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Abstract

Salmonella are pathogenic bacteria that infect many species including hu-

mans. This pathogen thrives in the gastrointestinal track of their hosts and

propel themselves in mucus with motion structures called flagella. Each cell

has multiple flagella that can rotate either synchronously, resulting in directed

motion, or asynchronously. This creates a distinct motion pattern known as

“run and tumble” motion. A large particle tracking dataset of Salmonella in

mucus harvested from mouse GI tract was recently published by Schroeder et

al. [28]. This dataset includes a substantial fraction of cells that exhibit exclu-

sively undirected motion while other cells exhibit exclusively run-and-tumble-

type motion patterns. It is well known that Salmonella experience a significant

amount of population heterogeneity in order to evade host immune cells, and

this heterogeneity can manifest in motion patterns through its impact on flag-

ella number and type. A systematic and quantitative statistical analysis of

the Schroeder et al. dataset, informed by mechanistic stochastic models of cell

motion, is performed to characterize motion heterogeneity. It is found that

two distinct populations can be characterized that emerge from a rigorous sta-

tistical optimization procedure called Expectation Maximization. These two

populations are described as “diffusers” and “swimmers.” Interestingly, cells in

the diffusers populations display random switching between distinct diffusivity

values that differ by nearly 10 fold, indicating a previously unknown source

of active motion among these otherwise non-motile cells. Approximately 8%

of tracks were estimated to switch between these two subpopulations, most of

which were attributable to tracking errors or uncertainty due to short track

lengths. It is speculated that the remaining handful of tracks, which all tran-

sition from diffusers to swimmers, could be explained by young cells reaching

the stage of development where they are able to generate directed motion.
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Chapter 1

Introduction

Salmonella holds a lot of name brand recognition for a simple bacterial species.

This is perhaps because it is a highly infectious and common pathogen that

most notably causes typhoid fever. Mainly thought of as a historical disease,

as recently as 2004 there were 21-27 million cases world wide of typhoid fever,

with up to 600,000 deaths annually. While typhoidal Salmonella is mostly

found in South East Asia now, non-typhoidal Salmonella (NTS) can cause

over 90 million infections annually, with as many as 12 million cases in the

United States alone[20]. NTS is most commonly thought of as food poisoning,

since food is a host for the pathogen. With antibacterial resistance rising,

treatment and prevention of such infections is becoming a major, global con-

cern. Beyond human infections, Salmonella can cause gastrointestinal diseases

in most animals.

Upon entering the host body, Salmonella thrives and swims in mucosal

conditions. The bacteria go on to penetrate and attach to epithelial cells

along the gastrointestinal region. It has also been shown that Salmonella in-
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vade host epithelial cells by creating ruffle like structures on the membrane of

the host cells, and even hold specific preferences as to which areas to target

when invading the epithelial cells.[1]. In terms of basic cell structure, it can

be observed in Figure 1.1 that Salmonella cells are rod shaped bacteria with

multiple flagella. The pathogenic nature of this species motivates an investiga-

tion of the physiology of Salmonella as well as an investigation into how they

are propelled in mucosal environments, so that we can potentially combat the

cells more effectively.

Figure 1.1: Salmonella cells in motion. The image on the left is a modification of
an image from[24] and the image on the right is a modification of an image from[9].

Each Salmonella cell has multiple flagella, which when rotating synchronously

create a directed motion force. If one flagella unsynchronizes from the rest,

it disrupts the other flagella, causing the cell as a whole to experience undi-

rected motion. This alternating motion pattern is referred to as run and tumble

motion[25]. In order to examine this run and tumble motion pattern, Schroeder

et al. harvested mucus samples from the GI tracts of mice[28]. These mucus

samples hosted a plethora of Salmonella cells whose motion is recorded via

microscopy videos. These videos, around 20− 30 seconds in length, were then

translated into position data with the help of a particle tracking algorithm[28].

2



While Schroeder et al. expected to see a run and tumble motion pattern,

they noticed some cells in their videos experienced low amplitude undirected

motion. This prompted the development of a stochastic three-state motion

model which included a dormant, run, and tumble state. Schroeder et al.

hoped that this three-state model would answer questions they had about

Salmonella motility and subsequently fit the model to their particle tracking

data. They assumed that the cell were identical and switched between all

states over the 30 second video time scale[28]. However, our own observations

of these videos have led us to believe that another possible explanation for the

motion patterns in our data could be the natural heterogeneity in Salmonella

populations.

Any heterogeneity related to flagella could impact the motion Salmonella

populations exhibit. Because Salmonella are pathogenic host immune pres-

sures can lead to heterogeneity within single populations. Often, this het-

erogeneity is phenotypic adaptations to allow cells to avoid detection. One

manifestation of this results in a fraction of cells within a population that do

not develop or grow flagella[5, 31]. Even without host pressure, the number

of flagella each cell has is variable. Additionally, the cell experiences different

motion types as it develops flagella[17].

Through the use of the Expectation Maximization (EM) algorithm, we

hope to develop and fit a biologically based stochastic process model for

Salmonella motion that matches what we observe in the microscopy video

from the Schroeder et al. data set. The goal is to to explore the alternative

hypothesis that phenotypic heterogeneity is present in the population. We

also seek to answer the following questions. Can we classify heterogeneous
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sub-populations based on motion alone? Can we make predictions about the

unobserved motion state (run, tumble, ect.) at time t? How do we fit param-

eters when the motion states at each time are not directly observed? What

can we reveal about the underlying cause, or possibly the purpose, of these

sub-populations based only on observations of motion?

One unique aspect of our approach to this project is creating a model that

can describe two or more embedded sub-populations. Traditionally, when us-

ing an EM model for motion, the assumption is made that all objects follow

the same motion model. However, two or more motion patterns are present

under the heterogeneity hypothesis. Our approach for adapting the EM algo-

rithm is based on the idea that one could embed two or more distinct models

within a single larger model if the transition rate estimates result in discon-

nected subgraphs. Through the utilization of a (nearly) irreducible transition

rate matrix, these motion patterns act as (almost) separate sub-models within

the larger model.

This work will start in Chapter 2 with a biological investigation of Salmonella

and their flagella. We will briefly look at previous models which attempt to

capture the dynamics of Salmonella motion, as well as techniques used when

examining tracking data. In Chapter 3, we discuss the mathematical and

statistical tools. This specifically includes the Expectation Maximization al-

gorithm, which is the parameter fitting tool we use for all models we test.

Finally, in Chapter 4, we propose and examine several heterogeneous popu-

lation models, using track visualizations and parameter estimations of each

model. We also discuss the biological implications of our results, specifically

in regard to population heterogeneity related to motion and motion structures.
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Chapter 2

Background

2.1 Flagella Structure and Flagella Driven Mo-

tion

The first thing we will consider are the flagella, which drive Salmonella motion.

Each flagella consists of four parts: a basal body, a C-ring, a rod-hook, and

a filament. The structure of flagella can be seen in Figure 2.1. The flagella

extends from the plasma membrane into the extracellular space. The basal

body forms as a foundation in the plasma membrane, with the C-ring acting

as an anchor. The filament is the structure we are most familiar with, as it

is the helical polymer extending like a tail from the cell[32]. It is important

to note that population heterogeneity can be found by examining the protein

which makes up the flagella filament, as the tail can either be made of the FliC

or the FljB protein, and any heterogeneity could impact motion patterns[31].

The rod-hook functions to attach the filament to the basal body, extending
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through the cell envelop and into the extracellular space. The rod functions

as an axle while the hook functions as a joint, allowing the filament to move

in the propeller like fashion for which it is known[32].

The flagellar motor is actively responsible for propelling the cell forward.

An ion gradient, called the ion motive force (IMF) powers the motors[22].

Experiments on E. Coli, another flagellated bacteria, have shown that trans-

membrane proteins, MotA and MotB play a strong role in the IMF generation

for the bacterium.

One set of experiments called ”motor resurrection” aimed to model flag-

ellar torque generation the same way one would model electric motors[32].

The specifics of these experiments, first published by Blair and Berg in the

paper, ”Restoration of Torque in Defective Flagellar Motors,” in Vol. 242 of

Science, involve the repair of paralyzed MotA and MotB proteins with wild

type proteins. The experiments indicate that these proteins play a large role

in speed, force, and direction at which the motor spins, depending mainly on

number of torque generators. The direction differences in rotation of flagella

are particularly of interest to us, as this rotation causes the various types of

movement a cell experiences[4]. Specifically, if all flagella rotate in the same

direction synchronously, they generate forward, directed motion. However, if

the rotation of one flagella unsychronizes from the rest, the directed force gen-

erated by that flagella counteracts the force generated by the other flagella,

causing the cell to experience undirected motion.

Because of the importance of flagella and their relevance to bacterial mo-

tion, extensive studies have been conducted to understand them, even on a

genetic level. In Salmonella, studies on the loci of flagellar genes and muta-
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is responsible for globally regulatory processes; class two is responsible for

all proteins needed for the flagellar structure and assembly while class three

regulates late stage assembly. It can observed that cellular motion such as

rolling and swimming begins to occur as class three promoters become active.

Additionally, the external tail of flagellar structures became visible with elec-

tron micrographs around this time[17]. This implicates flagellar assembly as

a source of atypical motion patterns within populations of Salmonella, as the

cells motion pattern actively changes during assembly.

2.2 Structural Features of the Salmonella Cel-

lular Envelope

Another structure to consider is the bacterial cell envelope, as it often dictates

a cells interaction with the environment. The multilayered bacterial cellular

envelop not only offers protection for the cell but also allows nutrients in and

waste out. Salmonella are gram negative bacteria, which means their cell

envelope has three layers and contains lipopolysaccharide in the outermost

layer. In contrast, gram positive cells only have 2 layers in their cellular

envelope, but have surrounding layers of peptidogylcan. The structure of both

gram positive and gram negative cells can be seen in Figure 2.2. As Salmonella

are gram negative, we will take a closer look at the three layers of gram negative

cell walls and their implications to the bacteria[30, 20].

The outermost layer of the cell envelope is the outer membrane (OM). Like

many other cell membranes, the OM is made up of a lipid bilayer, however,
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2.3 Population Heterogeneity

Due to the infectious nature of Salmonella, host immune cells produce exter-

nal pressure to reduce populations of the bacteria. This pressure leads to well

documented heterogeneity within the species as populations attempt to avoid

detection and interactions with immune cells. It has been shown that there is

number of virulence factors which can vary within a population. Everything

from metabolic pathways to cell adhesion can demonstrate phenotypic hetero-

geneity in a population[5, 31, 33]. This includes the heterogeneity related to

flagellar structure and assembly already mentioned in Section 2.1.

As flagella are what is responsible for the motion of Salmonella cells, we

are most interested in heterogeneity surrounding these structures. One source

of heterogeneity stems from the variability in the number of flagella typically

found on single cells. This includes the fact that not all cells even develop

flagella despite flagella being solely responsible for the motion of Salmonella

and help with invasion and adhesion to host cells, making them pivotal to the

cell’s virulence. The importance of flagella speaks to the necessity of evading

host immune cells, as some Salmonella opt to suppress flagellar assembly in

order to evade the immune cells. While this is a very incomplete description

of the heterogeneity present in a Salmonella population, it offers a strong mo-

tivation for considering model which accounts for a population with multiple,

phenotypically heterogeneous sub-populations when investigating Salmonella

motion.
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2.4 Run and Tumble Models

In his 1976 lecture ”Life at Low Reynolds Number” E.M. Purcell discusses

”how microorganisms swim,” specifically in low Reynolds number environments[25].

The Reynolds number is to the ratio of inertial forces to viscous forces in fluids.

When viscous forces are dominant, we have low Reynolds numbers. Often, the

environments in which microorganisms such as Salmonella thrive and swim

are low Reynolds numbers environments because the microorganisms have a

low mass, allowing the viscous forces to dominate over momentum. In this

lecture, Purcell discusses not only the physical mechanics of how organisms

in this environment swim and diffuse but also early experiments into imagin-

ing and tracking swimming microorganisms. One cited experiment conducted

by Howard Berg tracks E. Coli cells in a variety of environments. Purcell

describes the motion observed in these experiments as the cell ”[swimming]

for a while and then [stopping] and [going] off in another direction”[25]. This

biphasic swim pattern is what will will discuss as run and tumble motion.

However, to understand run and tumble (RT) motion we must first under-

stand random walk (RW) trajectories as RT motion leads to a RW trajectory

over time. RWs are well studied stochastic processes in which position is

changed by a random increment at every time step. For example, if we have

a one dimensional random walk, we could explain it with the simple equation

xt+1 = xt + µ, where µ is a random variable pulled from a well defined distri-

bution, and xt describes position at time t. Because of the random changes

in position in RW, the agent experiencing RW trajectories often moves in

random, different different directions, and models of RT motion emulate this.
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namics of run and tumble models with various swimming strategies[34]. While

these results are mathematically motivated, other studies show the practical

applicability of such models.

Just like Salmonella, E. Coli are flagella driven bacteria. Because of this,

RT models can be used to explore E. Coli motion. Even models which build

statistical simulations of E. Coli RT motion from mean squared displacement

show significant accuracy. Miru Lee, Kai Szuttor, and Christian Holm outline

one such simulation in their paper ”A computational model for bacterial run-

and-tumble motion”. Their model incorporates hydrodynamics in order to

more accurately model motion[21]. More commonly, Langevin equations are

used to model run and tumble motion for swimming E. Coli. While the original

Langevin equation describes simple Brownian motion, these equations now

generally describe particle motion in fluid. Thus, Langevin equations represent

the run or tumble states very naturally[8]. Another study by Bertrand et al.

examine how such particles function in crowded environment[3].

Another practical application of run and tumble includes the model’s rela-

tionship to chemotaxis. To investigate this relationship, a stochastic velocity-

jump process, where an individual’s velocity switches randomly, is used to

model single cell movement. Unlike our model where the cell’s motion is mod-

eled through jumps in position, velocity-jump processes model motion through

instantaneous changes in velocity. This allows for a transition from individual

based run and tumble models into PDE models and cartoon based models for

population level chemotactic movement with the Patlak-Keller-Segel equation

given by

∂n

∂t
= ∇ · (Dn∇n − χn∇S). (2.1)
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Additionally, Run and tumble models can be used to simulate numerically

chemosensitive movement patterns based on Cattanelo’s law which relates to

heat propagation[7, 37, 38, 13, 39]. While these chemotaxis models are not as

simple as pure run and tumble models, they build from run and tumble models

and make use of the same biological principles. Run and tumble models are

widely applicable and offer many insights into flagellated bacteria. Because

of the relevance these models have, we will be expanding on run and tumble

models as we explore our own models for Salmonella motion.

2.5 Experimental Data of Salmonella Motion

For this project, we are lucky to have abundant experimental data. This data

set has already been used in published work by Schroeder et al[28]. The data

comes in the form of microscopy videos from various mucosal conditions and

locations in the gastrointestinal tract which have been converted into position

data via particle tracking. The three main mucosal conditions are samples

from MUC2 porcine GI tracts, Rag−/− mice GI tracks, and wild type mice

GI tracks. Each set include samples from the duodenum, ileum, and jejunum.

While wild type mice have no notable genetic mutations, Rag−/− mice lack

mature B and T lymphocyte cells, reducing redundant antibodies which could

interfere with the Salmonella[28]. MUC2 porcine have MUC2 mucin, which

forms a net-like screen[15]. Within both the MUC2 and Rag−/− samples, there

are additional conditions.

Both MUC2 and Rag−/− sets include samples which have added anti-

lipopolysaccharide antibodies (anti-LPS IgG) and samples which have added
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anti-biotin antibodies (anti-biotin IgG). The anti-LPS IgGs bind directly to

the lipopolysaccharide in the outer membrane of the Salmonella cell, as in-

troduced in Section 2.2. Part of the idea behind creating data samples of the

anti-LPS IgGs is to investigate if these antibodies inhibit more motion than

the anti-biotin IgGs, which act as a control group[28]. The wild type data

set is made up of microscopy video of Salmonella extracted from the GI tract

of wild type mice. That is, unlike the Rag−/− data set, there are no notice-

able mutations in the mice that would impact the mocuosal environment of

their gastrointestinal tracts. This data set is comprised of videos from the

duodenum, ileum, and jejunum from a number of different mice.

The wild type data set contains tracks from three locations in the gas-

trointestinal tract, the duodenum, the ileum, and the jejunum. Overall the

duodenum has 12, 553 data tracks, the ileum has 11, 305 data tracks, and the

jejunum has 11, 948 data tracks. The position data is in the form of x and

y position through time. The algorithm we use to fit our data to our mod-

els requires the data be in the form of increments that are the change in x

and change in y position through time. Once the conversion to increment is

made, we has 532,583 data points in the duodenum, 431,711 in the ileum, and

453,331 in the jejunum. That means we have over 1,417,625 change in position

data points in the wild type data set alone. This is a stark comparison to the

Rag−/− data set, which only has around 275, 000 data points, divided into

multiple conditions. Figure 2.4 gives examples of stills from the microscopy

videos.

As mentioned earlier, the videos were not sufficient data for the model

proposed by Schroeder et al.; they needed position data. To convert the video
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compensate, we tested the model for subsections of the data. For example, we

divided the wild type data set into ileum, jejunum, and duodenum for each

model to get results for those three sections prior to running it on the complete

set of data.

It is also important to note that these cells move in 3D, but the tracking

algorithm only records 2D position, due to the microscopy videos being 2D.

The complications that arise from the 3D motion being restricted to 2D data

is accounted for in our parameter fitting algorithm, discussed in Section 3.2.4.

The tracking data thus allows us to start fitting our models to data and make

the desired conclusions about salmonella motion, even though one dimension

is missing.

2.5.1 Previous Work with the Homogeneous Population

Model Model

Schroder et al. presented a three-state homogeneous model, which has a run,

tumble, and dormant state[28]. This model is described fully in Section 3.1.4.

By utilizing the data from the Rag1−/− mice, which lack mature T and B

lymphocytes, the impact of anti-LPS immunoglobulins (IgG) on motion could

be measured utilizing anti-biotin IgG as a control. Since Salmonella are gram

negative bacteria, as discussed in Section 2.2, the anti-LPS IgGs could bind

directly to the outer membrane of the bacteria. The paper on this work,

subsequently published in Mucosal Immunology by Schroeder et al. in 2020,

demonstrated that there was a difference in motion when the cells were exposed

to the two different antibodies.
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One of the main results found in this paper was that the percentage of

time increments spent in the swimming state was reduced in the anti-LPS

condition by about 10% from the anti-biotin condition. The model is also

able to indicate a difference in velocity magnitude between the two conditions,

with the anti-LPS having a slower velocity than the anti-biotin. This indicates

that the cells in the anti-LPS condition experience more undirected motion.

Beyond the fact that these results support the applicability of the three-state

homogeneous model, they also indicate that mucosal conditions can impact

Salmonella motion and flagellar rotation[28]. This work also demonstrates the

applicability of a run and tumble model with an added dormant state, which

is where will start for our exploration of the wild type data set.

We chose to work with the wild type set as opposed to the Rag1−/− set

because of the size and consistency of the wild type data set, as theRag1−/− set

has only around 275, 000 data points divided into multiple conditions. While

the Rag1−/− has a number of different condition sets which are interesting,

having these condition sets did not add to our goal of creating a model which

matches the natural movement patterns we can observe.

2.5.2 Previous Particle Tracking Studies of Bacterial

Motion

Particle tracking is an important tool that is used in experiments studying mul-

tiple types of bacteria including rod shaped bacteria and lactic acid bacteria.

However, a unifying goal of most experiments involving particle tracking is the

goal to identify values such as first passage time or mean square displacement
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in an attempt to determine the speed at which a cell moves through a given

environment. Often, these experiments are centered around concepts such as

infection speed of pathogens, drug dispersal, or other medical connections to

microorganisms[40, 18, 27].

While our use of a particle tracking algorithm to generate our position

data from microscopy videos is not unique, the number of data points we

have is substantially greater than any previous study we are aware of. Even

comparing the wild type set to the Rag1−/− set, which was used for Schroeder

et al.’s paper, the wild type data set has over 5 times the number of time

points. In comparison, Beljouw et al. a total of around 10, 000 tracks for their

experimental lactic acid bacteria by-track data. The authors however only

have 7 tracks over 40 frames, with the majority of tracks consisting of less than

20 frames[27]. Similarly, Bedrossian et al. claims to have between 6 and 149

cells in the field of view creating tracks for a total of 187 increments for their

work on creating a new particle tracking algorithm using digital holographic

microscopy[18]. While these are just a few specific examples, and there is a

level of variability in the number of data points used, the fact that we have

1, 417, 625 increments of data from 35, 806 tracks and 421 microscopy videos

speaks to the depth of our experimental data.

Another more unique technique used for this project is a by-increment

analysis of the particle tracking data. Often, when working with position

data for microorganisms gathered with a particle tracking algorithm, a by-

track analysis of the data is done[36, 27]. However, we chose to group all

the data together and do a by-increment analysis because it can be shown

that by-track analysis create biases in calculations that require averaging over

19



data[36]. These biases and the differences between by-track and by-increment

analysis is explored in the next subsection, Subsection 2.5.3.

2.5.3 Tracks versus Increments

One important question when considering data from particle tracking is whether

to consider the data by track or by increment. Due to the nature of parti-

cle tracking, there are two ways to consider the position data for a specific

cell. Tracks, or traces, refer to the entire path of a tracked particle. How-

ever, this can lead an incomplete picture of what is happening as particles

can move in and out of the plane of focus or field of view of the video. In

general, faster moving particles are more likely to leave the field of view and

produce shorter tracks. Additionally, if the particle moves a large distance

between frames, the tracker will sometimes split the path into two separate

traces, which is another problem for faster moving particles. Since we are

investigating cells which can experience directed motion, this is an important

consideration. Alternatively, one can parse the tracking data by increment,

where each time point is considered individually. These two methods produce

different results when calculating values that require averaging. The difference

in these two approaches is the focus of the Wang et al. paper ”Minimizing

Biases Associated with Tracking Analysis of Submicron Particles in Heteroge-

neous Biological Fluids,” and this difference was a consideration for us as we

began our project[36].

Wang et al.’s paper sheds light on the bias created when a by-track av-

eraging method is used during the investigation of tracked particle data with
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heterogeneous movement patterns, that is movement patterns which appear

as distinct. The authors discovered that if shorter time scales are used, the re-

sults favor the faster particles. The bias toward faster particles creates an issue

when investigating biological processes such as the time it takes for a particle

to cross a biological barrier. For example, this means this method could over-

estimate the speed at which a drug takes effect. In order to investigate these

biases and the impact that a by-increment analysis has on the results, Wang

and his team not only generated simulated data, but also collected biological

data. They then compared the results of increment based analysis and track

based analysis[36].

The authors calculated mean square displacement (MSD) with the for-

mula MSD = ⟨|x(t) − x0|2⟩ + ⟨|y(t) − y0|2⟩ where (x0, y0) is some initial

position for the two dimensional simulations, as well as effective diffusion (De)

by MSD = 4Det. The calculation of De was performed both by track and

by frame. Before comparing the methods, the ground truth for the simulated

data was established. The simulated data consisted of a mixture of particles

with directed motion and particles with undirected motion with a 1:1 ratio of

undirected motion particles to directed motion particles. Based off the simu-

lations of homogeneously mixed fast and slow particles, both of these calcula-

tions should have distributions with no skew, or distortion in the distribution,

toward either particle type for the by-track and by-increment calculation of

De[36].

What the authors saw however was that in shorter time scales, there was

a 85% skew in the distribution of De toward the faster particles with the by-

track analysis. Similarly, the MSD for the by-track analysis on shorter time
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scales was 10-fold higher than expected. This bias was verified with the in silco

biological experiments. However, when the by-increment analysis was done on

both the real and simulated data, the skews toward fast moving particles on

the distribution of the De were within 1% of the predicted value. Additionally,

the MSD was only 10% lower than expected[36]. The main take away from

Wang et al.’s results is that the by-increment analysis of particle tracking data

aligns more closely with the expected theoretical results.

To verify the results in Wang et al.’s paper, we also create simulated tracks

which mirror the ones presented in the paper. Two groups of particles are

created; one experiencing a fast rate of diffusion, and one experiencing a slow

rate of diffusion. Just like in the paper, we vary the number of time points

as well as the size of the time step. We pick a field size and if a particle

leave the field, the data points are not counted. This leads to the fast particle

creating a larger number of shorter tracks than the slow particle, which is

expected. We then calculate effective diffusion (De) both by track and as well

by increment to confirm the bias. These calculations are done for multiple

rounds of simulations, with multiple step sizes and different numbers of steps.

Using the formula

De =

∑n
t=0 ||∆Xt||2
4n∆t

,

which we derive by maximizing the likelihood function for the simulations and

is described in more detail in Section 3.2.2, we are able to calculate the effective

diffusion for n time points. When done by increment, the calculation of De

looks identical to the given formula for De and the total time points includes

all tracks. When done by track, the formula for De is applied to each track,
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then De is calculated by averaging the by-track results, i.e.

De =

∑

T

∑n
t=0 ||∆Xt||2

4n∆t

Ttotal

,

where
∑

T is the sum over tracks and Ttotal is the total number of tracks. The

results from our simulation using these calculations for effective diffusion then

confirms the biases presented in Wang et al.’s paper. As we increase step

size, De calculated by track approaches the ground truth diffusivity value for

the slower population. Similarly, as we decrease step size, De calculated by

track approaches the ground truth diffusivity value for the faster population.

However, while those biases are still present when De is calculated by track,

it is significantly reduced.

To demonstrate the difference between by-track and by-increment analysis,

we created plots, shown in Figure 2.5. The figures demonstrate that the by-

increment analysis estimate De more accurately than the by-track analysis,

indicating that averaging by increment is a more accurate way to consider

tracking data. Through an investigation of literature and our own independent

simulations and analysis, we confirmed that we need to conduct all of our

analysis averaging by increment. This means, whenever we have to sum the

data points and normalize, it must be done for the entire data set, not just for

a specific track. This shift from the traditional by-track analysis for tracked

particles reduces bias in populations where not every particle is moving at the

same speed, and some particles are moving quickly, which we see in our wild

type data set.

To create a mathematically and biologically motivated model for Salmonella
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Chapter 3

Mathematical, Statistical, and

Computational Tools

3.1 Stochastic Models of Salmonella Motion

As Salmonella rotate their flagella, multiple sources of random forces impact

their motion. These forces include random collisions with other molecules.

Additionally, a cell can randomly change how and if each flagella rotates,

creating a stochastic switch of states. Because of this inherent stochasticity,

it is important for us to look at the nature of stochastic processes as the

behavior of the stochastic processes we use will inform our analysis of the

bacterial behavior. A stochastic process is a function of a time dependent

random variable[16].

One specific type of stochastic process is a Markov process. Markov pro-

cesses all have the Markov property, which means the probability of seeing a

specific observation at integer valued time t only depends on time t − 1 and
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no other proceeding time points. In other words, if we have the value xt−1

at time t − 1, the conditional probability P (xn, tn|x1, t1; ...; xt−1, tn−1) can be

reduced as

P (xn, tn|x1, t1; ...; xt−1, tn−1) = P (xn, tn|xt−1, tn−1), (3.1)

for t1 < t2 < t3. We can also decompose the joint probability P (x1, t1; x2, t2; x3, t3)

in the following way

P (x1, t1; x2, t2; x3, t3) = P (x1, t1; x2, t2)P (x3, t3|x1, t1; x2, t2)

= P (x1, t1)P (x2, t2|x1, t1)P (x3, t3|x2, t2). (3.2)

This indicates that P (x1, t1; x2, t2; x3, t3) can be calculated completely from

P (x1, t1)P (x2, t2|x1, t1). Additionally, one can integrate equation 3.2 over x2

in order to derive the Chapman-Kolmogorov equation in the form

P (x3, t3|x1, t1) =

∫ ∞

−∞

P (x2, t2|x1, t1)P (x3, t3|x2, t2)dx2. (3.3)

This equation indicated that because of the Markov property, the probability

of going from x1 to x3 is equivalent to going from x1 to x2 and then x2 to x3,

summing over all possible x2[16].

When a Markov process is stationary, that is P (x, t) does not depend on

t and P (Xi, ti|xj, tj) depends only on τij = ti − tj, this derivation simplifies

further. In this case, the transition probability P only depends on the time

step size, τij = ti − tj. If we call P (x2, t2|x1, t1) = Tτ (x2|x1), we see equation
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3.3 turn into

Tτ+τ ′(x3|x1) =

∫

Tτ (x2|x1)Tτ ′(x3|x2)dx2, (3.4)

for τ , τ ′ positive[16]. As the stochastic processes we work with in this paper

are all stationary Markov processes, we can consider this second version of the

Chapman-Kolmogorov equation given by equation 3.4.

3.1.1 The Master Equation and Other Products of the

Chapman-Kolmogorov Equation

The deviation for the Chapman-Kolmogorov equation given by 3.4 can be

represented in a different form for Markov processes, known as the master

equation, given vanishing time steps τ ′, and for simplicity, we will be using

P (x, t|x0, t0) = Tt−t0(x|x0) = P (x, t). This equation is given by

∂P (x, t)

∂t
=

∫

[Q(x|x′)P (x′, t)−Q(x′|x)P (x, t)]dx′, (3.5)

and the solution of this differential equation for a given initial condition is

Tt−t1(x|x1) and given a jump at time t, Q(x|x′) is the transition probability

from x′ to x[16, 10]. That is, the transition probability for the Markov process.

A complete derivation of the master equation from 3.4 can be viewed in N. G.

Van Kampen’s book ”Stochastic Processes in Physics and Chemistry”[16].

Another important product of the Chapman-Kolmogorov equation occurs

when we consider a discrete state set, as in the case of all models discussed

in this paper. We can then re-write the master equation as given in equation
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3.5. If we have n states, we get

∂Pi

∂t
=

n
∑

j=1

[QijPj(t)−QjiPi(t)], (3.6)

which is notionally equivalent to

∂P (t)

∂t
= WP (t), (3.7)

where Pi : [0,∞) → [0,∞), making P a vector valued function with n function

entries. This is an important form of the master equation because W in this

equation is known as the transition rate matrix and is a pivotal part of the

solution to the differential equation, P (t) = etWP (0), given initial condition

P (0) [16]. Each element, xij of W represents the rate of transitioning from the

state i to the stater j. Additionally, part of this solution, Φ = etW is what is

called the matrix exponential, and will be a fundamental part of our Expec-

tation Maximization algorithm. W and the matrix exponential are important

values to consider when working with discreet Markov processes.

In equation 3.7, W is a matrix comprised of transition rates and has a

specific structure. An important property of W is irreducibly. An irreducible

transition rate matrix allows for the potential for transitions through all the

states. That is, an actor in a stochastic process with an irreducible transition

rate matrix has the potential to take on any state value in finite time. If a

transition rate matrix is reducible however, it is not possible for an actor to

transition through all states. A reducible matrix is a matrix which can be

put in the form of block upper triangular matrix through row and column
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permutations. That is, a matrix which can be reduced to the form

W =







C11 C12

0 C22






,

where C11, C12, and C22 are blocks of irreducible sub-matrices, is a reducible

matrix[16]. We will consider stochastic processes with both reducible and

irreducible transition rate matrices in this paper.

The last variation to the master equation we must consider is if we send the

quantities for Q in equation 3.5 to zero. Then, we can derive the Fokker-Planck

equation given by

∂p(x, t|x′, t′)

∂t
= −

∑

i

∂

∂Xi

[Ai(x, t|x′, t′)] +
1

2

∑

i,j

∂2

∂Xi∂xj

[Bij(x, t)p(x, t|x′, t′)],

(3.8)

where A is the drift vector and B is the diffusion matrix, making the whole

equation representative of a diffusion process. From equation 3.8, we can

develop SDEs for diffusion processes, given that A is a velocity and we super-

impose a Gaussian fluctuation onto the covariance matrix B. This SDE would

take the form

dx(t) = A(x(t), t)dt+B(x(t), t)N(0, dt), (3.9)

where N(0, dt) is a Gaussian random variable with mean zero and variance

dt. A full derivation of this can be viewed in Gardiner’s book ”Handbook

Of Stochastic Methods for Physics, Chemistry, and the Natural Sciences”[10].

For this project, all of the SDEs we use will be of the form given in equation

3.9.
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3.1.2 Long Term Behavior of Stochastic Processes

When considering differential equations, such as the master equation, one

important aspect to consider is the long term behavior of the solutions. To do

this, we must set the derivative equal to zero. In this case, we can consider

0 = WP (t), (3.10)

given initial condition P (0). As this is a linear system, the structure ofW plays

an important role in the existence and uniqueness of a steady state solution

P∞ = limt→∞ P (t). If we first consider the case of an irreducible transition

rate matrix, it can be shown that as t → ∞, a unique steady state solution,

P∞, exists such that P (t) → P∞ for any valid P (0). However, in the case of

a reducible transition rate matrix, long term behavior is slightly more compli-

cated. It can be shown that for a reducible transition rate matrix, more than

one steady state solutions might exist, but for n finite state there will always

be convergence to one of these solutions, depending on initial conditions. De-

tailed proofs of the long term behavior of stochastic processes can be found in

Van Kampen’s book ”Stochastic Processes in Physics and Chemistry” [16].

Asymptotic mean velocity is another indicator of long term behavior that

we can consider. Given by the equation

V∞ = lim
t→∞ E[

X(t)−X0

t
], (3.11)

for some initial condition X0, asymptotic mean velocity is the expected value

of the change in position over all time, in other words the expected value of
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overall velocity. We define directed motion as a process where V∞ ̸= 0.

The three-state model, given by equations 3.13 and 3.14, introduced by

Schroeder et al. and used in this project is a ”doubly stochastic” process.

Stochastic state switches exist between swim, tumble, and dormant, and each

state contains a stochastic process within itself. This adds a certain level of

complexity, and to capture this, we can use transition rate diagrams to visu-

alize models, for an example see Figure 3.1. Transition rate diagrams give a

visual representation of the stochastic states, as the circles on the diagrams

represent the states, as well as the stochastic transitions between states, rep-

resented by the arrows between the circles. Thinking about our models as

doubly stochastic allow us to use specific statistical tools for parameter es-

timations. Additionally, the translation of stochastic processes into different

forms in order to derive transition rate matrices, see equation 3.7 for more

details, and SDEs, see equation 3.9, is a concept used later in this paper when

considering our models.

3.1.3 Gillespie Algorithm

Daniel Gillespie first proposed his algorithm for simulating discrete stochastic

processes in his paper ”Exact Stochastic Simulations of Coupled Chemical

Reactions”[12]. As the title implies, Gillespie aims to model coupled chemical

reactions, in which molecular population levels can only take on integer values.

The general idea of the algorithm is to stochastically simulate processes where

there are changing whole number valued variables in a continuous way. To

do this, the algorithm makes use of the fact that the value in question, in
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Gillespie’s case the molecules, are uniformly randomly distributed throughout

the area. As Gillespie was interested in modeling coupled chemical reactions, it

can be said that he was interested in the event of molecular collisions. Because

the molecules are uniformly randomly distributed, as long as we know the event

rate we can calculate when the next event will occur and what kind of event

it will be[12].

To execute the Gillespie Algorithm, a few calculations and two random

numbers are needed. First, given ai, the event rate for event i, we must

calculate A =
∑

i ai for all possible events. Then, two random variables, r1

and r2 are pulled from the unit uniform distribution. These two variables will

subsequently be used in the following calculations:

1. τ =
ln 1

r1

A

2. µ = event i such that
∑µ−1

k=1 ak < r2A ≤ ∑µ
k=1 ak

With τ and µ, the simulation can then be propagated forward through time, as

τ represents the time before the next event happens while µ indicates which

event. That is, if the current time is t, event µ will happen at time t + τ .

We can generate our random numbers in this way because it can be proven

that any two random numbers from the unit uniform distribution can create

a random pair from any paired probability density function in this case r1

and r2 are mapped to τ and µ. In other words, if a random variable X has

cumulative probability distribution P (x) such that

P (x) = Prob[X < x] =

∫ x

−∞

p(x′)dx′,
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and random variable U has the unit uniform distribution, then X = P−1(U).

In his original outline of the Gillespie algorithm, Gillespie discusses the reason

for this translation with more rigor[12].

The Gillespie algorithm as described above can be utilized to simulate data

for our model by simulating when state switches occur as well as the order of

state switches. In order to calculate the position data needed to validate

our EM algorithm, some additional modifications are needed. Specifically,

between state switches, the particle will experience movement based off the

state assignment.

3.1.4 A Homogeneous Population Model

Since Salmonella use flagella to swim, with distinctly different modes of swim-

ming, a simple model can be created to represent Salmonella swimming in

mucus. The SDE model presented in this section represents the cell’s change

in position and is the same biologically based model used by Schroeder et

al.[28]. This model considers that a cell can experience undirected motion by

including the dormant state to represent extended periods of undirected mo-

tion. Additionally, Salmonella also experience directed motion, or motion with

a non zero mean velocity, fueled by the synchronized rotation of its flagella.

The model has three-states, dormant, tumble, and swim. While the state

of motion, S, is fixed, an SDE expresses the change in position dependent on

the state, S, dX = v(φt, θt, St)dt +
√

2D(St)dW , where dW = N(0, dt) and

v(φt, θt, St) is the velocity of directed motion in state S with orientation φt and

θt on the unit sphere. The two dimensional vector X is the change in position
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in the x and y planes. Therefore,

v(φ, θ, St) = δSt,2













vmag sin (θ) cos (φ)

vmag sin (θ) sin (φ)

vmag cos θ













, (3.12)

where vmag is the velocity magnitude observed in all directions. Given that we

are dealing with 3D motion, the motion of the cells is considered on the half

unit sphere instead of the unit circle. We only consider the half unit sphere

because Because we only have 2D data though, we only need to consider the

x and y components of motion in these equations, as our EM code already ac-

counts for the lack of data from the third dimension, as mentioned in Section

3.3.2. The fact that we have one velocity magnitude indicates a cell experi-

ences the same velocity magnitude regardless of direction. While this seems

like a strong assumption to make, consistent velocity regardless of direction is

a biologically based assumption. In the wild type data set we have a homoge-

neous fluid environment and a dilute population, meaning the cell will move

with the same constant velocity if it is swimming regardless of direction as no

direction will offer significant hindrances. This model, which can be viewed in

Figure 3.1, has the following master equation for the state transitions

∂P (t)

∂t
=













−k1 k2 0

k1 −k2 − k3 k4

0 k3 −k4













P (t). (3.13)

Let S(t) be a sample from the distribution defined above. Then, we have the
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swim direction to another direction, without going through the tumble state

first. This is because the cell uses the tumble state to reorient itself. Therefore,

the number of transition rates is greatly reduced. If we have n swim directions,

without unrestricted rates we would have (n + 2)2 distinct transition rates.

However, with the restricted rates, there is only 4 possible transitions as seen

in Figure 3.1. The four transitions are dormant to tumble, tumble to dormant,

swim to tumble, and tumble to swim. While a cell cannot move directly from

dormant to swim, a single track can have a time step in dormant and a time

step in swim, making this transition rate matrix irreducible.

One assumption made about these transition rates is that a cell has an

equal chance of reorienting in any direction during the tumble phase. That

is, there is no bias in which run direction a tumbling cell transitions into.

This assumption can stand because bacteria only have directional preferences

when exposed to chemical signals, and there is no chemotaxis in our data

sample. Additionally, our data is for a diluted population, which means it is

highly unusual for the cells to interact and influence the motion of other cells.

As the model is a procedure model for a very specific biological process, the

constraints of restricted transition rates stands as a reasonable assumption.

This three-state homogeneous population model has already been applied

to experimental data to demonstrate that mucosal conditions can impact mo-

tion, as seen in the paper by Schroeder et al[28]. As mentioned earlier in

Section 2.5, position data for wild type Salmonella has been collected from

Salmonella extracted from the gastrointestinal tract of various mice via mi-

croscopy videos and a particle tracking algorithm. Schroeder et al. took a

specific portion of this data and examined their specific questions using this
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model[28]. The conditions that data exists for and the results already found,

including the impact of antibodies on motion, are explored in Section 2.5.1.

We apply the EM algorithm for this model to the wild type data set in or-

der to see if it captures the observed motion patterns and populations with

heterogeneous movement patterns.

3.2 An Introduction to the Statistical Tools

used for Parameter Estimation

The main statistical tool we use for this project is Expectation Maximization

(EM). EM is used as a parameter estimation algorithm in the case of incom-

plete data, for example with Hidden Markov Models (HMMs). In particular,

the EM algorithm can produce probability distributions which predict things

like most probable state at a specific time. This sort of distribution could be

useful to us as we attempt to characterize Salmonella motion. However, before

we can understand EM algorithm, we must first take a look at likelihood func-

tions and maximum likelihood estimation, as these are fundamental building

blocks for the more complex Expectation Maximization algorithm.

3.2.1 Likelihood Functions

We can construct a function to describe the probability of seeing a certain set

of observations, {Xt}, given the parameters, θ. This function, called the likeli-

hood function holds a central place in the parameter estimations for stochastic

models as this function describes the relationship between what we know and
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what we want to explore. The likelihood function is a function of the parame-

ters present in a system, not the samples, which allows us to treat the random

variables as observations which are fixed[11, 26]. In the case of complete data,

the set θ contains all of the variables in the network, and the likelihood function

can be written as

L(θ) =
T
∏

t=1

P (Xt|θ), (3.15)

where P (Xt|θ) is the probability density function (PDF) that corresponds to

the system. A probability density function is the probability that a value, X

would be chosen when sampling that random variable, that is

Prob[X ∈ A] =

∫

A

P (x | θ)dx.

where A is a set of interest that values X can take [29]. If one maximizes the

likelihood function, one finds the set of parameters which most likely created

the observations Xt. However, maximizing the likelihood function itself can be

quite complex, so we instead consider the logarithm of the likelihood function.

If we assume our probability density functions are positive. Then, the

likelihood function will be positive as it is the product of the probability density

functions at every time point. Because the logarithmic function is concave and

strictly increasing, optimizing the log of the likelihood function is equivalent

to optimizing the likelihood function.

Lemma 3.2.1. Maximizing the logarithm of a function that maps values from

R
n → (0,∞) is equivalent to maximizing that function

Proof. Let g : (0,∞) → R such that g(x) = ln (x), then g′(x) = 1
x
> 0 ∀
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x > 0. Let f : Rn → (0,∞) be a differentiable function. If we consider the

composite function h(x) = g(f(x)), h : Rn → R, the chain rule tells us that

∇h(x) = g′(f(x))∇f.

Additionally, since g′(f(x)) > 0 it follows that ∇h(x) = 0 ⇐⇒ ∇f =

0. Therefore, we see that maximizing the log likelihood also maximizes the

likelihood.

The process of maximizing the log likelihood can be used to estimate pa-

rameter values. This method of parameter estimation, referred to as Max-

imum Likelihood Estimation, is a foundational method for parameter esti-

mation when working with stochastic processes. The specifics of Maximum

Likelihood Estimation are explored in Subsection 3.2.2.

3.2.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) obtains the parameters in a given

model by optimising the likelihood or the log likelihood. When we have a

complete data set for a given model, MLE offers an accurate estimation of

the parameters through this method. For example, if we have basic Brownian

Motion, ∆X =
√
2D∆W with ∆W being a normal random variable with

mean zero and variance ∆t, ∆W = N(0,∆t), for some ∆t and we want to

approximate D, we can consider

L(D) =
T
∏

t=1

P (∆Xt|D). (3.16)
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Since we have a normal distribution for our random variable and θ = D,

we can use the Gaussian PDF as the likelihood function to get

L(D) =
T
∏

t=1

1√
4πD∆t

e
−∆X2

t
4D∆t ,

ln(L(D)) =
T
∑

t=1

ln(
1√

4πD∆t
e

−∆X2
t

4D∆t ),

ln(L(D)) =
T
∑

t=1

ln(
1√

4πD∆t
)−

T
∑

t=1

∆X2
t

4D∆t
.

This function can subsequently be optimized with respect to D by using

logarithmic differentiation in one dimension to obtain

D =

∑T
t=1 ∆X2

t

2T∆t
. (3.17)

As additional complexities, such as switching diffusion or multiple dimen-

sions are added, the formula becomes more complex as well. In the case where

we need to solve for diffusion and velocity magnitude in the following example

of Brownian motion

∆X = vmagv(φt, θt)∆t+
√
2D∆W, (3.18)

we have a bi-variant normal distribution where there is no correlation between

the x and y positions. Thus, the probability density function can be written

as

f(∆x,∆y) =
1

2πσxσy

e
−1
2
[(∆x−µx

σx
)2+(

∆y−µy
σy

])2
, (3.19)
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Where σx = σy =
√
2D∆t and µx = vmagvx(φt, θt)∆t and µy = vmagvy(φt, θt)∆t

where vx(φt, θt) is the velocity component in x, vy(φt, θt) is the velocity com-

ponent in y, and vmag is the velocity magnitude. For simplicity,

v(φt, θt) =







vx(φt, θt)

vy(φt, θt)






.

Simplifying the exponent we see

−1

2
[
∆x− µx

σx

+
∆y − µy

σy

] =
−1

2
[
(∆x− vmagvx(φt, θt)∆t)2 + (∆y − vmagvy(φt, θt)∆t)2

2D∆t
].

Therefore, the likelihood function can be written as

L(θ) =
T
∏

t=1

1

4πD∆t
e

−1
2

(∆Xt−vmagvx(φt,θt)∆t)2+(∆Yt−vmagvy(φt,θt)∆t)2

2D∆t . (3.20)

Note here that θ = (vmag, D), so this is a multivariate optimization prob-

lem, and we must take the derivative with respect to v and with respect to D.

The subsequent log-likelihood function is

ln (L(θ)) =
T
∑

t=1

1

4πD∆t
+

T
∑

t=1

−1

2

(∆Xt − vmagvx(φt, θt)∆t)2 + (∆yi − vmagvy(φt, θt)∆t)2

2D∆t

ln (L(θ)) =
T
∑

t=1

1

4πD∆t
+

T
∑

t=1

−1

2

||∆Xt − vmagv(φt, θt)∆t||22
2D∆t

. (3.21)

Differentiating with respect to diffusion, D, we see that

∂L(θ)
∂D

ln (L(θ))
=

T
∑

t=1

−1

D
+

T
∑

t=1

||∆Xt − vmagv(φt, θt)∆t||22
4D2∆t

, (3.22)
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and then simplifying we get

∂L(θ)
∂D

ln (L(θ))
=

T
∑

t=1

||∆Xt − vmagv(φt, θt)∆t||22 − 4D∆t

4D2∆t
, (3.23)

or equivalently

D =

∑T
t=1 ||∆Xt − vmagv(φt, θt)∆t||22

4T∆t
. (3.24)

Similarly, we can differentiate equation 3.21 with respect to velocity magnitude

and simplify to get

vmag =

∑T
t=1 ∆Xtv(φt, θt)

∑T
t=1 ∆t||v(φt, θt)||22

. (3.25)

Additionally, if there are more than one motion states present, which is the case

with our model, there exists an indicator function, ρt,s that is 1 if the particle

is in state s at time i, and 0 otherwise, giving us the following equations for

vmag and D

D =

∑T
t=1 ρt,s||∆Xt − vmagv(φt, θt)∆t||22

∑T
t=1 ρt,s4∆t

, (3.26)

vmag =

∑T
t=1 ρt,s∆Xtv(φt, θt)

∑T
t=1 ρt,s∆t||v(φt, θt)||22

. (3.27)

Given the complete data, we can construct a second indicator function

which describes the transition that occurs at a given time. This function is

given by ρ̃t,s̃s where ρ̃t,s̃s = 1 if a the particle transitions from state s at time

t − 1 to state s̃ at time t and = 0 otherwise. From ρ̃ and ρ we can then

calculate the matrix exponential for our transition rate matrix, Φ, discussed

in Section 3.1.1, with the equation

Φs̃,s =

∑T
t=2 ρ̃t,s̃s

∑T
t=2 ρt−1,s

. (3.28)
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From Φ we can calculate the transition rate matrix using a Taylor expansion

in t of Φ = etW .

These formulas for vmag, D, and the transition rate matrix however require

complete data, which in the case presented means that we need to know St

allowing for the generation of the indicator functions. If this information

is not known, additional work is needed. Thus, in models where we have

multiple states and the state assignments are unknown at specific time points,

a different approach is needed.

3.2.3 Models with Unobserved States

Stochastic processes in which state value is unknown have been called ”doubly

stochastic”. This term refers to the fact that the model has two stochastic

components, the first being the stochastic switches between states, and the

second being the stochastic observations. Rabiner et al. in particular refer

to doubly stochastic models as models with one stochastic process being un-

observed and underlying. In the paper ”An Introduction to Hidden Markov

Models,” Rabiner et al. define a Hidden Markov Model (HMM) to be one

such doubly stochastic model. Beyond defining HMMs as doubly stochastic

models, Rabiner only assigns three additional elements to this class of models.

He states that HMMs must have a finite number of states, that there must

be an observation at every time step, and that there is a state switch at each

time step. State switches can however include a literal switch into a new state

or remain in the previous state. This creates a concrete definition of a type of

model without imposing too many restrictions on what specifically qualifies.
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Within this framework, one can include models that are are time dependent

as well as models with discrete observations or continuous observations.

Rabiner et al. solidify this definition with a classic example of an HMM,

the coin toss problem. If someone is flipping one single fair coin, there are two

observed states, heads and tails, which correspond to observations. There is

one stochastic process and nothing is hidden. However, if we expand this prob-

lem to include an additional weighted coin, it gets more interesting. If someone

were to flip one of the coins behind a barrier and only announce whether the

coin lands on heads or tails and potentially switches coins between tosses, a

doubly stochastic process is created. The states become the fair coin and the

unfair coin, with a stochastic switching process happening between the two.

The observations correspond to whether the stochastically determined heads

or tails results occurs. Thus, a stochastic process dictates the observations as

well.

Additionally, the coin flip problem meets each of Rabiner’s three criteria, as

we only have two states, an observation at each time point, and each time point

corresponds to a state switch. Thus, this coin problem can be modeled with

an HMM[26]. Because of the stochastic nature of the underlying equations,

statistical tools can be utilized to answer some of the questions we have about

the model. Namely, statistical methods allow us to estimate the parameters

present in our model. In addition to being doubly stochastic, our model has a

discrete number of states, discrete observations at every time step, and there

is a possibility of state switching at every time step. Therefore, even though

our process models are not inherently a HMM, we can use the statistical tools

developed for HMMs on our models.
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Rabiner et al. cites the computation of the probability of the observation

sequence given the model, i.e. identifying the optimal state sequence, and opti-

mizing the model parameters to be the main problems plaguing parameter es-

timation methods for models with latent states. Therefore, the computational

expense is a problem we must consider. To address these problems, Rabiner

et al. outline the steps and mechanisms of the Forward-Backward algorithm

and Baum-Welch re-estimation formulas, two components of the Expectation-

Maximization routine which we utilize for our models. These algorithms focus

on calculating posterior distributions, such as the joint probability of the ob-

servations up until time T and the state at a given time t. The details of the

Forward-Backward algorithm and Baum-Welch re-estimation will be explored

in Section 3.2.4.

First, we need to expand on our understanding of Hidden Markov Models

and their statistical relationship to our model by exploring Zoubin Ghahra-

mani’s 2001 paper ”An Introduction to Hidden Markov Models and Bayesian

Networks”. The author defines a HMM as a tool for representing probability

distributions over sequences of observations that has states which are hidden

from the observer and satisfies the Markov property. This property allows for

the decomposition of the conditional probability of the sequence of states and

sequence of observations as follows:

P (S1:T , X1:T ) = P (S1)P (X1|S1)
T
∏

t=2

P (St|St−1)P (Xt|St), (3.29)

where St is the state at time t and X1:T is the sequence of observations from

time 1 to time T . The Markov property, as described in Section 3.1, thus
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holds important implications in the statistical calculations we will explore

later. Note that our model holds this property. The formal introduction of

the Markov property adds the necessary specificity to complete the calculations

needed for parameter estimations.

Just as Rabiner does, Ghahramani offers a strong look at Expectation Max-

imization through the lens of Forward-Backward and Baum-Welch algorithms.

The author states that EM works by alternating between maximizing a lower

bound of the likelihood function with respect to any distribution over the hid-

den variables and maximizing the parameters. Namely, during the E step we

generate a distribution while the parameters are held constant and during the

M step we maximize the parameters while the distribution is held constant.

The author offers a derivation for EM by first expressing the log probability

specifically as

log(P (S1:T , X1:T )) = log(P (S1)) +
T
∑

t=1

log(P (Xt|St)) +
T
∑

t=2

log(P (St|St−1)).

(3.30)

We used this derivation as a foundational block for all the work we did with

EM algorithm. In the next subsection, we will look at the various outputs and

components generated by the algorithms we use.

3.2.4 Expectation Maximization

As MLE is not enough to estimate parameter values in cases with incomplete

data, the Expectation Maximization (EM) algorithm can be used. The EM

algorithm has 2 steps: the expectation step (E-step) and the maximization

step (M-step). Both steps offer an important result. Specifically, the E-step
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finds a distribution over the latent states while the M-step optimizes over the

parameters. The M-step algorithm will look very similar to an MLE algorithm,

with the distribution generated in the E-step integrated in. In the case of our

model, the E-step produces the distribution of the probability of being in state

S at time t. This distribution can take the place of the indicator functions

which would be present in an MLE algorithm for our model with complete

data. There are a number of algorithms for the E-step, but we will discuss one

in particular, the Forward-Backward (FB) algorithm[11, 26].

It is important to note that the EM algorithm is an iteration. Initial

guesses for the parameter values pass through the E-step to find probability

distributions, which then pass through the M-step to update the parameter

estimations. Only the distributions are updated in the E-step, but the E-

step needs some parameter estimations to run. Similarly, the M-step only

updates the parameter estimations, but it needs the distributions to run. The

algorithm will continue alternating between the E-step and M-step, starting

with the E-step, for some prescribed number of iterations or until some error

bound is achieved on the M-step output.

By iterating over the E-step first and then the M-step, the EM algorithm

works as a coordinate ascent method to find the maximum of the likelihood

function[11, 6]. Additionally, because the E-step only adjusts the distribution

and the M-step only adjusts the parameter values, we cannot decrease the

likelihood after each combined EM iteration[11, 26, 6]. It can be rigorously

shown that the likelihood is not only non-decreasing, but it is strictly increas-

ing whenever we increase the distributions generated by the E-step[6]. This

means that with each iteration of both E-step and M-step we approach a local
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maximum for the set of parameters, and that at some point, we converge to

that local maximum.

If we recall, MLE maximizes the likelihood function, given by

L(θ) =
∏

t

P (Xt|θ).

However, in the case of incomplete data, the set of hidden variables, such as

unobserved hidden states, S must also be considered, and we see

L(θ) =
∏

t

P (Xt, St|θ). (3.31)

Generalizing this to time sequence data for time 1 : T , we get the equation

ln (L(θ)) = ln (
∑

ST

...
∑

S1

T
∏

t=2

P (Xt, St|Xt−1, St−1, θ)P (X1, S1|θ)). (3.32)

This formula is what our EM algorithm is optimizing through the iterative

cycle.

The E-step consists of the forward-backward algorithm. The FB algorithm

makes two complete passes over the data, once forward and once backward so

that a complete view of the data is used in generating the probability distribu-

tion. Through these passes over the data, we calculate two probabilities, which

we will call α and β. α and β will then be used to generate the probability

distributions ultimately produced by the E-step[11, 26].

Let St be the state at time t and X1:t be the sequence of observations from

X1 to Xt. We can then represent the joint probability of St and X1:t as
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αt = P (St, X1:t), (3.33)

which can be simplified into an iterative formula in the following way

αt =
∑

St−1

P (St−1, X1:t−1)P (St|St−1)P (Xt|St),

αt =
∑

St−1

αt−1P (St|St−1)P (Xt|St), (3.34)

where α1 is some initial guess for the first state assignments. For example,

α1 can be taken to a uniform distributions across all states, or a distribution

based on the initial guesses for the transition rates. We can then represent the

conditional probability of Xt+1:T given St as

βt = P (Xt+1:T |St). (3.35)

Similar to the α value, β can be simplified into the following iterative

formula

βt =
∑

St−1

P (Xt+2:T |St+1)P (St+1|St)P (Xt+1|St+1),

βt =
∑

St−1

βt+1P (St+1|St)P (Xt+1|St+1), (3.36)

where βT is initialized to be a vector such that every entry, bt = 1.

The calculation of α and β completes the Forward-Backward algorithm,

but we are not yet ready to go into the M-step[11, 26]. As mentioned earlier,

the E-step has one more component, taking our α and β values over time and

using them to generate the two expectations needed to complete the M-step.
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The first expectation, P (St|X1:T , θ), can be seen as the probability of being in

state S at time t given the parameters and sequence of observations. At each

time point t, it is a vector with the number of entries equal to the number of

states[11, 26, 6].

P (St|X1:T , θ) =
P (St, X1:T )

∑

St
P (St, X1:T )

=
P (St, X1:t)P (Xt+1:T |St)

∑

St
P (St, X1:t)P (Xt+1:T |St)

=
αtβt

∑

St
αtβt

.

(3.37)

Similarly, the second expectation, P (St, St+1|X1:T , θ), is the joint proba-

bility of being in state i at time t and j at time t − 1 and the sequence of

observations. At each time point t, it is a n by n matrix where n is the

number of states.

P (St, St+1|X1:T , θ) =
P (X1:T , St, St−1)

∑

St

∑

St−1
P (X1:T , St, St−1)

=
P (St−1, X1:t−1)P (St|St−1)P (Xt|St)P (Xt|St)

∑

St

∑

St−1
P (St−1, X1:t−1)P (St|St−1)P (Xt|St)P (Xt|St)

=
αt−1Φt,t−1P (Xt|St)βt

∑

St

∑

St−1
αt−1Φt,t−1P (Xt|St)βt

,

(3.38)

where Φ is the matrix exponential as defined in Section 3.5.

From here, we can combine the concepts of the MLE formulas given in

equation 3.26 and equation 3.27 and this expectation P (St|X1:T , θ) to calculate

the parameters for each state in our model[11, 26, 6]. Namely, where we have

our indicator function, ρt,s, we will now have P (St|X1:T , θ). As this expectation

represents the probability of being in state S at time t, it serves here as a

quasi-indicator function or a weight on the observations at that time step. For

instance, the probability that a set of observations at a given time point, lets
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call it τ , is a result of a cell being in a given diffusion state, sD, is given by

P (Sτ = sD|X1:T , θ). This would then be reflected in our calculation of D,

as these observations would be expressed proportionally to that probability.

Making this adjustment to the MLE formulas given in equation 3.26 produces

the following equation

D =

∑T
t=1 P (St = sD|X1:T , θ)||∆Xt||22
∑T

t=1 P (St = sD|X1:T , θ)4∆t
. (3.39)

Similarly, given W is the set of states corresponding to a swim state (after

discretizing the continuous direction variables φ and θ) so that a single swim

state is comprised of multiple, discrete states as described in Section 3.1.4,

equation 3.27 can be adjusted to get

vmag =

∑

s∈W

∑T
t=1 P (St = s|X1:T , θ)v(φt, θt)∆Xt

∑

s∈W

∑T
t=1 P (St = s|X1:T , θ)∆t||v(φt, θt)||22

, (3.40)

D2 =

∑

s∈W

∑T
t=1 P (St = s|X1:T , θ)||∆Xt − vmagv(φt, θt)∆t||22
∑

s∈W

∑T
t=1 P (St = s|X1:T , θ)4∆t

, (3.41)

where s in vmag and D2 are the swim states. Additionally, we can take

equation 3.28 and replace the indicator function ρ̃ from Section 3.2.2 with

P (St, St+1|X1:T , θ) to get the updated equation for the matrix exponential Φ.

Given states s̃ and s, we see that

Φs̃,s =

∑T
t=2 P (St−1 = s, St = s̃|X1:T , θ)
∑T

t=2 P (St−1 = s|X1:T , θ)
. (3.42)

By combining the MLE formulas with the expectations generated by the

FB algorithm, EM pulls from the established concept of MLE with a complete
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view of incomplete data. Since P (St|X1:T , θ) is calculated with αt and βt,

it creates an accurate view of the data in relation to the potential states.

This is because αt and βt view the data set as a whole and pass through the

observations completely forwards and backwards, respectively. Notice that

all of the MLE results given by equations 3.26 and 3.27 weight each track

by the number of increments. Hence, EM naturally results in by-increment

estimations.

The use of EM reveals important information about the Salmonella. Not

only does the M-step estimate the diffusion values, velocity magnitude, and

transition rates between states, but the E-step also estimates important infor-

mation. In particular, the E-step produces the distributions P (St|X1:T , θ) and

P (St, St+1|X1:T , θ), given by equations 3.37 and 3.38 which give valuable infor-

mation about how the cells are behaving. From P (St|X1:T , θ), we can discover

the most probable state a cell is in at a given time and from P (St, St+1|X1:T , θ)

we can discover the most probable transition at a given time[11, 26]. From

this information, we can observe the tracks as states through time, as well

as overlay the states into the video. This visualization of the model results

allows us to explore how well each model describes the motion seen in the

video data. To validate our EM code, we use it to process simulated data,

in order to test the results at each step. By utilizing the Gillespie algorithm

to simulate the stochastic state switches, we are able to create tracks which

accurately mimicked the experimental data we have, and since we know the

expected parameter values, we could confirm the accuracy of our EM code.
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3.2.5 Information Criteria

When considering multiple models in the context of a give dataset, one can

use a so-called information criterion (IC). On the surface, information crite-

rion seem to hold similar goals to ours. An IC assigns a real-valued score to a

model based on certain criterion such as model complexity, parameter fit, and

other measurable factors. Popular IC include but are not limited to Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC). These

IC are designed specifically to compare models by providing a cost function

that balances model complexity with predictive accuracy. The idea is to find

a model with the simplest structure and smallest number of parameters that

also provides a good match the data. Models with fewer parameters avoid the

problem of overfitting and are typically better able to describe new data. For

this reason, models that have optimal IC scores are sometimes thought to be

more reflective of the truth. However, taking without imagination their pur-

pose as dictated by their theoretical formulations, IC are merely sophisticated

measures of predictive power. In statistics predictive accuracy is formulated in

a concrete way, for example using the Kullback-Leibler distance, and does not

necessarily consistently yield higher scores for models that are consistent with

causality and/or known physical laws. Rather than relying on IC to compare

models, we seek to perform a qualitative model comparison that synthesizes

a range of factors, including our knowledge of how Salmonella are known to

operate, with the goal of better understanding motion heterogeneity.
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3.3 Validation of Statistical Tools Using Gen-

erative Simulations

3.3.1 An Adjustment to the Gillespie Algorithm

While the Gillespie algorithm is fundamental to simulating data for our model,

it cannot give us everything we need. The algorithm can be used to simulate

which state a cell is in at time t, as well as the times at which switches happen,

but it cannot simulate the change in position experienced by the particle. To

do this, we must first consider a fixed time step, ∆t > 0, so that the position

of our simulated particle can be recorded at every time step. While this step

size does not need to be constant, it is helpful for the step size to be small,

so that a few observations can be observed prior to a switch, however this

is not necessary. Then, for every time step, a normal random variable with

mean 0 and variance ∆t should be pulled. The track can then be propagated

forward utilizing the SDE for the given state as well as the random variable

pulled. For example, if the particle is in the dormant state, for each time point

X(t) = X(t−∆t)+
√
2D0N(0,∆t). SDEs for all states in the three-state model

can be seen in equation 3.14.

This forward propagation of the particles position is continued until time

t+τ where t+τ is the time of a switch to a new state. At that point, the SDE

used to calculate position is updated. This continues for a certain number of

time points or a specific length of time. A sample trajectory can be seen in

Figure 3.2. The simulation of data and testing of our EM algorithm on the

simulated data is an important step in this project as it allowed us to confirm
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ing diffusion-driven random walk in two dimensions is calculated via Maximum

Likelihood Estimation. After that, we adjust the particle to experience switch-

ing diffusion. These switches happen at random time points, facilitated by the

Gillespie Algorithm. As this simulation proceeds, we record not only the po-

sition data at every time point but also which diffusion coefficient the particle

had at every time point. With this information we are again able to use MLE

to calculate both diffusion coefficients. Additionally, we are able to start the

process of developing our EM algorithm. Given that we know all of the pa-

rameter values and the diffusion value at the start of the simulation, the EM

algorithm can be checked at every step.

From here, we add a third state the particle could switch into. This state is

a swim state in two dimensions. The EM algorithm is subsequently updated to

include the estimation for velocity magnitude and the corresponding diffusion

value. Once that version of the EM algorithm is rigorously tested, we add

a third dimension to our simulations. Again, our EM algorithm is tested

with this update to the simulations. The next update came only to the EM

algorithm and not the simulations however. Given the nature of the data we

have, i.e. the tracking data from microscopy data as described in Section 2.5,

we know we will be dealing with cells which have three dimensional movement

but only two dimensional data. In order to account for this fact, we simulate

3D tracks and fit an EM algorithm which only uses 2D data. To do this, we

adjust the M-step calculations of velocity magnitude by dividing by ||ṽ(φt, θt)||22
where ṽ(φt, θt) is the x and y components of v(φt, θt). This changes the formula
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given by equation 3.40 to

vmag =

∑

s∈W

∑T
t=1 P (St = s|X1:T , θ)ṽ(φt, θt)∆Xt

∑

s∈W

∑T
t=1 P (St = sX1:T , θ)∆t(sin (θt))2

, (3.43)

where θ is the vertical angle on the unit sphere corresponding to a given

discretized state s.

To confirm our algorithm works for the amount of data we have, additional

simulated tracks are created and subsequently ran through the EM algorithm.

Additionally, any time we extended the model to try to capture population

heterogeneity, the EM algorithm is always first tested and debugged on sim-

ulated data in this manner. In particular, for the heterogeneous movement

pattern models we present in Section 4.2, tracks are simulated as being from

one population or the other, i.e. none of the data had switches between pop-

ulation. However, the structure of our EM algorithm accounts for the pos-

sibility of switching between tracks, and we confirm that the EM algorithm

would predict the populations as phenotypically separate by setting the initial

guesses for these rates to be non zero. Therefore, as we iterate through our EM

algorithm, we can test to make sure the algorithm predicts the populations

as disjoint by confirming the estimations for those rates approach zero with

each iteration. By testing the parameter estimation tool on simulated data

in this way, we are able to gain confidence in the fit and results produced on

experimental data.

To demonstrate the accuracy of our EM algorithm on simulated data, Fig-

ure 3.3, Figure 3.4, and Figure 3.5 were created. For this graphic, we use

the four-state model discussed in Section 4.2 and 3D movement restricted to
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2D data. We simulated one track from each of the two populations for a

combined total of 10,000 increments. The increments were divided according

to the indicated fraction in the bottom row of Figure 3.5. For example, the

tracks that correspond to 30% diffusers and 70% swimmers have 3,000 and

7,000 increments, respectively.
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Chapter 4

Results: Stochastic Models for

Characterizing Heterogeneity of

Salmonella Motion

In this chapter we will explore the results of the three-state model, given by

equations 3.13 and 3.14, on wild type cell data. After discussing the short-

comings of these results we will outline and explore the various heterogeneous

models we develop. Finally, we will discuss the biological implications of the

parameter estimations as well as visualize the E-step results by examining the

most probable state at a given time t.
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Parameter Estimated Value
D0 0.0143 µm2/sec
D1 0.1357 µm2/sec
D2 1.1981 µm2/sec
vmag 19.743 µm/sec
k1 0.6339 transitions/sec
k2 0.4117 transitions/sec
k3 0.4125 transitions/sec
k4 1.5967 transitions/sec

P (St = 0) 0.34
P (St = 1) 0.525
P (St = 2) 0.135

Table 4.1: Parameter Estimations for the three-state Model, given by equations
3.13 and 3.14 (see Figure 3.1)

4.1 Results of Applying Expectation Maximiza-

tion to the Homogeneous Population Model

and Wild Type Cell Data

The three-state model, given by equations 3.13 and 3.14, is applied to the wild

type data set in a few different ways. First, the algorithm is applied to the

individual duodenum, ileum, and jejunum data sets for each mouse. After, the

data is grouped together by GI tract section over all mice. We then consider

the data set as a whole, combining the data from all mice and all sections of

the GI tract together. The results for the combined view of the data can be

found in Table 4.1

The results offer both insights into the nature of heterogeneity in the pop-

ulation. While a large portion of the resulting parameter estimations are rela-

tively similar, there are a few noticeable outlying mice whose data for specific
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GI track sections do not follow the general trend. With the velocity estima-

tions for cells in specific mice ranging from 0.1049µm/sec to 26.83µm/sec,

it is clear that while some cells run and tumble as expected, other groups

of cells experience almost exclusively undirected motion. While some of the

anomalous parameter estimations can be explained by a small number of data

points, other anomalous mice appear to have sufficient data points. Thus,

the microscopy videos for these mice are reexamined. Overwhelmingly, these

outlier mice appear to have less directed motion Salmonella than the rest of

the samples, which supports the lower velocity magnitude estimations for the

cells in these mice.

Interestingly, even though the velocities differ, all of the transition rate esti-

mations are similar. This is unexpected due to the nature of Markov processes.

Since Markov processes are ”memory-less,” we should see cells transitioning

through all three-states in a single track given the estimated transition rates

(see 4.1). However, we observe that most cells either switch exclusively be-

tween dormant and tumble or exclusively between tumble and swim, which

violates the Markov property, as it implies memory. That is, if a cell has

swam in the past, it appears more likely to swim in the future, breaking the

Markov property.

We also examine the steady state probabilities for our stochastic process by

solving the linear system 0 = WP∞ given by equation 3.10 in Section 3.1.2 for

P∞ and substituting our transition rate matrix from equation 3.13 for W . To

do this, we used Cramer’s Rule to solve the linear system. This investigation

reveals that about 34% of cells are expected to be in the dormant state at

any given time, with 52% of cells in the tumble state and the remainder in
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the swim state. This prediction matches a by-increment analysis, where the

most probable state is examined at each time. We expect the model to assign

cells to the dormant state whenever an extended period of undirected motion

occurs, as that state is designed for the cells with the lowest diffusivity and

most undirected motion, but the steady states suggest a large portion of those

cells are assigned to tumble. These observations offer insight for the nature of

a phenotypic heterogeneity which can be observed in motion patterns within

our experimental data. In an attempt to see if this trend is observable in

the video data, all of the videos in the wild type set are then reexamined

through a heterogeneous population lens. It is found that cells appear to be

predominantly dormant or predominantly swimming in the videos, or that two

sub-populations are present.

We also visualize the data as tracks through time in an attempt to examine

how different the potential populations are. Utilizing ImageTank, a program

specifically designed to view and visualize scientific images, and the distribu-

tions generated by the E-step of the EM algorithm, we are able to create useful

visualizations[35]. These figures, seen in Figure 4.1, illustrate the stark dif-

ference between cells with directed motion and cells with undirected motion.

These visual results support our previous conclusions from inconsistent param-

eter estimations across individual mice as well as the steady state predictions

placing so many cells in the tumble state. The observation of two motion

patterns leads us to start thinking about our data as two heterogeneous sub-

populations. This in turn leads to the exploration of model extensions that

explicitly model multiple sub-populations.
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Similar to the homogeneous model, there would be transitions between

dormant and tumble as well as tumble and swim within each population.

However, there would also be the additional possibility of transition between

populations, either dormant to dormant or tumble to tumble. Through the it-

erations of EM, if these states represent sub-populations in the way we expect,

the inter-population transition rates should converge to near zero values as the

M-step maximizes the parameter values, suggesting no transitions between the

two populations. That is, we set up an irreducible transition rate matrix that

should converge in the coordinate ascent sense described in Section 3.2.4 to a

near reducible transition rate matrix (or a matrix which is similar to a block

upper triangular matrix when simplified) when applied to the data via EM

algorithm. This model has master equation
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value, with the velocity estimating to around 0.7988µm/sec. This is an almost

negligibly small value for the velocity magnitude to take especially if compared

to state 5, which has a velocity magnitude of 22.7064µm/sec. Additionally,

the rate of switching to the fast tumble, state 4, from slow tumble, state 1,

is higher than the other inter-population transitions. This rate, k11 in Figure

4.2, is high enough at around 0.43 transitions/sec to be comparable to the

intra-population transition rates, indicating over time more cells will transition

into the fast population. This contradicts the prediction of heterogeneous

populations, as well as contradicts the video data which suggests the majority

of cells are divided between the slow and fast populations.

Given the inconsistencies which arise from the two swimming population

model, given by equations 4.1 and 4.2, we propose a change to the slow swim

state, state 2. Since the velocity magnitude of this state is so low, we adjust

it to be a second diffusion state, with a faster diffusion rate than the tumble

state for that population. The updated model diagram is in Figure 4.3, and

this model will be referred to as the diffusers and swimmers model. We hope

this would lower the k11 rate, as it gives state 1 another, faster diffusion state

to transition into, acting as an alternative to transitioning into state 4. Giving
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Parameter Estimated Value
D0 0.001256 µm2/sec
D1 0.007389 µm2/sec
D2 0.06949 µm2/sec
v2 0.7988 µm/sec
D3 0.02658 µm2/sec
D4 0.2231 µm2/sec
D5 1.1044 µm2/sec
v5 22.7064 µm/sec
k1 2.141 transitions/sec
k2 0.60902 transitions/sec
k3 0.1165 transitions/sec
k4 0.06656 transitions/sec
k5 0.6028 transitions/sec
k6 0.40804 transitions/sec
k7 0.86701 transitions/sec
k8 14.2730 transitions/sec
k9 0.03748 transitions/sec
k10 0.009943 transitions/sec
k11 0.43 transitions/sec
k12 0.04785 transitions/sec

P (St = 0) 0.030
P (St = 1) 0.1043
P (St = 2) 0.1826
P (St = 3) 0.2662
P (St = 4) 0.3933
P (St = 5) 0.02389

Table 4.2: Parameter Estimations for the Two-Swimming Populations Model from
Figure 4.2.
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the same master equation

∂P (t)
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but the following SDEs for each state

dX =
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(4.4)

This variation of a six-state model also leads to parameter estimations,

which can be viewed in Table 4.3, that appear inconsistent with the video

data. Namely, the transition rates appear inconsistent with what we would

expect of a stochastic process model representing the video data. To start,

the transition rates between swimming dormant, state 3, and tumble, state 4,

rates k5 and k6 in Figure 4.3 are smaller than any rate estimation we have seen
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Parameter Estimated Value
D0 0.00149 µm2/sec
D1 0.01716 µm2/sec
D2 0.06749 µm2/sec
D3 0.0072017 µm2/sec
D4 0.2275 µm2/sec
D5 1.0563 µm2/sec
vmag 24.3719 µm/sec
k1 0.0607012 transitions/sec
k2 0.009698 transitions/sec
k3 0.9656 transitions/sec
k4 0.6784 transitions/sec
k5 0.00013914 transitions/sec
k6 .0000030073 transitions/sec
k7 1.436 transitions/sec
k8 14.36 transitions/sec
k9 0.2038 transitions/sec
k10 0.1159 transitions/sec
k11 1.556 transitions/sec
k12 0.6544 transitions/sec

P (St = 0) 0.032
P (St = 1) 0.202
P (St = 2) 0.289
P (St = 3) 0.0763
P (St = 4) 0.341
P (St = 5) 0.059

Table 4.3: Parameter Estimations for the Diffusers and Swimmers Model (see
Figure 4.3)
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population and the tumble state of the swimmer population. The new model,

referred to as the five-state model, is depicted in Figure 4.4. The idea with

this update is to capture more fully the idea that cells either experienced

predominantly directed motion or predominantly undirected motion. This

change is reflected in our master equation

∂P (t)
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and the following SDEs for each state
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(4.6)

At first glance, this five-state model, given by equations 4.5 and 4.6, seems

to do a good job of classifying the motion and fitting parameters to the data.

The parameter estimations can be viewed in Table 4.4. However, we still have

some slight inconsistencies in the transition rates. k8, the rate of switching

from tumble to diffusion 1 in Figure 4.4 is comparable to k4, the transition
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Parameter Estimated Value
D0 0.034 µm2/sec
D1 0.2486 µm2/sec
D2 0.8996 µm2/sec
D3 0.385 µm2/sec
D4 1.529 µm2/sec
vmag 27.385 µm/sec
k1 0.6758 transitions/sec
k2 1.478 transitions/sec
k3 0.0679 transitions/sec
k4 0.5179 transitions/sec
k5 2.9905 transitions/sec
k6 0.9441 transitions/sec
k7 0.0437 transitions/sec
k8 0.472 transitions/sec

P (St = 0) 0.59
P (St = 1) 0.27
P (St = 2) 0.035
P (St = 3) 0.025
P (St = 4) 0.08

Table 4.4: Parameter Estimations for the five-state Model (see Figure 4.4)
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diffusers population has a ”diffusion 1” state and a ”diffusion 2” state while

the swimmer population has a tumble and a swim state. The goal with this

model is to combine what we learned from the previous models with what we

see in the video data, i.e. cells that experience run and tumble motion and cells

that experience extended undirected motion. Here again we build a possibility

of switching between populations into the model with transition possibilities

between slow diffusion, state 1, and tumble, state 2 as demonstrated in Figure

4.5 with the goal of this irreducible transition rate matrix converging to a

near reducible transition rate matrix just as with the previous heterogeneous

population models. This update gives us our new master equation
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∂t
=



















−k1 k2 0 0

k1 −k2 − k5 k6 0

0 k5 −k3 − k6 k4

0 0 k3 −k4



















P (t) (4.7)

and the following SDEs for each state
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The results of the four-state model, given by equations 4.7 and 4.8, EM

algorithm on our wild type data are consistent with out observations of a

run and tumble sub-population and a diffusion sub-population. The results
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Parameter Estimated Value
D0 0.0339 µm2/sec
D1 0.2705 µm2/sec
D2 0.4224 µm2/sec
D3 1.1618 µm2/sec
vmag 31.723 µm/sec
k1 0.6817 transitions/sec
k2 1.4693 transitions/sec
k3 0.1216 transitions/sec
k4 2.7691 transitions/sec
k5 .0361 transitions/sec
k6 .0604 transitions/sec

P (St = 0) 0.59
P (St = 1) 0.27
P (St = 2) 0.05
P (St = 3) 0.08

Table 4.5: Parameter Estimations for the four-state Model (see Figure 4.5)

the most probable state of a cell at a specific time with the position data.

We hope to qualitatively confirm the strength of our heterogeneous four-state

model, given by equations 4.7 and 4.8, with these visualizations. By using

this information and ImageTank, a program specifically designed to view and

visualize scientific images, we are able to visually compare and contrast the

homogeneous population model with the four-state model[35].

4.2.2 Visualization of Results

Just as we do with the three-state model, given by equations 3.13 and 3.14,

in Figure 4.1, we visualize the tracks as states through time using the E-step

predictions from our four-state heterogeneous population EM-algorithm. At

first glance, a side-by-side comparison of the states through time from the

three-state model, given by equations 3.13 and 3.14, and our four-state model,
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in order to experience the swimming motion. In this population, we observe

diffusivity estimations from Table 4.5 of 0.4224µm2/sec and 1.1618µm2/sec

in the swim and tumble states respectively, with a velocity magnitude of

31.723µm/sec in the swim state. In contrast, the three-state homogeneous

model estimates the velocity magnitude for swimming to 19.743µm/sec.

Additionally, we see from Table 4.5 that cells in the four-state model,

given by equations 4.7 and 4.8, switch from run to tumble at a rate of 2.7691

transitions/sec and tumble to run at a rate of 0.1216 transitions/sec. These

transition rates are faster than the three-state model, given by equations 3.13

and 3.14,, who experienced rates of 1.5967 transitions/sec for swim to tumble

and 0.4125 transitions/sec for tumble to swim, heightening our claim that

the four-state model more accurately matches the video data, as we expect

switches between tumble and swim to happen quite rapidly.

Since our models are ”doubly stochastic”, we also consider the steady state

estimations as discussed in Section 3.1.2. To do this, we just need to solve the

linear system 0 = Wρ where W is the transition rate matrix and ρ is a vector

containing the steady state probabilities. Given a population of independent

but identical individuals, as with our population, the steady state estimation

can represent percentage of individuals in a state at a given time or percentage

of time a track spends in a given state. In the case of the heterogeneous models,

the former interpretation makes more sense, as it is not likely for a track to be

in both slow and fast populations. Additionally, we can compare the steady

state approximations to the observed percentage of increments spent in each

state, to try to understand how the long term dynamics play out with our

nearly irreducible transition rate matrix, with the only transitions happening
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between the populations being k5 = 0.0361 transitions/sec and k6 = 0.0604

transitions/sec as seen in Table 4.5.

For the four-state model, given by equations 4.7 and 4.8, we see the steady

state predicting 13% of cells in this sub-population, with 8% of all cells swim-

ming. Because the matrix is nearly reducible, we did not expect the steady

state calculations to fully match the observations, but we observe exactly 8%

of time increments are spent in the swim state and 13% are spent in either

the swim state or the tumble state per the E-step predictions. This matches

the steady state predictions exactly. Interestingly, with the three-state model,

given by equations 3.13 and 3.14,, our steady state predicts 13% of cells swim-

ming with 13.5% of observed increments being in the swim state. This again

points to the three-state homogeneous model overestimating the number of

increments spent swimming compared to the four-state model. The state es-

timation generated by the three-state model also predicts 52% of cells are in

the tumble state, which is a large discrepancy from the expected and observed

steady states in the four-state model.

As we saw earlier, host immune cell pressures leads to the existence of cells

in populations that lack motion structures[31, 5]. The lack of motion structures

such as flagella would cause cells to experience diffusion-driven motion only.

This diffusive motion can be observed in the sub-population with no swim

state. In the four-state heterogeneous model, given by equations 4.7 and 4.8,

this sub-population has two options for motion, the states we call diffusion

1 and diffusion 2 in Figure 4.5. Both of these states are classified only by

diffusion-driven motion, with no directed motion. For these states, we see

from Table 4.5 diffusivity estimations of 0.0339µm2/sec and 0.2705µm2/sec
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for diffusion 1 and diffusion 2 respectively. In comparison, dormant cells in

the three-state model, given by equations 3.13 and 3.14, experience a diffusion

rate of 0.0143µm2/sec, which again indicates that with the three-state model,

more cells are being mapped to the faster motion states in comparison to the

four-state model state prediction. The four-state model also predicts a rate of

0.6817 transitions/second to switch from diffusion 1 to diffusion 2 and a rate

of 1.4693 transitions/second to switch from diffusion 2 to dormant 1.

Other possible reasons a cell would only experience the slower diffusion-

driven motion states include cells which are in the process of developing flag-

ella, cells which have flagella which are not rotating, or cells with a smaller

number of un-synchronized flagella[17]. One question which is not easily an-

swered is what would cause a cell to switch between the two diffusion states in

this sup-population? One possible explanation is a cell synchronizes or unsyn-

chronizes more flagella. That is, if a cell with 6 flagella has 3 rotating clockwise

and 3 rotating counterclockwise could potentially experience a change in dif-

fusion if it switched to 2 clockwise rotating flagella and 4 counterclockwise

rotating flagella. Another explanation could potentially be that a cell is in

the process of flagellar development, but does not fully develop their flagella

enough to experience directed motion in our 30 second videos.

We can again turn to the steady state estimations for the four-state model,

given by equations 4.7 and 4.8, for additional insights. These estimations

place a total of 87% of cells in either the diffusion 1 or the diffusion 2 state.

Additionally, we observe with the E-state expected values that 87% of time

increments are in the diffusion 1 or diffusion 2 state, corroborating the steady

state estimations. This suggests the vast majority of cells in our sample ex-
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perience only undirected motion. In contrast, the three-state model, given

by equations 3.13 and 3.14, only has steady state estimations of 34% of cells

in the dormant state. This reflects that the three-state model predicts more

cells in tumble and swim, reducing the diffusion and velocity estimators for all

states, which is what we observe in the video data.

The fact that the four-state model, given by equations 4.7 and 4.8, predicts

more cells experiencing undirected motion raises the question if lack of flagella

is the only source of this distinct phenotypic heterogeneity? Can flagella turn

off? Does a cell with one unsynchronized flagella experience a different diffu-

sivity than a cell with multiple unsynchronized flagella? What type of motion

is experienced when a cell is building flagella? How may cells from a given data

set experience these various potential causes of the phenotypic heterogeneity?

Unfortunately, the model cannot answer those questions since we observe only

their motion, and we do not have biological evidence or technology to offer

further insights. However, we can look at some of the more ambiguous results

in order to attempt to gain additional insight into the observable phenotypic

heterogeneity.

The cells which we see switch between the diffusion state and the tumble

state stands as a third and unofficial sub-population. These cells interest us

because they go against our assumption that two distinct sub-populations ex-

ist. These are the cells which have a high probability of at least one increment

coming from the undirected motion population and one increment coming

from the directed motion population. Various steps are taken to examine and

identify these tracks. First, the array P (St|X1:T , θ), given by equation 3.37, is

investigated for each track. For each time point, the state number which gave
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the maximum value in this array is recorded. Any track which has at least

one time point where the maximum value is from the population experiencing

undirected motion and one time point where the maximum value is from the

directed motion population is recorded. This occurred in approximately 8%

of tracks.

Similarly, the other probability generated by the E-step of the Expecta-

tion Maximization algorithm, the matrix P (St, St+1|X1:T , θ), given by equa-

tion 3.38, is also examined. Again, for each track, the maximum value for

every time point is recorded. Every track which had at least one time point

with a most probable transition being from one sub-population to the other is

recorded.

Next, the video location of every track that is flagged by this process of

investigating posteriors is recorded. All such videos are then examined in

order to investigate potential causes for switches between populations. To

investigate this, we use ImageTank as described in Section 4.2.2 to visualize

these tracks as states through time, but also overlaying the predicted state

values onto the videos. These methods allow us to examine the ambiguous

tracks directly. Additionally, we examine the actual probability values present

in the two E-step results, as described in Section 3.2.4, in order to see if those

offer any insights as well. This is a more indirect examination of the tracks.

Through this process, we are able to answer some of our questions regarding

these cells.

Given that our cells experience motion in three dimensions but the par-

ticle tracker works on a two dimensional video, occasionally tracking errors

happen. If cells cross path in the third dimension, even though they do not
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necessarily interact, the particle tracking algorithm can confuse their tracks.

When this happens, occasionally the track appears to jump as it briefly goes

behind another track in the third dimension or even change direction as the

tracker confuses cells. These tracking error events are easily identified through

visualizations and can be seen in Figure 4.9. Tracking errors are not common

in the data at large but still worth noting as they make up the majority, at

just under 5% of total tracks, of the third group.

Another reason some cells experience both directed and undirected motion

arises when the cell starts moving with directed motion. This only appears

to happen in less than 10 of the microscopy videos we have. Examples of the

sudden switch from undirected to directed motion can be seen in Figure 4.10.

The most logical reason for this is these cells are in the process of flagellar

assembly or already has flagella which start off non rotational and become

rotational. It has been documented that during the process of flagellar assem-

bly, cells start off in a dormant like state and slowly start to rotate similarly

to a tumble state, and eventually start swimming with directional motion[31].

However, if a cell has fully formed but not rotating flagella, starting to rotate

those flagella would also cause the cell to start experiencing the directed mo-

tion pattern. Given that we only have the 2D microscopy videos and position

data, it is impossible to tell if either of these phenomena are occurring in the

case of our cells, but they both offer potential explanations for reasons our

cells change from long periods of undirected motion to directed motion.

Finally, due to the stochastic nature of our model as well as the nature of

using statistical methods for parameter estimations, switches in tracks between

the undirected motion population and directed motion population sometimes
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appear due to uncertainty. Specifically, near the start or end of a track, the

confidence the EM algorithm has in probable states or probable transitions

is reduced. These probabilities are given by the entries in the array given by

equation 3.37 and the matrix given by equation 3.38. Because we use the most

probable state for most of the analysis, it could mean that the most probable

state has a 95% probability of being the the correct state or 40% probability of

being the correct state. For those tracks which do not appear to have tracking

errors or appear to be starting directed motion but are mapped into both

populations, often a level of uncertainty arose in the tail ends. This occurred

in about 3% of tracks, most of which are tracks that are short in length.

For the most part, we see the most probable state having a large probabil-

ity of being the correct state while other states have near zero probabilities.

However, toward the start and end of tracks, sometimes lower differences in

probabilities arise, and when the algorithm becomes uncertain if a cell is in

the tumbling or diffusion state, that is reflected in jumps between popula-

tions. An example of how these uncertainties manifest can be seen in Figure

4.11. Tracks which experience uncertainty in state assignments are unfortu-

nately part of the nature of statistical parameter estimation tools and do not

necessarily reflect the biology directly.

The four-state heterogeneous population model we propose for Salmonella,

given by equations 4.7 and 4.8, achieves our goal of classifying sub-populations

based solely on motion data. Not only are we able to properly identify multiple

sub-populations in our data based on their motion, but due to the relevance

of the model we are able to examine the biological implications of those sub-

populations. By building our models from the run and tumble model type
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which has been extensively studied, we are able to capture the natural move-

ment of Salmonella. The four-state model identifies a sub-population which

experiences traditional run and tumble motion as well as a sub-population that

only experiences undirected, diffusion type motion. This division is potentially

caused by a response to host immune cell pressure, as Salmonella fight to in-

fect and survive. These bacterium experience a large amount of phenotypic

heterogeneity, and using just the natural motion of these cells we are able to

identify one facet of the heterogeneity.
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Chapter 5

Conclusions and Future Work

By expanding an already existing three-state run and tumble model, we ex-

plored several larger models with the goal of capturing phenotypic heterogene-

ity observed in our dataset. We fit the model parameters to experimental data

using the EM algorithm. The MLE transition rates naturally divided the four-

state model into two submodels where switching between each submodel was

very slow compared to switching between states within each submodel. The

use of EM algorithm not only allowed us to fit the model parameters but also

allowed us to make inferences about a given cell’s motion state at a given time.

The marginal posterior probabilities for the hidden motion state allowed us

to investigate the nature of the observable motion and the extent of the het-

erogeneity. We found that in most cases, tracks displaying a non negligible

probability of switching between the two sub-models could be explained by

tracking errors and uncertainty stemming from short tracks.

The observable population heterogeneity was best captured by our four-

state model, which included a sub-population of only undirected diffusive mo-
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tion states and a sub-population of run and tumble motion. It is reasonable to

conclude that those cells that displayed run and tumble motion were able to

engage in synchronous flagellar mediated directed motion. However, the un-

derlying physiological cause of switching between undirected diffusion states

is less clear. Some possible explanations include complete absence of flagella,

incomplete flagellar assembly, and inactivated non-rotational flagella.

In the future, we can expand on the results reported here to include un-

certainty of the parameter estimations by using statistical methods such as

sampling or variational Bayes. This will add additional credibility and context

to the claims we make about the four-state model and motion heterogeneity.

In addition to calculating certainty of the parameter fits, we can see if the

model can be applied to other flagella driven bacteria. In theory, just as the

run and tumble type models can be applied to all bacteria of this type, the

four-state heterogeneous population model could be applied to all bacteria of

this type. That could shed light on whether other types of bacteria also repress

flagellar growth in order to evade host immune cells (and other contributions

to motion heterogeneity).

Similarly, we can also generalize the model to account for additional het-

erogeneity. In terms of flagella, cells could have no flagella, a cell could be

building flagella, or a cell could have a number of fully formed flagella. Ex-

ploring how these different stages impact motion would be a large undertaking,

due to the number of possible combinations. Additionally, Salmonella expe-

rience a wide range of phenotypic heterogeneity beyond presence or absence

of motion structures, and we could investigate how things like metabolic rate

potentially impact motion of our cells.
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