introducing uncertainty and incom-

plete information into the decision-making process. A POMDP is de�ned as a tu-

ple (S; A; P; R; ; O; 
) where O is the set of observations, and 
 is the observation

probability function, 
( ojs0; a). The primary objective is to determine an optimal

decision-making policy which e�ectively navigates the inherent uncertainties in state

information. This model is more representative of real-world processes, where state

information is often not fully available or discernible. Estimating or inferring states

from observable data is necessary. Other techniques such as as belief state updates

and information state methods are commonly used to address this challenge.

Constrained MDPs (CMDPs) are a special form of MDPs where decision aims

to maximize expected returns while adhering to safety constraints. A CMDP is

de�ned as a tuple (S; A; P; R; ; C; D ), where C represents a set of constraints, and

D represents a set of safety constraints. CMDPs are particularly useful in scenarios

where safety, resource limitations, or regulatory requirements are as important as (or

more important than) the primary objective. They are crucial in applications where

standard RL methods may not be safe.

We formulate RL as an MDP problem where an agent acts as the decision-maker
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and the environment includes all external factors beyond the agent's control but

inuenced by its policy. States provide the context or information relevant to decision

making process. The environment evolves in response to actions, emitting reward

signals. The agent aims to maximize the return, the cumulative sequence of rewards,

typically using discounted rewards over an in�nite horizon. The expected return is

expressed as the sum of discounted rewards:

Gt =
1X

k=0

 kRt+ k+1 (2.17)

where  , with 0 �  � 1, is the discount rate. A higher discount rate indicates a

more farsighted agent. The interaction may continue inde�nitely, but the total reward

remains �nite as long as each reward is �nite or < 1.

The agent learns the policy which maps states to action probabilities. Policies can

be deterministic or stochastic. The deterministic policy� maps a states to an action

a, while stochastic policy� (ajs) is the probability of taking action a given state s.

Through interaction with the environment, the agent learns an optimal policy that

maximizes expected return. Value functions represent the expected return under a

speci�c policy, measuring the value of statesV(s) or state-action pairsQ(s; a). The

state value function of states under policy � , V� (s), is the expected return starting

in s and following � thereafter. The state-action value function for states and ac-

tion a under policy � , Q� (s; a), is the expected return starting froms, taking action

a, and then following � . Due to the high dimensionality of states and actions, the

functions V(s) and Q(s; a) are typically de�ned as parameterized functions. Rein-

forcement learning algorithms commonly involve computing or approximating these

value functions.

2.3.2 Dynamic Programming in Reinforcement Learning

The link between Dynamic Programming (DP) and Reinforcement Learning (RL) lies

in their shared use of value functions to systematically direct the search for e�ective
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Figure 2.6: Markov decision process

policies. DP provides the theoretical foundation for both policy iteration and value

iteration, involving the Bellman optimality principle to determine the best action at

each state. Werbos (1977) proposed \heuristic dynamic programming," an approach

to approximating DP that emphasizes gradient-descent methods for continuous-state

problems, closely related to RL. Watkins (1989) explicitly connected RL to DP, char-

acterizing a class of RL methods as \incremental dynamic programming." Both DP

and RL generally use value functions to organize and structure the search for e�ective

policies. Optimal policies can be easily identi�ed after computing the optimal value

functions, v� or q� , which satisfy the Bellman optimality equations:

v� (s) = max
a

E [Rt+1 + v � (St+1 ) j St = s; At = a] (2.18)

= max
a

X

s0;r

p(s0; r j s; a) [r + v � (s0)] (2.19)

or

q� (s; a) = E
h
Rt+1 +  max

a0
q� (St+1 ; a0) j St = s; At = a

i
(2.20)

=
X

s0;r

p(s0; r j s; a)
h
r +  max

a0
q� (s0; a0)

i
(2.21)

The Bellman optimality equations can be intractable, especially for high-dimensional

problems. DP iteratively evaluates value functions (policy evaluation) and improves

policies (policy improvement). Policy Evaluation computes the state value for a given
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policy:

v� (s) = E� [Gt jSt = s] (2.22)

= E� [Rt+1 + G t+1 jSt = s] (2.23)

= E� [Rt+1 + v � (St+1 )jSt = s] (2.24)

=
X

a2A (s)

� (ajs)
X

s0;r

p(s0; r js; a)[r + v � (s0)] (2.25)

Value functions are commonly estimated by iterative policy evaluation. This pro-

cess recursively learns the value function by using the Bellman equation as a recurring

update mechanism:

Vk+1 (s) = E� [Rt+1 + V k(St+1 )jSt = s] (2.26)

=
X

a

� (ajs)
X

s0;r

p(s0; r js; a)[r + V k(s0)] (2.27)

whereVk is the value function estimate, is the discount factor,p is the state tran-

sition probability, r is the immediate reward, ands0 is the next state. This iterative

process converges tov� ask approaches in�nity, under conditions that guarantee the

existence ofv� . Action-value function q� (s; a) evaluates the advantage of choosing an

action a in state s and then following the current policy� thereafter.

q� (s; a) = E� [Rt+1 + v � (St+1 )jSt = s; At = a] (2.28)

=
X

s0;r

p(s0; r js; a)[r + v � (s0)] (2.29)

If a particular action consistently yields better returns in a given state (s), adopting

the policy that favors that state-action pair improves overall return. Formally, policy

improvement is the process of creating a new policy that improves upon an initial

policy by making it greedy with respect to the state-action value functionq� (s; a) of

the original policy.

Optimal policy derivation hinges on the alternating processes of policy evaluation
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(a) (b) (c)

Figure 2.7: Optimal policy learning: (a) Policy iteration; (b) Value iteration; (c)
Generalized policy iteration

and policy improvement. This interplay forms the basis of distinct approaches:policy

iteration, value iteration, and generalized policy iteration(�g. 2.7).

Policy iteration consists of a cyclic process of policy evaluation and policy improve-

ment. These two processes alternate, each completing before the other begins. The

process begins with an evaluation of initial policy� to determine its value functionv� .

Based on the evaluated value function, the policy is updated into� 0. This iterative

procedure results in a succession of policies and corresponding value functions.

� 0
E�! v� 0

I�! � 1
E�! v� 1

I�! � � � E�! � � E�! v�

whereE denotes a policy evaluation andI denotes a policy improvement.

Policy iteration is known for its relatively slow convergence. Each iteration involves

a full evaluation of the current policy to compute the converged value function prior to

policy improvement. Nonetheless, convergence tov� occurs asymptotically. Just the

initial few iterations are adequate for approximating the value function. Additional

evaluations do not inuence policy improvement. Therefore, the policy evaluation

can be truncated through various methods without losing the convergence.

Value iteration merges policy improvement with a truncated policy evaluation pro-

cess, where only a single iteration of policy evaluation occurs between each policy

improvement:

vk+1 (s) = max
a

E[Rt+1 +  � vk(s0)] (2.30)

The value iteration update is similar to the policy evaluation update, but it requires

selecting the maximum value across all actions. Although value iteration technically
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needs in�nite iterations to exactly converge tov� , in practice, it stops when the

improvement falls within a tolerance.

Asynchronous Dynamic Programming methods intertwine evaluation and improve-

ment without systematic sweeps of the state. It updates the state value function in a

non-sequential manner, utilizing the values of other states as they become available.

This approach allows for a more dynamic and adaptable updating process, rather than

following a strict, predetermined order. As long as both processes keep updating all

states, they converge to the optimal value function and policy.

The concept of Generalized Policy Iteration (GPI) refers to the broader strategy of

allowing policy evaluation and policy improvement processes to interact, regardless

of the granularity of these processes. All these iterative methods are fundamentally

based on dynamic programming techniques.

2.3.3 Monte Carlo

Unlike dynamic programming, Monte Carlo methods do not assume the knowledge

of the environment dynamics. They require only sequences of states, actions, and

rewards sampled from interaction with an environment. These methods estimate

the value of a state by averaging the returns observed after visits to that state. A

distinct feature of Monte Carlo methods is the independence of each state estimate,

in contrast to DP methods, which rely on bootstrapping.

The computational cost of estimating the value of a single state in Monte Carlo

methods is independent of the total number of states. This makes them particularly

advantageous for situations where only speci�c states are of interest. Monte Carlo

methods encompass both every-visit and �rst-visit approaches, which di�er in their

method of averaging returns. The every-visit method calculates the average return for

all visits to a speci�c state-action pair, whereas the �rst-visit method computes the

average return only for the �rst occurrence of that state-action pair in each episode.

A signi�cant challenge arises when certain state-action pairs remain unvisited,
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particularly when using a deterministic policy� . In such cases, returns are observed

for only one of the available actions within each state, making it impossible to improve

the Monte Carlo estimates for the unvisited actions. This necessitates exploration

techniques, such as Epsilon-Greedy, Boltzmann exploration, and Upper Con�dence

Bound (UCB).

Monte Carlo methods o�er a sampling-based approach to approximate action value

function q� (s; a) and can be viewed as a form of Generalized Policy Iteration (GPI).

The idea is to estimate the value function by following a policy, averaging returns

over multiple episodes, and then updating the value function at every visited state.

2.3.4 TD Learning

Temporal di�erence (TD) learning combines concepts from Monte Carlo methods and

dynamic programming in reinforcement learning. Like Monte Carlo, TD methods use

estimates as a learning target. However, TD methods update estimates without

awaiting �nal outcomes like bootstrapping in DP. The value function for a state is

updated as follows:

V(St )  V(St ) + � [Rt+1 + V (St+1 ) � V(St )] (2.31)

where� represents the learning rate, is the discount factor, andRt+1 is the imme-

diate reward received after transitioning to stateSt+1 .

The TD error � t computes the di�erence between current estimate ofV� (s) and

the updated estimate:

� t = Rt+1 + V (St+1 ) � V(St ) (2.32)

Mathematically, TD learning methods converge towards the true state-value or

action-value functions as experience grows, under the same conditions as Monte Carlo

methods. By incorporating additional information from estimated successor states,

TD often converges faster while requiring less experience.
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There are variations of TD learning, such as N-step TD, which updates the value

function based on information from the next n steps. This approach o�ers a middle

ground between one-step TD learning and Monte Carlo methods, which wait until

the end of the episode. TD(� ) generalizes both N-step TD and one-step TD by

introducing a parameter� to control the balance between short-term and long-term

predictions. When� is set to 0, it resembles one-step TD, and as� approaches 1, it

behaves more like Monte Carlo methods.

2.3.5 RL Algorithm taxonomy

Reinforcement Learning (RL) algorithms can be categorized based on whether they

incorporate a model of the environment. Model-based RL attempts to learn a model

or utilize the available model to predict state transitions and rewards. It leverages

model prediction to plan and choose optimal actions. This can greatly improve sample

e�ciency compared to model-free methods that learn policies directly through trial-

and-error interaction. However, learning accurate models is challenging, and model

bias can signi�cantly impact performance. By contrast, model-free methods forgo

potential improvement in sample e�ciency by planning models but tend to be more

straightforward to implement and tune.

RL algorithms can be o�-policy or on-policy. O�-policy RL like Q-learning sep-

arates thebehavior policyused for exploration from thetarget policy that we want

to optimize. O�-policy algorithms promote wider exploration, without interfering

convergence of the target policy. By allowing reuse of any past experience, o�-policy

methods can make better use of accumulated data. O�-policy methods result in

improved sample e�ciency and enhanced learning stability. However, performance

instability can occur when outdated samples imply contradictory state values rela-

tive to the current policy. This instability risk is exacerbated by thedeadly triad -

combining TD learning (or bootstrapping) value updates, nonlinear function approx-

imation like neural networks, and o�-policy can substantially increase the chances of
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divergence [44]. Techniques like constraint enforcement, clipped updates, or larger

replay pools avoid instabilities. On-policy methods, on the other hand, ensure a

close alignment between the behavior policy and the target policy. This alignment

helps maintain learning coherence and stability, as the state-action values reect the

current policy without the interference of outdated experiences. On-policy methods

typically face fewer issues related to the deadly triad compared to o�-policy meth-

ods. On-policy algorithms can be described as \learning on the job," learning about

policy � from experiences sampled under� , while o�-policy algorithms, which learn

from experiences sampled under a di�erent policy� , can be likened to \learning by

observation."

RL algorithms either optimize policies directly or learn value functions and de-

rive corresponding policies.Value-basedmethods use Bellman equations to evaluate

state-action pairsQ� (s; a), indirectly inducing policies by selecting actions that max-

imize Q-values. However, searching for optimum actions grows expensive with large

or continuous action spaces.Policy-basedmethods directly adjust policy parame-

ters towards better performance based on policy gradients, facilitated by on-policy

data. These algorithms can learn both deterministic and stochastic policies, whereas

value-based methods are limited to deterministic policies. Stochastic policies, which

introduce randomness in action selection, aid in exploring a broader range of state-

action pairs and help avoid local optima.Actor-critic frameworks do both, learning

a value function V� (s) which is then used to guide and inform the updates of policy

parameters.
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2.4 Reinforcement Learning Algorithms

2.4.1 Value-Based Method

Q-Learning

Q-learning is an o�-policy Temporal Di�erence (TD) control algorithm used to es-

timate the optimal policy � � by learning the optimal action-value functionQ� (s; a).

It learns the optimal policy (or target policy) independently of the current policy

(behavior policy). Q-learning can only handle discrete, �nite MDPs and might con-

verge slowly in large state spaces. Using function approximation in Q-learning can

sometimes lead to a failure of convergence. Double Q-learning is a variation of the

Q-learning algorithm aimed at reducing overestimation bias, thereby improving the

stability and convergence of Q-learning [45]. The maximization step in the update

rule tends to select overestimated values since the same Q-value function selects and

evaluates actions. Double Q-learning decouples the selection from evaluation by main-

taining two independent Q-value functions, referred to as Q1 and Q2. Q1 selects the

best action a = argmaxa0Q1(s; a0), while Q2 evaluates that action to update the

target Q-value. By breaking the max dependency between action selection and value

update, this di�erence in targets helps address the positive bias. Deep Q-Network

(DQN) is a deep reinforcement learning algorithm that combines Q-learning with a

deep neural network serving as the function approximator [7]. Rainbow DQN in-

tegrates multiple improvements to the Deep Q-Network (DQN) algorithm, creating

a more robust and e�cient learning framework. These enhancements include dou-

ble Q-learning, prioritized experience replay, dueling networks, multi-step Learning,

distributional RL, and noisy nets [46].
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Algorithm 1 Q-learning (o�-policy TD control)

1: Input : Initialize Q(s; a), for all s 2 S + ; a 2 A (s), arbitrarily except that
Q(terminal; �) = 0

2: Parameter : step size� 2 (0; 1], small � > 0
3: for each episodedo
4: Initialize s
5: for each step of episodedo
6: Choosea using policy derived fromQ (e.g., � -greedy)
7: Take action a, observer; s0

8: Q(s; a)  Q(s; a) + � [R +  maxa Q(s0; a) � Q(s; a)]
9: s  s0

10: end for
11: end for until s is terminal

SARSA

SARSA is an on-policy TD algorithm. SARSA may converge to suboptimal policies

and require more time to learn as it must simultaneously explore and exploit. Ex-

pected SARSA reduces variability in target values by taking the expectation over all

possible next actions instead of the single sampled next action. This expected value

provides more stable learning. Double SARSA is another modi�cation that keeps two

separate estimators to reduce overestimation bias, similar to Double Q-Learning. El-

igibility traces are incorporated in SARSA(� ) to dynamically balance TD and Monte

Carlo targets for faster learning and lower bias. Another version like Variable Lambda

SARSA adapts the traces themselves, tuning the decay factor based on state visita-

tion frequency. Delayed SARSA introduces delays in weight updates to stabilize the

next action, reducing bias from asynchronous updates.
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Algorithm 2 SARSA (on-policy TD control)

1: Input : Initialize Q(s; a) for all s 2 S; a 2 A , arbitrarily except that
Q(terminal; �) = 0

2: Parameter : step size� 2 (0; 1], small � > 0
3: for each episodedo
4: Initialize s
5: Choosea using policy derived fromQ (e.g., � -greedy)
6: for each step of episodedo
7: Take action a, observer; s0

8: Choosea0 from s0 using policy derived fromQ (e.g., � -greedy)
9: Q(s; a)  Q(s; a) + � [r + Q (s0; a0) � Q(s; a)]

10: s  s0, a  a0

11: end for until s is terminal
12: end for

2.4.2 Policy-Based Method

Policy Gradient Methods

Policy Gradient is an on-policy algorithm that optimizes the policy directly by com-

puting gradients of the expected reward with respect to the policy parameters. Al-

gorithms like REINFORCE and Actor-Critic are fundamental policy gradient tech-

niques. The gradient is computed as follows:

r � J (� ) = E� � [r � log� � (ajs) � A � � ] (2.33)

wherer � J (� ) is the gradient of the objective with respect to the policy parameters,

� � (ajs) is the policy (probability of taking action a in state s). A � � represents the

advantage of being in states, taking action a, and subsequently following policy� � .

Advantage function provides a normalized measure of how advantageous a par-

ticular action is relative to the current policy. It reduces the variance of the update

signal, which can accelerate learning. The method to calculate the advantage depends

on the speci�c needs of the algorithm, with each method a�ecting the bias-variance

balance in distinct ways:

ˆ The basic advantage estimation is calculated asA(s; a) = Q(s; a) � V(s), which

represents the di�erence between the action-value and the state-value function.
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ˆ The Temporal Di�erence (TD) Error is expressed asA(s; a) = r + V (s0) � V(s),

and it uses the value function estimate at the next state to improve the current

state value estimate.

ˆ Generalized Advantage Estimation (GAE) is given byAGAE (; � ) =
P 1

t=0 (� )t � V
t ,

with the TD error � V
t = r t + V (st+1 ) � V(st ), aiming to reduce variance by

averaging over a longer trajectory.

ˆ The n-step Advantage takes into account a sequence of rewards and is computed

asA(st ; at ) =
P n� 1

k=0  kr t+ k +  nV(st+ n ) � V(st ), balancing immediate and future

rewards.

Algorithm 3 Policy Gradient Method

1: Input : Policy parameters� 0, Value function parameters� 0

2: for k = 0; 1; 2; : : : do
3: Collect trajectoriesDk = � i by executing policy� k = � (� k)
4: Calculate rewards-to-goRt

^ for each timestept
5: Compute advantage estimatesÂ t using any standard method withV� k

6: Compute the policy gradientĝk as follows:

ĝk =
1

jD k j

X

� 2D k

TX

t=0

r � log� (at jst ; � k) � Â t

7: Update policy parameters via gradient ascent

� k+1 = � k + � k ĝk

8: Update value parameters by regression on mean-squared error:

� k+1 = argmin �
1

jD k jT

X

� 2D k

TX

t=0

(V� (st ) � Gt )2

whereT represents the time horizon of each trajectory
9: end for

REINFORCE

REINFORCE, or Monte Carlo Policy Gradient, directly adjusts the parameters of

the policy based on the gradient of the expected reward, using entire episodes for
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updates [47]. It often su�ers from high variance in its estimates, and its performance

can be signi�cantly inuenced by the choice of learning rate� and discount factor .

Algorithm 4 REINFORCE

1: Input : a policy � � (ajs) parameterized by�
2: Initialize policy parameters� arbitrarily
3: for each episodedo
4: Generate an episode trajectoryf s0; a0; r1; : : : ; sT � 1; aT � 1; rT g � � �

5: for t = 0 to T � 1 do

G  
TX

k= t+1

 k� t � 1r k ;

�  � + � tGr � ln � (at jst ; � )

6: end for
7: end for

Trust Region Policy Optimization (TRPO)

TRPO is an on-policy, policy gradient algorithm that improves vanilla policy gradient

methods by constraining the policy update. It updates policies by taking the largest

step possible to improve performance while satisfying a distance constraint between

updated and current policies. The constraint is expressed in terms of Kullback-

Leibler (KL)-Divergence, a measure of distance between probability distributions.

TRPO avoids collapsing policy performance and tends to monotonically improve per-

formance.

TRPO modi�es the standard policy gradient objective The modi�ed objective with

a trust region constraint is given by:

max
�

E� � old

�
� � (ajs)

� � old (ajs)
A � � old (s; a)

�

s.t. E� � old
[DKL (� � old (�js) k � � (�js))] � �

where DKL denotes the KL-divergence and� is a small positive number that limits

the size of the policy update, ensuring the new policy is within a 'trust region' of the

current policy.
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2.4.3 Actor-Critic Method

DDPG (Deep Deterministic Policy Gradient)

DDPG is an o�-policy algorithm that integrates deterministic policy gradients and

Q-learning. DDPG can only be used for environments with continuous action and is

considered an extension of Q-learning for continuous action spaces. It uses o�-policy

data from a replay bu�er and the Bellman equation to learn a Q value function

[48]. DDPG employs a deterministic policy that is optimized using gradient ascent

methods. This makes it possible to handle the optimization challenges that arise in

continuous spaces, where �nding the maximum Q-value is non-trivial. To facilitate

exploration in its deterministic policy framework, DDPG adds noise to the actions

during training, such as time-correlated Ornstein{Uhlenbeck (OU) noise or mean-zero

Gaussian noise.
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Algorithm 5 Deep Deterministic Policy Gradient (DDPG)

1: Input :
2: Initialize actor network � � (s) and critic network Q� (s; a) with weights � and �
3: Initialize target networks � 0 and Q0 with weights � 0  � , � 0  �
4: Initialize replay bu�er D
5: for each episodedo
6: Observe initial states
7: for t = 0 to T do
8: Select actiona = clip( � � (s)+ N ; alow ; ahigh ) whereN is noise for exploration
9: Execute actiona and observe rewardr and new states0

10: Store transition (s; a; r; s0) in D
11: Sample random mini-batchB of N transitions (si ; ai ; r i ; s0

i ) from D
12: Computer the target

y = r + Q 0
� 0(s0; � 0

� 0(s0))

13: Update critic by one step gradient descent:

r �
1

jBj

X

(s;a;r;s 0;d)2B

(Q� (s; a) � y)2

14: Update the actor policy using the one step gradient ascent:

r �
1

jBj

X

s2B

Q� (s; � � (s))

15: Update the target networks:

� 0  � � + (1 � � )� 0

� 0  � � + (1 � � )� 0

16: end for
17: end for

Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 is an actor-critic, o�-policy algorithm that improves upon the DDPG algorithm

by addressing the overestimation bias. TD3 learns clipped double Q-function and

regresses toward the minimum of the two Q-values to reduce overestimation. TD3

updates policy similar to DDPG. However, TD3 adds delayed policy updates and

target policy smoothing to further stabilize training. The policy is updated less
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frequently than the Q-functions to reduce volatility. TD3 also uses \target policy

smoothing" by adding clipped noise to the target action coming from the target

policy.

Algorithm 6 TD3 Algorithm
1: Input :
2: Initialize critic networks Q� 1 , Q� 2 , and actor network� � with random parameters
3: Initialize target networks � 0

1  � 1, � 0
2  � 2, � 0  �

4: Initialize replay bu�er D
5: for each episodedo
6: Observe initial states0

7: for t = 0 to T do
8: Select action with exploration noiseat = � � (st ) + � , where

� � N (0; � )

9: Execute actionat and observe rewardr t and new statest+1

10: Store transition tuple (st ; at ; r t ; st+1 ) in D
11: Sample mini-batch ofN transitions B = s; a; r; s0 from D
12: compute targetsy = r +  mini =1 ;2 Q� 0

i
(s0; � � 0(s0))

13: Update critics � i  arg min� i
1

jBj

P
(y � Q� i (s; a))2

14: if t mod d then
15: Update actor by the deterministic policy gradient:

� i  r �
1

jBj

X

s2B

Q� (s; � � (s))

16: Update target networks:

� 0
i  � � i + (1 � � )� 0

i

� 0  � � + (1 � � )� 0

17: end if
18: end for
19: end for
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Advantage Actor-Critic (A2C)

A2C is an extension of the basic Actor-Critic method, introducing the advantage

function to reduce variance in policy updates. The advantage functionA(s; a) guides

the policy gradient more e�ectively by considering the relative value of each action

compared to the average [49].

Algorithm 7 Advantage Actor-Critic (A2C)

1: Input :
2: Initialize actor network � � and critic network V� with random parameters
3: for each episodedo
4: Observe initial states
5: for each step of episodedo
6: Select actiona � � � (s)
7: Execute actiona and observe rewardr and new states0

8: Estimate advantage

A(s; a) = r + V � (s0) � V� (s)

9: Update critic by minimizing loss:

L(� ) = A(s; a)2

10: Update actor using policy gradient:

r � J (� ) = r � log� � (ajs)A(s; a)

11: s  s0

12: end for until s is terminal
13: end for
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Asynchronous Advantage Actor-Critic (A3C)

A3C improves upon standard actor-critic methods by training multiple instances of

the agent in parallel in multiple environments. This parallelism not only speeds up

training but also diversi�es the experience, which stabilizes the update gradients [49].

Algorithm 8 Asynchronous Advantage Actor-Critic (A3C)

1: Input :
2: A set of continuous MDPs (S; A ; P; R;  ) for each actor-learner
3: Initialize global actor network � � global and critic network V� global with random

weights
4: Initialize multiple actor-learner threads each with its own set of network param-

eters � and �
5: for each actor-learner threaddo
6: for each episodedo
7: Observe initial states
8: Tare local gradients:d�  0 and d�  0
9: for each step of episodedo

10: Select actiona � � � (s)
11: Execute actiona and observe rewardr and new states0

12: Accumulate gradient wrt. � : d�  d� + r � log� � (ajs)(G � V� (s))
13: Update global critic by d�
14: Accumulate gradient wrt. � : d�  d� + r � log� � (ajs)A(s; a)
15: Update global actor byd�
16: Synchronize local networks with global networks
17: s  s0

18: end for until s is terminal
19: end for
20: end for

Proximal Policy Optimization (PPO)

PPO aims to balance exploration and exploitation by limiting the size of policy up-

dates. PPO which evolved from policy gradient methods like A2C, introduces a novel

objective function that penalizes large changes to the policy, thus avoiding the per-

formance collapse. This is achieved by using a clipped surrogate objective function.

This clipping mechanism is what primarily di�erentiates PPO from A2C [50].
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Algorithm 9 PPO-Clip

Input : Initial policy parameters � 0, initial value function parameters� 0

for k = 0; 1; 2; : : : do
Collect a set of trajectoriesDk = f � i g by executing a policy� k = � (� k)
Calculate rewards-to-gor̂ t

Calculate advantage estimatesÂ t based on the current value functionV� k

Update the policy:

� k+1 = arg max
�

1
jD k jT

X

� 2D k

TX

t=0

min
�

� � (at jst )
� � k (at jst )

Â t ; clip
�

� � (at jst )
� � k (at jst )

; 1 � �; 1 + �
�

Â t

�

Update value function by mean-squared error regression:

� k+1 = arg min
�

1
jD k jT

X

� 2D k

TX

t=0

(V� (st ) � r̂ t )
2

end for

Soft Actor-Critic (SAC)

SAC bridges the gap between stochastic policy optimization and approaches like

DDPG. Soft Actor-Critic is an o�-policy actor-critic algorithm that incorporates en-

tropy into the reward signal to encourage the policy to explore more by maximizing

a trade-o� between expected return and entropy. Entropy regularization enhances

exploration and prevents premature convergence to suboptimal policies [51]. SAC

is designed for continuous action spaces and employs two Q-functions to mitigate

overestimation bias. In SAC, the policy network outputs a distribution over ac-

tions. Instead of sampling an action directly from this distribution (which would be

a non-di�erentiable operation), the reparameterization trick rewrites the action as a

deterministic transformation of some independent noise. An actiona is produced by

transforming a noise variable� (usually sampled from a standard normal distribution)

using the mean and standard deviation output by the policy network. This can be

mathematically represented as

a = � (s) + � (s) � �;
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where� (s) and � (s) are the mean and standard deviation for the states, and � is the

random noise.

Algorithm 10 Soft Actor-Critic (SAC)

1: Input : Initialize policy parameters � , Q-function parameters � 1; � 2, initialize
replay bu�er D

2: Set target parameters equal to main parameters� targ ;1  � 1; � targ ;2  � 2

3: repeat
4: Observe states and select actiona � � � (s)
5: Executea in the environment
6: Observe new states0, reward r , and done signald
7: Store (s; a; r; s0; d) in replay bu�er D
8: if update then then
9: for each update stepdo

10: Randomly sample a batch of transitionsB = f (s; a; r; s0; d)g from D
11: Compute targets for the Q functions:

y = r +  (1 � d) min
i =1 ;2

Q� targ ;i (s
0; a~); a~ � � � (s0)

12: Update Q-functions by one step of gradient descent using:

r � i

1
jBj

X
(Q� i (s; a) � y2

13: Update policy by one step of gradient ascent using:

r �
1

jBj

X �
min
i =1 ;2

Q� i (s; a~(s)) � � log� � (a~(s)js)
�

14: Update target networks with:

� targ ;i  � � targ ;i + (1 � � )� i

15: end for
16: end if
17: until convergence
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2.5 Imitation Learning

2.5.1 Behavioral Cloning

Behavioral Cloning (BC) is the simplest method in imitation learning where a model

learns to mimic expert behavior directly and learns a mapping from states to actions

[52]. BC is a supervised learning method where policy� is trained to map states to

the action of an expert policy� E . The objective of BC is to minimize the di�erence

between the actions taken by the learned policy and the expert actions, given the

same states. The loss function, often a mean squared error, is given by:

L(� ) = E(s;a)� � E

�
(� (s) � a)2

�
(2.34)

where (s; a) are state-action pairs sampled from the expert's policy� E .

Algorithm 11 Behavioral Cloning (BC)

1: input: Expert demonstrationsD, policy network � �

2: for each epoch or batchdo
3: Sample a batchf (si ; ai )g from expert demonstrationsD
4: Select the policy's action distribution parameters� � (si ); � � (si ) for each statesi

5: Calculate the lossL for the policy:

L(� ) =
1
N

NX

i =1

kai � � � (si )k
2 + � 1H (� � ) + � 2k� k2

whereH (� � ) is the entropy of the Gaussian distribution de�ned by� � (si ) and
� � (si ), � 1 and � 2 are regularization coe�cients

6: Update the policy parameters� using gradient descent:

�  � � � r � L(� )

where� is the learning rate
7: end for

2.5.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) combines ideas from Generative

Adversarial Networks (GANs) and imitation learning. GANs operate through two
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neural networks: generatorG and a discriminator D, engaged in a zero-sum game

framework [53]. The generator fabricates data resembling real instances, while the

discriminator evaluates these instances, discerning real from generated data. The

objective function of a GAN is formalized as:

min
G

max
D

Ex � pdata [logD(x)] + Ez� pz [log(1 � D(G(z)))] (2.35)

In GAIL, the generator is the RL policy � , and the discriminator D di�erentiates

between state-action trajectories from the expert and those generated by the policy.

Unlike traditional supervised learning, GAIL does not rely on labeled datasets but

learns by emulating expert behaviors in an adversarial setting. The goal of GAIL is

to train � so that the discriminator cannot distinguish between its trajectories and

those of the expert.

One of the key challenges in imitation learning is the issue of distributional shifts.

Distributional shift occurs when the policy encounters states that are not represented

in the training data, often leading to accumulating errors. GAIL addresses this by

learning entire trajectories rather than individual actions. This approach allows the

policy to learn a comprehensive strategy that includes recovery from states that are

not part of the expert demonstrations. The policy is trained to minimize the log

probability that the discriminator correctly identi�es its trajectories, while the dis-

criminator is trained to maximize its accuracy in classifying state-action pairs as

originating from either the expert or the policy. The GAIL objective is given by:

min
�

max
D

E� [log(1 � D(s; a))] + E� E [logD(s; a)] (2.36)
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Algorithm 12 Generative Adversarial Imitation Learning (GAIL)

1: input Expert demonstrationsD, initial policy parameters � , initial discriminator
parametersw

2: while not convergeddo
3: Sample trajectories� using policy � �

4: Update discriminator parametersw by ascending its stochastic gradient:

r w
�
E � � � � [log (1 � Dw (s; a))] + E(s;a)� D [logDw (s; a)]

�

5: Update policy parameters� by descending its stochastic gradient:

r � (E� � � � [log� � (ajs)Qw(s; a)])

6: end while
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Chapter 3

Digital Twin of an Industrial-Scale
Bitumen Extraction Process

This work was presented at the 2023 INFORMS Annual Meeting and has been submitted to
Computers & Chemical Engineering journal as: J.F. Soesanto, B. Maciszewski, L. Mirmontazeri, S.
Romero, M. Michonski, A. Milne, and B. Huang \Digital Twin and Control of an Industrial-Scale
Bitumen Extraction Process" (Manuscript ID: CACE-D-24-00011)
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3.1 Introduction

In recent years, the \digital twin" has achieved a signi�cant advancement in the

process industry [54{57]. De�ned as a digital replica of a physical system [58{60], the

digital twin heralds a new era of digital transformation in the Oil & Gas sector[61{

63]. It facilitates innovative simulation-driven strategies, particularly harnessing the

power of arti�cial intelligence applications [64{66]. The digital models not only enable

bidirectional data ow between the virtual and real worlds but also ensure a safe and

economical exchange of information [67{69]. Such interconnectivity allows hypotheses

formulated in the virtual domain to be tested and re�ned in the physical realm, and

vice versa [70{72].

This potential of digital twin becomes particularly relevant in industries facing

complex challenges, such as the oil sands sector. With oil sands reserves estimated to

be 2.7 times larger than conventional crude deposits and spread across vast regions

globally, they constitute an enormous potential resource [73{75]. Unlike conventional

crude oil, which undergoes direct re�ning, oil sands require multiple processes to pro-

duce synthetic crude oil (SCO) [76, 77]. A critical unit in surface mining bitumen

extraction is the Primary Separation Vessel (PSV) [78]. It is the �rst process unit

absorbing uncertainty from upstream mining ore grade (the main source of process

uncertainty) and plant capacity, ensuring over 90% bitumen recovery. Prior research

explored separation mechanisms in pilot-scale PSV both theoretically and experi-

mentally [79]. Our work re�nes these models and scales them up to better reect

real-world conditions. We divide the middlings layer of the PSV into two zones: one

encountering turbulence from entrance e�ects, and a more stable upper middlings.

This distinction enables modeling the dynamic interface, expected to improve in-

terface velocity estimation accuracy and enhance the dynamic model stability. In

contrast, prevalent models assume a static interface for stability [79], a simpli�cation

not reective of actual operations. The detailed modeling of the interface is essential

51



due to its critical impact on separation e�ciency. Moreover, the model incorporates

often-overlooked aspects like bulk ow dynamics, froth quality, and bitumen losses,

providing a more holistic understanding of extraction performance. Finally, we scale

up the model to actual industrial dimensions, tailored to real-world processes.

Despite the crucial role of PSV, it is vital to consider plant-wide bitumen extraction

processes collectively to grasp their interdependence and assess holistic operational

strategies [80{82]. Our research expands this perspective by constructing a model that

integrates both upstream and downstream facets of PSV. Notably, it acknowledges

that not all bitumen in the middlings phase is wasted, with a portion being recoverable

in the FT cells [83]. By replicating real-world con�gurations and scales, the model is

adept at utilizing genuine datasets for parameterization. This synchronization makes

the model a potential digital twin for real-world processes, catalyzing dynamic studies

of bitumen extraction. Such studies can shed light on re�ning operations, controls,

and strategic deployments.

Key features of the model:

ˆ PSV model re�nement: The model introduces an upper middlings layer, to

achieve a steady-state without static interface assumptions, o�ering a closer

representation of real-world processes.

ˆ Extended plant modeling: The model expands to upstream process and down-

stream otation units, enabling deeper understanding of recovery performance

and process interactions.

ˆ Digital twin implementation: The model is meticulously calibrated, and mirrors

real processes. By validations across various scenarios, it reects both real

steady state and dynamics, capturing gains and key dynamic parameters. The

digital twin enables studying extraction performance and designing advanced

control systems.
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ˆ Inclusion of �nes and bitumen loss: The model accounts for often overlooked

factors such as froth quality and tailings bitumen loss, key parameters aiming

to assess and optimize operations.

By navigating these innovative terrains, we aim to advance research in the bitumen

extraction �eld, enabling the adoption of the dynamic model as a platform for simu-

lation, control, and optimization studies. Its structure, characterized by multi-modal,

nonlinear, and multi-input multi-output with constraints, o�ers a secure and sturdy

testing ground. This environment is not only ideal for experimenting with advanced

control and optimization strategies, such as Model Predictive Control (MPC) and

Reinforcement Learning (RL) [84, 85], but also facilitates the advanced soft sensor

design [86{88]. Rigorous validation is crucial before these strategies are introduced

in real-world settings to address and minimize inherent risks [86, 88].

3.2 Modeling

In this section, we discuss each unit and its physics in the plant-wide setting. The

model is scaled up based on the actual process dimension and working capacity and

validated using actual process data. The model improvement is conducted on PSV

which is the heart of the extraction process. The interconnectivity to the upstream

and downstream processes is investigated, including Ore Preparation Plant (OPP),

PSV, and Flotation (FT) cells.

3.2.1 Process Description

Currently, 20% of oil sands reserves are accessible via mining techniques. The mined

oil sands undergo extraction processes to recover bitumen, which then proceeds to

the upgrading stage. The extraction process encompasses ore preparation, extraction

in PSV, and secondary separation in FT cells.

In the OPP, oil sands containing approximately 11% bitumen, 84% solids, and 5%

water are crushed to break up clumps into loose, uniform particles. The addition
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of caustic reduces bitumen surface tension and promotes aeration. The crushed oil

sands slurry is then transported via high-velocity hydrotransport lines to PSV. The

turbulent pipeline ow promotes oil sands ablation, liberates bitumen, and provides

additional time for bitumen attachment to air bubbles, improving the separation of

bitumen [89].

In the PSV, the slurry is fed to the middlings layer or source zone in the middle

of the vessel. Here, aerated bitumen rises to the froth overow containing around

60% bitumen, 10% solids, and 30% water. Then, the froth undergoes deaeration

and is further processed in the Para�nated Froth Treatment (PFT) before moving

on to the upgrading phase [77]. Heavy particles settle to the bottom tailings layer

containing about 0.4% bitumen, 65% solids, and 34% water. The tailings discharge

is subsequently thickened prior to treatment.

The middlings layer contains around 4% bitumen, 20% solids, and 76% water. It

is discharged to the FT cells for secondary separation. Air injection aerates bitumen

particles, recovered in the otation froth overow containing approximately 17% bi-

tumen, 12% solids, and 71% water. This recycles back to the PSV feedwell. Heavy

non-aerated particles settle to the otation tailings withdrawal containing about 0.4%

bitumen, 25% solids, and 74% water. The interconnectivity between PSV and FT

cells de�nes the main oil sands separation process to produce synthetic crude oil.

3.2.2 Overall Process

Mass Balance

A schematic representation of the overall mass balance, detailing the process ow, is

shown in �g. 3.2. The ore feedQore mixes with process waterQwpw to form a slurry

Qsl . The superbox serves as a mixing chamber for feeds from two separate lines and

can be approximated as a �xed-volume mixer. Therefore, the PSV feed ow rateQfd

from the superbox to the PSV is given by:

Qfd = Qsl (3.1)
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Figure 3.1: Oil sands extraction process schematic

Dilution water Qdil is added to Qfd before entering the PSV. Underwash water

Quw a�ects separation performance in the PSV by \cleaning" the bitumen droplets

as they rise to the top of the vessel and encourages the release of any trapped �nes.

However, this e�ect has been omitted from this model to simplify energy balance and

heat transfer calculations, as it does not signi�cantly a�ect overall process behavior.

Therefore,Quw will be considered an addition to the dilution water input to PSV.

Within the PSV, light particles discharge through the froth overow Qf , while

heavy particles discharge through the tailings withdrawalQt . The middlings with-

drawal Qm , which primarily consists of water, remaining bitumen, and residual solid

particles, are transferred to FT cells for further separation.

In the FT cells, aerated particles recycle back to the PSV through the otation froth

recycleQf f , while heavy particles discharge through the otation tailings withdrawal

Qf t . The overall volume balance determines the PSV froth overowQf :

Qf = Qfd + Qdil + Quw + Qf f � Qm � Qt (3.2)

whereQf f satis�es:

Qf f = Qm � Qf t (3.3)
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Figure 3.2: Overall mass balance of oil sands extraction process

Dynamic Recovery Rate

To accurately evaluate the separation performance during dynamic operations, we

introduce a time-dependent recovery rate calculation. This approach is grounded in

the overall mass balances of bitumen that enters and is lost through the tailings. The

key aspect is that the bitumen accumulating within the loop over the time period

is considered part of the recovered portion. This is because it has separated from

the tailings even though it has not yet overowed. By including accumulation in the

recovered bitumen, we avoid ambiguities from changing interface levels and unsteady

operation. It provides a meaningful performance metric under dynamic operating

conditions.

The recovery rate over a given period is quanti�ed through the following equations:

RRtot =
P

Qfd � fd
b � � t

bQt � t
b � Qf t � f t

bP
Qfd � fd

b

(3.4)

RRpsv =
P

Qfd � fd
b + Qf f � f f

b � � t
bQt � t

bP
Qfd � fd

b + Qf f � f f
b

(3.5)

RRf t =
P

� m
b Qm � m

b � Qf t � f t
bP

� m
b Qm � m

b

(3.6)

whereRRtot , RRpsv, and RRf t represent the overall, PSV, and FT recoveries, respec-

tively.
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3.2.3 Upstream (Mining/OPP/Hydrotransport)

The variability in ore grade from mining directly inuences the slurry mixture pro-

duced in the ore preparation plant. The slurry composition can be calculated as:

� sl
j =

� ore
j

1 + r
(3.7)

wherer is the water-to-ore ratio, being set at 0.45 in this work.

The model considers three distinct ore grades to simulate performance under var-

ious conditions. The ore recipes are adapted from [79] but tailored to real-world

mining statistics. Further classi�cation based on di�erent unaerated bitumen sizes is

unnecessary, as the actual distribution in the real process is not well understood and

it adds to model complexity [90]. We select one size for unaerated bitumen based on

typical ranges. Unaerated bitumen is important to model as it causes bitumen losses

in tailings.

Bitumen liberation and aeration are complex phenomena inuenced by a multitude

of factors including ore grade, �nes concentration, temperature, pH, and agitation.

While there is a need for further research to model these intricate variables, our

study takes a di�erent approach to capture their e�ects. We vary the composition

of unaerated bitumen as a proxy for these inuences. It is worth noting that factors

like pH, temperature, and agitation are typically controlled within a certain range

during the process; however, the presence of �nes, particularly in the form of clay,

is an unavoidable disturbance. Hydrophilic �nes cause slime-coating on the bitumen

surface, which increases its hydrophilicity, preventing it from attaching to air bubbles.

Meanwhile, hydrophobic �nes attach to the bitumen, reducing the froth quality [91{

93]. The e�ect of �nes on bitumen aeration is illustrated visually in �g. 3.3.

Therefore, the model is not arbitrary in its treatment of unaerated bitumen vari-

ation. Instead, we employ a simple correlation to estimate the fraction of unaerated

bitumen in various bitumen grades, linearly increasing with �nes concentration
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Figure 3.3: E�ect of �nes on bitumen aeration

� ore
b1

� ore
b

= C1� ore
s1 (3.8)

The multistep processes from the OPP to the PSV represent the delay associated

with the ore grade transition e�ect on the PSV. The volume of the modeled mixer

has been set to replicate the delay observed in the actual process, as reected in its

impact on residence time. This particularly concerns the delayed responses of both

the interface and the cone density following a step change in the �nes fraction from

the OPP. The volumetric fraction of speciesj in the PSV feed stream� fd
j evolves

according to:

d� fd
j

dt
=

Qsl

Vmix

�
� sl

j � � fd
j

�
(3.9)

3.2.4 Primary Separation Vessel

Constitutive Relationships

We refer to the modeling principles from [79, 94] and references wherein. The vessel

dimensions follow the actual size of cylindrical top and conical bottom. The main

novelty is considering an upper middlings above the middlings layer. [95, 96] studied

the turbulent ow around the feedwell in the middlings. Consequently, we represent

the middlings as a mixing region supplying particles through upper and lower inter-
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Table 3.1: Ore recipe

Grade Low Average High

Total Bitumen 10.4% 11.8% 12.9%

Aerated 9.1% 10.9% 12.3%

Unaerated 1.3% 0.9% 0.6%

Total Solids 83.6% 82.5% 81.3%

small 20.9% 15.0% 10.0%

medium 2.7% 3.0% 4.8%

large 60.0% 64.6% 66.5%

Water 5.8% 6.0% 5.8%

faces, with the withdrawn middlings being directed to FT cells. In contrast, the upper

middlings exhibit a developed ow pro�le. In this region, particle settling aligns with

Stokes' law. Thus, we model four vertical layers: froth, upper middlings, middlings,

and tailings (�g. 3.4).

Throughout the entire vessel, one-dimensional ow is assumed. Particle ow is

directionally constrained, moving downward across the middlings/tailings interface

and upward across the middlings/upper middlings interface. Bidirectional ow occurs

at the froth/upper middlings interface, to account for dynamic interface.

While the interface between the upper middlings and froth layer is dynamic, other

interfaces remain static. These static interfaces serve mainly for modeling convenience

rather than acting as actual physical boundaries [94]. Their position does not impact

steady-state behavior but can a�ect model dynamics. As such, the volume of each

layer is included as empirical parameters subject to adjustment. Details regarding

this will be discussed in section 3.3.5.

The dynamic interface between upper middlings and froth layer has positions rang-

ing from 0 at the bottom to 100 at the top of the cylindrical part, with downward

velocity deemed positive. The froth/upper middlings interface velocityvI follows the
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Wallis shockwave equations [97]:

Wave Velocity =
Flux Received� Flux Removed

Volume Fraction Di�erence
(3.10)

vI =
P

� m
bkv

mu
bk �

P
� mu

bk vf
bkP

� mu
bk �

P
� f

bk

(3.11)

Here, k 2 f 1; 2; 3g is used as an index for particle size. For solids,k denotes

�nes, medium, and coarse particles. This index di�erentiates between unaerated and

aerated particles. Speci�cally,k = 1 is used for unaerated particles, as they are

generally smaller, whilek = 2 denotes aerated particles. vmu
bk and vf

bk denote the

bitumen settling velocity in the upper middlings and froth layer, respectively, while

� mu
bk and � f

bk represent the bitumen volume fractions in these layers.

Accurate interface level estimation depends on precisely de�ning concentration and

velocity near the interface. Introducing the upper middlings enhances these predic-

tions. Unlike the highly turbulent middlings, the upper middlings layer has a de-

veloped ow pro�le suited for description by Stokes' equation. This enhances model

prediction and provides exibility, as parameters related to the upper middlings sub-

stantially inuence interface dynamics, as discussed in section 3.3.5. This diverges

from prior models that applied Stokes' equation to the entire turbulent region. Fur-

thermore, the numerator of the shockwave equation aligns with the mass balance of

the upper middlings. This alignment allows the interface velocity to naturally reach

a steady state as the mass balance achieves equilibrium.

The terminal settling velocities within the multi-particle system are determined by

combining Stokes' law with the Richardson-Zaki hindered settling function [98{100]:

vi
j =

�
gd2

j (� j � � i )

18� f

� �
1 �

P
K j � i

j

� i
w

2

� n i
j

+ vw (3.12)

wherevi
j denotes the settling velocity of speciesj within layer i . The sign convention is

such that the downward direction is positive. Due to the highly turbulent conditions,
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particles within the middlings layer are assigned zero vertical velocity.dj , � j , and

K j represent the diameter, density, and hydrodynamic volume factor of speciesj ,

respectively, which are treated as constants.K j takes on a value of unity for large

particles and is greater than 1 for �ne particles exhibiting a higher hindered e�ect.

Physical parameters include the gravitational constantg and the dynamic viscosity of

water � . The e�ective density � i for layer i is calculated as the weighted summation

of the species densities:

� i =
X

� j � i
j (3.13)

The bulk ow velocity vi
w in layer i is iteratively solved to ensure overall volumetric

continuity [94]. Bulk ows allow the model to accommodate high-density �nes in

the froth layer, as the upward bulk ow counters the inherent downward settling.

Likewise, unaerated bitumen can be modeled in the tailings layer due to the e�ect

of downward bulk ow. Fines particle in froth layer is considered for evaluating the

froth quality, while unaerated bitumen is considered for calculating bitumen loss from

tailings. The model assumes no aerated bitumen in the tailings and negligible sand

particles in the froth layer, as their settling velocities dominate over bulk ow e�ects.

Bulk ow velocity is calculated as follows:

vf
w =

� 1

� f
wAcyl

�
Qf + Acyl

X
� mu

j vf
j

�
(3.14)

vmu
w =

� 1
� mu

w Acyl

�
Qf + Acyl

X
� m

j vmu
j

�
(3.15)

vt
w =

1
� t

wAcon

�
Qt � Acon

X
� mu

j vj

�
(3.16)

Then material balances for each layer are formulated considering various compo-

nents: inlet and outlet ow rates, particle exchanges between layers, and the dynamics

at the interfaces. The following equation captures the essence of the accumulation

term:

accumulation = inow � � i
j outow (3.17)

Particle discharge correction factors� i
j account for di�erences between particle
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concentrations within the layers and their corresponding outlet streams. The water

volume fractions� i
w are expressed algebraically in terms of the species fractions, elim-

inating redundant water balance equations and leaving only the independent particle

balances. To maintain volume continuity at the outlets, an additional equation is

employed:

� i
w +

X
(� i

bk�
i
bk + � i

sk � i
sk) = 1 (3.18)

The mass fraction of the outlet streams is validated against actual process data,

as the sampling locations correspond to these exit points. The speci�c mass balances

for each layer will be elaborated upon in the subsequent subsections.

Figure 3.4: PSV schematic

Froth Layer

The interface between the froth and upper middlings is in the cylindrical part of the

PSV. We useAcyl to model the froth volume change as follows:

dVf

dt
= vI Acyl (3.19)

.

The froth layer has two main ows: the outow at the top and the inow from the

upper middlings. The mass balance for particlej in the froth layer is given by:

d� f
j

dt
=

1
Vf

�
� j � � f

j Qf � f
j � vI Acyl �

f
j

�
(3.20)

62


	Introduction
	Motivation
	Thesis Objectives
	Thesis Outline

	Background
	System Identification
	First Principle Model Parameter Identification
	First Order Plus Dead Time (FOPD) Model Identification
	Linear Time Invariant (LTI) Discrete State-Space Model Identification
	Long Short-Term Memory Closed-Loop Identification

	Optimal Control
	Performance Measure and Constraints
	Model Predictive Control

	Reinforcement Learning
	Markov Decision Processes (MDPs)
	Dynamic Programming in Reinforcement Learning
	Monte Carlo
	TD Learning
	RL Algorithm taxonomy

	Reinforcement Learning Algorithms
	Value-Based Method
	Policy-Based Method
	Actor-Critic Method

	Imitation Learning
	Behavioral Cloning
	Generative Adversarial Imitation Learning


	Digital Twin of an Industrial-Scale Bitumen Extraction Process
	Introduction
	Modeling
	Process Description
	Overall Process
	Upstream (Mining/OPP/Hydrotransport)
	Primary Separation Vessel
	Downstream (Flotation Cells)

	Simulation and Validation
	Parameterization Based on Steady-State Simulation
	Steady-State Sensitivity Analysis and Parameter Fine-Tuning
	Dynamic Stability Simulation
	Dynamic Analysis via FOPD Model Identification
	Dynamic Sensitivity Analysis and Parameter Fine Tuning

	Conclusions

	Safe Autonomous Control of Primary Separation Vessel using Reinforcement Learning
	Introduction
	Problem Formulation
	Model Predictive Control Design
	Reinforcement Learning-Based Control Design
	Imitation Learning from MPC Demonstrations
	Simulation-to-Real Pretraining

	Model Predictive Control
	Reinforcement Learning-Based Controller Pretraining
	Post Online Training Performance
	Safety and Feasibility Analysis of Reinforcement Learning-Based Controller
	Conclusions

	Autonomous Real-Time Optimization and Adaptive Fused Multi-Model Predictive Contol Using Explainable Reinforcement Learning
	Introduction
	Optimization and Control problem
	Reinforcement Learning-based Optimization and Fused Multi-MPC Design
	Optimization and Control Performance Under Individual Grade
	Optimization and Control Performance Under Random Disturbances
	First Principles Analysis of RL Policy
	Conclusions

	Conclusions, Recommendations, & Future Work
	Conclusions
	Future Work

	Bibliography

