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Abstract

The advent of Industry 4.0 integrates advanced digital technologies and Artificial In-

telligence (AI) into system engineering. This research explores the potential of AI in

smart automation for industries, bridging it with physics-informed approaches, par-

ticularly through Explainable Artificial Intelligence (XAI) and transfer learning from

physics to AI. The study unfolds across three interconnected phases, each target-

ing a specific aspect of industrial automation, with a focus on the bitumen extraction

process from oil sands. The solid form of oil sands presents a complex challenge in pro-

ducing Synthetic Crude Oil (SCO), a process characterized by natural disturbances

from ore quality and plant scheduling capacity in upstream mining. The Primary

Separation Vessel (PSV), central to the extraction process, is interconnected with the

secondary separation unit, with both impacting each other’s optimization and con-

trol. Our focus is on the digital twin development and autonomous operation of the

PSV, including autonomous Real-Time Optimization (RTO) and advanced control.

The multi-input multi-output, nonlinear, high-dimensional state-action spaces, and

constrained processes present additional challenges that we aim to tackle.

The first phase develops a high-fidelity digital twin for an industrial-scale bitumen

extraction facility, incorporating multiparticle settling under non-ideal environments.

Modifying the PSV model and integrating it with adjacent units, this plant-wide

model accurately captures process dynamics, bitumen quality, and potential losses.

High-dimensional parameters in the first-principle model are addressed using sys-

tematic parameterization techniques, Bayesian optimization, and sensitivity analysis

to fully utilize industrial data. High-fidelity modeling proves crucial for automa-
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tion validation and significantly contributes to the field of Explainable Reinforcement

Learning (XRL).

The second work focuses on developing autonomous control strategies, introduc-

ing a Model Predictive Control (MPC) for multimode operation with disturbances.

Plant-model mismatches causing fluctuations in MPC motivate the integration of Re-

inforcement Learning (RL) for model scheduling and multitasking in the third work.

Alongside MPC, this work showcases the capabilities of Reinforcement Learning-based

Controller (RLC), achieving performance comparable to MPC with less controller ef-

fort. Notably, RLC speeds up computation 10 times faster than MPC. This work

extensively tests the continual learning of RLC in multi-mode operations, ensuring

their adaptability to changing environments.

To enhance the feasibility of RL in real-world training, this study employs trans-

fer learning approaches such as imitation learning and Simulation-to-Real (Sim2Real)

pretraining. This strategy significantly reduces process trips during online training.

Generative Adversarial Imitation Learning (GAIL) and Sim2Real pretraining decrease

trip count by factors of 8 and 27, respectively, compared to direct agent training.

GAIL opens new training pathways for agents in startup and shutdown tasks. The

proposed “MPC Safeguarded Exploration” approach strategically uses the alarm sys-

tem and existing MPC controllers to further decrease trips during online training

while maintaining agent explorability and adaptability.

The third phase shifts to supervisory RTO in bitumen extraction, tackling the

complexities of multivariable decision making and the interconnected extraction pro-

cess under disturbances. This phase pioneers a novel framework that uses RL for

setpoints optimization and multi-MPC scheduling. It combines the robustness of

MPC with the adaptive optimization capabilities of RL to outperform existing op-

erational strategies. First principle analysis elucidates and verifies the RL ability to

manage trade-offs in microscale particle settling and balancing workload distribution

across each unit to optimize the overall recovery rate. A key finding is that the RL
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agent anticipate MPC control policy and optimize its strategies accordingly. This

ability to foresee and integrate decisions across control layers enhances collaboration

among decision-making layers and optimizes operations in the context of plant-wide

connectivity. Furthermore, the agent manages a second objective in control perfor-

mance by scheduling MPC models based on operational changes. The RL policy

reveals that operational modes depend on factors beyond ore grades, such as tail-

ings density. These insights underscore the significance of Explainable Reinforcement

Learning (XRL) in enhancing the acceptability of RL in complex industrial appli-

cations. The exploratory power and explainability of RL policies open new avenues

for real-world implementation, transitioning RL from a learning agent to a teaching

agent approach in industrial automation.
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“Great things are done by a series of small things brought together.”

-Vincent Willem van Gogh
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Chapter 1

Introduction

This research covers the concepts of digital twin modeling and smart automation in

Industry 4.0, exploring the integration of advanced digital technologies and Artificial

Intelligence (AI) into process engineering. AI has made substantial strides in tackling

complex tasks across diverse domains such as computer vision [1–6], video gaming [7–

10], autonomous driving [11–17], robotics [18–20], and real-world autonomous control

[21, 22]. In this transformative phase, the oil and gas industry, known for its complex

and large-scale operations, stands to benefit significantly from these technological

advancements.

At the core of this revolution lies the advent of autonomous systems — engineered

for adaptive operation and minimal human intervention. It heralds a pivotal shift

in how operations are conducted, positioning digital transformation as the primary

driver of innovation. Thus, this digital evolution represents more than just a technical

upgrade, but rather a strategic shift, setting the stage for the future landscape of

industrial automation.

This research contributes to this transformative era by exploring AI potential and

bridging them with physics-informed approaches, powered by data science and Ma-

chine Learning (ML). Our focus extends beyond exploring innovations to devising fea-

sible solutions for smart automation in industrial applications. Incorporating physics

knowledge is pivotal, achieved through the implementation of Explainable Artificial
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Intelligence (XAI) and the transfer of learning from physics to AI systems.

Our approach leverages various ML methodologies, including supervised, unsu-

pervised, and reinforcement learning (RL). Supervised learning is employed for data-

driven system identification using closed-loop industrial data and for behavioral cloning

as a precursor for RL pretraining. An unsupervised generative adversarial framework

is utilized for RL agent pretraining. While both supervised and unsupervised learn-

ing have laid foundational ground in AI, RL stands out for its unique human-like

learning capabilities. RL is characterized by temporal decision-making and adaptive

development through environmental interaction. A recent breakthrough in RL has

showcased its potential in exhibiting metacognitive abilities [23]. RL is primarily

applied for autonomous control and optimization in this research.

1.1 Motivation

The surge of AI and ML in Industry 4.0 has brought forth new opportunities and

challenges in the process engineering domain. These technologies, particularly ML,

hold the potential to analyze vast data sets, identify patterns, and make predictions,

thereby driving innovation and operational efficiency. However, integrating advanced

computational tools with existing industrial processes, especially in sectors like oil

and gas, necessitates novel approaches that consider the realism and safety concerns

for industrial applications.

1.2 Thesis Objectives

This research aims to demonstrate feasible and safe automation strategies in real-

world settings, pushing the boundaries of process intensification and automation in

the era of Industry 4.0. The objective is multi-faceted, with the initial focus being

on developing a high-fidelity digital twin to accurately represent the dynamics of in-

dustrial processes, enabling rigorous testing and validation of autonomous strategies.
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Second, to design and implement advanced control strategies like MPC and RL-based

controllers that handle dynamic changes and disturbances within industrial processes.

Third, to explore autonomous decision-making at the supervisory level, optimizing

economic and operational objectives using Explainable RL (XRL).

1.3 Thesis Outline

This thesis is structured in a three-paper format. It begins with an introduction and

progresses through key areas as follows:

Chapter 2 delves into the mathematical foundation crucial for the main works

of this research: Modeling, System Identification, Machine Learning (ML), Process

Control, and Optimization. System identification covers various methods in first-

principle and data-driven approaches modeling, including both open-loop and closed-

loop systems, and discusses different types of surrogate models with their strengths

and weaknesses. Additionally, it encompasses ML and conventional methods used

in this research. Advanced control theories, starting from the fundamentals of opti-

mal control and progressing to MPC, are also examined. The chapter discusses the

principles of RL, including fundamental learning techniques based on dynamic pro-

gramming, Monte Carlo, and TD learning, as well as a literature review of various

RL algorithms, highlighting their characteristics, advantages, and limitations.

Chapter 3 introduces a modification in a primary separation model based on first-

principle modeling techniques. This model realistically simulates the separation mech-

anism, capturing both interface level, density dynamics, and recovery rate. This

model is expanded to a plant-wide process reflecting actual process configurations,

serving as a digital twin of the bitumen extraction facility. Challenges in identifying a

vast set of parameters are addressed through systematic optimization and sensitivity

analysis. Digital twin enables the realistic replication of the process’s steady-state

and dynamic behavior. The model is then utilized to understand the process and to

develop an autonomous control and optimization framework based on advanced tech-
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niques like MPC and RL. This paper was presented at the 2023 INFORMS Annual

Meeting and has been submitted to the Computers & Chemical Engineering journal

(Manuscript ID: CACE-D-24-00011).

Chapter 4 explores autonomous control supporting the transition of oil sands oper-

ations to the Industry 4.0 standard. It details the design of an MPC with disturbance

augmentation into model prediction, along with bias correction. The chapter assesses

the safety and feasibility of RL-based controllers in both the training and the testing

phases. Addressing feasibility issues with imitation learning and Simulation-to-Real

(Sim2Real) pretraining approach. The proposed MPC safeguarded exploration en-

sures the safety integrity of RL deployment. This work suggests that RL is potentially

safe for real-world implementation, given its self-learning and adaptive abilities, mak-

ing it suitable for smart industry applications. This work was presented at the 2023

INFORMS annual meeting.

Chapter 5 focuses on autonomous operation in industrial processes with Explain-

able Reinforcement Learning (XRL). The RL agent demonstrates multitasking ca-

pabilities by orchestrating optimization and control tasks. This framework employs

RL for MPC model scheduling and setpoint optimization. The agent, harnessing

the power of RL, outperforms existing operational strategies in various scenarios

and simultaneously discovers optimal policies. These policies, though complex, are

explainable through physical knowledge, showcasing RL model-free learning capa-

bility and its potential in process intensification. Explainable policies open up new

paradigms in RL application, not just for learning from the environment, but also for

teaching optimal strategies. This work was presented at the 2023 INFORMS annual

meeting. The final section concludes the work, paving the way for Industry 4.0 and

recommending future work to ensure the implementation of these findings in smart

industrial automation.
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Chapter 2

Background
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2.1 System Identification

System identification uses first principles, data-driven approaches, or a combination

of both to capture the dynamics of physical systems. Modeling is the critical ini-

tial step in process design, optimization, and control. Developing an accurate yet

tractable for its application requires balancing model fidelity and complexity. Refer-

ence [24] classifies the modeling spectrum based on the degree of knowledge of the

underlying physics (fig. 2.1). First principles modeling necessitates an understand-

ing of the fundamental physics governing a process. This scientific knowledge can

be limited by the complexity of many chemical processes, governed by conservation

laws, reaction kinetics, and thermodynamics [25]. Developing mechanistic models is

resource-intensive. However, they reveal the underlying physics required to under-

stand the actual phenomena. While physics defines the model structure, the physical

parameters often need estimation from experiments or data. This combined approach

is called grey-box or first principles data-driven modeling [24]. On the other hand,

data-driven modeling, known as the black-box approach, identifies the system purely

from experimental data. Data-driven methods offer a relatively quick and inexpensive

model development. However, they require substantial data to avoid overfitting or

wrong models which output unreasonable physics values. Black-box models cannot

be tuned and do not provide scientific insights. In practice, data-driven models often

complement the element of the first principles model that lacks physical knowledge.

This modeling technique is called a hybrid modeling approach [26].

Models can be parametric and non-parametric. Parametric models have a defined

structure with a relatively small number of parameters to describe the true process

dynamics. Nonparametric models use less rigid structures, requiring potentially infi-

nite parameters for exact representation [27]. Both conventional and machine learning

algorithms estimate parameters of the predefined structure, which can be linear or

non-linear. Examples of linear model structures include autoregressive with exoge-
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nous inputs (ARX), autoregressive moving average with exogenous inputs (ARMAX),

box-jenkins (BJ), and output error (OE). They are considered as a dynamic model

that captures the time-dependent behavior. Nonlinear model families include Gaus-

sian processes (GPs), fuzzy models, and nonlinear ARMAX (NARMAX). GPs and

fuzzy models are static, while NARMAX is a dynamic model. Neural Networks (NNs)

can be linear or nonlinear based on the activation functions, such as sigmoid, tanh,

and ReLU. Based on neuron connections, NNs can also be static or dynamic.

Model selection depends on data availability, process complexity, and application

requirements. Deep neural networks (DNNs) have revolutionized data-driven mod-

eling through deep, convoluted structures that serve as universal function approxi-

mators. DNNs capture complex mechanisms of decision-making policies, process dy-

namics, generative AI, image processing, and other intricate phenomena [1, 28–32].

The prevalence of DNNs can be attributed to backpropagation, a simple yet powerful

technique that recursively adjusts the strength of neuron connections to progressively

reduce the defined cost function [33].

structure 

parameters  

structure

parameters

structure

parameters

certain

data-driven first principle

black-box approach

grey-box approach
white-box approach

Figure 2.1: Modeling approaches from black-box to first principle
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2.1.1 First Principle Model Parameter Identification

We used the constitutive relationship and mass conservation to develop the digital

twin of the bitumen extraction process. Section 3.2 goes into detail on modeling. The

first principle-based model was developed to study the particle separation mechanism

and maintain high fidelity. The model includes empirical parameters that should

be identified by fitting the model output to the real process data. However, a large

number of parameters must be identified due to plant-wide modeling and high-fidelity

requirements. These parameters are not available in the literature as we modified,

scaled up, and expanded to the adjacent units that are tailored to the true physical

system. We offer a systematic parameterization that makes use of three rounds of

optimization in place of trial-and-error methods.

Steady-State Model Parameters

The digital twin model involves parameters that affect both steady-state and dy-

namic behavior. A steady state is the special case of a dynamic state that reaches the

equilibrium point. While we aim to develop the dynamic model, fitting the steady-

state output to the actual process roughly estimates some of the parameters that

work for the dynamic condition. The steady-state behavior was validated against

nine different scenarios to ensure a universally applicable model across operating con-

ditions rather than overfitting to particular cases. The process design specification

provides the actual steady state of the process. The model steady-state output is

determined by solving a system of equations obtained by setting the time derivative

term in the dynamic model to zero. Concurrently, the Tree-structured Parzen Esti-

mator (TPE) optimization algorithm identified parameters that minimized the error

between model outputs and industrial steady-state data. TPE evaluates multiple pa-

rameter sets, with each parameter lying within specified feasible ranges. Additionally,

the tree structure inherently models conditional dependencies between parameters,

making TPE well-suited for complex models with coupled parameters that must be
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simultaneously solved. Hard constraints were imposed on feasible parameter ranges

informed by physics and prior literature. Output constraints were incorporated as

soft penalties on physically infeasible values as shown in eq. (2.1).

θ∗ = arg min
θ

[︁
(y − ŷ(θ))TW(y − ŷ(θ)) + pT max(0,g(θ))

]︁
(2.1)

s.t. θLi ≤ θi ≤ θUi

where θ∗ is the set of optimal parameters, and θLi and θUi are the lower and upper

bounds for parameters θi, respectively. ŷ(θ) is the model output vector, y is the

corresponding industrial data vector, W is the weighting matrix, p is the penalty

coefficient vector, and g(θ) is the inequality constraints on model outputs.

Dynamic Model Parameters

Initial parameters from the previous section approximate the optimal parameter val-

ues. Nonetheless, not all parameters affect steady-state behaviors; some are exclu-

sively related to dynamic behaviors. These specific parameters, such as the volume

of each modeled layer, can only be determined by fitting them to dynamic data. We

fix the initial parameter value from the previous section and use TPE to identify the

volume parameters. The objective is to fit the dynamic behavior of the model with

the actual process.

The dynamic behavior is typically represented by process gain, time constant, and

time delay. They are calculated using the method in section 2.1.2. In the true process,

some variables behave like integrating processes, where the variables will not reach a

steady state due to their slow dynamics and limited step testing time. Consequently,

our focus shifted to comparing the rates of change. Specifically, the linear rate of

change derived from the model step response, calculated as Kp

τ
, was compared to the

integrating process gain obtained from the actual process step tests.
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Sensitivity Analysis

To fine-tune the model parameters, local sensitivity analysis was performed by varying

parameters and calculating percent changes in outputs. Derivative-based methods

explore how model outputs are affected by perturbations in a single input around a

nominal value. These methods are local using one-at-a-time (OAT) sampling [34].

Each parameter θi was perturbed ±2% and ±5% from its baseline θ̄i, which is set to

be θ∗i as identified in the section 2.1.1.

The sensitivity index Si of output Y to input θi can be represented by the partial

derivative evaluated at the nominal baseline θ̄ (eq. (2.2)).

Si(θ̄) =
∂Y

∂θi

⃓⃓⃓⃓
θ̄

Ci (2.2)

where Ci is a scaling factor. Here, Ci = θ̄i/Y (θ̄) scales the sensitivity to be the

percent change in output over the percent change in input.

Since the analytical form of ∂Y/∂θi is unknown, a finite difference approximation

is used:

SY,θi ≈
Y (θ1, ..., θi + ∆θi, ..., θn)− Y (θ1, ..., θi, ...θn)

∆θi
· θ̄i
Y (θ1, ..., θi, ...θn)

(2.3)

where ∆θi is the perturbation of θi.
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2.1.2 First Order Plus Dead Time (FOPD) Model Identifi-
cation

The step test is a typical procedure for identifying the First Order Plus Dead Time

(FOPD) model of a physical system. A step input change is introduced, typically

amounting to 1% of the input range of the actual process. Despite inherent non-

linearities and the higher-order nature of the system, the FOPD model captures the

step response dynamics of the system. FOPD model is a simplified representation of

a dynamic system (eq. (2.4)).

τ
dỹ(t)

dt
+ ỹ(t) = Kpu(t− Td) (2.4)

where Kp is the process gain, τ is the time constant, and Td is the dead time. Process

gain determines the magnitude of the steady-state output change in response to a

step input. The time constant represents the duration for the process to reach ap-

proximately 63% of its process gain, while the dead time signifies the delay between

the input and the onset of the output response (fig. 2.2). Practical applications of

FOPD parameters include Proportional-Integral-Derivative (PID) controller tuning,

setting control interval, safety design in delayed systems, stability analysis, and model

validation (section 2.1.1). The Kp, τ , and Td parameters are identified by fitting the

system step response ŷ(t) to the FOPD model output ỹ(t), formulated as follows:

min
Kp,τ,Td

T∑︂
t=1

(ỹ(t)− ŷ(t))2

s.t. τ > 0,

Td ≥ 0

(2.5)
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Figure 2.2: FOPD model step responses

2.1.3 Linear Time Invariant (LTI) Discrete State-Space Model
Identification

Identifying a system from step tests is common when there is a sufficiently high

signal-to-noise ratio (SNR). In significant noise environments, alternative input sig-

nals such as Random Binary Signal (RBS), Pseudo Random Binary Signal (PRBS),

and Random Gaussian Signal (RGS) are more suitable. RBS and PRBS are essen-

tially sequences of multiple step inputs, each designed to capture the system time

constant, delay, and gain effects. It is important to sequence these inputs in a man-

ner that does not prioritize one parameter over another to avoid biased identification

[35]. This randomization approach helps in reducing systematic errors and noise ef-

fects. Characterized by its normal distribution, RGS provides extensive frequency

coverage. This continuous signal is particularly valuable in identifying nonlinear dy-

namics, which might be missed by discrete bi-level signals like RBS and PRBS [36,

37]. Input design follows certain rules of thumb. the sampling time is set between 0.1

and 0.2 times the smallest time constant, and the frequency bandwidth is chosen to

encompass slow dynamics at lower frequencies as well as the faster dynamics of the
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process. The frequency range extends from zero to three times the process Nyquist

frequency. The amplitude of input changes is adjusted to be both below and above

the unit change used in step tests. In our specific control application, we identified

the model with four input variables including three manipulated variables Qm, Qdil,

Qt, and one disturbance variable Qfd (fig. 2.3).
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Figure 2.3: Random Gaussian signal inputs

We introduced the RGS inputs to the system to obtain open-loop dynamic re-

sponses, collecting 1,440 data points. We allocated 70% of this dataset to train a

state-space model, with the remaining data split evenly for model validation and

testing. Using Akaike Information Criterion (AIC) to balance model accuracy and

simplicity, we identified the optimal model order with minimum AIC within the val-

idation data. This state-space model enables the prediction of system trajectories

within a model predictive control (MPC) framework for the multi-input multi-output

(MIMO) control problem. Capturing the MIMO dynamics in state-space form allows

effective prediction while keeping the model structure simple enough for online opti-

mization. Additionally, compatibility with Kalman filtering facilitates real-time noise

mitigation in the future. The state-space model takes the following mathematical
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form:

ẋ(t) = Ax(t) + Bu(t) (2.6)

y(t) = Cx(t) + Du(t) (2.7)

where the vectors x ∈ Rnx , u ∈ Rnu , and y ∈ Rny denote the states, inputs, and

outputs of the system, respectively. The matrices A ∈ Rnx×nx , B ∈ Rnx×nu , and

C ∈ Rny×nx are the identified model parameters. The dimension nx of the hidden

states is adjusted based on the Akaike Information Criterion (AIC). A is the state

matrix, B is the input matrix, C is the observation or output matrix, and D is the

feedforward matrix which is set to zero due to zero-order hold in the sampling time.

Discrete time models are often convenient if the system of interest is sampled at

discrete time. If the sampling rate is chosen appropriately, the behavior between the

samples can be safely ignored.

2.1.4 Long Short-Term Memory Closed-Loop Identification

An LSTM model is employed as a simulator for the offline training or pretraining

of reinforcement learning (RL) agents. It is essential for the model to accurately

capture the dynamics of the variables used in the RL agent states, rewards, and

inputs. The intricate connections arising from a large number of input variables, the

prediction output, and the system delay are key reasons for utilizing dynamic Deep

Neural Networks (DNNs) as a surrogate model. Long Short-Term Memory Networks

(LSTMs), a specialized class of Recurrent Neural Networks (RNNs), are adept at

capturing temporal dynamic behavior. LSTMs effectively address the vanishing and

exploding gradient problems, common in traditional RNNs, by incorporating input

and forget gates. These gates facilitate better control over gradient flow and enhance

the preservation of long-range dependencies [38]. An LSTM architecture employs

specific equations to manage information flow and update cell states.

To accurately represent the true process, the simulator must account for actual
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process disturbances such as ore grade and feed flow rate. These factors introduce

delayed effects and significantly impact the dynamics of the system. The combination

of these disturbances, along with variations in flow rate, can cause rapid divergence in

the open-loop system. In an open-loop system, the interplay of these disturbances and

flow rate changes can lead to rapid dynamic divergence. Consequently, conducting

open-loop experiments to cover a wide range of operational modes, based on different

grades and plant capacities over extended periods (months or even years), poses

substantial challenges. To address this, we utilize a direct closed-loop identification

method. This approach applies open-loop identification techniques but leverages data

from a closed-loop system, which operates under feedback control. The following

equations describe the closed-loop system:

yt = Gput + Glet (2.8)

ut = −Gcyt + Gcrt (2.9)

This equation can be rewritten as:

yt = Gput + Glet (2.10)

yt = −Gcut + rt (2.11)
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Figure 2.4: Closed-loop system

The correlation between unmeasurable noise et and the input ut can lead to biased
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estimates in closed-loop system identification (eq. (2.9)). When analyzing closed-loop

data, the identified model might fit between both equations in section 2.1.4, whereas

the objective is to identify the dynamic model of the process Gp only. To improve

the fit with eq. (2.10), it is crucial to introduce sufficient disturbance. In the absence

of external excitation rt and noise et, the process model and controller should have

different structures. In our case, we employ Deep Neural Networks (DNNs) for the

process model. The DNNs are assumed to be close to the real process due to their

distinct structure from the controller. However, the presence of external excitations

remains the most reliable condition for closed-loop model identification.

In our experiments, the closed-loop system is randomly perturbed with grade and

feed flowrate changes every hour, mimicking real operational conditions. Simultane-

ously, the setpoints of both controlled variables are randomly changed within their

normal operation range. Furthermore, the surrogate model is designed to include at

least a one-step delay, meaning the prediction yt uses inputs from ut−1−n to ut−1,

where the index n is the lookback period. These external excitations, coupled with

the delay, ensure that the process model is identifiable and acts as a consistent es-

timator [35]. The consistency of the identified model is equivalent to simultaneous

consistency in both the process and disturbance models. For this purpose, DNNs, as

universal function approximators, are highly suitable.

The LSTM unit is based on a series of gates that control the information flow

(eq. (2.12)).
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ft = σg (Wfxt + Ufht−1 + bf )

it = σg (Wixt + Uiht−1 + bi)

ot = σg (Woxt + Uoht−1 + bo)

c̃t = σc (Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ σh (ct) (2.12)

The LSTM equations assign a specific role to each variable:

• xt ∈ Rn: The input vector for the LSTM unit at time step t.

• ft ∈ (0, 1)h: Activation vector for the forget gate.

• it ∈ (0, 1)h: Activation vector for the input/update gate.

• ot ∈ (0, 1)h: Activation vector for the output gate.

• ht ∈ (−1, 1)h: The hidden state vector, also known as the output vector of the

LSTM unit.

• c̃t ∈ (−1, 1)h: Cell input activation vector, representing potential updates to

the cell state.

• ct ∈ Rh: Cell state vector, constituting the unit memory.

Activation functions utilized within the LSTM unit are as follows:

• σg: Sigmoid function, yielding values between 0 and 1.

• σc: Hyperbolic tangent function, with an output range between -1 and 1.

• σh: Typically a hyperbolic tangent function; however, variations such as the

identity function σh(x) = x are also considered, based on specific LSTM adap-

tations [39].
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The initial values for the cell state c0 and the hidden state h0 are set to zero.

⊙ denotes the Hadamard product, an element-wise multiplication operation. The

subscript t indexes the time step, reflecting the sequential nature of LSTM operations.

During the training process, learned parameters include weight matrices for the input

connections Wk ∈ Rh×n, the recurrent connections Uk ∈ Rh×h, and the bias vector

bk ∈ Rh. Here, n and h denote the number of input features and the number of hidden

units, respectively. The subscript k specifies the LSTM gate component, which can

be the input gate i, output gate o, forget gate f , or memory cell c. We employ

vector notation to represent the multiple hidden units within a single LSTM cell.

The number of hidden units is a tunable hyperparameter, allowing for adjustments

in the trade-off between model complexity and accuracy.
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Figure 2.5: LSTM unit

2.2 Optimal Control

Classical control, typified by the Proportional-Integral-Derivative (PID) approach,

predominantly employs frequency response techniques, focusing on achieving system

stability, robustness, and consistent performance under disturbances and uncertain-

ties. The widespread application of classical control is attributed to its simplicity and

proven effectiveness, particularly in univariate control or where linear approaches are

applicable. Subsequently, modern control theory emerged in the 1960s by formulat-
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ing dynamic and control problems in state space, introducing concepts of controlla-

bility and observability, and designing state feedback controllers. By transitioning

to the time domain and vector-matrix representations, modern control provided a

solid mathematical foundation for classical techniques and broadened the range of

controllable systems.

Optimal control formulates the control task as an optimization problem. It seeks

to determine control signals that optimize certain performance metrics while adhering

to system dynamics and physical constraints. Optimal control is especially valuable

in scenarios with clearly defined and quantitatively modeled performance criteria.

It is ideal for complex, multivariable, or constraint-laden environments. The Linear

Quadratic Regulator (LQR) is a fundamental method in optimal control for linear

systems, aiming to minimize a quadratic cost function that typically represents a

balance between control effort and deviations from the desired zero state. Globally

optimal state feedback laws for infinite horizons can be derived by analytically solving

the Algebraic Riccati Equation. The Linear Quadratic Gaussian (LQG) control is

another advanced control strategy that combines two major aspects of control theory:

Linear Quadratic Regulator (LQR) and Kalman Filter. The Kalman Filter first

provides an estimation of the current state. This estimation, despite the presence of

noise, is then used by the LQR to compute the optimal control action. LQG control

is used in scenarios where the system model is linear, and both the process and

measurement noises are assumed to be Gaussian. Dynamic programming provides a

broader framework for addressing optimal control problems by decomposing complex

decisions into simpler, recursive stages. It entails deriving and solving Bellman’s

optimality equation to obtain an explicit feedback law offline. However, the curse of

dimensionality has limited its applications. Model Predictive Control (MPC) achieves

an optimal feedback control law by typically using numerical optimization to address

open-loop, finite-horizon control problems in real time. MPC functions as a feedback

control law by recalculating optimal control inputs at each sampling time based on
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state updates from new measurements. Consequently, MPC is often synonymous

with receding (or moving) horizon control, in which an explicit prediction horizon is

optimized based on a dynamic process model. MPC adeptly handles complex systems

with constraints, a challenging feat for purely analytical optimal control methods.

It typically aims for local rather than global optimality, considering computational

practicality.

Reinforcement learning, in contrast, seeks to discover the optimal control pol-

icy rather than a sequence of optimal control actions. The overarching goal is to

learn a policy that maximizes quantitatively modeled rewards from environments but

unknown system dynamics. While model-based RL might utilize estimated system

dynamics for more efficient learning, policy learning fundamentally relies on interac-

tions with the real environment. The optimal policy is “learned” through continual

and “reinforced” interactions with the environment. RL algorithms are discussed in

section 2.3.

2.2.1 Performance Measure and Constraints

The objective of an optimal control problem is to identify control signals that guide

the system along trajectories minimizing a specified performance metric, while also

adhering to certain constraints. Optimal control problems are thus described by

their objective function and constraints. The table below summarizes common objec-

tive function types that can define an optimal control problem. Terminal Control

Problem minimizes the deviation of the final state from its desired value at tf . Min-

imum Time Problem seeks to transition a system from an initial state x(t0) to a

specified target in the shortest possible time. Minimum-Control-Effort Problem

moves the system from an initial state x(t0) to a target set S with a minimum con-

trol effort. Tracking Problem maintains the system state x(t) as close as possible

to a desired state r(t) over the interval [t0, tf ]. Regulator Problem is a special

case of the tracking problem where the target state values are zero or constant. It is
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Table 2.1: Performance Measure in Optimal Control

Performance Measure Description

Terminal Control Problem J = [x (tf )− r (tf )]T H [x (tf )− r (tf )]

Minimum Time Problem J =
∫︁ T

0
dt

Minimum-Control-Effort Problems J =
∫︁ tf
t0

[︁
uT (t)Ru(t)

]︁
dt

Tracking Problem J =
∫︁ tf
t0

(x(t)− r(t))TQ(t)(x(t)− r(t))dt

common to combine different performance measures in the formalization of optimal

control problems.

Constraints are another component of optimal control formulation. Manipulated

inputs (such as valve positions, throttle, current, voltages, and torques) in most phys-

ical systems have limits. If these input constraints are not respected by the controller,

they are enforced by the physical system. Rate of change constraints avoid abrupt

change that might cause reaction runaway, circuit short, water hammer, and other

undesirable operations. Constraints on states or outputs are often imposed for reasons

like safety, operability, or product quality. An important function of a controller is to

determine in real-time whether output or state constraints are achievable and to relax

them satisfactorily if not. Thus, the optimization problem is typically set up with

hard constraints for input constraints and soft constraints for output or state con-

straints. This approach ensures that state constraints do not cause infeasible control

problems, as they can be relaxed by choosing large values for the relaxation factor.

However, large values may be undesirable as measured by the stage-cost function.

Dynamic Programming

The Dynamic Programming (DP) technique is based on the principle of optimality.

This principle states that in an optimal trajectory, the remaining path from any state

is an optimal subtrajectory. Consider an optimal policy π∗ = {µ0, µ1, . . . , µN−1}

where state Xi has nonzero probability of occurrence at time i . In formulating con-
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trol from Xi at time i onwards, the segment {µi, µi+1, . . . , µN−1} constitutes optimal

control for this subproblem. A key idea of DP is that optimal solutions are incremen-

tally constructed from optimal solutions to smaller subproblems. The process involves

defining a series of value functions V1, V2, . . . , Vn, where each Vi(x) corresponds to the

value of state x at time i. The values are computed in reverse, using the Bellman

equation which defines a recursive relationship (eq. (2.13)). Backward calculation

proceeds until V1 optimal solution is obtained.

Vi−1(y) = max
[︁
gaini−1 + Vi(new state)

]︁
(2.13)

While DP was originally developed for discrete problems, Bellman extended this

concept to continuous control problems. Control theory aims to solve an admissible

control policy u∗ that minimizes a performance measure along a desired system tra-

jectory ẋ(t) = g(x(t),u(t), t). One way is by solving the Hamilton-Jacobi-Bellman

equation (eq. (2.14)).

−J∗
t = min

u
{f(x(t),u(t), t) + J∗

xg(x(t),u(t), t)} (2.14)

where J∗
x = ∂J∗

∂x
and J∗

t = ∂J∗

∂t
. For discrete systems, the Bellman equation is refor-

mulated as eq. (2.15).

J∗
k (xn−k) = min

un−k

{f̂(xn−k,un−k) + J∗
k−1(ĝ(xn−k,un−k))} (2.15)

applied at the k-th stage of n discrete time intervals.

2.2.2 Model Predictive Control

Model Predictive Control (MPC) emerged in the late 1970s and 1980s to handle con-

strained multivariable control problems, commonly encountered in process industries.

MPC circumvents the challenges of solving Bellman’s optimality equation, which is

often intractable for nonlinear systems and in the presence of inequality constraints.

The fundamental concept of MPC involves using a dynamic model to predict system
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behavior over a finite prediction horizon. It optimizes this forecast by producing a

series of optimal control decisions. Within a control horizon, only the first control

move u0 is implemented at the current time. At each time step, MPC uses current

measurements to estimate the initial state of the system. The process repeats at t+1

with the new state measurement xt+1. This defines an implicit control law ut = U(xt),

where U represents the solution operator for the minimization problem.

Explicit MPC (EMPC), in contrast, pre-computes the control law for every pos-

sible state, reducing online computational demands. A traditional (implicit) MPC

controller is first designed to generate an explicit MPC controller. EMPC requires less

computational effort and provides faster solutions in real time. However, its heavier

offline computational load and larger memory footprint may restrict its applications

to scenarios with relatively low dimensions, short prediction horizons, and few output

constraints. A general MPC problem is formulated in eq. (2.16).

min
u

J =
1

2

N−1∑︂
k=0

(︁
xT
kQxk + uT

kRuk + ∆uT
k S∆uk

)︁
+ Vf (xN) (2.16)

s.t. xk+1 = f(xk,uk),

x0 = x(t),

u ∈ U ,

x ∈ X ,

xN ∈ Xf ,

∆uk = uk − uk−1.

where xk and uk denote the state vector and control input vector at step k, respec-

tively. The matrices Q, R, and S are weighting matrices that define the cost associated

with the state, control effort, and control input changes, respectively. Vf (xN) is the

terminal cost function, a function of the final state xN at the end of the horizon.

f(xk,uk) is the system dynamics function, with U and X being the admissible sets
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for the control inputs and states, respectively. Xf is the terminal constraint set for

the final state, and ∆uk is the change in control input from the previous time step.

Output feedback, often implemented as bias correction, aligns model predictions

with actual system behavior. This correction accounts for plant-model mismatches

by adjusting model predictions using recent measurements. The model output is

added with a bias term, which is the difference between current measurements and

predicted values. Under certain disturbances, this feedback approach might lead

to suboptimal responses, necessitating the exploration of alternative feedback and

disturbance estimation techniques.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that focuses on training

algorithms to make a series of decisions that maximize cumulative reward over time.

RL agents learn by interacting with an environment, where they learn from trial and

error to achieve a goal or maximize a cumulative reward signal. This learning process

is driven by the experiences and environmental feedback. RL is particularly effec-

tive at solving complex control and optimization problems that challenge traditional

methods. In control systems, RL can adaptively manage the autonomous control of

dynamic systems like autonomous vehicles, robots, or heating, ventilation, and air

conditioning (HVAC) systems in buildings. RL introduces a paradigm for defining

optimal control policies differently from model predictive control (MPC). Rather than

solving optimal control actions sequentially, RL employs machine learning to learn

policies directly from experience. This facilitates developing offline and model-free

solutions. Techniques like Q-learning and policy gradients are model-free, enabling

effective policies for complex sequential decisions without relying on accurate system

models. Incorporating models addresses sample efficiency limitations in model-free

methods. Exploration allows avoiding local optima and ensuring adaptability. For

optimization, RL provides a framework to find robust solutions in uncertain, changing
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environments for multitasking problems like supply chains, power grid managements,

and chemical processes [40–43]. The adaptability and autonomous learning of RL

make it well-suited to continually improve efficiency and outcomes across applica-

tions.

Learning methods in RL are mainly based on dynamic programming, Monte Carlo

methods, and temporal difference learning. These provide mathematical frameworks

to solve sequential decision-making problems in Markov decision processes. We will

discuss each of these key components for formulating an RL problem in the subsequent

sections.

2.3.1 Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) provide a framework for managing dynamic

decision-making processes in stochastic environments. In this research we focus on

discrete-time models, observing the system at times t = 1, 2, ..., n, where n is the hori-

zon, which can be finite or infinite. The former is called finite horizon MDPs, while

the latter is called infinite horizon MDPs. Finite MDPs represent episodic tasks that

terminate when a certain terminal state is reached. Each episode has a clear beginning

and ending. Infinite horizon MDPs are typically applied to continuing tasks. In these

scenarios, the policy-maker interacts with the environment indefinitely, without a pre-

determined endpoint. The policy evaluation and improvement processes consider the

long-term consequences of actions, potentially extending to an infinite time horizon.

However, continuing tasks can be formulated as finite MDPs by setting an artificial

termination point that can be time-based, resource-based limits, performance bench-

marks, and other criteria. The term “continuing task” in reinforcement learning, is

often confused with “continuous task” and “continual learning.” “continuous task”

denotes tasks with continuous action spaces, while “continual learning” describes an

agent ongoing learning process through continuous interaction with the environment.

MDPs follow Markovian dynamics where the next state depends only on the cur-
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rent state and action. The system transitions probabilistically between states as a

function of current states and actions. Actions also influence immediate rewards and

future rewards. Many applications can be cast as MDPs and solved by dynamic

programming, Monte Carlo, Q-network, and other algorithms including RL.

In Fully Observable MDPs (FOMDPs), the agent has complete visibility of the

system state at every decision point. This full observability simplifies decision-making

processes. A FOMDP is defined as a tuple (S,A, P,R, γ) where S is the set of states,

A is the set of actions, P is the state transition probability matrix with P (s′|s, a),

representing the probability of transitioning to state s′ from state s after taking action

a, R is the reward function, and γ is the discount factor.

Partially Observable MDPs (POMDPs) extend MDPs to scenarios where the agent

does not have full visibility of the system state, introducing uncertainty and incom-

plete information into the decision-making process. A POMDP is defined as a tu-

ple (S,A, P,R, γ,O,Ω) where O is the set of observations, and Ω is the observation

probability function, Ω(o|s′, a). The primary objective is to determine an optimal

decision-making policy which effectively navigates the inherent uncertainties in state

information. This model is more representative of real-world processes, where state

information is often not fully available or discernible. Estimating or inferring states

from observable data is necessary. Other techniques such as as belief state updates

and information state methods are commonly used to address this challenge.

Constrained MDPs (CMDPs) are a special form of MDPs where decision aims

to maximize expected returns while adhering to safety constraints. A CMDP is

defined as a tuple (S,A, P,R, γ, C,D), where C represents a set of constraints, and

D represents a set of safety constraints. CMDPs are particularly useful in scenarios

where safety, resource limitations, or regulatory requirements are as important as (or

more important than) the primary objective. They are crucial in applications where

standard RL methods may not be safe.

We formulate RL as an MDP problem where an agent acts as the decision-maker
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and the environment includes all external factors beyond the agent’s control but

influenced by its policy. States provide the context or information relevant to decision

making process. The environment evolves in response to actions, emitting reward

signals. The agent aims to maximize the return, the cumulative sequence of rewards,

typically using discounted rewards over an infinite horizon. The expected return is

expressed as the sum of discounted rewards:

Gt =
∞∑︂
k=0

γkRt+k+1 (2.17)

where γ, with 0 ≤ γ ≤ 1, is the discount rate. A higher discount rate indicates a

more farsighted agent. The interaction may continue indefinitely, but the total reward

remains finite as long as each reward is finite or γ < 1.

The agent learns the policy which maps states to action probabilities. Policies can

be deterministic or stochastic. The deterministic policy π maps a state s to an action

a, while stochastic policy π(a|s) is the probability of taking action a given state s.

Through interaction with the environment, the agent learns an optimal policy that

maximizes expected return. Value functions represent the expected return under a

specific policy, measuring the value of states V (s) or state-action pairs Q(s, a). The

state value function of state s under policy π, Vπ(s), is the expected return starting

in s and following π thereafter. The state-action value function for state s and ac-

tion a under policy π, Qπ(s, a), is the expected return starting from s, taking action

a, and then following π. Due to the high dimensionality of states and actions, the

functions V (s) and Q(s, a) are typically defined as parameterized functions. Rein-

forcement learning algorithms commonly involve computing or approximating these

value functions.

2.3.2 Dynamic Programming in Reinforcement Learning

The link between Dynamic Programming (DP) and Reinforcement Learning (RL) lies

in their shared use of value functions to systematically direct the search for effective
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Figure 2.6: Markov decision process

policies. DP provides the theoretical foundation for both policy iteration and value

iteration, involving the Bellman optimality principle to determine the best action at

each state. Werbos (1977) proposed “heuristic dynamic programming,” an approach

to approximating DP that emphasizes gradient-descent methods for continuous-state

problems, closely related to RL. Watkins (1989) explicitly connected RL to DP, char-

acterizing a class of RL methods as “incremental dynamic programming.” Both DP

and RL generally use value functions to organize and structure the search for effective

policies. Optimal policies can be easily identified after computing the optimal value

functions, v∗ or q∗, which satisfy the Bellman optimality equations:

v∗(s) = max
a

E [Rt+1 + γv∗(St+1) | St = s, At = a] (2.18)

= max
a

∑︂
s′,r

p(s′, r | s, a) [r + γv∗(s′)] (2.19)

or

q∗(s, a) = E
[︂
Rt+1 + γ max

a′
q∗(St+1, a

′) | St = s, At = a
]︂

(2.20)

=
∑︂
s′,r

p(s′, r | s, a)
[︂
r + γ max

a′
q∗(s′, a′)

]︂
(2.21)

The Bellman optimality equations can be intractable, especially for high-dimensional

problems. DP iteratively evaluates value functions (policy evaluation) and improves

policies (policy improvement). Policy Evaluation computes the state value for a given
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policy:

vπ(s) = Eπ[Gt|St = s] (2.22)

= Eπ[Rt+1 + γGt+1|St = s] (2.23)

= Eπ[Rt+1 + γvπ(St+1)|St = s] (2.24)

=
∑︂

a∈A(s)

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.25)

Value functions are commonly estimated by iterative policy evaluation. This pro-

cess recursively learns the value function by using the Bellman equation as a recurring

update mechanism:

Vk+1(s) = Eπ[Rt+1 + γVk(St+1)|St = s] (2.26)

=
∑︂
a

π(a|s)
∑︂
s′,r

p(s′, r|s, a)[r + γVk(s′)] (2.27)

where Vk is the value function estimate, γ is the discount factor, p is the state tran-

sition probability, r is the immediate reward, and s′ is the next state. This iterative

process converges to vπ as k approaches infinity, under conditions that guarantee the

existence of vπ. Action-value function qπ(s, a) evaluates the advantage of choosing an

action a in state s and then following the current policy π thereafter.

qπ(s, a) = Eπ [Rt+1 + γvπ(St+1)|St = s, At = a] (2.28)

=
∑︂
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.29)

If a particular action consistently yields better returns in a given state (s), adopting

the policy that favors that state-action pair improves overall return. Formally, policy

improvement is the process of creating a new policy that improves upon an initial

policy by making it greedy with respect to the state-action value function qπ(s, a) of

the original policy.

Optimal policy derivation hinges on the alternating processes of policy evaluation
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truncated policy 
improvement
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Figure 2.7: Optimal policy learning: (a) Policy iteration; (b) Value iteration; (c)
Generalized policy iteration

and policy improvement. This interplay forms the basis of distinct approaches: policy

iteration, value iteration, and generalized policy iteration (fig. 2.7).

Policy iteration consists of a cyclic process of policy evaluation and policy improve-

ment. These two processes alternate, each completing before the other begins. The

process begins with an evaluation of initial policy π to determine its value function vπ.

Based on the evaluated value function, the policy is updated into π′. This iterative

procedure results in a succession of policies and corresponding value functions.

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ · · · E−→ π∗ E−→ v∗

where E denotes a policy evaluation and I denotes a policy improvement.

Policy iteration is known for its relatively slow convergence. Each iteration involves

a full evaluation of the current policy to compute the converged value function prior to

policy improvement. Nonetheless, convergence to vπ occurs asymptotically. Just the

initial few iterations are adequate for approximating the value function. Additional

evaluations do not influence policy improvement. Therefore, the policy evaluation

can be truncated through various methods without losing the convergence.

Value iteration merges policy improvement with a truncated policy evaluation pro-

cess, where only a single iteration of policy evaluation occurs between each policy

improvement:

vk+1(s) = max
a

E[Rt+1 + γ · vk(s′)] (2.30)

The value iteration update is similar to the policy evaluation update, but it requires

selecting the maximum value across all actions. Although value iteration technically
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needs infinite iterations to exactly converge to v∗, in practice, it stops when the

improvement falls within a tolerance.

Asynchronous Dynamic Programming methods intertwine evaluation and improve-

ment without systematic sweeps of the state. It updates the state value function in a

non-sequential manner, utilizing the values of other states as they become available.

This approach allows for a more dynamic and adaptable updating process, rather than

following a strict, predetermined order. As long as both processes keep updating all

states, they converge to the optimal value function and policy.

The concept of Generalized Policy Iteration (GPI) refers to the broader strategy of

allowing policy evaluation and policy improvement processes to interact, regardless

of the granularity of these processes. All these iterative methods are fundamentally

based on dynamic programming techniques.

2.3.3 Monte Carlo

Unlike dynamic programming, Monte Carlo methods do not assume the knowledge

of the environment dynamics. They require only sequences of states, actions, and

rewards sampled from interaction with an environment. These methods estimate

the value of a state by averaging the returns observed after visits to that state. A

distinct feature of Monte Carlo methods is the independence of each state estimate,

in contrast to DP methods, which rely on bootstrapping.

The computational cost of estimating the value of a single state in Monte Carlo

methods is independent of the total number of states. This makes them particularly

advantageous for situations where only specific states are of interest. Monte Carlo

methods encompass both every-visit and first-visit approaches, which differ in their

method of averaging returns. The every-visit method calculates the average return for

all visits to a specific state-action pair, whereas the first-visit method computes the

average return only for the first occurrence of that state-action pair in each episode.

A significant challenge arises when certain state-action pairs remain unvisited,

31



particularly when using a deterministic policy π. In such cases, returns are observed

for only one of the available actions within each state, making it impossible to improve

the Monte Carlo estimates for the unvisited actions. This necessitates exploration

techniques, such as Epsilon-Greedy, Boltzmann exploration, and Upper Confidence

Bound (UCB).

Monte Carlo methods offer a sampling-based approach to approximate action value

function qπ(s, a) and can be viewed as a form of Generalized Policy Iteration (GPI).

The idea is to estimate the value function by following a policy, averaging returns

over multiple episodes, and then updating the value function at every visited state.

2.3.4 TD Learning

Temporal difference (TD) learning combines concepts from Monte Carlo methods and

dynamic programming in reinforcement learning. Like Monte Carlo, TD methods use

estimates as a learning target. However, TD methods update estimates without

awaiting final outcomes like bootstrapping in DP. The value function for a state is

updated as follows:

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] (2.31)

where α represents the learning rate, γ is the discount factor, and Rt+1 is the imme-

diate reward received after transitioning to state St+1.

The TD error δt computes the difference between current estimate of Vπ(s) and

the updated estimate:

δt = Rt+1 + γV (St+1)− V (St) (2.32)

Mathematically, TD learning methods converge towards the true state-value or

action-value functions as experience grows, under the same conditions as Monte Carlo

methods. By incorporating additional information from estimated successor states,

TD often converges faster while requiring less experience.
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There are variations of TD learning, such as N-step TD, which updates the value

function based on information from the next n steps. This approach offers a middle

ground between one-step TD learning and Monte Carlo methods, which wait until

the end of the episode. TD(λ) generalizes both N-step TD and one-step TD by

introducing a parameter λ to control the balance between short-term and long-term

predictions. When λ is set to 0, it resembles one-step TD, and as λ approaches 1, it

behaves more like Monte Carlo methods.

2.3.5 RL Algorithm taxonomy

Reinforcement Learning (RL) algorithms can be categorized based on whether they

incorporate a model of the environment. Model-based RL attempts to learn a model

or utilize the available model to predict state transitions and rewards. It leverages

model prediction to plan and choose optimal actions. This can greatly improve sample

efficiency compared to model-free methods that learn policies directly through trial-

and-error interaction. However, learning accurate models is challenging, and model

bias can significantly impact performance. By contrast, model-free methods forgo

potential improvement in sample efficiency by planning models but tend to be more

straightforward to implement and tune.

RL algorithms can be off-policy or on-policy. Off-policy RL like Q-learning sep-

arates the behavior policy used for exploration from the target policy that we want

to optimize. Off-policy algorithms promote wider exploration, without interfering

convergence of the target policy. By allowing reuse of any past experience, off-policy

methods can make better use of accumulated data. Off-policy methods result in

improved sample efficiency and enhanced learning stability. However, performance

instability can occur when outdated samples imply contradictory state values rela-

tive to the current policy. This instability risk is exacerbated by the deadly triad -

combining TD learning (or bootstrapping) value updates, nonlinear function approx-

imation like neural networks, and off-policy can substantially increase the chances of
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divergence [44]. Techniques like constraint enforcement, clipped updates, or larger

replay pools avoid instabilities. On-policy methods, on the other hand, ensure a

close alignment between the behavior policy and the target policy. This alignment

helps maintain learning coherence and stability, as the state-action values reflect the

current policy without the interference of outdated experiences. On-policy methods

typically face fewer issues related to the deadly triad compared to off-policy meth-

ods. On-policy algorithms can be described as “learning on the job,” learning about

policy π from experiences sampled under π, while off-policy algorithms, which learn

from experiences sampled under a different policy µ, can be likened to “learning by

observation.”

RL algorithms either optimize policies directly or learn value functions and de-

rive corresponding policies. Value-based methods use Bellman equations to evaluate

state-action pairs Qθ(s, a), indirectly inducing policies by selecting actions that max-

imize Q-values. However, searching for optimum actions grows expensive with large

or continuous action spaces. Policy-based methods directly adjust policy parame-

ters towards better performance based on policy gradients, facilitated by on-policy

data. These algorithms can learn both deterministic and stochastic policies, whereas

value-based methods are limited to deterministic policies. Stochastic policies, which

introduce randomness in action selection, aid in exploring a broader range of state-

action pairs and help avoid local optima. Actor-critic frameworks do both, learning

a value function Vϕ(s) which is then used to guide and inform the updates of policy

parameters.
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2.4 Reinforcement Learning Algorithms

2.4.1 Value-Based Method

Q-Learning

Q-learning is an off-policy Temporal Difference (TD) control algorithm used to es-

timate the optimal policy π∗ by learning the optimal action-value function Q∗(s, a).

It learns the optimal policy (or target policy) independently of the current policy

(behavior policy). Q-learning can only handle discrete, finite MDPs and might con-

verge slowly in large state spaces. Using function approximation in Q-learning can

sometimes lead to a failure of convergence. Double Q-learning is a variation of the

Q-learning algorithm aimed at reducing overestimation bias, thereby improving the

stability and convergence of Q-learning [45]. The maximization step in the update

rule tends to select overestimated values since the same Q-value function selects and

evaluates actions. Double Q-learning decouples the selection from evaluation by main-

taining two independent Q-value functions, referred to as Q1 and Q2. Q1 selects the

best action a = argmaxa′Q1(s, a′), while Q2 evaluates that action to update the

target Q-value. By breaking the max dependency between action selection and value

update, this difference in targets helps address the positive bias. Deep Q-Network

(DQN) is a deep reinforcement learning algorithm that combines Q-learning with a

deep neural network serving as the function approximator [7]. Rainbow DQN in-

tegrates multiple improvements to the Deep Q-Network (DQN) algorithm, creating

a more robust and efficient learning framework. These enhancements include dou-

ble Q-learning, prioritized experience replay, dueling networks, multi-step Learning,

distributional RL, and noisy nets [46].
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Algorithm 1 Q-learning (off-policy TD control)

1: Input: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily except that
Q(terminal, ·) = 0

2: Parameter: step size α ∈ (0, 1], small ϵ > 0
3: for each episode do
4: Initialize s
5: for each step of episode do
6: Choose a using policy derived from Q (e.g., ϵ-greedy)
7: Take action a, observe r, s′

8: Q(s, a)← Q(s, a) + α[R + γ maxaQ(s′, a)−Q(s, a)]
9: s← s′

10: end for
11: end for until s is terminal

SARSA

SARSA is an on-policy TD algorithm. SARSA may converge to suboptimal policies

and require more time to learn as it must simultaneously explore and exploit. Ex-

pected SARSA reduces variability in target values by taking the expectation over all

possible next actions instead of the single sampled next action. This expected value

provides more stable learning. Double SARSA is another modification that keeps two

separate estimators to reduce overestimation bias, similar to Double Q-Learning. El-

igibility traces are incorporated in SARSA(λ) to dynamically balance TD and Monte

Carlo targets for faster learning and lower bias. Another version like Variable Lambda

SARSA adapts the traces themselves, tuning the decay factor based on state visita-

tion frequency. Delayed SARSA introduces delays in weight updates to stabilize the

next action, reducing bias from asynchronous updates.
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Algorithm 2 SARSA (on-policy TD control)

1: Input: Initialize Q(s, a) for all s ∈ S, a ∈ A, arbitrarily except that
Q(terminal, ·) = 0

2: Parameter: step size α ∈ (0, 1], small ϵ > 0
3: for each episode do
4: Initialize s
5: Choose a using policy derived from Q (e.g., ϵ-greedy)
6: for each step of episode do
7: Take action a, observe r, s′

8: Choose a′ from s′ using policy derived from Q (e.g., ϵ-greedy)
9: Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
10: s← s′, a← a′

11: end for until s is terminal
12: end for

2.4.2 Policy-Based Method

Policy Gradient Methods

Policy Gradient is an on-policy algorithm that optimizes the policy directly by com-

puting gradients of the expected reward with respect to the policy parameters. Al-

gorithms like REINFORCE and Actor-Critic are fundamental policy gradient tech-

niques. The gradient is computed as follows:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s) · Aπθ

] (2.33)

where ∇θJ(θ) is the gradient of the objective with respect to the policy parameters,

πθ(a|s) is the policy (probability of taking action a in state s). Aπθ
represents the

advantage of being in state s, taking action a, and subsequently following policy πθ.

Advantage function provides a normalized measure of how advantageous a par-

ticular action is relative to the current policy. It reduces the variance of the update

signal, which can accelerate learning. The method to calculate the advantage depends

on the specific needs of the algorithm, with each method affecting the bias-variance

balance in distinct ways:

• The basic advantage estimation is calculated as A(s, a) = Q(s, a)−V (s), which

represents the difference between the action-value and the state-value function.
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• The Temporal Difference (TD) Error is expressed as A(s, a) = r+γV (s′)−V (s),

and it uses the value function estimate at the next state to improve the current

state value estimate.

• Generalized Advantage Estimation (GAE) is given by AGAE(γ, λ) =
∑︁∞

t=0(γλ)tδVt ,

with the TD error δVt = rt + γV (st+1) − V (st), aiming to reduce variance by

averaging over a longer trajectory.

• The n-step Advantage takes into account a sequence of rewards and is computed

as A(st, at) =
∑︁n−1

k=0 γ
krt+k+γnV (st+n)−V (st), balancing immediate and future

rewards.

Algorithm 3 Policy Gradient Method

1: Input: Policy parameters θ0, Value function parameters ϕ0

2: for k = 0, 1, 2, . . . do
3: Collect trajectories Dk = τi by executing policy πk = π(θk)
4: Calculate rewards-to-go Rt

ˆ for each timestep t
5: Compute advantage estimates Ât using any standard method with Vϕk

6: Compute the policy gradient ĝk as follows:

ĝk =
1

|Dk|
∑︂
τ∈Dk

T∑︂
t=0

∇θ log π(at|st, θk) · Ât

7: Update policy parameters via gradient ascent

θk+1 = θk + αkĝk

8: Update value parameters by regression on mean-squared error:

ϕk+1 = argminϕ

1

|Dk|T
∑︂
τ∈Dk

T∑︂
t=0

(Vϕ(st)−Gt)
2

where T represents the time horizon of each trajectory
9: end for

REINFORCE

REINFORCE, or Monte Carlo Policy Gradient, directly adjusts the parameters of

the policy based on the gradient of the expected reward, using entire episodes for
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updates [47]. It often suffers from high variance in its estimates, and its performance

can be significantly influenced by the choice of learning rate α and discount factor γ.

Algorithm 4 REINFORCE

1: Input: a policy πθ(a|s) parameterized by θ
2: Initialize policy parameters θ arbitrarily
3: for each episode do
4: Generate an episode trajectory {s0, a0, r1, . . . , sT−1, aT−1, rT} ∼ πθ

5: for t = 0 to T − 1 do

G←
T∑︂

k=t+1

γk−t−1rk,

θ ← θ + αγtG∇θ ln π(at|st, θ)

6: end for
7: end for

Trust Region Policy Optimization (TRPO)

TRPO is an on-policy, policy gradient algorithm that improves vanilla policy gradient

methods by constraining the policy update. It updates policies by taking the largest

step possible to improve performance while satisfying a distance constraint between

updated and current policies. The constraint is expressed in terms of Kullback-

Leibler (KL)-Divergence, a measure of distance between probability distributions.

TRPO avoids collapsing policy performance and tends to monotonically improve per-

formance.

TRPO modifies the standard policy gradient objective The modified objective with

a trust region constraint is given by:

max
θ

Eπθold

[︃
πθ(a|s)
πθold(a|s)

Aπθold (s, a)

]︃
s.t. Eπθold

[DKL(πθold(·|s) ∥ πθ(·|s))] ≤ δ

where DKL denotes the KL-divergence and δ is a small positive number that limits

the size of the policy update, ensuring the new policy is within a ’trust region’ of the

current policy.
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2.4.3 Actor-Critic Method

DDPG (Deep Deterministic Policy Gradient)

DDPG is an off-policy algorithm that integrates deterministic policy gradients and

Q-learning. DDPG can only be used for environments with continuous action and is

considered an extension of Q-learning for continuous action spaces. It uses off-policy

data from a replay buffer and the Bellman equation to learn a Q value function

[48]. DDPG employs a deterministic policy that is optimized using gradient ascent

methods. This makes it possible to handle the optimization challenges that arise in

continuous spaces, where finding the maximum Q-value is non-trivial. To facilitate

exploration in its deterministic policy framework, DDPG adds noise to the actions

during training, such as time-correlated Ornstein–Uhlenbeck (OU) noise or mean-zero

Gaussian noise.
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Algorithm 5 Deep Deterministic Policy Gradient (DDPG)

1: Input:
2: Initialize actor network µϕ(s) and critic network Qθ(s, a) with weights ϕ and θ
3: Initialize target networks µ′ and Q′ with weights ϕ′ ← ϕ, θ′ ← θ
4: Initialize replay buffer D
5: for each episode do
6: Observe initial state s
7: for t = 0 to T do
8: Select action a = clip(µϕ(s) +N , alow, ahigh) where N is noise for exploration
9: Execute action a and observe reward r and new state s′

10: Store transition (s, a, r, s′) in D
11: Sample random mini-batch B of N transitions (si, ai, ri, s

′
i) from D

12: Computer the target

y = r + γQ′
θ′(s

′, µ′
ϕ′(s′))

13: Update critic by one step gradient descent:

∇θ
1

|B|
∑︂

(s,a,r,s′,d)∈B

(Qθ(s, a)− y)2

14: Update the actor policy using the one step gradient ascent:

∇ϕ
1

|B|
∑︂
s∈B

Qθ(s, µϕ(s))

15: Update the target networks:

θ′ ← τθ + (1− τ)θ′

ϕ′ ← τϕ + (1− τ)ϕ′

16: end for
17: end for

Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 is an actor-critic, off-policy algorithm that improves upon the DDPG algorithm

by addressing the overestimation bias. TD3 learns clipped double Q-function and

regresses toward the minimum of the two Q-values to reduce overestimation. TD3

updates policy similar to DDPG. However, TD3 adds delayed policy updates and

target policy smoothing to further stabilize training. The policy is updated less
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frequently than the Q-functions to reduce volatility. TD3 also uses “target policy

smoothing” by adding clipped noise to the target action coming from the target

policy.

Algorithm 6 TD3 Algorithm

1: Input:
2: Initialize critic networks Qθ1 , Qθ2 , and actor network πϕ with random parameters
3: Initialize target networks θ′1 ← θ1, θ

′
2 ← θ2, ϕ

′ ← ϕ
4: Initialize replay buffer D
5: for each episode do
6: Observe initial state s0
7: for t = 0 to T do
8: Select action with exploration noise at = πϕ(st) + ϵ, where

ϵ ∼ N (0, σ)

9: Execute action at and observe reward rt and new state st+1

10: Store transition tuple (st, at, rt, st+1) in D
11: Sample mini-batch of N transitions B = s, a, r, s′ from D
12: compute targets y = r + γ mini=1,2Qθ′i

(s′, πϕ′(s′))
13: Update critics θi ← arg minθi

1
|B|

∑︁
(y −Qθi(s, a))2

14: if t mod d then
15: Update actor by the deterministic policy gradient:

ϕi ← ∇ϕ
1

|B|
∑︂
s∈B

Qθ(s, µϕ(s))

16: Update target networks:

θ′i ← τθi + (1− τ)θ′i

ϕ′ ← τϕ + (1− τ)ϕ′

17: end if
18: end for
19: end for
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Advantage Actor-Critic (A2C)

A2C is an extension of the basic Actor-Critic method, introducing the advantage

function to reduce variance in policy updates. The advantage function A(s, a) guides

the policy gradient more effectively by considering the relative value of each action

compared to the average [49].

Algorithm 7 Advantage Actor-Critic (A2C)

1: Input:
2: Initialize actor network πϕ and critic network Vθ with random parameters
3: for each episode do
4: Observe initial state s
5: for each step of episode do
6: Select action a ∼ πϕ(s)
7: Execute action a and observe reward r and new state s′

8: Estimate advantage

A(s, a) = r + γVθ(s
′)− Vθ(s)

9: Update critic by minimizing loss:

L(θ) = A(s, a)2

10: Update actor using policy gradient:

∇ϕJ(ϕ) = ∇ϕ log πϕ(a|s)A(s, a)

11: s← s′

12: end for until s is terminal
13: end for
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Asynchronous Advantage Actor-Critic (A3C)

A3C improves upon standard actor-critic methods by training multiple instances of

the agent in parallel in multiple environments. This parallelism not only speeds up

training but also diversifies the experience, which stabilizes the update gradients [49].

Algorithm 8 Asynchronous Advantage Actor-Critic (A3C)

1: Input:
2: A set of continuous MDPs (S,A, P, R, γ) for each actor-learner
3: Initialize global actor network πϕglobal

and critic network Vθglobal with random
weights

4: Initialize multiple actor-learner threads each with its own set of network param-
eters ϕ and θ

5: for each actor-learner thread do
6: for each episode do
7: Observe initial state s
8: Tare local gradients: dθ ← 0 and dϕ← 0
9: for each step of episode do
10: Select action a ∼ πϕ(s)
11: Execute action a and observe reward r and new state s′

12: Accumulate gradient wrt. θ: dθ ← dθ +∇θ log πϕ(a|s)(G− Vθ(s))
13: Update global critic by dθ
14: Accumulate gradient wrt. ϕ: dϕ← dϕ +∇ϕ log πϕ(a|s)A(s, a)
15: Update global actor by dϕ
16: Synchronize local networks with global networks
17: s← s′

18: end for until s is terminal
19: end for
20: end for

Proximal Policy Optimization (PPO)

PPO aims to balance exploration and exploitation by limiting the size of policy up-

dates. PPO which evolved from policy gradient methods like A2C, introduces a novel

objective function that penalizes large changes to the policy, thus avoiding the per-

formance collapse. This is achieved by using a clipped surrogate objective function.

This clipping mechanism is what primarily differentiates PPO from A2C [50].
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Algorithm 9 PPO-Clip

Input: Initial policy parameters θ0, initial value function parameters ϕ0

for k = 0, 1, 2, . . . do
Collect a set of trajectories Dk = {τi} by executing a policy πk = π(θk)
Calculate rewards-to-go r̂t
Calculate advantage estimates Ât based on the current value function Vϕk

Update the policy:

θk+1 = arg max
θ

1

|Dk|T
∑︂
τ∈Dk

T∑︂
t=0

min

(︃
πθ(at|st)
πθk(at|st)

Ât, clip

(︃
πθ(at|st)
πθk(at|st)

, 1− ϵ, 1 + ϵ

)︃
Ât

)︃
Update value function by mean-squared error regression:

ϕk+1 = arg min
ϕ

1

|Dk|T
∑︂
τ∈Dk

T∑︂
t=0

(Vϕ(st)− r̂t)
2

end for

Soft Actor-Critic (SAC)

SAC bridges the gap between stochastic policy optimization and approaches like

DDPG. Soft Actor-Critic is an off-policy actor-critic algorithm that incorporates en-

tropy into the reward signal to encourage the policy to explore more by maximizing

a trade-off between expected return and entropy. Entropy regularization enhances

exploration and prevents premature convergence to suboptimal policies [51]. SAC

is designed for continuous action spaces and employs two Q-functions to mitigate

overestimation bias. In SAC, the policy network outputs a distribution over ac-

tions. Instead of sampling an action directly from this distribution (which would be

a non-differentiable operation), the reparameterization trick rewrites the action as a

deterministic transformation of some independent noise. An action a is produced by

transforming a noise variable ϵ (usually sampled from a standard normal distribution)

using the mean and standard deviation output by the policy network. This can be

mathematically represented as

a = µ(s) + σ(s) · ϵ,
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where µ(s) and σ(s) are the mean and standard deviation for the state s, and ϵ is the

random noise.

Algorithm 10 Soft Actor-Critic (SAC)

1: Input: Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, initialize
replay buffer D

2: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

3: repeat
4: Observe state s and select action a ∼ πθ(s)
5: Execute a in the environment
6: Observe new state s′, reward r, and done signal d
7: Store (s, a, r, s′, d) in replay buffer D
8: if update then then
9: for each update step do
10: Randomly sample a batch of transitions B = {(s, a, r, s′, d)} from D
11: Compute targets for the Q functions:

y = r + γ(1− d) min
i=1,2

Qϕtarg,i
(s′, ã), ã ∼ πθ(s

′)

12: Update Q-functions by one step of gradient descent using:

∇ϕi

1

|B|
∑︂

(Qϕi
(s, a)− y2

13: Update policy by one step of gradient ascent using:

∇θ
1

|B|
∑︂(︃

min
i=1,2

Qϕi
(s, ã(s))− α log πθ(ã(s)|s)

)︃
14: Update target networks with:

ϕtarg,i ← τϕtarg,i + (1− τ)ϕi

15: end for
16: end if
17: until convergence
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2.5 Imitation Learning

2.5.1 Behavioral Cloning

Behavioral Cloning (BC) is the simplest method in imitation learning where a model

learns to mimic expert behavior directly and learns a mapping from states to actions

[52]. BC is a supervised learning method where policy π is trained to map states to

the action of an expert policy πE. The objective of BC is to minimize the difference

between the actions taken by the learned policy and the expert actions, given the

same states. The loss function, often a mean squared error, is given by:

L(π) = E(s,a)∼πE

[︁
(π(s)− a)2

]︁
(2.34)

where (s, a) are state-action pairs sampled from the expert’s policy πE.

Algorithm 11 Behavioral Cloning (BC)

1: input: Expert demonstrations D, policy network πθ

2: for each epoch or batch do
3: Sample a batch {(si, ai)} from expert demonstrations D
4: Select the policy’s action distribution parameters µθ(si), σθ(si) for each state si
5: Calculate the loss L for the policy:

L(θ) =
1

N

N∑︂
i=1

∥ai − µθ(si)∥2 + λ1H(πθ) + λ2∥θ∥2

where H(πθ) is the entropy of the Gaussian distribution defined by µθ(si) and
σθ(si), λ1 and λ2 are regularization coefficients

6: Update the policy parameters θ using gradient descent:

θ ← θ − α∇θL(θ)

where α is the learning rate
7: end for

2.5.2 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) combines ideas from Generative

Adversarial Networks (GANs) and imitation learning. GANs operate through two
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neural networks: generator G and a discriminator D, engaged in a zero-sum game

framework [53]. The generator fabricates data resembling real instances, while the

discriminator evaluates these instances, discerning real from generated data. The

objective function of a GAN is formalized as:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.35)

In GAIL, the generator is the RL policy π, and the discriminator D differentiates

between state-action trajectories from the expert and those generated by the policy.

Unlike traditional supervised learning, GAIL does not rely on labeled datasets but

learns by emulating expert behaviors in an adversarial setting. The goal of GAIL is

to train π so that the discriminator cannot distinguish between its trajectories and

those of the expert.

One of the key challenges in imitation learning is the issue of distributional shifts.

Distributional shift occurs when the policy encounters states that are not represented

in the training data, often leading to accumulating errors. GAIL addresses this by

learning entire trajectories rather than individual actions. This approach allows the

policy to learn a comprehensive strategy that includes recovery from states that are

not part of the expert demonstrations. The policy is trained to minimize the log

probability that the discriminator correctly identifies its trajectories, while the dis-

criminator is trained to maximize its accuracy in classifying state-action pairs as

originating from either the expert or the policy. The GAIL objective is given by:

min
π

max
D

Eπ[log(1−D(s, a))] + EπE
[logD(s, a)] (2.36)
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Algorithm 12 Generative Adversarial Imitation Learning (GAIL)

1: input Expert demonstrations D, initial policy parameters θ, initial discriminator
parameters w

2: while not converged do
3: Sample trajectories τ using policy πθ

4: Update discriminator parameters w by ascending its stochastic gradient:

∇w

(︁
Eτ∼πθ

[log (1−Dw (s, a))] + E(s,a)∼D [logDw (s, a)]
)︁

5: Update policy parameters θ by descending its stochastic gradient:

∇θ (Eτ∼πθ
[log πθ(a|s)Qw(s, a)])

6: end while
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Chapter 3

Digital Twin of an Industrial-Scale
Bitumen Extraction Process

This work was presented at the 2023 INFORMS Annual Meeting and has been submitted to
Computers & Chemical Engineering journal as: J.F. Soesanto, B. Maciszewski, L. Mirmontazeri, S.
Romero, M. Michonski, A. Milne, and B. Huang “Digital Twin and Control of an Industrial-Scale
Bitumen Extraction Process” (Manuscript ID: CACE-D-24-00011)
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3.1 Introduction

In recent years, the “digital twin” has achieved a significant advancement in the

process industry [54–57]. Defined as a digital replica of a physical system [58–60], the

digital twin heralds a new era of digital transformation in the Oil & Gas sector[61–

63]. It facilitates innovative simulation-driven strategies, particularly harnessing the

power of artificial intelligence applications [64–66]. The digital models not only enable

bidirectional data flow between the virtual and real worlds but also ensure a safe and

economical exchange of information [67–69]. Such interconnectivity allows hypotheses

formulated in the virtual domain to be tested and refined in the physical realm, and

vice versa [70–72].

This potential of digital twin becomes particularly relevant in industries facing

complex challenges, such as the oil sands sector. With oil sands reserves estimated to

be 2.7 times larger than conventional crude deposits and spread across vast regions

globally, they constitute an enormous potential resource [73–75]. Unlike conventional

crude oil, which undergoes direct refining, oil sands require multiple processes to pro-

duce synthetic crude oil (SCO) [76, 77]. A critical unit in surface mining bitumen

extraction is the Primary Separation Vessel (PSV) [78]. It is the first process unit

absorbing uncertainty from upstream mining ore grade (the main source of process

uncertainty) and plant capacity, ensuring over 90% bitumen recovery. Prior research

explored separation mechanisms in pilot-scale PSV both theoretically and experi-

mentally [79]. Our work refines these models and scales them up to better reflect

real-world conditions. We divide the middlings layer of the PSV into two zones: one

encountering turbulence from entrance effects, and a more stable upper middlings.

This distinction enables modeling the dynamic interface, expected to improve in-

terface velocity estimation accuracy and enhance the dynamic model stability. In

contrast, prevalent models assume a static interface for stability [79], a simplification

not reflective of actual operations. The detailed modeling of the interface is essential
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due to its critical impact on separation efficiency. Moreover, the model incorporates

often-overlooked aspects like bulk flow dynamics, froth quality, and bitumen losses,

providing a more holistic understanding of extraction performance. Finally, we scale

up the model to actual industrial dimensions, tailored to real-world processes.

Despite the crucial role of PSV, it is vital to consider plant-wide bitumen extraction

processes collectively to grasp their interdependence and assess holistic operational

strategies [80–82]. Our research expands this perspective by constructing a model that

integrates both upstream and downstream facets of PSV. Notably, it acknowledges

that not all bitumen in the middlings phase is wasted, with a portion being recoverable

in the FT cells [83]. By replicating real-world configurations and scales, the model is

adept at utilizing genuine datasets for parameterization. This synchronization makes

the model a potential digital twin for real-world processes, catalyzing dynamic studies

of bitumen extraction. Such studies can shed light on refining operations, controls,

and strategic deployments.

Key features of the model:

• PSV model refinement: The model introduces an upper middlings layer, to

achieve a steady-state without static interface assumptions, offering a closer

representation of real-world processes.

• Extended plant modeling: The model expands to upstream process and down-

stream flotation units, enabling deeper understanding of recovery performance

and process interactions.

• Digital twin implementation: The model is meticulously calibrated, and mirrors

real processes. By validations across various scenarios, it reflects both real

steady state and dynamics, capturing gains and key dynamic parameters. The

digital twin enables studying extraction performance and designing advanced

control systems.

52



• Inclusion of fines and bitumen loss: The model accounts for often overlooked

factors such as froth quality and tailings bitumen loss, key parameters aiming

to assess and optimize operations.

By navigating these innovative terrains, we aim to advance research in the bitumen

extraction field, enabling the adoption of the dynamic model as a platform for simu-

lation, control, and optimization studies. Its structure, characterized by multi-modal,

nonlinear, and multi-input multi-output with constraints, offers a secure and sturdy

testing ground. This environment is not only ideal for experimenting with advanced

control and optimization strategies, such as Model Predictive Control (MPC) and

Reinforcement Learning (RL) [84, 85], but also facilitates the advanced soft sensor

design [86–88]. Rigorous validation is crucial before these strategies are introduced

in real-world settings to address and minimize inherent risks [86, 88].

3.2 Modeling

In this section, we discuss each unit and its physics in the plant-wide setting. The

model is scaled up based on the actual process dimension and working capacity and

validated using actual process data. The model improvement is conducted on PSV

which is the heart of the extraction process. The interconnectivity to the upstream

and downstream processes is investigated, including Ore Preparation Plant (OPP),

PSV, and Flotation (FT) cells.

3.2.1 Process Description

Currently, 20% of oil sands reserves are accessible via mining techniques. The mined

oil sands undergo extraction processes to recover bitumen, which then proceeds to

the upgrading stage. The extraction process encompasses ore preparation, extraction

in PSV, and secondary separation in FT cells.

In the OPP, oil sands containing approximately 11% bitumen, 84% solids, and 5%

water are crushed to break up clumps into loose, uniform particles. The addition
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of caustic reduces bitumen surface tension and promotes aeration. The crushed oil

sands slurry is then transported via high-velocity hydrotransport lines to PSV. The

turbulent pipeline flow promotes oil sands ablation, liberates bitumen, and provides

additional time for bitumen attachment to air bubbles, improving the separation of

bitumen [89].

In the PSV, the slurry is fed to the middlings layer or source zone in the middle

of the vessel. Here, aerated bitumen rises to the froth overflow containing around

60% bitumen, 10% solids, and 30% water. Then, the froth undergoes deaeration

and is further processed in the Paraffinated Froth Treatment (PFT) before moving

on to the upgrading phase [77]. Heavy particles settle to the bottom tailings layer

containing about 0.4% bitumen, 65% solids, and 34% water. The tailings discharge

is subsequently thickened prior to treatment.

The middlings layer contains around 4% bitumen, 20% solids, and 76% water. It

is discharged to the FT cells for secondary separation. Air injection aerates bitumen

particles, recovered in the flotation froth overflow containing approximately 17% bi-

tumen, 12% solids, and 71% water. This recycles back to the PSV feedwell. Heavy

non-aerated particles settle to the flotation tailings withdrawal containing about 0.4%

bitumen, 25% solids, and 74% water. The interconnectivity between PSV and FT

cells defines the main oil sands separation process to produce synthetic crude oil.

3.2.2 Overall Process

Mass Balance

A schematic representation of the overall mass balance, detailing the process flow, is

shown in fig. 3.2. The ore feed Qore mixes with process water Qwpw to form a slurry

Qsl. The superbox serves as a mixing chamber for feeds from two separate lines and

can be approximated as a fixed-volume mixer. Therefore, the PSV feed flow rate Qfd

from the superbox to the PSV is given by:

Qfd = Qsl (3.1)
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Figure 3.1: Oil sands extraction process schematic

Dilution water Qdil is added to Qfd before entering the PSV. Underwash water

Quw affects separation performance in the PSV by “cleaning” the bitumen droplets

as they rise to the top of the vessel and encourages the release of any trapped fines.

However, this effect has been omitted from this model to simplify energy balance and

heat transfer calculations, as it does not significantly affect overall process behavior.

Therefore, Quw will be considered an addition to the dilution water input to PSV.

Within the PSV, light particles discharge through the froth overflow Qf , while

heavy particles discharge through the tailings withdrawal Qt. The middlings with-

drawal Qm, which primarily consists of water, remaining bitumen, and residual solid

particles, are transferred to FT cells for further separation.

In the FT cells, aerated particles recycle back to the PSV through the flotation froth

recycle Qff , while heavy particles discharge through the flotation tailings withdrawal

Qft. The overall volume balance determines the PSV froth overflow Qf :

Qf = Qfd + Qdil + Quw + Qff −Qm −Qt (3.2)

where Qff satisfies:

Qff = Qm −Qft (3.3)
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Figure 3.2: Overall mass balance of oil sands extraction process

Dynamic Recovery Rate

To accurately evaluate the separation performance during dynamic operations, we

introduce a time-dependent recovery rate calculation. This approach is grounded in

the overall mass balances of bitumen that enters and is lost through the tailings. The

key aspect is that the bitumen accumulating within the loop over the time period

is considered part of the recovered portion. This is because it has separated from

the tailings even though it has not yet overflowed. By including accumulation in the

recovered bitumen, we avoid ambiguities from changing interface levels and unsteady

operation. It provides a meaningful performance metric under dynamic operating

conditions.

The recovery rate over a given period is quantified through the following equations:

RRtot =

∑︁
Qfdα

fd
b − λt

bQtα
t
b −Qftα

ft
b∑︁

Qfdα
fd
b

(3.4)

RRpsv =

∑︁
Qfdα

fd
b + Qffα

ff
b − λt

bQtα
t
b∑︁

Qfdα
fd
b + Qffα

ff
b

(3.5)

RRft =

∑︁
λm
b Qmα

m
b −Qftα

ft
b∑︁

λm
b Qmαm

b

(3.6)

where RRtot, RRpsv, and RRft represent the overall, PSV, and FT recoveries, respec-

tively.
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3.2.3 Upstream (Mining/OPP/Hydrotransport)

The variability in ore grade from mining directly influences the slurry mixture pro-

duced in the ore preparation plant. The slurry composition can be calculated as:

αsl
j =

αore
j

1 + r
(3.7)

where r is the water-to-ore ratio, being set at 0.45 in this work.

The model considers three distinct ore grades to simulate performance under var-

ious conditions. The ore recipes are adapted from [79] but tailored to real-world

mining statistics. Further classification based on different unaerated bitumen sizes is

unnecessary, as the actual distribution in the real process is not well understood and

it adds to model complexity [90]. We select one size for unaerated bitumen based on

typical ranges. Unaerated bitumen is important to model as it causes bitumen losses

in tailings.

Bitumen liberation and aeration are complex phenomena influenced by a multitude

of factors including ore grade, fines concentration, temperature, pH, and agitation.

While there is a need for further research to model these intricate variables, our

study takes a different approach to capture their effects. We vary the composition

of unaerated bitumen as a proxy for these influences. It is worth noting that factors

like pH, temperature, and agitation are typically controlled within a certain range

during the process; however, the presence of fines, particularly in the form of clay,

is an unavoidable disturbance. Hydrophilic fines cause slime-coating on the bitumen

surface, which increases its hydrophilicity, preventing it from attaching to air bubbles.

Meanwhile, hydrophobic fines attach to the bitumen, reducing the froth quality [91–

93]. The effect of fines on bitumen aeration is illustrated visually in fig. 3.3.

Therefore, the model is not arbitrary in its treatment of unaerated bitumen vari-

ation. Instead, we employ a simple correlation to estimate the fraction of unaerated

bitumen in various bitumen grades, linearly increasing with fines concentration
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Figure 3.3: Effect of fines on bitumen aeration

αore
b1

αore
b

= C1α
ore
s1 (3.8)

The multistep processes from the OPP to the PSV represent the delay associated

with the ore grade transition effect on the PSV. The volume of the modeled mixer

has been set to replicate the delay observed in the actual process, as reflected in its

impact on residence time. This particularly concerns the delayed responses of both

the interface and the cone density following a step change in the fines fraction from

the OPP. The volumetric fraction of species j in the PSV feed stream αfd
j evolves

according to:

dαfd
j

dt
=

Qsl

Vmix

(︂
αsl
j − αfd

j

)︂
(3.9)

3.2.4 Primary Separation Vessel

Constitutive Relationships

We refer to the modeling principles from [79, 94] and references wherein. The vessel

dimensions follow the actual size of cylindrical top and conical bottom. The main

novelty is considering an upper middlings above the middlings layer. [95, 96] studied

the turbulent flow around the feedwell in the middlings. Consequently, we represent

the middlings as a mixing region supplying particles through upper and lower inter-
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Table 3.1: Ore recipe

Grade Low Average High

Total Bitumen 10.4% 11.8% 12.9%

Aerated 9.1% 10.9% 12.3%

Unaerated 1.3% 0.9% 0.6%

Total Solids 83.6% 82.5% 81.3%

small 20.9% 15.0% 10.0%

medium 2.7% 3.0% 4.8%

large 60.0% 64.6% 66.5%

Water 5.8% 6.0% 5.8%

faces, with the withdrawn middlings being directed to FT cells. In contrast, the upper

middlings exhibit a developed flow profile. In this region, particle settling aligns with

Stokes’ law. Thus, we model four vertical layers: froth, upper middlings, middlings,

and tailings (fig. 3.4).

Throughout the entire vessel, one-dimensional flow is assumed. Particle flow is

directionally constrained, moving downward across the middlings/tailings interface

and upward across the middlings/upper middlings interface. Bidirectional flow occurs

at the froth/upper middlings interface, to account for dynamic interface.

While the interface between the upper middlings and froth layer is dynamic, other

interfaces remain static. These static interfaces serve mainly for modeling convenience

rather than acting as actual physical boundaries [94]. Their position does not impact

steady-state behavior but can affect model dynamics. As such, the volume of each

layer is included as empirical parameters subject to adjustment. Details regarding

this will be discussed in section 3.3.5.

The dynamic interface between upper middlings and froth layer has positions rang-

ing from 0 at the bottom to 100 at the top of the cylindrical part, with downward

velocity deemed positive. The froth/upper middlings interface velocity vI follows the
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Wallis shockwave equations [97]:

Wave Velocity =
Flux Received− Flux Removed

Volume Fraction Difference
(3.10)

vI =

∑︁
αm
bkv

mu
bk −

∑︁
αmu
bk vfbk∑︁

αmu
bk −

∑︁
αf
bk

(3.11)

Here, k ∈ {1, 2, 3} is used as an index for particle size. For solids, k denotes

fines, medium, and coarse particles. This index differentiates between unaerated and

aerated particles. Specifically, k = 1 is used for unaerated particles, as they are

generally smaller, while k = 2 denotes aerated particles. vmu
bk and vfbk denote the

bitumen settling velocity in the upper middlings and froth layer, respectively, while

αmu
bk and αf

bk represent the bitumen volume fractions in these layers.

Accurate interface level estimation depends on precisely defining concentration and

velocity near the interface. Introducing the upper middlings enhances these predic-

tions. Unlike the highly turbulent middlings, the upper middlings layer has a de-

veloped flow profile suited for description by Stokes’ equation. This enhances model

prediction and provides flexibility, as parameters related to the upper middlings sub-

stantially influence interface dynamics, as discussed in section 3.3.5. This diverges

from prior models that applied Stokes’ equation to the entire turbulent region. Fur-

thermore, the numerator of the shockwave equation aligns with the mass balance of

the upper middlings. This alignment allows the interface velocity to naturally reach

a steady state as the mass balance achieves equilibrium.

The terminal settling velocities within the multi-particle system are determined by

combining Stokes’ law with the Richardson-Zaki hindered settling function [98–100]:

vij =

(︃
gd2j(ρj − ρi)

18µf

)︃(︃
1−

∑︁
Kjα

i
j

αi
w
2

)︃ni
j

+ vw (3.12)

where vij denotes the settling velocity of species j within layer i. The sign convention is

such that the downward direction is positive. Due to the highly turbulent conditions,
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particles within the middlings layer are assigned zero vertical velocity. dj, ρj, and

Kj represent the diameter, density, and hydrodynamic volume factor of species j,

respectively, which are treated as constants. Kj takes on a value of unity for large

particles and is greater than 1 for fine particles exhibiting a higher hindered effect.

Physical parameters include the gravitational constant g and the dynamic viscosity of

water µ. The effective density ρi for layer i is calculated as the weighted summation

of the species densities:

ρi =
∑︂

ρjα
i
j (3.13)

The bulk flow velocity viw in layer i is iteratively solved to ensure overall volumetric

continuity [94]. Bulk flows allow the model to accommodate high-density fines in

the froth layer, as the upward bulk flow counters the inherent downward settling.

Likewise, unaerated bitumen can be modeled in the tailings layer due to the effect

of downward bulk flow. Fines particle in froth layer is considered for evaluating the

froth quality, while unaerated bitumen is considered for calculating bitumen loss from

tailings. The model assumes no aerated bitumen in the tailings and negligible sand

particles in the froth layer, as their settling velocities dominate over bulk flow effects.

Bulk flow velocity is calculated as follows:

vfw =
−1

αf
wAcyl

(︂
Qf + Acyl

∑︂
αmu
j vfj

)︂
(3.14)

vmu
w =

−1

αmu
w Acyl

(︂
Qf + Acyl

∑︂
αm
j v

mu
j

)︂
(3.15)

vtw =
1

αt
wAcon

(︂
Qt − Acon

∑︂
αmu
j vj

)︂
(3.16)

Then material balances for each layer are formulated considering various compo-

nents: inlet and outlet flow rates, particle exchanges between layers, and the dynamics

at the interfaces. The following equation captures the essence of the accumulation

term:

accumulation = inflow− λi
joutflow (3.17)

Particle discharge correction factors λi
j account for differences between particle
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concentrations within the layers and their corresponding outlet streams. The water

volume fractions αi
w are expressed algebraically in terms of the species fractions, elim-

inating redundant water balance equations and leaving only the independent particle

balances. To maintain volume continuity at the outlets, an additional equation is

employed:

αi
w +

∑︂
(λi

bkα
i
bk + λi

skα
i
sk) = 1 (3.18)

The mass fraction of the outlet streams is validated against actual process data,

as the sampling locations correspond to these exit points. The specific mass balances

for each layer will be elaborated upon in the subsequent subsections.

Figure 3.4: PSV schematic

Froth Layer

The interface between the froth and upper middlings is in the cylindrical part of the

PSV. We use Acyl to model the froth volume change as follows:

dVf

dt
= vIAcyl (3.19)

.

The froth layer has two main flows: the outflow at the top and the inflow from the

upper middlings. The mass balance for particle j in the froth layer is given by:

dαf
j

dt
=

1

Vf

(︂
ϕj − λf

jQfα
f
j − vIAcylα

f
j

)︂
(3.20)
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where ϕj is defined as:

ϕj =

{︄
αmu
j Acyl(vI − vmu

j ) if vI > vmu
j

αf
jAcyl(vI − vmu

j ) if vI ≤ vmu
j

Here, ϕ represents the particle flux from the upper middlings to the froth layer.

If vI > vmu
j , the flux goes from upper middlings to froth; otherwise, it goes in the

opposite direction.

Middlings Layer

The middlings layer is subdivided into an upper middlings layer, characterized by

well-developed vertical flow, and a middlings which serves as the source zone in the

PSV and exhibits high turbulence due to entrance effects. The interface between

these layers is considered static and solely for modeling convenience. The area of this

interface is denoted by Acyl as it occurs at the tangent line of the PSV. Similar to the

froth layer, the volume of the upper middlings is dependent solely on the movement

of the froth/middlings interface, but in the opposite direction.

dVmu

dt
= −vIAcyl (3.21)

The volume balance for the upper middlings is influenced by the particle fluxes at

its interfaces with the froth and middlings.

dαmu
j

dt
=

1

Vmu

(︁
−ϕj − αm

j Acylv
mu
j + αmu

j AcylvI
)︁

(3.22)

The middlings layer serves as a mixing region, exhibiting no vertical particle set-

tling owing to turbulent flow conditions. It receives material from both the feed and

flotation recycles, and directs it to the FT cells through middlings withdrawal. Ad-

ditionally, there is an outflux to both the upper middlings and tailings layers. The

interface area with the tailings layer, denoted as Acone, is a function of the middlings

volume due to its conical shape.

dαm
j

dt
=

1

Vm

(︂
Qfdα

fd
j + Qfdα

ff
j − λm

j Qmα
m
j + αm

j Acylv
mu
j − αm

j Aconev
t
j

)︂
(3.23)
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Tailings Layer

In actual operations, middlings displacement can be recycled from the flotation tail-

ings to the PSV tailings, minimizing dilution water usage. However, in the real-world

process, this is typically a no flow (NNF) condition. Given the lack of comprehensive

data and its limited impact on capturing the overarching process behavior, this flow

has been excluded from the model. The material balance for the tailings layer is

governed by the following equation:

dαt
j

dt
=

1

Vt

(︁
αm
j Aconev

t
j − λt

jQtα
t
j

)︁
(3.24)

3.2.5 Downstream (Flotation Cells)

The FT cells modeling is based on the approach developed by [101]. The model

consists of two phases – flotation froth and tailings. Assumptions include perfect

mixing in each cell and constant attachment efficiency. The FT cells model uses a

lumped parameter approach, with a single cell representing the key dynamics of the

multi-cell flotation process.

While the actual process consists of 4 cells in series, modeling each cell individ-

ually would add complexity without significantly improving model accuracy for the

intended application. Therefore, the model equations and parameters are tuned to

match overall flotation performance across the multiple cells. Equivalent cell dimen-

sions (volume, area) and overall flowrate, which affect the residence time, are used

in the model to represent the combined characteristics of the full circuit. Volumetric

balance equations are written for each phase, tracking the volume fractions of air and
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mineral components, respectively.

dαft
a

dt
=

1

Vft

(Qa − JTFa) (3.25)

dαff
a

dt
=

1

Vff

(JTFa −Qffα
ff
a −Ql

a) (3.26)

dαft
j

dt
=

1

Vft

(λm
j Qmα

m
j −Qftα

ft
j − JTFj) (3.27)

dαff
j

dt
=

1

Vff

(JTFj −Qffα
ff
j ) (3.28)

where αff
a and αft

a are air volume fractions in flotation froth and tailings, respectively.

αff
j and αft

j are mineral j volume fractions in flotation froth and tailings, respectively.

Vff and Vft represent equivalent flotation froth and tailings volumes, respectively. Qa

represents the total air injection rate, whereas Ql
adenotes the total air loss. JTFa is air

volume interphase flux, while JTFj is mineral j volume interphase flux from flotation

tailings to froth.

The key modeling aspect is the interphase transfers, which represent the flota-

tion process of mineral particles attaching to air bubbles and transferring from the

flotation tailings to the froth. A visual representation of the flotation mechanism is

provided in fig. 3.5. The mineral interphase flux JTFj is determined by modeling the

bubble dynamics and calculating the mineral volume that attaches during the bubble

residence time in the flotation tailings. The attached mineral volume per bubble de-

pends on the mineral j diameter dj, mineral j volume fraction in the flotation tailings

αft
j , and an attachment efficiency parameter aj that accounts for surface chemistry.

The total number of bubbles transferring mineral is calculated from the tailings air

content αft
a , flotation tailings volume Vft, and air bubble size da. Combining these

factors yields the modeled mineral interphase flux:

JTFj = aj
6djα

ft
a αft

j Vft

da
(3.29)

The air interphase flux JTFa is modeled similarly to the mineral interphase fluxes.

The air flux is calculated by considering the local air content αft
a and the rise velocity
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of bubbles vb through the tailings based on the bubble size. This air flux between

phases represents the fundamental flotation transport process. The final equation for

air interphase flux is:

JTFa = vbAftα
ft
a (3.30)

where Aft is an equivalent FT cells cross-sectional area and vb is the bubble terminal

velocity that is calculated by assuming a perfectly spherical bubble cd = 0.47.

vb =

√︃
gda
3cd

(3.31)

Figure 3.5: FT cells schematic

3.3 Simulation and Validation

3.3.1 Parameterization Based on Steady-State Simulation

The industry standard for steady-state output is outlined in table 3.2. We employed

optimization techniques to identify the optimal parameter set, denoted as θ∗. Specifi-

cally, we aimed to find the parameters that minimize the deviation between the model

steady-state outputs and the criteria outlined in table 3.2. Table 3.3 presents the
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baseline parameter set for the model, which is further adjusted based on sensitivity

analysis to improve modeling accuracy.

Table 3.2: Typical density and mass fraction across different layers

Layer
Mass Fraction (%)

Density (kg/m3)
Bitumen Water Solid

PSV

Froth 61 27 12 800-950

Middlings 4 76 21 1050-1120

Tailings 0.4 39 60 1550-1650

FT

Froth 18 76 6 924-928

Tailings 0.4 74 25 1170-1243

Table 3.3: Summary of baseline parameters

db1 db2 ds1 ds2 ds3 nf
b nf

s nmu
b nmu

s

15 240 7 130 360 6.2 7.1 4.5 6.4

nt
b nt

s λf
b1/2 λf

s1 λm
b1/2 λm

s1 λm
s2/3 λt

b1 λt
s1

6.5 5 1.06 1.1 0.92 1.05 0.8 1.09 0.9

λt
s2/3 kf ρb2 ab1 ab2 as1 as2

1.07 1.31 700 0.1 0.1 0.03 0.3

3.3.2 Steady-State Sensitivity Analysis and Parameter Fine-
Tuning

To understand the model sensitivity to parameter changes, we perturbed each pa-

rameter by ±2% and ±5% from its baseline value θ̄. The sensitivity analysis revealed

a consistent monotonic trend across different perturbation levels. Therefore, we only

present the heatmap for the 5% perturbation (fig. 3.6) to represent parameter sensi-

tivity. It provides insight into the separation mechanisms and guides fine-tuning of
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the model parameters. We narrow the discussion to particle distributions, as changes

in density are closely tied to the content of solid and bitumen particles.

Increasing db2 reduces bitumen in the middlings and flotation froth as more bitumen

is channeled towards the froth layer, decreasing its density since bitumen is a light

particle. In contrast, higher hindrance factors, nf
b and nmu

b , reduce bitumen to the

overflow. Consequently, more bitumen is retained within the middlings and directed

to the FT cells. It contributes to elevated bitumen fraction in the flotation froth and

tailings, ωff
b and ωft

b .

Additionally, a reduction in the upward flux of bitumen correlates with a rise in

froth solids fraction ωf
s . This effect is attributed to a compensatory increase in the

water flux, thereby escalating the bulk velocity.

Notably, the settling velocities of fine solid particles are substantially influenced by

this elevated bulk velocity, overshadowing the impact of their own relative velocities.

Consequently, the model output is relatively insensitive to db1, ds1, n
f
s , nmu

s , and nt
b,

parameters that are intrinsically related to relative velocities.

Higher solids diameters, ds2 and ds3, increase the settling velocity of solids towards

the tailings. This results in a concomitant decrease of solids in the middlings ωm
s ,

flotation froth ωff
s , and tailings ωft

s , along with respective reductions in density. Due

to the already high concentration of solids and the reduction in the middlings solid

fraction, the solids fraction in the tailings ωt
s is relatively less sensitive. In contrast,

increasing nt
s has the opposite effect.

Generally, an increase in the particle discharge correction factor λi
j, which accounts

for imperfect mixing within the layer, leads to a proportional rise in the fraction j

within the i discharged flows. Elevating λf
b increases the bitumen fraction in the

froth discharge ωf
b , accompanied by a corresponding decline in the solids fraction ωf

s .

This also reduces bitumen in the middlings; as more bitumen is discharged from the

froth, the concentration and hindrance effects in the froth layer decrease, allowing for

greater bitumen flux into this layer. Furthermore, an increment in λm
b increased the
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bitumen content in the middlings discharge that flows to the FT cell.

Increasing the fines hydrodynamic volume factor Kf intensifies the fines hindrance

effects on particles across all layers, leading to elevated concentrations in the source

middlings region. The effects are more pronounced for larger particles, whose relative

velocities are dominant.

The empirical aerated bitumen density ρb2 has a major influence on the density

gradient, the driving force of bitumen settling. An increase in ρb2 reduces the density

gradient, resulting in greater retention of aerated bitumen in the middlings ωm
b . This

in turn leads to a decrease in froth density ρf and an increase in the concentration of

solids within the froth ωf
s .

Based on this sensitivity analysis, we have fine-tuned the model parameters (ta-

ble 3.4). Note that when tuning the parameters, we took into account their impact

on both steady-state and dynamic behaviors. The influence on dynamic behavior is

further discussed in section 3.3.5.

The outcomes at steady-state are tabulated in table 3.5 and table 3.6. Mass fraction

calculations are based on the discharge from each layer, after accounting for the

imperfect mixing correction factor, since actual process samples are taken from the

discharge pipeline. Density, however, is calculated based on the layer, as the sensor

is attached to the vessel rather than the discharge line, providing a more accurate

comparison. Comparing the fine-tuned model output in table 3.5 and table 3.6 with

the industry benchmark data in table 3.2, the model steady-state output aligns well

with the real-world process.

Ore grade influences both bitumen distribution in froth and recovery rates. Low

ore grade impairs recovery due to the less bitumen and high fines content. Fines

particles impair separation in two ways. First, they tend to surround bitumen par-

ticles, increasing the unaerated bitumen content, leading to greater bitumen losses

to tailings. Second, fines have a higher hindrance effect, impeding the movement of

both bitumen and solids, increasing the particle lingering in middlings. This increase
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affects FT cell particle distribution. More bitumen goes to FT cells, and FT recovery

is reduced as more bitumen loss from flotation tailings.

Plant capacity has a minor impact on recovery. A slight reduction in recovery

occurs with increased capacity due to shorter particle residence time. This manifests

through increased particle distribution in middlings at higher capacities, subsequently

affecting distribution in flotation froth. More bitumen and solids report to flotation

froth and tailings with higher plant capacity.

In conclusion, the presented model proficiently replicates the referenced steady-

state extraction data across multiple scenarios. Furthermore, it elucidates the varia-

tions in process state and recovery observed under these different conditions.

Table 3.4: Summary of fine-tuned parameters

db1 db2 ds1 ds2 ds3 nf
b nf

s nmu
b nmu

s

21 230 7.5 130 380 5.8 7.3 4 6.4

nt
b nt

s λf
b1/2 λf

s1 λm
b1/2 λm

s1 λm
s2/3 λt

b1 λt
s1

6.5 5 1.06 1.09 0.91 1.06 0.75 1.08 0.89

λt
s2/3 kf ρb2 ab1 ab2 as1 as2

1.06 1.51 700 0.13 0.13 0.04 0.3

3.3.3 Dynamic Stability Simulation

The dynamic model stability and robustness are evaluated by introducing step changes

in ore grade, transitioning between two extreme cases (low to high-grade ore) while

operating at normal plant capacity.

Transient responses to these step changes, shown in fig. 3.7, demonstrate the model

intrinsic stability. It asymptotically settles to a steady-state solution, consistent with

independent steady-state computations in the previous section. Reverting the inputs

back to their initial values further validated the model stability, with the system re-

covering its original steady-state condition after exhibiting smooth transient behavior.

70



Table 3.5: Steady-state PSV simulation results across various scenarios

Grade Capacity
RRtot RRpsv wbf wsf ρf wbm wsm ρm wbt wst ρt

% % % % kg
m3 % % kg

m3 % % kg
m3

High

Turndown 96.4 97.7 60 5 850 5 13 1053 0.3 63 1575

Normal 96.0 97.9 60 5 853 8 15 1055 0.3 63 1584

Rated 95.8 97.9 58 5 858 9 15 1057 0.3 63 1574

Avg.

Turndown 94.9 96.4 57 7 869 4 15 1078 0.4 61 1546

Normal 94.6 96.7 57 7 871 6 16 1076 0.4 61 1545

Rated 94.2 96.9 58 8 873 8 17 1075 0.4 61 1544

Low

Turndown 93.0 94.7 55 9 886 3 18 1107 0.5 59 1514

Normal 92.7 95.2 56 9 886 5 18 1102 0.5 58 1501

Rated 92.3 95.5 56 10 891 6 19 1103 0.5 58 1503

Table 3.6: Steady-state FT cells simulation results across scenarios

Grade Capacity
RRft wff

b wff
s ρff wft

b wft
s ρft

% % % kg/m3 % % kg/m3

High

Turndown 95.2 17 11 1007 0.4 14 1069

Normal 94.5 29 14 990 0.6 15 1075

Rated 94.2 28 12 980 0.7 17 1090

Avg.

Turndown 94.1 12 11 1019 0.4 18 1097

Normal 94.1 18 10 996 0.6 19 1111

Rated 93.8 23 9 976 0.8 21 1122

Low

Turndown 92.8 9 13 1040 0.4 21 1128

Normal 93.5 11 9 1010 0.6 25 1156

Rated 93.1 17 10 997 0.7 25 1156

Critically, the interface velocity decayes to zero at steady state, overcoming limi-

tations in prior models that could only achieve “pseudo” steady states with non-zero

interface velocities, requiring static interface assumptions. The current model can

capture interface dynamics while still reaching real steady-state solutions.

While interface velocity depends solely on inputs, interface level itself does not.
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(b) Sensitivity analysis of density in each layer

Figure 3.6: Heatmap of sensitivity analysis at 5% perturbation: (a) Particle distribu-
tion in each layer; (b) Density in each layer. A red hue signifies negative sensitivity,
blue indicates positive sensitivity, and the intensity of the shade corresponds to the
magnitude of sensitivity
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Initial interface levels may not be recovered when transitioning between steady states,

implying interface level is not a state variable determined solely by system inputs.

3.3.4 Dynamic Analysis via FOPD Model Identification

While the model predicts the particle distributions within each layer, it is worth noting

that these measurements are not available in real-time operations. In practice, the

interface level and tailings density serve as key controlled variables in the primary

separation vessel, making the understanding of their dynamics crucial for effective

model validation.

An excessively high interface level risks entraining fines and solids from the mid-

dlings into the froth, thereby reducing its quality. On the other hand, a low interface

level may channel high-bitumen content from the froth layer into the secondary sepa-

ration cell, thereby increasing its workload and the risk of bitumen loss in the flotation

tailings. Maintaining the interface level within a target range of 70-80% optimizes

both product quality and recovery, depending on the specific operational conditions.

Similarly, the tailings density is an indicator of settling performance, with opti-

mal values ranging between 1580-1650 kg
m3 for improved bitumen recovery. However,

exceeding a tailings density of approximately 1750 kg
m3 could pose operational risks,

such as sanding in the pipelines and the activation of pressure relief valves.

Given the significance of these control variables, we conducted a comparative anal-

ysis of both model-generated and actual step responses for the interface level and

tailing density. This analysis took into account the step changes in manipulated vari-

ables, Qm,Qdil,Qt, as well as disturbance from Qsl. The objective is to accurately

replicate key variable dynamics.

Figure 3.8 presents the model dynamics with respect to middlings withdrawal step

change, assuming constant flotation recycling to isolate the effects. Increased mid-

dlings withdrawal shifts the interface downward. This shift occurs as higher middlings

withdrawal leads to less overflow, resulting in higher bitumen retention in both the
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Figure 3.7: Dynamic trajectories with step changes in ore grade

74



froth and middlings. Consequently, the greater concentration of bitumen in the mid-

dlings causes the influx of bitumen surpasses its outflux across the interface. The

interface then continues its downward movement until the fluxes equalize. The rise

in flux can be attributed to the increased bitumen concentration in the middlings.

On the other hand, the density shows a minor change, a finding consistent with the

actual process where an increase in middlings withdrawal step does not significantly

impact the tailing density.

As illustrated in fig. 3.10, tailings withdrawal alters the interface similarly to mid-

dlings withdrawal. However, the effect of tailings withdrawal on density reduction is

more pronounced, as increasing tailings withdrawal directly reduces the solids in the

tailings.

On the other hand, fig. 3.9 shows that a step increase in dilution water leads

to an upward shift of the interface. This is a direct result of the reduced bitumen

concentration in the middlings, which in turn reduces the influx of bitumen through

the interface. Consequently, the inflow of bitumen through the interface becomes

less than its outflow, prompting the interface to rise until equilibrium is reached.

Additionally, introducing more dilution water reduces the density since the elevated

overflow carries more fine particles to the froth, slightly reducing fines in middlings

and the tailings.

Figure 3.11 illustrates the effects of increasing the feed flow rate. The interface level

rises, similar to the effects of increased dilution water. However, as the feed contains

both bitumen and solids, the extra bitumen fed to the middlings counterbalances

the greater bitumen overflow. This causes a smaller interface rise compared to the

one caused by dilution water. The feed flow increase also adds more solids to the

middlings and tailings, raising cone density.

Based on the observed step responses, we identify the FOPD parameters to approx-

imate the model dynamics. To ensure the model fidelity, we compared the derived

FOPD parameters from the model step responses to the actual step responses from
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the process. While using baseline parameters from section 2.1.1 gives correct dy-

namics in the sense of direction of change and order of magnitude, achieving higher

accuracy necessitates fine-tuning these parameters. We performed a sensitivity anal-

ysis on the model parameters to find the optimal fine tuning. The outcomes of the

model dynamics from fine-tuned parameters will be discussed in section 3.3.5.
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Figure 3.8: FOPD model identification from step response to middlings withdrawal:
(a) Model fit; (b) State changes

0 1 2 3 4 5 6 7 8 9
0.00

5.00

10.00

15.00

20.00

I

interface
dynamic re pon e
FOPDT

0 1
−0.100

−0.075

−0.050

−0.025

0.000

ρ ρ

cone den ity
dynamic re pon e
FOPDT

Time (h)

(a)

v fw vmu
w v tw v fb2 vmu

b2 v fs1 vmu
s1 v ts1 v ts3

0

10

20

α f
b α f

s αmu
b αmu

s αm
b αm

s αm
s1 α t

s1 α t
s

−15

−10

−5

0

Ch
an

ge
 (%

)

Figure 3.9: FOPD model identification from step response to dilution water: (a)
Model fit; (b) State changes

3.3.5 Dynamic Sensitivity Analysis and Parameter Fine Tun-
ing

As depicted in fig. 3.12, the model exhibits greater sensitivity in its dynamics com-

pared to its steady-state behavior. This distinction provides us with more flexibility

to adjust parameters for accurate dynamic representation. Given that the model
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Figure 3.10: FOPD model identification from step response to tailings withdrawal:
(a) Model fit; (b) State changes

0 1 2 3 4 5 6 7 8 9
0.00

5.00

10.00

15.00

I

interface
dynamic response
FOPDT

0 1
0.0

0.2

0.4

0.6

ρ ρ

cone density
dynamic response
FOPDT

Time (h)

(a)

v fw vmu
w v tw v fb2 vmu

b2 v fs1 vmu
s1 v ts1 v ts3

0

10

α f
b α f

s αmu
b αmu

s αm
b αm

s αm
s1 α t

s1 α t
s

−10

−5

0Ch
an

ge
 (%

)

(b)

Figure 3.11: FOPD model identification from step response to feed flow rate: (a)
Model fit; (b) State changes

spends most of its operational time in transient states, prioritizing model dynamics

accuracy during parameter tuning is paramount. We plotted the sensitivity of density

and interface level separately due to their distinct magnitudes of sensitivity.

To begin with, the interface velocity is governed by the net flux within the control

volume and the concentration differences across the two distinct layers. Intuitively, as

the net flux rises and concentrations between the layers converge, the rate of interface

change accelerates. We discovered that the parameters which influence the steady-

state distribution of bitumen also significantly impact the dynamics of the interface.

Notably, these parameters include db2, n
f
b , nmu

b , λf
b , and ρb2. As these parameters lead

to an increase in bitumen concentration in the upper middlings and a corresponding

decrease in the froth, the interface experiences more pronounced shifts, largely due

to the diminishing concentration differences between the upper middlings and froth

77



layers.

Tailings density dynamics are less susceptible to parameter modifications than

interface level dynamics, with their sensitivities varying based on specific inputs. For

instance, tailing density dynamics relative to slurry change Kρt
Qsl

are affected by the

fines size d1 and the Richardson-Zaki index parameters nmu
b , nmu

s , and nt
b. However,

when considering changes due to dilution water Kρt
Qdil

, the dynamics are influenced by

the Richardson-Zaki index nf
b , nmu

b , and the particle discharge correction factor λt
s1.

Notably, volume changes consistently impact tailing density dynamics. Adjusting

the boundaries between the upper middlings & middlings and middlings & tailings

empirically impacts the volume of each layer. Given a fixed system volume, an increase

in Vmu reduces the volume of either the middlings or tailings. This results in shorter

particle residence time in the cone, leading to faster density dynamics. Similarly,

modeling the conical portion with more middlings than tailings amplifies the tailing

density dynamics owing to the shorter residence time in tailings.

In the parameter tuning process, both dynamic and steady-state sensitivities are

jointly considered. This comprehensive approach lead to the determination of the

final parameters, as presented in table 3.4. Using these parameters, we summarized

the process gain for different scenarios in table 3.7. The rate of change is notably

distinct across the scenarios.

Generally speaking, higher plant capacities lead to faster response rates, with the

exception of the tailing density response to the step change in slurry flow rate. The

rapid shift in interface level at elevated plant capacities can be attributed to its sen-

sitivity to disruptions in the balance between inflow and outflow across the interface.

Given that both values increase with plant capacity, even slight imbalances can induce

substantial shifts in the interface level.

The ore grade further complicates this dynamic interplay. Notably, the interface

level changes more quickly under high-grade conditions. In contrast, the tailings

density exhibits a faster reaction to dilution water under low-grade conditions, and

78



to the slurry flow rate and tailings withdrawal under high-grade conditions.
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(a) Sensitivity analysis of interface level dynamics
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Figure 3.12: Heatmap of sensitivity analysis at 5% perturbation: (a) Interface level
dynamics; (b) Tailing density dynamics. A red hue signifies negative sensitivity,
blue indicates positive sensitivity, and the intensity of the shade corresponds to the
magnitude of sensitivity
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Table 3.7: Summary of process gains after fine tuning

Scenario Grade Capacity
Gain (1s )

KI
Qm

KI
Qdil

KI
Qt

KI
Qsl

Kρt
Qdil

Kρt
Qt

Kρt
Qsl

1 High Turndown -0.95 2.07 -2.24 1.64 -0.09 -1.14 0.84

2 High Normal -1.19 2.59 -2.93 2.07 -0.09 -1.14 0.81

3 High Rated -1.22 2.76 -2.93 2.07 -0.09 -1.10 0.81

4 Average Turndown -0.76 1.71 -1.72 1.33 -0.13 -1.02 0.81

5 Average Normal -1.02 2.24 -2.41 1.72 -0.14 -1.00 0.79

6 Average Rated -1.26 2.76 -3.10 2.24 -0.14 -0.98 0.78

7 Low Turndown -0.64 1.43 -1.47 1.14 -0.17 -0.88 0.76

8 Low Normal -0.88 1.90 -2.07 1.59 -0.19 -0.86 0.74

9 Low Rated -1.02 2.41 -2.59 1.90 -0.19 -0.84 0.72

Min. -0.64 1.43 -1.47 1.14 -0.09 -0.84 0.72

Avg. -1.00 2.24 -2.41 1.72 -0.14 -1.00 0.78

Max. -1.26 2.76 -3.10 2.24 -0.19 -1.21 0.84

Process -1.29 2.07 -1.41 1.03 -0.21 -1.24 1.00

Note: Integrating process gains scaled such that the lowest gain from the actual process is 1.

3.4 Conclusions

The digital twin paradigm, applied to bitumen extraction from oil sands, has illu-

minated advancements in understanding and orchestrating the dynamic complexities

of large-scale operations. This research shows a four-layer PSV model aptly mirrors

the intrinsic behaviors of real processes. By analyzing the influences of inputs and

disturbances on outputs, our methodology provides profound insights into separation

mechanisms and the dynamics of key variables - interface and tailings density.

A significant challenge is the intricate nature of the plant-wide model containing

a multitude of parameters. To effectively mimic the real process, these parameters

demanded adjustments. Leveraging the Tree Parzen Estimator alongside sensitivity

analysis proved instrumental in fine-tuning these parameters.
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This work introduces a digital twin of the bitumen extraction process, offering

significant contributions to the oil sands industry. This technology fosters innovative

research into process dynamics while aiding operator training and controller designs or

tuning. This tool can predict process behavior, serving as a representative of typical

industrial processes laden with disturbances, non-linearities, multi-modal behavior,

and multi-input multi-output scenarios. It provides a virtual testing ground for de-

signing and evaluating operational strategies, even for extreme scenarios, thereby

minimizing risk and cost before actual fine tuning and implementation. Such ad-

vancements champion the digitalization wave in the oil and gas sector.

Future directions involve investigating the effects of interface and density dynamics

on bitumen recovery, to determine optimal setpoints. Moreover, by modeling bitumen

aeration and integrating aspects like ore psychochemistry and varying operational

conditions, we can achieve a more holistic representation of feed characteristics. We

believe this will further solidify the role of digital twins in innovating the operational

strategies of bitumen extraction.
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Chapter 4

Safe Autonomous Control of
Primary Separation Vessel using
Reinforcement Learning

This work was presented at the 2023 INFORMS Annual Meeting and in preparation to submit
as: J.F. Soesanto, B. Maciszewski, L. Mirmontazeri, S. Romero, M. Michonski, A. Milne, and B.
Huang “Safe Autonomous Control of Primary Separation Vessel using Reinforcement Learning”
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4.1 Introduction

Reinforcement learning-based controller (RLC) has demonstrated significant success

in control applications, spanning autonomous vehicle control [12–17, 21, 102], Heat-

ing, Ventilation, and Air Conditioning (HVAC) systems [103, 104], industrial process

control [22, 84, 105–107], and other control problems [108–111]. The explorative and

adaptive power of reinforcement learning (RL) aligns with the Industry 4.0 trans-

formation toward autonomous operations, driven by big data and machine learning.

Smart automation is achieved as the agent continues to learn with more data gathered

over time.

This research aims to bridge the theoretical advancements in RL with autonomous

control applications across various industries, using the bitumen extraction process

from the oil sands sector as a primary case study. This digital twin-assisted study

ensures the realistic dynamics of industrial-scale processes while representing typical

challenges in industrial process control such as Multi-Input Multi-Output (MIMO)

systems, multi-mode operations, high-dimensional state-action spaces, nonlinear pro-

cesses, safety constraints, and random disturbances. Additionally, the controller is

benchmarked against MPC to establish a standard for comparison and performance

evaluation. Furthermore, to facilitate future integration with Real-Time Optimiza-

tion (RTO), the problem is simulated with random setpoint changes within its normal

range to anticipate dynamic setpoint optimization from the RTO layer.

However, the reliability of AI-based technology remains a practical challenge. Ma-

chine learning requires a substantial amount of data. RL samples data through inter-

action with the environment. During the early stages of training, a “naive” RL agent

typically explores its environment randomly. In control settings, this unpredictable

behavior can cause disruptions or even shutdowns in the process.

One approach is integrating RL with conventional controllers to preserve the safety

integrity of systems while enhancing controller performance. References [112–114] use
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RL for dynamic parameters tuning of PID and MPC. While this method improves

the controller performance, it limits the exploratory and adaptive strengths inherent

to RL. Instead, there is a growing focus on addressing the safety and feasibility of

direct RLC deployments in real-world systems.

In safe reinforcement learning, two predominant directions are: (1) reward shaping

for risk aversion and (2) modifying the exploration process. CMDPs have been in-

strumental in shaping Constrained RL (CRL) by incorporating safety constraints into

decision-making [115, 116]. However, relying on a reward-based mechanism involves

a trade-off between safety and performance. Constrained Policy Optimization (CPO)

offers theoretical assurances for near constraint satisfaction [117]. While they guaran-

tee safety constraints during testing [118, 119], ensuring safety constraints during the

learning phase remains a challenge. Reference [120] proposes a safe learning approach

given a safety model availability.

We study a safe and feasible deployment of RLC using transfer learning and con-

strained exploration approaches. Transfer learning is a strategy to equip agents with

expert knowledge prior to real-world deployment [121]. To this end, we employ two

different approaches: imitation learning and offline training. Imitation learning trains

RL agents to mimic expert behavior, thereby accelerating the learning process during

real-world deployment. Imitation learning technique is particularly useful in tasks

like starting and shutdown processes, whose objectives are not easily described, but

can be demonstrated by an operator or a working control system.

We explore two imitation learning approaches: Behavioral Cloning (BC) and Gen-

erative Adversarial Imitation Learning (GAIL). This study uses closed-loop process

data with MPC feedback. MPC serves as the expert controller, which the agent aims

to emulate. BC uses a supervised learning approach, training the agent to match

its actions to those of the expert based on given state inputs. While BC benefits

from learning purely from data, it may encounter issues due to distributional shifts

[122, 123]. In contrast, GAIL employs the principles of unsupervised Generative
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Adversarial Networks (GANs) to train the agent to produce trajectories that are in-

distinguishable from the expert trajectories. GAIL is robust against covariate shifts

[53, 124].

Offline training in RL is critical due to the high costs and safety concerns during

online (stochastic) exploration [125–128]. We use an LSTM-based simulator designed

to capture the time-series dynamics of the process. RL agents are pretrained within

this simulator before undergoing online training in the digital twin. This simulation-

to-reality (Sim2Real) approach, despite potential dynamic mismatches with the actual

environment, enables the training of agents with the real rewards, penalties, and

constraints of the actual environment. As a result, it is expected to cultivate a risk-

averse agent.

While transfer learning avoids erratic behavior, we recognize the imperative need

for a safety net to uphold safety integrity. We propose the implementation of MPC-

safeguarded exploration to fortify the safety of RL deployment. This method confines

the exploration space within predefined safety alarms, assuming optimal states lie

within the normal operational range. It balances the need for exploration with process

safety, allowing for efficient learning while mitigating potential hazards.

The key contributions of this study are as follows:

• Digital Twin-Assisted Training: A digital twin accelerates RLC research

and verification prior to real-world deployment. It captures the realistic dynam-

ics of industrial-scale processes and verifies the potential of RLC against com-

mon challenges in industrial process control, such as Multi-Input Multi-Output

(MIMO) systems, multi-mode operations, high-dimensional state-action spaces,

nonlinear processes, safety constraints, and random disturbances.

• Transfer Learning in RL: Transfer learning, including imitation learning and

Sim2Real, minimizes potential hazards in the training phase. Imitation learning

is particularly potential as pretraining for process start-ups and shutdowns.
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• MPC Safeguarded Exploration: The safety integrity of industrial processes

is preserved through the proposed MPC safeguarded exploration. This strategy

mitigates potential hazards by restricting the exploration space within safe op-

erational boundaries. Versatile and integrable with various safe RL approaches,

this method enhances overall process safety.

This study investigates the potential of RLC for industrial deployment, capitalizing

on their superior performance and continual learning abilities suitable for autonomous

control applications. Transfer learning and safeguarded exploration are explored to

further facilitate the practical and safe implementation of RLC in real-world settings.

4.2 Problem Formulation

Primary Separation Vessel (PSV) extracts over 90% of bitumen from oil sands by

separating it from the sand particles. Bitumen particles float to the froth layer while

sand particles sediment to the tailing layer. Froth withdrawal extracts bitumen and

tailing withdrawal removes sand particles. In the middlings layer, part of the bitumen

lingers and withdraws to the flotation (FT) cells to be separated from the remaining

sand particles. Flotation froth rich in bitumen is recycled back into the PSV. Sands

are removed from flotation tailings. Particle settling is a damped process with no

distinct boundaries, allowing sand and bitumen particles to mix. Gravity separation

vessels should be maintained in quiescent conditions to maintain laminar particle

sedimentation through the viscous medium. Abrupt changes in PSV operation create

a chaotic flow that disturbs particle settling. This condition can be observed when

there is no clear separation between the froth and middlings interface as they are not

strictly immiscible - the medium may mix together resulting in indistinct boundaries

between layers. This lack is an indicator of poor separation performance.

Controlling the interface level between froth and middling layers is critical for

optimal PSV operation. An excessively high interface facilitates the entrainment of
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fines from the middlings into the froth overflow, reducing bitumen quality. Conversely,

an overly low interface carries bitumen-rich froth to the FT cell. While the FT cell

aerates and refluxes bitumen back to the PSV, its capacity is limited. Excessive

bitumen flow pushes the FT cell to its limit, resulting in unaerated bitumen losses

through flotation tailings. We constrain the interface level within a normal operating

range. The optimal setpoint within this range dynamically adjusts based on the

current operating mode.

Tailings density is another controlled variable (CV). Higher densities increase the

density gradient between particles and medium, which favors particle separation.

However, higher density indicates more particles and solids present, resulting in

greater particle hindrance that impedes settling. Optimal density setpoint balances

the effects of particle hindrance and density driving force.

The tailings density is constrained as well. Excessively high densities increase

pipeline pressure, potentially activating the relief valves. Activation of relief valves

requires recalibration and also abruptly disturbs vessel hydrodynamics. In the worst

case, high densities increase the risk of pipeline sedimentation and clogging. There-

fore, upper limits are imposed on tailings density constraints.

Interface level and tailing density are regulated by Qm, Qdil, and Qt, each affecting

them in a different direction and magnitude (table 3.7). This poses a Multi-Input

Multi-Output (MIMO) control problem. Moreover, PSV is the first equipment in the

extraction process, absorbing uncertainties from upstream operations. The innate

variability of the ore grade and feed flow rate (dependent on production scheduling)

are major disturbances driving changes in the controlled variables, necessitating con-

trollers robust to these fluctuations. Table 3.7 shows how various operating modes,

which are characterized by these disturbances, affect the dynamics of each controlled

and manipulated variable. This requires a multimodal control strategy on top of the

MIMO nature. The combination of MIMO and multimodal dynamics poses limita-

tions on conventional PID control, often needing manual operation to avoid upsets
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and requiring frequent operator interventions to maintain performance. As a result,

current operations mostly maintain fixed setpoints regardless of the scenario. How-

ever, optimal setpoints differ across modes. Advanced control techniques robust to

disturbances are thus needed to: (1) stabilize the system under different modes and

disturbances and (2) accommodate setpoint optimization in both controlled variables

to maximize performance.

The complex MIMO and multimodal dynamics call for advanced process control

solutions that can handle changing operating modes while optimizing PSV perfor-

mance through setpoint adjustments. Recognizing these challenges, we turn to the

capabilities of the digital twin to investigate the potential of MPC and RL as part of

the autonomous control of the PSV. Figure 4.1 illustrates a control problem of the

PSV unit.

In contrast, FT cells, which operate with a mostly fixed air injection, allow for

satisfactory control under the PID framework, primarily through manipulating the

flotation tailings. Consequently, FT cells control is not integrated into the current

autonomous framework. An operational assumption we adopt is that any increment

in middlings withdrawal is counterbalanced by a similar increase in flotation tailings,

maintaining a steady froth recycle rate.
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Figure 4.1: PSV control framework
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4.3 Model Predictive Control Design

We identify a linear Time-Invariant (LTI) discrete state-space model as a proxy model

within MPC. Akaike Information Criterion (AIC) determine model order by striking

a balance between complexity and accuracy. MPC uses the model prediction to com-

pute the optimal control actions. Its performance highly depends on the model accu-

racy. However, plant-model mismatch always happens in dynamics modeling. Process

dynamics might change due to aging, changing operating modes, disturbances, and

non-stationary processes. Our objective is to engineer an offset-free controller that

maintains robust performance despite disturbances encountered in multimode opera-

tion. We integrate a disturbance vector d ∈ Rnd into the model to capture feed flow

rate effects on the system dynamics. Including online feed flow rate measurement

anticipates and counteracts real-time feed flow disruption. Ore grade variation is an-

other environmental disturbance that cannot be perturbed manually during system

identification experiments. Ore grade is sampled every hour and is not suitable for

the MPC as it has a much lower sampling time rate than MPC. Instead, three MPCs

are developed using the same objectives and constraints but differ in their underlying

models. MPC-1, MPC-2, and MPC-3 use the model identified from low, average, and

high ore grade operations, respectively. Automated model scheduling is the objective

of our third work (chapter 5). Bias correction estimates the prediction error to correct

the model output. These strategies reduce the plant-model mismatch resulting from

disturbances and changes in operating modes.

The proxy model is formulated as follows:

⎡⎣xt+1

dt+1

⎤⎦ =

⎡⎣A Bd

0 Id

⎤⎦⎡⎣xt

dt

⎤⎦ +

⎡⎣B
0

⎤⎦ut, (4.1)

yt̂ =
[︂
C Cd

]︂⎡⎣xt

dt

⎤⎦ ,
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where Id is the identity matrix with dimension of 1x1. The augmented matrices Bd

and Cd are identified based on the response to disturbances.

Bias correction adjusts the model prediction with the estimated prediction bias:

ŷcorrectedt+1 = ŷt+1 + bt, (4.2)

where ŷcorrectedt represents the bias-corrected prediction and ŷt is the model prediction.

MPC employs this adjusted prediction to compute optimal trajectories ŷcorrected.

The bias term bt is calculated using an exponential filter, which smoothens the

bias update by accounting for the long-term bias trends from previous steps. The

updating rule for the bias is given by:

bt = w1 · bt−1 + w2 · (yt − ŷt), (4.3)

where w1 and w2 are the weighting coefficients that balance the influence of the

previous bias and the current prediction error, respectively. It stabilizes the bias

estimation by mitigating short-term variations. The corrected proxy model fitting

performance without disturbance is shown in fig. 4.2.
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comparison

MPC aims to track the setpoint ysp with minimum control effort ∆u while satisfying

process constraints. Manipulated variables u are constrained within their upper and

lower limits. ∆u constraint avoids abrupt change in the vessel and overshoots. Mass
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balance constraints maintain positive froth overflow. MPC optimization problem is

formulated in eq. (4.4).

min
ut,...,ut+P

P∑︂
k=1

∥ŷcorrectedt+k − yt+k,sp∥2Q + ∥ut+k − ut+k−1∥2R

s.t. xt+1 = Axt + Bddt + But,

dt+1 = dt,

ŷcorrectedt = Cxt + Cddt + bt−1,

umin ≤ u ≤ umax,

Qfd + Qdil −Qt −Qft > 0,

ut+k+1 − ut+k − h < 0,

(4.4)

where yt+j,sp and yt+j represent the CV set-point and the predicted output at future

time steps. The prediction horizon is denoted by P . Q and R are the weighting

matrices that balance the cost of tracking error and controller effort. h represents the

limit of ∆u.

4.4 Reinforcement Learning-Based Control Design

A control problem can be formulated as an MDP that is described by a tuple of state

S, action A, reward R, and transition model. MDP is one special task in reinforcement

learning. RL agent (controller) learns the optimal control policy through interactions

with the environment (process). States provide the contextual information for making

control decisions. Rewarding mechanisms, including penalties, shape the behavior of

the learned policy. The action tuple is the changes in manipulated variables:

A = [∆Qdil,∆Qm,∆Qt]

Each action is clipped between -1 to 1, and subsequently scaled to lie within the upper

and lower limits of the change in manipulated variables ∆u:

∆u =
(a + 1)(∆umax −∆umin)

2
+ ∆umin
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Final controller output u is also clipped by the umax and umin, penalties applied every

time an action exceeds this limit to encourage constraint satisfaction.

States are limited to measurable variables in the real process. These states include

controlled variables: the interface level and tailing density, along with their respective

setpoints and deviations. To capture the current trend of these variables, we also

incorporate their ∆y to inform their change direction and magnitude. ∆y serves

as auxiliary inputs, summarizing the historical trend of controlled variables [129].

Ore grade and plant capacity determine the operating modes. While plant capacity

is measurable, the absence of online ore grade measurement limits the adaptation to

various grades. We use the density profile, which is related to the particle composition,

to infer the current ore grade. Thus, states include the middling density, froth density,

and flow rates to indicate the current operating mode and overall process dynamics:

S = [I, Isp,∆I, ρt, ρt,sp,∆ρt, ρf , ρm, Qfd, Qdil, Qm, Qt]

The reward consists of controller performance measures and penalties for constraint

violations. The controller performance Rctrl includes tracking errors and controller

efforts, similar to the MPC cost function. Penalties act as soft constraints.

R = Rctrl + pu + pcv

where pu and pcv denote the manipulated variable and output constraint penalties,

respectively. In the MPC safeguarding framework additional penalties apply for every

MPC intervention (section 4.8).

Proximal Policy Optimization (PPO) algorithm ensures controller stability during

fine-tuning by preventing excessively large updates. The method maintains consis-

tent performance, reducing the risk of sudden or unpredictable behavioral shifts in

the controller. We train and validate RLC in a high-fidelity digital twin simulator

that captures the real process dynamics and replicates its control challenges. The

simulator introduces random setpoint changes every 1 hour on both interface level
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and density variables. Continuous Gaussian noise on the feed flow rate is also im-

posed. Ore grade and plant capacity disturbance are introduced every hour. To ensure

the generalizability and reliability of RLC in real-world scenarios, characterized by

unpredictable disturbances, we incorporate randomized setpoint changes and distur-

bances throughout the training and testing phases. RLC is exposed to a wide array

of disturbances, closely simulating the uncertainties encountered in actual processes.

4.4.1 Imitation Learning from MPC Demonstrations

Imitation learning focuses on learning tasks by mimicking expert behavior. The

learner receives only expert trajectories, cannot request additional data during train-

ing, and does not receive any form of reinforcement (reward) signal [130]. Behavioral

Cloning (BC) pretrains the policy as a regression task, mapping expert states to their

corresponding actions. On the other hand, Generative Adversarial Imitation Learn-

ing (GAIL) uses unsupervised learning within the Generative Adversarial Networks

(GANs) framework. Agent (acting as a generator) creates trajectories that a discrim-

inator attempts to differentiate from expert trajectories. The generator is trained to

deceive the discriminator by producing trajectories that are indistinguishable from

those of the expert. BC has the advantage of learning without any direct interac-

tion with the environment, making it efficient for situations where such interaction

is impractical or costly. GAIL requires sampling trajectories from the environment.

To circumvent the need for real-time environment interaction, Offline GAIL can be

employed, utilizing dynamic approximators to simulate trajectory sampling. This

approach enables learning without direct environmental interaction.

A critical advantage of GAIL over BC is its robustness to distributional shifts.

GAIL is designed to learn complete trajectories that closely emulate the expert be-

havior, rather than just replicating specific state-action pairs, as is the case with BC.

Thus, GAIL generalizes more effectively across environments with varying distribu-

tions. In contrast, BC can struggle in such scenarios, often failing to generalize well
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to environments with different distributions from those found in the training data.

Imitation learning prior to deployment avoids unsafe trials and errors in the real

process. We use MPC as the controller expert. Dynamic simulation in the digital

twin generates a dataset that mirrors one year of operational data. The process

is controlled by MPC and subject to random disturbances and setpoint variations.

Closed-loop data encapsulates states and MPC actions, serving as expert demonstra-

tions. Following the pretraining, we evaluate the RLC performance in the digital

twin environment. We continue its training therein to assess its adaptive capabilities

during the online tuning.

4.4.2 Simulation-to-Real Pretraining

In addition to expert demonstrations, closed-loop data also captures the dynamics

of the process. We use this data to identify a surrogate model with a closed-loop

identification approach. We integrate long short-term memory (LSTM) networks into

simulators, capturing time-series dependencies in dynamics (fig. 4.3). We investigate

the agent ability to generalize its policy under simulator-environment mismatches.

Learning from the simulator offers additional benefits compared to solely on expert

demonstrations, as the agent learns the actual process constraints and rewarding

mechanisms despite mismatches in model dynamics.
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4.5 Model Predictive Control

We test three MPCs under three different ore grade operations, respectively. They

are robust to flow disturbances, attributed to the incorporation of feed flow rate

disturbance into the MPC model (table 4.1). Bias correction further eliminates offset

in both interface level and tailing density control. Figure 4.5g, fig. 4.5h, and fig. 4.5i

show the models prediction error over time. The interface prediction bias depends

on the ore grade; models identified using data from a specific grade have the lowest

prediction bias when operating under that grade. Conversely, the prediction bias

of the tailing density is not only influenced by ore grade but also by its current

value. Tailing densities are typically lower under low-grade operations because a high

content of fines lingers in the middlings layer and settles more slowly into the tailings

layer. Here, the tailing density setpoint is progressively decreased to the value of

the low-grade operation. Therefore, even under high-grade scenarios, the low-grade

model exhibits lower density prediction bias than the high-grade model. Control error

measures like Integral Squared Error (ISE) and Integral Time-weighted Squared Error

(ITSE) reflect a similar trend (table 4.1). The interface tracking error is lower when

the appropriate model is selected based on the ore grade. On the other hand, tailing

density control depends on both grade and its current value. The MPC with low

and average-grade models exhibits the same tracking errors as the MPC with the

high-grade model, even during operations with high ore grades.

Overall, despite plant-model mismatches, the MPCs effectively eliminate steady-

state offset (Figure 4.5). However, MPC-1 and MPC-2 cause fluctuation under high-

grade operation. Interestingly, no fluctuations are observed when using MPC-3 in

either low or average-grade operations. The variations of the process dynamics under

different grades explain this fluctuation (table 3.7). Interface level has slower dy-

namics under low and average grade operation. Models within MPC-1 and MPC-2

capture slower interface dynamics. Thus, MPC-1 and MPC-2 models underestimate
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the dynamics under high-grade operations, calculating a more aggressive control ac-

tion. Table 4.1 shows the controller effort of MPC-3 is always lower than MPC-1 and

MPC-2 in various scenarios.

Additionally, bias correction amplifies fluctuations in operating mode with faster

dynamics. The current bias is estimated from the previous bias. In environments

where dynamics change rapidly, the bias also shifts quickly. Trajectory predictions

are continually adjusted with different biases over time. Consequently, the controller,

which relies on these predictions, continuously adjusts its flow rate in response to the

shifting bias. This frequent adaptation to the latest bias estimations can increase

fluctuations, leading to a less stable control. Thus combination of bias correction and

MPC model scheduling will eliminate both controller offset and fluctuation.
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Figure 4.5: MPC performance
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Table 4.1: MPCs performance under different operation modes

Ore

Grade
MPC

ISE

I 104

ITSE

I 104

ISE

ρt 10
6

ITSE

ρt 10
6

IAU

Qm

IAU

$Qdil

IAU

Qt

1 5.3 770.0 1.7 424.5 5.1 6.9 5.0

Low 2 5.3 827.7 1.7 415.8 4.4 6.3 4.1

3 6.3 1753.4 2.0 808.6 3.7 4.6 3.4

1 4.1 550.4 1.2 319.5 3.1 6.5 4.3

Average 2 3.8 388.7 1.2 315.7 2.9 6.2 3.6

3 4.0 603.4 1.4 567.5 3.0 3.9 3.0

1 8.3 6165.9 2.4 738.0 8.1 24.8 12.4

High 2 3.7 760.2 2.4 684.1 3.3 10.4 5.7

3 3.1 324.5 2.4 789.8 2.9 4.8 3.7
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4.6 Reinforcement Learning-Based Controller Pre-

training

We evaluate the performance of RLC right after pretraining with 3 different pretrain-

ing methods: BC, GAIL, and Sim2Real. BC pretrains the agent to imitate expert

actions given the same states, essentially turning the task into a state-to-action re-

gression. Pretraining solely uses historical data without any interaction with the

environment. BC approach failed to pretrain the agent under random setpoint and

disturbance changes. The BC pretrained agent showed poor control performance

even without disturbances. We suspect it is because the control problem is overly

complex. Reference [84] uses a similar approach for single input and single output

(SISO) control of PSV. In the study on chemical reactor control using RLC [105],

a proxy model along with the BC approach was employed during offline training.

However, they do not specify whether the setpoints used during training and test-

ing are identical. We try to simplify the control problem by extending the setpoint

change interval to 4 hours and using the sequence of setpoints in the pretrained data

for online testing. Figure 4.6 suggests the pretrained agent performs satisfactorily

for interface level control and is still acceptable for tailing density control as it is

controlled within the constraints. This shows that BC is vulnerable to distributional

shift as it only performs well under conditions that are similar to the expert dataset.

BC lacks consideration for the sequential nature of decision-making, and suffers from

compounding errors in dynamic environments [131, 132]. In dynamic environments,

a small error can lead the agent to a state that is significantly different from any

state seen during training [133]. Since BC does not learn how to recover from these

errors, the agent can quickly drift into unfamiliar state spaces, leading to a cascade of

incorrect actions. BC performs poorly in states not well-represented in the training

data.
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After BC pretraining, we train the agent in the real environment using the same

set of arbitrary setpoints and disturbances. Figure 4.7 shows the agent initially starts

with a higher reward value but experiences a drop over time. More critically, it

failed to recover from this decline to the convergence level observed in direct agent

training. This failure can be attributed to the loss of plasticity of Deep Neural

Networks (DNNs). Reference [134] demonstrates that deep RL (DRL) agents lose

learning ability when they cycle through a series of different tasks. Neural networks

tend to lose their ability to learn when they encounter shifts in distributions [135]. In

BC pretraining, agents learn to mimic expert actions. This task differs from online

training, where the agent aims to maximize the reward function.
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BC pretraining might not be effective in MIMO control problems. Here, controllers

regulate setpoint tracking by manipulating multiple variables. The solutions or poli-

cies of each controller are not unique; they can vary significantly. Given that we have

3 manipulated variables and 2 controlled variables, the controller has an additional

degree of freedom to manipulate the environment. Thus, the RL agent is unlikely

to converge to the MPC behavior, which represents just one specific control policy.

RL policies are shaped by reward mechanisms and other settings such as state def-

initions and hyperparameters. Figure 4.8 demonstrates that the MPC and directly

trained RLC actions are very different. Therefore, while the expert initially learns

from the MPC, it must relearn a new policy. Unfortunately, the loss of plasticity

impairs the agent’s learning ability. This lack of transferability suggests that BC pre-

training might not work for MIMO control tasks. This challenge is exacerbated by

the environment with random disturbances such as chemical process [136–138]. BC

learning is effective if the expert policy closely resembles the policy that the agent is

expected to converge to.
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GAIL-pretrained agent demonstrates satisfactory control even under random set-

point changes and disturbances (fig. 4.9). It regulates the controlled variables to their

setpoints and maintains steady states. GAIL focuses on learning entire trajectories

through an adversarial process, rather than focusing solely on isolated state-action

pairs. This method effectively captures the temporal aspects of expert behavior,

crucial in dynamic environments which is driven by the sequence of actions. GAIL

counters covariate shifts by training the policy against a discriminator, continuously

refining the policy to align with expert trajectories and actions. It pretrains the agent

to manage changing environment dynamics and uncertainties. Offline GAIL will fur-

ther exclude the need for online environment interaction, making this method more

practical for industrial settings [139, 140].

However, the GAIL pretrained agent reacts slowly to ore grade disturbances, lead-

ing to spikes in the trajectories. This issue arises from the discriminator’s difficulty

in distinguishing whether sudden jumps result from a setpoint change or an ore grade

disturbance. Setpoint changes prompt rapid trajectory adjustments by the MPC to

achieve tracking objectives. Consequently, a trajectory spike due to an ore grade

change appears normal to the discriminator, as it resembles the expert response to

setpoint changes. Despite this, the agent still manages to regulate the controlled vari-

able back to the setpoint. This performance is similar to expert trajectories, which

are mostly offset-free.

Agents pretrained in the surrogate model simulator demonstrate satisfactory con-

trol performance. It handles changes in grade without overshoot. Unlike GAIL

pretraining which imitates expert trajectories, the Sim2Real pretraining objective

resembles training in the real environment. The simulator predicts the effects of

grade disturbances. The agent learns to minimize tracking errors caused by the grade

disturbances. Moreover, the simulator applies identical constraint and penalty mech-

anisms as the real environment. The penalty deters spikes in trajectories as it could

lead to a process trip penalty.

105



Mismatches between the simulator and the real environment cause controller errors.

The policy is a function that maps states to the actions. Bias in state predictions shifts

the policy. Thus, simulator fidelity affects the pretraining performance. Despite this,

the overall performance of Sim2Real pretrained agents remains robust, even with

random setpoint, ore grade changes, and without direct interaction with the real

environment.

In summary, BC fails to pretrain the agent under distribution shift in setpoint

and ore grade. It works when the training data and testing environment have the

same setting and distribution. However, It still fails to adapt to the real environment

due to the loss of plasticity. In contrast, GAIL is robust to the distributional shift

and able to adapt to the real environment. The GAIL pretrained agent imitates ex-

pert behavior without reward feedback from the environment. It is also promising

to pretrain tasks such as start-up and shutdown, where defining the objective is not

straightforward. However, GAIL agents show less responsiveness to infrequent, sud-

den grade changes because the adversarial training may not differentiate these changes

effectively, given their similarity to the steady-state, expert trajectories. Sim2Real

pretraining reproduces the reward and penalty mechanisms of the actual process. It

offers a more adaptive approach, capable of handling disturbances and minimizing

error across various operating modes.
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Figure 4.9: RLC performance right after pretraining

4.7 Post Online Training Performance

Adaptive and continual learning abilities are the crucial element in autonomous con-

trol. We evaluate RLC performance after online training. The pretrained agents are

supposed to adapt and continue their learning in the digital twin environment. To

facilitate exploration, we keep stochastic actions during online training. Figure 4.10

shows the pretrained agent avoids overly negative rewards, unlike an agent trained

from scratch via RL. Without pretraining, vanilla agents tend to behave erratically at
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first, taking a risky trial-and-error interaction with the environment. Highly negative

rewards indicate constraint violations that trigger a process trip. Pretraining equips

agents with fundamental behavior aligned with the control objectives and constraint

satisfaction, reducing unsafe actions during online training. GAIL and Sim2Real

pretraining reduces trip count during online training by factors of, 8 and 27 times,

respectively, compared to the vanilla agent (table 4.3). Moreover, fig. 4.10 suggests

the pretrained agent reward continues to improve during the online training. This

highlights RL ability to refine its policy through real-world interactions in dynamic

and unpredictable settings.
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Figure 4.10: Learning curve

Figure 4.11 shows the performance of RLC after online training. The RLC is offset-

free, stable, and robust to the random setpoint changes and the disturbances in ore

grade and plant capacity. This underscores the potential of RLC for complex control

tasks. It is ready to accommodate setpoint changes from real-time optimization and

production capacity planning from the upstream mining. A key strength of RLC over

MPC is the ability to operate under a unified policy that adapts to different operat-

ing modes. Section 4.5 shows that MPC requires scheduling under varying operating
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modes, whereas RLC can integrate multimode control into a single policy. This is

advantageous in dynamic environments with rapid changes. Another challenge that

RLC tackles is the partial observability in ore grade information. To overcome this,

the agent receives density parameters to infer the grade. This requires interpreting

and processing relevant information for decision-making. The density profile across

PSV depends not only on grade but also on flow rates. The agent must learn rela-

tionships between grade, flow rate, and densities altogether in inferring the current

mode and dynamics. RL ability to explore is a key to learning complex mechanisms

and discovering optimal policy. Given sufficient contexts, RL works under multimode

operation.

Table 4.2 summarizes the controller performance in terms of its tracking perfor-

mance and controller effort. Sim2Real pretrained agent has lower overall tracking

error compared to GAIL. Furthermore, online training for GAIL and Sim2Real pre-

trained agent further reduces the ISE by 88% and 78%, respectively, showing RL

continual learning ability. While the control performance does not yet outperform

MPC, we observe lower controller effort with RL controllers. RLC controller action is

smoother due to the far-sighted optimization objective instead of immediate reward

as observed in MPC (fig. 4.12). This benefits the lifespan of control elements and

maintains quiescent conditions in the PSV. Moreover, the model-free RL avoids the

potential fluctuation due to the plant-model mismatches in MPC (fig. 4.5). It also

adapts to new or non-stationary environments through continual learning. Addition-

ally, RLC achieves computational speeds up to 10 times faster than MPC, which is

a significant reduction in power consumption. This demonstrates RL potential in

industrial control, which is characterized by multimodal, multi-input multi-output,

complex dynamics, high-dimensional states, and elements of randomness and non-

stationarity.
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Figure 4.11: RLC performance after online learning: a. Direct training; b. GAIL
pretrained; c. Sim2Real Pretrained
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Table 4.2: Controller Performance Metrics

Controller
ISE

I 104

ITSE

I 104

ISE

ρt 10
6

ITSE

ρt 10
6

IAU

Qm

IAU

Qdil

IAU

Qt

CPU

Time

MPC 4 310 1 43 73 17 103 180

Direct 21 4546 7 778 40 5 47 18

GAIL Just After Pretraining 89 24549 19 4992 26 38 55 17

GAIL Post Online Learning 26 4923 7 943 32 13 49 19

Sim2Real Just After Pretraining 18 4839 9 1714 33 30 46 17

Sim2Real Post Online Learning 14 2741 6 676 25 25 49 18
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4.8 Safety and Feasibility Analysis of Reinforce-

ment Learning-Based Controller

While RLC facilitates autonomous control, their deployment warrants careful analysis

of their compliance with safety protocols in the process. Industrial processes typically

comply with the safety standards from the International Society of Automation (ISA)

and the International Electrotechnical Commission (IEC). Based on these standards,

a Safety Instrumented System (SIS) is added to the system with potential hazards

that can not be mitigated by the existing protection. Each hazard that is protected

by SIS must be assigned with the Safety Integrity Level (SIL). It measures the level

of risk reduction provided by a safety function or a target level of risk reduction by

SIS.

Figure 4.13 illustrates the layers of protection. The prevention layer begins with

safety design and extends through basic process control systems (BPCS), alarm sys-

tems, operator interventions, SIS, and relief devices. The mitigation layer comprises

passive protection and emergency response. Each layer acts as a barrier against ab-

normal events escalating. Any additional systems to the process require rigorous

validation to ensure they do not undermine or circumvent existing safety measures.

We evaluate the risk of implementing autonomous control in the BPCS layer using

a Reinforcement learning-based controller (RLC). The severity and frequency of po-

tential hazards must be evaluated, specifically those related to the instrumentation

failures. RLC serves as the supervisory control in the cascade control setup. Thus,

final control elements are regulated by conventional PID controllers. Control valves

are designed with a limit that is suitable for a range of operating modes. Moreover,

agent actions can be scaled or clipped within the constraint. Either way ensures

RLC satisfies input constraints. Output constraint poses another challenge that is

not specific to RLC. Even model-based controllers like MPC cannot guarantee out-

put constraint satisfaction in practice due to model mismatches and disturbances.
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Alarm management, operator intervention, and SIS serve as the protection layer to

the potential violation of output constraint. Operator intervention de-escalates the

abnormal operation that compromises the product quality or production disruption

due to process trips. SIS provides penultimate safeguards through alarms and auto-

mated emergency shutdowns that protect equipments and prevent accidents. Relief

devices provide the ultimate safeguard to release excess pressure or materials to a

safe location when critical thresholds are surpassed. Functioning as a critical fail-safe

mechanism, these devices are activated in situations where primary safety controls

are inadequate or malfunctioning, thus providing the last line of defense against po-

tentially disastrous events. The layered protection ensures RLC deployment preserves

the overall safety integrity of the process.

Plant Emergency Response

Loss of Containment

Relief Devices

SIS

Alarms & Operator 
Intervention

Process 
Control

Process

Mitigation

Prevention

Figure 4.13: Hierarchical layers of process safety

Process trips indicate potential accidents. We define trip conditions when the in-

terface level is too high, causing poor bitumen quality, or too low, risking excessive

bitumen loss from the flotation tailings. Tailing density trips pose even greater sever-

ity – overly high density could activate relief devices and cause pipeline clogging,

while too low density causes poor separation. In terms of the frequency of potential
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hazards, an agent with online training results in zero process trips during a one-month

equivalent operation testing in the digital twin. However, our research emphasizes

ensuring safe deployment not only during the testing phase but also during the train-

ing phase. Table 4.3 summarizes trip count during simulation equivalent to 5 years

of equivalent online training. Pretraining effectively reduces trip frequency during

online training. GAIL and Sim2Real pretraining reduce trip count by factors of, 8

and 27 times, respectively, compared to the direct agent training in the environment

(table 4.3). This is a significant reduction, as we maintain the default exploration

variance during online training section 4.4. Further tuning of the exploration vari-

ance can reduce the trip frequency. The acceptable value of trip count depends on

the criticality of the equipment. Frequent trips can severely disrupt processes, af-

fect production quality and targets, increase mechanical wear and tear, and add to

manpower costs for manual restarts. For equipment like Primary Separation Vessel

(PSV), which requires quiescent conditions, maintaining a minimum trip frequency is

essential. We propose an architecture that integrates an RLC with an MPC acting as

a safeguard, termed “MPC safeguarded exploration.” This framework leverages the

MPC strengths in constraint satisfaction and predictive planning to counterbalance

the exploratory risk of reinforcement learning.

In
te

rfa
ce

 Le
ve

l T
rip

 P
oi

nt

Tailing Density Trip Point

Tailing Density Alarm

In
te

rfa
ce

 Le
ve

l A
lar

m

MPC

Figure 4.14: MPC safeguarded exploration
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Alarms management is strategically used within this framework to delineate safe

operational and exploration boundaries (fig. 4.14). High-high (HH) and low-low (LL)

alarms indicate trip conditions to ensure operation safety. High (H) and low (L)

alarms signal deviations that, while not immediately critical, require corrective action.

During the design phase, high and low alarm thresholds are determined to allow

sufficient time for corrective responses prior to the activation of trip conditions. These

alarms delineate safe boundaries to constrain the exploration space for RL agents.

When exploratory actions move process conditions toward these alarm thresholds,

MPC promptly overrides agent control authority. It shifts the system back within

the normal operating ranges aligned with the current setpoint.

Figure 4.15 indicates that a constrained exploration space does not hinder the con-

vergence to the optimal policy. While the alarms limit the exploration space, the

RL agent can still freely explore within the safe boundaries. The policy optimality

remains unaffected provided the optimal trajectory resides within the normal opera-

tion. Extraneous exploration in unsafe states does not contribute to the convergence

to the optimal policy and introduces unnecessary risks. Agents converge at similar

rates to those without guided exploration, while attaining higher rewards. Negative

rewards at the beginning stem from the penalty on MPC intervention to discourage

over-reliance on MPC.

MPC safeguarding eliminates trips during online training of the Sim2Real pre-

trained agent (table 4.3). Direct RL training, when coupled with MPC safeguarding,

reduces the trip count by 236 times, suggesting the feasibility of direct RL deployment

on the non-critical units where trips have lower impact. This analysis suggests safe

real-world training is possible. In practice, further tuning on degree of exploration and

implementing more stringent pre-trip alarms can minimize trips. Algorithm selection

also helps, as PPO avoids large updates by capping policy updates each iteration.

To further mitigate risk, agent actions can be deterministic or reduced in stochas-

ticity. We maintain, however, default stochasticity to rigorously evaluate robustness
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of MPC safeguarding. The resulting “safeguarded exploration” embodies a prudent

approach for industrial RL by ensuring safety in both training and testing phases

without limiting the innovative potential of RLC. Various adjustments as described

could improve reliability and enable wider adoption.

Table 4.3: Trip count and MPC intervention count during online training

RL Agent
Stand Alone RL MPC Safeguarded RL

Trip Count Trip Count MPC Interventions Count

Direct 2591±129 11±2 12085±4254

GAIL Pretrained 318±210 2±2 3644±951

Sim2Real Pretrained 95±20 0±1 1556±180
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Figure 4.15: MPC safeguarded learning curve
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4.9 Conclusions

Model-free Reinforcement Learning is capable of handling complex, multi-input multi-

output, multimode, partially observable, random disturbance, and constrained industrial-

scale control tasks. The testing environment in the digital twin not only replicates

actual process dynamics but also provides more severe conditions, including random

setpoint changes in both interface and density, compared to typical operations with

mostly fixed setpoints. The RLC is ready to accommodate setpoint changes from

real-time optimization and production capacity adjustments from upstream schedul-

ing. Moreover, its adaptive and continual learning ability is suitable for industrial

processes with nonstationarity and time-varying uncertainties. Additionally, RLC

computation is up to 10 times faster than MPC, significantly reducing power con-

sumption.

Safe RL deployment is ensured through the layered protection inherent in the indus-

trial process. Transfer learning addresses the feasibility consideration of trip frequency

through imitation learning and the Sim2Real pretraining framework. Imitation learn-

ing has an additional benefit as it can learn without an objective function, making

it suitable for autonomous restart and shutdown sequences where objectives are not

easily described; demonstration data in this stage can be used to train the agent. Be-

havioral cloning has limitations in pretraining agents when there is a distributional

shift in the environment. However, Generative Adversarial Imitation Learning and

Sim2Real pretrained agents demonstrate satisfactory control performance immedi-

ately after pretraining and reduce trip conditions during online training by 8 and 27

times, respectively. The MPC safeguarded approach strategically leverages the con-

straint satisfaction, predictive planning of MPC, and alarm management to eliminate

trip frequency of Sim2Real pretrained agents within the simulation equivalent to 5

years of online training in the digital twin. It also makes direct agent training feasible.

In summary, this research explores the power of RL as autonomous in its ability
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to make complex decisions without the need for a model. While its control perfor-

mance may not yet outperform MPC, it addresses potential fluctuations encountered

in our study. It effectively learns to make complex decisions based on partially ob-

servable information, establishing a unified policy adaptable to varying conditions.

RL decisions are farsighted and able to maintain consistent and smooth controller

effort, benefiting instrument lifetime. RL demonstrates a continual learning ability, a

vital attribute for autonomous systems that require self-corrective capabilities. This

feature is especially promising for deploying agents trained in digital twins into real-

world processes, accommodating smooth transitions between environments. Transfer

learning strategies have shown significant potential in bridging the gap between simu-

lated training and actual industrial application. Moreover, a safeguarding mechanism

has proven effective in ensuring the safe and reliable deployment of RL in complex

industrial settings. Further tuning of exploration degree, more restrictive exploration

space, and algorithm selection potentially improve the feasibility of RLC deployment,

thus enabling the innovative solution in autonomous control.
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Chapter 5

Autonomous Real-Time
Optimization and Adaptive Fused
Multi-Model Predictive Contol
Using Explainable Reinforcement
Learning

This work was presented at the 2023 INFORMS Annual Meeting
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5.1 Introduction

The advent of Industry 4.0 has ushered in a transformative era, where advanced

digital technologies and Artificial Intelligence (AI) are reshaping system engineering

[141, 142]. A key focus in this revolution is autonomous Real-Time Optimization

(RTO) and Advanced Process Control (APC) [143–146]. Among various applica-

tions, a particularly pertinent application is the bitumen extraction from oil sands,

a sector crucial for its substantial energy resources [84, 85]. However, realizing RTO

in the bitumen extraction process presents several challenges, including random dis-

turbances, multi-mode operations, non-linearities, with high-dimensional state-action

spaces, and intricate separation mechanisms constraints.

A key contributor in addressing these challenges could be Reinforcement Learning

(RL), which has consistently outperformed expert performance in various settings.

This ranges from its groundbreaking success in AlphaGo [147], video gaming [7–10],

and extends to real-world applications in stratospheric balloon control [21] and nu-

clear fusion systems [22]. A recent breakthrough has showcased RL metacognitive

abilities [23]. By interacting with the world, RL algorithms discover things humans

could not even imagine at first [40–43]. RL ability to explore and discover solutions

to intricate, intractable problems solidifies its role in advancing industrial optimiza-

tion. Moreover, adaptive and self-learning capabilities allow RL to autonomously

optimize processes, adapting to changing environments and the inherent uncertainty

in industrial settings [148]. This adaptability makes RL a powerful tool for navigating

intricate and dynamic operational landscapes.

On the other hand, Model Predictive Control (MPC) is renowned for its robust-

ness, especially in maintaining safety constraints in industrial applications [149]. The

earlier chapter in autonomous model predictive control (MPC) effectively managed

process disturbances and multi-variable scenarios. However, plant-model mismatches

can lead to either sluggish or overly aggressive control actions by MPC, depending on
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whether the model overestimates or underestimates the process dynamics [150, 151].

Fine-tuning MPC parameters does not fully resolve this issue due to the inherent

model mismatches.

One solution is Multi-MPC scheduling, incorporating a switching algorithm that

combines the predictive models or MPCs output in response to changing operating

modes [152, 153]. Model fusion captures dynamics more accurately, but designing

reliable switching mechanisms remains challenging. [154] combines two linear MPC

outputs using a fixed linear weighting scheme. [152] utilizes a parametric switching

mechanism based on a first principle model. However, industrial operating modes

often transition continuously without clear boundaries. Linear weighting algorithms

may not effectively represent the intricate and continuous transitions of industrial

operating modes that rely on various state variables.

This study is the first to apply RL for Fused Multi-MPC (FM-MPC). Instead of

merging various MPC outputs, this approach combines different predictive models

while employing a single MPC for control, thereby circumventing the complexity of

multiple MPCs. Within this framework, three models corresponding to three repre-

sentative operational modes are identified. The RL agent then dynamically assigns

weights to these models in response to shifting operational modes. The advantages

of RL here are twofold: it leverages all relevant state variables for decision-making.

Second, the policy structure with deep neural networks is capable of handling the

intricacies involved in defining operating modes and the weighting mechanisms. This

ensures a continuous and precise depiction of the current operating mode. RL adapt-

ability is also crucial for capturing the complex dynamics of industrial systems through

continual learning in their interactions.

In addition to MPC scheduling, this work introduces a multitasking RL to de-

termine optimal setpoints simultaneously to enhance recovery rates. It synergisti-

cally combines RL exploratory strengths with the robust safety assurances of MPC.

The RL agent determines the optimum setpoint and models fusion for MPC, while
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MPC manipulates the process. This integration is designed to facilitate harmonious

decision-making, addressing the intertwined nature of RTO and control in industrial

operations. Direct RL deployment in the real process, without direct interference in

the actual environment, ensures safety and reliability.

The integration of Explainable RL (XRL) into our framework is a critical advance-

ment. To transition RL systems into real-world applications where operators cannot

inspect the policy representation, the systems must be capable of offering explana-

tions for their behaviors [155, 156]. XRL enhances transparency and understanding

in AI-driven decision-making processes, enabling validation and learning from ex-

plainable policies [157, 158]. T-distributed Stochastic Neighbour Embedding (t-SNE)

on neural activations visualizes state perception [159, 160]. Model-based approach

explains a series of actions using models such as MDPs and Bayesian Networks [161,

162]. The intentions behind decision-making policies can be explained through reward

decomposition [163], Local Interpretable Model-Agnostic Explanations (LIME) [164],

and multi-objective RL [165]. The value-based approach uses historical interaction to

extract interestingness elements through introspective analysis [166]. This study em-

ploys sensitivity analysis and physics information to derive first-order explanations of

the policy, focusing on the agent perception on the environment, the resultant action

(introspective), and the underlying intent of such behavior (influenced). The goal

is to enhance the acceptability of advanced AI solutions and the possibility of their

indirect deployment in industrial settings. The underlying concept is that RL can

uncover optimal solutions that might otherwise go unnoticed, bringing them to light

for human operators to realize and implement. This combination of advanced ma-

chine learning techniques and human oversight ensures a balance between innovation

and safety, enabling the responsible and effective use of RL in industrial settings.
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Key Contributions of This Research:

• Fused Multi-MPC: This work is the first to apply RL for an adaptive weight

fusion method in a fused Multi-Model Predictive Control (FM-MPC). The agent

seamlessly discerns the current operating mode given the states and fuses mul-

tiple models with different weights depending on the operating mode. This

approach enhances adaptability and precision in predicting dynamic environ-

ments.

• Multitask RL Framework: Innovating the integration of RTO and multi-

MPC scheduling within a multitask RL framework, merging the explorative

power of RL with the constraint satisfaction of existing MPC infrastructure.

• Explainable RL (XRL): Advancing XRL through the use of first principle

sensitivity analysis to ensure the transparency and reliability of policy imple-

mentation.

• Digital Twin-Assisted Training: Utilizing a digital twin environment to

accelerate RL training from years to days, thereby propelling research and real-

world application of RL. This digital twin maintains high fidelity, capturing the

dynamics, constraints, and uncertainties of real processes, offering a low-risk

and dependable testing ground for RL design.

Our methodology tackles the multifaceted challenges of real-time optimization

within the Industry 4.0 paradigm, blending the adaptive strengths of RL with the

robust safety measures of MPC to facilitate more intelligent and safe industrial au-

tomation. Moreover, XRL illuminates the decision-making process of RL agents, of-

fering validation for policy reasoning and bolstering the implementation of RL, both

directly and indirectly.

123



5.2 Optimization and Control problem

The Primary Separation Vessel (PSV) recovers 90% of the bitumen in the extraction

process. Operational decisions involve setpoint optimization and controlling Multi-

Input Multi-Output (MIMO) variables subject to various disturbances. The natural

variability in ore grade and feed flow rate changes due to production scheduling

determine the operating modes, each with unique dynamics. High ore grades and

plant capacity lead to faster system dynamics. The system faces constraints on both

its inputs and outputs, and its interconnectivity with upstream and downstream units

affects the overall dynamics and bitumen recovery rate. This complexity necessitates

a tractable solution for Real-Time Optimization (RTO) under uncertainty.

The controller’s limited adaptability to setpoint changes from RTO and multi-

mode operation expose a significant limitation. The current operational practice

is to maintain the system within a fixed target operation setpoint. This strategy

prioritizes the system stability over recovery rate performance. Chapter 4 explores

Reinforcement Learning (RL) capabilities and its feasibility in real-world applications.

However, MPC remains a widely accepted method for autonomous control, credited

for its mature technology and ability to satisfy constraints.

Section 4.5 highlights the fluctuation issue in MPC due to plant-model mismatch,

especially in changing operating modes. To address this challenge, different MPC

models are designed for each operation mode: low, average, and high ore grade sce-

narios (section 4.3). In a fused multi-MPC framework, RL is the model scheduling

algorithm, each model is assigned a weight, and the final prediction is calculated as

the weighted average of each model prediction. Thus, the RL agent not only decides

the optimum setpoints but also schedules MPC models by fusing the model predic-

tions with different weights. This dual-task framework is feasible for direct real-world

deployment by synergizing MPC robustness with RL explorative and complex opti-

mization capabilities.
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Figure 5.1: Hierarchy of decision-making in industrial processes

The RL agent optimizes the controlled variables (CVs) setpoints, such as interface

level and tailings density, to improve the recovery rate. MPC adjusts three manip-

ulated variables to regulate these controlled variables to their setpoints. Thus, the

controller has one more degree of freedom. The combination of manipulated variables

will affect particle settling dynamics and thus the recovery rate. Therefore, RL agents

should anticipate these MPC control policies, optimizing their strategies accordingly.

This research aims to automate the Real-Time Optimization (RTO) and advanced

control layer as depicted in fig. 5.1.

5.3 Reinforcement Learning-based Optimization and

Fused Multi-MPC Design

In this study, we implement Proximal Policy Optimization (PPO), Asynchronous

Actor-Critic (A2C), and Deep Deterministic Policy Gradient (DDPG) algorithms.

PPO ensures stable learning with incremental updates, A2C is known for its fast

convergence and exploratory strength, and DDPG offers a blend of stability and

continuous action space proficiency. We aim to select an algorithm that combines

stable learning with rapid convergence, minimizing sample inefficiency and ensuring
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optimal performance by achieving the highest possible reward during convergence.

The optimization and MPC model scheduling are formulated as MDP. The agent

action is to optimize the setpoint and assign weights to MPC models. In a multi-

model MPC framework employing RL for model scheduling, each model is assigned

a weight, and the final prediction is calculated as the weighted average of each model

prediction, denoted as:

A = [∆ISP ,∆ρt,SP , w1, w2, w3]

Action intervals are set to be one hour. The agent state includes process states such

as density and flow rate, which provide indirect information on the current operating

mode. Historical ore grade data are also included to account for the delay from mining

to the process. We use a similar approach that incorporates recent history into the

agent state to capture the delay effects from upstream mining to PSV [167]. RL

state includes setpoints to avoid the setpoint change beyond its normal range. States

also include current bitumen recovery rate and loss. All states must be measurable

through sensor or lab analysis in the actual process to ensure its applicability. The

states are summarized as follows:

S = [I, ISP , ρf , ρt, ρt,SP , ρm, Qfd, Qfd,target, Qff ,

αfd
b (t− 1), αfd

b1 (t− 1), αfd
s (t− 1), αfd

b (t), αfd
b1 (t),

αfd
s (t), αt

b, α
ft
b , RR]

The reward mechanism considers the recovery rate, control cost, and penalties

for constraint violations. Recovery rates are calculated using cumulative recovery

within a one-hour interval. Costs associated with setpoint changes serve to discour-

age frequent setpoint adjustment. Controller costs arise from the tracking error of

the controlled variables, changes in the control effort (∆u), and the number of over-

shoots. The reward function penalizes model prediction bias, scaled according to the

weights assigned to each model. The bias term in the reward function acts as a reward
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shaping, incentivizing the RL agent to prioritize models with lower prediction errors

by assigning them higher weights. The practice of reward shaping in RL adds infor-

mative signals to guide the learning process beyond the actual MDP problem [168].

This helps the agent learn model scheduling based not only on control performance

but also on bias, which is more direct. Penalties are imposed when the setpoint is

changed beyond a normal operating point. Another penalty is imposed when the

environment approaches the trip condition to ensure that the agent considers the

controller performance and limitations, i.e., avoiding the optimal point that might

not be smoothly achievable by the current controller.

During training, arbitrary disturbances are introduced every two hours, including

variations in grade and plant capacity. Continuous fluctuations are also introduced in

the feed flow rate to mimic consistent noise in the system. The agent performance is

evaluated in each individual operating mode to capture the behavior of its policy. It

is further evaluated under varying operating modes to validate its robustness against

random disturbances in ore grade and plant capacity.
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Figure 5.2: Optimization and MPC model scheduling framework
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5.4 Optimization and Control Performance Under

Individual Grade

Figure 5.3 illustrates the moving average rewards of A2C, PPO, and DDPG agents.The

A2C agent not only achieves a higher reward but also converges 2 and 3 times faster

than DDPG and PPO, respectively. The final reward value is also the highest. There-

fore, performance evaluation in subsequent sections focuses on the A2C agent. Al-

though A2C does not avoid large updates like PPO, employing A2C in the RTO

layer is safe as it only adjusts the setpoint and assigns different weights to the MPC

model. Setpoints are clipped within the normal range. The MPC model will still

ensure process constraints are met regardless of the model used, with the worst case

being suboptimal control performance.
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Figure 5.3: Learning curve

Figure 5.4 presents the trajectories of controlled variables, the recovery rate, and

the agent decisions under low-grade operation. The existing operational strategy

with fixed interface and tailings density setpoints, serves as a benchmark for compar-

ison. This benchmark is managed by MPC with the high-grade model. As shown in

Section 4.5, a high-grade model delivers the best overall performance across various
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operating modes, if only one MPC is to be used. Although the training incorporates

random disturbances in feed flow rate and ore grade, the evaluation of the agent

performance is conducted under each specific ore grade operating mode to capture

locally generalizable patterns.

To maintain the confidentiality of the benchmark operation, the y-axis is scaled.

The recovery rate objective and controller scheduling performance objective are dis-

cussed separately. The RTO agent increases both the interface level setpoint and

tailings density from their steady-state values, resulting in a higher recovery rate

compared to the benchmark operation. In terms of MPC model scheduling, the RTO

agent fully weights the average model, which is optimal based on its satisfactory

control performance. Upon closer examination, the average-grade model shows sig-

nificantly less bias in predicting tailings density than the low-grade model. Both

models show similar biases in the interface level predictions. Therefore, the agent

decision to select the average grade model appears reasonable. This analysis under-

scores the agent capability to schedule MPC models based on variables beyond ore

grade, as all states can influence the weight decision.
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Figure 5.4: Recovery rate optimization and MPC model-scheduling under low-grade
operation
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During the average ore grade operation, the agent also raises the interface level

and tailings density setpoints from their steady-state values. Notably, the tailings

density is set higher compared to the low-grade operation. This adjustment results

in a recovery rate that surpasses the benchmark operation. In terms of MPC model

scheduling, the agent predominantly assigns weight to the average grade model, ac-

knowledging its lower biases in predicting interface level and density. This weighting

strategy demonstrates satisfactory control performance (fig. 5.5).
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Figure 5.5: Recovery rate optimization and MPC model scheduling under average-
grade operation
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Under high-grade operation mode, the RTO agent raises the interface level setpoint,

consistent with the previous two cases. However, it lowers the tailings density setpoint

from the initial steady-state, although the final density remains above the average

grade scenario. This suggests the agent prefers higher interface levels while tailoring

density setpoints to each grade mode, adhering to an increasing trend from low to high

grade. Regarding MPC model scheduling, the RTO agent equally weights the average

and high-grade models. This decision aligns with the prediction biases. The high-

grade model shows the lowest interface level prediction bias, while the average-grade

model is more accurate for tailings density prediction. As the tailings density setpoint

is set in the average operation range, the average-grade model predicts the tailings

density more accurately. This observed pattern indicates that while the interface level

dynamics is mainly influenced by the ore grade, tailings density also depends on its

operating region (fig. 5.6).
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Figure 5.6: Recovery rate optimization and MPC model scheduling under high-grade
operation
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5.5 Optimization and Control Performance Under

Random Disturbances

This section tests the RTO agent performance under random fluctuations in ore grade

and plant capacity. Figure 5.7 shows the agent optimizes recovery rate in multiple

modes without any upset in the controller performance. The recovery rates are higher

than the benchmark operation. Our calculations suggest that the RTO-optimized

setpoints could reduce bitumen loss daily by 190 bpd under random disturbances

(table 5.1). Notably, the agent proved capable of scheduling fused multi-MPC and

eliminating inaccurate models.

The policy reveals strategies applicable in real-world scenarios. First, we observe

that the interface level dynamics are primarily dependent on ore grade, while tailings

density is influenced by both ore grade and the operating region. This insight lead to

the identification of tailings density grade as another scheduling variable for MPC.

Second, the agent favors a higher interface level, preventing bitumen-rich froth from

reaching the flotation cell and potential loss through flotation tailing. Third, the agent

tends to set higher density setpoints for higher grades, a strategy justified through a

first-principles analysis as shown in section 5.6. This approach appears reasonable, as

it avoids excessive fines under low-grade conditions. Higher tailings density can lead

to an accumulation of fines, impeding separation efficiency. The RL policy not only

consistently improves recovery and maintains satisfactory control performance, but

it also identifies strategies that are explainable. Consequently, it outlines a potential

strategy for indirect policy application in real-world settings.
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Figure 5.7: Recovery rate optimization and MPC model scheduling under random
grade and plant capacity disturbances

Table 5.1: Recovery rate optimization and bitumen loss reduction

Ore Grade
RL Optimized

RR

Baseline

RR

bitumen loss reduction

m3/day bpd tpd

Low 75.0% 74.4% 42 266 44

Avg 90.2% 89.8% 29 184 30

High 96.5% 96.2% 24 152 25

Random 88.4% 87.9% 30 190 32
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5.6 First Principles Analysis of RL Policy

RL agents interact with an environment by executing actions, leading to new states.

Unlike supervised models which focus solely on prediction, RL optimizes control poli-

cies by learning state-action values. This learning process inherently involves a tem-

poral relationship that links previous states, actions taken, and subsequent states and

rewards, creating a dependency chain through the sequence of decisions [155]. Build-

ing on the observed policy patterns from previous sections, this section extends our

focus to a first-principle analysis of agent policy. The first-order analysis includes the

causal link between perception and action, as well as intentionality, the underlying

intention that motivates the agent actions within its environment.

Figure 5.8 illustrates the effects of tailings density and ore grade on multiparticle

settling. Terminal particle settling in the Primary Separation Vessel (PSV) is influ-

enced by both the Stokes’ velocity, with the density gradient as a primary driving

force, and the hindrance effect, which is related to particle concentration. A higher

density results in greater particle accumulation within a layer, increasing both the

Stokes’ velocity and hindrance effects. Balancing these factors is crucial to mainte-

nance of a high terminal velocity for effective separation. Additionally, as a flowing

system, bulk flow also impacts the net settling velocity. Therefore, our analysis

considers both particle settling velocity and flow rate of each withdrawal stream to

elucidate the agent policy.

The overall recovery rate is calculated as the percentage of total fed bitumen minus

the losses through PSV and Flotation (FT) tailings, relative to the total bitumen feed.

Consequently, the recovery rate is inversely proportional to losses from both PSV

and FT tailings. Particle separation in FT cells differs from that in PSV; bitumen

is aerated in FT cells, floating to the FT cell froth. Excessive middling withdrawal

to FT cells can overload their capacity, leading to a higher percentage of unaerated

bitumen lost through FT tailings. Therefore, optimizing recovery involves considering
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Figure 5.8: Schematic diagram of particle settling: effects of ore grade and tailings
density

not only the PSV interface level, tailings density, and withdrawal flowrates but also

the load distribution between PSV and FT cells.

Regarding the recovery optimization, RTO agent consistently increases the inter-

face level in any scenario. For the density setpoints, it assigns progressively higher

density setpoints across different grades, meaning the lowest density setpoint is allo-

cated for the low grade, followed by the average grade, and finally, the highest setpoint

for the high ore grade operation. We conduct separate sensitivity analyses to evalu-

ate the effects of interface level and tailings density on the recovery rate. Given the

consistent sensitivity across all operating modes, we have chosen to illustrate using

the average-grade scenario.

The recovery rate increases with the interface level, while overall bitumen loss de-

creases as the interface level rises (fig. 5.9a). Notably, when the interface level is

raised, MPC responds by reducing middling withdrawal while maintaining the di-

lution water and tailings withdrawal rates. This reduction in middling withdrawal

is compensated by an increase in froth overflow. Consequently, the lower middling

withdrawal eases the workload on the secondary FT cells, thereby reducing bitumen

loss through flotation tailings. Furthermore, an increase in froth overflow elevates

137



the velocity of unaerated bitumen to the overflow, which in turn enhances bitumen

recovery (fig. 5.9c). The RTO agent anticipates MPC policy and optimizes setpoints

accordingly. This underscores the benefits of employing a multitasking reinforcement

learning framework, which effectively coordinates decision-making in both the opti-

mization and control layers.
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Figure 5.9: Sensitivity analysis for Explainable RL: effects of interface level on a)
overall recovery rate and bitumen loss; b) withdrawal flow rates; c) particle settling
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For tailings density, there appears to be an optimal “sweet spot” that maximizes

the recovery rate. In increasing the tailings density, MPC decreases both tailings with-

drawal and dilution water while increasing middling withdrawal. This aligns with the

actual operating procedures. Reducing tailings withdrawal decreases the downward

bulk flow effect on bitumen particles, thereby minimizing their loss. However, an

excessively high middling withdrawal can lead to increased bitumen loss through the

FT tailings due to heightened operational load. Therefore, while increasing tailings

density can reduce bitumen loss in PSV tailings, the agent adeptly avoids excessive

losses from FT tailings. It maintains a balance between the workloads of the PSV

and FT cells, as well as the bulk flow effects. This requires complex reasoning, but

the agent effectively realizes and implements this strategy.

For each ore grade scenario, the optimal recovery occurs at different tailings den-

sities. We conducted a targeted sensitivity analysis by adjusting the tailings density

±15 kg
m3 around the maximum recovery rate to determine the optimal density more

precisely. The results showed that the optimal recovery for low, average, and high ore

grade scenarios occurs at tailings densities of 1505, 1535, and 1550 kg
m3 , respectively.

This finding aligns with the RL policy of increasing tailings density as the ore grade

increases.

The rationale behind this policy can be explained by the trade-off between Stokes’

velocity and hindrance effects (fig. 5.8). Higher tailings densities increase Stokes’

velocity but also exacerbate hindrance effects due to increased particle interactions

in denser layers. This is particularly relevant in low-grade scenarios with a higher

fines content, as fines particles have a higher hydrodynamic volume factor K > 1.

Therefore, the agent choice of a lower density in low-grade scenarios compared to

high-grade ones is justified, striking a balance between maximizing density gradients

and managing increased hindrance effects. This strategy provides insights on how

setpoints should be adjusted based on ore grade.
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Figure 5.10: Sensitivity analysis for Explainable RL: effects of tailing density on a)
recovery rate and bitumen loss; b) withdrawal flow rates; c) particle settling velocities

This observation further elucidates the agent strategies in MPC model scheduling.

Initially, we presumed ore grade as the primary scheduling variable. However, the

agent scheduling strategy takes tailings density into account. This effectively pri-

oritizes models with lower prediction biases. Our analysis confirms that while the

interface level is indeed dependent on ore grade, tailings density does not show a

direct correlation. We have come to understand that tailings density is influenced
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by both the ore grade and its current operating point (fig. 5.8). The tailings density

dynamics sensitivity to ore grade changes primarily stems from variances in fines.

High fines content in low-grade operations significantly slows down dynamics due

to increased hindrance in particle settling. This effect is substantiated by the gain

analysis presented in table 3.7, which demonstrates that both the interface level and

tailings density exhibit slower dynamics under low-grade conditions. Additionally,

in all scenarios, increased tailings density amplifies hindrance, mainly due to sand

particle accumulation. Although these particles have a lower hydrodynamic volume

factor K, a substantial coarse sand fraction can amplify the hindrance effect, leading

to a slower particle settling velocity in tailings. Therefore, both the ore grade, partic-

ularly fines content, and the tailings densities are key determinants of the dynamics

of tailings density.

5.7 Conclusions

Multitasking Reinforcement Learning (RL) for Real-Time Optimization (RTO) and

Fused Multi-Model Predictive Control (FM-MPC) is proposed for the first time. This

approach merges RL explorative ability to find optimal policies for complex decisions

with MPC’s safety advantages. The unified policy under the multitasking RL frame-

work seamlessly orchestrates process optimization and control decisions. RL agent

concurrently defines optimal setpoints to maximize bitumen recovery while schedul-

ing different models in the lower MPC layer, handling process constraints with MPC

industrial precedence to ensure safety.

High-fidelity digital twin testing showed consistent optimization performance, re-

ducing losses across various operating modes and disturbances from ore grades and

production capacities, while maintaining satisfactory control performance. Optimized

recovery rates exceeded benchmark operation, demonstrating efficacy in discovering

optimal policies for multifaceted problems.

The explainable policy further facilitates the reliability of RL deployment. First-
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principle analysis of the setpoint optimization shows that the agent adeptly man-

ages the trade-off between microscale multiparticle settling and workload distribu-

tion across interconnected units. The agent learns to optimize recovery rates by

maintaining high interface levels within predefined constraints and identifies the op-

timum tailings density point. It adeptly navigates optimum tailings density across

multimode operations to avoid excessive hindering effects. As optimization is also

affected by manipulated variables, the agent learns the control policy from MPC and

integrates it into its optimization decisions.

RTO agent proficiency extends to MPC scheduling. Extracting information from

relevant states allows for a nuanced determination of operating modes and the corre-

sponding scheduling of MPC models. This method surpasses traditional scheduling

approaches that predominantly rely on grades for model switching. Its analytical

power ensures seamless integration with the existing MPC infrastructure.

The model-free learning is capable of uncovering optimal policies through inter-

action, equipping a self-learning and adaptive nature. These capabilities facilitate

agent pretraining in a digital twin environment, followed by a transition to real-world

applications for online tuning. The agent adeptly overcomes mismatches encountered

during training and actual deployment.

Additionally, Explainable RL (XRL) opens a new paradigm for indirect RL ap-

plication. Instead of direct deployment in real-world settings, the policies discovered

by RL agents are used to guide the study of optimal decisions. These policies are

explainable by first principles, but challenging to identify using conventional methods

or human intuition. In this paradigm, the RL agent not only learns but also teaches,

unveiling optimal strategies for human operators. This method opens up innovative

ways to utilize RL in industrial processes, enhancing decision-making while upholding

safety and efficiency.
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Chapter 6

Conclusions, Recommendations, &
Future Work
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6.1 Conclusions

This research merges process engineering with artificial intelligence techniques to

achieve autonomous operation, a hallmark of Industry 4.0. First principle model-

ing creates a high-fidelity digital twin replicating the dynamics and complexity of

industrial-scale systems. The proposed 4-layer primary separation vessel model cap-

tures key operating variables in the bitumen extraction process like froth-middling

interface level and tailings density dynamics. Plant-wide modeling enables the use of

actual process data, which allows for the study of separation mechanisms and holistic

testing of autonomous strategies. The first principles model explains the phenomena

governing process dynamics, such as how interface and density change with different

inputs, as well as explaining variations in dynamics under different operating modes.

This model serves as a benchmark and testbed for work on optimization and control

strategies for an industrial-scale process with constrained MIMO dynamics, multi-

ple operating modes, and interconnected process units. It enables investigation into

techniques for control and optimization under such complex real-world conditions.

Control and optimization are the foundation in industrial operations. We aim to

automate them to operate the process with reliable, consistent production, minimize

environmental footprint, and ensure safe operation. MPC leverages bias correction

and disturbance rejection for robust tracking. Reinforcement Learning (RL) based

MPC model scheduling further improves MPC adaptability across operating modes.

Beyond scheduling, we demonstrate directly using RL as controllers matching MPC

performance with additional model-free, self-adaptive, and generalizable advantages

critical for automation.

A key contribution is the safe and feasible design of RL-based controllers for

industrial-scale processes with constraints, delays, and disturbances. Imitation learn-

ing and surrogate-based offline pretraining transfer knowledge to RL agents for safe

real-world deployment. RL robustness facilitates seamless mode transitions. Further,

144



a multitasking RL agent concurrently optimizes control and economic/environmen-

tal objectives like recovery rate in an explainable manner based on process physics.

Success on previously intractable coordinated optimization and control underscores

RL potential. Overall, this work progresses systems engineering through advanced

computational techniques to unlock autonomous capabilities in Industry 4.0.
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6.2 Future Work

Integrating the digital twin model with online process measurements enhances pre-

diction, early fault detection, and control decision verification for the true process.

Detailed upstream models incorporating crusher mechanics and caustic-aerated hy-

drotransport will characterize feed properties entering the PSV, improving the tailings

loss prediction accuracy. The current RL methodology leveraging surrogate modeling,

imitation learning, MPC safeguarding, and the digital twin demonstrates the feasi-

bility and safety of Reinforcement Learning (RL) control. Further hyperparameter

tuning, algorithm selection, and model-based RL can improve learning efficiency and

acceleration. Additional incorporation of safe RL techniques also promotes real-world

deployment confidence and process automation adoption. The first principles model

reveals flowrate as another factor influencing separation and settling beyond inter-

face and tailings density. Future work will expand the optimization framework for

agents to directly manipulate process variables targeting economic objectives. This

will demonstrate RL versus economic model predictive control (EMPC). Expanding

autonomous operation into downstream flotation units, also tied to recovery rate,

introduces potential for further gains. Overall, integrating digital twins, refining RL

controllers, and expanding the scope of process optimization collectively enhance the

adoption of autonomous decision-making in real-world scenarios. This progresses

the bitumen extraction performance, cost-efficiency, safety, and sustainability. The

methodologies proven effective on the complex primary separation unit can expand

to tackle challenges across other key processes. Advancing journal publications to

rigorously document performance could garner interest for real trials in analogous

industrial facilities.

146



Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, 2012.

[2] D. Killock, “Ai outperforms radiologists in mammographic screening,” Nature
Reviews Clinical Oncology, vol. 17, no. 3, pp. 134–134, 2020.

[3] A. Ramesh et al., “Zero-shot text-to-image generation,” in International Con-
ference on Machine Learning, PMLR, 2021, pp. 8821–8831.

[4] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on com-
puter vision, 2021, pp. 10 012–10 022.

[5] M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as compositional
generative neural feature fields,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 11 453–11 464.

[6] M. Havaei et al., “Brain tumor segmentation with deep neural networks,”
Medical image analysis, vol. 35, pp. 18–31, 2017.

[7] V. Mnih et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] F. Agostinelli, S. McAleer, A. Shmakov, and P. Baldi, “Solving the rubik’s cube
with deep reinforcement learning and search,” Nature Machine Intelligence,
vol. 1, no. 8, pp. 356–363, 2019.

[9] C. Berner et al., “Dota 2 with large scale deep reinforcement learning,” arXiv
preprint arXiv:1912.06680, 2019.

[10] O. Vinyals et al., “Grandmaster level in starcraft ii using multi-agent rein-
forcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[11] J. A. Bagnell and J. G. Schneider, “Autonomous helicopter control using rein-
forcement learning policy search methods,” in Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No. 01CH37164),
IEEE, vol. 2, 2001, pp. 1615–1620.

[12] R. Cui, C. Yang, Y. Li, and S. Sharma, “Adaptive neural network control
of auvs with control input nonlinearities using reinforcement learning,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 6, pp. 1019–
1029, 2017.

147



[13] B. Huval et al., “An empirical evaluation of deep learning on highway driving,”
arXiv preprint arXiv:1504.01716, 2015.

[14] Y. Song, A. Romero, M. Müller, V. Koltun, and D. Scaramuzza, “Reaching the
limit in autonomous racing: Optimal control versus reinforcement learning,”
Science Robotics, vol. 8, no. 82, eadg1462, 2023.

[15] X. Xiao et al., “Autonomous ground navigation in highly constrained spaces:
Lessons learned from the second barn challenge at icra 2023 [competitions],”
IEEE Robotics & Automation Magazine, vol. 30, no. 4, pp. 91–97, 2023.

[16] Y. Zhang, W. Macke, J. Cui, S. Hornstein, D. Urieli, and P. Stone, “Learning
a robust multiagent driving policy for traffic congestion reduction,” Neural
Computing and Applications, pp. 1–14, 2023.

[17] P. R. Wurman et al., “Outracing champion gran turismo drivers with deep
reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228, 2022.

[18] P. Stone, L. Iocchi, F. Tonidandel, and C. Zhou, “Robocup 2021 worldwide:
A successful robotics competition during a pandemic [competitions],” IEEE
Robotics & Automation Magazine, vol. 28, no. 4, pp. 114–119, 2021.
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