
Vibration Monitoring of Infrastructure via Uncrewed Aerial Vehicles

by

Rijesh Augustine

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering
University of Alberta

© Rijesh Augustine, 2023

Abstract

This thesis explores vibration monitoring of infrastructure or machinery through an

uncrewed aerial vehicle (UAV) also commonly referred to as a drone. The vibration

signature of an object may be used to assess the health of that object. This thesis looks

at the means of acquiring this vibration signature in hard-to-access and GPS-denied

environments and does not focus on the actual health assessment of infrastructure

and machinery. A simple lightweight vibration monitoring arm was developed and

mounted onto a drone. This along with an imaging system guided the drone and

vibration arm towards a fiducial marker on an artificial vibration target. The thesis

work successfully was able to measure vibrations from a vibration target. Future

work is required to increase automation, the performance of position and yaw control

and vibration sensitivity.

ii

Acknowledgements

I would like to make note of all the people who helped me complete this thesis. I would

first like to thank my research supervisor Dr. Michael Lipsett from the Mechanical

Engineering Department at the University of Alberta. He has provided me with

unwavering support throughout the entirety of this thesis. In addition, I would like

to thank all my fellow research group members, for their support and knowledge.

This includes Jorge Marin Marcano, Mark Sherstan, and Nicolas Olmedo. I would

also like to thank Dr. Duncan Elliott from the Electrical Engineering Department at

the University of Alberta for his initial contributions and supervision in this work.

In addition to all the support from my colleagues, I would also like to acknowledge

my parents, sister, and wife for their support through all these years of work.

iii

Table of Contents

1 Introduction 1

1.1 Thesis Objectives . 2

1.2 Thesis Outline . 3

2 Literature Review 4

2.1 Robotic Vehicle Use in Infrastructure Inspections 4

2.2 Control of UAVs . 6

2.2.1 Requirement of Position Estimation System 6

2.2.2 Non-Vision Based Control Schemes 7

2.2.3 Vision Based Control Schemes 8

2.3 UAV based manipulators . 12

2.4 UAV-based vibration measurement 13

2.5 Vibration Measurement Devices . 14

2.6 Current Technology . 15

3 Proposed Approach and Methodology 16

3.1 Autopilot . 17

3.1.1 Paparazzi UAV Autopilot System 17

3.1.2 Ardupilot . 17

3.1.3 PX4 . 18

3.1.4 Comparison between PX4 and Ardupilot 18

3.1.5 Proposed Approach for Autopilot Selection 19

3.2 Vision Based Position Estimation . 19

3.2.1 Basics of Image Aquisition . 19

3.2.2 Stereovision . 21

3.2.3 Localizing UAV from Image Characteristics 21

3.2.4 Proposed Approach for Vision Position Estimation 25

3.3 UAV Control . 25

3.3.1 Controlling the UAV into range of the Target 26

iv

3.3.2 Challenges with Making Contact with the Target 27

3.3.3 Autopilot Control Messages 29

3.3.4 Control via Attitude Setpoint 30

3.3.5 Control via Position Setpoint 32

3.3.6 Proposed Control Approach 33

3.4 Vibration Monitoring . 34

3.4.1 Permanently Affixed Sensor Box 35

3.4.2 Electromagnet Based Deployment Mechanism 36

3.4.3 Simple Sensor Arm with Vibration Dampening 37

3.4.4 Proposed Vibration Monitoring Mechanism 37

3.5 Functional Requirements and Specifications of Experimental Work . . 38

4 Hardware Setup and Testing 39

4.1 Aerial Platform . 39

4.1.1 Airframe . 40

4.1.2 Low-Level Command and Control of the Platform 42

4.1.3 Camera Systems . 44

4.1.4 Onboard Computer . 45

4.2 Evaluating ArUco . 45

4.2.1 Precision and Accuracy of ArUco 46

4.2.2 Marker Ambiguity Problem 48

4.3 UAV Control Implementation . 51

4.3.1 Controlling UAV using Attitude Setpoint Messages 51

4.3.2 Controlling UAV using Position Setpoint Messages 54

4.4 Sensor Arm with Vibration Dampening 56

4.4.1 Arm V1 . 56

4.4.2 Arm V2 . 57

4.4.3 Arm V3 . 57

4.4.4 Accelerometer Data Processing 58

4.5 Test Configurations . 60

5 Results and Discussion 62

5.1 Aerial Platform Performance . 62

5.1.1 Aperture Hexacopter . 62

5.1.2 DJI FlameWheel F450 . 63

5.1.3 Communications links . 64

5.2 Autopilot Software . 65

v

5.2.1 PX4 . 65

5.2.2 Ardupilot . 66

5.3 Onboard Computer and Imaging System 67

5.4 Control Performance . 68

5.4.1 Vision Position Estimate Performance with DMM 42BUC03-ML 68

5.4.2 Attitude Controller Performance 69

5.4.3 Vision Position Estimate with Intel Realsense T265 Camera . 70

5.5 Vibration Measurement . 76

5.5.1 Arm V1 . 76

5.5.2 Arm V2 . 77

5.5.3 Arm V3 . 77

6 Conclusions and Recommendations for Future Work 82

6.1 Conclusions . 82

6.2 Future Work . 83

Bibliography 86

Appendix A: Bill of Materials for Configuration 5 95

Appendix B: Python UAV Control Software 96

B.1 Installation Instructions . 96

B.2 Main File . 97

B.3 Position Control . 114

B.4 Accelerometer Logging . 117

B.5 Accelerometer Driver . 117

vi

List of Tables

3.1 Different Mavlink messages sent to and from the autopilot 30

4.1 Table showing different test configurations 61

5.1 Estimate of position error of end effector during contact taken from

pixel measurements . 75

vii

List of Figures

3.1 Raw and processed stereoscopic images using OpenCV stereo algorithms. 23

3.2 ArUco Fiducial Marker with ID 19 25

3.3 Control State Machine. Fig 3.3c shows the inner workings of the Posi-

tion Controller block referenced in Fig 3.3a and Fig 3.3b 27

3.4 Failed detection of markers during drone approach 28

3.5 SW steps for Attitude Setpoint Controller 31

3.6 Attitude Controller Diagram . 32

3.7 SW steps for Vision Position Estimate and Position Setpoint based

controller . 33

4.1 Aerial platform based off of DJI Flamewheel 450, Pixhawk, Intel T265,

and Jetson Nano . 40

4.2 Aerial platform HW block diagram 41

4.3 DJI Flamewheel 450 close up . 43

4.4 Aerial Platform networking configuration 44

4.5 Depth error of an ArUco marker at different depths and marker angles 47

4.6 Angle Error vs Marker Angle for different depths 48

4.7 Translation Error in X vs Angle in Frame 49

4.8 Marker ambiguity in a stereoscopic image. Both images were taken at

the same moment in time, yet show different position estimations. . . 50

4.9 UAV Sensor Deploy Program and Libraries Summary 52

4.10 Simulator Setup . 54

4.11 Python vision position estimate control program. Modules in boxes

are primarily where work has been done to the work done in [61]. . . 55

4.12 Arm V1 uses 2 electromagnets. This arm was used with the Aperture

Hexacopter. 56

4.13 Arm V2 end effector used for test flights with the DJI Flamewheel F450. 57

4.14 Arm V3 used for final test flights. 58

4.15 Close up of Arm V3. String was used to keep the sensor from drooping 59

viii

5.1 Aperture hexacopter at outdoor test site 64

5.2 Flight 11 Position Control . 71

5.3 Flight 12 Position Control . 72

5.4 Flight 13 Position Control . 73

5.5 Flight 14 Position Control . 74

5.6 Flight 14 Contact . 75

5.7 Vibration Source . 76

5.8 Flight 11 frequency measurement . 78

5.9 Flight 12 frequency measurement . 79

5.10 Flight 13 frequency measurement . 80

5.11 Flight 14 frequency measurement . 80

ix

Abbreviations

BHMS Bridge Health Monitoring System.

BLE Bluetooth Low Energy.

EKF Extended Kalman Filter.

FFT Fast Fourier Transform.

GNSS Global navigation sattelite system.

GPS Global Positioning System.

MCU Microcontroller.

RC Radio Control.

RTK Realtime Kinematic.

SBC Single-board computer.

SHM Structural Health Monitoring.

SLAM Simultaneous Localization and Mapping.

UAV Uncrewed Aerial Vehicle.

UKF Unscented Kalman Filter.

x

Chapter 1

Introduction

The monitoring of infrastructure and machinery plays a crucial role in ensuring their

operational reliability and safety. By employing monitoring techniques, potential

failures can be detected proactively, mitigating risks before they escalate into larger,

potentially catastrophic events. This field is called Structural Health Monitoring

(SHM) and is expansive enough that it has a few journals including The Journal of

the International Association of Structural Control and Monitoring and the Journal

of Structural Health Monitoring. Health monitoring techniques employed in SHM

can be highly intensive and encompass various methods such as tap tests, visual

inspection, and vibration monitoring.

Vibration monitoring has received significant attention since the 1960s [1]. Re-

searchers have sought to develop effective methods for detecting faults and anomalies

in structures [2–4]. Health assessments via vibration may be made on infrastructure

and machinery. A few examples include bridges [5, 6], power transformers [7], and

rotating industrial machinery [8].

Many newly constructed infrastructure projects now incorporate built-in wired

sensors as part of their design, enabling real-time monitoring and data collection for

structural health assessment [9]. However, a significant challenge lies in the moni-

toring of aging infrastructure, as many older structures lack integrated wired sensor

systems. Among these investigations, a significant amount of attention has been

1

dedicated to understanding the structural health of bridges [10]. In bridges, these

systems are referred to as Bridge Health Monitoring Systems (BHMS). Inspecting

aging infrastructure without built-in sensors can be both costly and hazardous due to

the need for manual inspections and potential risks to personnel. The largest cause

of death in the construction industry is due to falls from a height [11–13]. This makes

inspecting bridges, vessels and other tall structures particularly challenging. Despite

these challenges, inspecting aging infrastructure is essential to mitigate the risk of

structural failures and ensure the safety and longevity of these structures.

Uncrewed Aerial Vehicles (UAVs), also sometimes referred to as drones, have

proven to be valuable tools for monitoring and assessing the condition of structures

[14]. Their ability to reach hard-to-access areas and capture data has revolutionized

the field of infrastructure monitoring. Primarily they have been equipped with cam-

eras that allow for visual inspections of structures, but new studies have also explored

the utilization of drones in the vibration monitoring of bridges. Overall drones have

potential in detecting structural changes and assessing overall health.

The use of drones for vibration monitoring of infrastructure, particularly bridges

and machinery in hard-to-access areas, such as wind turbines, allows SHM of these

kinds of infrastructure to be more cost-effective and safer. A drone may be equipped

with tools to provide SHM work.

1.1 Thesis Objectives

This master’s thesis aims to further contribute to the field of drone-based infrastruc-

ture monitoring. Specifically, the focus of this study in on developing and evaluating

techniques for controlling a drone near infrastructure, obtaining vibration samples

from the drone, evaluating the efficacy of using fiducial markers for drone control,

and examining alternative approaches or potential challenges associated with this

problem. By exploring these aspects, this research intends to propose practical solu-

tions and insights that can enhance and allow for further development of drone-based

2

vibration analysis in infrastructure monitoring.

1.2 Thesis Outline

The presented work shows how a lightweight low-cost UAV may be used to acquire

a vibration sample in GPS-denied environments. Chapter 2 of this thesis reviews

existing solutions to the problem. Chapter 3 focuses on the proposed approach to

solving this problem. Chapter 4 describes the apparatus built along with providing

some preliminary results. Chapter 5 follows up with data collected and the evaluation

of design choices. Finally, Chapter 6 concludes this thesis, describing the overall

learnings from this work and recommendations for future work.

3

Chapter 2

Literature Review

2.1 Robotic Vehicle Use in Infrastructure Inspec-

tions

The use of drones for bridge inspections is becoming an increasingly commonplace

part of bridge health monitoring systems (BHMS). Drones are effective tools for

detecting and assessing cracks in bridges. By employing visual servoing techniques,

these vehicles can maintain continuous visual contact with defects and cracks during

the inspection process [15, 16].

The utilization of drones in bridge inspections offers numerous advantages. Firstly,

it allows the bridge to remain open during the inspection, minimizing disruption to

traffic flow. Additionally, it significantly reduces the risk of injuries associated with

working at heights for personnel, as the need for manual inspections at elevated

locations is minimized. Moreover, the use of drones proves to be more cost-effective

compared to traditional inspection methods, as it reduces the need for specialized

equipment and manpower.

Research in this field has explored various approaches. Some studies have focused

on employing computer vision algorithms to automate crack detection during bridge

inspections by simply flying a drone in proximity to the structure [17]. These methods

leverage the capabilities of drones to capture high-resolution imagery and analyze it

using advanced image-processing techniques.

4

Furthermore, some assessments of bridge conditions using UAVs incorporate both

conventional RGB (red, green, blue) imagery and infrared (IR) imaging techniques

[18]. This combination allows for a comprehensive evaluation of bridge health by

capturing visible light information to locate surface cracks and IR images to locate

artificial subsurface delaminations.

Additionally, drones can be utilized to generate three-dimensional (3D) scans of

bridges using photogrammetry techniques [19–21]. By capturing imagery from various

angles during flight, the collected data can be processed to reconstruct a detailed 3D

model of the bridge. This enables engineers and inspectors to visualize the structure

from multiple perspectives, aiding in the identification of potential problem areas and

facilitating more accurate assessments.

UAVs may be used in conjunction with a laser tracking station to measure a bridge’s

beam deflection [22, 23]. This work had a multirotor to make contact with the ceiling

of the bridge in different locations. Using the ceiling effect also reduces the power

consumption of the multirotor while measurements are being taken.

Research on surface thickness measurements from UAVs has been performed. [24]

uses a UAV, with position estimation from Vicon motion capturing cameras to mea-

sure the thickness of a plate using ultrasonic measurements. [25] is similar research

with a more complicated control scheme and an over-actuated UAV. The research

with an over-actuated UAV allows measurements to be taken from planes at different

angles.

Uncrewed marine vehicles have also been used for visual inspection of submerged

foundations [26]. Uncrewed ground vehicles may also be equipped with cameras and

accelerometers for use in infrastructure inspections deemed unsafe for humans and

points of measurements are accessible by a ground robot [27]. Uncrewed ground

vehicles may also be equipped with ground penetrating radar [28]. The use of such

vehicles can programmatically collect data, and assess areas that are too small or

deemed unsafe for human access.

5

2.2 Control of UAVs

2.2.1 Requirement of Position Estimation System

The control of UAVs close to bridges or walls poses significant challenges. Factors

such as wind patterns and turbulent airflows generated by the UAV’s motors can im-

pede precise and accurate control. When operating close to another body, the other

body may additionally affect the airflow and aerodynamics of the drone. This makes

maintaining stability and control even more challenging. The risk of unintentional

drift increases, potentially leading to collisions with the other body and causing dam-

age. If the UAV needs to be operated physically far away from the operator, as in

many cases with large tall structures, new challenges are introduced such as command

latency and reduced situational awareness.

To address these challenges, onboard reliable position estimation methods and

automatic control of the UAV are essential. The most commonly used position es-

timation technique for UAVs is using GNSS. However, GNSS systems have inherent

limitations that make it not effective for position estimation in certain environments.

In North America, the primary system used is GPS. GPS receivers can determine

position by measuring the direct signal from a minimum of 4 satellites in orbit. These

satellites broadcast their time and location. This allows GPS receivers to solve for

their current time and spatial coordinates. The relative position of these satellites also

affects how accurate the position estimate is. This is referred to as dilution of precision

(DOP). If the satellites are in the same area of the sky the precision of the position

estimate will be lower. To improve the position estimate it is important to have

more than the minimum number of satellites and to have satellites positioned across

the sky. GPS-Denied Environments are areas where GPS signals do not reach the

receiver. Infrastructure that may need vibration monitoring may be in GPS-denied

environments or environments with high GPS uncertainty. The inside of buildings

tends to have very poor GPS signals. Large bridges may also act as a canopy blocking

6

out signals. Blocking out signals is not the only cause of uncertainty. If the GPS

signal reaches the receivers via a reflection, it will also cause poor location estimation.

This can easily occur next to buildings. Another cause of location uncertainty is an

ionospheric delay. GPS in a vacuum would be very precise, but radio waves passing

through the ionosphere will slow down by an undetermined amount depending on the

ionospheric conditions that day.

There are two ways of combating atmospheric delay. The first method is using two

different GNSS frequencies, and the second method is using an RTK base station.

In the first method, a satellite broadcasts information at two different frequencies.

These frequencies slow by a different amount in the ionosphere as a result the amount

of ionospheric delay may be calculated. GPS is slowly modernizing its satellites to

allow for a 2nd civilian frequency to be broadcast from each of its satellites. The

second method uses a local datum point and compares observations at this datum

point vs at the receiver to determine an accurate baseline between the receiver and the

datum point. Even with either of these methods of improving the location accuracy

of GPS, they would not solve the issues from multi-path interference, and GPS-denied

environments. Therefore a different localization approach may be required for certain

applications.

2.2.2 Non-Vision Based Control Schemes

The utilization of ultrasonic sensors and ground-based ultrasonic beacons for precise

positioning of drones, as experimented in [29], presents a few impracticalities for this

application. This system requires ground control beacons. The size of the infrastruc-

ture makes it challenging to set up beacons in outdoor locations, and a substantial

number of beacons may be required to be set up for each survey. This adds time for

setup and additional costs. The location of each of these beacons must be known and

for full coverage, workers may need to still be used to install them in hard-to-access

areas. Some areas may even be close to impossible to install an ultrasonic beacon.

7

Manyam [30], suggests employing an uncrewed ground vehicle (UGV) in conjunc-

tion with a UAV for positioning. However, this approach is also impractical for

infrastructure measurements. If the target point is located on a bridge pier, it may

fall outside the range of the beacon on the UGV, rendering the UGV ineffective for

aiding in the positioning of the UAV.

Time-of-flight sensors can be utilized. However, these sensors often have limited

range capabilities. For instance, L M González-deSantos [31] utilizes sensors with a

range of 25 cm. By using two sensors and an IMU to keep the drone upright, distance

and angle measurements to a planar wall may be obtained. A human operator will

need to bring the contact arm of the UAV to within 25 cm of the wall manually

before these sensors could work. If one sensor is out of range the UAV does not

automatically know which direction it should turn for the other sensor to come into

range. This work was further improved on and described in [32, 33]. The newer work

incorporates Garmin LiDAR sensors with a range of 40 m. While these sensors aid

in position estimation and collision avoidance, they do not provide direct position

feedback to the drone. So in GPS-denied environments, the drone could potentially

move parallel to a planar wall without the sensors detecting this as movement.

Research has also explored techniques for making contact with curved walls, re-

sulting in the development of algorithms [34]. However, the mentioned paper did not

involve an actual hardware implementation.

2.2.3 Vision Based Control Schemes

Vision-based control of robotics has a long history, with early works dating back to

the mid to late 20th century. For example, J.T. Feddema [35] describes vision-based

control using ground robotics, which shares similarities at a high level with the control

objectives pursued in this thesis involving UAVs. The use of vision-based control with

UAVs is extensive. [36] is a large survey paper that discusses a large array of research

efforts on the subject. The paper includes a discussion on SLAM, group navigation,

8

visual odometry, and localization based on template matching.

Some vision systems [37] employ static ground-based cameras, which encounter

similar challenges as the previously discussed ground-based ultrasonic sensors. Issues

such as limited field of view, precise placement of the cameras, and size of the UAV

in the image frame may arise with these camera-based systems especially.

Practical application of vision processing includes the detection of infrastructure

and objects and the control of the UAV around them. [38] describes using computer

vision to detect a road. Once a road is detected, images of the road are captured to

analyze its health and the drone is then automatically controlled to follow the road.

[39] has a UAV that detects a road sign and automatically perches onto the road

signs. This is done by detecting the plane of the sign using a depth camera and a

specialized perching payload. [40] uses a drone to detect and follow power lines. The

purpose of that research was also to assess health. [41] uses a UAV to track another

flying target and chase the target.

Fiducial markers offer a means of accurately determining the location of a drone.

By utilizing a fiducial marker with a known size, shape, and camera parameters within

an image frame, the camera’s position in space can be determined. When the camera

is rigidly mounted to a drone, the drone’s position can be inferred accordingly [42,

43].

An application of fiducial markers with UAVs that have been largely researched

is their use with precision landing [44]. The use of fiducial markers aids enables the

drone to land precisely. However, this approach encounters the challenge of marker

pose ambiguity as shown by Springer in [45]. This issue is further addressed in this

thesis when evaluating fiducial markers. Springer continues to investigate the concept

of nested markers [46]. Nested markers are where a smaller marker is within a larger

marker. For precision landing, the drone at height needs to be able to identify the

marker, so the marker needs to be large. But as it approaches the marker, the marker

may be too large to fit in the camera’s field of view. In this case, a nested marker

9

may be used to continue guiding the drone to the landing spot. This approach allows

for effective guidance and position estimation at all altitudes. [47] uses fuzzy control

and ArUco fiducial markers to land on a target. Their use of fuzzy control allows

for some shock absorption of the landing and the landing of the UAV on a moving

landing pad. [48] has done more work on using a drone to autonomously follow a

moving platform with an ArUco marker on it and then land on that platform. [49]

uses a custom marker for a precision landing. The contours of their custom marker

are analyzed to produce a relative position of the UAV to the marker. This work is

attempting to do a fully autonomous landing in an outdoor environment. They also

propose to use an arm with a contact sensor to aid in the final stages of landing.

[50] describes using a monocular camera to land a drone onto a moving target, that

may also be pitching, rolling and heaving. This research uses the landmarks of the

targets to determine the pose and motion of the landing platform. Modelling the

motion of the landing platform allows them to control the drone to compensate for

the movement.

Other research [51] has focused on indoor localization in industrial environments,

combining Lidar data, vision, and fiducial markers. The fusion of data from multi-

ple sensors, along with simultaneous localization and mapping (SLAM) algorithms,

enables accurate position estimation in these environments.

[52] uses a series of images for path following. The drone would fly the path once

and generate a series of images. Then it would try to follow this path based on

images it currently is receiving. Its control loop would try to figure out how the

drone should move to get the current image to correspond to the next desired image

in the path. This would be repeated for the entire path. The research also explores

obstacle avoidance when an obstacle is detected in the original path. [36] discusses

research on localizing a UAV by matching its current view of the world from one

previously taken, like from a Google map tile or a different flight taken at a different

angle, time of day or camera configuration.

10

Optic flow is also a good means of position estimation. Optic flow works by mea-

suring the change in the location of a feature in an image between subsequent frames.

Knowing the camera parameters and the time between frames a velocity estimate

may be determined [53, 54]. Kendoul in [55] shows the strong performance of optic

flow systems in aerial applications. These systems can be just as good as GPS. They

do have a problem where if the area they are getting information from is an area

that is devoid of features, the position solution may drift. Optic flow only provides a

relative change in position to a position estimation and does not provide any global

position estimation.

Visual Inertial Odometry (VIO) uses the visual information of the surrounding

environment, fused with inertial measurements for position estimation. This solves

some issues with just optic flow and improves optic flow. [56] is some early research

on the subject. [57] shows VIO in action with fisheye cameras. [58] shows different

enhancement strategies for visual odometry to help improve drift reduction. The use

of visual information prevents drift that an inertial-only navigation solution would

experience. The use of inertial data gives clues and aids the feature-matching algo-

rithm used on subsequent images. [59] shows how to build a VIO drone using an Intel

RealSense ZR300 VI Sensor and a DJI M100 aerial platform.

In one particular solution [60], an Intel T265 camera is employed for position

estimation. This approach integrates time-of-flight distance sensors to measure the

distance between the drone and the wall. The manipulator in this scenario takes the

form of a crawler. While no fiducial markers are utilized, the T265 camera leverages

vision-based techniques to generate position estimates.

[61] is a practical example of integrating an Intel T265 camera with Ardupilot. This

work with April tags shows how to use a T265 camera to generate a position estimate,

send that position estimate to Ardupilot, get position information from a tag seen by

the T265 camera, and control a drone to land on the target. This work could easily

be adapted for vertical targets and for positioning a UAV near infrastructure.

11

[62] is work on integrating stereo vision data more directly into state estimation.

The model they propose has better computational performance and could be useful

for computation-constrained systems.

There is work that has been done on obstacle detection and avoidance. [63] is some

recent work on the subject. This work uses background subtraction of subsequent

camera frames to detect and object and its relative motion.

2.3 UAV based manipulators

Considerable research has been conducted on UAVs equipped with manipulators [64],

demonstrating a growing interest in this field. One theoretical investigation [65]

focused on evaluating the feasibility of utilizing consumer drones with rigid arms to

establish contact and apply force to a surface. The force applied by the drone to a

wall comes from changing the angle of the drone. This study went on to show how

much force a drone may apply laterally whilst still having enough thrust to remain

airborne.

The dynamics and control of a two-degree manipulator are discussed in this paper

[66], highlighting the interplay between the manipulator’s state and the flight control

of the drone. Understanding this relationship is crucial for effective coordination

between the manipulator and the UAV’s flight system.

[67] is a conceptual work to mount a sensor to a wall using aerial manipulators.

Two drones are conceptualized to be used in tandem. One drone sprays a surface

with resin, after which a second drone will come and place a sensor on the surface.

Specific drone models have been developed to achieve contact with different types

of surfaces [68]. For instance, one drone was designed to make contact with walls,

while another was tailored for interacting with pipes. These specialized drones are

engineered with specific task requirements in mind. The structure of the first drone

is 5 rotor aircraft. The 5th rotor is farther away from the main rotors and allows for

counteracting the weight of the payloads attached. The second drone described in the

12

paper had landing legs that straddled the pipe and 6 propellers, 2 of which allowed

the drone to rotate around the pipe and inspect the pipe at a 90-degree angle.

The manipulator may also be instrumented to provide data to the flight controller.

The use of springs attached to the end of the manipulator’s arms enables the ap-

plication of a controlled amount of force [69]. By measuring the compression of the

springs, the force being applied by the drone to the surface may be measured and can

be incorporated into the flight control loops of the UAV.

Additionally, a manipulator with active compliance has been investigated [70],

offering the capability to adjust the applied force using an arm that can be extended

using a linear screw. This design allows the manipulator to even tap the target surface

with the application needed for it.

Zhou [71] presents a UAV equipped with grippers capable of relocating objects

from one location to another. Fiducial markers are placed on the objects to facilitate

tracking and manipulation by the gripper. He also encountered the challenge of the

marker pose ambiguity problem that was previously mentioned.

2.4 UAV-based vibration measurement

Several research papers have explored the subject of vibration measurement using

UAVs. Currently, there are no known commercial drones found that are specifically

designed for this purpose.

Carroll [72] presents a drone specifically designed for contacting ceilings. This

design is suitable for use under bridges, but cannot be used on vertical surfaces. This

method reduces the risk of collision between the drone and the surface, but it does not

allow for capturing vibrations from vertical surfaces. The drone in this paper utilizes

an electromagnet for establishing contact, so this does not work for non-magnetic

surfaces.

Garg [73] has done work with a drone that is equipped with a non-contact vibrom-

eter for vibration measurement. The focus of this work lies in the efforts made to

13

compensate for the motion of the UAV in the vibrometer readings. This approach

aims to address the challenge of accurately measuring vibrations while accounting for

the movement of the drone.

It is worth noting that none of the research discussed in this section specifically

addresses the topic of automatic position control of the UAV during vibration mea-

surement. The emphasis in these papers is primarily on the design of the UAV and

the vibration acquisition mechanism.

Overall, while research has been conducted on vibration measurement using UAVs,

there are currently no readily available commercial products tailored for this appli-

cation. The explored methods range from utilizing contact-based mechanisms to

non-contact vibrometers, each with its limitations and considerations. Further re-

search is needed to address automatic position control and enhance the capabilities

of UAV-based vibration measurement systems.

2.5 Vibration Measurement Devices

The market offers various pre-existing vibration sensors with different functionalities

and capabilities. Established companies such as Fluke and SKF manufacture wired

vibration sensors for monitoring applications. These sensors are typically connected

through physical wiring to the monitoring system.

In the context of railway networks, a research paper [74] discusses the utilization

of wireless sensor networks for taking vibration measurements for detecting and pre-

venting failures. Wireless sensors provide the advantage of eliminating the need for

physical wiring, increasing the places they can be used and making them easier to

install. These sensors do have the disadvantage of needing to replace batteries and

setting up base stations within range of the wireless sensors.

Several companies specialize in manufacturing wireless sensors for various appli-

cations. Erbessd offers Bluetooth-based wireless sensors with a range of 50 meters

and a battery life of up to 2 years under low usage conditions. Emerson’s AMS line

14

of sensors provides a range of 100 meters and a battery life of 3-5 years with low

usage. LORD Microstrain offers the G-Link-200 wireless sensor with a range of 800

meters and a battery life of 90 days. These sensors are designed to cater to specific

monitoring needs.

In summary, the market offers a range of vibration sensors. Each of the sensors

mentioned above costs upwards of 1000 CAD.

2.6 Current Technology

The current technology available has shown mechanisms for contact inspections with

UAVs. These contact inspections have either not been made fully automatic, do not

employ a vibration acquisition mechanism or do not allow contact on vertical surfaces.

GPS free localization of UAVs have been performed using fiducial markers. Most of

these localizations have been performed in the context of precise landing. The use of

fiducial markers to make contact with a wall has not been throughly explored. As

such this work shall focus on an UAV based contact vibration measurement device

that can automatically deploy and make contact at a specific location on a vertical

surface.

15

Chapter 3

Proposed Approach and
Methodology

This work proposes a robotic method for the collection of vibration measurements

from infrastructure utilizing a UAV. The primary focus of the research is on three main

aspects: obtaining a reliable position estimate, developing effective control strategies

based on this position estimate, and implementing a method to capture vibration

data using a contact sensor. This chapter describes a trade study between different

approaches considered before describing experiments for proof of concept for each key

functionality.

A reliable position estimate shall be able to be achieved in daylight hours with

normal lighting conditions using vision. The position estimate should provide enough

information to prevent collision with the infrastructure.

Once a reliable position estimate is established, the next goal is to be able to control

the drone via some sort of automatic controller. This involves an autopilot and the

means of using this autopilot to control the UAV at a low level. Control algorithms are

required to enable the UAV to navigate and maneuver near infrastructure, avoiding

collisions.

Finally a methodology to physically capture vibration measurements from the in-

frastructure is developed. This involves selecting an appropriate vibration sensor and

integrating it with the UAV platform.

16

3.1 Autopilot

Three main autopilot systems were evaluated. These were Paparazzi UAV, Ardupilot,

and PX4. These three were selected because they were free to use, open source, offered

low-level control, have many open source hardware options and have a developer

community of some sort. Additional autopilot systems are available on the market

but they are less popular or more commercial in nature [75].

3.1.1 Paparazzi UAV Autopilot System

Paparazzi UAV is an open-source autopilot system, it garnered a lot of early support

in the field, but in more recent years Ardupilot and PX4 have become a lot more

popular in the UAV community. The system was founded in 2003 and was one of the

pioneers of a community-driven free open-source autopilot system. Prior experience

with the software in fixed-wing applications led to its consideration in this project.

In addition, its modular architecture and lightweight nature make it an attractive

option for customization. However, in 2016, data on Paparazzi’s performance with

multi-rotor aircraft was limited. Paparazzi has been slowly losing market share, but

was once a leader in the field of consumer UAVs [76]. The popularity and informa-

tion available on competing autopilot systems led to the ultimate decision to reject

Paparazzi as a candidate for this thesis work.

3.1.2 Ardupilot

Ardupilot is another open-source autopilot system used in UAVs. It is a popular

choice among the UAV community due to its vast array of features, ease of use,

and reliability. Ardupilot provides a comprehensive platform for controlling UAVs

with advanced features, including GPS-based navigation, waypoint following, and

autonomous mission execution.

Ardupilot has a vast community of developers who continually update and improve

the software, providing users with access to new features and capabilities. This also

17

ensures that the system is continuously optimized and updated to meet changing

needs.

3.1.3 PX4

PX4 is another open-source autopilot system designed for UAVs. It is known for

its advanced control algorithms, efficient processing capabilities, and support for a

wide range of base platforms. Like Ardupilot, PX4 is also widely used in the UAV

community and includes all the base features of Ardupilot.

3.1.4 Comparison between PX4 and Ardupilot

Both PX4 and Ardupilot are very capable autopilot systems. When comparing the

two it almost comes down to preference. Some research has been conducted to com-

pare autopilot systems [77]. Ardupilot and PX4 differ in various aspects.

Architecture: They both are relatively modular and both provide a good framework

for customization and development. PX4 has better code separation than Ardupilot

making it easier to develop and push new code for the community. In contrast,

Ardupilot has a bit more integrated architecture, which allows for easier changes to

the codebase, but it is more difficult to push these changes back to the community.

Community and Development: Both have large active communities. Ardupilot

tends to skew more toward hobbyists, whilst PX4 has a larger research community

Flight Control Algorithms/Ease of Use: Out of the box, the performance of Ardupi-

lot is superior to that of PX4.

Supported Platforms: Both support a wide range of hardware. They are also

compatible with a wide range of vehicles.

Mission Planning and Interface: Ardupilot uses Mission Planner as its primary

interface. PX4 on the other hand uses QGroundControl. Ardupilot may also be

controlled by QGroundControl. Both autopilot systems utilize mavlink in their com-

munication layer.

18

Industry Adoption: PX4 has larger industry adoption due to their license structure.

3.1.5 Proposed Approach for Autopilot Selection

Preliminary research has shown that either PX4 or Ardupilot would be an adequate

choice for the application. The low-level implementation details drives what is used

in the final implementation of this work. Despite the better out-of-the-box flight

performance of Ardupilot, work started with PX4 due to its larger adoption by the

research community.

3.2 Vision Based Position Estimation

3.2.1 Basics of Image Aquisition

The basic way a digital camera works is light enters a lens and is then focused onto an

imaging sensor. Many factors affect the quality of the image that the sensor produces.

Imaging sensors may be made with different technologies. The two most prominent

types are CCD and CMOS [78, 79]. Of these two sensor types, CMOS sensors have

largely become more popular. They have numerous advantages over CCD sensors.

These advantages include lower power draw and faster readout times.

Camera sensors may have a global shutter or a rolling shutter. A global shutter

captures light incident to the sensor at a single point in time. A rolling shutter

captures the image sequentially across the sensor. A rolling shutter may produce

image artifacts when photographing objects in relative motion to the imaging sensor.

When CMOS sensors were first introduced they were entirely rolling shutter, but

modern CMOS sensors are now available as global shutter. A rolling shutter may still

be adequate to use for the application of visual servoing, due to modern CMOS sensors

having reduced readout times, so rolling shutter artifacts are less noticeable. In

addition, a camera with a mechanical shutter largely removes rolling shutter artifacts.

The size and resolution of the imaging sensor also affect the image quality that

is produced. The resolution of an imaging sensor is a measure of how many pixels

19

or data points are present in each image. A larger resolution sensor records more

detailed images. These more detailed images are larger and have the downside of

increased computing time when processing the image. The sensor size of an imaging

sensor affects the size of lenses required. A larger sensor size requires a larger lens

to focus the light across the entire sensor. A larger sensor and lens may drastically

increase the size and weight of the camera. For a given aerial platform, increasing

the payload size and weight is detrimental to the overall performance of the aerial

platform.

The lens installed onto the imaging sensor is also important. The choice of the lens

determines the focal length and aperture of the camera. The longer the focal length,

the more narrow the field of view that the camera has. In addition to the narrow field

of view, there are fewer distortions. The downside is that it may be difficult to put

the object into the field of view and keep it there during the entire visual servoing

process with larger focal length lenses. But if the object can be maintained in the field

of view, a larger focal length lens maximizes the resolution of the object providing

better position estimation. In the application of visual servoing, there is a balance

between being able to detect an object when it is far away with high resolution and

keeping it in the frame when it is close by. One solution to this is having different-

sized objects be detected at different distances away. [80] has an interesting solution

to this tradeoff with a marker within a marker. The aperture of the lens determines

the amount of light that hits the imaging sensor and the depth of field of the lens. If

the aperture is too large then an object will not be reasonably in focus for a range of

distances from the camera. If the aperture is too small then the object may be too

dark to detect, unless lighting conditions are sufficiently bright.

Another aspect of the camera is how the data is read out. Imaging sensors tend to

either have a parallel or serial interface for reading data out. This interface connects

to a computer usually through another IC on the camera that translates the data

to a more common format like USB, Ethernet, or Firewire. Data readout speed and

20

overall latency are factors to consider for this application.

3.2.2 Stereovision

Stereovision uses two cameras to generate a 3-dimensional scene. The process is

similar to the way humans perceive depth by using slightly different viewpoints. Tra-

ditionally two cameras are placed side by side, similar to how human eyes are, and

a photo is captured at the same time. Usually, each camera will have the same reso-

lution, focal length, and exposure settings. Objects that are in both images may be

found in the image frame. Triangulation is the process of calculating a point in 3D

space based on how it is perceived from different locations. In the traditional case

of 2 cameras side by side, the difference between the locations of the object in each

image frame is called the disparity. The disparity along with the baseline between

the two cameras, resolution, and focal lengths of both cameras allow calculation of

the 3-d point of the image relative to the image frame. The math for calculating

the 3D point is relatively simple once all the calibrations and corrections have been

performed for lens distortion. [81] goes into detail on how this is accomplished.

The largest challenge with stereo vision is correlating image points between the

two images. Any deviation or noise, (due to poor lighting, or motion blur) may cause

stereovision algorithms to fail as they may incorrectly correlate image points.

3.2.3 Localizing UAV from Image Characteristics

Once an image has been acquired, it needs to be analyzed for features that allow for

knowing where the UAV is in the scene. This may be a challenge. There needs to be

some reference data in the image acquired to be able to determine where the UAV is

with acceptable accuracy.

A few different image characteristics were explored throughout this project.

21

Plane Detection

Plane detection using stereoscopic cameras was one of the first things attempted in

this project. The premise of this idea was to get the UAV close enough to a wall

and then use stereovision to detect the plane of the wall. With this, the UAV would

then square itself with the wall and slowly move towards the wall and make contact.

This method did not require any fiducial marker on the wall, as a result, it would

be very much dependent on the characteristics of the wall. It required a minimum

of 3 points in the images to calculate the plane of the wall. Figure 3.1 shows an

example a stereoscopic image captured. OpenCV was used for camera calibration

[82], detection of matching features and generation of a disparity map. Walls devoid

of characteristics or with fine repeating patterns would not perform well. If there were

characteristics, these characteristics may go out of the frame during the approach.

Figure 3.1d shows how difficult it would be even for a human to control a decipher the

disparity map. In addition, this method lacks any repeatability. There is no reference

point on the wall where the vibration measurement should be taken, so this method

is not adequate for taking a vibration measurement.

Rectangular Marker Detection

A basic rectangular marker was then explored. This marker was a black rectangle

on a white background. Using OpenCV algorithms, the edges of this marker were

detected. With a stereoscopic setup, this allowed the generation of vectors in 3D

space for the edges. Cross-multiplying these vectors produced a plane. Using a single

camera, with knowledge of the real-world size of the marker and basic trigonometry

allowed calculation of the position of the UAV relative to the marker.

This method was adequate, but could also lead to false positives when attempting

to detect the marker. Attempts were made to limit false positives based on the

marker’s size and aspect ratio. Due to the nature of visual servoing, the marker

size would change as the camera approached the target so discriminating targets was

22

(a) Left Image (b) Right Image

(c) Disparity Map (d) 3D render

Figure 3.1: Raw and processed stereoscopic images using OpenCV stereo algorithms.

23

difficult. In addition, rolling and pitching of the UAV would skew the markers and

corrections would need to be made for those cases.

Coloured Marker Detection

Another method of marker discrimination explored was using rectangular marker

that was coloured. This was done with an orange rectangle and an RGB camera.

This method performed well in quickly detecting the coloured rectangle amongst a

noisy backdrop. The colour space was converted from RBG to HSV, and this allowed

filtering the captured image to only retain an orange hue. The main issue with this

method is poor edge identification in certain lighting conditions. Lighting conditions

could cause glare on the marker and overexpose parts of the marker leading to a

corner being incorrectly identified. Workarounds for this issue may exist with using a

matte finish on the marker. Overall this method was rejected due to the background

needing to be a different hue than the marker and this method not providing a means

to differentiate between different markers at the same site.

Fiducial Marker System

There are a few ready-made fiducial marker systems. These were then explored after

evaluating the manual methods described above. Libraries that were explored include

ArUco Tags [83, 84] and AprilTags [85, 86]. Both systems have markers that can be

generated/downloaded and printed out. An image of this marker can be loaded into

its respective library, along with camera parameters and the printed size of the marker.

The library then outputs the pose of the marker relative to the camera. Figure 3.2

shows an example ArUco marker. In addition, various methods have been tried to

improve these marker systems [87].

Comparisons have been made between the two systems, and both would perform

adequately. A paper describes the performance of both systems with various amounts

of Gaussian Noise [88], with ArUco generally being superior.

24

Figure 3.2: ArUco Fiducial Marker with ID 19

3.2.4 Proposed Approach for Vision Position Estimation

The use of vision is explored to generate a position estimate. Preliminary testing

shows that the most reliable means is the use of a fiducial marker system. In ad-

dition, fiducial markers allows for greater repeatability when measurements are col-

lected. Prebuilt fiducial marker systems, like ArUco and AprilTags, remove a lot of

development work. Work will be shown to determine if the accuracy and precision of

fiducial markers is sufficient for this application. From the literature, most research

has used fiducial markers for precision landing, where the pose of the marker is flat,

so additional challenges may be experienced depending on the severity of the marker

ambiguity problem. This may need to be explored in the final solution.

3.3 UAV Control

This section describes the overall strategy and challenges of contacting a surface.

This includes aspects of automatic navigation, low-level control messages, and control

methods.

25

3.3.1 Controlling the UAV into range of the Target

The first step is to get the drone close enough to the marker so that its camera can

detect it. This can be done in different ways, depending on the specific application

and the available equipment. For example, a human operator can manually guide

the drone toward the marker, adjusting its position and orientation as needed. Al-

ternatively, GPS navigation can be used to direct the drone along a pre-determined

trajectory that brings it close to the target. In either case, the drone must be posi-

tioned and oriented in such a way that the marker is within range of detection by the

camera and in the field of view of the camera. For example, if the drone is positioned

too close to the marker or the field of view of the camera is very narrow, then the

drone may need to be pointed more precisely or the marker may be too large in the

image frame. If the drone is too far away or the field of view of the camera is too

large, the marker may be too small for the imaging system to detect the marker and

generate an accurate position estimate. The field of view of the lens should be con-

sidered. In general, a narrow field-of-view lens may be used if precise position control

is achievable otherwise a wide angle lens should be used.

Figure 3.3a shows how the drone would be controlled if an operator were to fly

the drone to a target. An operator would manually trigger a mode change to enable

the automatic position controller and manually regain control either directly from the

position controller or from a loitering state. After the position controller has finished

the drone would go to a loitering state by performing a position hold or maintain

level flight. If the local position estimation of the drone is generated independently

of having the target in view, then a position hold may be achieved. Otherwise, the

best the drone could do is maintain level flight until an operator takes control.

Figure 3.3b show how the drone would be controlled if GPS was available. In this

case, after the position controller had finished or there was a failure in viewing the

target, the GPS navigation would immediately take over and the drone would continue

26

the mission. This state machine in practice may need to be improved further after

testing (to deal with automatic retries) but is outside the scope of this work.

(a) Operator Controlled State Machine (b) Automatic Control State Machine

(c) State Machine to generate position setpoint

Figure 3.3: Control State Machine. Fig 3.3c shows the inner workings of the Position
Controller block referenced in Fig 3.3a and Fig 3.3b

3.3.2 Challenges with Making Contact with the Target

The process of navigating and controlling a multirotor with a fiducial marker requires

several steps, each of which must be executed carefully.

After the drone is pointed toward the marker, it must keep the marker in view at

27

(a) Drone body obscuring marker (b) Edge of marker clipped

(c) Lens flare obscuring marker

Figure 3.4: Failed detection of markers during drone approach

all times. This requires the drone to continuously adjust its orientation in response

to its movements. Specifically, the drone must keep the marker centred in the cam-

era’s frame to ensure that it remains within the camera’s field of view. This can be

challenging, especially if the drone is moving rapidly or erratically due to wind. In

addition to keeping the marker in view, the drone must also ensure that the marker is

not obscured by the vibration arm or propeller arms. This can be especially challeng-

ing if the drone’s arms are large or if the camera is positioned in a way that makes

it difficult to see the marker. Figure 3.4 shows the drone approaching a target with

part of the drone in the camera frame.

Once the marker is located, the next step is to make contact with it. This requires

careful planning and execution to ensure that the drone makes contact in a way that

28

is safe and effective. Specifically, it is best to make contact at a 90-degree angle to the

wall. This is to maximize the force applied by the drone through the axis of the arm

to the vibration sensor, prevent slippage of the sensor on the wall, and prevent the

drone’s propellers from contacting the wall. To square the drone up with the target,

the drone’s yaw may be controlled to keep the target at the centre of the image frame

and then move the position of the drone to a staging position square with the wall.

Once the drone has reached the staging position, it may approach the wall slowly

and make contact. It is important to approach the wall slowly to avoid damaging

the drone. Approaching too quickly may cause the drone to overshoot or the sensor

to not make good contact. After making contact, the drone should wait for a period

to collect data. The length of the waiting period depends on the specific application

and the amount of data that needs to be collected. In this research, the drone was

set to wait for 15 s collecting a sample. Figure 3.3c shows the internal state machine

of the position controller.

Finally, after collecting data, the drone should pull back from the wall. At this

point, the drone should then continue the mission either through GPS-aided naviga-

tion or pilot control.

3.3.3 Autopilot Control Messages

The autopilot accepts and sends a handful of messages. The relevant Mavlink mes-

sages for this project are in Table 3.1.

There are two ways of controlling the UAV that this work explores. Method one

is sending attitude setpoints to the UAV. Method two is sending vision position

estimates and then sending position targets to the UAV. The first method is referred

to as the attitude setpoint or attitude controller method. The second method is

referred to as the position setpoint or vision position estimate method for this thesis

work.

29

Table 3.1: Different Mavlink messages sent to and from the autopilot

Message Name Sender Description

Heartbeat Autopilot Heartbeat indicating that the autopilot hw is
online. Also includes the current mode of the
autopilot

Attitude Autopilot Roll, pitch and yaw information from autopilot

Set Attitude
Target

Onboard
Computer

Message to set desired attitude and thrust of the
drone. Attitude is passed as a quaternion, thrust
ranges from -WPNAV SPEED DN to
WPNAV SPEED UP parameters in autopilot.

Set Position
Target Local
NED

Onboard
Computer

Set a desired position based on EKF frame or
drone body frame. The message also accepts a
yaw or yaw rate.

Vision Position
Estimate

Onboard
Computer

Update autopilot state estimator with a position
estimate and attitude from visual odometry

Vision Speed
Estimate

Onboard
Computer

Update autopilot state estimator with a speed
estimate from visual odometry

3.3.4 Control via Attitude Setpoint

Both autopilots also offer the ability to send raw attitude setpoint messages. Figure

3.5 shows the process of generating an attitude setpoint. Using raw attitude setpoint

messages is a little bit riskier than using position setpoint messages. By using attitude

setpoint messages the autopilot goes to the commanded setpoint and this could easily

be set outside the flight envelope of the drone.

This method uses the low-level attitude controller built into the autopilot, so there

is very little tuning required on the autopilot software. The majority of the tuning

would be on the onboard computer that generates the attitude setpoint. The autopilot

runs an attitude controller, yaw rate controller, and vertical velocity controller.

The overall attitude setpoint controller can be seen in Figure 3.6. Once a target

is captured in a frame, the drone’s position is determined. This position is then

needed to be filtered to remove noise in measurements. There will be a lot of high

30

Figure 3.5: SW steps for Attitude Setpoint Controller

frequency noise in the position and if this is not removed, this noise will cause issues

in position control and velocity estimation. Estimating velocity by simply finding the

difference between subsequent position inputs would result in incorrect and swinging

velocity estimates. A low pass filter may be sufficient to remove most of the noise

in the position, but a Kalman filter is more useful. A Kalman filter generates a

position estimate and a velocity estimate from the position inputs. Using a Kalman

filter removes the step of manually determining a velocity estimate. An Unscented

Kalman Filter (UKF) library is used as a C++ library for it was readily available.

The position estimate can now be compared with the position setpoint. This

comparison produces a position error. This position error is how much the drone is

commanded to move. From this point, a desired velocity is generated by multiplying

the position error by a gain. The greater the position error the larger the velocity

setpoint. This velocity setpoint is then compared with the velocity estimate from the

Kalman Filter to produce a velocity error.

The velocity error then generates an acceleration setpoint, by applying a propor-

tional and integral gain. One of the needs for an integral gain is to combat external

effects such as wind.

31

Figure 3.6: Attitude Controller Diagram

The acceleration setpoint is in the coordinate frame of the target. The drone may

be yawed in that frame so a rotation needs to be applied and finally, a roll and pitch

setpoint may be generated directly from the desired rotated roll and pitch.

In addition, the drone trys to keep the target at the centre of the frame by applying

a proportional gain to the angle of the target in the frame to generate a yaw rate.

During each stage of this process, bounds are placed to help ensure controlled flight.

The velocity setpoint is bounded to 1 m/s, the roll and pitch setpoint are bounded

to 5 degrees, and the yaw rate is bounded to 30 deg/s. These bounds along with

using the autopilot’s attitude controller, make this controller safer to use as opposed

to a far simpler PI controller that would generate an actuator setpoint directly from

a position error input.

3.3.5 Control via Position Setpoint

PX4 and Ardupilot offer the capability to integrate visual position estimations into

their state estimator. The state estimator operates using an Extended Kalman Filter

(EKF) algorithm that integrates gyro, accelerometer, magnetometer, GPS position,

32

Figure 3.7: SW steps for Vision Position Estimate and Position Setpoint based con-
troller

GPS velocity, GPS height and barometric height into the predicted state.

For an external vision system to effectively contribute to the state estimation, it is

necessary for the vision system to provide position and speed estimates with uncer-

tainties. Once the drone receives these messages, the information is fused with the

data from other sensors. The autopilot uses this data for precise position estimates.

Once the autopilot fuses the position and speed estimates it can do a position hold.

With this position hold the set position target local NED message may be sent with

a desired position. This message accepts a desired position as an offset from the

drone’s body frame. The software process is shown in Figure 3.7.

3.3.6 Proposed Control Approach

Both control approaches are explored in the work. The attitude controller has the

advantage of giving low-level control of the UAV. This allows the ability to implement

more complicated control schemes. In addition, no work needs to be done to generate

and integrate a vision position estimate from the camera system into the autopilot

33

state estimator. The disadvantage of the attitude controller is that the proposed

design localizes the UAV from seeing the fiducial marker in the frame. So if the marker

is not detected or leaves the frame the system no longer has a reliable position estimate

of where it is. The second control method of using the vision position estimate is also

very promising. Especially if using an Intel Realsense T265, Ardupilot, and the work

from [61] as a starting point. The first method allows for more complicated low-

level control schemes, but this may only be needed for more complicated vibration

monitoring mechanisms, i.e. ones with a changing centre of mass. Another aspect

that could be explored in the future is using the position and velocity outputs from

the Intel Realsense T265 and having that feed into the proposed attitude controller.

3.4 Vibration Monitoring

During the development of a vibration monitoring apparatus, several conceptual ideas

are explored. The primary objectives for this project were to detect vibrations via

drone but prevent the sensor from detecting vibrations generated by the drone. What-

ever solution was selected needed to be developed in conjunction with an aerial plat-

form. The size and weight of the base drone determine the weight and dimensions of

the vibration-monitoring payload. The weight of the payload has to not be greater

than the max payload capacity of the drone and the deployment of the payload must

ensure that the centre of gravity on the drone is maintained throughout the deploy-

ment. In addition, when flying a drone next to other objects, the wash from the

motors causes turbulent air making control of a drone more difficult. So keeping

the drone reasonably far away from the object it is measuring is something else to

prioritize.

To address these challenges, several potential solutions were considered. One ap-

proach involved permanently affixing a sensor box to the infrastructure. This would

enable the sensor to be firmly coupled to the infrastructure and eliminate the possi-

bility of detecting vibrations generated by the drone. Another option involved using

34

an electromagnet to secure the sensor to the infrastructure while attaching the sensor

to the drone using a string. This would also allow the sensor to be strongly coupled

to the infrastructure and yet remain securely attached to the drone, but decoupled

from the drone’s vibrations.

A third approach involved using a long arm with vibration-dampening foam to

separate the sensor from the drone. The foam would absorb any vibrations generated

by the multi-rotor, preventing them from being detected by the sensor. It would also

allow for small positioning and attitude errors during contact. This solution would

also allow the sensor to be positioned at a distance from the drone, and eliminate any

changes to the centre of mass during deployment.

3.4.1 Permanently Affixed Sensor Box

The permanently affixed sensor box is a very good solution due to being completely

decoupled from the drone. The feasibility of this approach, however, was hindered by

the difficulty of physically attaching the box. If this were done by a human then this

may be a high upfront cost. As an alternative, a drone could attach the sensor box

using a strong adhesive.

The sensor box was envisioned to contain an MCU, accelerometer, Bluetooth Low

Energy module, and battery. To conserve energy, the device would remain in low

power mode until a drone arrived to collect measurements. Once the drone arrived,

the device would collect data for a brief period and transmit it to a collection unit

on the drone. The device would then revert to low power mode, consuming current

at ∼1 uA, and draw approximately ∼30 mA when collecting and transmitting data.

Assuming a 60 s measurement each day, a single AA battery with 900 milliampere

hours (mAh) could last for approximately five years. With proper battery selection

and data collection frequency, the sensor box could be designed to have enough energy

to operate for the remaining lifetime of the infrastructure being monitored.

Another alternative to the above-proposed sensor box is to not use BLE, but some-

35

thing more long-range, such as LoRa, so that once the box was affixed a human or

drone would never have to be near the box again. The box may need to be a bit

larger, to accommodate more energy storage, but the benefit would be that a drone

would be needed for installation and all future acquisition could be done from a base

station.

While this approach offered the benefit of complete physical decoupling of the

sensor from the drone, which would enable better data quality and ease of data

collection without the need for precise drone positioning, the challenges of placing

the sensor box and ensuring long-term adherence to the infrastructure ultimately led

to its rejection as a solution for this thesis project.

This would be an excellent solution for new projects where a battery-operated

vibration sensor is required, or for projects where the installation of these sensors

would be carried out during a routine maintenance event.

3.4.2 Electromagnet Based Deployment Mechanism

Another potential solution is using an electromagnet to engage the sensor in the

infrastructure. By using an electromagnet, the sensor can be strongly coupled to a

piece of infrastructure and can be physically decoupled from the vibrations of the

drone and ensure clean data collection. The device could be designed in such a way

that even wind battering the drone may not be registered by the device. The device

would still be tethered to the drone so the device can be made smaller and lighter

since it can rely on the drone battery and processor.

However, there are several limitations to using an electromagnet. First, the device

may need to be reset after deployment, which can be accomplished either by having

the drone return to the operator or by developing a mechanism to reset the device

in the air. Second, the sensor may dangle from the drone, negatively affecting drone

flight dynamics. This can be especially problematic if the sensor is large and heavy.

In such cases, it may be necessary to design a mechanism to maintain the centre of

36

mass.

Another limitation of using an electromagnet is that it does not stick to non-

ferromagnetic materials, such as concrete. This necessitates the use of a tacky sub-

stance to attach the sensor to the infrastructure. However, this substance may need

to be cleaned and/or reapplied after each data collection event, reducing the overall

ease of use of the system.

Given the challenges involved, the use of an electromagnet was considered in part

with the simple sensor arm solution.

3.4.3 Simple Sensor Arm with Vibration Dampening

A fixed sensor arm with a vibration dampener may also be used to collect a mea-

surement. The end of the arm would have a vibration dampener and the tip would

have an accelerometer. An electromagnet may still be used to secure the vibration

mechanism to the structure. If no electromagnet is used, the UAV would need to

apply all the force and positioning for the arm to ensure good contact is made during

the sampling period. The main advantage of this method is that the arm is fixed so

there are no changes in the centre of mass during flight. An arm with a changing

centre of mass may need to measure how the centre of mass changes and incorporate

that into the control algorithms. A fixed arm is therefore lighter due to its simplicity.

This means the drone has a greater power-to-weight ratio or that a smaller drone

may be used. A fixed arm design would be a lot simpler and inexpensive to make,

yet yield satisfactory results.

3.4.4 Proposed Vibration Monitoring Mechanism

Using a simple sensor arm with vibration dampening is the proposed method for

collecting data in this project. Compared to the other options, the drone would have

increased maneuverability and better battery life and the design complexity of the

arm is far lower. The main disadvantages are that the position, attitude control

37

and vibration isolation may need to be stronger to compensate for the holding and

isolation benefits that a more complicated vibration acquisition method may provide.

3.5 Functional Requirements and Specifications of

Experimental Work

This thesis work is split into the four major aspects discussed in this chapter. The

overall goal is to create a proof of concept platform that would be able to acquire a

vibration measurement from an artificial vibration source in a GPS-denied environ-

ment.

An aerial platform is required. This platform should be able to efficiently deploy

the vibration monitoring mechanism as a proof of concept. As a result of this being

a proof of concept, the platform may be small enough to be deployed indoors, with-

out the need for actually executing a full vibration monitoring mission. A GPS unit

would not be required as another requirement is the ability to deploy the vibration

monitoring payload in a GPS-denied environment. The computer and imaging sys-

tems are selected to provide satisfactory performance, whilst minimizing their size,

weight and energy requirements.

The ArUco fiducial marker system will need to be characterized to determine the

overall positioning performance when used to control and position a UAV.

Two methods of controlling the UAV were discussed in this chapter. The first

was by sending attitude setpoints to the autopilot and the second was using vision

position estimates and position setpoints. Both methods will need to be explored to

determine if one is better suited for the application than the other. The method that

allows for precise enough control to deploy the vibration monitoring payload is the

method that will be used for actually acquiring vibration samples.

Finally, the experimental work shall also develop and characterize a vibration mon-

itoring arm that will be affixed to the UAV. An artificial vibration source will be de-

veloped to aid in the characterization of the full vibration deployment mechanism.

38

Chapter 4

Hardware Setup and Testing

4.1 Aerial Platform

This section describes the hardware components that comprise the full aerial platform

utilized in this project. The platform that was used for the majority of testing is

shown in Figure 4.1. The aerial platform encompasses an array of interconnected

systems, which include the airframe, autopilot system, UAV hardware, pilot control

and communications system, onboard computer, and imaging system.

The base drone contains the physical components that allow the drone to fly and

is meant to be a starting point for the aerial platform. This base drone includes the

airframe, propulsion system, and power source, which form the backbone of the aerial

platform.

The autopilot system enables the UAV to be controllable and operate automatically

through the air. It incorporates a range of sensors, including accelerometers, gyro-

scopes, and magnetometers, to determine the aircraft’s speed and direction. These

sensors allow the autopilot to adjust the attitude of the UAV as needed. The au-

topilot system has a built-in MCU that performs the calculations required for stable

flight and generates the command signals to the actuators.

The pilot control and communications system facilitates communication between

the UAV and the ground station, allowing the operator to monitor the aircraft’s

performance, directly control the aircraft and make adjustments to its flight path

39

Figure 4.1: Aerial platform based off of DJI Flamewheel 450, Pixhawk, Intel T265,
and Jetson Nano

as necessary. It utilizes a range of communication protocols, such as Wi-Fi, 900

MHz telemetry, and a 2.4 GHz radio control link, to ensure a reliable and redundant

connection.

The camera plays a vital role in capturing visual data during flight and providing

the onboard computer with images of the aircraft’s surroundings. The onboard com-

puter then processes the images for markers, generates a desired position, and then

commands the autopilot to that position.

The next sections explore each of these components in more detail, highlighting

their features and functionality. Figure 4.2 provides an overview of the hardware

layout.

4.1.1 Airframe

The research project went through two airframes. The first was a larger hexacopter

and this was followed by a smaller quadcopter.

The Hobbyking Aperture hexacopter has a wheelbase of 800 mm and is equipped

with 15-inch propellers. The aerial vehicle is powered by a 16000 mAh battery that

40

Figure 4.2: Aerial platform HW block diagram

41

facilitates a hover time of 25 minutes. The hexacopter has a total mass of 4.8 kg and

is capable of carrying a maximum payload mass of 1.5 kg. The payload capacity of the

hexacopter enabled the integration of a more complex payload. However, the larger

size of the hexacopter necessitated the use of a longer arm. The elongated arm led to

a substantial shift in the center of mass of the hexacopter, prompting the installation

of a counterweight on the arm to achieve a balanced distribution of weight. This arm

is shown in Figure 4.12.

The DJI Flamewheel F450 is a small quadcopter that is meant to be used as a

customizable drone with FPV in mind. It was purchased as a kit and included all the

necessary components to assemble the drone. The kit includes 9.4-inch blades, 920

kV motors, and ESCs. This propulsion system in combination with a 4S 2200 mAhr

lithium-polymer (LiPo) battery, allows for a takeoff mass up to 1.6 kg. The base

drone weighed 1.1 kg and allows a flight time of ∼8 minutes. Due to how light the

arm was, repositioning the battery was all that was required to maintain the centre

of gravity at the centre of the drone.

The frame of the DJI Flamewheel F450 kit comprises two pieces of carbon fibre

plate that sandwich the four arms of the drone. The bottom plate incorporates the

power distribution for the electronic speed controllers (ESCs) of the drone. The

top plate is not utilized in this project and is replaced with a custom 3D-printed

piece that is designed to mount the required components for this application. Figure

4.3 shows the custom 3D-printed top plate. This top plate houses the autopilot

on vibration-dampening mounts, the onboard computer, the Intel T265 camera on

vibration-dampening mounts, the RC receiver, and the arming switch.

4.1.2 Low-Level Command and Control of the Platform

The aerial systems were controlled through a variety of means. Firstly, a handheld

radio controller that operated in the 2.4 GHz spectrum was utilized. This controller

was available at all times to the operator and allowed the operator to take manual

42

Figure 4.3: DJI Flamewheel 450 close up

control at any given moment. It was also used for take-off and bringing the aerial

system within the visual range of the target.

Secondly, a 900 MHz telemetry link was established with Sik radios, which allowed

communication between the autopilot and ground control station software. This

link was used to change tuning variables for the autopilot, monitor the aircraft, and

enable/disable the autopilot as necessary.

Thirdly, an Ethernet cable may be physically connected to the onboard computer

on the drone. This allowed the imaging and navigation program to be started and

stopped. Additionally, it allowed the raw and processed data to be downloaded from

the computer.

In the final implementation, the 900 MHz telemetry link and requirement for the

ethernet link were eliminated and replaced with a 2.4 GHz WiFi link. The imaging

computer ran a mavproxy server, which allowed it to forward telemetry information

from the autopilot to the ground control station laptop and the onboard navigation

software. The networking and control links are shown in Figure 4.4.

43

Figure 4.4: Aerial Platform networking configuration

4.1.3 Camera Systems

Two camera systems were utilized in the project. The first camera system, DMM

42BUC03-ML, was from the imaging source. This camera system was lightweight,

weighing only 7 g, and had small dimensions of 30x30x15 mm. It was equipped with a

global shutter and featured a 1/3-inch Onsemi CMOS MT9M021 sensor. The camera

was capable of capturing 1,280Ö960 (1.2 Mpx images, up to 25 frames per second.

It was a monochrome board camera with a USB 2.0 interface. The camera was

controlled via openCV, with each frame being captured and analyzed. This camera

system was more thoroughly characterized than the final camera used in the project.

By taking an image of a clock on a computer screen, it was found that the rough

latency with this camera was ∼102 ms for a 0.3 Mpx image and ∼169 ms for a 1.2

Mpx image.

The 2nd camera system was the Intel Realsense T265 camera. It features two

fish-eye cameras that capture a wide field of view of 170 degrees, allowing for robust

tracking and mapping in indoor environments. Each camera captures images at a

resolution of 848x800 (0.68 Mpx). The camera system uses Intel’s Visual Inertial

Odometry (VIO) to accurately estimate the camera’s position and orientation in 3D

space. This camera system is capable of tracking the movement of the device in six

degrees of freedom (6DoF), including translation along the X, Y, and Z axes, as well

as rotation around those axes. It also has built-in support for hardware-accelerated

44

depth sensing and can output dense depth maps up to a range of 6 m. The Intel

Realsense T265 camera is compact and lightweight, considering the sensor suite held

within. The size makes it ideal for use in small drones or other mobile robotics

platforms. It also features a USB 3.1 Gen 1 Type-C interface for easy integration

with a host computer or embedded system.

4.1.4 Onboard Computer

The Odroid C2 is a single-board computer (SBC) produced by the Korean company

Hardkernel. This computer was initially used and took ˜75 ms to process a 0.3 Mpx.

It is lightweight and inexpensive. The newer Odroid C4 may be purchased at a retail

price of USD 62.95.

The Jetson Nano 4GB is an SBC produced by NVIDIA, designed for use in AI

and machine learning applications. The Jetson Nano 4GB is known for its small

form factor, low power consumption, and efficient performance in AI and machine

learning workloads. It supports a variety of AI frameworks and libraries, such as

TensorFlow, PyTorch, and OpenCV, and is commonly used for applications such as

robotics, autonomous vehicles, and smart devices. The Jetson Nano was used in the

final solution as it has more processing power. It took ∼54 ms to process a 0.68 Mpx

image. The cost of a Jetson Nano is USD 149.00.

4.2 Evaluating ArUco

The ArUco Library was developed by the University of Cordoba. The library is

capable of detecting different markers including its custom marker and AprilTags.

Each ArUco marker contains a marker id. In the vibration monitoring application,

this allows for each vibration site to have its marker ID dedicated to it.

The process of marker detection starts by thresholding the images. Then contours

are found and marker candidates are determined. These candidates are then filtered to

remove markers that are too large, small, or too close together. The marker detector

45

library allows for modifying a multitude of parameters.

The next step in the process is to analyze the inner code of the marker. A marker,

that is generated from the 6x6 marker dictionary, is subdivided into 36 smaller

squares. The marker detection algorithm then determines the code inside the marker,

the marker id, and then determine whether or not it is part of the dictionary. The

use of dictionaries and coded bits prevents false positives that the basic methods of

just a rectangle or square would fail at.

Next, the algorithm returns a list of all the markers. The marker with the correct ID

is then selected and pose estimation is performed on the correct marker. The ArUco

Library uses the OpenCV Solve PnP function. PnP stands for Perspective-n-Point.

This function iteratively estimates the pose of a marker, based on the physical object

points and their respective projected points on the image. The SolvePnP function

returns a translation and rotation vector of the marker relative to the camera frame.

4.2.1 Precision and Accuracy of ArUco

It is important to evaluate and understand the functionality, accuracy, and limits

of the ArUco system. To this end, a testing configuration was established, which

involved the use of long rails, 8020 pieces, a 3D-printed camera holder, and target

holders. The purpose of this setup was to capture images of targets at varying dis-

tances and angles to simulate real-world scenarios where the ArUco platform may not

be directly in line and square with the target.

Images of the marker were taken from 1-6 m at 1 m intervals from the camera. At

each location, the marker was rotated from 0 to 60 degrees at 10-degree intervals. For

each measurement, 100 photographs of the target were taken. This data is represented

in Figure 4.5. The data showed that depth error increased the farther away the

target was from the camera. The data also showed that as the marker angle changed

the depth error increased. Both of these are expected as the depth is calculated by

measuring how many pixels the marker takes up in the image. The farther the marker

46

Figure 4.5: Depth error of an ArUco marker at different depths and marker angles

is away from the image the smaller it is in the image and the number of pixels it takes

up in the image is smaller. Any error in measuring the contours of the marker has a

larger effect on calculating depth. Similarly, markers in an angle occupy fewer pixels

in the image. Overall this data indicates that the depth error within 1 meter and a

60-degree angle will be less than 5 cm. At smaller angles, this depth error is negligible.

The arm that is designed should all for a few centimetres of error when positioning.

Figure 4.6 shows the angle error for each marker. This is using the same data

as collected previously, but instead of measuring depth, it measures the angle of the

marker in the frame. This Figure shows an interesting result that there is a larger

angle error the closer a marker is square to the camera. This error also is greater

the farther the marker is away from the camera, but the primary driver for marker

angle error is the marker angle itself. The 6-meter data from the graph shows that

when the marker is square to the camera (0 degrees), the marker can be incorrectly

detected at even -10 degrees. When the marker has a larger angle to the camera like

at 60 degrees, the error is less that 2 degrees. In practice, this means that a deadband

may need to be implemented when doing yaw control when the marker is square to

the camera.

Figure 4.7 measure the translation error in the X-axis at different distances and

47

Figure 4.6: Angle Error vs Marker Angle for different depths

angle in the frame. The translation error in the Y-axis should be similar to the X-axis

as such no measurements were taken for that axis. The data shows that when the

target is not centre in the frame the translation error is minor, less than 5 cm when

the drone is yawed 10 deg away from the target. Targets when not in the centre

of the frame are exposed to more lens distortions. Later sections detail the actual

control methodology of the drone and the main goal is to always keep the target in

the center of the camera frame, so the drone is yawed 0 deg away from the target.

The data collected continued to show that the ArUco marker system along with the

camera would be adequate for visual servoing.

From the data, it was determined that the system would be able to localize the

target adequately. The largest problem that occurred was pose jumping of the marker

due to the marker ambiguity.

4.2.2 Marker Ambiguity Problem

The marker ambiguity problem refers to the challenge of accurately identifying the

pose of a marker as there may be more than one valid solution. When the algorithm

switches between two solutions, this is known as pose jumping. The problem is

worsened with lower-resolution images or image blur. Accurate corner estimation

48

Figure 4.7: Translation Error in X vs Angle in Frame

mostly alleviates the problem, but that is difficult to attain with changing lighting

and motion conditions.

Figure 4.8a shows a left and right image taken at the same time in flight from a

stereoscopic camera. Figure 4.8b shows the correct pose being estimated, but Figure

4.8c shows the incorrect pose being estimated. The left image predicts the drone’s

NED coordinates are (-1.09, 0.46,-0.12) which is correct. The right image predicts

the drone’s coordinates as (-1.16, -0.46, 0.12). If the drone were to try and control

itself from the incorrect data it would travel in a direction that would take it farther

from where it should be.

A possible solution to this problem is the MarkerPoseTracker, which employs the

last marker pose as the starting point for the iterations of the solvePnP function.

However, this approach may encounter issues if there is an incorrect starting point,

especially when the target angle is close to 0 degrees, as shown in Figure 4.6. This

can lead to the propagation of incorrect solutions, which can affect the accuracy of

the tracking system.

Further solutions to eliminate the problem were attempted. The use of depth infor-

mation from stereo cameras was incorporated to aid in selecting the correct solution.

By analyzing the distance between the marker and the camera, the tracking system

49

(a)

(b) Zoomed in on the left image with cor-
rect pose

(c) Zoomed in on the right image with
incorrect pose

Figure 4.8: Marker ambiguity in a stereoscopic image. Both images were taken at
the same moment in time, yet show different position estimations.

50

can eliminate ambiguous solutions that do not correspond to the actual position and

pose of the marker. Still this method would struggle when the target angle is close

to 0 degrees.

Furthermore, environmental clues can also be utilized to eliminate incorrect solu-

tions. For instance, the marker’s x-axis can be set to point upwards, and the z-axis

can never be directed away from the camera when visualizing servoing a multi-rotor

in front of the target. By incorporating these constraints into the tracking system,

the accuracy of the marker identification may be improved for some obvious erroneous

solutions, but not the ones that primarily affect lateral position control.

Since the problem is directly linked to corner estimation, ArUco also generates

markers that help to further improve the accuracy of corner estimation. This method

was briefly tried but also produced some solutions to the marker ambiguity problem.

There are a few solutions proposed in other papers. [89] describes the problem well

and [43, 90] propose some solutions. The problem was mitigated in this research by

using larger targets and better lighting, but this issue has not been eliminated. The

use of different style markers, multiple markers, or 3D markers may eliminate the

issue and should be explored in future work.

4.3 UAV Control Implementation

There were two methods of controlling the UAV that were explored in this work.

The first method was using the information from the target to generate a position

estimation and then sending attitude setpoints to the drone. The second method was

generating a position estimation message and then sending that to the drone along

with a target position message.

4.3.1 Controlling UAV using Attitude Setpoint Messages

The attitude controller as proposed in section 3.3.4 was implemented and run on the

onboard computer. The program was implemented in cpp and split into a few sub-

51

Figure 4.9: UAV Sensor Deploy Program and Libraries Summary

libraries for added modularity and testability. A summary of the duties of the main

program and library is shown in Figure 4.9.

An ArUco processor library was implemented. This library is initialized with cam-

era calibration parameters and marker size. The ArUco processor library is then

called each time an image is received. The library takes the image, applies any re-

quired camera calibrations, finds a marker in the image, calculates the pose of the

marker and then returns the found marker with its pose.

Two different camera libraries were used. A library to implement the Intel Re-

alsense API was created. This library triggered a callback in the main program

whenever a full data frame composed of 2 image frames and a pose frame was re-

ceived from the Realsense camera. The second camera library was used to interface

with any V4L2 camera. This library was already available online and just needed a

few modifications to make it CMAKE-compatible.

A multithreaded Mavlink interface library was implemented. This library allowed

52

multiple threads to send and receive Mavlink messages over serial or UDP interfaces.

An attitude controller library was implemented. This library implemented the

controller in Figure 3.5.

Finally, all of these programs were bundled together in a singular program that

would collect, process and route data between the camera, autopilot and ground

station. The program would also implement the navigational state machine as seen

in Figure 3.3c.

The attitude controller has parameters that need to be adjusted. In addition, the

attitude controller has feedback that is valuable for debugging. Three custom Mavlink

messages were created; A control gains message for modifying the control gains; a

target NED message for where the target is in the frame and where the controller is

trying to send it; a control targets message that details the current estimated velocity,

desired velocity, desired acceleration, desired roll, and desired pitch. These custom

messages were available on the ground station using a Python program. This program

allowed the viewing of feedback messages and adjusting the tuning gains.

In addition, a simulator was used to verify that the position controller worked.

Ardupilot has a Python-based simulator with a generic UAVmodel. Since the attitude

controller library was separate from the main program, a separate wrapper program

was developed for the attitude controller library. This wrapper would place a target

at coordinates (0,0,0) in NED. It would then take the local position of the UAV as

reported by the Ardupilot simulator and would report what the expected raw pose

data from the target would be. This raw pose data would then be used along with

user-entered desired position data to generate attitude and thrust targets by the

attitude controller library. This simulation was in a completely noise-free and wind-

free environment. The simulation always knew where the target was with complete

precision and accuracy. The attitude controller worked well with this simulator and

was able to control the UAV to the desired locations. The simulator and simulator

wrapper worked well to prove that the underlying math would work but did not take

53

Figure 4.10: Simulator Setup

into account real-world noise and issues. The simulator was most valuable in finding

issues with coordinate transformations and correct signs. A block diagram of the

simulator setup can be seen in Figure 4.10.

In addition, support programs and scripts were also generated. An ArUco camera

calibration program was developed and a test data collection program was used for

evaluating the ArUco marker system.

4.3.2 Controlling UAV using Position Setpoint Messages

Vision Position Estimate with Imaging Source DMM 42BUC03-ML Cam-
era

To generate a vision position estimate using the DMM 42BUC03-ML camera a fiducial

marker needs to be in the frame. When the marker comes into the frame a position

estimate may be generated. This position estimate is then sent to the autopilot. This

method with this camera alone proved to be ineffective and is described in the next

chapter. As such the low-level implementation of this method is not detailed here as

a complete solution was not developed.

Vision Position Estimate with Intel Realsense T265

The Intel Realsense T265 generates a position estimate regardless of having a fiducial

marker in the frame. Nguyen in [61] already has a good starting point to build

off from. This work is done in Python and already has the work done to obtain a

54

Figure 4.11: Python vision position estimate control program. Modules in boxes are
primarily where work has been done to the work done in [61].

vision position estimate and vision speed estimate from the Intel Realsense camera

and send it at 30 Hz to the autopilot. Nguyen also has done the work of obtaining

a frame from the camera, applying camera calibration parameters and detecting an

April Tag in the frame.

To make this work compatible with this thesis work a few elements needed to

be implemented. Nguyen’s original work connected directly to the autopilot, so a

Mavlink connection through the Wi-Fi link needed to be implemented. This involved

creating a Mavlink UDP object in the script and doing the appropriate message rout-

ing. The position controller and navigational state machine as shown in Figure 3.3c

was implemented. Logging was also added to the script to log in flight video, target

position, desired position and accelerometer data. Figure 4.11 shows an overview of

the elements of the Python vision position estimate control program.

55

(a)

(b)

Figure 4.12: Arm V1 uses 2 electromagnets. This arm was used with the Aperture
Hexacopter.

4.4 Sensor Arm with Vibration Dampening

Using a sensor affixed to a vibration arm was the method used for collecting data in

this project. One of the main advantages of this method is that the arm is fixed, so

there are no changes in the centre of mass during flight. This helps remove motion

that could be imparted into the arm from the drone’s turbulent motion.

4.4.1 Arm V1

An early version of the arm was built and tested with the Aperture Hexacopter.

Figure 4.12 shows this arm. It housed an MPU 6050 accelerometer and a Teensy 3.2

on the sensor head. This was powered by the onboard computer and communicated

with the onboard computer via serial. This arm was not fully tested with a vibration

56

Figure 4.13: Arm V2 end effector used for test flights with the DJI Flamewheel F450.

target.

4.4.2 Arm V2

Arm V2 was used on the DJI Flamewheel F450. It is very similar in electrical hard-

ware to Arm V1, but smaller so as to fit onto the smaller platform. This arm has a

single electromagnet and the end effector of this arm is shown in Figure 4.13.

4.4.3 Arm V3

The vibration arm used for the final test flights is shown in Figure 4.14. This arm

was more lightweight than the previous one and could be installed onto a smaller

drone. To ensure reliable coupling with the infrastructure, the end of the arm has a

rubber pad. An MPU6050 accelerometer is glued directly to the rubber pad. This

pad helps to maintain contact with the infrastructure, even in situations where the

surface is irregular or uneven. In addition, foam from a soft car-washing sponge is

used to keep the sensor connected to the drone but decoupled from the vibrations of

the drone. This helps to ensure that the data collected is accurate and not distorted

57

Figure 4.14: Arm V3 used for final test flights.

by the drone’s motion.

To prevent the weight of the end of the arm from causing the sensor to droop away

from the axis of the arm, a string is used to keep the end of the arm upright as shown

in Figure 4.15. Once contact is made the strings are no longer in tension and the

sponge is under compression. The MPU 6050 was connected via I2C directly to the

drone’s onboard computer.

This sensing arm requires that the drone be relatively steady and able to apply

constant pressure to the wall through the arm.

4.4.4 Accelerometer Data Processing

The accelerometer data from the sensor affixed to the vibration arm was collected

using the onboard computer on the drone. While the data was post-processed for

this thesis, real-time processing would be easily achievable by the navigation/imaging

computer. This would allow for immediate feedback and analysis of the data, enabling

the drone operator to make real-time decisions about the inspection and maintenance

of the infrastructure.

58

Figure 4.15: Close up of Arm V3. String was used to keep the sensor from drooping

The MPU6050 was accessed via I2C with the hardware’s max bus rate of 400

kHz. Since the data ready line of the accelerometer was not connected and since the

onboard computer was running other software, getting real-time periodic data was

difficult. The setup had the MPU6050 being polled for the three-axis accelerometer

data. Saving the accelerometer data would also cause irregularities in the frequency

of acquired raw data. As a result, a method of collecting data was used where the

sensor would collect 1 second worth of data as fast as possible. This data comes in

timestamped and ranged between 650 and 700 samples. After collecting 1 second

worth of data, the data is saved and then more data is collected at the next second.

This means that a 20 s contact time would result in 10 s of vibration data.

The collected samples were then post-processed. The first step was interpolating

the data to get 700 samples for 1 second at an even sampling rate. This was done

using a linear interpolation. This data is now ready to be analyzed in the frequency

domain. A Fast Fourier Transform (FFT) is performed on each axis. The FFT

is a mathematical algorithm that converts a time-domain sampled signal into its

frequency-domain representation. The data that has gone through the FFT allows

us to identify the dominant frequencies and amplitudes of the vibrations. Sampling

59

the data at 700 samples per second allows for a frequency analysis of up to 350 Hz.

The resolution of the data is 1 Hz as the data has been sampled for 1 second.

4.5 Test Configurations

Table 4.1 describes all of the test configurations attempted for this project. All of

the configurations are discussed in depth in the following chapter. Configuration

1 is using vision position estimate from the DMM42BUC03-ML and the aperture

hexacopter platform. Configuration 2 uses the Aperture hexacopter with an attitude

controller. Configuration 3 uses the smaller DJI Flamewheel 450 platform with a

newer lightweight arm with an electromagnet. Configurations 4 and 5 were large HW

changes. They still used the Flamewheel 450, but now used the Intel Realsense T265

camera, the arm shown in Figure 4.14, and the Jetson Nano as the onboard computer.

Configurations 4 and 5 differ only in the control scheme utilized. Configuration 5 is

the only one that proved viable for the acquisition of vibration measurements. The

performance of the vibration arm from configuration 5 is the only one detailed in the

following chapter. The flight performance of configuration 5 is discussed in depth.

60

Table 4.1: Table showing different test configurations

Config 1 Config 2 Config 3 Config 4 Config 5

Airframe Aperture
Hexacopter

Aperture
Hexacopter

DJI Flame-
wheel F450

DJI Flame-
wheel F450

DJI Flame-
wheel F450

Arm Arm V1 Arm V1 Arm V2 Arm V3 Arm V3

Camera Imaging
Source
DMM
42BUC03-
ML

Imaging
Source
DMM
42BUC03-
ML

Imaging
Source
DMM
42BUC03-
ML

Intel T265 Intel T265

Computer Odroid
XU4

Odroid
XU4

Odroid
XU4

Jetson
Nano 4
GB

Jetson
Nano 4
GB

Autopilot PX4 Ardupilot Ardupilot Ardupilot Ardupilot

Control
Scheme

Vision
Position
Estimate
and
Position
Controller

Attitude
Controller

Attitude
Controller

Attitude
Controller

Vision
Position
Estimate
and
Position
Controller

Comms 900 MHz
Telem,
2.4 GHz
RC

900 MHz
Telem,
2.4 GHz
RC

900 MHz
Telem,
2.4 GHz
RC

2.4 GHz
WiFi,
2.4 GHz
RC

2.4 GHz
WiFi,
2.4 GHz
RC

61

Chapter 5

Results and Discussion

Many test flights were conducted with the configurations listed in Table 4.1. The only

flights that proved successful in being able to satisfactorily control the UAV up to the

wall and obtain a vibration measurement were with Configuration 5. Configuration

1 had issues where fusing image data alone based on the position of a fiducial marker

was too noisy causing the state estimation on the autopilot to fail. Configurations 2-4

had issues with incorrect pose estimation, poor tuning gains, and a problem where

the target would easily leave the frame causing the controller to fail. As a result

vibration data was only acquired from Configuration 5 and that data is examined

in this chapter. This chapter describes the hardware and control variations that

were investigated throughout this work. This includes the aerial platform, autopilot

system, onboard computing and imaging system, control via sending the autopilot a

vision position estimate and control via sending attitude control messages.

5.1 Aerial Platform Performance

5.1.1 Aperture Hexacopter

The Aperture hexacopter was utilized in Configuration 1 and Configuration 2. This

hexacopter served as the initial larger platform for conducting the experiments. How-

ever, it should be noted that the platform’s utilization necessitated access to an out-

door flying field and/or an SFOC, making the experimentation process considerably

62

more expensive in terms of time. Debugging issues outside of the lab is more chal-

lenging, due to power, internet, ergonomic, and tool constraints. An image of the

Aperture Hexacopter at the outdoor testing site is shown in Figure 5.1.

One key aspect of the Aperture hexacopter is its larger wheelbase, which in turn

required the utilization/development of the larger vibration monitoring arm V1. The

larger wheelbase meant that the arm needed to be longer, so it needed to be made

of heavier/sturdier material. Additionally, the larger size of the drone introduced

heightened risks if it went out of control during experimentation. This increased

risk stems from several factors, such as the presence of more propellers and larger

propellers on the platform. The larger propellers have higher inertia within each

propeller when they are spun up to speed as compared to the propellers utilized on

a smaller UAV. Moreover, the hexacopter’s overall weight is greater, so there is more

inertia in the frame in the event of loss of control. The larger inertia of the drone

also meant that more force is required for it to be pushed around by the wind. This

benefit is very quickly offset by the larger size of the UAV creating more surface area

that the wind can affect and the reduced power-to-weight ratio of the drone.

Despite its adequacy in terms of performance, the Aperture hexacopter was deemed

unsuitable for proof of concept experimentation for this particular research work.

This limitation is primarily attributed to the requirement for a large indoor flight

area, an outdoor flying field or SFOC, which considerably restricted its practicality

and accessibility for conducting experiments.

5.1.2 DJI FlameWheel F450

In the context of the research application, the DJI Flamewheel F450 proved to be

an exceptionally suitable platform and was consequently employed in configurations

3 to 5. One of the most significant advantages of this platform was its small size,

which allowed for indoor experimentation within a controlled indoor laboratory en-

vironment. To ensure safety during indoor tests, the drone was operated within an

63

Figure 5.1: Aperture hexacopter at outdoor test site

area, enclosed by a net, mitigating the risk of any untoward incidents. The ease of

customizability of the F450, with the custom 3D printed top plate, allowed for two

different imaging and computing systems to be easily implemented.

The small size of the DJI Flamewheel F450 had a direct impact on the design of the

platform, particularly concerning the vibration-sensing arm. The platform utilized

smaller vibration-sensing arms to accommodate its compact form factor. Notably,

the V3 arm, being the smallest of these arms, weighed 200 grams.

Vibration data analyzed later in this chapter were acquired from the DJI Flame-

wheel F450 platform.

5.1.3 Communications links

Initially, the communication setup for the UAV involved a 900 MHz telemetry link

and a 2.4 GHz RC link. This combination of communication links was selected

for configurations 1 to 3 due to its effectiveness in low bandwidth and long-range

applications. This was done as it is a standard setup.

64

For configurations 4 and 5, a modification was introduced by replacing the 900

MHz telemetry link with a 2.4 GHz WiFi link. This change was achieved by in-

tegrating a low-profile USB WiFi module with the UAV’s onboard computer. The

decision to switch to a WiFi link was primarily driven by the absence of high-range

communication requirements in the proof of concept phase.

One significant advantage of implementing the 2.4 GHz WiFi link was its abil-

ity to simplify the ground station setup. With the introduction of the WiFi link,

all that was needed for the ground station was a computer with WiFi capabilities.

This streamlined setup contributed to increased convenience and portability during

experiments and reduced the need for specialized equipment.

The WiFi link not only served as a means of transmitting telemetry data but

also offered additional functionalities. The WiFi link offered direct ssh access to the

onboard computer. This provided greater flexibility during experimentation, allow-

ing adjustments to be made in real-time without the need for physical connections

or reprogramming the onboard computer directly. Additionally, log files could be

downloaded wirelessly.

The transition from the initial 900 MHz telemetry link to the 2.4 GHz WiFi link for

configurations 4 and 5 was a strategic decision driven by the specific requirements of

the proof of concept phase. By leveraging the advantages of the WiFi link, the proof of

concept added convenient access to the onboard computer, streamlined ground station

setup, allowed quick control program modifications, and wireless data transfer.

5.2 Autopilot Software

5.2.1 PX4

The PX4 flight control system was initially used in Configuration 1. However, it

was not utilized in subsequent configurations for the remainder of the project. The

decision to discontinue the use of PX4 was primarily influenced by the unsatisfactory

65

out-of-the-box performance observed during the initial experiments.

Despite attempts to improve the performance of PX4 by tuning the autopilot

control loops and exponentials of the RC transmitter, challenges were encountered

in maintaining a stable altitude using the RC transmitter in manual mode. This

difficulty in altitude control was mainly due to a result of inadequate tuning and

configuration, but the platform could have had more intuitive configuration steps.

Moreover, during one outdoor test flight, there was a notable instance of very poor

manual UAV control with the PX4 system. While it remains uncertain whether this

poor control was solely due to the system’s poor configuration or other factors, it

raised doubts about the platform’s suitability for the project’s objectives.

In light of the difficulties faced with PX4, the switch was made to explore Ardupilot

and see if these issues would immediately be resolved and to reduce time in trying to

debug the configuration.

5.2.2 Ardupilot

The transition from PX4 to Ardupilot proved to be a positive change for the research

project. Ardupilot offered an excellent out-of-the-box experience and the hardware

compatibility made it seamless to switch between the two different flight control sys-

tems. From the operator’s perspective, Ardupilot resolved the manual control issues

that were experienced when using PX4. Ardupilot, with little to no configuration

tuning, allowed for more precise flight and altitude control.

Ardupilot was used in Configurations 3 to 5. The flight control system demon-

strated was used in the vibration data that was acquired and that is presented later

in this chapter.

The documentation provided for Ardupilot, was clear and comprehensive with lots

of community-generated forum information if needed. The simulator provided by the

Ardupilot team was another valuable feature that contributed to the success of the

project. Setting up and using the simulator was straightforward and user-friendly.

66

This capability not only saved time and resources but also provided a safe environment

for testing and refining control algorithms and flight strategies before deploying them

in real-world experiments.

5.3 Onboard Computer and Imaging System

In configurations 1 to 3, the inexpensive imaging source camera was utilized. This

camera was found to be highly functional in detecting markers within images, making

it a suitable choice for the initial stages of the experimentation. However, after

experiments with Configuration 3 had concluded, the camera was no longer accessible.

Rather than continuing to utilize the same imaging and computing system, this was an

opportunity to implement a different system with improved performance and features.

To address the limitations observed in using the attitude controller in Configuration

3 and to improve the overall imaging system’s processing time and latency, the Intel

Realsense camera and Jetson Nano were implemented for configurations 4 and 5.

The introduction of the Intel Realsense camera and Jetson Nano brought about

some improvements in the system’s performance. The new camera system reduced

image processing time and latency, thereby enhancing the UAV’s responsiveness and

overall control during flight. These enhancements were expected to contribute to

better experimental outcomes. By utilizing stereoscopic images that the Intel Re-

alsense camera provided there was an opportunity for experimentation with trying to

improve marker pose ambiguity. Configuration 4 proved to be ineffective in control-

ling the UAV, so the position data from the Intel Realsense camera was utilized in

Configuration 5.

67

5.4 Control Performance

5.4.1 Vision Position Estimate Performance with
DMM 42BUC03-ML

In Configuration 1, the imaging source camera was utilized to generate a vision po-

sition estimate, which aimed to provide the UAV with an accurate estimation of its

position. However, this control system encountered significant challenges and ulti-

mately failed to meet expectations.

The fundamental issue with the vision position estimate in Configuration 1 was

its heavy reliance on having a marker present within the camera field of view. The

control system was designed to utilize the marker’s information to calculate the UAV’s

position relative to the marker. Consequently, any misidentification or loss of the

marker in the camera frame would lead to a breakdown in the position estimation

process. Whenever the marker was misidentified or no longer visible in the camera

frame, the position estimate would fail to be generated. Consequently, the autopilot,

which received these vision position estimate messages, would completely reject them

as they were deemed invalid. When the correct messages were again generated, the

resulting position jump would necessitate a need to reset the PX4 autopilot state

estimator.

While additional filtering techniques could have been applied to improve the ro-

bustness of the marker detection process, the fundamental approach of relying solely

on the marker in the frame proved to be unsuitable for providing a consistent and

accurate position estimation.

Configuration 1’s vision position estimate based on the imaging source camera

failed due to its heavy reliance on viewing a single marker in the frame. The lack

of robustness and the susceptibility to marker misidentification led to inconsistent

position estimates and, ultimately, unsatisfactory performance.

68

5.4.2 Attitude Controller Performance

In configurations 2 to 4, the attitude controller was utilized as the primary control

system for the UAV. However, real-world testing using this method yielded poor

results for several reasons.

One significant issue was the limited image acquisition rate of the Imaging source

camera, which operated at less than 10 Hz. This slow image acquisition rate and the

image processing latency introduced lagging inputs to the control system. As a result,

the UAV’s response to control inputs became sluggish, and it struggled to track the

target accurately in real time.

The slow image acquisition rate, combined with the latency, caused challenges in

maintaining precise control over the UAV’s position. If the controller gains were

set too high, the drone frequently overshot the target position due to the delayed

response. Conversely, if the gains were too low, the UAV would drift away from the

target, failing to keep the target within the camera’s field of view.

Additionally, the issues with the attitude controller were further exacerbated by

other factors. First, the system was sensitive to misidentifications of the target,

especially when there was pose ambiguity. This meant that if the camera incorrectly

identified the target or experienced difficulties in discerning its pose accurately, it

would lead to incorrect attitude setpoints. Subsequently, the UAV would attempt

to follow these incorrect setpoints, causing erratic movements and deviations from

the target position. Furthermore, the control system was susceptible to noise, which

could be introduced by various factors, such as environmental conditions or camera

artifacts. The presence of noise in the sensor data further contributed to inaccurate

attitude setpoints, leading to erratic behaviour and challenging control performance.

All of these things, slow image acquisition, misidentification of the target, and

noise in the target position data, poor control gains without wind estimation, created

a problematic situation where the target would quickly move out of the camera’s field

69

of view. This resulted in a constant struggle to maintain tracking and precise control

over the UAV during real-world testing.

While more tuning efforts could have potentially improved the performance of the

attitude controller to some extent, the fundamental limitations of using only the

fiducial marker as a reference for position estimation as the basis for the control

strategy would remain.

5.4.3 Vision Position Estimate with Intel Realsense T265
Camera

The introduction of the Intel Realsense T265 camera position for vision position

estimation marked a significant improvement in the UAV’s control system. The vision

position estimate provided by the Intel Realsense camera proved to be highly reliable

and accurate, enabling the drone to perform loitering and position hold maneuvers

even in challenging environments, such as when flying close to a wall with turbulent

air.

Once the drone was in a position hold state, the generation and transmission of

commands for relative movements became straightforward. With the confidence of

knowing its precise position, and having a fiducial marker in the camera’s field of

view, the controller could easily generate relative desired position commands to its

current location and enable the UAV to navigate and perform the desired movements.

In Configuration 5 the drone must be 0.43 m away from the target for the arm to

make contact with the wall. Any farther away and the vibration sensor will not make

good contact with the wall. The drone is also programmed to make contact 0.10 m

below the target so that the arm does not occlude the fiducial marker.

The following data shows the drone’s position and control setpoint for the duration

of the flight. The drone is making contact when the current forward position is 0.43 m.

The setpoint line is only graphed when the drone is being commanded to a position.

When the setpoint line is not there, the drone is being flown by an operator, aided

70

(a) (b)

(c)

Figure 5.2: Flight 11 Position Control

by the position estimate being sent by the onboard computer. This means that when

the operator lets go of the sticks the drone will remain in its current position.

Figure 5.2 shows flight 11. During this flight, the position controller was enabled

once. The drone made contact with the wall at ∼200 s into the flight. When the

controller is enabled the drone first tries to move from ∼1.8 m away from the wall to

1.5 m. As soon as it meets the staging condition (see Figure 3.3c), it then goes to

make contact and holds the position at the wall for ∼10 s. The forward setpoint for

the drone is 0.41 m. After making contact for ∼10 s it then goes back to the staging

area until the operator takes control again at ∼140s.

71

(a) (b)

(c)

Figure 5.3: Flight 12 Position Control

Flight 12 as shown in Figure 5.3 its results are similar to flight 11. The position

controller was enabled once and shows a flight where the position controller was

enabled once at ∼115 s. The drone made contact with the wall at ∼120 s into the

flight, by being commanded to go to 0.41 m. When comparing Figure 5.2a and Figure

5.3a, the oscillations can be seen at the point of contact. Flight 12 seemed to have

more oscillations when making contact. To reduce these oscillations, one strategy is

to not apply as much pressure to the arm.

Flight 13 as shown in Figure 5.4 shows a flight where the forward position setpoint

was set to 0.43 m when contact is made. In Figure 5.4a, there are some oscillations

72

(a) (b)

(c)

Figure 5.4: Flight 13 Position Control

when contact is first made but they die down and are smooth shortly after.

Flight 14 as shown in Figure 5.5 again had the forward setpoint set to 0.43 m

for when contact is made. On this flight, contact was made 3 times. Figure 5.6

shows the variation in arm position relative to the fiducial marker. This variation is

primarily caused by the lack of yaw control being implemented in Configuration 5.

The images also tend to show a more exaggerated effect on the drone position due

to the wide-angle lens. The first contact made was the poorest in the series with the

end effector of the arm off by ∼14 cm. Having the arm at such an angle also means

that the drone is not pushing as axially through the arm as it could be. This can be

73

(a) (b)

(c)

Figure 5.5: Flight 14 Position Control

seen when looking at the frequency graph in Figure 5.11, where a very poor vibration

measurement is captured.

It is difficult to measure the location of the drone relative to the target in flight as

no other position verification mechanism was used. By taking images of each contact,

pixel measurements can be done to determine the error in the end effector position.

Table 5.1 shows the position errors for each contact, with the average error from all

6 contacts being ∼74 mm.

74

(a) Contact 14 1 (b) Contact 14 2

(c) Contact 14 3

Figure 5.6: Flight 14 Contact

Table 5.1: Estimate of position error of end effector during contact taken from pixel
measurements

X Y Total

Contact 11 81 mm -12 mm 82 mm

Contact 12 -12 mm -45 mm 47 mm

Contact 13 85 mm -30 mm 90 mm

Contact 14 1 145 mm 24 mm 147 mm

Contact 14 2 54 mm -12 mm 56 mm

Contact 14 3 -24 mm 3 mm 24 mm

Average 55 mm -12 mm 74 mm

Standard Deviation 58 mm 22 mm 39 mm

75

5.5 Vibration Measurement

The same stand that held the fiducial marker also was a vibration target. Vibrations

were generated using a brushless motor with a 3D-printed unbalanced rotor. An

Arduino sent PWM signals to a speed controller to vary the speed of the brushless

motor and allow for different frequencies to be generated. Figure 5.7 shows the

vibration source.

Figure 5.7: Vibration Source

5.5.1 Arm V1

During the research project, Arm V1 was developed for the Aperture Hexacopter and

used in configurations 1 and 2. The arm was not used to collect any vibration data as

no working position estimation system was developed with the Aperture Hexacopter.

The vibration characteristics and performance of Arm V1 are not fully unexplored

in the context of the research project.

76

5.5.2 Arm V2

In Configuration 3, Arm V2 was employed as a direct successor to Arm V1 in the

research project. Arm V2 was specifically designed to be smaller and more lightweight,

making it suitable for installation onto the DJI Flamewheel F450.

However, the use of Arm V2 with the electromagnet had some drawbacks on the

smaller platform. The main notable issues were a reduction in the UAV’s overall run-

time and maneuverability. The weight of Arm V2, along with the energy consumption

of the electromagnet, contributed to the decreased flight time of the vehicle. Longer

flight durations are desirable for extended experimentation and data collection with

the UAV and also to reduce the amount of power cycling the drone when a new

battery is needed to be installed.

Moreover, during experimentation, it was discovered that the electromagnet’s func-

tionality was ultimately unnecessary for creating contact with surfaces. Despite hav-

ing the electromagnet, the UAV still needed to approach the wall close to perpendic-

ular to ensure proper attachment. This meant that the UAV’s position control had

to be effective enough to establish perpendicular contact with the wall. The electro-

magnet would provide strong coupling with the wall, but the UAV position control

already needed to be adequate to provide a satisfactory level of coupling with the

wall.

5.5.3 Arm V3

Arm V3 was lightweight and simpler in design. It is close to the smallest, lightest and

simplest that a vibration arm for the Flamewheel F450 could be. Figure 5.8 shows

a flight to a vibrating target. The target is vibrating at a lower frequency than the

drone motors. The point of contact is made at ∼200 s. In Figure 5.9, the vibrating

target is vibrating at a frequency very similar to the drone motors. At between ∼120

s and ∼130 s the drone makes contact with the target. When the drone makes contact

with the target it can be seen that the vibration signature from the motors goes away

77

Figure 5.8: Flight 11 frequency measurement

and the vibration from the target is measured. The broadband frequency elements in

these frequency graphs are primarily from the motors spooling up and down. During

both of these flights, the drone made poor contact with the target, nevertheless, the

frequency graphs can still be used to identify when the drone made contact with the

target. These two graphs may be compared to Figure 5.2 and Figure 5.3, to correlate

the change in frequency with the moment contact was made.

Flight 13 and Flight 14 took place with less force being applied on the vibration

arm. This was done by setting the forward position of the drone to 0.43 m instead

of 0.41 m. These flights can be seen in Figure 5.10 and Figure 5.11. In both of

these flights, the frequency was set higher than the drone motors. Flight 13 seems to

have made adequate contact, but it could have been stronger as there are still some

elements from the drone motors while the contact was made. Flight 14 made contact

with the target 3 different times in one flight. The first contact was poor, but the

higher frequency of the vibrating target can be seen. The first 2 contacts were made

relatively well, with the 2nd contact having no frequency elements from the motors

preset. The 3rd contact was mostly clean, but some elements of the drone’s motors

78

Figure 5.9: Flight 12 frequency measurement

are visible between 120-130 s.

The vibration data acquired during the research project demonstrated relatively

good performance of the vibration monitoring arm. The arm’s capabilities allowed

for the detection of four different frequencies. Notably, two of these frequencies were

higher than the frequency of the drone motors, while the other two frequencies were

lower than the drone motor frequency.

The ability to distinguish between different frequencies is crucial for accurately

assessing the UAV’s vibration characteristics and identifying potential sources of vi-

bration. The vibration monitoring arm’s capacity to capture multiple frequencies

provided valuable insights into the dynamic behaviour of the drone during flight.

Additionally, when the vibration monitoring arm achieved good contact with the

UAV, it exhibited a damping effect on the vibrations generated by the drone motor.

This damping effect is highly beneficial as it helps reduce the impact of vibrations on

the UAV’s stability and performance. By mitigating vibration levels, the monitoring

arm contributes to a smoother and more controlled flight experience.

Improvement efforts could focus on increasing the arm’s sensitivity to capture

79

Figure 5.10: Flight 13 frequency measurement

Figure 5.11: Flight 14 frequency measurement

80

a broader range of frequencies, especially those that may be indicative of specific

UAV subsystems or mechanical components. Additionally, refining the arm’s contact

mechanism with the drone could lead to more consistent and reliable data acquisition,

which in turn would improve the accuracy of vibration analysis.

Moreover, exploring ways to optimize the data processing and analysis algorithms

could lead to more detailed and comprehensive insights into the UAV’s vibration

patterns. By fine-tuning the data analysis procedures, researchers can extract valu-

able information related to the drone’s performance, health, and potential areas for

optimization.

In conclusion, the vibration monitoring arm showcased relatively good performance

in the research project, enabling the detection of four different frequencies, two of

which were higher and two lower than the drone motor frequency. The arm’s ability to

dampen vibrations when in good contact with the drone was a significant advantage.

However, further work and enhancements are recommended to fully leverage the

arm’s potential and achieve even more insightful and comprehensive vibration analysis

results.

81

Chapter 6

Conclusions and Recommendations
for Future Work

6.1 Conclusions

In conclusion, this thesis has explored the utilization of drones for vibration moni-

toring, focusing on the development of a small, lightweight aerial platform capable of

integrating an imaging system, control system, and vibration acquisition system. By

employing fiducial markers on a vibration target, the drone was able to approach the

target and successfully collect data from the vibration target. The vibration target

was set to different frequencies and these were able to be detected and distinguished

from vibrations generated by the drone.

Throughout the research, various solutions were investigated, leading to the real-

ization that the use/installation of fiducial markers may make the explored solution

less attractive than just mounting permanently affixed sensors instead. If the mark-

ers need to be installed then permanently affixed sensors should be installed instead.

This alternative approach offers a practical solution for long-term monitoring require-

ments, with good vibration coupling to the infrastructure, and eliminates the need

for a drone and repeated flights. That being said more computer vision may be used

to eliminate the need for a fiducial marker depending on the specific environment.

If it is infeasible for a human to affix a fiducial marker or a permanently affixed

sensor box, then it is recommended to employ a drone utilizing a vision-based position

82

estimator to permanently affix a sensor box. This strategy eliminates the need for

a fiducial target and repeated drone flights each time a measurement is required.

The use of a vision base position estimator allows a human to easily control a drone

in GPS-denied environments, in turbulent air next to infrastructure. In addition, an

ultrasonic range finder may also allow for additional automation for a drone attaching

a sensor to a wall.

This work was a proof of concept system. There are limitations to the study. The

vibration measurements were not fully characterized to determine their accuracy and

real-world usability. The UAV was only flown close to the pilot at close to ground

level. The test flights in the final configuration were all indoor.

In summary, this thesis has contributed to the field of vibration monitoring by

demonstrating the feasibility and effectiveness of using drones for vibration data ac-

quisition. The recommended path for commercialization involves further improving

the system and using other methods, such as permanently affixed sensor boxes when

feasible.

6.2 Future Work

This future work section is focused on how to make the explored solution, a drone

with a vibration arm, ready for real-world applications.

Firstly, the implementation of yaw control, for the drone was not realized in the

final test phase due to time constraints. However, incorporating yaw control would

enable more precise position control of the drone, allowing for better test repeatability

and contact with the infrastructure.

Furthermore, additional work needs to be conducted to optimize and test the drone

for outdoor real-world applications. Up until now, the test flights that have made con-

tact with the vibration target, have only taken place indoors, and thus, adjustments

and tuning specific to outdoor conditions are required. Doing this ensures that the

drone operates reliably and accurately in real-world scenarios, where environmental

83

factors, such as wind and lighting, and other challenges may differ from controlled

indoor environments. Operating the UAV from a distance may also be challenging

especially when operating close to infrastructure. A real-time feed from the camera

at the ground station, range finders and increased marker detection range will an

operator to more easily control the UAV at range. This will involve range finding

hardware, a higher bandwidth and range data link, increased resolution cameras or

multiple cameras.

Regarding the vibration sensor, a couple of issues were encountered. One of the

problems was the presence of noise in the sampling period, while the other issue was

related to sensitivity. To address the noise problem, a straightforward solution is to

utilize a dedicated MCU for recording data from the accelerometer to ensure periodic

data collection. This approach would help mitigate noise when performing frequency

analysis on the data. In addition the sampling period of the accelerometer only allows

measurements up to ∼350 Hz, so a higher rate accelerometer would improve the data

collected and allow for measurements of higher frequencies.

The sensitivity of the vibration sensor requires further investigation, as the thesis

work did not delve into determining the necessary sensitivity levels for real-world

applications. Future research should focus on determining the optimal sensitivity

requirements for various real-world scenarios. The current setup may adequately

fulfill the needs of specific real-world applications, but further work should be done

regardless.

A fully developed system has the potential for increased automation. Expanding

the system’s automation capabilities would contribute to its usability and practical-

ity in monitoring infrastructure and machinery. GPS may be incorporated into the

system and automated path planning may be used for bringing the drone close to

each target.

This work has provided a base for using a lightweight UAV to obtain a vibration

sample from infrastructure. Further work on this base will improve and develop a

84

low cost reliable vibration acquisition mechanism that may be used for future com-

mercialization.

85

Bibliography

[1] G. C. Rouse and J. G. Bouwkamp, “Vibration studies of monticello dam,” A
Water Resources Technical Publication, 1967.

[2] S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-
based damage identification methods,” The Shock and Vibration Digest, vol. 30,
no. 2, pp. 91–105, Mar. 1998. doi: 10.1177/058310249803000201.

[3] E. P. Carden and P. Fanning, “Vibration based condition monitoring: A review,”
Structural Health Monitoring, vol. 3, no. 4, pp. 355–377, Dec. 2004. doi: 10.
1177/1475921704047500.

[4] O. Salawu, “Detection of structural damage through changes in frequency: A
review,” Engineering Structures, vol. 19, no. 9, pp. 718–723, Sep. 1997. doi:
10.1016/s0141-0296(96)00149-6.

[5] J. Caicedo, J. Marulanda, P. Thomson, and S. Dyke, “Monitoring of bridges
to detect changes in structural health,” in Proceedings of the 2001 American
Control Conference. (Cat. No.01CH37148), IEEE, 2001. doi: 10.1109/acc.2001.
945586.

[6] S. S. Saidin, A. Jamadin, S. A. Kudus, N. M. Amin, and M. A. Anuar, “An
overview: The application of vibration-based techniques in bridge structural
health monitoring,” International Journal of Concrete Structures and Materials,
vol. 16, no. 1, Dec. 2022. doi: 10.1186/s40069-022-00557-1.

[7] S. A. Rikardo, C. B. Bambang, C. Sumaryadi, T. D. Yulian, S. E. Arief, and
S. F. I. Kharil, “Vibration monitoring on power transformer,” in 2008 Inter-
national Conference on Condition Monitoring and Diagnosis, IEEE, 2008. doi:
10.1109/cmd.2008.4580454.

[8] M. N. H. Chikuruwo, L. Maregedze, and T. Garikayi, “Design of an automated
vibration monitoring system for condition based maintenance of a lathe ma-
chine (case study),” in 2016 International Conference on System Reliability
and Science (ICSRS), IEEE, Nov. 2016. doi: 10.1109/icsrs.2016.7815838.

[9] K.-Y. Wong, “Instrumentation and health monitoring of cable-supported bridges,”
Structural Control and Health Monitoring, vol. 11, no. 2, pp. 91–124, Apr. 2004.
doi: 10.1002/stc.33.

[10] P. C. Chang, A. Flatau, and S. C. Liu, “Review paper: Health monitoring of
civil infrastructure,” Structural Health Monitoring, vol. 2, no. 3, pp. 257–267,
Sep. 2003. doi: 10.1177/1475921703036169.

86

https://doi.org/10.1177/058310249803000201
https://doi.org/10.1177/1475921704047500
https://doi.org/10.1177/1475921704047500
https://doi.org/10.1016/s0141-0296(96)00149-6
https://doi.org/10.1109/acc.2001.945586
https://doi.org/10.1109/acc.2001.945586
https://doi.org/10.1186/s40069-022-00557-1
https://doi.org/10.1109/cmd.2008.4580454
https://doi.org/10.1109/icsrs.2016.7815838
https://doi.org/10.1002/stc.33
https://doi.org/10.1177/1475921703036169

[11] B. Y. Jeong, “Occupational deaths and injuries in the construction industry,”
Applied Ergonomics, vol. 29, no. 5, pp. 355–360, Oct. 1998. doi: 10.1016/s0003-
6870(97)00077-x.

[12] O. Rozenfeld, R. Sacks, Y. Rosenfeld, and H. Baum, “Construction job safety
analysis,” Safety Science, vol. 48, no. 4, pp. 491–498, Apr. 2010. doi: 10.1016/
j.ssci.2009.12.017.

[13] S. S. Oliveira, W. de Albuquerque Soares, and B. M. Vasconcelos, “Fatal fall-
from-height accidents: Statistical treatment using the human factors analysis
and classification system – HFACS,” Journal of Safety Research, May 2023.
doi: 10.1016/j.jsr.2023.05.004.

[14] Z. Ameli, Y. Aremanda, W. A. Friess, and E. N. Landis, “Impact of UAV
hardware options on bridge inspection mission capabilities,” Drones, vol. 6,
no. 3, p. 64, Feb. 2022. doi: 10.3390/drones6030064.

[15] N. Metni and T. Hamel, “A UAV for bridge inspection: Visual servoing control
law with orientation limits,” Automation in Construction, vol. 17, no. 1, pp. 3–
10, Nov. 2007. doi: 10.1016/j.autcon.2006.12.010.

[16] Y. Benkhoui, T. E. Korchi, and L. Reinhold, “UAS-based crack detection using
stereo cameras: A comparative study,” in 2019 International Conference on
Unmanned Aircraft Systems (ICUAS), IEEE, Jun. 2019. doi: 10.1109/icuas.
2019.8798311.

[17] C. M. Yeum and S. J. Dyke, “Vision-based automated crack detection for bridge
inspection,” Computer-Aided Civil and Infrastructure Engineering, vol. 30, no. 10,
pp. 759–770, May 2015. doi: 10.1111/mice.12141.

[18] F. Khan et al., “Investigation on bridge assessment using unmanned aerial sys-
tems,” in Structures Congress 2015, American Society of Civil Engineers, Apr.
2015. doi: 10.1061/9780784479117.035.

[19] W. Chiu, W. Ong, T. Kuen, and F. Courtney, “Large structures monitoring
using unmanned aerial vehicles,” Procedia Engineering, vol. 188, pp. 415–423,
2017. doi: 10.1016/j.proeng.2017.04.503.

[20] L. Palombi et al., “Fluorescence LIDAR experiments and their integration
in a user-friendly platform to support inspection of railway bridges,” in Re-
mote Sensing Technologies and Applications in Urban Environments VII, N.
Chrysoulakis, T. Erbertseder, and Y. Zhang, Eds., SPIE, Oct. 2022. doi: 10.
1117/12.2638533.

[21] S. Feroz and S. A. Dabous, “UAV-based remote sensing applications for bridge
condition assessment,” Remote Sensing, vol. 13, no. 9, p. 1809, May 2021. doi:
10.3390/rs13091809.

[22] P. J. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Multirotor UAS for bridge
inspection by contact using the ceiling effect,” in 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), IEEE, Jun. 2017. doi: 10.1109/icuas.
2017.7991412.

87

https://doi.org/10.1016/s0003-6870(97)00077-x
https://doi.org/10.1016/s0003-6870(97)00077-x
https://doi.org/10.1016/j.ssci.2009.12.017
https://doi.org/10.1016/j.ssci.2009.12.017
https://doi.org/10.1016/j.jsr.2023.05.004
https://doi.org/10.3390/drones6030064
https://doi.org/10.1016/j.autcon.2006.12.010
https://doi.org/10.1109/icuas.2019.8798311
https://doi.org/10.1109/icuas.2019.8798311
https://doi.org/10.1111/mice.12141
https://doi.org/10.1061/9780784479117.035
https://doi.org/10.1016/j.proeng.2017.04.503
https://doi.org/10.1117/12.2638533
https://doi.org/10.1117/12.2638533
https://doi.org/10.3390/rs13091809
https://doi.org/10.1109/icuas.2017.7991412
https://doi.org/10.1109/icuas.2017.7991412

[23] P. Sanchez-Cuevas, P. Ramon-Soria, B. Arrue, A. Ollero, and G. Heredia,
“Robotic system for inspection by contact of bridge beams using UAVs,” Sen-
sors, vol. 19, no. 2, p. 305, Jan. 2019. doi: 10.3390/s19020305.

[24] D. Zhang, R. Watson, C. MacLeod, G. Dobie, W. Galbraith, and G. Pierce,
“Implementation and evaluation of an autonomous airborne ultrasound inspec-
tion system,” Nondestructive Testing and Evaluation, vol. 37, no. 1, pp. 1–21,
Feb. 2021. doi: 10.1080/10589759.2021.1889546.

[25] R. Watson et al., “Dry coupled ultrasonic non-destructive evaluation using
an over-actuated unmanned aerial vehicle,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 19, no. 4, pp. 2874–2889, Oct. 2022. doi:
10.1109/tase.2021.3094966.

[26] R. R. Murphy et al., “Robot-assisted bridge inspection,” Journal of Intelligent
& Robotic Systems, vol. 64, no. 1, pp. 77–95, Jan. 2011. doi: 10 .1007/
s10846-010-9514-8.

[27] M. Benndorf et al., “Robotic bridge statics assessment within strategic flood
evacuation planning using low-cost sensors,” in 2017 IEEE International Sym-
posium on Safety, Security and Rescue Robotics (SSRR), IEEE, Oct. 2017. doi:
10.1109/ssrr.2017.8088133.

[28] T. Le, S. Gibb, N. Pham, H. M. La, L. Falk, and T. Berendsen, “Autonomous
robotic system using non-destructive evaluation methods for bridge deck in-
spection,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, May 2017. doi: 10.1109/icra.2017.7989421.

[29] D. Kang and Y.-J. Cha, “Autonomous UAVs for structural health monitor-
ing using deep learning and an ultrasonic beacon system with geo-tagging,”
Computer-Aided Civil and Infrastructure Engineering, vol. 33, no. 10, pp. 885–
902, May 2018. doi: 10.1111/mice.12375.

[30] S. G. Manyam, S. Rathinam, S. Darbha, D. Casbeer, Y. Cao, and P. Chan-
dler, “GPS denied UAV routing with communication constraints,” Journal of
Intelligent & Robotic Systems, vol. 84, no. 1-4, pp. 691–703, Feb. 2016. doi:
10.1007/s10846-016-0343-2.

[31] L. M. G. de Santos, J. Mart́ınez-Sánchez, H. González-Jorge, A. Novo, and P.
Arias, “FIRST APPROACH TO UAV-BASED CONTACT INSPECTION: A
SMART PAYLOAD FOR NAVIGATION IN THE NEIGHBOURHOOD OF
STRUCTURES,” The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XLII-2/W13, pp. 323–328, Jun.
2019. doi: 10.5194/isprs-archives-xlii-2-w13-323-2019.

[32] L. M. González-deSantos, J. Mart́ınez-Sánchez, H. González-Jorge, M. Ribeiro,
J. B. de Sousa, and P. Arias, “Payload for contact inspection tasks with UAV
systems,” Sensors, vol. 19, no. 17, p. 3752, Aug. 2019. doi: 10.3390/s19173752.

88

https://doi.org/10.3390/s19020305
https://doi.org/10.1080/10589759.2021.1889546
https://doi.org/10.1109/tase.2021.3094966
https://doi.org/10.1007/s10846-010-9514-8
https://doi.org/10.1007/s10846-010-9514-8
https://doi.org/10.1109/ssrr.2017.8088133
https://doi.org/10.1109/icra.2017.7989421
https://doi.org/10.1111/mice.12375
https://doi.org/10.1007/s10846-016-0343-2
https://doi.org/10.5194/isprs-archives-xlii-2-w13-323-2019
https://doi.org/10.3390/s19173752

[33] L. González-deSantos, J. Mart́ınez-Sánchez, H. González-Jorge, F. Navarro-
Medina, and P. Arias, “UAV payload with collision mitigation for contact in-
spection,” Automation in Construction, vol. 115, p. 103 200, Jul. 2020. doi:
10.1016/j.autcon.2020.103200.

[34] S. il Lee, H. Kim, U. Kim, and H. Lee, “Concave wall surface tracking for aerial
manipulator using contact force estimation algorithm,” in 2020 20th Interna-
tional Conference on Control, Automation and Systems (ICCAS), IEEE, Oct.
2020. doi: 10.23919/iccas50221.2020.9268298.

[35] J. Feddema and O. Mitchell, “Vision-guided servoing with feature-based trajec-
tory generation (for robots),” IEEE Transactions on Robotics and Automation,
vol. 5, no. 5, pp. 691–700, 1989. doi: 10.1109/70.88086.

[36] P. Tong, X. Yang, Y. Yang, W. Liu, and P. Wu, “Multi-UAV collaborative
absolute vision positioning and navigation: A survey and discussion,” Drones,
vol. 7, no. 4, p. 261, Apr. 2023. doi: 10.3390/drones7040261.

[37] P.-H. Chu, Y. T. Huang, C.-H. Pi, and S. Cheng, “Autonomous landing system
of a VTOL UAV on an upward docking station using visual servoing,” IFAC-
PapersOnLine, vol. 55, no. 27, pp. 108–113, 2022. doi: 10.1016/j.ifacol.2022.
10.496.

[38] H. Ranjbar, P. Forsythe, A. A. F. Fini, M. Maghrebi, and T. S. Waller, “Ad-
dressing practical challenge of using autopilot drone for asphalt surface moni-
toring: Road detection, segmentation, and following,” Results in Engineering,
vol. 18, p. 101 130, Jun. 2023. doi: 10.1016/j.rineng.2023.101130.

[39] T. Kominami, H. Paul, and K. Shimonomura, “Detection and localization of
thin vertical board for UAV perching,” Journal of Robotics and Mechatronics,
vol. 35, no. 2, pp. 398–407, Apr. 2023. doi: 10.20965/jrm.2023.p0398.

[40] L. F. Diniz, M. F. Pinto, A. G. Melo, and L. M. Honório, “Visual-based assistive
method for UAV power line inspection and landing,” Journal of Intelligent
& Robotic Systems, vol. 106, no. 2, Oct. 2022. doi: 10.1007/s10846-022-
01725-x.

[41] G. Wang, J. Qin, Q. Liu, Q. Ma, and C. Zhang, “Image-based visual servoing of
quadrotors to arbitrary flight targets,” IEEE Robotics and Automation Letters,
vol. 8, no. 4, pp. 2022–2029, Apr. 2023. doi: 10.1109/lra.2023.3245416.

[42] M. S. Amiri and R. Ramli, “Visual navigation system for autonomous drone
using fiducial marker detection,” International Journal of Advanced Computer
Science and Applications, vol. 13, no. 9, 2022. doi: 10 . 14569 / ijacsa . 2022 .
0130981.

[43] E. Mraz, J. Rodina, and A. Babinec, “Using fiducial markers to improve lo-
calization of a drone,” in 2020 23rd International Symposium on Measurement
and Control in Robotics (ISMCR), IEEE, Oct. 2020. doi: 10.1109/ismcr51255.
2020.9263754.

89

https://doi.org/10.1016/j.autcon.2020.103200
https://doi.org/10.23919/iccas50221.2020.9268298
https://doi.org/10.1109/70.88086
https://doi.org/10.3390/drones7040261
https://doi.org/10.1016/j.ifacol.2022.10.496
https://doi.org/10.1016/j.ifacol.2022.10.496
https://doi.org/10.1016/j.rineng.2023.101130
https://doi.org/10.20965/jrm.2023.p0398
https://doi.org/10.1007/s10846-022-01725-x
https://doi.org/10.1007/s10846-022-01725-x
https://doi.org/10.1109/lra.2023.3245416
https://doi.org/10.14569/ijacsa.2022.0130981
https://doi.org/10.14569/ijacsa.2022.0130981
https://doi.org/10.1109/ismcr51255.2020.9263754
https://doi.org/10.1109/ismcr51255.2020.9263754

[44] A. S. Priambodo, F Arifin, A Nasuha, Muslikhin, and A Winursito, “A vision
and GPS based system for autonomous precision vertical landing of UAV quad-
copter,” Journal of Physics: Conference Series, vol. 2406, no. 1, p. 012 004, Dec.
2022. doi: 10.1088/1742-6596/2406/1/012004.

[45] J. Springer and M. Kyas, “Evaluation of orientation ambiguity and detection
rate in april tag and WhyCode,” in 2022 Sixth IEEE International Conference
on Robotic Computing (IRC), IEEE, Dec. 2022. doi: 10.1109/irc55401.2022.
00054.

[46] J. Springer and M. Kyas, “Autonomous drone landing with fiducial markers
and a gimbal-mounted camera for active tracking,” in 2022 Sixth IEEE In-
ternational Conference on Robotic Computing (IRC), IEEE, Dec. 2022. doi:
10.1109/irc55401.2022.00047.

[47] O. Bouaiss, R. Mechgoug, and A. Taleb-Ahmed, “Visual soft landing of an
autonomous quadrotor on a moving pad using a combined fuzzy velocity control
with model predictive control,” Signal, Image and Video Processing, vol. 17,
no. 1, pp. 21–30, Apr. 2022. doi: 10.1007/s11760-022-02199-y.

[48] J. Morales, I. Castelo, R. Serra, P. U. Lima, and M. Basiri, “Vision-based au-
tonomous following of a moving platform and landing for an unmanned aerial
vehicle,” Sensors, vol. 23, no. 2, p. 829, Jan. 2023. doi: 10.3390/s23020829.

[49] X. Meng, H. Xi, J. Wei, Y. He, J. Han, and A. Song, “Rotorcraft aerial vehicle’s
contact-based landing and vision-based localization research,” Robotica, vol. 41,
no. 4, pp. 1127–1144, Nov. 2022. doi: 10.1017/s0263574722001552.

[50] A. Arif, H. Wang, H. Castañeda, and Y. Wang, “Finite-time tracking of moving
platform with single camera for quadrotor autonomous landing,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 70, no. 6, pp. 2573–
2586, Jun. 2023. doi: 10.1109/tcsi.2023.3256063.

[51] P. Troll, K. Szipka, and A. Archenti, “Indoor localization of quadcopters in
industrial environment,” in Advances in Transdisciplinary Engineering, IOS
Press, Dec. 2020. doi: 10.3233/atde200183.

[52] C. A. Toro-Arcila, H. M. Becerra, and G. Arechavaleta, “Visual path following
with obstacle avoidance for quadcopters in indoor environments,” Control En-
gineering Practice, vol. 135, p. 105 493, Jun. 2023. doi: 10.1016/j.conengprac.
2023.105493.

[53] R. Luo, R. Mullen, and D. Wessell, “An adaptive robotic tracking system using
optical flow,” in Proceedings. 1988 IEEE International Conference on Robotics
and Automation, IEEE Comput. Soc. Press. doi: 10.1109/robot.1988.12112.

[54] A. J. Bray, “Tracking objects using image disparities,” in Procedings of the
Alvey Vision Conference 1989, Alvey Vision Club, 1989. doi: 10.5244/c.3.14.

[55] F. Kendoul, I. Fantoni, and K. Nonami, Optic flow-based vision system for
autonomous 3d localization and control of small aerial vehicles, Feb. 2013. doi:
10.1002/9781118599938.ch11.

90

https://doi.org/10.1088/1742-6596/2406/1/012004
https://doi.org/10.1109/irc55401.2022.00054
https://doi.org/10.1109/irc55401.2022.00054
https://doi.org/10.1109/irc55401.2022.00047
https://doi.org/10.1007/s11760-022-02199-y
https://doi.org/10.3390/s23020829
https://doi.org/10.1017/s0263574722001552
https://doi.org/10.1109/tcsi.2023.3256063
https://doi.org/10.3233/atde200183
https://doi.org/10.1016/j.conengprac.2023.105493
https://doi.org/10.1016/j.conengprac.2023.105493
https://doi.org/10.1109/robot.1988.12112
https://doi.org/10.5244/c.3.14
https://doi.org/10.1002/9781118599938.ch11

[56] T. Oskiper, Z. Zhu, S. Samarasekera, and R. Kumar, “Visual odometry system
using multiple stereo cameras and inertial measurement unit,” in 2007 IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, Jun. 2007.
doi: 10.1109/cvpr.2007.383087.

[57] L. Heng and B. Choi, “Semi-direct visual odometry for a fisheye-stereo camera,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, Oct. 2016. doi: 10.1109/iros.2016.7759600.

[58] J. Kersten and V. Rodehorst, “ENHANCEMENT STRATEGIES FOR FRAME-
TO-FRAME UAS STEREO VISUAL ODOMETRY,” ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, vol. XLI-B3, pp. 511–518, Jun. 2016. doi: 10.5194/isprsarchives-xli-b3-
511-2016.

[59] I. Sa et al., “Build your own visual-inertial drone: A cost-effective and open-
source autonomous drone,” IEEE Robotics & Automation Magazine, vol. 25,
no. 1, pp. 89–103, Mar. 2018. doi: 10.1109/mra.2017.2771326.

[60] A. C. Fauli, P. R. Soria, C. M. D. D. Espada, M. Trujillo, A. Viguria, and
A. Ollero, “Assisted flight control for aerial contact UAV s in industrial en-
vironments,” in 2021 Aerial Robotic Systems Physically Interacting with the
Environment (AIRPHARO), IEEE, Oct. 2021. doi: 10 .1109/airpharo52252.
2021.9571048.

[61] T. Nguyen. “Precision landing with realsense t265 camera and apriltag.” (Nov. 7,
2019), [Online]. Available: https://discuss.ardupilot.org/t/precision-landing-
with-realsense-t265-camera-and-apriltag-part-1-2/48978.

[62] S. Chen, Y. Feng, C.-Y. Wen, Y. Zou, and W. Chen, “Stereo visual inertial pose
estimation based on feedforward and feedbacks,” IEEE/ASME Transactions on
Mechatronics, pp. 1–11, 2023. doi: 10.1109/tmech.2023.3272208.

[63] J. Park and A. J. Choi, “Vision-based in-flight collision avoidance control based
on background subtraction using embedded system,” Sensors, vol. 23, no. 14,
p. 6297, Jul. 2023. doi: 10.3390/s23146297.

[64] A. Ronzhin, T. Ngo, Q. Vu, and V. Nguyen, “Analysis of approaches to the
control of air manipulation systems,” in Ground and Air Robotic Manipulation
Systems in Agriculture, Springer International Publishing, Sep. 2021, pp. 179–
204. doi: 10.1007/978-3-030-86826-0 9.

[65] P. Lassen and M. Fumagalli, “Can your drone touch? exploring the boundaries
of consumer-grade multirotors for physical interaction,” in 2022 International
Conference on Robotics and Automation (ICRA), IEEE, May 2022. doi: 10.
1109/icra46639.2022.9812187.

[66] P. D. Suthar and V. Sangwan, “Contact force-velocity control for a planar
aerial manipulator,” IFAC-PapersOnLine, vol. 55, no. 1, pp. 1–7, 2022. doi:
10.1016/j.ifacol.2022.04.001.

91

https://doi.org/10.1109/cvpr.2007.383087
https://doi.org/10.1109/iros.2016.7759600
https://doi.org/10.5194/isprsarchives-xli-b3-511-2016
https://doi.org/10.5194/isprsarchives-xli-b3-511-2016
https://doi.org/10.1109/mra.2017.2771326
https://doi.org/10.1109/airpharo52252.2021.9571048
https://doi.org/10.1109/airpharo52252.2021.9571048
https://discuss.ardupilot.org/t/precision-landing-with-realsense-t265-camera-and-apriltag-part-1-2/48978
https://discuss.ardupilot.org/t/precision-landing-with-realsense-t265-camera-and-apriltag-part-1-2/48978
https://doi.org/10.1109/tmech.2023.3272208
https://doi.org/10.3390/s23146297
https://doi.org/10.1007/978-3-030-86826-0_9
https://doi.org/10.1109/icra46639.2022.9812187
https://doi.org/10.1109/icra46639.2022.9812187
https://doi.org/10.1016/j.ifacol.2022.04.001

[67] A. Ivanovic, L. Markovic, M. Car, I. Duvnjak, and M. Orsag, “Towards au-
tonomous bridge inspection: Sensor mounting using aerial manipulators,” Ap-
plied Sciences, vol. 11, no. 18, p. 8279, Sep. 2021. doi: 10.3390/app11188279.

[68] R. WATSON et al., “TECHNIQUES FOR CONTACT-BASED STRUCTURAL
HEALTH MONITORING WITH MULTIROTOR UNMANNED AERIAL VE-
HICLES,” in Proceedings of the 13th International Workshop on Structural
Health Monitoring, Destech Publications, Inc., Mar. 2022. doi: 10 . 12783 /
shm2021/36236.

[69] D. Smrcka, T. Baca, T. Nascimento, and M. Saska, “Admittance force-based
UAV-wall stabilization and press exertion for documentation and inspection of
historical buildings,” in 2021 International Conference on Unmanned Aircraft
Systems (ICUAS), IEEE, Jun. 2021. doi: 10.1109/icuas51884.2021.9476873.

[70] S. Hamaza, I. Georgilas, and T. Richardson, “Towards an adaptive-compliance
aerial manipulator for contact- based interaction,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE, Oct. 2018.
doi: 10.1109/iros.2018.8593576.

[71] H. Zhou, J. P. Lynch, and D. Zekkos, “Vision-based precision localization of
UAVs for sensor payload placement and pickup for field monitoring applica-
tions,” in Sensors and Smart Structures Technologies for Civil, Mechanical, and
Aerospace Systems 2019, K.-W. Wang, H. Sohn, H. Huang, and J. P. Lynch,
Eds., SPIE, Mar. 2019. doi: 10.1117/12.2516049.

[72] S. Carroll, J. Satme, S. Alkharusi, N. Vitzilaios, A. Downey, and D. Rizos,
“Drone-based vibration monitoring and assessment of structures,” Applied Sci-
ences, vol. 11, no. 18, p. 8560, Sep. 2021. doi: 10.3390/app11188560.

[73] P. Garg, F. Moreu, A. Ozdagli, M. R. Taha, and D. Mascareñas, “Noncontact
dynamic displacement measurement of structures using a moving laser doppler
vibrometer,” Journal of Bridge Engineering, vol. 24, no. 9, Sep. 2019. doi:
10.1061/(asce)be.1943-5592.0001472.

[74] V. J. Hodge, S. O'Keefe, M. Weeks, and A. Moulds, “Wireless sensor networks
for condition monitoring in the railway industry: A survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, no. 3, pp. 1088–1106, Jun. 2015.
doi: 10.1109/tits.2014.2366512.

[75] O. D. Dantsker and R. Mancuso, “Flight data acquisition platform development,
integration, and operation on small- to medium-sized unmanned aircraft,” in
AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics,
Jan. 2019. doi: 10.2514/6.2019-1262.

[76] H. Lim, J. Park, D. Lee, and H. Kim, “Build your own quadrotor: Open-source
projects on unmanned aerial vehicles,” IEEE Robotics & Automation Mag-
azine, vol. 19, no. 3, pp. 33–45, Sep. 2012. doi: 10.1109/mra.2012.2205629.

[77] E. Ebeid, M. Skriver, and J. Jin, “A survey on open-source flight control plat-
forms of unmanned aerial vehicle,” in 2017 Euromicro Conference on Digital
System Design (DSD), IEEE, Aug. 2017. doi: 10.1109/dsd.2017.30.

92

https://doi.org/10.3390/app11188279
https://doi.org/10.12783/shm2021/36236
https://doi.org/10.12783/shm2021/36236
https://doi.org/10.1109/icuas51884.2021.9476873
https://doi.org/10.1109/iros.2018.8593576
https://doi.org/10.1117/12.2516049
https://doi.org/10.3390/app11188560
https://doi.org/10.1061/(asce)be.1943-5592.0001472
https://doi.org/10.1109/tits.2014.2366512
https://doi.org/10.2514/6.2019-1262
https://doi.org/10.1109/mra.2012.2205629
https://doi.org/10.1109/dsd.2017.30

[78] S. Mehta, A. Patel, and J. Mehta, “CCD or CMOS image sensor for pho-
tography,” in 2015 International Conference on Communications and Signal
Processing (ICCSP), IEEE, Apr. 2015. doi: 10.1109/iccsp.2015.7322890.

[79] M. Wany and G. Israel, “CMOS image sensor with NMOS-only global shutter
and enhanced responsivity,” IEEE Transactions on Electron Devices, vol. 50,
no. 1, pp. 57–62, Jan. 2003. doi: 10.1109/ted.2002.807253.

[80] A. Khazetdinov, A. Zakiev, T. Tsoy, M. Svinin, and E. Magid, “Embedded
ArUco: A novel approach for high precision UAV landing,” in 2021 International
Siberian Conference on Control and Communications (SIBCON), IEEE, May
2021. doi: 10.1109/sibcon50419.2021.9438855.

[81] E. S. Mcvey and J. W. Lee, “Some accuracy and resolution aspects of computer
vision distance measurements,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-4, no. 6, pp. 646–649, Nov. 1982. doi: 10 .
1109/tpami.1982.4767319.

[82] K. Lu, X. Wang, Z. Wang, and L. Wang, “Binocular stereo vision based on
OpenCV,” in IET International Conference on Smart and Sustainable City
(ICSSC 2011), IET, 2011. doi: 10.1049/cp.2011.0312.

[83] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer, “Speeded
up detection of squared fiducial markers,” Image and Vision Computing, vol. 76,
pp. 38–47, Aug. 2018. doi: 10.1016/j.imavis.2018.05.004.

[84] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer,
“Generation of fiducial marker dictionaries using mixed integer linear program-
ming,” Pattern Recognition, vol. 51, pp. 481–491, Mar. 2016. doi: 10.1016/j.
patcog.2015.09.023.

[85] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation, IEEE, May 2011. doi:
10.1109/icra.2011.5979561.

[86] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, Oct. 2016. doi: 10.1109/iros.2016.7759617.

[87] Y. Wang, Z. Zheng, Z. Su, G. Yang, Z. Wang, and Y. Luo, “An improved ArUco
marker for monocular vision ranging,” in 2020 Chinese Control And Decision
Conference (CCDC), IEEE, Aug. 2020. doi: 10.1109/ccdc49329.2020.9164176.

[88] A. Zakiev, T. Tsoy, K. Shabalina, E. Magid, and S. K. Saha, “Virtual experi-
ments on ArUco and AprilTag systems comparison for fiducial marker rotation
resistance under noisy sensory data,” in 2020 International Joint Conference
on Neural Networks (IJCNN), IEEE, Jul. 2020. doi: 10.1109/ijcnn48605.2020.
9207701.

93

https://doi.org/10.1109/iccsp.2015.7322890
https://doi.org/10.1109/ted.2002.807253
https://doi.org/10.1109/sibcon50419.2021.9438855
https://doi.org/10.1109/tpami.1982.4767319
https://doi.org/10.1109/tpami.1982.4767319
https://doi.org/10.1049/cp.2011.0312
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1109/icra.2011.5979561
https://doi.org/10.1109/iros.2016.7759617
https://doi.org/10.1109/ccdc49329.2020.9164176
https://doi.org/10.1109/ijcnn48605.2020.9207701
https://doi.org/10.1109/ijcnn48605.2020.9207701

[89] P.-C. Wu, Y.-H. Tsai, and S.-Y. Chien, “Stable pose tracking from a planar
target with an analytical motion model in real-time applications,” in 2014 IEEE
16th International Workshop on Multimedia Signal Processing (MMSP), IEEE,
Sep. 2014. doi: 10.1109/mmsp.2014.6958793.

[90] H. C. Kam, Y. K. Yu, and K. H. Wong, “An improvement on ArUco marker for
pose tracking using kalman filter,” in 2018 19th IEEE/ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), IEEE, Jun. 2018. doi: 10.1109/snpd.2018.
8441049.

94

https://doi.org/10.1109/mmsp.2014.6958793
https://doi.org/10.1109/snpd.2018.8441049
https://doi.org/10.1109/snpd.2018.8441049

Appendix A: Bill of Materials for
Configuration 5

Item Description Cost Estimate Notes

DJI Flamewheel F450 Kit

450 Sized Quadcopter kit, with ESC,

motors, and propellers $314.69 Discontinued, Newer kits are available

Orange RX DSM2 RC Receiver Sattelite receiver used for RC Control $21.04

2200 mAh 3S LiPo Battery 11.1 V battery $14.72

Pixhawk 2 Kit

Includes flight controller, buzzer, arming

switch $199.99

Intel Realsense T265 Camera with position estimate $759.99 Discontinued, Newer cameras available

Jetson Nano 4G Onboard Linux computer $267.96

3D Printed Top Plate - $3.00 Cost of PLA. Overestimate

5V 2A DC DC Regulator - $2.25 Used to power Jetson from batteries

TP-Link Nano AC600 WiFi Module for Jetson $14.99

Arm 3D printed parts - $1.00 Cost of PLA. Overestimate

Generic Carwash Sponge - $3.99

String 1 mm diameter, 10 cm long -

MPU6050 Breakout board 6 axis IMU $3.33 Discontinued

Wooden Dowel 0.5 mm diamater, 30 cm long $4.99 Cost for 30 pack

Rubber bumper - Taken from IKEA curtain

$1,611.94Total

95

Appendix B: Python UAV Control
Software

B.1 Installation Instructions

Listing B.1: Installation instruction be run from terminal
I n s t a l l a t i o n
sudo apt i n s t a l l python3 python3=pip python3=dev python3=venv cmake l i b s s l =dev ←↩

xorg=dev l i b g l u 1=mesa=dev l ibudev=dev

5 upgrade to at l e a s t python 3 .8
bu i ld p y r e a l s e s n s e 2 from source

###
sudo apt=get update && sudo apt=get =y upgrade

10 sudo apt=get i n s t a l l =y ==no=i n s t a l l =recommends \
python3 \
python3=s e t u p t o o l s \
python3=pip \
python3=dev

15

sudo apt=get i n s t a l l =y g i t l i b s s l =dev l ibusb =1.0=0=dev pkg=c o n f i g l i bg tk==dev
sudo apt=get i n s t a l l =y l i bg l fw3=dev l i b g l 1=mesa=dev l i b g l u 1=mesa=dev l ibxml2 ←↩

l ibxml2=dev l i b x s l t =dev

g i t c l one https : // github . com/ Int e lRea lSens e / l i b r e a l s e n s e . g i t
20 cd . / l i b r e a l s e n s e

. / s c r i p t s / s e t u p u d e v r u l e s . sh

mkdir bu i ld && cd bu i ld
25 cmake . . / =DBUILD PYTHON BINDINGS: bool=true

sudo make u n i n s t a l l && sudo make c l ean && sudo make =j 4 && sudo make i n s t a l l

##Export py r ea l s en s e2 to your PYTHONPATH so ‘ import pyrea l s ense2 ‘ works (can add ←↩
to bashrc)

30 export PYTHONPATH=$PYTHONPATH: / usr / l o c a l / l i b /python3 .8/ pyr ea l s en s e2

python3 . 8 =m venv . venv

35 source . venv/bin/ a c t i v a t e
pip i n s t a l l ==upgrade pip
pip i n s t a l l cython
pip i n s t a l l wheel numpy
pip i n s t a l l t r ans f o rmat i ons p y s e r i a l s c i k i t =bu i ld

40 pip i n s t a l l d ronek i t apschedu le r ==3.8.0 py=imu=mpu6050
pip i n s t a l l opencv=python dt=a p r i l t a g s

96

on each s ta r tup
sudo echo 400000 > / sys /bus/ i 2 c / de v i c e s / i2c =1/ b u s c l k r a t e

B.2 Main File

Listing B.2: This file is the main file for the program and spawns all objects and
threads
#! / usr / bin /env python3

###
l i b r e a l s e n s e T265 to MAVLink

5 ###
This s c r i p t assumes pyr ea l s en s e2 . [] . so f i l e i s found under the same d i r e c t o r y as ←↩

t h i s s c r i p t
I n s t a l l r equ i r ed packages :
pip3 i n s t a l l py r ea l s en s e2
pip3 i n s t a l l t r ans f o rmat i ons

10 # pip3 i n s t a l l pymavlink
pip3 i n s t a l l apschedu le r
pip3 i n s t a l l p y s e r i a l

F i l e based o f o f f work by Thien Nguyen https : // github . com/ th ien94 / ←↩
v i s i on to mavro s

15

Set the path f o r IDLE
import sys
sys . path . append (”/ usr / l o c a l / l i b /”)

20 # Set MAVLink pro to co l to 2 .
import os
os . env i ron [”MAVLINK20”] = ”1”

Import the l i b r a r i e s
25 import pyrea l s en s e2 as r s

import numpy as np
import t rans f o rmat i ons as t f
import math as m
import time

30 import argparse
import thread ing
import s i g n a l

from time import s l e e p
35 from apschedu le r . s c h e d u l e r s . background import BackgroundScheduler

from dronek i t import connect , VehicleMode
from pymavlink import mavuti l

import cv2
40 import d t a p r i l t a g s

import mpu6050 logger
import v i s i o n c o n t r o l

Replacement o f the standard p r in t () func t i on to f l u s h the output
45 def prog r e s s (s t r i n g) :

print (s t r i ng , f i l e=sys . s tdout)
sys . s tdout . f l u s h ()

#######################################
50 # Parameters

#######################################

Defau l t c o n f i g u r a t i o n s f o r connect ion to the FCU
c o n n e c t i o n s t r i n g d e f a u l t = ’ /dev/ttyTHS1 ’

97

55 c o n ne c t i o n b a ud r a t e d e f au l t = 460800 #921600
c o n n e c t i o n t i m e o u t s e c d e f a u l t = 5

Transformation to convert d i f f e r e n t camera o r i e n t a t i o n s to NED convent ion . ←↩
Replace c a m e r a o r i e n t a t i o n d e f a u l t f o r your c o n f i g u r a t i o n .

0 : Forward , USB port to the r i g h t
60 # 1 : Downfacing , USB port to the r i g h t

2 : Forward , 45 degree t i l t e d down
Important note f o r downfacing camera : you need to t i l t the v e h i c l e ’ s nose up a ←↩

l i t t l e = not f l a t = be f o r e you run the s c r i p t , o the rw i se the i n i t i a l yaw w i l l ←↩
be randomized , read here f o r more d e t a i l s : https : // github . com/ In t e lRea lSens e / ←↩
l i b r e a l s e n s e / i s s u e s /4080 . T i l t the v e h i c l e to any other s i d e s and the yaw ←↩
might not be as s t a b l e .

c a m e r a o r i e n t a t i o n d e f a u l t = 0

65 # https : // mavlink . i o /en/ messages /common . html#VISION POSITION ESTIMATE
e n a b l e m s g v i s i o n p o s i t i o n e s t i m a t e = True
v i s i o n p o s i t i o n e s t i m a t e m s g h z d e f a u l t = 30 .0

https : // mavlink . i o /en/ messages / ardupi lotmega . html#VISION POSITION DELTA
70 e n a b l e m s g v i s i o n p o s i t i o n d e l t a = False

v i s i o n p o s i t i o n d e l t a m s g h z d e f a u l t = 30 .0

https : // mavlink . i o /en/ messages /common . html#VISION SPEED ESTIMATE
e n a b l e m s g v i s i o n s p e e d e s t i m a t e = True

75 v i s i o n s p e e d e s t i m a t e m s g h z d e f a u l t = 30 .0

https : // mavlink . i o /en/ messages /common . html#STATUSTEXT
e n a b l e u p d a t e t r a c k i n g c o n f i d e n c e t o g c s = True
u p d a t e t r a c k i n g c o n f i d e n c e t o g c s h z d e f a u l t = 1 .0

80

Monitor user ’ s o n l i n e input v ia keyboard , can only be used when runs from ←↩
t e rmina l

enab l e u s e r keyboa rd input = True

Defau l t g l o b a l p o s i t i o n f o r EKF home/ o r i g i n
85 enab l e au to s e t ek f home = False

home lat = 535608820 # Somewhere random
home lon = =1138528910 # Somewhere random
home alt = 600000 # Somewhere random

90 # TODO: Taken care o f by ArduPilot , so can be removed (once the handl ing on AP ←↩
s i d e i s conf i rmed s t a b l e)

In NED frame , o f f s e t from the IMU or the cente r o f g rav i ty to the camera ’ s ←↩
o r i g i n po int

b o d y o f f s e t e n a b l e d = 0
b o d y o f f s e t x = 0 # In meters (m)
b o d y o f f s e t y = 0 # In meters (m)

95 b o d y o f f s e t z = 0 # In meters (m)

Global s c a l e f a c to r , p o s i t i o n x y z w i l l be s c a l e d up/down by t h i s f a c t o r
s c a l e f a c t o r = 1 .0

100 # Enable us ing yaw from compass to a l i g n north (zero degree i s f a c i n g north)
compass enabled = 0

pose data con f idence : 0x0 = Fai l ed / 0x1 = Low / 0x2 = Medium / 0x3 = High
p o s e d a t a c o n f i d e n c e l e v e l = (’FAILED ’ , ’Low ’ , ’Medium ’ , ’ High ’)

105

lock f o r thread synchron i za t i on
lock = thread ing . Lock ()
mav l i nk th r ead shou ld ex i t = Fal se

110 # d e f a u l t e x i t code i s f a i l u r e = a g r a c e f u l t e rminat ion with a
terminate s i g n a l i s p o s s i b l e .
e x i t c o d e = 1

98

115 #######################################
Functions f o r OpenCV
#######################################
”””
In t h i s s e c t i on , we w i l l s e t up the f u n c t i o n s that w i l l t r a n s l a t e the camera

120 i n t r i n s i c s and e x t r i n s i c s from l i b r e a l s e n s e in to parameters that can be used
with OpenCV.
The T265 uses very wide ang le l en s e s , so the d i s t o r t i o n i s modeled us ing a four
parameter d i s t o r t i o n model known as Kanalla=Brandt . OpenCV supports t h i s
d i s t o r t i o n model in t h e i r ” f i s h e y e ” module , more d e t a i l s can be found here :

125 https : // docs . opencv . org /3 .4/ db/d58/ g r o u p c a l i b 3 d f i s h e y e . html
”””

”””
Returns R, T trans form from s r c to dst

130 ”””
def g e t e x t r i n s i c s (src , dst) :

e x t r i n s i c s = s r c . g e t e x t r i n s i c s t o (dst)
R = np . reshape (e x t r i n s i c s . r o ta t i on , [3 , 3]) .T
T = np . array (e x t r i n s i c s . t r a n s l a t i o n)

135 return (R, T)

”””
Returns a camera matrix K from l i b r e a l s e n s e i n t r i n s i c s
”””

140 def camera matrix (i n t r i n s i c s) :
return np . array ([[i n t r i n s i c s . fx , 0 , i n t r i n s i c s . ppx] ,

[0 , i n t r i n s i c s . fy , i n t r i n s i c s . ppy] ,
[0 , 0 , 1]])

145 ”””
Returns the f i s h e y e d i s t o r t i o n from l i b r e a l s e n s e i n t r i n s i c s
”””
def f i s h e y e d i s t o r t i o n (i n t r i n s i c s) :

return np . array (i n t r i n s i c s . c o e f f s [: 4])
150

#######################################
Functions f o r AprilTag d e t e c t i o n
#######################################
t a g l a n d i n g i d = 19

155 t a g l a n d i n g s i z e = 0.151 # tag ’ s border s i z e , measured in meter
tag image source = ” l e f t ” # f o r Rea l sense T265 , we can use ” l e f t ” or ” r i g h t ”

a t d e t e c t o r = d t a p r i l t a g s . Detector (searchpath =[’ a p r i l t a g s ’] ,
f a m i l i e s=’ tag36h11 ’ ,

160 nthreads =1,
quad decimate =1.0 ,
quad sigma =0.0 ,
r e f i n e e d g e s =1,
decode sharpen ing =0.25 ,

165 debug=0)
#######################################
Global v a r i a b l e s
#######################################

170 # FCU connect ion v a r i a b l e s

Camera=r e l a t e d v a r i a b l e s
pipe = None
p o s e s en so r = None

175 l i n e a r a c c e l c o v = 0.01
a n g u l a r v e l c o v = 0.01

Data v a r i a b l e s
data = None

180 prev data = None
H aeroRef aeroBody = None
V aeroRef aeroBody = None

99

heading north yaw = None
c u r r e n t c o n f i d e n c e l e v e l = None

185 cu r r en t t i me us = 0

Increment everyt ime pose jumping or r e l o c a l i z a t i o n happens
See here : https : // github . com/ Int e lRea lSens e / l i b r e a l s e n s e / blob / master /doc/ t265 .md ←↩

#are=there=any=t265=s p e c i f i c =opt ions
For AP, a non=zero ” r e s e t c o u n t e r ” would mean that we could be sure that the ←↩

user ’ s setup was us ing mavlink2
190 r e s e t c o u n t e r = 1

#######################################
Pars ing user ’ inputs
#######################################

195

par s e r = argparse . ArgumentParser (d e s c r i p t i o n=’ Reboots  v e h i c l e ’)
pa r s e r . add argument (’==connect ’ ,

help=” Veh ic l e  connect ion  t a r g e t  s t r i n g .  I f  not  s p e c i f i e d ,  a  ←↩
d e f a u l t  s t r i n g  w i l l  be  used . ”)

par s e r . add argument (’==baudrate ’ , type=f loat ,
200 help=” Veh ic l e  connect ion  baudrate .  I f  not  s p e c i f i e d ,  a  d e f a u l t ←↩

 va lue  w i l l  be  used . ”)
par s e r . add argument (’==v i s i o n p o s i t i o n e s t i m a t e m s g h z ’ , type=f loat ,

help=”Update  f requency  f o r  VISION POSITION ESTIMATE  message .  ←↩
I f  not  s p e c i f i e d ,  a  d e f a u l t  va lue  w i l l  be  used . ”)

par s e r . add argument (’==v i s i o n p o s i t i o n d e l t a m s g h z ’ , type=f loat ,
help=”Update  f requency  f o r  VISION POSITION DELTA  message .  I f  ←↩

not  s p e c i f i e d ,  a  d e f a u l t  va lue  w i l l  be  used . ”)
205 par s e r . add argument (’==v i s i o n s pe e d e s t i m at e m sg h z ’ , type=f loat ,

help=”Update  f requency  f o r  VISION SPEED DELTA  message .  I f  not  ←↩
s p e c i f i e d ,  a  d e f a u l t  va lue  w i l l  be  used . ”)

par s e r . add argument (’==s c a l e c a l i b e n a b l e ’ , d e f a u l t=False , a c t i on=’ s t o r e t r u e ’ ,
help=” Sca l e  c a l i b r a t i o n .  Only  run  whi l e NOT in  f l i g h t ”)

par s e r . add argument (’==camera o r i en ta t i on ’ , type=int ,
210 help=” Conf igurat ion  f o r  camera  o r i e n t a t i o n .  Current ly  ←↩

supported :  forward ,  usb  port  to  the  r i g h t =  0 ;  downward ,  ←↩
usb  port  to  the  r i g h t =  1 ,  2 :  forward  t i l t e d  down  45 deg”)

par s e r . add argument (’==debug enable ’ , type=int ,
help=”Enable  debug  messages  on  t e rmina l ”)

par s e r . add argument (’==v i s u a l i z a t i o n ’ , type=int ,
help=”Enable  v i s u a l i z a t i o n .  Ensure  that  a  monitor  i s  connected ←↩

”)
215 par s e r . add argument (’== l o g f i l e n a m e ’ , type=str ,

help=” s t r i n g  f o r  f i l e  name”)

args = par s e r . p a r s e a r g s ()

220 c o n n e c t i o n s t r i n g = args . connect
connect ion baudrate = args . baudrate
v i s i o n p o s i t i o n e s t i m a t e m s g h z = args . v i s i o n p o s i t i o n e s t i m a t e m s g h z
v i s i o n p o s i t i o n d e l t a m s g h z = args . v i s i o n p o s i t i o n d e l t a m s g h z
v i s i o n s pe e d e s t i m a t e m s g h z = args . v i s i o n s pe e d e s t i m at e m s g h z

225 s c a l e c a l i b e n a b l e = args . s c a l e c a l i b e n a b l e
camera o r i en ta t i on = args . camera o r i en ta t i on
debug enable = args . debug enable
v i s u a l i z a t i o n = args . v i s u a l i z a t i o n
l o g f i l e n a m e = args . l o g f i l e n a m e

230

Using d e f a u l t va lue s i f no s p e c i f i e d inputs
i f not c o n n e c t i o n s t r i n g :

c o n n e c t i o n s t r i n g = c o n n e c t i o n s t r i n g d e f a u l t
p rog r e s s (”INFO:  Using  d e f a u l t  c o n n e c t i o n s t r i n g %s ” % c o n n e c t i o n s t r i n g)

235 else :
p r og r e s s (”INFO:  Using  c o n n e c t i o n s t r i n g %s ” % c o n n e c t i o n s t r i n g)

i f not connect ion baudrate :
connect ion baudrate = c o n n e c t i o n b a ud r a t e d e f a u l t

240 prog r e s s (”INFO:  Using  d e f a u l t  connect ion baudrate %s ” % connect ion baudrate)

100

else :
p r og r e s s (”INFO:  Using  connect ion baudrate %s ” % connect ion baudrate)

i f not v i s i o n p o s i t i o n e s t i m a t e m s g h z :
245 v i s i o n p o s i t i o n e s t i m a t e m s g h z = v i s i o n p o s i t i o n e s t i m a t e m s g h z d e f a u l t

p rog r e s s (”INFO:  Using  d e f a u l t  v i s i o n p o s i t i o n e s t i m a t e m s g h z %s ” % ←↩
v i s i o n p o s i t i o n e s t i m a t e m s g h z)

else :
p r og r e s s (”INFO:  Using  v i s i o n p o s i t i o n e s t i m a t e m s g h z %s ” % ←↩

v i s i o n p o s i t i o n e s t i m a t e m s g h z)

250 i f not v i s i o n p o s i t i o n d e l t a m s g h z :
v i s i o n p o s i t i o n d e l t a m s g h z = v i s i o n p o s i t i o n d e l t a m s g h z d e f a u l t
p rog r e s s (”INFO:  Using  d e f a u l t  v i s i o n p o s i t i o n d e l t a m s g h z %s ” % ←↩

v i s i o n p o s i t i o n d e l t a m s g h z)
else :

p r og r e s s (”INFO:  Using  v i s i o n p o s i t i o n d e l t a m s g h z %s ” % ←↩
v i s i o n p o s i t i o n d e l t a m s g h z)

255

i f not v i s i o n s pe e d e s t i m at e m sg h z :
v i s i o n s pe e d e s t i m at e m s g h z = v i s i o n s p e e d e s t i m a t e m s g h z d e f a u l t
p rog r e s s (”INFO:  Using  d e f a u l t  v i s i on s pe e d e s t i m a t e m s g h z %s ” % ←↩

v i s i o n s p e e d e s t i m at e m sg h z)
else :

260 prog r e s s (”INFO:  Using  v i s i o n s p e e d e s t i m at e m sg h z %s ” % ←↩
v i s i o n s p e e d e s t i m at e m sg h z)

i f b o d y o f f s e t e n a b l e d == 1 :
p rog r e s s (”INFO:  Using  camera  p o s i t i o n  o f f s e t :  Enabled ,  x  y  z  i s %s %s %s ” % (←↩

body o f f s e t x , body o f f s e t y , b o d y o f f s e t z))
else :

265 prog r e s s (”INFO:  Using  camera  p o s i t i o n  o f f s e t :  Disabled ”)

i f compass enabled == 1 :
p rog r e s s (”INFO:  Using  compass :  Enabled .  Heading  w i l l  be  a l i gned  to  north . ”)

else :
270 prog r e s s (”INFO:  Using  compass :  Disabled ”)

i f s c a l e c a l i b e n a b l e == True :
p rog r e s s (”\nINFO : SCALECALIBRATIONPROCESS. DONOTRUNDURINGFLIGHT.\nINFO :  ←↩

TYPE IN NEWSCALE IN FLOATINGPOINTFORMAT\n”)
else :

275 i f s c a l e f a c t o r == 1 . 0 :
p rog r e s s (”INFO:  Using  d e f a u l t  s c a l e  f a c t o r %s ” % s c a l e f a c t o r)

else :
p r og r e s s (”INFO:  Using  s c a l e  f a c t o r %s ” % s c a l e f a c t o r)

280 i f not camera o r i en ta t i on :
camera o r i en ta t i on = c a m e r a o r i e n t a t i o n d e f a u l t
p rog r e s s (”INFO:  Using  d e f a u l t  camera  o r i e n t a t i o n %s ” % camera o r i en ta t i on)

else :
p r og r e s s (”INFO:  Using  camera  o r i e n t a t i o n %s ” % camera o r i en ta t i on)

285

i f camera o r i en ta t i on == 0 : # Forward , USB port to the r i g h t
H aeroRef T265Ref = np . array ([[0 , 0 , = 1 , 0] , [1 , 0 , 0 , 0] , [0 , = 1 , 0 , 0] , [0 , 0 , 0 , 1]])
H T265body aeroBody = np . l i n a l g . inv (H aeroRef T265Ref)

e l i f camera o r i en ta t i on == 1 : # Downfacing , USB port to the r i g h t
290 H aeroRef T265Ref = np . array ([[0 , 0 , = 1 , 0] , [1 , 0 , 0 , 0] , [0 , = 1 , 0 , 0] , [0 , 0 , 0 , 1]])

H T265body aeroBody = np . array ([[0 , 1 , 0 , 0] , [1 , 0 , 0 , 0] , [0 , 0 , = 1 , 0] , [0 , 0 , 0 , 1]])
e l i f camera o r i en ta t i on == 2 : # 45 degree forward

H aeroRef T265Ref = np . array ([[0 , 0 , = 1 , 0] , [1 , 0 , 0 , 0] , [0 , = 1 , 0 , 0] , [0 , 0 , 0 , 1]])
H T265body aeroBody = (t f . e u l e r m a t r i x (m. p i /4 , 0 , 0)) . dot (np . l i n a l g . inv (←↩

H aeroRef T265Ref))
295 else : # Defau l t i s f a c i n g forward , USB port to the r i g h t

H aeroRef T265Ref = np . array ([[0 , 0 , = 1 , 0] , [1 , 0 , 0 , 0] , [0 , = 1 , 0 , 0] , [0 , 0 , 0 , 1]])
H T265body aeroBody = np . l i n a l g . inv (H aeroRef T265Ref)

i f not debug enable :

101

300 debug enable = 0
else :

debug enable = 1
np . s e t p r i n t o p t i o n s (p r e c i s i o n =4, suppres s=True) # Format output on termina l
p rog r e s s (”INFO:  Debug  messages  enabled . ”)

305

i f not l o g f i l e n a m e :
l o g f i l e n a m e = ” t e s t l o g ”
print (”INFO:  Logging  to  t e s t l o g ”)

310 i f not v i s u a l i z a t i o n :
v i s u a l i z a t i o n = 0
print (”INFO:  V i s u a l i z a t i o n :  Disabled ”)

else :
v i s u a l i z a t i o n = 1

315 print (”INFO:  V i s u a l i z a t i o n :  Enabled .  Checking  i f  monitor  i s  connected . . . ”)
WINDOW TITLE = ’ Apr i l t ag  d e t e c t i o n  from  T265  images ’
cv2 . namedWindow(WINDOW TITLE, cv2 .WINDOW AUTOSIZE)
print (”INFO:  Monitor  i s  connected .  Press  ‘ q ‘  to  e x i t . ”)
display mode = ” stack ”

320

#######################################
Functions = MAVLink
#######################################

325 def f o rward ing func (conn , msg) :
i f msg . ge t type () == ”PARAM VALUE” :

msg . param id = str . encode (msg . param id)
e l i f msg . ge t type () == ”PARAM SET” :

msg . param id = str . encode (msg . param id)
330 e l i f msg . ge t type () == ”PARAM REQUEST READ” :

msg . param id = str . encode (msg . param id)
e l i f msg . ge t type () == ”STATUSTEXT” :

msg . t ex t = str . encode (msg . t ex t)

335 conn . mav . send (msg)

def reboot () :
with lock :

conn . mav . command long send (
340 0 , 0 , # target sys tem , target component

mavuti l . mavlink .MAV CMD PREFLIGHT REBOOT SHUTDOWN, # command
0 , # con f i rmat ion
1 , # param 1 , a u t o p i l o t (reboot)
0 , # param 2 , onboard computer (do nothing)

345 0 , # param 3 , camera (do nothing)
0 , # param 4 , mount (do nothing)
0 , 0 , 0) # param 5 ˜ 7 not used

def send hb () :
350 with lock :

conn . mav . hear tbeat send (mavuti l . mavlink .MAV TYPE ONBOARD CONTROLLER,
mavuti l . mavlink .MAV AUTOPILOT GENERIC,
0 ,
0 ,

355 0)

def mavl ink loop (conn , ca l l back s , fwd conn) :
’ ’ ’ a main rou t in e f o r a thread ; reads data from a mavlink connect ion ,
c a l l i n g c a l l b a c k s based on message type r e c e i v e d .

360 ’ ’ ’
while not mav l i nk th r ead shou ld ex i t :

m = conn . recv match (timeout =1, b lock ing=True)
i f m i s None :

continue
365 try :

for c in c a l l b a c k s :
c (m)

102

f o rward ing func (fwd conn , m)
except Exception as e :

370 print (e)
print (” got  an  e r r o r  with  msg  type :  ” + str (m. ge t type ()))

https : // mavlink . i o /en/ messages /common . html#VISION POSITION ESTIMATE
375 def s e n d v i s i o n p o s i t i o n e s t i m a t e m e s s a g e () :

global cur r ent t ime us , H aeroRef aeroBody , r e s e t c o u n t e r
with lock :

i f H aeroRef aeroBody i s not None :
Setup ang le data

380 rpy rad = np . array (t f . eu l e r f r om mat r i x (H aeroRef aeroBody , ’ sxyz ’))

Setup covar iance data , which i s the upper r i g h t t r i a n g l e o f the ←↩
covar iance matrix , s e e here : https : // f i l e s . g i t t e r . im/ ArduPilot / ←↩
V i s i o n P r o j e c t s /1DpU/image . png

Attemp #01: f o l l o w i n g t h i s formula https : // github . com/ In t e lRea lSens e ←↩
/ r e a l s e n s e=ro s / blob / development / rea l s ens e2 camera / s r c / ←↩
b a s e r e a l s e n s e n o d e . cpp#L1406=L1411

cov pose = l i n e a r a c c e l c o v * pow(10 , 3 = int (data . ←↩
t r a c k e r c o n f i d e n c e))

385 c o v t w i s t = a n g u l a r v e l c o v * pow(10 , 1 = int (data . ←↩
t r a c k e r c o n f i d e n c e))

covar iance = np . array ([cov pose , 0 , 0 , 0 , 0 , 0 ,
cov pose , 0 , 0 , 0 , 0 ,

cov pose , 0 , 0 , 0 ,
cov twi s t , 0 , 0 ,

390 cov twi s t , 0 ,
c o v t w i s t])

Send the message
conn . mav . v i s i o n p o s i t i o n e s t i m a t e s e n d (

395 cur r ent t ime us , # us Timestamp (UNIX time or time ←↩
s i n c e system boot)

H aeroRef aeroBody [0] [3] , # Global X p o s i t i o n
H aeroRef aeroBody [1] [3] , # Global Y p o s i t i o n
H aeroRef aeroBody [2] [3] , # Global Z p o s i t i o n
rpy rad [0] , # Rol l ang le

400 rpy rad [1] , # Pitch ang le
rpy rad [2] , # Yaw angle
covar iance , # Row=major r e p r e s e n t a t i o n o f pose 6x6 ←↩

c ros s=covar iance matrix
r e s e t c o u n t e r # Estimate r e s e t counter . Increment ←↩

every time pose es t imate jumps .
)

405

https : // mavlink . i o /en/ messages / ardupi lotmega . html#VISION POSITION DELTA
def s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e () :

global cur r ent t ime us , c u r r e n t c o n f i d e n c e l e v e l , H aeroRef aeroBody
with lock :

410 i f H aeroRef aeroBody i s not None :
Calcu la te the d e l t a s in po s i t i on , a t t i t u d e and time from the ←↩

prev ious to cur rent o r i e n t a t i o n
H aeroRef PrevAeroBody = s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . ←↩

H aeroRef PrevAeroBody
H PrevAeroBody CurrAeroBody = (np . l i n a l g . inv (H aeroRef PrevAeroBody)) . ←↩

dot (H aeroRef aeroBody)

415 d e l t a t i m e u s = c ur r e n t t i me us = ←↩
s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . p rev t ime us

d e l t a p o s i t i o n m = [H PrevAeroBody CurrAeroBody [0] [3] , ←↩
H PrevAeroBody CurrAeroBody [1] [3] , H PrevAeroBody CurrAeroBody ←↩
[2] [3]]

d e l t a a n g l e r a d = np . array (t f . eu l e r f r om mat r i x (←↩
H PrevAeroBody CurrAeroBody , ’ sxyz ’))

Send the message

103

420 conn . mav . v i s i o n p o s i t i o n d e l t a s e n d (
cur r ent t ime us , # us : Timestamp (UNIX time or time s i n c e ←↩

system boot)
de l t a t ime us , # us : Time s i n c e l a s t repor ted camera frame
d e l t a a n g l e r a d , # f l o a t [3] in rad ian : De f ine s a r o t a t i o n ←↩

vec to r in body frame that r o t a t e s the v e h i c l e from the ←↩
prev ious to the cur rent o r i e n t a t i o n

de l t a po s i t i on m , # f l o a t [3] in m: Change in p o s i t i o n from ←↩
prev ious to cur rent frame rota ted in to body frame (0=forward , ←↩
1=r ight , 2=down)

425 c u r r e n t c o n f i d e n c e l e v e l # Normalized con f idence value from 0 to ←↩
100 .

)

Save s t a t i c v a r i a b l e s
s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . H aeroRef PrevAeroBody = ←↩

H aeroRef aeroBody
430 s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . p rev t ime us = cu r r en t t im e us

https : // mavlink . i o /en/ messages /common . html#VISION SPEED ESTIMATE
def s e n d v i s i o n s p e e d e s t i m a t e m e s s a g e () :

global cur r ent t ime us , V aeroRef aeroBody , r e s e t c o u n t e r
435 with lock :

i f V aeroRef aeroBody i s not None :

Attemp #01: f o l l o w i n g t h i s formula https : // github . com/ In t e lRea lSens e ←↩
/ r e a l s e n s e=ro s / blob / development / rea l s ens e2 camera / s r c / ←↩
b a s e r e a l s e n s e n o d e . cpp#L1406=L1411

cov pose = l i n e a r a c c e l c o v * pow(10 , 3 = int (data . ←↩
t r a c k e r c o n f i d e n c e))

440 covar iance = np . array ([cov pose , 0 , 0 ,
0 , cov pose , 0 ,
0 , 0 , cov pose])

Send the message
445 conn . mav . v i s i o n s p e e d e s t i m a t e s e n d (

cur r ent t ime us , # us Timestamp (UNIX time or time ←↩
s i n c e system boot)

V aeroRef aeroBody [0] [3] , # Global X speed
V aeroRef aeroBody [1] [3] , # Global Y speed
V aeroRef aeroBody [2] [3] , # Global Z speed

450 covar iance , # covar iance
r e s e t c o u n t e r # Estimate r e s e t counter . Increment ←↩

every time pose es t imate jumps .
)

455 def g o t o p o s i t i o n t a r g e t l o c a l n e d (forward , r i ght , down , yaw) :
”””
Send SET POSITION TARGET LOCAL NED command to reque s t the v e h i c l e f l y to a ←↩

s p e c i f i e d
l o c a t i o n in the North , East , Down frame .
I t i s important to remember that in t h i s frame , p o s i t i v e a l t i t u d e s are entered ←↩

as negat ive
460 ”Down” va lues . So i f down i s ”10” , t h i s w i l l be 10 metres below the home ←↩

a l t i t u d e .
”””
with lock :

conn . mav . s e t p o s i t i o n t a r g e t l o c a l n e d s e n d (
0 , # time boot ms (not used)

465 0 , 0 , # t a r g e t system , t a r g e t component
mavuti l . mavlink .MAV FRAME BODY OFFSET NED, # frame
0b100111111000 , # type mask (only p o s i t i o n s enabled)
forward , r i ght , down , # x , y , z p o s i t i o n s (or North , East , Down in the ←↩

MAV FRAME BODY NED frame
0 , 0 , 0 , # x , y , z v e l o c i t y in m/ s (not used)

470 0 , 0 , 0 , # x , y , z a c c e l e r a t i o n (not supported yet , ignored in ←↩
GCS Mavlink)

104

yaw , 0) # yaw , yaw rate (not supported yet , ignored in GCS Mavlink)

Update the changes o f con f idence l e v e l on GCS and termina l
def u p d a t e t r a c k i n g c o n f i d e n c e t o g c s () :

475 i f data i s not None and u p d a t e t r a c k i n g c o n f i d e n c e t o g c s . ←↩
p r e v c o n f i d e n c e l e v e l != data . t r a c k e r c o n f i d e n c e :
c o n f i d e n c e s t a t u s s t r i n g = ’ Tracking  con f idence :  ’ + ←↩

p o s e d a t a c o n f i d e n c e l e v e l [data . t r a c k e r c o n f i d e n c e]
s end msg to gcs (c o n f i d e n c e s t a t u s s t r i n g)
u p d a t e t r a c k i n g c o n f i d e n c e t o g c s . p r e v c o n f i d e n c e l e v e l = data . ←↩

t r a c k e r c o n f i d e n c e

480 # https : // mavlink . i o /en/ messages /common . html#STATUSTEXT
def s end msg to gcs (t e x t t o b e s e n t) :

MAV SEVERITY: 0=EMERGENCY 1=ALERT 2=CRITICAL 3=ERROR, 4=WARNING, 5=NOTICE, ←↩
6=INFO, 7=DEBUG, 8=ENUM END

text msg = ’ T265 :  ’ + t e x t t o b e s e n t
conn . mav . s t a t u s t e x t s e n d (mavuti l . mavlink .MAV SEVERITY INFO, text msg . encode ())

485 prog r e s s (”INFO: %s ” % t e x t t o b e s e n t)

Send a mavlink SET GPS GLOBAL ORIGIN message (http :// mavlink . org / messages /common ←↩
#SET GPS GLOBAL ORIGIN) , which a l l ows us to use l o c a l p o s i t i o n in fo rmat ion ←↩
without a GPS.

def s e t d e f a u l t g l o b a l o r i g i n () :
490 conn . mav . s e t g p s g l o b a l o r i g i n s e n d (

1 ,
home lat ,
home lon ,
home alt

495)

Send a mavlink SET HOME POSITION message (http :// mavlink . org / messages /common# ←↩
SET HOME POSITION) , which a l l ows us to use l o c a l p o s i t i o n in fo rmat ion without ←↩
a GPS.

def s e t d e f a u l t h o m e p o s i t i o n () :
x = 0

500 y = 0
z = 0
q = [1 , 0 , 0 , 0] # w x y z

approach x = 0
505 approach y = 0

approach z = 1

conn . mav . s e t home pos i t i on s end (
1 ,

510 home lat ,
home lon ,
home alt ,
x ,
y ,

515 z ,
q ,
approach x ,
approach y ,
approach z

520)

Request a timesync update from the f l i g h t c o n t r o l l e r , f o r f u tu r e work .
TODO: Inspec t the usage o f t imesync update

525 def update t imesync (t s =0, tc =0) :
i f t s == 0 :

t s = int (round(time . time () * 1000))
conn . mav . t imesync send (

tc , # tc1
530 t s # ts1

105

)

Li s t en to a t t i t u d e data to acqu i r e heading when compass data i s enabled
def a t t msg ca l l ba ck (va lue) :

535 i f value . ge t type () == ”ATTITUDE” :
global heading north yaw
i f heading north yaw i s None :

heading north yaw = value . yaw
prog r e s s (”INFO:  Received  f i r s t ATTITUDE message  with  heading  yaw  %.2 f  ←↩

degree s ” % m. degree s (heading north yaw))
540

#######################################
Functions = T265
#######################################

545 def i n c r e m e n t r e s e t c o u n t e r () :
global r e s e t c o u n t e r
i f r e s e t c o u n t e r >= 255 :

r e s e t c o u n t e r = 1
r e s e t c o u n t e r += 1

550

L i s t o f n o t i f i c a t i o n events : https : // github . com/ Int e lRea lSens e / l i b r e a l s e n s e / blob ←↩
/ development / inc lude / l i b r e a l s e n s e 2 /h/ r s t y p e s . h

L i s t o f n o t i f i c a t i o n API : https : // github . com/ Int e lRea lSens e / l i b r e a l s e n s e / blob / ←↩
development /common/ n o t i f i c a t i o n s . cpp

def r e a l s e n s e n o t i f i c a t i o n c a l l b a c k (n o t i f) :
p r og r e s s (”INFO:  T265  event :  ” + n o t i f)

555 i f n o t i f . g e t c a t e g o r y () i s r s . n o t i f i c a t i o n c a t e g o r y . p o s e r e l o c a l i z a t i o n :
i n c r e m e n t r e s e t c o u n t e r ()
s end msg to gcs (’ R e l o c a l i z a t i o n  detec ted ’)

def r e a l s e n s e c o n n e c t () :
560 global pipe , p o s e s en so r

Declare RealSense p i p e l i n e , encapsu la t ing the ac tua l dev i c e and s e n s o r s
pipe = r s . p i p e l i n e ()

565 # Build c o n f i g ob j e c t be f o r e r eque s t i ng data
c f g = r s . c o n f i g ()

Enable the stream we are i n t e r e s t e d in
c f g . enab le s t ream (r s . stream . pose) # P o s i t i o n a l data

570 c f g . enab le s t ream (r s . stream . f i s h e ye , 1) # Image stream l e f t
c f g . enab le s t ream (r s . stream . f i s h e ye , 2) # Image stream r i g h t

Conf igure c a l l b a c k f o r r e l o c a l i z a t i o n event
dev i ce = c f g . r e s o l v e (pipe) . g e t d e v i c e ()

575 p o s e s en so r = dev i ce . f i r s t p o s e s e n s o r ()
p o s e s en so r . s e t n o t i f i c a t i o n s c a l l b a c k (r e a l s e n s e n o t i f i c a t i o n c a l l b a c k)

Star t streaming with reques ted c o n f i g
580 pipe . s t a r t (c f g)

#######################################
Functions = Misce l l aneous
#######################################

585

Monitor user input from the te rmina l and perform act i on acco rd ing ly
def use r input mon i to r () :

global s c a l e f a c t o r
while True :

590 # S p e c i a l case : updating s c a l e
i f s c a l e c a l i b e n a b l e == True :

s c a l e f a c t o r = f loat (input (”INFO:  Type  in  new  s c a l e  as  f l o a t  number\n” ←↩
))

p rog r e s s (”INFO: New s c a l e  i s %s ” % s c a l e f a c t o r)

106

595 i f enab l e au to s e t ek f home :
send msg to gcs (’ Set EKF home  with  d e f a u l t GPS l o c a t i o n ’)
s e t d e f a u l t g l o b a l o r i g i n ()
s e t d e f a u l t h o m e p o s i t i o n ()
time . s l e e p (1) # Wait a shor t whi l e f o r FCU to s t a r t working

600

Add new act i on here accord ing to the key pre s s ed .
Enter : Set EKF home when user p r e s s ente r
try :

c = input ()
605 i f c == ”” :

send msg to gcs (’ Set EKF home  with  d e f a u l t GPS l o c a t i o n ’)
s e t d e f a u l t g l o b a l o r i g i n ()
s e t d e f a u l t h o m e p o s i t i o n ()

e l i f c==” r ” :
610 reboot ()

e l i f c == ”q” :
ma in l oop shou ld qu i t = True

else :
p r og r e s s (”Got  keyboard  input %s ” % c)

615 except IOError : pass

#######################################
Main code s t a r t s here

620 #######################################
vc = v i s i o n c o n t r o l . V i s ionContro l (g o t o p o s i t i o n t a r g e t l o c a l n e d , l o g f i l e n a m e + ←↩

” v i s i o n c o n t r o l l e r ”)

try :
p r og r e s s (”INFO:  py r ea l s en s e2  v e r s i o n : %s ” % str (r s . v e r s i o n))

625 except Exception :
f a i l s i l e n t l y
pass

prog r e s s (”INFO:  S ta r t i ng  Veh ic l e  communications ”)
630 conn = mavuti l . mavl ink connect ion (

c o n n e c t i o n s t r i n g ,
autoreconnect = True ,
source system = 1 ,
source component = 93 ,

635 baud=connect ion baudrate ,
f o r c e c on ne c t e d=True ,

)

#udp conn = mavuti l . mavl ink connect ion (’ udpout : 1 9 2 . 1 6 8 . 1 . 7 3 : 1 5 6 6 7 ’ , source system ←↩
=1, source component=1)

640 #udp conn = mavuti l . mavl ink connect ion (’ udpout : 1 0 . 4 2 . 0 . 1 : 1 5 6 6 7 ’ , source system =1, ←↩
source component=1)

udp conn = mavuti l . mavl ink connect ion (’ udpout : 1 9 2 . 1 6 8 . 1 6 6 . 9 4 : 1 5 6 6 7 ’ , source system ←↩
=1, source component=1)

mav l ink ca l l back s = [a t t msg ca l lback , vc . update mavlink msg]

645 r ove r th r ead = thread ing . Thread (t a r g e t=mavl ink loop , args=(conn , mav l ink ca l lbacks ←↩
, udp conn))

rove r th r ead . s t a r t ()

g c s th r ead = thread ing . Thread (t a r g e t=mavl ink loop , args=(udp conn , [] , conn))
gc s th r ead . s t a r t ()

650

connect ing and c o n f i g u r i n g the camera i s a l i t t l e h i t=and=miss .
Star t a t imer and r e l y on a r e s t a r t o f the s c r i p t to get i t working .
Conf igur ing the camera appears to block a l l threads , so we can ’ t do
t h i s i n t e r n a l l y .

655

send msg to gcs (’ S e t t i ng t imer . . . ’)
s i g n a l . s e t i t i m e r (s i g n a l . ITIMER REAL, 5) # seconds . . .

107

s end msg to gcs (’ Connecting  to  camera . . . ’)
660 r e a l s e n s e c o n n e c t ()

send msg to gcs (’Camera  connected . ’)

s i g n a l . s e t i t i m e r (s i g n a l . ITIMER REAL, 0) # cance l alarm

665 # Send MAVlink messages in the background at pre=determined f r e q u e n c i e s
sched = BackgroundScheduler ()

i f e n a b l e m s g v i s i o n p o s i t i o n e s t i m a t e :
sched . add job (s e n d v i s i o n p o s i t i o n e s t i m a t e m e s s a g e , ’ i n t e r v a l ’ , seconds = 1/ ←↩

v i s i o n p o s i t i o n e s t i m a t e m s g h z)
670

i f e n a b l e m s g v i s i o n p o s i t i o n d e l t a :
sched . add job (s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e , ’ i n t e r v a l ’ , seconds = 1/ ←↩

v i s i o n p o s i t i o n d e l t a m s g h z)
s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . H aeroRef PrevAeroBody = t f . ←↩

quatern ion matr ix ([1 , 0 , 0 , 0])
s e n d v i s i o n p o s i t i o n d e l t a m e s s a g e . p rev t ime us = int (round(time . time () * ←↩

1000000))
675

i f e n a b l e m s g v i s i o n s p e e d e s t i m a t e :
sched . add job (s end v i s i on speed e s t imate mes sage , ’ i n t e r v a l ’ , seconds = 1/ ←↩

v i s i o n s p e e d e s t i m at e m sg h z)

i f e n a b l e u p d a t e t r a c k i n g c o n f i d e n c e t o g c s :
680 sched . add job (u p d a t e t r a c k i n g c o n f i d e n c e t o g c s , ’ i n t e r v a l ’ , seconds = 1/ ←↩

u p d a t e t r a c k i n g c o n f i d e n c e t o g c s h z d e f a u l t)
u p d a t e t r a c k i n g c o n f i d e n c e t o g c s . p r e v c o n f i d e n c e l e v e l = =1

A separa t e thread to monitor user input
i f enab l e u s e r keyboa rd input :

685 use r keyboard input th read = thread ing . Thread (t a r g e t=use r input mon i to r)
u s e r keyboard input th read . daemon = True
use r keyboard input th read . s t a r t ()
p rog r e s s (”INFO:  Press  Enter  to  s e t EKF home  at  d e f a u l t  l o c a t i o n ”)

690 sched . add job (send hb , ’ i n t e r v a l ’ , seconds = 1/10 .0)

sched . s t a r t ()

g r a c e f u l l y terminate the s c r i p t i f an i n t e r r u p t s i g n a l (e . g . c t r l=c)
695 # i s r e c e i v e d . This i s cons ide r ed to be abnormal te rminat ion .

ma in l oop shou ld qu i t = False
def s i g i n t h a n d l e r (s ig , frame) :

global main loop shou ld qu i t
ma in l oop shou ld qu i t = True

700 s i g n a l . s i g n a l (s i g n a l . SIGINT , s i g i n t h a n d l e r)

g r a c e f u l l y terminate the s c r i p t i f a terminate s i g n a l i s r e c e i v e d
(e . g . k i l l =TERM) .
def s i g t e rm hand l e r (s ig , frame) :

705 global main loop shou ld qu i t
ma in l oop shou ld qu i t = True
global e x i t c o d e
e x i t c o d e = 0

710 s i g n a l . s i g n a l (s i g n a l .SIGTERM, s i g t e rm hand l e r)

i f compass enabled == 1 :
time . s l e e p (1) # Wait a shor t whi l e f o r yaw to be c o r r e c t l y i n i t i a t e d

715 s end msg to gcs (’ Sending  v i s i o n  messages  to FCU’)
a c c e l l o g g e r = mpu6050 logger . mpu6050 logger (l o g f i l e n a m e + ” a c c e l e r a t i o n ”)
v i d e o w r i t e r = cv2 . VideoWriter (l o g f i l e n a m e + ” . av i ” , cv2 . VideoWri te r fourcc (* ’ ←↩

MJPG’) ,30 , (412 ,300) , 0)

108

try :
720 # Conf igure the OpenCV s t e r e o a lgor i thm . See

https : // docs . opencv . org /3 .4/ d2/d85/ classcv 1 1StereoSGBM . html f o r a
d e s c r i p t i o n o f the parameters
window size = 5
min disp = 16

725 # must be d i v i s i b l e by 16
num disp = 112 = min disp
max disp = min disp + num disp
s t e r e o = cv2 . StereoSGBM create (minDispar ity = min disp ,

numDispar i t i e s = num disp ,
730 b lo ckS i z e = 16 ,

P1 = 8*3*window size **2 ,
P2 = 32*3*window size **2 ,
disp12MaxDiff = 1 ,
uniquenessRat io = 10 ,

735 speckleWindowSize = 100 ,
speckleRange = 32)

Retre ive the stream and i n t r i n s i c p r o p e r t i e s f o r both cameras
p r o f i l e s = pipe . g e t a c t i v e p r o f i l e ()

740

streams = {” l e f t ” : p r o f i l e s . ge t s t ream (r s . stream . f i s h e y e , 1) . ←↩
a s v i d e o s t r e a m p r o f i l e () ,

” r i g h t ” : p r o f i l e s . ge t s t ream (r s . stream . f i s h e y e , 2) . ←↩
a s v i d e o s t r e a m p r o f i l e () }

i n t r i n s i c s = {” l e f t ” : streams [” l e f t ”] . g e t i n t r i n s i c s () ,
” r i g h t ” : streams [” r i g h t ”] . g e t i n t r i n s i c s () }

745

Print in fo rmat ion about both cameras
print (”INFO:  Using  s t e r e o  f i s h e y e  cameras”)
i f debug enable == 1 :

print (”INFO:  T265  Le f t  camera : ” , i n t r i n s i c s [” l e f t ”])
750 print (”INFO:  T265  Right  camera : ” , i n t r i n s i c s [” r i g h t ”])

Trans late the i n t r i n s i c s from l i b r e a l s e n s e in to OpenCV
K l e f t = camera matrix (i n t r i n s i c s [” l e f t ”])
D l e f t = f i s h e y e d i s t o r t i o n (i n t r i n s i c s [” l e f t ”])

755 K right = camera matrix (i n t r i n s i c s [” r i g h t ”])
D r ight = f i s h e y e d i s t o r t i o n (i n t r i n s i c s [” r i g h t ”])
(width , he ight) = (i n t r i n s i c s [” l e f t ”] . width , i n t r i n s i c s [” l e f t ”] . he ight)

Get the r e l a t i v e e x t r i n s i c s between the l e f t and r i g h t camera
760 (R, T) = g e t e x t r i n s i c s (streams [” l e f t ”] , streams [” r i g h t ”])

We need to determine what f o c a l l ength our und i s to r t ed images should have
in order to s e t up the camera matr i ce s f o r in i tUndi s tor tRect i fyMap . We
could use s t e r e o R e c t i f y , but here we show how to de r i v e these p r o j e c t i o n

765 # matr i ce s from the c a l i b r a t i o n and a d e s i r e d he ight and f i e l d o f view

We c a l c u l a t e the und i s to r t ed f o c a l l ength :
#
h

770 # =================

\ | /
\ | f /
\ | /
\ fov /

775 # \ |/
s t e r e o f o v r a d = 90 * (m. p i /180) # d e s i r e d fov degree , 90 seems to work ok
s t e r e o h e i g h t p x = 300 # 300 x300 p i x e l s t e r e o output
s t e r e o f o c a l p x = s t e r e o h e i g h t p x /2 / m. tan (s t e r e o f o v r a d /2)

780 # We s e t the l e f t r o t a t i o n to i d e n t i t y and the r i g h t r o t a t i o n
the r o t a t i o n between the cameras
R l e f t = np . eye (3)
R r ight = R

109

785 # The s t e r e o a lgor i thm needs max disp ext ra p i x e l s in order to produce v a l i d
d i s p a r i t y on the d e s i r e d output r eg i on . This changes the width , but the
cente r o f p r o j e c t i o n should be on the cent e r o f the cropped image
s t e r eo w id th px = s t e r e o h e i g h t p x + max disp
s t e r e o s i z e = (s te reo width px , s t e r e o h e i g h t p x)

790 s t e r e o c x = (s t e r e o h e i g h t p x = 1) /2 + max disp
s t e r e o c y = (s t e r e o h e i g h t p x = 1) /2

Construct the l e f t and r i g h t p r o j e c t i o n matr ices , the only d i f f e r e n c e i s
that the r i g h t p r o j e c t i o n matrix should have a s h i f t a long the x a x i s o f

795 # b a s e l i n e * f o c a l l e n g t h
P l e f t = np . array ([[s t e r e o f o c a l p x , 0 , s t e r eo cx , 0] ,

[0 , s t e r e o f o c a l p x , s t e r eo cy , 0] ,
[0 , 0 , 1 , 0]])

P r i ght = P l e f t . copy ()
800 P r ight [0] [3] = T[0] * s t e r e o f o c a l p x

Construct Q f o r use with cv2 . reprojectImageTo3D . Subtract max disp from x
s i n c e we w i l l crop the d i s p a r i t y l a t e r
Q = np . array ([[1 , 0 , 0 , =(s t e r e o c x = max disp)] ,

805 [0 , 1 , 0 , =s t e r e o c y] ,
[0 , 0 , 0 , s t e r e o f o c a l p x] ,
[0 , 0 , =1/T[0] , 0]])

Create an u n d i s t o r t i o n map f o r the l e f t and r i g h t camera which a p p l i e s the
810 # r e c t i f i c a t i o n and undoes the camera d i s t o r t i o n . This only has to be done

once
m1type = cv2 . CV 32FC1
(lm1 , lm2) = cv2 . f i s h e y e . in i tUndi s tor tRect i fyMap (K le f t , D l e f t , R l e f t , ←↩

P l e f t , s t e r e o s i z e , m1type)
(rm1 , rm2) = cv2 . f i s h e y e . in i tUndi s tor tRect i fyMap (K right , D right , R right , ←↩

P right , s t e r e o s i z e , m1type)
815 u n d i s t o r t r e c t i f y = {” l e f t ” : (lm1 , lm2) ,

” r i g h t ” : (rm1 , rm2) }

For AprilTag d e t e c t i o n
camera params = [s t e r e o f o c a l p x , s t e r e o f o c a l p x , s t e r eo cx , s t e r e o c y]

820 l oop t ime = time . time ()
vc . s t a r t ()

while not main loop shou ld qu i t :
Wait f o r the next s e t o f frames from the camera

825 f rames = pipe . w a i t f o r f r a m e s ()

Fetch pose frame
pose = frames . ge t pose f rame ()

830 # Process data
i f pose :

with lock :
#p r i n t (s t r (time . time ()=l oop t ime) + ” s s i n c e l a s t loop ”)
loop t ime = time . time ()

835

Store the timestamp f o r MAVLink messages
cu r r en t t i me us = int (round(time . time () * 1000000))

Pose data c o n s i s t s o f t r a n s l a t i o n and r o t a t i o n
840 data = pose . g e t po s e da ta ()

Conf idence l e v e l va lue from T265 : 0=3, remapped to 0 = 100 : 0% = ←↩
Fai l ed / 33.3% = Low / 66.6% = Medium / 100% = High

c u r r e n t c o n f i d e n c e l e v e l = f loat (data . t r a c k e r c o n f i d e n c e * 100 / ←↩
3)

845 # In trans fo rmat ions , Quaternions w+ix+jy+kz are r ep re s en ted as [w ←↩
, x , y , z] !

H T265Ref T265body = t f . quatern ion matr ix ([data . r o t a t i o n .w, data . ←↩
r o t a t i o n . x , data . r o t a t i o n . y , data . r o t a t i o n . z])

110

H T265Ref T265body [0] [3] = data . t r a n s l a t i o n . x * s c a l e f a c t o r
H T265Ref T265body [1] [3] = data . t r a n s l a t i o n . y * s c a l e f a c t o r
H T265Ref T265body [2] [3] = data . t r a n s l a t i o n . z * s c a l e f a c t o r

850

Transform to ae ronaut i c coo rd ina t e s (body AND r e f e r e n c e frame !)
H aeroRef aeroBody = H aeroRef T265Ref . dot (H T265Ref T265body . dot ←↩

(H T265body aeroBody))

Calcu la te GLOBAL XYZ speed (speed from T265 i s a l r eady GLOBAL)
855 V aeroRef aeroBody = t f . quatern ion matr ix ([1 , 0 , 0 , 0])

V aeroRef aeroBody [0] [3] = data . v e l o c i t y . x
V aeroRef aeroBody [1] [3] = data . v e l o c i t y . y
V aeroRef aeroBody [2] [3] = data . v e l o c i t y . z
V aeroRef aeroBody = H aeroRef T265Ref . dot (V aeroRef aeroBody)

860

Check f o r pose jump and increment r e s e t c o u n t e r
i f prev data != None :

d e l t a t r a n s l a t i o n = [data . t r a n s l a t i o n . x = prev data . ←↩
t r a n s l a t i o n . x , data . t r a n s l a t i o n . y = prev data . t r a n s l a t i o n . ←↩
y , data . t r a n s l a t i o n . z = prev data . t r a n s l a t i o n . z]

d e l t a v e l o c i t y = [data . v e l o c i t y . x = prev data . v e l o c i t y . x , data ←↩
. v e l o c i t y . y = prev data . v e l o c i t y . y , data . v e l o c i t y . z = ←↩
prev data . v e l o c i t y . z]

865 p o s i t i o n d i s p l a c e m e n t = np . l i n a l g . norm(d e l t a t r a n s l a t i o n)
s p e e d d e l t a = np . l i n a l g . norm(d e l t a v e l o c i t y)

Pose jump i s i n d i c a t e d when p o s i t i o n changes abrupt ly . The ←↩
behavior i s not we l l documented yet (as o f l i b r e a l s e n s e ←↩
2 . 3 4 . 0)

jump threshold = 0 .1 # in meters , from t r i a l s and e r ro r s , ←↩
should be r e l a t i v e to how f r equent i s the p o s i t i o n data ←↩
obta ined (200Hz f o r the T265)

870 jump speed thresho ld = 20 .0 # in m/ s from t r i a l s and e r ro r s , ←↩
should be r e l a t i v e to how f r equent i s the v e l o c i t y data ←↩
obta ined (200Hz f o r the T265)

i f (p o s i t i o n d i s p l a c e m e n t > jump threshold) or (s p e e d d e l t a > ←↩
jump speed thresho ld) :
s end msg to gcs (’VISO  jump  detec ted ’)
i f p o s i t i o n d i s p l a c e m e n t > jump threshold :

p rog r e s s (” Pos i t i on  jumped  by : %s ” % ←↩
p o s i t i o n d i s p l a c e m e n t)

875 e l i f s p e e d d e l t a > jump speed thresho ld :
p rog r e s s (”Speed  jumped  by : %s ” % s p e e d d e l t a)

i n c r e m e n t r e s e t c o u n t e r ()

prev data = data
880

Take o f f s e t s from body ’ s c en t e r o f g rav i ty (or IMU) to camera ’ s ←↩
o r i g i n in to account

i f b o d y o f f s e t e n a b l e d == 1 :
H body camera = t f . e u l e r m a t r i x (0 , 0 , 0 , ’ sxyz ’)
H body camera [0] [3] = b o d y o f f s e t x

885 H body camera [1] [3] = b o d y o f f s e t y
H body camera [2] [3] = b o d y o f f s e t z
H camera body = np . l i n a l g . inv (H body camera)
H aeroRef aeroBody = H body camera . dot (H aeroRef aeroBody . dot (←↩

H camera body))

890 # Real ign heading to f a c e north us ing i n i t i a l compass data
i f compass enabled == 1 :

H aeroRef aeroBody = H aeroRef aeroBody . dot (t f . e u l e r m a t r i x ←↩
(0 , 0 , heading north yaw , ’ sxyz ’))

Show debug messages here
895 i f debug enable == 1 :

os . system (’ c l e a r ’) # This he lp s in d i s p l a y i n g the messages to ←↩
be more readab le

111

prog r e s s (”DEBUG: RawRPY[deg] :  {}” . format (np . array (t f . ←↩
eu l e r f r om mat r i x (H T265Ref T265body , ’ sxyz ’)) * 180 / m. ←↩
pi))

p rog r e s s (”DEBUG: NEDRPY[deg] :  {}” . format (np . array (t f . ←↩
eu l e r f r om mat r i x (H aeroRef aeroBody , ’ sxyz ’)) * 180 / m. ←↩
pi))

p rog r e s s (”DEBUG: Raw pos  xyz  :  {}” . format (np . array ([data . ←↩
t r a n s l a t i o n . x , data . t r a n s l a t i o n . y , data . t r a n s l a t i o n . z])))

900 prog r e s s (”DEBUG: NED pos  xyz  :  {}” . format (np . array (t f . ←↩
t r a n s l a t i o n f r o m m a t r i x (H aeroRef aeroBody))))

Fetch raw f i s h e y e image frames
f1 = frames . g e t f i s h e y e f r a m e (1) . a s v ideo f r ame ()
l e f t d a t a = np . asanyarray (f 1 . ge t data ())

905

Process image streams
frame copy = {” l e f t ” : l e f t d a t a }

Undistort and crop the cente r o f the frames
910 c e n t e r u n d i s t o r t e d = {” l e f t ” : cv2 . remap (s r c = frame copy [” l e f t ”] ,

map1 = u n d i s t o r t r e c t i f y [” l e f t ”] [0] ,
map2 = u n d i s t o r t r e c t i f y [” l e f t ”] [1] ,
i n t e r p o l a t i o n = cv2 . INTER LINEAR) }

915 # Run AprilTag d e t e c t i o n a lgor i thm on r e c t i f i e d image .
Params :
tag image source f o r ” l e f t ” or ” r i g h t ”
t a g l a n d i n g s i z e f o r ac tua l s i z e o f the tag
tags = a t d e t e c t o r . de t e c t (c e n t e r u n d i s t o r t e d [tag image source] , True , ←↩

camera params , t a g l a n d i n g s i z e)
920 i f tags != [] :

for tag in tags :
Check f o r the tag that we want to land on
i f tag . t a g i d == t a g l a n d i n g i d :

i s l a n d i n g t a g d e t e c t e d = True
925 H camera tag = t f . e u l e r m a t r i x (0 , 0 , 0 , ’ sxyz ’)

H camera tag [0] [3] = tag . po s e t [2]
H camera tag [1] [3] = tag . po s e t [0]
H camera tag [2] [3] = tag . po s e t [1]
temp arr = H aeroRef aeroBody

930 temp arr [0] [3] = 0
temp arr [1] [3] = 0
temp arr [2] [3] = 0
ro ta t ed po s e = temp arr . dot (H camera tag)
vc . u p d a t e t a r g e t p o s i t i o n (ro ta t ed po s e [0] [3] , r o t a t ed po s e ←↩

[1] [3] , r o t a t ed po s e [2] [3])
935 #vc . u p d a t e t a r g e t p o s i t i o n (tag . po s e t [2] , tag . po s e t [0] , tag . ←↩

pos e t [1])

#ro ta t ed po s e = H camera tag . dot (temp arr)
#ro ta t ed po s e = np . l i n a l g . inv (temp arr) . dot (H camera tag) # ←↩

does nothing
#np . l i n a l g . inv (

940 #pr i n t (H camera tag)
#pr i n t (H aeroRef aeroBody)
#pr i n t (r o ta t ed po s e)

#pr i n t (”INFO: Detected land ing tag ” , s t r (tag . t a g i d) , ” ←↩
r e l a t i v e to camera at x : ” , tag . po s e t [2] , ” ” , ←↩
r o ta t ed po s e [0] [3] , ” , y : ” , tag . po s e t [0] , ” ” , ←↩
r o ta t ed po s e [1] [3] , ” , z : ” , tag . po s e t [1] , ” ” , ←↩
r o ta t ed po s e [2] [3])

945 else :
pr in t (”INFO: No tag detec ted ”)
i s l a n d i n g t a g d e t e c t e d = False

I f enabled , d i s p l a y tag=detec ted image in a pop=up window , r equ i r ed a ←↩
monitor to be connected

i f True :

112

950 # Create c o l o r image from source
tags img = c e n t e r u n d i s t o r t e d [tag image source]

For each detec ted tag , draw a bounding box and put the id o f the tag ←↩
in the cente r

for tag in tags :
955 # Setup bounding box

for idx in range (len (tag . co rne r s)) :
cv2 . l i n e (tags img ,

tuple (tag . co rne r s [idx =1, :] . astype (int)) ,
tuple (tag . co rne r s [idx , :] . astype (int)) ,

960 t h i c k n e s s = 2 ,
c o l o r = (255 , 0 , 0))

The text to be put in the image , here we simply put the id o f ←↩
the detec ted tag

text = str (tag . t a g i d)
965

get boundary o f t h i s t ex t
t e x t s i z e = cv2 . getTextS ize (text , cv2 .FONT HERSHEY SIMPLEX, 1 , 2) ←↩

[0]

Put the text in the middle o f the image
970 cv2 . putText (tags img ,

text ,
org = (((tag . co rne r s [0 , 0] + tag . co rne r s [2 , 0] = ←↩

t e x t s i z e [0]) /2) . astype (int) ,
((tag . co rne r s [0 , 1] + tag . co rne r s [2 , 1] + ←↩

t e x t s i z e [1]) /2) . astype (int)) ,
fontFace = cv2 .FONT HERSHEY SIMPLEX,

975 f o n t S c a l e = 0 . 5 ,
t h i c k n e s s = 2 ,
c o l o r = (255 , 0 , 0))

Display the image in a window
980 v i d e o w r i t e r . wr i t e (tags img)

i f v i s u a l i z a t i o n == 1 :
cv2 . imshow (WINDOW TITLE, tags img)

Read keyboard input on the image window
985 key = cv2 . waitKey (1)

i f key == ord (’ q ’) or cv2 . getWindowProperty (WINDOW TITLE, cv2 . ←↩
WND PROP VISIBLE) < 1 :
break

except Exception as e :
990 prog r e s s (e)

except :
s end msg to gcs (’ERROR IN SCRIPT ’)
p rog r e s s (”Unexpected  e r r o r : %s ” % sys . e x c i n f o () [0])

995

f ina l ly :
p r og r e s s (’ C los ing  the  s c r i p t . . . ’)
s t a r t a t imer in case stopping everyth ing n i c e l y doesn ’ t work .
s i g n a l . s e t i t i m e r (s i g n a l . ITIMER REAL, 5) # seconds . . .

1000 pipe . stop ()
mav l i nk th r ead shou ld ex i t = True
rove r th r ead . j o i n ()
gc s th r ead . j o i n ()
conn . c l o s e ()

1005 udp conn . c l o s e ()
a c c e l l o g g e r . stop ()
v i d e o w r i t e r . r e l e a s e ()
vc . stop ()
p rog r e s s (”INFO:  Rea l sense  p i p e l i n e  and  v e h i c l e  ob j e c t  c l o s e d . ”)

1010 sys . e x i t (e x i t c o d e)

113

B.3 Position Control

Listing B.3: This file contains the state machine for controlling the UAV position

import os
import thread ing
import numpy as np

5 import time
from enum import Enum
import queue

10 e n d p o s i t i o n z = .43
end pos i t ion down = . 1
s t a g i n g p o s i t i o n z = 1 .5
f i n i s h e d z = 1 .5
f i na l yaw = 0

15

class Contro lState (Enum) :
WAITING FOR INIT = 1
CENTERING ON TARGET = 2
MAKING CONTACT = 3

20 ACQUIRING SAMPLE = 4
LEAVING TARGET = 5
FINISHED = 6

class Vis ionContro l :
25 last mode = 0

t i m e s t a r t a c q u r i n g = time . time ()
data = queue . Queue ()
l a s t c o n t r o l s t a t e = Contro lState . WAITING FOR INIT
c o n t r o l s t a t e = Contro lState . WAITING FOR INIT

30 l o ck = thread ing . Lock ()

def i n i t (s e l f , g o t t o p o s i t i o n f u n c , f i l ename) :
s e l f . shutdown = False
s e l f . g o t t o p o s i t i o n f u n c = g o t t o p o s i t i o n f u n c

35

o u t f i l e = f i l ename + ’ . csv ’
s e l f . chunks ize = 10
s e l f . c s v f i l e = open(o u t f i l e , ’w+’)
s e l f . c s v f i l e . w r i t e l i n e s (” time , r i ght , down , forward , yaw , des r , des d , de s f , ←↩

r sp ,  d sp ,  f sp ,  des y ,  mode ,  drone mode  \n” . format (”Time” , ”Xa” , ”Ya” ←↩
, ”Za”))

40

s e l f . l a s t t a r u p d a t e t i m e = 0
s e l f . l a s t yaw update t ime = 0
s e l f . pos = { ’ time ’ : 0 , ’ r i g h t ’ : 0 , ’down ’ : 0 , ’ forward ’ : 0 , ’mode ’ : 0 , ’ ←↩

drone mode ’ : 0 , ’ d e s r ’ : 0 , ’ des d ’ : 0 , ’ d e s f ’ : 0 , ’ r s p ’ : 0 , ’ d sp ’ : 0 , ’ ←↩
f s p ’ : 0 , ’yaw ’ : 0 , ’ des y ’ : f i na l yaw }

s e l f . yaw = 0
45

s e l f . w r i t e r t h = thread ing . Thread (t a r g e t=s e l f . w r i t e r)
s e l f . runner th = thread ing . Thread (t a r g e t=s e l f . t imeout)

def s t a r t (s e l f) :
50 print (”INFO:  S ta r t i ng  Vis ion  Control ”)

s e l f . runner th . s t a r t ()
s e l f . w r i t e r t h . s t a r t ()

def stop (s e l f) :
55 s e l f . shutdown = True

s e l f . runner th . j o i n ()
s e l f . w r i t e r t h . j o i n ()

def update mavlink msg (s e l f , msg) :

114

60 i f msg . ge t type () == ”ATTITUDE” :
s e l f . l a s t yaw update t ime = time . time ()
s e l f . yaw = msg . yaw
s e l f . pos [’yaw ’] = s e l f . yaw

e l i f msg . ge t type () == ”HEARTBEAT” :
65 s e l f . update mode (msg . custom mode)

def u p d a t e t a r g e t p o s i t i o n (s e l f , north , east , down) :
s e l f . l a s t t a r u p d a t e t i m e = time . time ()
s e l f . pos [’ r i g h t ’] = ea s t

70 s e l f . pos [’down ’] = down
s e l f . pos [’ forward ’] = north
s e l f . runner ()

def update mode (s e l f , mode) :
75 i f (time . time () = s e l f . l a s t t a r u p d a t e t i m e) < . 5 and s e l f . last mode != 4 ←↩

and mode == 4 :
print (”Drone  changing  s t a t e  to  c en t r i ng  on  t a r g e t ”)
s e l f . c o n t r o l s t a t e = Contro lState .CENTERING ON TARGET

e l i f mode != 4 :
i f s e l f . last mode == 4 :

80 print (”Drone  no  l onge r  in  guided ”)
s e l f . c o n t r o l s t a t e = Contro lState . WAITING FOR INIT
s e l f . s e n d d e s i r e d p o s i t i o n (0 , 0 , 0 , f ina l yaw , 0 , 0 , 0)

s e l f . pos [’ drone mode ’] = mode
s e l f . last mode = mode

85

def s e n d d e s i r e d p o s i t i o n (s e l f , forward , r i ght , down , yaw , f sp , r sp , d sp) :
s e l f . pos [’ d e s r ’] = r i g h t
s e l f . pos [’ des d ’] = down
s e l f . pos [’ d e s f ’] = forward

90 s e l f . pos [’ f s p ’] = f s p
s e l f . pos [’ r s p ’] = r s p
s e l f . pos [’ d sp ’] = d sp
s e l f . pos [’ time ’] = time . time ()
s e l f . g o t t o p o s i t i o n f u n c (forward , r i ght , down , yaw)

95 s e l f . data . put nowait (s e l f . pos)

def w a i t i n g f o r i n i t (s e l f) :
s e l f . s e n d d e s i r e d p o s i t i o n (0 , 0 , 0 , f ina l yaw , 0 , 0 , 0)
return False

100

def c e n t r i n g o n t a r g e t (s e l f) :

s e l f . s e n d d e s i r e d p o s i t i o n (s e l f . pos [’ forward ’] = s t a g i n g p o s i t i o n z , s e l f . ←↩
pos [’ r i g h t ’] , s e l f . pos [’down ’]+ end pos it ion down , f ina l yaw , ←↩
s t a g i n g p o s i t i o n z , 0 , end pos i t ion down)

i f abs (s e l f . pos [’ r i g h t ’]) < 0 .05 and abs (s e l f . pos [’down ’] + ←↩
end pos i t ion down) < 0 . 0 5 :

105 return True
return False

def making contact (s e l f) :
s e l f . s e n d d e s i r e d p o s i t i o n (s e l f . pos [’ forward ’] = e n d p o s i t i o n z , s e l f . pos [’ ←↩

r i g h t ’] , s e l f . pos [’down ’]+ end pos it ion down , f ina l yaw , e n d p o s i t i o n z , ←↩
0 , end pos i t ion down)

110 i f abs (s e l f . pos [’ forward ’] = 0 . 0 5) < e n d p o s i t i o n z :
s e l f . t i m e s t a r t a c q u r i n g = time . time ()
return True

return False

115 def acqu i r ing sample (s e l f) :
s e l f . s e n d d e s i r e d p o s i t i o n (s e l f . pos [’ forward ’] = e n d p o s i t i o n z , s e l f . pos [’ ←↩

r i g h t ’] , s e l f . pos [’down ’]+ end pos it ion down , f ina l yaw , e n d p o s i t i o n z , ←↩
0 , end pos i t ion down)

i f (time . time () = s e l f . t i m e s t a r t a c q u r i n g) > 10 :
return True

return False

115

120

def l e a v i n g t a r g e t (s e l f) :
s e l f . s e n d d e s i r e d p o s i t i o n (s e l f . pos [’ forward ’] = f i n i s h e d z , s e l f . pos [’ ←↩

r i g h t ’] , s e l f . pos [’down ’]+ end pos it ion down , f ina l yaw , f i n i s h e d z , 0 , ←↩
end pos i t ion down)

i f s e l f . pos [’ forward ’] > (f i n i s h e d z = 0 . 0 5) :
return True

125 return False

def w r i t e r (s e l f) :
while not s e l f . shutdown :

d = s e l f . data . get ()
130 s e l f . c s v f i l e . wr i t e (”  {d1 [time]}  ,  {d1 [r i g h t]}  ,  {d1 [down]}  ,  {d1 [←↩

forward]} ,  {d1 [yaw]}  ,  {d1 [d e s r]}  ,  {d1 [des d]}  ,  {d1 [d e s f]} ,  { ←↩
d1 [r s p]}  ,  {d1 [d sp]}  ,  {d1 [f s p]} ,  {d1 [des y]} ,  {d1 [mode]} ,  {d1 [←↩
drone mode]}  \n” . format (d1=d))

def t imeout (s e l f) :
while not s e l f . shutdown :

i f (time . time () = s e l f . l a s t t a r u p d a t e t i m e) > . 5 :
135 i f s e l f . c o n t r o l s t a t e != Contro lState . WAITING FOR INIT :

print (” [LOSTTARGET]  Rese t t ing  s t a t e ”)
s e l f . c o n t r o l s t a t e = Contro lState . WAITING FOR INIT
s e l f . runner ()

time . s l e e p (1 . 0/20)
140

def runner (s e l f) :
i f s e l f . l a s t c o n t r o l s t a t e != s e l f . c o n t r o l s t a t e :

print (”Chaging  S ta t e s  from :  ” + str (s e l f . l a s t c o n t r o l s t a t e) + ”  to :  ” ←↩
+ str (s e l f . c o n t r o l s t a t e))

145 s e l f . l a s t c o n t r o l s t a t e = s e l f . c o n t r o l s t a t e
s e l f . pos [’mode ’] = s e l f . c o n t r o l s t a t e . va lue

i f s e l f . c o n t r o l s t a t e i s Contro lState . WAITING FOR INIT :
#p r i n t (” [LOOP] wai t ing f o r i n i t ”)
i f s e l f . w a i t i n g f o r i n i t () :

150 s e l f . c o n t r o l s t a t e = Contro lState .CENTERING ON TARGET
else :

pass
e l i f s e l f . c o n t r o l s t a t e == Contro lState .CENTERING ON TARGET:

#p r i n t (” [LOOP] c e n t r i n g s t a t e ”)
155 i f s e l f . c e n t r i n g o n t a r g e t () :

s e l f . c o n t r o l s t a t e = Contro lState .MAKING CONTACT
else :

pass
e l i f s e l f . c o n t r o l s t a t e == Contro lState .MAKING CONTACT:

160 #p r i n t (” [LOOP] making contact ”)
i f s e l f . making contact () :

s e l f . c o n t r o l s t a t e = Contro lState .ACQUIRING SAMPLE
else :

pass
165 e l i f s e l f . c o n t r o l s t a t e == Contro lState .ACQUIRING SAMPLE:

#p r i n t (” [LOOP] sampling ”)
i f s e l f . a cqu i r ing sample () :

s e l f . c o n t r o l s t a t e = Contro lState .LEAVING TARGET
else :

170 pass
e l i f s e l f . c o n t r o l s t a t e == Contro lState .LEAVING TARGET:

#p r i n t (” [LOOP] l e a v i n g ”)
i f s e l f . l e a v i n g t a r g e t () :

s e l f . c o n t r o l s t a t e = Contro lState .LEAVING TARGET
175 else :

pass

116

B.4 Accelerometer Logging

Listing B.4: This file logs data from the IMU
from board import SDA,SCL
from custom imu mpu6050 import MPU6050
import bus io
import os

5 import thread ing
import numpy as np
import csv
import time

10 class mpu6050 logger :
def i n i t (s e l f , f i l ename) :

s e l f . o u t f i l e = f i l ename + ’ . csv ’
s e l f . c s v f i l e = open(s e l f . o u t f i l e , ’w+’)
s e l f . csvWriter = csv . w r i t e r (s e l f . c s v f i l e , d e l i m i t e r=’ , ’)

15

s e l f . shutdown = False
s e l f . runner th = thread ing . Thread (t a r g e t=s e l f . runner)
s e l f . s av e r th = thread ing . Thread (t a r g e t=s e l f . saver)
s e l f . s av e r th . s t a r t ()

20 s e l f . runner th . s t a r t ()

def stop (s e l f) :
s e l f . shutdown = True
s e l f . runner th . j o i n ()

25 s e l f . s av e r th . j o i n ()
s e l f . c s v f i l e . c l o s e ()
print (” c l o s e d  a l l  v i b r a t i o n  threads ”)

def saver (s e l f) :
30 pass

def runner (s e l f) :
s e l f . i 2 c = bus io . I2C (SCL,SDA)
s e l f . IMU = MPU6050(s e l f . i 2 c)

35

print (” I d e n t i f i c a t i o n  0x { :X}  ” . format (s e l f . IMU. whoami))
t i m e s t a r t = time . time ()
data = np . empty ((2000 , 4))
count = 0

40 while not s e l f . shutdown :
data [count] = s e l f . IMU. g e t a c c e l d a t a f a s t (g=True)
time . s l e e p (1 . 0/1500)
count = count + 1

45 i f (time . time () = t i m e s t a r t) > 1 :
s e l f . csvWriter . wr i terows (data)
time . s l e e p (1)
data = np . empty ((2000 , 4))
count = 0

50 t i m e s t a r t = time . time ()

B.5 Accelerometer Driver

Listing B.5: Low level driver code for the MPU6050
”””
Creat ive Commons Zero v1 . 0 Un ive r sa l
#
Copyright (c) 2020 Romy Bompart

117

5 #
Permiss ion i s hereby granted , f r e e o f charge , to any person obta in ing a copy
of t h i s so f tware and a s s o c i a t e d documentation f i l e s (the ” Software ”) , to dea l
in the Software without r e s t r i c t i o n , i n c l u d i n g without l i m i t a t i o n the r i g h t s
to use , copy , modify , merge , publ i sh , d i s t r i b u t e , sub l i c en s e , and/ or s e l l

10 # c o p i e s o f the Software , and to permit persons to whom the Software i s
fu rn i shed to do so , s u b j e c t to the f o l l o w i n g c o n d i t i o n s :
#
The above copyr ight n o t i c e and t h i s permis s ion n o t i c e s h a l l be inc luded in
a l l c o p i e s or s u b s t a n t i a l po r t i on s o f the Software .

15 #
THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

20 # LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

== ←↩

25 This c l a s s he lp s the user to use the MPU6050 from Invensense in a
wide v a r i e t y o f p lat form l i s t e d in the Ada f ru i t B l inka r e p o s i t o r y :
https : // github . com/ a d a f r u i t / Ada f ru i t B l inka / blob / master / s r c /board . py

Raspberry pi , Beaglebone , Jetson Boards , e t c .
30

The code i s i n s p i r e d in the mpu6050=r a spbe r ryp i c r ea ted by Mr Tijn
https : // pypi . org / p r o j e c t /mpu6050=r a spbe r ryp i /

And uses the l i b r a r i e s from Adafru i t to make t h i s l i b r a r y more robust and ←↩
r e l i a b l e

35 === ←↩

* Author (s) : Romy Bompart
”””

v e r s i o n = ”v0 . 0 ”
40 r e p o = ” git@github . com : romybompart/py imu mpu6050 . g i t ”

from a d a f r u i t r e g i s t e r . i 2 c s t r u c t import UnaryStruct , ROUnaryStruct
from a d a f r u i t b u s d e v i c e . i 2 c d e v i c e import I2CDevice

45 import time

class MPU6050 :
”””
I n i t the MPU chip at ‘ ‘ address ‘ ‘ on ‘ ‘ i 2c bus ‘ ‘

50

: param i 2 c ob j e c t bus => i 2 c b u s : The i 2 c bus to use f o r the communication
: param i n t type => address : The MPU I2C address
”””

55 ”””
Class General Var i ab l e s
”””
GRAVITIY MS2 = 9.80665

60 #R e g i s t e r s :
#General R e g i s t e r s
PWR MGMT 1 = UnaryStruct (0x6B , ”>B”) # 0x6B
WHO AM I = ROUnaryStruct (0 x75 , ”>B”) # 0X75
FSYC DLP CONFIG = UnaryStruct (0x1A , ”>B”)

65 #Temp Sensor R e g i s t e r s
TEMP OUTH = ROUnaryStruct (0 x41 , ”>b”) # 0x41
TEMP OUTL = ROUnaryStruct (0 x42 , ”>b”) # 0x41
#Acce lerometer R e g i s t e r s
ACCEL CONFIG = UnaryStruct (0x1C , ”>B”) # 0x1C

118

70 ACCEL XOUTH = ROUnaryStruct (0x3B , ”>B”) # 0x3B
ACCEL XOUTL = ROUnaryStruct (0x3C , ”>B”) # 0x3B
ACCEL YOUTH = ROUnaryStruct (0x3D , ”>B”) # 0x3D
ACCEL YOUTL = ROUnaryStruct (0x3E , ”>B”) # 0x3D
ACCEL ZOUTH = ROUnaryStruct (0x3F , ”>B”) # 0x3F

75 ACCEL ZOUTL = ROUnaryStruct (0 x40 , ”>B”) # 0x3F

#Gyroscope R e g i s t e r s
GYRO CONFIG = UnaryStruct (0x1B , ”>B”) # 0x1B
GYRO XOUTH = ROUnaryStruct (0 x43 , ”>B”) # 0x43

80 GYRO XOUTL = ROUnaryStruct (0 x44 , ”>B”) # 0x44
GYRO YOUTH = ROUnaryStruct (0 x45 , ”>B”) # 0x45
GYRO YOUTL = ROUnaryStruct (0 x46 , ”>B”) # 0x46
GYRO ZOUTH = ROUnaryStruct (0 x47 , ”>B”) # 0x47
GYRO ZOUTL = ROUnaryStruct (0 x48 , ”>B”) # 0x48

85

#Ful l s c a l e Range ACCEL:
””” from r e g i s t e r 1C b i t 4 to 3”””
ACCEL RANGE 2G = 0x00
ACCEL RANGE 4G = 0x08

90 ACCEL RANGE 8G = 0x10
ACCEL RANGE 16G = 0x18

LSB S e n s i t i v i t y
ACCEL LSB SENS 2G = 16384.0

95 ACCEL LSB SENS 4G = 8192.0
ACCEL LSB SENS 8G = 4096.0
ACCEL LSB SENS 16G = 2048.0

#Ful l s c a l e Range GYRO:
100 ””” from r e g i s t e r 1B b i t 4 to 3”””

GYRO RANGE 250DEG = 0x00
GYRO RANGE 500DEG = 0x08
GYRO RANGE 1000DEG = 0x10
GYRO RANGE 2000DEG = 0x18

105

#LSB S e n s i t i v i t y
GYRO LSB SENS 250DEG = 131.0
GYRO LSB SENS 500DEG = 65.5
GYRO LSB SENS 1000DEG = 32.8

110 GYRO LSB SENS 2000DEG = 16.4

#MPU Address
MPU ADDRESS = 0x68

115 ”””
Constructor
”””
def i n i t (s e l f , i 2 c b u s=None , address=MPU ADDRESS) :

120 ””” Create an i 2 c dev i c e from the MPU6050”””
s e l f . i 2 c = i 2 c b us

i f s e l f . i 2 c == None :
import bus io

125 from board import SDA,SCL
s e l f . i 2 c = bus io . I2C (SCL,SDA)

s e l f . i 2 c d e v i c e = I2CDevice (s e l f . i2c , address)

130 ””” Wake up the MPU=6050 s i n c e i t s t a r t s in s l e e p mode ”””
s e l f . wakeup ()
print (’MPU a l r eady  awaked ’)
””” v e r i f y the a c c e l range and get the a c c e l s c a l e mod i f i e r ”””
print (’ a c c e l e romete r  range  s e t :  {}  g ’ . format (s e l f . r e a d a c c e l r a n g e ()))

135 s e l f . a c c e l s c a l e m o d i f i e r = s e l f . g e t a c c e l s c a l e m o d i f i e r ()
””” v e r i f y the gyro range and get the gyro s c a l e mod i f i e r ”””

119

/* print (’ gyroscope  range  s e t :  {}  deg  per  s ’ . format (s e l f . r ead gyro range ()) ←↩
)

s e l f . g y r o s c a l e m o d i f i e r = s e l f . g e t g y r o s c a l e m o d i f i e r ()
””” c o n f i g u r i n g the D i g i t a l Low Pass F i l t e r ”””

140 #by d e f a u l t :
Bandwith o f 21Hz and delay o f 8 . 5ms , Sampling Freq 1KHz => Accelerometer
Bandwith o f 20Hz and delay o f 8 . 3ms , Sampling Freq 1KHz => Gyroscope
s e l f . f i l t e r s e n s o r = 0x04
print (’ d i g i t a l  f i l t e r  c o n f i g u r e  to  be :  {} ’ . format (s e l f . f i l t e r s e n s o r))

145

”””
Class P r o p e r t i e s

”””
@property

150 def whoami (s e l f) :
””” MPU6050 I2C Address ”””
return s e l f .WHO AM I

@property
155 def get temp (s e l f) :

””” MPU6050 Temperature ”””
H = s e l f .TEMP OUTH
L = s e l f .TEMP OUTL

160 raw temp = s e l f . raw data format ((H << 8)+ L)

Get the ac tua l temperature us ing the formule g iven in the
MPU=6050 Reg i s t e r Map and D e s c r i p t i o n s r e v i s i o n 4 . 2 , page 30
actual temp = (raw temp / 340 .0) + 36 .53

165 return actual temp

@property
def f i l t e r s e n s o r (s e l f) :

”””
170 Return the f i l t e r s enso r

”””
return s e l f .FSYC DLP CONFIG

175 ””” Class S e t t e r ”””
@ f i l t e r s e n s o r . s e t t e r
def f i l t e r s e n s o r (s e l f , f i l t e r v a l u e = 0x04) :

”””
Conf igurat ion Reg i s t e r

180

In case FYNC pin i s used , the b i t o f the sampling w i l l be repor ted at
any o f the f o l l o w i n g r e g i s t e r s . For more in fo rmat ion consu l t MPU=6000= ←↩

Reg i s t e r
Map at page 13 .

185 EXT SYNC SET, b i t 5 : 3 , Values :
000 : Input Disab le
001 : Temp Out L
010 : GYRO XOUT L[0]
011 : GYRO YOUT L[0]

190 100 : GYRO ZOUT L[0]
101 : ACCEL XOUT L[0]
110 : ACCEL YOUT L[0]
111 : ACCEL ZOUT L [0]

195 In case to s e t acce l e romete r and gyroscope are f i l t e r e d accord ing to the ←↩
f o l l o w i n g

t ab l e .
DLPF CFG, b i t 2 : 0 , Values :

a cc e l e romete r gyroscope
Bandwidth Delays Fs

200 000 : 260 Hz 0 ms 1KHz 256 Hz 0 .98ms 8KHz
001 : 184 Hz 2 ms 1KHz 188 Hz 1 .9 ms 1KHz

120

010 : 94 Hz 3 ms 1KHz 98 Hz 2 .8 ms 1KHz
011 : 44 Hz 4 .9 ms 1KHz 42 Hz 4 .8 ms 1KHz
100 : 21 Hz 8 .5 ms 1KHz 20 Hz 8 .3 ms 1KHz

205 101 : 10 Hz 13 .8ms 1KHz 10 Hz 13 .4ms 1KHz
110 : 5 Hz 19 ms 1KHz 5 Hz 18 .6ms 1KHz
111 : RESERVED RESERVED RESERVED RESERVED 8KHz
”””
i f (f i l t e r v a l u e < 0x00 and f i l t e r v a l u e > 0x07) :

210 f i l t e r v a l u e = 0x04

s e l f .FSYC DLP CONFIG = f i l t e r v a l u e

”””
215 f unc t i on members

”””
def wakeup (s e l f) :

””” waking up the MPU=6050 by wr i t i ng at the POWER MANAGEMENT REGISTER 1

220 Device Reset , b i t 7 , va lue s :
0 : Nothing
1 : the dev i c e w i l l r e s e t a l l i n t e r n a l r e g i s t e r s to t h e i r d e f a u l t va lue s .

Sleep , b i t 6 , va lue s :
225 0 : d i s a b l e s the s l e e p mode

1 : enab l e s the s l e e p mode

Cycle , b i t 5 va lue s :
0 : Nothing

230 1 : The dev i c e w i l l c y c l e between s l e e p mode and waking up to take a s i n g l e ←↩
sample o f data

from a c t i v e s e n s o r s at a ra t e determined by LP WAKE CTRL (r e g i s t e r 108)

Reserverd b i t 4 , va lue = 0

235 Temp dis , b i t 3 , va lue s
0 : Nothing
1 : D i sab l e s the temperature s enso r

ClkSel , b i t 2 : 0 , va lue s :
240 000 : I n t e r n a l 8MHz o s c i l l a t o r

001 : PLL with X a x i s gyroscope r e f e r e n c e
010 : PLL with y a x i s gyroscope r e f e r e n c e
011 : PLL with z a x i s gyroscope r e f e r e n c e
100 : PLL with e x t e r n a l 32 .768kHz r e f e r e n c e

245 101 : PLL with e x t e r n a l 19 .2MHz r e f e r e n c e
110 : Reserverd
111 : Stops the c l o ck and keeps the t iming genera to r in r e s e t

”””
250 s e l f .PWR MGMT 1 = 0x00 # BINARY 01001111

def s l e e p (s e l f) :
””” entenr ing in to s l e e p mode
Deact ivate the i n t e r n a l c l o ck genera tor and ente r in to s l e e p mode

255 ”””
s e l f .PWR MGMT 1 = 0x4F # BINARY 01001111

def d e i n i t (s e l f) :
””” stop us ing the MPU=6050 ”””

260 s e l f . s l e e p ()

def raw data format (s e l f , raw data) :
””” format ing data that comes from the I2C bus ”””
””” This he lp s to prov ide the r e s u l t s between =1 and 1 along with the ←↩

a c c e l or gyro mod i f i e r ”””
265 i f (raw data >= 0x8000) :

raw data = =((65535 = raw data) + 1)
return raw data

121

””” Acce lerometer ”””
270 def r e a d a c c e l r a n g e (s e l f , raw = False) :

”””Reads the range the acce l e romete r i s s e t to .

I f raw i s True , i t w i l l r e turn the raw value from the ACCEL CONFIG
r e g i s t e r

275 I f raw i s False , i t w i l l r e turn an i n t e g e r : =1, 2 , 4 , 8 or 16 . When i t
r e tu rn s =1 something went wrong .
”””
raw data = s e l f .ACCEL CONFIG

280 i f raw i s True :
return raw data

e l i f raw i s False :
i f raw data == s e l f .ACCEL RANGE 2G:

return 2
285 e l i f raw data == s e l f .ACCEL RANGE 4G:

return 4
e l i f raw data == s e l f .ACCEL RANGE 8G:

return 8
e l i f raw data == s e l f .ACCEL RANGE 16G:

290 return 16
else :

return =1

def s e t a c c e l r a n g e (s e l f , va lue) :
295 ”””

s e t a c c e l range
”””
cond = (s e l f .ACCEL RANGE 2G == value) or (s e l f .ACCEL RANGE 4G == value) \

(s e l f .ACCEL RANGE 8G == value) or (s e l f .ACCEL RANGE 16G)
300

i f cond == False :
va lue = s e l f .ACCEL RANGE 2G

s e l f .ACCEL CONFIG = value
305 s e l f . a c c e l s c a l e m o d i f i e r = s e l f . g e t a c c e l s c a l e m o d i f i e r ()

def g e t a c c e l s c a l e m o d i f i e r (s e l f) :

a c c e l r a n g e = s e l f . r e a d a c c e l r a n g e (True)
310

i f a c c e l r a n g e == s e l f .ACCEL RANGE 2G:
a c c e l s c a l e m o d i f i e r = s e l f . ACCEL LSB SENS 2G

e l i f a c c e l r a n g e == s e l f .ACCEL RANGE 4G:
a c c e l s c a l e m o d i f i e r = s e l f . ACCEL LSB SENS 4G

315 e l i f a c c e l r a n g e == s e l f .ACCEL RANGE 8G:
a c c e l s c a l e m o d i f i e r = s e l f . ACCEL LSB SENS 8G

e l i f a c c e l r a n g e == s e l f .ACCEL RANGE 16G:
a c c e l s c a l e m o d i f i e r = s e l f . ACCEL LSB SENS 16G

else :
320 print (”Unkown  range =  a c c e l s c a l e m o d i f i e r  s e t  to  s e l f . ←↩

ACCEL SCALE MODIFIER 2G”)
a c c e l s c a l e m o d i f i e r = s e l f . ACCEL LSB SENS 2G

return a c c e l s c a l e m o d i f i e r

325 def g e t a c c e l d a t a f a s t (s e l f , g = Fal se) :
””” Gets and re tu rn s the X, Y and Z va lues from the acce l e romete r .
I f g i s True , i t w i l l r e turn the data in g
I f g i s False , i t w i l l r e turn the data in m/ s ˆ2
Returns a d i c t i o n a r y with the measurement r e s u l t s .

330 ”””
buf = bytearray (7)
buf [0] = 0x3B
s e l f . i 2 c d e v i c e . w r i t e t h e n r e a d i n t o (buf , buf , out end =1, i n s t a r t =1)

122

335 x = s e l f . raw data format ((buf [1] << 8) + buf [2])
y = s e l f . raw data format ((buf [3] << 8) + buf [4])
z = s e l f . raw data format ((buf [5] << 8) + buf [6])

x = x / s e l f . a c c e l s c a l e m o d i f i e r
340 y = y / s e l f . a c c e l s c a l e m o d i f i e r

z = z / s e l f . a c c e l s c a l e m o d i f i e r

i f g i s False :
x = x * s e l f .GRAVITIY MS2

345 y = y * s e l f .GRAVITIY MS2
z = z * s e l f .GRAVITIY MS2

return [time . time () , x , y , z]

350 def g e t a c c e l d a t a (s e l f , g = False) :
””” Gets and re tu rn s the X, Y and Z va lues from the acce l e romete r .
I f g i s True , i t w i l l r e turn the data in g
I f g i s False , i t w i l l r e turn the data in m/ s ˆ2
Returns a d i c t i o n a r y with the measurement r e s u l t s .

355 ”””
XH = s e l f .ACCEL XOUTH
XL = s e l f .ACCEL XOUTL
YH = s e l f .ACCEL YOUTH
YL = s e l f .ACCEL YOUTL

360 ZH = s e l f .ACCEL ZOUTH
ZL = s e l f .ACCEL ZOUTL

x = s e l f . raw data format ((XH << 8) + XL)
y = s e l f . raw data format ((YH << 8) + YL)

365 z = s e l f . raw data format ((ZH << 8) + ZL)

x = x / s e l f . a c c e l s c a l e m o d i f i e r
y = y / s e l f . a c c e l s c a l e m o d i f i e r
z = z / s e l f . a c c e l s c a l e m o d i f i e r

370

i f g i s False :
x = x * s e l f .GRAVITIY MS2
y = y * s e l f .GRAVITIY MS2
z = z * s e l f .GRAVITIY MS2

375

return { ’ x ’ : x , ’ y ’ : y , ’ z ’ : z}

””” Gyroscope ”””
def r ead gyro range (s e l f , raw = False) :

380 ”””Reads the range the gyroscope i s s e t to .
I f raw i s True , i t w i l l r e turn the raw value from the GYRO CONFIG
r e g i s t e r .
I f raw i s False , i t w i l l r e turn 250 , 500 , 1000 , 2000 or =1. I f the
returned value i s equal to =1 something went wrong .

385 ”””
raw data = s e l f .GYRO CONFIG

i f raw i s True :
return raw data

390 e l i f raw i s False :
i f raw data == s e l f .GYRO RANGE 250DEG:

return 250
e l i f raw data == s e l f .GYRO RANGE 500DEG:

return 500
395 e l i f raw data == s e l f .GYRO RANGE 1000DEG:

return 1000
e l i f raw data == s e l f .GYRO RANGE 2000DEG:

return 2000
else :

400 return =1

def s e t g y r o r a n g e (s e l f , va lue) :

123

”””
s e t gyro range

405 ”””
cond = (s e l f .GYRO RANGE 250DEG == value) or (s e l f .GYRO RANGE 500DEG == ←↩

value) \
(s e l f .GYRO RANGE 1000DEG == value) or (s e l f .GYRO RANGE 2000DEG)

i f cond == False :
410 value = s e l f .GYRO RANGE 250DEG

s e l f .GYRO CONFIG = value
s e l f . g y r o s c a l e m o d i f i e r = s e l f . g e t g y r o s c a l e m o d i f i e r ()

415 def g e t g y r o s c a l e m o d i f i e r (s e l f) :
”””
Get gyro s c a l e mod i f i e r from read ing the gyro range
”””
gyro range = s e l f . r ead gyro range (True)

420

i f gyro range == s e l f .GYRO RANGE 250DEG:
g y r o s c a l e m o d i f i e r = s e l f . GYRO LSB SENS 250DEG

e l i f gyro range == s e l f .GYRO RANGE 500DEG:
g y r o s c a l e m o d i f i e r = s e l f . GYRO LSB SENS 500DEG

425 e l i f gyro range == s e l f .GYRO RANGE 1000DEG:
g y r o s c a l e m o d i f i e r = s e l f . GYRO LSB SENS 1000DEG

e l i f gyro range == s e l f .GYRO RANGE 2000DEG:
g y r o s c a l e m o d i f i e r = s e l f . GYRO LSB SENS 2000DEG

else :
430 print (”Unkown  range =  g y r o s c a l e m o d i f i e r  s e t  to  s e l f . ←↩

GYRO LSB SENS 250DEG”)
g y r o s c a l e m o d i f i e r = s e l f . GYRO LSB SENS 250DEG

return g y r o s c a l e m o d i f i e r

435 def ge t gy ro da ta (s e l f) :
”””
Gets and re tu rn s the X, Y and Z va lue s from the gyroscope .
”””
XH = s e l f .GYRO XOUTH

440 XL = s e l f .GYRO XOUTL
YH = s e l f .GYRO YOUTH
YL = s e l f .GYRO YOUTL
ZH = s e l f .GYRO ZOUTH
ZL = s e l f .GYRO ZOUTL

445

x = s e l f . raw data format ((XH << 8) + XL)
y = s e l f . raw data format ((YH << 8) + YL)
z = s e l f . raw data format ((ZH << 8) + ZL)

450 x = x / s e l f . g y r o s c a l e m o d i f i e r
y = y / s e l f . g y r o s c a l e m o d i f i e r
z = z / s e l f . g y r o s c a l e m o d i f i e r

return { ’ x ’ : x , ’ y ’ : y , ’ z ’ : z}
455

”””
magic methos he lps to make easy the use o f with

”””
def e n t e r (s e l f) :

460 ””” to make easy the use o f with ”””
return s e l f

def e x i t (s e l f , except io typ , except i on va lue , t raceback) :
””” to make easy the use o f with ”””

465 s e l f . d e i n i t ()

””” e n d ”””

124

	Introduction
	Thesis Objectives
	Thesis Outline

	Literature Review
	Robotic Vehicle Use in Infrastructure Inspections
	Control of UAVs
	Requirement of Position Estimation System
	Non-Vision Based Control Schemes
	Vision Based Control Schemes

	UAV based manipulators
	UAV-based vibration measurement
	Vibration Measurement Devices
	Current Technology

	Proposed Approach and Methodology
	Autopilot
	Paparazzi UAV Autopilot System
	Ardupilot
	PX4
	Comparison between PX4 and Ardupilot
	Proposed Approach for Autopilot Selection

	Vision Based Position Estimation
	Basics of Image Aquisition
	Stereovision
	Localizing UAV from Image Characteristics
	Proposed Approach for Vision Position Estimation

	UAV Control
	Controlling the UAV into range of the Target
	Challenges with Making Contact with the Target
	Autopilot Control Messages
	Control via Attitude Setpoint
	Control via Position Setpoint
	Proposed Control Approach

	Vibration Monitoring
	Permanently Affixed Sensor Box
	Electromagnet Based Deployment Mechanism
	Simple Sensor Arm with Vibration Dampening
	Proposed Vibration Monitoring Mechanism

	Functional Requirements and Specifications of Experimental Work

	Hardware Setup and Testing
	Aerial Platform
	Airframe
	Low-Level Command and Control of the Platform
	Camera Systems
	Onboard Computer

	Evaluating ArUco
	Precision and Accuracy of ArUco
	Marker Ambiguity Problem

	UAV Control Implementation
	Controlling UAV using Attitude Setpoint Messages
	Controlling UAV using Position Setpoint Messages

	Sensor Arm with Vibration Dampening
	Arm V1
	Arm V2
	Arm V3
	Accelerometer Data Processing

	Test Configurations

	Results and Discussion
	Aerial Platform Performance
	Aperture Hexacopter
	DJI FlameWheel F450
	Communications links

	Autopilot Software
	PX4
	Ardupilot

	Onboard Computer and Imaging System
	Control Performance
	Vision Position Estimate Performance with DMM 42BUC03-ML
	Attitude Controller Performance
	Vision Position Estimate with Intel Realsense T265 Camera

	Vibration Measurement
	Arm V1
	Arm V2
	Arm V3

	Conclusions and Recommendations for Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A: Bill of Materials for Configuration 5
	Appendix B: Python UAV Control Software
	Installation Instructions
	Main File
	Position Control
	Accelerometer Logging
	Accelerometer Driver

