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Abstract

A well known result in probability is that convergence almost surely (a.s.) of
a sequence of random elements implies weak convergence of their laws. The
Ukrainian mathematician Anatoliy Volodymyrovych Skorohod proved the
lemma known as Skorohod’s a.s. representation Theorem, a partial converse
of this result.

In this work we discuss the notion of continuous representations, which
allows us to provide generalizations of Skorohod’s Theorem. In Chapter 2,
we explore Blackwell and Dubins’s extension [3] and Fernique’s extension
[10].

In Chapter 3 we present Cortissoz’s result [5], a variant of Skorokhod’s
Theorem. It is shown that given a continuous path in M(S) it can be associ-
ated a continuous path with fixed endpoints in the space of S-valued random
elements on a nonatomic probability space, endowed with the topology of
convergence in probability.

In Chapter 4 we modify Blackwell and Dubins representation for partic-
ular cases of S, such as certain subsets of R or Rn.
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Chapter 1

Preliminaries

In this chapter we recall some of the basic tools and results needed in prob-
ability theory. We recommend [1], [7] and [12] for further details in these
topics.

1.1 Topology and Metric Spaces

1.1.1 General Topology

One of the most important concepts in this work is the concept of conver-
gence. Because of that, we include a section to discuss the basic notions of
general topology. The easiest and most common example of convergence is
the convergence of real numbers. Intuitively, one can imagine a sequence of
numbers, getting closer and closer to another number. But, if we are talking
about probability measures, how can we define convergence in such spaces?
For that reason we need a more general definition of convergence, continuity
and open sets.

Let X be a non empty set, a class T of subsets of X is called a topology
if

a) ∅, X are elements of T ,
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b) for any U, V ∈ T we have U ∩ V ∈ T , and

c) for any U ⊂ T ,
⋃

U∈U

U ∈ T .

The elements of T are called open sets and their complements are called
closed sets. The pair (X,T ) is a topological space. The interior and
closure of a set A, A ⊂ X, are defined as follows

intA :=
⋃

{U ∈ T : U ⊂ A},

A :=
⋂

{V : V is closed and A ⊂ V },

and the boundary of A is the set ∂A = A \ intA.

Let x be an element of X and V ⊂ X, V is a neighborhood of x if
x ∈ intV , in other words, if there exists an open set O containing x such
that O ⊂ V . A basis for a topology T is any collection U ⊂ T such that,
for all V ∈ T ,

V =
⋃

{U ∈ U : U ⊂ V } .

So, any open set can be expressed as the union of open sets in its basis.
Indeed, if the collection U satisfies

1. U covers X, i.e. X =
⋃
{U : U ∈ U },

2. If U1, U2 are elements of U with non empty intersection and for each
x ∈ U1 ∩ U2 there exists U3 ∈ U containing x such that U3 ⊂ U1 ∩ U2,

then U is the basis for some topology T .

We say that X has a countable basis at the point x if there is a countable
collection Ux of open sets containing x such that any neighborhood V of
x contains at least one element of Ux. A space that has a countable basis
at each of its points is said to satisfy the first countability axiom, and it
is called a first countable topological space. On the other hand, (X,T )
satisfies the second countability axiom if it has a countable basis. A space
that satisfies this axiom is called a second countable space. Clearly, any
second countable space is first countable. A subsetD ofX is dense ifD = X.
(X,T ) is called separable if there exists a countable dense subset of X.
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A subset V of the topological space X is called compact if any open
cover (a collection of open sets whose union contains V ) has a finite subcover
of V . If for every x ∈ V there exists an open set O containing x such that
O ⊂ V ′, where V ′ ⊂ V is a compact set, then V is called locally compact.

Let {xn}n∈N be a sequence of elements of X. We say that xn converges
to x ∈ X, in symbols xn → x, if for every open set U containing x, there
exists a N ∈ N such that xn ∈ U, ∀n ≥ N.

Given two topological spaces (X,T ) and (X ′,T ′), a function f : X → X ′

is continuous if, for every U ′ ∈ T ′, f−1(U ′) ∈ T .

A function d : X ×X → [0,∞) is said to be a metric if

a) for all x, y ∈ X, d(x, y) = d(y, x),

b) for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z), and

c) d(x, y) = 0 iff x = y.

(X, d) is called a metric space. Notice that, given a metric space, it is
possible to construct a topological space. Denote by B(x, r), x ∈ X, the set

B(x, r) = {y ∈ X : d(x, y) < r},

and call it the open ball with center at x and radius r. Then, the set

U := {B(x, r) : x ∈ X, r > 0}

is a basis of a topology, the topology induced by the metric d. In fact,

Ux := {B(x, r) : x ∈ X, r > 0, r ∈ Q}

is a countable basis at x. Hence, any metrizable space is first countable.
Moreover, if the metric space is separable then it must be second countable.
Let D = {xn}

∞
n=1 be a dense subset of X, then

U
∗ =

∞⋃

n=1

Uxn

is a countable basis of the topology.
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In a metric space (X, d), xn → x iff for every ǫ > 0 there exists a N ∈ N

such that
d(xn, x) < ǫ, for all n ≥ N.

A sequence {xn}n∈N satisfying

lim
n→∞

[

sup
m≥n

d(xn, xm)

]

= 0

is called a Cauchy sequence. The metric space (X, d) is complete if for
every Cauchy sequence {xn}

∞
n=1 there exists a x ∈ X such that xn → x.

In metric spaces some topological concepts seem to be easier to visualize
and work with, for example if (X, d) and (X ′, d′) are two metric spaces and T ,
T ′ are the topologies induced by d and d′ respectively, a function f : X → X ′

is continuous at x if for every ǫ > 0 there exists δ > 0 such that

d(x, y) < δ implies d′(f(x), f(y)) < ǫ.

Then, f is a continuous function if f is continuous at x for all x ∈ X. So,
we do not have to worry about the inverse images of all open subsets in X ′,
we just verify this new criteria, which in some cases may be easier to check
or simply easier to imagine.

Notice that this definition allows us to have a particular δ for each point
x, in other words, δ may depend on x. If there’s no such dependence, i.e. if
for every ǫ there exists δ such that d′(f(x), f(y)) < ǫ if d(x, y) < δ ∀x, y ∈ X,
then f is called uniformly continuous from (X, d) to (X ′, d′).

Remark: In a metric space the following can be proved

• f is continuous at x iff for every xn → x one has f(xn)→ f(x).

• If f : X → X ′ is continuous and V is a compact subset of X, then
f(V ) is compact in X ′.

Compact spaces have desirable properties, that is why there exists some
“methods” to enlarge a topological space in such way that the result is a
compact space. This process is called compactification. We only study one
of this methods, the Alexandroff one point compactification. We start
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with an example: the real line with its usual topology. We know that every
closed bounded subset of R is compact. When we have an unbounded set
it is possible to construct a divergent sequence, a sequence that somehow,
escapes from the real line. So, naturally one may think about a solution:
adding two new points ∞ and −∞. However, it may be enough to add only
the point ∞ and make any sequence with unbounded absolute values go to
this point.

In general, for a topological space (X,T ) the one point compactification
X ′ of X is obtained by adding one extra point called infinity and denoted by
∞. Then, define a new topology T ′ as follows

T
′ := T ∪ {O ∪ {∞} : O ∈ T , X\O is closed and compact} .

It can be easily verified that T ′ is indeed a topology and that (X ′,T ′) is
compact.

1.1.2 Order Topology

To simplify some of the proofs in Section 2.3 we present some basic definitions
and facts about a particular topological space that can be defined in a totally
ordered space: the order topology. We also discuss ordinal numbers and
ordinal spaces but we only work with countable ordinals.

Let A be a non empty set. A relation C ⊂ A × A is said to be a total
order relation on A if

1. (Comparability) For all x, y ∈ A such that x 6= y either xCy or yCx.

2. (Non reflexibility) For no x ∈ A does xCx hold.

3. (Transitivity) If xCy and yCz then xCz.

If such relation exists A is called an ordered set with respect to C. Commonly,
we denote C by “<” and we say that x is smaller than y if x < y. A subset
B of A is bounded if there exists a ∈ A such that b < a holds for all b ∈ B.
This element a of A is called an upper bound of B. The set A has the least
upper bound property if for every bounded nonempty subset of A there
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exists an upper bound a ∈ A such that if c is another upper bound of the
set, then a < c. If every nonempty subset of A has a smallest element, then
A is a well ordered set.

Some examples of totally ordered sets are R and Q with the usual “<”.
Any finite set is well ordered, indeed N = {1, 2, . . .} and any subset of it is
well ordered.

In a totally ordered set (X,<) the following subsets of X are called in-
tervals

(a, b) := {x ∈ X : a < x < b}

(a,∞) := {x ∈ X : a < x}

(−∞, a) := {x ∈ X : x < a}.

If (a, b) = ∅, then a is the predecessor of b.

Consider the class I of all such subsets of X, it can be easily verified that
I satisfies all the properties to be a basis of a topology in X. The topology
generated in this way is called the order topology of X, with respect to
< . Standard topologies in R,N,Q and Z are order topologies.

Lemma 1.1.1 Let X be a totally ordered set having the least upper bound
property. In the order topology, each closed interval in X is compact.

1.1.3 Additional Topics

In this section we discuss the concept of ordinals number, which in plain
words is a generalization of the natural numbers. We also introduce the
functions called partition of unity. Both topics are a key factor for Fernique’s
extension of Skorohod’s a.s. representation Theorem ( Section 2.3).

Formally an ordinal number is a well ordered set. In fact every well
ordered set is uniquely order isomorphic to an ordinal number. A standard
definition says that a set S is an ordinal if and only if S is well ordered
(with respect to set membership) and every element of S is also a subset
of S. The first infinite ordinal is ω, the set of all natural numbers. There
are three usual operations defined on ordinals: addition, multiplication, and
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exponentiation. Let’s define the addition. The union of two disjoint well
ordered sets S and T is also well ordered if we define the following order
relation: the well ordered set S is written “to the left” of the well ordered set
T and every element of S is smaller than every element of T . The sets S and
T themselves keep the ordering they already have. If the ordinal numbers are
finite then we get, somehow, the usual addition in N. If we try to visualize
the ordinal ω + ω, two copies of the natural numbers ordered as described
before, this is what we get:

0 < 1 < 2 < 3 < · · · < 0′ < 1′ < 2′ < · · ·

This is different from ω because in ω only 0 does not have a direct predecessor
while in ω+ω the two elements 0 and 0′ do not have direct predecessors. On
the other hand 3 + ω = ω :

0 < 1 < 2 < 0′ < 1′ < 2′ < · · · ,

while ω + 3 6= ω :
0 < 1 < 2 < · · · < 0′ < 1′ < 2′.

The product of two ordinal numbers is given by its cartesian product. S×T
is a well ordered set with an order that puts the least significant position
first. This is (s1, t1) < (s2, t2) iff t1 < t2 (in T ) OR if t1 = t2 and s1 < s2.
This operation is associative and generalizes the multiplication of natural
numbers. For example ω · 2 would look like

(0, 0) < (1, 0) < (2, 0) < · · · < (0, 1) < (1, 1) < (2, 1) < · · ·

Notice that ω · 2 = ω + ω. On the other hand 2 · ω = ω:

(0, 0) < (1, 0) < (0, 1) < (1, 1) < · · · < (0, k) < (1, k) < · · ·

Finally we only define exponentiation of well ordered sets when the expo-
nent is a finite set. In this case,

αn = α · α · · · α
︸ ︷︷ ︸

n times

,

and the power is the product of iterated multiplication. For instance, ω2 =
ω · ω.
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Let λ be an ordinal number, one can consider the spaces

[0, λ) = {α : α < λ} and [0, λ] = {α : α ≤ λ}

endowed with the order topology. Such spaces are called ordinal spaces.
If λ is a finite ordinal then the spaces [0, λ) and [0, λ] are discrete spaces.
When λ is a limit ordinal (it has no predecessor) [0, λ] is the one point
compactification of [0, λ). Another way to see that [0, λ] is a compact set, is
using Lemma 1.1.1.

Let X be an ordinal space, a function F : X → Y can be seen as an
ordinal indexed Y -valued sequence. F is continuous iff for any limit ordinal
λ ∈ X, F (λ) takes the value of the limit of {F (α), α < λ}.

Now we introduce the concept of partition of unity. As usual, let (X,T )
be a topological space. A collection of functions {ϕn}

∞
n=1 is said to be a

partition of unity if

1. for all n = 1, 2, . . . , the function ϕn : X → [0, 1] is continuous, and

2. for all x ∈ X one has
∞∑

n=1

ϕn(x) = 1.

The partition is locally finite if for every x ∈ X there exists a neighborhood
Vx of x such that

{n ∈ N : Vx ∩ supp (ϕn) 6= ∅} is finite,

where supp (ϕ), the support of ϕ, is the closed set

{x ∈ X : ϕ(x) 6= 0}.

Let {Un}
∞
n=1 be a countable collection of open sets covering X, if supp (ϕn) ⊂

Un for every n, then the partition is dominated by the cover {Un}
∞
n=1. The

existence of such functions is guaranteed for metric spaces (see [9]).

Theorem 1.1.2 Let (X,T ) be a metrizable topological space. Let {Un}
∞
n=1

be a countable open cover of X, then there exists a locally finite continuous
partition of unity {ϕn}

∞
n=1 dominated by {Un}

∞
n=1.
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1.2 Polish Spaces

Polish spaces arose as a topological concept, but they have been used in
probability theory as a natural generalization of spaces such as the real line
or the interval (0,1). If the topological space (S,T ) is metrizable, separable
and complete (with respect to this metric), then it is called a Polish space.
Notice that a Polish space is both first and second countable. The term
“Polish space” was first introduced by French mathematicians and illustrates
the work of Polish topologists and logicians like Sierpiński, Kuratowski and
Tarski, who extensively studied this kind of structures.

Example Any finite or countable set with the discrete topology is a Polish
space.

Example The real line with its usual topology T is a Polish space, since
the euclidean metric d generates the topology and (R, d) is complete. Notice
that Q is a dense subset of R, i.e. (R,T ) is separable.

A topological space (S,T ) may be generated by more than one metric.
If for one of these metrics (S,T ) is not complete, it does not mean that we
cannot find another metric for which the condition of completeness is satis-
fied. For instance, the interval (0, 1) with its usual topology is not complete
for the euclidean metric. However, before we disqualify it as a Polish space
we provide the following example.

Example The open interval (0,1) with its usual topology is a Polish space.
Consider the functions f : (0, 1) → R and d : (0, 1) × (0, 1) → [0,∞), given
by

f(x) = tan
(

πx−
π

2

)

, d(x, y) = |f(x)− f(y)|

The first graphic below shows how the function f behaves in (0, 1) and the
second is the graphic of d

(
1
2
, x

)
, x ∈ (0, 1). Clearly d is a metric on (0, 1).
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Moreover, if r > 0

{y : d(x, y) < r} = {y : |f(x)− f(y)| < r} = (a, b),

where a = f−1(f(x) − r) and b = f−1(f(x) + r). Therefore, d generates
the usual topology in the unit interval. In addition, (0, 1) is separable and
complete with respect to this metric (there is no Cauchy sequence converging
to 0 or 1).

Now, we give some examples of topological spaces which are not Polish
spaces. The statement “(S,T ) is not a Polish space” is quite strong. To
say this, we must show that for any metric d generating T , (S, d) is not
complete. On the other hand, separability does not depend on the metric, it
is enough to find a countable D ⊂ S such that D = S.

Example Q with its usual topology TQ is not a Polish space. The Baire
category Theorem states that in a complete metric space a set with non
empty interior is of second category (it cannot be written as a countable
union of nowhere dense sets). A set E is nowhere dense if intE = ∅. In this
example,

Q =
∞⋃

n=1

{qn},
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where (in the usual topology) int {qn} = int {qn} = ∅, while intQ = Q.
It follows that Q is of first category, which contradicts the Baire Category
Theorem. Therefore (Q,TQ) is not a Polish space.

Example Upper limit topology. This is a very interesting topology defined
in the set R of real numbers. This topology is generated by

U = {(a, b] : a, b ∈ R, a ≤ b}.

Clearly U covers R. If U1, U2 are non empty elements of U , say U1 = (a1, b1]
and U2 = (a2, b2] then U1 ∩ U2 = (max(a1, a2),min(b1, b2)] ∈ U . Hence U is
indeed the basis of some topology, which we denote by Tu. Since

(a, b) =
∞⋃

n=1

(

a, b−
1

n

]

the upper topology is finer than the usual topology. Tu is disconnected,
because the intervals of the form (a, b] are both open and closed sets. To see
this, notice that

(a, b] = ((−∞, a] ∪ (b,∞))c , and

(−∞, a] =
∞⋃

n=1

(−n, a], (b,−∞) =
∞⋃

n=1

(b, n].

It can be proven that the upper limit topology is first countable and separable
(indeed Q is dense in this topology) but not second countable. Therefore,
Tu is not metrizable, thus (R,Tu) is not a Polish space.

1.3 Probability

In this section we include some results in probability theory that may be
used in the next sections.

1.3.1 Measurable Functions

Let F be a σ-algebra of subsets of Ω, then (Ω,F) is said to be a measurable
space. If (X,T ) is a topological space, in order to obtain a measurable
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space, we define B(X) = σ(T ), the σ-algebra generated by T . B(X) is
called the Borel σ-algebra of X.

Let (Ω,F) and (Ω′,F ′) be two measurable spaces, a function f : Ω→ Ω′

is a measurable function if

f−1(F ′) = {f−1(B) : B ∈ F ′} ⊂ F .

Moreover, if the σ-algebra F ′ is generated by the class of sets A, i.e. F ′ =
σ (A), then

f−1(A) ⊂ F

implies the measurability of f. As a consequence, we obtain the next lemma

Lemma 1.3.1 Let (S, d) be a metric space. The function f : (Ω,F) →
(S,B(S)) is measurable iff

f−1(B) ∈ F

for all open balls B.

Example A widely used probability space is (U,B, λ) where U = (0, 1), B
the Borel sets, and λ is the Lebesgue measure. We will refer to this as the
Lebesgue probability space.

We state, without proof, a very useful result in probability: the Borel
Cantelli Lemma. It will be used in Section 2.1.

Lemma 1.3.2 (Borel Cantelli Lemma) Let {An}
∞
n=1 be a sequence of mea-

surable sets and µ a probability measure. If

∞∑

n=1

µ(An) <∞,

then

µ

(

lim sup
n→∞

An

)

= 0, which is the same as µ
(

lim inf
n→∞

Ac
n

)

= 1,

where

lim sup
n→∞

An =
∞⋂

n=1

∞⋃

i=n

Ai and lim inf
n→∞

An =
∞⋃

n=1

∞⋂

i=n

Ai.
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Sometimes we initially work with the two measurable spaces (Ω,F) and
(Ω′,F ′), but become interested in the product space Ω×Ω′. A way to define
measurable subsets of this product space is defining F ⊗ F ′, the σ-algebra
generated by the class of sets of the form A×B,A ∈ F and B ∈ F ′, which are
called rectangles. Then we consider the measurable space (Ω× Ω′,F ⊗ F ′).
If f is a function from Ω × Ω′ to a third measurable space (Ω∗,F∗), f is
jointly measurable if

f−1(F∗) = {f−1(B) : B ∈ F∗} ⊂ F ⊗ F ′.

When proving joint measurability for a function, things may get complicated.
Luckily for us, there are results that can help us to verify this property, like
the next theorem

Theorem 1.3.3 The map f : Ω× [a, b]→ R is jointly measurable if:

1. ft : Ω→ R is measurable for all t ∈ [a, b], where ft(ω) = f(ω, t).

2. fω : [a, b]→ R continuous for all ω ∈ Ω, where fω(t) = f(ω, t).

Proof. For each n ∈ N, let

ai,n = a+
i(b− a)

n
, for all i = 0, 1, . . . , n.

Now, for t ∈ [a, b], let τn(t) = min{ai,n : ai,n ≥ t}. Then we have

τn(t)→ t as n→∞,

so that f(ω, τn(t)) → f(ω, t), by hypothesis. Since the limit of measurable
functions is measurable, we only need to show that f(ω, τn(t)) is (jointly)
measurable for all n.

Take any B ∈ B(R), then the set {(ω, t) : f(ω, τn(t)) ∈ B}may be written
as

( {ω : f(ω, a) ∈ B} × {a} ) ∪

[
n⋃

i=1

( {ω : f(ω, ai,n) ∈ B} × (ai−1,n, ai,n] )

]

,

which is a union of rectangles in F ⊗ B[a, b]. It follows that (ω, t) 7→ f(ω, t)
is a measurable function.

13



Remark : Clearly the proposition is still true even if we only have right or
left continuity and the proof is similar.

Let X be a measurable function from (Ω,F) to (Ω′,F ′). Such function is
called a random element in Ω′. If Ω′ = R, then X is said to be a random
variable. If the domain of a random element is endowed with a probability
measure P , then X induces a probability measure in its range (Ω′,F ′). The
distribution of X, PX : F ′ → [0, 1] is the probability measure given by

PX(B) := P ◦X−1(B) = P (X−1(B)).

Sometimes PX is also called the law of X. We write X
D
= µ to say that the

distribution of X is equal to µ, or X
D
= Y meaning that the law of X is equal

to the law of Y .

When Ω′ = R we can exploit some of the properties of the real numbers,
like its order structure. In the next section we study the cumulative distri-
bution function of a random variable, which is a function that characterizes
uniquely its distribution.

As we saw before, we can relate a probability measure to each random
variable, of course this relation is not one to one. In fact, there are infinitely
many different random variables with the same distribution. So, given a prob-
ability measure in S it is natural to ask ourselves if there exists a S-valued
random variable X having this distribution. The next theorems, stated with-
out proof, answer this question. (See Section 1.3.4 for a definition of Borel
space.)

Theorem 1.3.4 (Existence, Borel) For any probability measures {µn}
∞
n=1 on

some Borel spaces S1, S2, . . . , there exist some independent random elements

{Xn}
∞
n=1 on the Lebesgue probability space with Xn

D
= µn for all n.

Theorem 1.3.5 (Existence, infinite product measures,  Lomnicki and Ulam)
Consider a collection of probability spaces (St,Ft, µt) indexed by some nonempty
set T . There exist some (independent) random elements Xt in St with dis-
tributions µt for all t ∈ T .

The first theorem can be found in [11] (Theorem 2.19, p. 33) as well as
the second one (Corollary 5.18, p. 93).
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To finish the section we define two types of convergence of random el-
ements, which are the central topic of the following chapters. Let X and
{Xn}

∞
n=1 be random elements from the probability space (Ω,F , P ) to the

Polish space S. We say that {Xn} converges almost surely (a.s.) to X if

P
({

ω : lim
n→∞

Xn(ω) = X(ω)
})

= 1.

On the other hand, {Xn} converges in distribution to X (Xn
D
→ X) if for

every continuous and bounded function f : S → R

lim
n→∞

∫

Ω

f(Xn) dP =

∫

Ω

f(X) dP.

In Section 1.3.4 we will see that there is a simplified and equivalent defini-
tion for convergence in distribution in the particular case S = R. Also, in
Theorem 1.3.19 we show that convergence a.s. is stronger than convergence
in distribution.

1.3.2 Pseudoinverse of a c.d.f.

Let X be a random variable, its cumulative distribution function (c.d.f.)
is the function F : R→ [0, 1] given by

F (x) := P ({ω : X(ω) ≤ x}) = P (X ≤ x).

Some properties of F are:

• F is nondecreasing and right continuous,

• lim
x→−∞

F (x) = 0 and

• lim
x→∞

F (x) = 1.

Since the cumulative distribution function (c.d.f.) may not be an injective
function we are not able to define its inverse function, however, we can define
its pseudoinverse. The pseudoinverse F (−1) of a c.d.f F is a function from
(0, 1) to R given by

F (−1)(u) := inf{x : F (x) ≥ u}.

15



This definition can be found in [1] (Theorem 7.7.2, p.334).

Remark : If F is strictly increasing and continuous then F (−1) = F−1, the
ordinary inverse.

Since F is a right continuous function, the set {x : F (x) ≥ u} is of the
form [x∗,∞) and F (−1)(u) = inf[x∗,∞) = x∗. Hence F (−1)(u) belongs to the
set {x : F (x) ≥ u}, which implies u ≤ F [F (−1)(u)].

Now, suppose that F (−1)(u) ≤ a, then F [F (−1)(u)] ≤ F (a) because F is
nondecreasing. By the previous line, we can conclude that u ≤ F (a). On the
other hand, if u ≤ F (a) we must have F (−1)(u) ≤ a, because a is an element
of {x : F (x) ≥ u}. We just proved

Lemma 1.3.6 F (−1)(u) ≤ a iff u ≤ F (a).

Using this fact we can prove the following

Theorem 1.3.7 Let F (−1) be the pseudoinverse of a distribution function F .
Then

1. F (−1) is an increasing function.

2. F (−1) is left continuous.

Proof. The first statement is just a consequence of the previous lemma.
To prove the second statement let u ∈ (0, 1) and {un}n be any sequence
such that {un} ↑ u, then {F (−1)(un)} is also an increasing sequence and
F (−1)(un) ≤ F (−1)(u) for all n (because un ≤ u). Then,

lim
n→∞

F (−1)(un) ≤ F (−1)(u).

On the other hand,

lim
n→∞

F [F (−1)(un)] ≤ F
(

lim
n→∞

F (−1)(un)
)

,

because F (−1)(un) is an increasing sequence and F is an increasing function.
Since un ≤ F [F (−1)(un)] we have

u = lim
n→∞

un ≤ lim
n→∞

F [F (−1)(un)] ≤ F
(

lim
n→∞

F (−1)(un)
)

.

16



Then, since F (−1)(u) ≤ a iff u ≤ F (a), we have

F (−1)(u) ≤ lim
n→∞

F (−1)(un).

It follows that
F (−1)(u) = lim

n→∞
F (−1)(un),

which means that F is left continuous.

In the last example of Section 1.2 we talked about the upper limit topology
Tu in R. Before we discuss the relationship between Tu and the pseudoinverse
of a cumulative distribution function, we recall some of its properties:

• Tu is finer than the usual topology: (a, b) ∈ Tu.

• Tu is first countable: the intervals (p, x] (where p ∈ Q, p < x) form a
countable basis at x.

• Tu is separable: Q is a dense set.

• Tu is not second countable thus not metrizable.

Lemma 1.3.8 Tu is strongly Lindelöf, this is, every open cover contains a
countable subcover.

Proof. Let {Uα}α be a collection of open sets in Tu and Vα be the interior
of Uα in the usual topology. Then, let

U =
⋃

α

Uα and V =
⋃

α

Vα.

We claim that A = U\V is countable. To see this, take x ∈ A. Find y so
close to x that (y, x] ⊂ U . Then (y, x) ⊂ V , which implies

(y, x) ∩ A = ∅.

Now we can conclude that A is countable because the elements of A are
“separated”: for every x ∈ A there exists yx such that (yx, x) ⊂ Ac. Finally,
since the usual topology of R is strongly Lindelöf, we may rewrite

V =
∞⋃

i=1

Vαi
,

and notice that U = A ∪ V .
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The range of F (−1), RanF (−1), is the set

{F (−1)(u) ∈ R : u ∈ (0, 1]}.

Notice that we included F (−1)(1) in its range, provided that the value is a
real number. In case 1 is not attained by F in R we assign F (−1)(1) = ∞
but ∞ /∈ RanF (−1). Clearly F (−1)(u) ↑ F (−1)(1) whenever u→ 1. The next
theorem gives a relation between RanF (−1) and the upper limit topology.

Theorem 1.3.9 Let F be the cumulative distribution function associated to
the probability measure µ, that is, F (x) = µ(−∞, x]. Then

RanF (−1) =
⋂

{C ⊂ R : µ(C) = 1, C is closed in Tu},

and
µ
(
RanF (−1)

)
= 1.

Proof. In this theorem what we see is that the range of F (−1) is the smallest
closed set with full probability. First we show RanF (−1) ⊂ C, where

C =
⋂

{C ⊂ R : µ(C) = 1, C is closed in Tu}.

Let x = F (−1)(u), u ∈ (0, 1], x 6=∞, then we have

µ(−∞, x] ≥ u and µ(−∞, x− ǫ] < u ∀ǫ > 0,

which implies µ(x−ǫ, x] > 0. Let C be a closed set, if x /∈ C then (x−ǫ, x] ⊂
Cc for some ǫ > 0 (x belongs to the open set Cc). Then we must have
µ(C) < 1. Thus x ∈ C.

On the other hand, let x ∈ C. Then µ(x−ǫ, x] > 0 for all ǫ > 0 (otherwise
x would not be in C). Let u = F (x), we claim

F (−1)(u) = x.

Since µ(−∞, x] = u we know for sure that F (−1)(u) ≤ x. If F (−1)(u) < x
then

µ(F (−1)(u), x] = 0,

which is a contradiction.

To prove µ
(
RanF (−1)

)
= 1 use the fact that Tu is strongly Lindelöf, then

rewrite the intersection as a countable intersection.
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To finish the section we present a straightforward consequence of the last
theorem, but first we define B′ to be the closure of B ⊂ R in Tu.

Lemma 1.3.10 If X is a random variable with P (X ∈ B) = 1, B ∈ B(R),
distribution µ and cumulative distribution function F then

RanF (−1) ⊂ B′.

1.3.3 Functional Monotone Class Theorem

Before we introduce the Functional Monotone Class Theorem, which will be
used in the next section, we state without proof Dynkin’s π, λ-systems
Lemma. To do so, we need some definitions.

Let Ω be a non empty set. A π-system is any class of subsets of Ω that
is closed under finite intersections. Similarly, a class D of subsets of Ω is a
λ-system if

• Ω ∈ D,

• if A,B ∈ D and A ⊂ B, then B\A ∈ D.

• for any increasing sequence {An} of elements of D, we have limAn ∈ D.

It is clear that any σ-algebra is both a π and λ-system. Define π(I) to be
the smallest π-system containing I. Similarly, we define λ(I) and σ(I).

Lemma 1.3.11 (Dynkin’s π, λ-systems Lemma) If I is a π-system, then

λ(I) = σ(I).

Theorem 1.3.12 (Functional Monotone Class Theorem) Let H be a collec-
tion of bounded real valued functions from Ω satisfying the following condi-
tions

a) H is a vector space over R,
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b) H contains the constant function 1 (hence every constant function),

c) if {fn} ⊂ H is an increasing sequence with sup
n

sup
ω
|fn(ω)| < ∞, then

lim
n

fn ∈ H, and

d) H contains the indicator function of every set in some π-system I.

Then H contains every bounded σ(I) measurable real valued function on Ω.

Proof. Let D be the class of subsets F of Ω such that IF ∈ H. Since 1 ∈ H,
Ω ∈ D. If A,B ∈ D and A ⊂ B, then IB−A = IB − IA ∈ H, by condition a.
On the other hand, let {An} be an increasing sequence of sets. Since

IlimAn
= lim IAn

(and, by condition c) we can conclude that D is a λ-system. It means, by
the previous lemma, that σ(I) ⊂ D.

Now, let f ≥ 0 be a σ(I)-measurable and bounded function. As a matter
of fact, f may be approximated as an increasing sequence of simple func-
tions, which are nothing else than linear combinations of indicator functions.
Therefore f ∈ H. Finally, if f is bounded but not necessarily non negative,
we can always rewrite f as f+ − f−, where

f+ = f · I{f≥0} and f− = −f · I{f<0}.

Clearly, f+ and f− are non negative and bounded. It follows that f+, f−

and f are elements of H and the proof is complete.

1.3.4 Weak Convergence

From now on S and S ′ are used to denote Polish spaces. As before, B(S)
denotes the Borel σ-algebra of S, and the elements of B(S) are called Borel
sets. A measurable space that is Borel isomorphic to a Borel subset T of [0, 1]
(there exists a bijection f : S → T such that both f and f−1 are measurable)
is called a Borel space. It can be proven that any Polish space endowed
with its Borel σ-algebra is a Borel space. A measure on the measurable space
(S,B(S)) is called a Borel measure.
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Define

M(S) = {µ : µ is a probability measure on (S,B(S))}.

Let Φ be the function from M(S)× Bb(S) to R given by

Φ(µ, f) =

∫

S

f dµ, (1.1)

where Bb(S) is the set of all bounded measurable functions from S to R.
Similarly, Cb(S) ⊂ Bb(S) denotes the set of all bounded and continuous
functions. Clearly each element of Bb(S) is integrable, so that Φ is well
defined. As usual, the f -section of Φ is given by

Φf :M(S)→ R, Φf (µ) = Φ(µ, f).

Similarly, we define the µ-section of Φ, Φµ. Let TM(S) be the smallest topol-
ogy that makes Φf a continuous function for every f ∈ Cb(S), this is, the
smallest topology containing

C := {Φ−1f (O) : f ∈ Cb(S), O ⊂ R is an open set}.

Indeed, TM(S) is generated by the smaller set

C := {Φ−1f (O) : f ∈ Cb(S), O ∈ UR},

where UR is a countable basis of the topology in R. As before, we can also
define the Borel σ-algebra of M(S), denoted by B(M(S)).

Example 1 The map φ :M(S)→ R, given by

φ(µ) = µ(O), O is an open set,

is measurable since it can be written as the limit of continuous (hence mea-
surable) functions. Set

fn(x) = min{1, nd(x,Oc)}, where d(x,Oc) = inf
y∈Oc

d(x, y).

Clearly, fn ∈ Cb(S) for all n. Then

φ(µ) =

∫

IO dµ = lim
n→∞

∫

fn dµ,

because 0 ≤ fn ↑ IO.
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Example 2 The map µ 7→ µ(A), A ∈ B(S) is also measurable. It is
important to note that we can no longer use the approximation argument.
However, we use the Functional Monotone Class Theorem (Theorem 1.3.12)
with

I = {O ⊂ S : O is open } and H = {f : µ 7→ Φf (µ) is measurable },

since (by previous example) every indicator function of an open set belongs
to H. The first and second condition of Theorem 1.3.12 are clearly satis-
fied, while the Bounded Convergence Theorem proves that H is closed under
increasing sequences of functions, which is the third condition. Therefore
Bb(S), the set of all measurable and bounded functions from S to R, is
contained in H. In particular µ(A) =

∫
IA dµ defines a measurable map.

Example 3 In the previous example we explained how to prove that

µ 7→

∫

f dµ

is measurable if f : S → R is measurable and bounded.

A subbasis S of a topology is a collection of sets that cover the entire
space. From a subbasis we can create a basis for a topology as follows

U =

{
n⋂

i=1

Vi : Vi ∈ S , n ∈ N

}

.

Consider the following open neighborhoods of µ ∈M(S)

S1,µ =

{

ν :

∣
∣
∣
∣

∫

f dν −

∫

f dµ

∣
∣
∣
∣
< ǫ, f ∈ Cb(S)

}

S2,µ = {ν : ν(F ) < µ(F ) + ǫ, F closed set}

S3,µ = {ν : ν(G) > µ(G)− ǫ, G open set}

S4,µ = {ν : |ν(A)− µ(A)| < ǫ, A µ-continuity set} ,

where a µ-continuity set A is such that µ(∂A) = 0.

Then, let Si, for i ∈ {1, 2, 3, 4}, be the subbasis obtained after taking the
union of the neighborhoods at µ for all µ ∈ M(S). Similarly we define the
basis Ui, i = 1, 2, 3 and 4, generated by the subbasis Si. In the following
theorem we show that the four bases generate the same topology, TM(S).
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Theorem 1.3.13 The topologies generated by each U1,U2,U3 and U4 coin-
cide and are equal to TM(S).

Proof. Let Ti be the topology generated by Ui. Choose any f ∈ Cb(S)
and ǫ > 0. Let I be the open interval

(∫
f dµ− ǫ,

∫
f dµ+ ǫ

)
, then

{

ν :

∣
∣
∣
∣

∫

f dν −

∫

f dµ

∣
∣
∣
∣
< ǫ

}

= Φ−1f (I).

It follows that T1 = TM(S), (Φ as in (1.1)) On the other hand, it is easy to
see that a set in S2 coincide with a set in S3 (just take F = Gc). So, we
only have to show

• T2 = T4. Let U ∈ S4, say U = {ν : |ν(A)−µ(A)| < ǫ, A µ-continuity set}
and let

V = {ν : ν(A) < µ(A) + ǫ} ∩ {ν : ν(Ac) < µ(Ac) + ǫ} ∈ U2.

Notice µ ∈ V. We claim that V ⊂ U , i.e. any set in S4,µ contains a set
in U2. Take ν ∈ V, then

ν(A) ≤ ν(A) < µ(A) + ǫ = µ(A) + ǫ

and
ν(Ac) ≤ ν(Ac) < µ(Ac) + ǫ = µ(Ac) + ǫ,

which implies ν(A) > µ(A)− ǫ. It follows, as we wanted to show, that

|ν(A)− µ(A)| < ǫ.

Now, let U = {ν : ν(F ) < µ(F ) + ǫ, F closed set} ∈ S2. Find
δ such that Fδ = {s ∈ S : d(s, F ) < δ} is a µ-continuity set and
µ(Fδ) < µ(F ) + ǫ

2
. Let

V =
{

ν : |ν(Fδ)− µ(Fδ)| <
ǫ

2

}

,

clearly if ν ∈ V then ν(F ) ≤ ν(Fδ) < µ(F )+ǫ. In other words, V ⊂ U .
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• T1 = T2. First we show that every set in S2,µ contains a set in
S1,µ and then we show the other direction. Let U = {ν : ν(F ) <
µ(F ) + ǫ, F closed set}. Take Fδ such that µ(Fδ) < µ(F ) + ǫ

2
. Choose

f ∈ Cb(S) so that

f(s) =







1 if s ∈ F,
0 if s /∈ Fδ,

t ∈ [0, 1] if s ∈ Fδ\F.

Let

V =

{

ν :

∣
∣
∣
∣

∫

f dν −

∫

f dµ

∣
∣
∣
∣
<

ǫ

2

}

.

To show V ⊂ U take ν ∈ V , clearly

ν(F ) ≤

∫

f dν < µ(F ) + ǫ, i.e. ν ∈ U.

Finally, let U =
{
ν :

∣
∣
∫
f dν −

∫
f dµ

∣
∣ < 2ǫ, f ∈ Cb(S)

}
. We may

assume 0 ≤ f ≤ 1, otherwise transform by adding and multiply-
ing by appropriate constants. Pick k ∈ N such that 1

k
< ǫ. Define

Fi =
{
x : i

k
≤ f(x)

}
. One can show that for m ∈M(S)

1

k

k∑

i=1

m(Fi) ≤

∫

f dm <
1

k
+

1

k

k∑

i=1

m(Fi).

We define

V =
k⋂

i=1

{

ν : ν(Fi) < µ(Fi) +
1

k

}

∈ B2.

Our claim is that V ⊂ U . Take ν ∈ V , then

∫

f dν <
1

k
+

1

k

k∑

i=1

ν(Fi) ≤
1

k
+

1

k

k∑

i=1

(

µ(Fi) +
1

k

)

=
1

k
+

1

k

k∑

i=1

µ(Fi) +
1

k
<

k∑

i=1

µ(Fi) + 2ǫ

≤

∫

f dµ+ 2ǫ.

The same argument applied to 1 − f will show
∫
f dµ − 2ǫ <

∫
f dν,

which completes the proof.
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In fact, it is possible to reduce the subbasis S2 and S3 and still generate
the same topology TM(S).

Lemma 1.3.14 The topology TM(S) is generated by the subbasis

S
′
3 = {{ν : ν(G) > µ(G)− ǫ} , µ ∈M(S), G ∈ U

′} ,

where U ′ is the set of finite unions of elements in the countable basis {Gi}
∞
i=1

of S.

Proof. Clearly TM(S) is finer than the topology generated by this subbasis,
hence we only have to show that any set of the form

U = {ν : ν(G) > µ(G)− 2ǫ}, G open set, µ ∈M(S)

contains a set in V in S ′
2 with µ ∈ V . Let G′ ⊂ G be a set in U ′ satisfying

µ(G\G′) < ǫ. Then we show that

V = {ν : ν(G′) > µ(G′)− ǫ} ⊂ U.

To see this, take ν ∈ V , then

ν(G′) > µ(G′)− ǫ > µ(G′) + µ(G\G′)− 2ǫ = µ(G)− 2ǫ.

It implies ν(G) > µ(G)− 2ǫ, i.e. ν ∈ U .

Now, let µn and µ be probability measures on (S,B(S)). We say that µn

converges weakly to µ, in symbols µn ⇒ µ, if

lim
n→∞

∫

S

f dµn =

∫

S

f dµ, for all f ∈ Cb(S).

Clearly, the previous definition is closely related to the definition of conver-
gence in distribution, in fact one can see, using change of variables, that

Xn
D
→ X iff µXn

⇒ µX , where Xn
D
= µXn

and X
D
= µX .

As one can imagine, the definition of convergence we just gave is consistent
with the topological space (M(S),TM(S)).
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Lemma 1.3.15 Let {µn}
∞
n=1, µ be a sequence and an element of M(S) re-

spectively. Then µn ⇒ µ iff {µn} TM(S)-converges to µ.

Proof. Suppose {µn} TM(S)-converges to µ, and let f ∈ Cb(S). Plugging
into the TM(S) continuous function Φf , we get

∫
f dµn →

∫
f dµ.

On the other hand, suppose
∫
fd µi →

∫
f dµ, for all f ∈ Cb(S). Let V

be a neighborhood of µ. Find a set of the form

U =
m⋂

i=1

Φ−1fi
(Ui), fi ∈ Cb(S), Ui open in R

satisfying µ ∈ U and U ⊂ V . Let ki, i ∈ {1, . . . ,m}, be such that for all
n ≥ ki we have µn ∈ Φ−1fi

(Ui). Then take the maximum of this numbers,

i.e. let k = max{k1, . . . , km}. Clearly, if n ≥ k then µn ∈
m⋂

i=1

Φ−1fi
(Ui) ⊂ V .

We just proved that for every neighborhood V of µ there exists k so that
{µn}n≥k ⊂ V .

Example Let x ∈ S. Let δx : B(S) → {0, 1} be the probability measure
given by

δx(A) =

{
0 if x /∈ A,
1 if x ∈ A.

(1.2)

Let {xn}
∞
n=1 be a sequence in S converging to x, then δxn

⇒ δx.

The following theorem give us alternative definitions of weak convergence.

Theorem 1.3.16 (Portmanteau Theorem) For probability measures µn and
µ on (S,B(S)) the following are equivalent:

1. lim
n→∞

∫
f dµn =

∫
f dµ, for all f in Cb(S)

2. For any open set U we have lim inf
n→∞

µn(U) ≥ µ(U)

3. For any closed set F we have lim sup
n→∞

µn(F ) ≤ µ(F )
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4. For any continuity set A of µ we have lim
n→∞

µn(A) = µ(A)

Proof. 1. ⇒ 2. Let U be an open set and F its complement. Define
fk(x) = min{1, kd(x, F )}, where d(x, F ) = inf

y∈F
d(x, y), and notice that 0 ≤

fk ↑ IU . Moreover, every fk is a bounded and continuous function from S to
R. Hence

lim
n→∞

∫

fk dµn =

∫

fk dµ.

On the other hand, since µn(U) ≥
∫
fk dµn, we have

lim inf
n→∞

µn(U) ≥ lim inf
n→∞

∫

fk dµn = lim
n→∞

∫

fk dµn =

∫

fk dµ.

Finally, letting k →∞ gives

µ(U) =

∫

IU dµ = lim
k→∞

∫

fk dµ ≤ lim inf
n→∞

µn(U),

since
∫
fk dµ ≤ lim inf µn(U).

2. ⇔ 3. It is easily verified taking complements.

3. ⇒ 4. Let A be a continuity set of µ, this is µ(∂A) = 0. Recall:
intA ⊂ A ⊂ A and ∂A = A \ intA. Then,

µ(intA) ≤ lim inf
n→∞

µn(intA) ≤ lim inf
n→∞

µn(A)

≤ lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(A)

≤ µ(A),

since intA is an open set and A is closed. Moreover, A = intA∪ ∂A implies
µ(A) = µ(intA) + µ(∂A). Since µ(∂A) = 0, then

lim
n→∞

µn(A) = µ(A).

4. ⇒ 1. Let f ∈ Cb(S), define Fy := f−1({y}). Notice that if y1 6= y2 then
Fy1 ∩ Fy2 = ∅. Also, µ(Fy) > 0 for at most countably many values of y. In
fact, without loss of generality, we may assume µ(F0) = 0 (otherwise add an
appropriate constant).
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On the other hand, for every ǫ > 0 and all k ∈ Z define

Bk,ǫ := f−1
(

[kǫ, (k + 1)ǫ)
)

.

It follows that ∂Bk,ǫ ⊂ Fkǫ ∩ F(k+1)ǫ, which implies

µ(∂Bk,ǫ) ≤ µ(Fkǫ) + µ(F(k+1)ǫ).

If k = 0, we have µ(∂B0,ǫ) ≤ µ(Fǫ), since µ(F0) = 0. Now, let {y1, y2, . . .} be
the set of points such that µ(Fyi) > 0. Define C as the set

{

ǫ : ǫ =
yi
k
, k ∈ Z− {0}, i ≥ 1

}

.

Notice that µ(Fkǫ) > 0 for some k, if and only if ǫ ∈ C. Clearly C is countable
and, if ǫ′ ∈ Cc, ǫ′ > 0 then

µ(∂Bk,ǫ′) = 0, for all k ∈ Z.

There exists a sequence {ǫj} convergent to zero so that {ǫj} ⊂ Cc, ǫj > 0
(otherwise C would not be countable). Hence Bk,ǫj is a continuity set of µ
(for all k and all j) and µn(Bk,ǫj)→ µ(Bk,ǫj) as n goes to infinity.

Since f is bounded, for a given ǫ, Bk,ǫ = ∅ for all but finitely many k′s.
Now, for a fixed ǫj

∑

k

kǫjµ(Bk,ǫj) ≥

∫

f dµ− ǫj,

where the summation is taken over all those (finitely many) k′s such that
Bk,ǫj is not an empty set. Clearly,

∑

k

kǫjµ(Bk,ǫj) = lim
n→∞

∑

k

kǫjµn(Bk,ǫj),

and

lim
n→∞

∑

k

kǫjµn(Bk,ǫj) = lim inf
n→∞

∑

k

kǫjµn(Bk,ǫj) ≤ lim inf
n→∞

∫

f dµn.

On the other hand

lim sup
n→∞

∫

f dµn ≤ lim sup
n→∞

∑

k

(k+1)ǫjµn(Bk,ǫj) = lim
n→∞

∑

k

(k+1)ǫjµn(Bk,ǫj).
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Moreover,

lim
n→∞

∑

k

(k + 1)ǫjµn(Bk,ǫj) =
∑

k

(k + 1)ǫjµ(Bk,ǫj) ≤

∫

f dµ+ ǫj.

Then, putting everything together,
∫

f dµ− ǫj ≤ lim inf
n→∞

∫

f dµn ≤ lim sup
n→∞

∫

f dµn ≤

∫

f dµ+ ǫj.

Finally, make ǫj → 0, to conclude

lim
n→∞

∫

f dµn =

∫

f dµ.

In fact we can relax the first condition in the previous theorem, it is
enough to verify if

∫
f dµn →

∫
f dµ for just countably many functions f .

Lemma 1.3.17 Let U = {Un : n ∈ N} be a basis of the topology in S and

Û =

{
⋃

i∈I

Ui : I ⊂ N, I is finite

}

.

If
∫
f dµn →

∫
f dµ for every function f : S → R of the form

f(x) = min{1, kd(x, U c)}, k ∈ N, U ∈ Û

then µn ⇒ µ.

Proof. First of all, we want to emphasize that the Û is countable. As
part of the proof of the previous theorem (1. ⇒ 2.) we proved that the

hypothesis of the lemma implies lim inf
n→∞

µn(U) ≥ µ(U) for all U ∈ Û .

Let V ⊂ S be any open set. Let {Uk}
∞
k=1 ⊂ U be such that

V = lim sup
i→∞

Vi , where Vi =
i⋃

k=1

Uk.
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Clearly µn(Vi) ≤ µn(V ), hence

lim inf
n→∞

µn(Vi) ≤ lim inf
n→∞

µn(V ).

By hypothesis µ(Vi) ≤ lim inf
n→∞

µn(Vi), therefore µ(Vi) ≤ lim inf
n→∞

µn(V ).

It implies
µ(V ) = lim

i→∞
µ(Vi) ≤ lim inf

n→∞
µn(V ).

Therefore, by the Portmanteau theorem, µn ⇒ µ

Let
F = {f : f(x) = min{1, kd(x, U c)}, k ∈ N, U ∈ Û }, (1.3)

where Û as in the last lemma. Using the previous result and Lemma 1.3.13
we can obtain a simplified version of one of the subbasis that generates the
topology TM(S) in M(S).

Lemma 1.3.18 TM(S) is generated by the countable set

{Φ−1f (O) : f ∈ F , O ∈ UR},

F as in (1.3), and UR denotes a countable basis of R.

The next theorem shows that convergence almost surely is stronger than
weak convergence, in the sense that if a sequence of random variables con-
verges a.s., then the sequence of measures induced by them converges weakly.

Theorem 1.3.19 Let {Xn} and X be random elements from (Ω,F , P ) to
(S,B(S)). Suppose that Xn → X a.s. and let µn, µ be the distributions of
Xn and X respectively. Then µn ⇒ µ.

Proof. Let f ∈ Cb(S), we need to prove

lim
n→∞

∫

f dµn =

∫

f dµ.

Since µn = P ◦X−1
n , we can write

∫
f dµn =

∫
f(Xn) dP. Similarly,

∫
f dµ =

∫
f(X) dP. On the other hand, since f is a continuous function we have that
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f(Xn) → f(X) a.s. and the fact that f is bounded implies that f(Xn) and
f(X) are also bounded. Hence, by the Bounded Convergence Theorem we
have

lim
n→∞

∫

f(Xn) dP =

∫

f(X) dP,

which means that µn ⇒ µ.

In particular, if µn and µ are probability measures on (R,B(R)) we have
an alternative and easier way to define weak convergence. In the next lemma
we only prove that our original definition implies this new one. Later, in
Section 2.1, we prove the converse of this result.

Theorem 1.3.20 Let µn and µ be probability measures on R and Fn, F their
respective c.d.f. Then, µn ⇒ µ implies Fn(x) → F (x) for every continuity
point x of F .

Proof. By the Portmanteau Theorem

lim sup
n→∞

Fn(x) ≤ F (x) and lim sup
n→∞

µn([x,∞)) ≤ µ([x,∞)).

However, if x is a continuity point of F , then we must have

lim sup
n→∞

[1− Fn(x)] ≤ lim sup
n→∞

µn([x,∞)) ≤ µ([x,∞)) = 1− F (x),

which is the same as
lim inf
n→∞

Fn(x) ≥ F (x).

It follows that

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x).

Clearly, Fn(x)→ F (x), whenever x is a continuity point of F .

In the following theorem, taken from [2] (Theorem 5.1, p. 30), S and
S ′ are Polish spaces, but is easy to see that it would be enough to work in
metric spaces and the theorem would remain true.
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Theorem 1.3.21 Let {µn}n and µ be probability measures on S, let X be a
measurable function from S to S ′. If µn ⇒ µ and µ(DX) = 0, then

µn ◦X
−1 ⇒ µ ◦X−1,

where DX is the discontinuity set of X.

Proof. We shall show that for any closed subset of S ′, lets say F , we have

lim sup
n→∞

µnX
−1(F ) ≤ µX−1(F ).

Since µn ⇒ µ we have

lim sup
n→∞

µn(X
−1(F )) ≤ lim sup

n→∞
µn

(

X−1(F )
)

≤ µ
(

X−1(F )
)

,

becauseX−1(F ) ⊂ X−1(F ). Therefore it is enough to prove that µ
(

X−1(F )
)

=

µ
(

X−1(F )
)

. Notice that

X−1(F ) ⊂ DX ∪X−1(F ),

By hypothesis µ(DX) = 0, which means that µ(X−1(F )) = µ
(

X−1(F )
)

, as

we wanted to prove.

The following theorem will be used in Section 2.2.2. Let {fn}
∞
n=1 be

the countable subset of Cb(S) defined in Lemma 1.3.17. This set contains
functions of the form

f(x) = min{1, kd(x, U c)},

where U is a certain kind of open set and k ∈ N. Φ as defined in (1.1).

Theorem 1.3.22 Let S, S ′ be two Polish spaces and X a function from
(M(S ′),B[M(S ′)]) to (M(S),B[M(S)]). Then, X is measurable iff Φfn◦X :
M(S ′)→ R is measurable for all n ∈ N.
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Proof. Because of the fact that TM(S) is generated by a countable subbasis,
the σ-algebra B(M(S)) is generated by the same set, say

S = {Φ−1fn
(O) : f ∈ {fn}

∞
i=1, O ∈ UR}

(UR is a countable basis of R). If X is measurable, clearly Φfn ◦X is mea-
surable, since it is the composition of two measurable functions.

On the other hand, suppose Φfn ◦X is measurable for all n ∈ N. Then,
for any O ∈ UR ⊂ B(R), the set

(Φfn ◦X)−1(O) = X−1
(

Φ−1fn
(O)

)

,

is measurable. In other words, if B ∈ S then X−1(B) is measurable, i.e.

X−1(S ) ⊂ B[M(S ′)].

Since S generates the σ-algebra B(M(S)), we can conclude that X is a
measurable function.

1.3.5 Prohorov Metric

So far we have defined the topological space (M(S),TM(S)). It can be proven
that it is metrizable. Let’s define

Fǫ = {x ∈ S : d(x, F ) < ǫ}.

If µ, ν are two elements of M(S), we set

dP (µ, ν) = inf {ǫ > 0 : for all closed sets F, µ(F ) ≤ ν(Fǫ) + ǫ} . (1.4)

Lemma 1.3.23 dP :M(S)×M(S)→ [0, 1] is a metric in M(S).

Proof. Let

E1 = {ǫ > 0 : µ(F ) ≤ ν(Fǫ) + ǫ for all closed sets F}

E2 = {ǫ > 0 : ν(F ) ≤ µ(Fǫ) + ǫ for all closed sets F},
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Then we show E1 = E2. Take any ǫ ∈ E1 and let F be any closed subset of
S, let G = S\Fǫ. Clearly, G is a closed set and F ⊂ S\Gǫ. It follows that

µ(Fǫ) = 1− µ(G) ≥ 1− ν(Gǫ)− ǫ ≥ ν(F )− ǫ,

This is,
ν(F ) ≤ µ(Fǫ) + ǫ.

Hence, E1 ⊂ E2. Similarly, we show E2 ⊂ E1. It follows immediately that
dP (µ, ν) = dP (ν, µ).

To prove the triangle inequality let µ, ν, λ ∈M(S) and suppose dP (µ, ν) <
δ and dP (ν, λ) < ǫ. Then, for any closed set F

µ(F ) ≤ ν(Fδ) + δ ≤ ν
(
Fδ

)
+ δ

≤ λ
(
(Fδ)ǫ

)
+ δ + ǫ ≤ λ(Fδ+ǫ) + δ + ǫ,

which implies
dP (µ, λ) ≤ dP (µ, ν) + dP (ν, λ).

Finally, suppose dP (µ, ν) = 0. It means that µ(F ) = ν(F ) for every closed
set F . Let D = {B ∈ B(S) : µ(B) = ν(B)}. In order to prove µ = ν we
must show B(S) ⊂ D. Notice that

1. S ∈ D,

2. if A,B ∈ D and A ⊂ B,

µ(B\A) = µ(B)− µ(A) = ν(B)− ν(A) = ν(B\A),

i.e. B\A ∈ D

3. if {Bn}n ⊂ D is an increasing sequence then

µ
(

lim
n→∞

Bn

)

= lim
n→∞

µ(Bn) = lim
n→∞

ν(Bn) = ν
(

lim
n→∞

Bn

)

,

i.e. lim
n→∞

Bn ∈ D.

In other words, D is a λ-system. Moreover, F ⊂ D, where F is the set of all
closed subsets of S. Since F is a π-system, by Dynkin’s π, λ-systems (Lemma
1.3.11) we have

B(S) = σ(F) = λ(F) ⊂ D.

Therefore µ = ν.
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The metric dP is called the Prohorov metric and it can be proven that
the metric space (M(S), dP ) is separable and complete. For instance, if
D ⊂ S is a countable dense, then

D =

{

µ ∈M(S) : µ =
N∑

n=1

anδxn
,

N∑

n=1

an = 1, an ∈ Q, xn ∈ D

}

,

is a countable dense subset of M(S).

We close this chapter with a probabilistic interpretation of the Prohorov
metric, provided in [8] (Chapter 3, Theorem 1.2). This interpretation will be
used in Chapter 3.

Theorem 1.3.24 Let µ, ν ∈M(S). Define P(µ, ν) to be the set of all prob-
ability measures m ∈ M(S × S) with marginals µ and ν. This is, for all
A ∈ B(S) one has m(A× S) = µ(A) and m(S × A) = ν(A). Then

dP (µ, ν) = inf
m∈P(µ,ν)

inf{ǫ > 0 : m({(x, y) : d(x, y) ≥ ǫ}) ≤ ǫ}.

It is known that the Prohorov metric gives the same topology on M(S)
as the topology of weak convergence.
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Chapter 2

Skorohod’s Theorem and
Extensions

2.1 Skorohod’s a.s. Representation Theorem

In Section 1.3.1 and 1.3.4 we introduced the concept of convergence a.s. and
convergence in distribution of random elements as well as weak convergence
of measures. We also proved, in Theorem 1.3.19, that convergence almost
surely implies weak convergence of the distributions of such random elements.
Skorohod’s almost sure representation theorem establishes that there exist
random variables for which weak convergence of their measures and conver-
gence a.s. hold simultaneously.

In 1956 A. V. Skorohod published his paper “Limit Theorems for Stochas-
tic Processes” [13] containing the proof of this converse result for a complete,
metric and separable space. Later, in 1968, R. M. Dudley weakened the ini-
tial hypothesis and prove this result without completeness [6]. In this section
we include both results.

Before exploring a more general space S let’s begin with R. Suppose we
want to prove the previous statement: “if µn, µ ∈ M(R) and µn ⇒ µ, then
there are Xn → X a.s. having distributions µn and µ”. The first thing we
should notice is that, given the structure of B(R), instead of looking at the
measures µn and µ we can study their cumulative distributions functions,

36



say Fn and F . Then, we have to construct Xn, X : (0, 1)→ R with the given
distributions.

Naturally, the first candidate we have in mind are the pseudoinverses of
Fn and F (see Section 1.3.2)

F (−1)
n (u) = inf{x : Fn(x) ≥ u} , u ∈ (0, 1)

F (−1)(u) = inf{x : F (x) ≥ u} , u ∈ (0, 1).

Since Fn(x)→ F (x) for all but countable many values of x one can imagine

that F
(−1)
n (u) → F (−1)(u) hold for almost every u ∈ (0, 1). It would imply

that following this method we can find the random variables we are looking
for. In the following lemma we prove this statement.

Lemma 2.1.1 Suppose µn, µ ∈M(R) and µn ⇒ µ. Let X,Xn : (U,B, λ)→

R be given by X(u) = F (−1)(u) and Xn(u) = F
(−1)
n (u). Then X has distri-

bution µ, Xn has distribution µn and

Xn → X a.s.

Proof. To show that the law of Xn is µn it is enough to show that the
cumulative distribution function of Xn is indeed Fn (similarly with X). In
Lemma 1.3.6 we proved that F (−1)(u) ≤ a iff u ≤ F (a). Therefore,

λ(Xn ≤ x) = λ({u : Xn(u) ≤ x}) = λ({u : F (−1)
n (u) ≤ x})

= λ({u : u ≤ Fn(x)}) = λ(0, Fn(x)]

= Fn(x).

It shows that Xn and X have right distributions.

Now, to show Xn → X a.s. consider the functions Yn and Y from (0, 1)
to R defined as follows

Yn(u) = inf{x : Fn(x) > u} and Y (u) = inf{x : F (x) > u}.

We can see that Yn is quite similar to Xn, the same happens with Y and X.
Indeed, is easy to see that

λ(Xn = Yn) = λ(X = Y ) = 1,
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since the discontinuity points of Xn and X are countable. Now, fix any
u in the set {Y (u) = X(u)}. Let v be a continuity point of F such that
F (v) > u. As proved in Theorem 1.3.20, Fn(v)→ F (v). It implies that for a
large enough n we must have Yn(u) ≤ v. Therefore

lim sup
n→∞

Yn(u) ≤ v.

Then, choose v ↓ Y (u) (it is possible because all but countably many v’s are
continuity points of F ). It follows that

lim sup
n→∞

Yn(u) ≤ Y (u).

By similar arguments
X(u) ≤ lim inf

n→∞
Xn(u).

Since Xn(u) ≤ Yn(u), we have

X(u) ≤ lim inf
n→∞

Xn(u) ≤ lim sup
n→∞

Xn(u) ≤ lim sup
n→∞

Yn(u) ≤ Y (u).

Since X(u) = Y (u) we have Xn(u)→ X(u) for such u. Again, since λ(X =
Y ) = 1, we can conclude

λ({u : Xn(u)→ X(u)}) = 1,

which proves our claim.

Using the properties of R, like the order of its elements, we were able to
find Xn and X relatively easily. Using this result we can complete Lemma
1.3.20.

Lemma 2.1.2 Let {µn}
∞
n=1 and µ be probability measures on R. Let Fn, F

be their cumulative distribution functions. Then µn ⇒ µ iff Fn(x) → F (x)
for all continuity points x of F .

Proof. Half of the lemma has been proved in Lemma 1.3.20. We only need
to show that Fn(x)→ F (x) for all continuity points x of F implies µn ⇒ µ.

By the previous result take Xn = F
(−1)
n and X = F (−1), then Xn

D
= µn,

X
D
= µ and Xn → X a.s. Since convergence a.s. is stronger than convergence

in distribution (Theorem 1.3.19), we must have µn ⇒ µ, which completes
the proof.

38



When we change from R to a more general space S it is not so clear
how can we produce random elements with the required properties. For
instance, we can no longer rely on cumulative distribution functions or their
pseudoinverses. In the following theorem we explore Skorohod’s proof for a
complete, metric and separable space.

Theorem 2.1.3 ([13], 3.1.1, p. 281) Let S be complete, metric and sepa-
rable. Assume that the probability measures in S {µn}

∞
n=1 converge weakly

to µ0. Then there exist S-valued random elements {Xn}
∞
n=0 on the Lebesgue

probability space, having distributions µn n = 0, 1, . . ., such that

Xn → X0 a.s.

Proof. We construct Borel sets Si1,i2,...,ik , ij, k ∈ N in the following way.
Let {xk

i }
∞
i=1 be a sequence of points such that every point of S lies at a

distance no greater than 2−(k+1) from at least one point of the sequence. As
before B(x, r) is the open ball with center at x and radius r. We can choose
an rk ∈

(
1

2k+1 ,
1
2k

)
such that

µ
(
∂B(xk

i , rk)
)
= 0 for all i, (2.1)

which can be done because there is at most a countable set of r where (2.1)
is positive for each i. Let

Dk
i = B(xk

i , rk)\

(
i−1⋃

j=1

B(xk
j , rk)

)

,

Si1,i2,...,ik = D1
i1
∩D2

i2
∩ · · · ∩Dk

ik
.

It is easy to see that the sets we obtained satisfy the following properties

• Si1,i2,...,ik ∩ Si′1,i
′
2,...,i

′
k
= ∅ if ij 6= i′j for at least one j,

•
∞⋃

ik=1

Si1,i2,...,ik−1,ik = Si1,i2,...,ik−1
,
∞⋃

i=1

Si = S,

• The diameter of each Si1,i2,...,ik is less than 2−k,

• µ (∂Si1,i2,...,ik) = 0.
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We denote by ∆n
i1,i2,...,ik

, (n = 0, 1, . . .) intervals of the segment [0, 1]
defined as follows.

• ∆n
i1,i2,...,ik

and ∆n
i1,i2,...,i′k

have no intersection if ik 6= i′k,

• the union of {∆n
i1,i2,...,ik

}∞ik=1 is the interval ∆n
i1,i2,...,ik−1

, which implies

∆n
i1,i2,...,ik

⊂ ∆n
i1,i2,...,ik−1

,

• ∆n
i1,i2,...,ik

lies to the left of ∆n
i1,i2,...,i′k

whenever ik < i′k.

• the length of ∆n
i1,i2,...,ik

is equal to µn(Si1,i2,...,ik).

From each set Si1,i2,...,ik we now choose one point xi1,i2,...,ik ∈ S. For n =
0, 1, . . . we define the functions Xm

n : [0, 1]→ S by

Xm
n (t) = xi1,i2,...,im for t ∈ ∆n

i1,i2,...,im
.

It is easy to see that d(Xm
n (t), Xm+p

n (t)) ≤ 2−m. Since S is a complete space,
the limit Xn of {Xm

n }m exists. Since the length of ∆n
i1,i2,...,ik

tends to the
length of ∆0

i1,i2,...,ik
, for all interior points t of the intervals ∆0

i1,i2,...,im
we have

lim
n→∞

d(X0(t), Xn(t)) ≤ 2−m,

and therefore for all t ∈ [0, 1] except possibly a countable set (the boundaries
of the intervals), we have

lim
n→∞

Xn(t) = X0(t).

To complete the proof we must only show that the distribution PXn
of

each Xn is indeed µn. By construction PXn
and µn coincide for all sets in

C = {Si1,i2,...,ik , k ∈ N}.

In fact C is a π-system because the intersection of two sets is either empty or
the “smallest” set (in case one is contained in the other). Hence λ(C) = σ(C).
Also notice that the class of sets where PXn

and µn coincide is a λ-system,
thus, if we show λ(C) = B(S) we are done.
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To do so, we show that for every open O ⊂ S there exists a set in the
(countable) class C inside O: take x ∈ O and find k ∈ N so that B(x, 2−k) ⊂
O, then we can certainly find Si1,i2,...,ik that contains x and so is completely
contained in O. Then, it is easy to see that

O =
⋃

{A ∈ C, A ⊂ O}

(prove by contradiction). It follows that O ∈ λ(C). Therefore we can con-
clude that σ(C) = B(S), and the proof is complete.

Now, we prove the same result without completeness in the space S.

Theorem 2.1.4 ([6], Theorem 3, p. 1569 and [11], Theorem 3.30, p.56) Let
µ1, µ2, . . . and µ be measures in the separable metric space (S, d) such that
µn ⇒ µ. Then on the Lebesgue probability space there exist some random
elements {Xn}n and X, from (0, 1) to S, with induced measures µn and µ
respectively, satisfying Xn → X a.s.

Proof. For this proof we start with a random element X : (U, λ) → S
with distribution µ. The existence of such random element is given by the
existence theorems (see Section 1.3.1, Theorem 1.3.5).

First we prove the theorem when S is finite. Without loss of generality,
assume S = {1, . . . , N}. Let pi = λ(X = i) = µ({i}) and pi,n = µn({i}).
Clearly, µn ⇒ µ iff pi,n → pi for all i = 1, . . . , N . Let U : (0, 1) → (0, 1) be
uniform and independent of X. We now construct some random elements

X̄n so that X̄n
D
= µn. Notice that

λ

(

{X = i} ∩

{

U ≤
pi,n
pi

})

= pi ·min

{
pi,n
pi

, 1

}

≤ pi,n.

Thus we may construct X̄n satisfying

{X = i} ∩

{

U ≤
pi,n
pi

}

⊂ {X̄n = i}.

Since pi,n → pi for each i, we get X̄n → X a.s.
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For general S, fix any p ∈ N and choose a partition of S into µ-continuity
sets B1, B2, . . . ∈ B(S) of diameter less or equal than 2−p. Next choose k so
large that µ(B0) < 2−p, where

B0 =

(
k⋃

i=1

Bi

)c

.

This is possible since
⋃

i

Bi ↑ S. Let I = {0, 1, . . . , k}. Define hn : (0, 1) → I

so that λ({hn = i}) = µn(Bi) and put h =
k∑

i=0

i I(X∈Bi). It’s easy to see that

λ ◦ hn ⇒ λ ◦ h (B0, B1, . . . , Bk are µ-continuity sets). Moreover, since I is a
finite set, we may assume hn → h a.s. (by the previous case).

Let us further introduce some independent random elements Y i
n : (0, 1)→

Bi, i = 0, 1, . . . , k with distributions given by

λ
(
Y i
n ∈ B

)
=

µn(B ∩ Bi)

µn(Bi)
.

Then define

Xp
n(u) =







Y 0
n (u) if u ∈ {hn = 0},

Y 1
n (u) if u ∈ {hn = 1},

...
Y k
n (u) if u ∈ {hn = k}.

To prove that Xp
n has distribution µn notice that, for any B ∈ B(S),

{Xp
n ∈ B} =

k⋃

i=0

{Xp
n ∈ B} ∩ {hn = i} =

k⋃

i=0

{Y i
n ∈ B} ∩ {hn = i},

hence

λ{Xp
n ∈ B} =

k∑

i=0

λ({Y i
n ∈ B} ∩ {hn = i}) =

k∑

i=0

λ({Y i
n ∈ B})λ({hn = i})

=
k∑

i=0

µn(B ∩Bi)

µn(Bi)
µn(Bi) = µn(B).

From the construction is clear that

{hn = h} ∩ {X /∈ B0} ⊂ {d(X
p
n, X) ≤ 2−p}, for all n, p.
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Since hn, h have finite range, hn → h a.s. and P (X ∈ B0) < 2−p, there exists
for every p some np ∈ N with

P




⋃

n≥np

{d(Xp
n, X) > 2−p}



 < 2−p, for all p,

which is equivalent to P (d(Xp
n, X) > 2−p, n ≥ np) < 2−p. We may further

assume that n1 < n2 < · · · . By the Borel Cantelli Lemma we get that

P

(

sup
n≥np

d(Xp
n, X) ≤ 2−p for all but finitely many p

)

= 1.

Now define Xn = Xp
n for np ≤ n < np+1, and note that Xn has distribution

µn. Moreover Xn → X a.s.

2.2 Extensions

In the rest of the chapter S is a Polish space, M(S) the space of all prob-
ability measures on (the Borel sets of) S endowed with the weak conver-
gence topology and (U,B, λ) is the Lebesgue probability space. A function
ρ :M(S)× U → S is a representation of M(S) if

1. ρ is Borel measurable, and

2. for every µ ∈M(S) the function ρµ : U → S, defined by

ρµ(u) = ρ(µ, u),

has distribution µ (with respect to λ on U = (0, 1)).

In 1983, Blackwell and Dubins published a paper claiming the existence
of a representation satisfying specific conditions. The main property of such
representations is related with a “particular” kind of continuity. Notice that,
when we say ρ(·, u) is continuous at µ we mean that µn ⇒ µ implies ρ(µn, u)
converges to ρ(µ, u) in S.

In my thesis we study this and other types of continuity, we name them
for simplicity:
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• (C1) There is a null set N so that for u /∈ N, µ 7→ ρ(µ, u) is continuous.

• (C2) For each µ ∈ M(S) there is a null set Nµ so that for u /∈ Nµ the
map m 7→ ρ(m,u) is continuous at µ.

• (C3) For each µ ∈ M(S) and sequence µn ⇒ µ there is a null set
Nµ,{µn} so that for u /∈ Nµ,{µn}, ρ(µn, u)→ ρ(µ, u).

Clearly (C1) is the strongest type of continuity and (C3) is the weakest among
the three of them. However, a representation with any of this continuity
properties is a generalization of Skorohod’s result by takingXn(u) := ρ(µn, u)
and X(u) := ρ(µ, u). Moreover, ρ is defined in the whole space M(S), so
that the limit random element with distribution µ does not change if we
change the sequence {µn} converging to µ.

For instance, the existence of a (C2)-continuous representation for S = R

can be easily verified, we just let ρ∗µ be the pseudoinverse function of the
cumulative distribution function of µ.

Theorem 2.2.1 Denote by M∗ = M(R). Let ρ∗ : M∗ × U → R, be the
function defined by:

ρ∗(µ, u) = inf{x : µ((−∞, x]) ≥ u}, u ∈ (0, 1).

Then, ρ∗ is a (C2)-continuous representation of M∗. This is,

1. ρ∗ is a measurable function,

2. ρ∗µ = ρ ∗ (µ, u) has distribution µ (with respect to λ on U) and,

3. except of a null subset Nµ of U , ρ∗(·, u) is continuous at µ.

Proof. First of all notice that we can write

ρ∗(µ, u) = F (−1)
µ (u).

To prove measurability we use Theorem 1.3.3. Since F
(−1)
µ (u) is left con-

tinuous, we only need to prove that ρ∗u(·) is measurable for all u. Notice
that

A = ρ∗−1u ((−∞, a]) = {µ ∈M∗ : ρ∗u(µ) ≤ a}

= {µ ∈M∗ : ρ∗(µ, u) ≤ a} = {µ ∈M∗ : F (−1)
µ (u) ≤ a}.
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In Lemma 1.3.6 we proved F
(−1)
µ (u) ≤ a iff u ≤ F (a). Therefore,

A = {µ ∈M∗ : Fµ(a) ≥ u} = {µ ∈M∗ : µ((−∞, a]) ≥ u}

=

{

µ ∈M∗ :

∫

f dµ ≥ u

}

= Φ−1f ([u,∞)),

where f = I(−∞,a] is a bounded function from S to R and Φ is given by 1.1.
By the second example in Section 1.3.4, µ 7→ Φf (µ) is a measurable function,
which means that the set A is measurable. Therefore ρ∗u is measurable and
we can conclude that ρ∗ is a measurable function.

To complete the proof, we refer to Lemma 2.1.1.

2.3 Blackwell and Dubins’s Extension

Blackwell and Dubins sketched a proof for the existence of a (C2)-continuous
representation of M(S), where S is an arbitrary Polish space, moreover,
they constructed and gave an explicit formula for such function ρ (see [3]).
A question we had in mind when we first studied the paper was a mistake my
supervisor found, the function ρ was not well defined: one of the functions
that defines ρ was evaluated outside its domain. Our goal was to fix this
problem redefining the function. In this section we explain and prove the
statements claimed by Blackwell and Dubins, while studying the representa-
tion introduced by them.

For the general case, we add a new parameter a so that our probability
space is A×U , where A = [1, 2] and U = (0, 1). Let D be a countable dense
subset of S and let

{Hn}
∞
n=1 (2.2)

be an enumeration of all open spheres with centers in D and with rational
radius. Fix a ∈ A and denote by Ha

n the open sphere with center equal to the
center of Hn and with radius equal to the product of a with the radius of Hn,
so that the sequence Ha

1 , H
a
2 , . . . also determines the topology of S. This is

because, if O is any open set, we have O =
⋃

i∈C

Ha
i , where C = {i : Ha

i ⊂ O}.
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For (a, x) ∈ A× S define

c(a, x) =
∞∑

n=1

IHa
n
(x)

3n
.

Lemma 2.3.1 c : A× S → [0, 1/2] is an injective function.

Proof. Suppose c(a1, x1) = c(a2, x2), then

∞∑

n=1

IHa1
n
(x1)− IHa2

n
(x2)

3n
=

∞∑

n=1

in
3n

= 0,

where in = IHa1
n
(x1) − IHa2

n
(x2). Suppose that in 6= 0 for some n ∈ N. Let

n∗ be the first number such that in∗ 6= 0. Without loss of generality suppose
in∗ = 1. Then,

∞∑

n=1

in
3n

=
n∗−1∑

n=1

in
3n

+
1

3n∗
+

∞∑

n=n∗+1

in
3n

= 0.

If we multiply by 3n
∗

we get

1 +
∞∑

n=1

in+n∗

3n
= 0.

But −1
2
≤
∑

1
3n
in+n∗ ≤

1
2
. This contradiction shows that there is no such n∗,

therefore in = 0 for all n ∈ N.

Suppose x1 6= x2 and, without loss of generality, a1 ≤ a2. Find Ha2
m in

{Ha2
n }n so small that x2 ∈ Ha2

m but x1 /∈ Ha2
m . Since Ha1

m ⊂ Ha2
m we get

IHa1
m
(x1) = 0 while IHa2

m
(x2) = 1,

which is a contradiction. Therefore x1 has to be equal to x2.

Now, assume a1 < a2 and let x = x1 = x2. Take y ∈ S, a center of one of
the open balls {Hn}n, such that d(x, y) = δ 6= 0. Then, find r ∈ Q so that

a1 <
δ

r
< a2.
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Let Hk be the open ball with center y and radius r. Clearly x /∈ Ha1
k but

x ∈ Ha2
k . Again this is a contradiction since, by hypothesis, we must have

IHa1
k
(x) = IHa2

k
(x) for all k. It follows that a1 = a2 and the proof is complete.

Lemma 2.3.2 The function ca, given by x 7→ c(a, x), is continuous in the
complement of

⋃

n

∂Ha
n.

Proof. Let {xk} be a sequence in S such that xk → x, with x /∈
⋃

n

∂Ha
n.

Our claim is that ca(xk) → ca(x) as n → ∞. Fix any ǫ > 0. Let N ∈ N be

such that
∞∑

n=N+1

1
3n

< ǫ. Then,

|ca(xk)− ca(x)| ≤

∣
∣
∣
∣
∣

N∑

n=1

IHa
n
(xk)− IHa

n
(x)

3n

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

n=N+1

1

3n

∣
∣
∣
∣
∣

<

∣
∣
∣
∣
∣

N∑

n=1

IHa
n
(xk)− IHa

n
(x)

3n

∣
∣
∣
∣
∣
+ ǫ.

We claim that for a large enough k, IHa
n
(xk) = IHa

n
(x). Since xk → x the

equality is true if x ∈ Ha
n. On the other hand, suppose x /∈ Ha

n. The fact
that x /∈

⋃
∂Ha

n implies x /∈ ∂Ha
n. Hence x ∈ int [(Ha

n)
c]. It follows that

eventually xk ∈ (Ha
n)

c and IHa
n
(xk) = IHa

n
(x) = 0. Hence, for all n ∈ N exists

a k′n such that IHa
n
(xk) = IHa

n
(x) for all k ≥ k′n. Let k∗ be the maximum of

{k′1, k
′
2, . . . , k

′
N}. It follows that

∣
∣
∣
∣
∣

N∑

n=1

IHa
n
(xk)− IHa

n
(x)

3n

∣
∣
∣
∣
∣
= 0,

for all k ≥ k∗. As a consequence |ca(xk)−ca(x)| < ǫ. So that ca(xk)→ ca(x),
as we wanted to prove.

Moreover, ca is a measurable function because it may be expressed as the
limit of measurable functions, namely

ca = lim
k→∞

k∑

n=1

IHa
n

3n
.
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Hence, we may define Ja(µ) ∈ M(R) to be the distribution of ca on the
probability space (S,B, µ), that is, Ja(µ) = µ ◦ c−1a .

Lemma 2.3.3 For a fixed x ∈ S the function a 7→ ca(x) is left continuous.

Proof. Fix any x ∈ S and a ∈ (1, 2]. Let {an}
∞
n=1 be an increasing sequence

converging to a. We need to prove that, if ǫ > 0, then there exists N∗ ∈ N

such that
|can(x)− ca(x)| < ǫ for all n ≥ N∗.

Let N be an integer such that
∞∑

i=N

1
3i
< ǫ. Then,

|can(x)− ca(x)| =

∣
∣
∣
∣
∣

N−1∑

i=1

1

3i
[
IHan

i
(x)− IHa

i
(x)
]
+

∞∑

i=N

1

3i
[
IHan

i
(x)− IHa

i
(x)
]

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N−1∑

i=1

1

3i
[
IHan

i
(x)− IHa

i
(x)
]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∞∑

i=N

1

3i
[
IHan

i
(x)− IHa

i
(x)
]

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

N−1∑

i=1

1

3i
[
IHan

i
(x)− IHa

i
(x)
]

∣
∣
∣
∣
∣
+

∞∑

i=N

∣
∣
∣
∣

1

3i
IHan

i
(x)− IHa

i
(x)

∣
∣
∣
∣

<

∣
∣
∣
∣
∣

N−1∑

i=1

1

3i
[
IHan

i
(x)− IHa

i
(x)
]

∣
∣
∣
∣
∣
+ ǫ.

Now,

IHa
i
(x) =

{
0 if d(x, yi) ≥ ari,
1 if d(x, yi) < ari,

where yi and ri are the center and radius of Hi.

Suppose IHa
i
(x) = 0, since an ↑ a, we have anri ≤ ari and

IHan
i
(x) = IHa

i
(x) = 0.

If IHa
i
(x) = 1, define ǫi = ari − d(x, yi) > 0. Since an ↑ a, there exists mi

such that |an − a| = a− an < ǫi
ri

for all n ≥ mi. Hence an > a− ǫi
ri

and

anri > ari − ǫi = ari − ari + d(x, yi) = d(x, yi),

48



it follows that IHan
i
(x) = 1, for all n ≥ mi. Thus, for large n, we have

IHan
i
(x)− IHa

i
(x) = 0 for all i < N , which give us

|can(x)− ca(x)| ≤ ǫ,

as we required.

Since c is injective, it possesses an inverse c−1 : c(A×S)→ A×S. Define
h to be the projection of c−1 on its second coordinate. By Kuratowski’s
Theorem ([8], Theorem 10.5), the image of c is a Borel subset of [0, 1/2] and
the inverse map c−1 is Borel measurable. It follows that h is a Borel function.

Lemma 2.3.4 Let {yn}
∞
n=1 be sequence converging to y, where yn, y ∈ c(A×

S). Then h(yn)→ h(y). In other words, h is continuous in c(A× S).

Proof. Let {(an, xn)}
∞
n=1 be the correspondent sequence in A × S, this is

c(an, xn) = yn. Let (a, x) be such that c(a, x) = y, notice that h(yn) = xn

and h(y) = x. Define {ik}
∞
k=1 and {ink}

∞
k=1 to be the ternary representation

of y and yn, so that

y =
∞∑

k=1

ik
3k

and yn =
∞∑

k=1

ink
3k

, ∀n ∈ N.

We can also see ink as IHan
k
(xn) and ik as IHa

k
(x). The fact that yn → y

must imply that, eventually these first “ternary digits” of the elements in
the sequence are equal to the digits in y. To prove it, let N be the first
integer such that inN 6= iN , then

|yn − y| =

∣
∣
∣
∣
∣

∞∑

k=1

(
ink − ik

3k

)
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

inN − iN
3N

−
∞∑

k=N+1

(
ik − ink

3k

)
∣
∣
∣
∣
∣

≥

∣
∣
∣
∣

inN − iN
3N

∣
∣
∣
∣
−

∣
∣
∣
∣
∣

∞∑

k=N+1

(
ink − ik

3k

)
∣
∣
∣
∣
∣
=

1

3N
−

∣
∣
∣
∣
∣

∞∑

k=N+1

(
ink − ik

3k

)
∣
∣
∣
∣
∣

≥
1

2 · 3N
,

because
∑

k≥N+1

1
3k
≤ 1

2·3N
. Since |yn − y| → 0, we have N →∞, so that each

term in the ternary representation of yn and y will eventually be the same.
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Now, we will prove that xn → x. Fix any ǫ > 0. Take z ∈ S, the center of
one of the open balls in {Hn}

∞
n=1, such that d(x, z) < ǫ

8
. Let k ∈ N be such

that 1
k
< ǫ

8
. Let N ∈ N be the index of B

(
z, 1

k

)
in {Hn}n. It follows that

HN = B

(

z,
1

k

)

⊂ Ha′

N ⊂ B(x, ǫ), for all a′ ∈ A.

Since IHa
N
(x) = 1, we have that exists a large enough n∗ such that xn ∈ Han

N

for all n ≥ n∗. It follows that xn ∈ B(x, ǫ), which implies

d(xn, x) < ǫ, for all n ≥ n∗.

Thus,

h
(

lim
n→∞

yn

)

= h(y) = x = lim
n→∞

xn = lim
n→∞

h(xn),

as we claimed before.

Finally, we introduce a variation of the function ρ constructed by Black-
well and Dubins. Define ρ, thus:

ρ(µ, a, u) = h̄[ρ∗(Ja(µ), u)], (2.3)

where the subscript a indicates the dependence of J on a, and h̄ is given by

h̄(y) =

{
h(y) if y ∈ c(A× S)
x∗ if y /∈ c(A× S).

where x∗ is any element of S.

The change made to the original Blackwell and Dubins ρ consists in ex-
tending h, using h̄ instead. This is due to the fact that the range of ρ∗ may
be larger than c(A× S), see Section 1.3.2.

In the following sections we show that the new ρ is a (C3)-continuous
representation of M(S), but may fail to be (C2)-continuous.

2.3.1 Properties of ρ

As before, ρ :M(S)× A× (0, 1)→ S is given by

ρ(µ, a, u) = h̄[ρ∗(Ja(µ), u)].
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Since ρ is a composition of several functions, it is enough to prove that the
functions h̄, ρ∗, and Ja are (jointly) measurable to prove that ρ is indeed
measurable. Recall that the measurability of ρ∗ and h̄ has been already
proved.

Lemma 2.3.5 J :M(S)× A→M(R) is jointly measurable.

Proof. By Theorem 1.3.3, it is enough to prove that Ja :M(S) →M(R)
is measurable for all a ∈ A, and Jµ : A→M(R) is a left continuous function.

• Ja is measurable. By Theorem 1.3.22 we only need to verify the mea-
surability of ϕf : M(S) → R, where ϕf (µ) =

∫
fdJa(µ), f ∈ Cb(R).

Recall the definition of Ja(µ): the distribution of ca under the measure
µ. Then

ϕf (µ) =

∫

R

fdJa(µ) =

∫

S

f(ca)dµ.

Since f ∈ Cb(R), f ◦ ca is a bounded function from S to R. By the
second example in Section 1.3.4 it is clear that ϕf is a measurable
function.

• Jµ is left continuous. Let a ∈ A, take {an}, any increasing sequence
that converges to a. Our claim is that Jµ(an) converges to Jµ(a), in
the topology of M(R). Recall Theorem 1.3.19, which establishes that
if fn, f : S → R are random variables such that fn → f a.s. then
its distribution functions converge weakly. Lemma 2.3.3 shows that
can → ca a.s., which implies Jµ(an)→ Jµ(a).

This completes the proof.

In summary, we have that all components of ρ (h̄, ρ∗ and Ja) are measur-
able functions, which implies the measurability of ρ.

Now, we analyze the distribution of the random element ρµ : A×U → S.
As usual, the a-section of ρ is defined as the function ρa :M(S)× (0, 1)→ S
determined by ρa(µ, u) = ρ(µ, a, u). First, we will prove that for any a ∈ A
ρa(µ, ·) has distribution µ.
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To analyze the distribution of ρa(µ, ·) define Yµ : (0, 1)→ S as the func-
tion given by Yµ(u) = ρa(µ, u). First of all, notice that Yµ is a Borel function
since it is a section of a measurable function, so it is a random element from
(0, 1) to S. Then its distribution λYµ

is given by

λYµ
(B) = λ({u : Yµ(u) ∈ B}) = λ(Y −1µ (B)), B ∈ B(S),

where, as usual, λ is the Lebesgue measure in (0, 1). The class

C = {B ∈ B(S) : x∗ /∈ B}

is a π-system that generates B(S), so if we show that λ(Y −1µ (B)) = µ(B) for
all B ∈ C it would imply that λ ◦ Y −1µ = µ in B(S).

Let B ∈ C, then

Y −1µ (B) = {u : Yµ(u) ∈ B}

= {u : h̄[ρ∗(Ja(µ), u)] ∈ B}

= {u : h̄[ρ∗(Ja(µ), u)] ∈ B, ρ∗(Ja(µ), u) ∈ c(A× S)}

∪ {u : h̄[ρ∗(Ja(µ), u)] ∈ B, ρ∗(Ja(µ), u) /∈ c(A× S)}

= {u : h[ρ∗(Ja(µ), u)] ∈ B, ρ∗(Ja(µ), u) ∈ c(A× S)}

= {u : ρ∗(Ja(µ), u) ∈ c(A× B)}.

Notice that, by Kuratowski’s Theorem ([8], Theorem 10.5), c(A × B) is a
Borel set.

On the other hand, since ρ∗ is a representation of M(R), we have

λ(Y −1µ (B)) = Ja(µ)[c(A× B)].

Moreover,

Ja(µ)[c(A× B)] = (µ ◦ c−1a )(c(A× B))

= µ({x : ca(x) ∈ c(A×B)})

= µ(B),

where the last equality is justified by c being an injective function. We may
now conclude that the distribution of Yµ is actually µ.

Finally, since the conditional distribution of ρ given a is µ for each a, its
unconditional distribution is µ.
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2.3.2 (C3)-continuity of ρ

We start with an additional assumption, then we’ll show that such assump-
tion holds almost surely.

As before, let a be any number in A. Suppose that µ(∂Ha
n) = 0 for all

n ∈ N, our claim is that ρa is (C3)-continuous at µ, i.e. if µk ⇒ µ, then there
exists Na

µ,{µn}
with λ(Na

µ,{µn}
) = 0 such that ρa(µk, u) converges to ρa(µ, u)

for every u /∈ Na
µ,{µn}

.

Now, just for a moment, lets suppose that Ja(µk) ⇒ Ja(µ), then it
would imply ρ∗(Ja(µk), u) → ρ∗(Ja(µ), u) for almost every u since ρ∗ is a
(C2)-continuous representation of M(R). Define the null set N = {u :
ρ∗(Ja(µk), u) 6→ ρ∗(Ja(µ), u)}.

If u /∈ N and ρ∗(Ja(µk), u), ρ
∗(Ja(µ), u) ∈ c(A× S) then

ρa(µk, u) = h[ρ∗(Ja(µk), u)]→ h[ρ∗(Ja(µ), u)] = ρa(µ, u),

by Lemma 2.3.4. It is important to see that

λ({u : ρ∗(Ja(µk), u) ∈ c(A× S)}) = Ja(µk)[c(A× S)]

= µk({x : ca(x) ∈ c(A× S)})

= µk(S) = 1,

for all k. Hence λ({u : ρ∗(Ja(µk), u), ρ
∗(Ja(µ), u) ∈ c(A× S)}) = 1. Now let

Na
µ,{µn} = N ∪ {u : ρ∗(Ja(µk), u), ρ

∗(Ja(µ), u) /∈ c(A× S)}.

Then, it is easy to see that ρa(µk, u) converges to ρa(µ, u) for every u /∈
Na

µ,{µn}
. In conclusion, if we prove that µk ⇒ µ implies Ja(µk) ⇒ Ja(µ), for

Lebesgue almost every a ∈ A, then we are done.

As proved before, in Lemma 2.3.2, ca is continuous in the complement of
⋃

n

∂Ha
n and, by hypothesis,

µ

(
⋃

n

∂Ha
n

)

≤
∑

n

µ(∂Ha
n) = 0.

Therefore, we can apply theorem 1.3.21 to get µk ◦ c
−1
a ⇒ µ ◦ c−1a . In other

words,
Ja(µk)⇒ Ja(µ).
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It follows that, under the condition µ(∂Ha
n) = 0 ∀n, the conditional proba-

bility given a of the discontinuity set of ρu for µ and {µn} is zero.

If we prove that, for any µ, the measure of the boundaries of Ha
n is zero for

all but countably many a, we are done, since the unconditional probability
of the discontinuity set of the map µ 7→ ρ(µ, a, u) for µ, {µn} will be zero. It
implies that the representation is (C3)-continuous at each µ.

To prove this initial hypothesis notice first that ∂Ha1
n ∩ ∂Ha2

n = ∅ for
a1 6= a2. It implies that for a fixed n, the set of {a : µ(∂Ha

n) > 0} is indeed
countable. Then, the equality

{a : µ(∂Ha
n) > 0, n ∈ N} =

⋃

n

{a : µ(∂Ha
n) > 0}

shows that it is possible to rewrite the first set as a countable union of
countable sets, which proves our claim.

2.4 Fernique’s Extension

In 1988 a paper was published by X. Fernique ([10]) giving an explicit way to
construct a (C2)-continuous representation ofM(S), for any Polish space S.
We start with some definitions and notation. As before, S is a Polish space
with metric d. Recall that for ǫ > 0, F ⊂ S

Fǫ = {x ∈ S : d(x, F ) < ǫ}.

The Prohorov metric on M(S), denoted by dP , is given by

dP (µ, ν) = inf {ǫ > 0 : for all closed set F, µ(F ) ≤ ν(Fǫ) + ǫ} ,

see (1.4), Section 1.3.5. In this section we explain Fernique’s (C2)-continuous
representation ofM(S). Blackwell and Dubins representation uses a function
from Polish to a more particularly studied space, the interval [0, 1]. Such
construction is too “discontinuous” and fails to capture the structure of S.
Fernique regularize it using continuous partitions of unity, (see Section 1.1.3).
Actually, this representation does not use a second parameter as the first
representation where the domain of ρ is M(S)× ([1, 2]× [0, 1]).
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In this section (U,F , λ) denotes [0, 1) with its usual topology and the
Lebesgue measure. For any integer n ≥ 0, let

Tn = {On,k , k = 0, 1, 2, 3, . . .}

be a sequence, ordered by k, of open sets of diameter less or equal to 2−n

covering S. Let Fn = {ft, t ∈ Tn} be a continuous partition of unity domi-
nated by Tn (existence is given by Theorem 1.1.2), provided with the order
induced by its index. The partitions Fn are in general not comparable, in the
sense that there is not a clear relationship between the sets in Tn for different
values of n. Let

Gn = F1 × · · · × Fn.

For simplicity, sometimes we write (a1, . . . , an) = (fa1 , . . . , fan), where fai ∈
Fi. We equip Gn with the dictionary (or lexicographic) order associated with
the orders of its factors: (a1, a2, . . . , an) < (b1, b2, . . . , bn) iff any of the fol-
lowing is true

• a1 < b1

• a1 = b1 and a2 < b2

• a1 = b1, a2 = b2 and a3 < b3
...

• ai = bi for i = 1, . . . , n− 1 and an < bn.

We may identify Gn with the ordinal space [0, ωn) as follows,

(0, 0, . . . , 0, 0, 0) = 0

(0, 0, . . . , 0, 0, 1) = 1

(0, 0, . . . , 0, 0, 2) = 2
...

(0, 0, . . . , 0, 0, k) = k
...

(0, 0, . . . , 0, 1, 0) = ω

(0, 0, . . . , 0, 1, 1) = ω + 1

55



(0, 0, . . . , 0, 1, 2) = ω + 2
...

(0, 0, . . . , 0, 2, 0) = ω + ω = ω · 2
...

(0, 0, . . . , 0, k,m) = ω · k +m
...

(0, 0, . . . , 1, 0, 0) = ω · ω = ω2

and, in general

(a1, a2, . . . , an) =
n∑

i=1

ωn−i · ai.

At any element g of Gn, we associate the product

p(g) = fa1 · fa2 · · · fan .

As in Section 1.1.3 the support of p(g) is the set {x ∈ S : p(g) (x) 6= 0}. De-
note by t(g) an element in the support of p(g). Notice that

supp p(g) ⊂ B(t(g), 2−n), (2.4)

where B(t(g), 2−n) represents the open ball with center at t(g) and radius
2−n. For every pair (m,n) of integers larger or equal to 0, let q(m+n,n) be the
projection of Gn+m on Gn, i.e.

q(n+m,n)(fa1 , fa2 , . . . , fan+m
) = (fa1 , fa2 , . . . , fan), fai ∈ Fi.

Lemma 2.4.1 For any n ∈ N the set {p(g), g ∈ Gn} is a continuous par-
tition of unity. Moreover, {p(g), g ∈ Gn+1} is finer than {p(g), g ∈ Gn},
meaning that

p(g) =
∑

{p(h) : h ∈ Gn+1, q(n+1,n)(h) = g}, ∀g ∈ Gn. (2.5)

Proof. Clearly, p(g) is continuous and has range in [0, 1]. Fix any x ∈ S,
since F1 is a partition of unity f(x) = 0 for all but finitely many f ∈ F1.
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The same is true for k = 1, . . . , n, therefore p(g) (x) = 0 for all but finitely
many g ∈ Gn.

To prove (2.5), let g = (fa1 , . . . , fan) ∈ G
n where fai ∈ Fi, then

{
h ∈ Gn+1 : q(n+1,n)(h) = g

}
= {(fa1 , . . . , fan , hi) : hi ∈ Fn+1}.

It follows that

∑{
p(h) : h ∈ Gn+1, q(n+1,n)(h) = g

}
=

∞∑

i=0

p(fa1 , . . . , fan , hi) (x)

=
∞∑

i=0

fa1(x) · · · fan(x) · hi(x)

= fa1(x) · · · fan(x)
∞∑

i=0

hi(x)

= fa1(x) · · · fan(x) · 1 = p(g) (x).

Finally, to show
∑

g∈Gn

p(g) (x) = 1, notice that

∑

g∈Gn

p(g) (x) =
∑

g∈Gn−1

∑

f∈Fn

p(g) (x) · f(x) =
∑

g∈Gn−1

p(g) (x), by (2.5)

=
∑

g∈Gn−2

∑

f∈Fn−1

p(g) (x) · f(x) =
∑

g∈Gn−2

p(g) (x)

= · · · =
∑

g∈G1

p(g) (x) =
∑

g∈F1

g(x) = 1,

which completes the proof.

For any element g of Gn, set

Σn(g) =
∑

h∈Gn, h<g

p(h).

Clearly, Σn : Gn → [0, 1) is an increasing sequence (recall that we equipped
Gn with the dictionary order).

57



Lemma 2.4.2 For any integer n ≥ 1 and all g ∈ Gn, it is possible to simplify

Σn(g) = Σn−1(g
′) + p(g′)

∑

f∈Fn, f<gn

f, (2.6)

where g′ = q(n,n−1)(g) and gn is the nth entry of g.

Proof. Suppose that g has no predecessor in Gn, i.e. g is of the form
n−1∑

i=1

ωi · ai, ai 6= 0 for at least one i. In that case

g = (fa1 , . . . , fan−1
︸ ︷︷ ︸

g′

, f0) = (g′, f0),

and the equation (2.6) is trivially satisfied.

Now, suppose that g has predecessor in Gn, i.e. g is of the form (g′, k).
Notice that, by g = (g′, k) we mean that the nth entry in g ∈ Gn = F1×· · ·×Fn

is the function fk ∈ Fn = {fi}
∞
i=0. In this case

Σn(g) =
∑

h∈Gn, h<g

p(h) =
∑

h<(g′,0)

p(h) +
k−1∑

i=0

p((g′, i))

=
∑

h∈Gn−1, h<g′

p(h) +
k−1∑

i=0

p(g′) · fi, fi ∈ Fn

= Σn−1(g
′) + p(g′) ·

k−1∑

i=0

fi,

as we wanted to show.

By induction, this implies in particular that the functions Σn(g) are con-
tinuous and bounded on S. As we mentioned before, some elements of Gn

have no precedent, but every element g has a successor g+. Let µ be a prob-
ability measure on S. Fix an integer n ≥ 0 and denote by µn ∈ M(S) the
probability measures defined by

µn =
∑

g∈Gn

(∫

p(g) dµ

)

δt(g).

58



Our claim is that the sequence in M(S) constructed in this way converges
weakly to µ.

Lemma 2.4.3 For all n, dP (µn, µ) ≤ 2−n.

Proof. Let F ⊂ S be a closed set, in order to prove the lemma we must
show µn(F ) ≤ µ(F2−n) + 2−n. Define the following sets

AF = {g ∈ Gn : t(g) ∈ F}

BF = {g ∈ Gn : supp p(g) ∩ F 6= ∅},

clearly AF ⊂ BF . Then

µn(F ) =
∑

g∈AF

(∫

p(g)dµ

)

≤
∑

g∈BF

(∫

p(g)dµ

)

=

∫
∑

g∈BF

p(g)dµ.

By (2.4), g ∈ BF implies supp p(g) ⊂ F2−n . Then

∫
∑

g∈BF

p(g)dµ =

∫

F2−n

∑

g∈BF

p(g)dµ ≤

∫

F2−n

1dµ = µ(F2−n).

In summary
µn(F ) ≤ µ(F2−n) < µ(F2−n) + 2−n,

for all closed set F .

A simple recurrence, based on (2.6) after integration and the fact that,
as g increases Σn(g) ↑ 1 (because

∑

g∈Gn

p(g) is the constant 1 in S), show that

for every x ∈ [0, 1) there exists a unique element g of Gn, denoted by gx, such
that ∫

Σn(gx) dµ ≤ x <

∫

Σn(g
+
x ) dµ.

Define the function Xn from [0, 1) to S by putting Xn(x) = t(gx) for all x in
[0, 1).

Lemma 2.4.4 Xn is a well defined measurable function. Moreover Xn
D
= µn.
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Proof. First notice that {t(g) : g ∈ Gn} is a countable set and

X−1
n {t(g)} = {x ∈ [0, 1) : Xn(x) = t(g)} =

⋃

{h:t(h)=t(g)}

[∫

Σn(h) dµ,

∫

Σn(h
+) dµ

)

,

therefore

λ(Xn = t(g)) =
∑

{h:t(h)=t(g)}

(∫

Σn(h
+) dµ−

∫

Σn(h) dµ

)

=
∑

{h:t(h)=t(g)}

∫

[Σn(h) + p(h)− Σn(h)] dµ

=
∑

{h:t(h)=t(g)}

∫

p(h) dµ

= µn(t(g)).

Lemma 2.4.5 For every x ∈ [0, 1) the sequence {Xn(x)}
∞
n=1 is a Cauchy

sequence in the complete space (S, d). Then it converges to a limit X(x),
satisfying

d
(

Xn(x), X(x)
)

≤ 2−n, ∀x ∈ [0, 1), ∀n ∈ N.

Proof. Suppose Xn(x) = t(g) and Xn+1(x) = t(h), then

∫

Σn(g) dµ ≤ x <

∫

Σn(g
+) dµ and

∫

Σn+1(h) dµ ≤ x <

∫

Σn+1(h
+) dµ.

Let
hi = (g, fi) = (ga1 , . . . , gan

︸ ︷︷ ︸

g

, fi), fi ∈ Fn+1 = {fi}
∞
i=0.

By (2.6), Σn+1(h0) = Σn(g) ≤ x and Σn+1(hi) = Σn(g)+p(g)
∑

j<i

fj. It follows

that
lim
k→∞

Σn+1(hk) = Σn(g) + p(g)
∑

j

fj = Σn(g
+).
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Since x < Σn(g
+), there exists k so that

Σn+1(hk) ≤ x < Σn+1(h
+
k ),

which implies q(n+1,n)(h) = g. Hence supp p(h) ⊂ supp p(g) ⊂ B(t(g), 2−n).
Notice that the last contention is given by (2.4). Therefore

d(t(h), t(g)) = d(Xn(x), Xn+1(x)) ≤ 2−n.

Similarly, if Xn+2(x) = t(h′) then

q(n+2,n)(h′) = q(n+1,n)[q(n+2,n+1)(h′)] = q(n+1,n)(h) = g.

In general, d(Xn(x), Xn+m(x)) ≤ 2−n. Finally, let

X(x) = lim
n→∞

Xn(x).

It follows that d(Xn(x), X(x)) ≤ 2−n.

The function X : [0, 1) → S defined above is measurable, and because
of the relationship between its law and the sequence {µn} (which converges

weakly to µ) we know X
D
= µ. We set X = X(µ) and Xn = X(µ, n).

For any integer n ≥ 0 and any probability measure µ on S, let

N(µ, n) =

{∫

Σn(g) dµ : g ∈ Gn

}

,

Lemma 2.4.6 The set N(µ, n) is a closed subset in [0, 1) and

N(µ) =
⋃

n∈N

N(µ, n)

is a countable null subset of [0, 1).

Proof. Let Ψ : Gn ∪ {ωn} → [0, 1] be the function defined by

Ψ(g) =

∫
∑

f<g

p(f) dµ =

∫

Σn(g) dµ, g ∈ Gn,

Ψ(ωn) =

∫
∑

f∈Gn

p(f) dµ = 1.
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Since p(g) ≥ 0 in S for all g ∈ Gn, the function can be interpreted as an
increasing ordinal indexed sequence. In order to prove continuity of Φ we
only have to show Φ(g) ↑ Φ(f) whenever g ↑ f , where f is a limit ordinal.
Notice that f must be either ωn or an element of Gn of the form

( fa1
︸︷︷︸

∈F1

, . . . , fan−1
︸ ︷︷ ︸

∈Fn−1

, f0
︸︷︷︸

first in Fn

) = (a1, . . . , an−1, 0) =
n−1∑

i=1

ωn−i · ai

when ai 6= 0 for at least one i. Suppose f 6= ωn. Take any g < f , then

Σn(f)− Σn(g) =
∑

h∈[g,f)

p(h).

Fix x ∈ S, since {p(g) : g ∈ Gn} is a continuous partition of unity we have
that p(g) (x) = 0 for all but finitely many g. It follows that if g is close enough
to f then [Σn(f) − Σn(g)](x) = 0. In other words, Σn(f) − Σn(g) decreases
pointwise to zero as g ↑ f . Then

Φ(f)− Φ(g) =

∫

[Σn(f)− Σn(g)] dµ→ 0, as g ↑ f.

Similarly, it can be proved that Φ is continuous at f = ωn. We use the fact
that [0, ωn] is a compact set to prove that the direct image of Φ is compact,
thus closed, in [0, 1]. That is,

Φ(Gn ∪ {ωn}) =

{∫

Σn(g) dµ : g ∈ Gn

}

∪ {1}

= N(µ, n) ∪ {1}

is closed, which implies that N(µ, n) is closed in [0, 1).

Finally, it is immediate that N(µ, n) and N(µ) are countable null sets.

Let µ be an element of M(S) and let {µi}
∞
i=1 be a sequence converging

weakly to µ. Take any x /∈ N(µ) and any ǫ > 0. Then choose an integer n
such that 2−n+1 < ǫ. In particular x /∈ N(µ, n), therefore there exists δ > 0
and g ∈ Gn such that

∫

Σn(g) dµ < x− δ < x+ δ <

∫

Σn(g
+) dµ.
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The sums Σn(g) and Σn(g
+) are bounded continuous functions, therefore

µi ⇒ µ implies
∫
Σn(g) dµi →

∫
Σn(g) dµ and

∫
Σn(g

+) dµi →
∫
Σn(g

+) dµ.
Then, there exists k ∈ N so that

∫

Σn(g) dµi ≤ x <

∫

Σn(g
+) dµi for all i ≥ k,

which give us the equality X(µi, n)(x) = X(µ, n)(x). Moreover,

d
(

X(µi)(x), X(µ)(x)
)

≤ d
(

X(µi)(x), X(µi, n)(x)
)

+ d
(

X(µi, n)(x), X(µ)(x)
)

= d
(

X(µi)(x), X(µi, n)(x)
)

+ d
(

X(µ, n)(x), X(µ)(x)
)

= 2−n + 2−n = 2−n+1 ≤ ǫ.

It shows that the sequence {X(µi)(x)}
∞
i=1 converges to X(µ)(x).

Finally, Fernique’s (C2)-continuous representation ρ :M(S)× [0, 1)→ S
is given by

ρ(µ, x) = X(µ, x).

The previous lemmas confirm that ρ has the properties required to be (C2)-
continuous. The only thing we must show is the measurability of ρ.

Lemma 2.4.7 The function ρ :M(S)× [0, 1)→ S is jointly measurable.

Proof. Since ρ(µ, x) = lim
n→∞

Xn(µ, x), where Xn(µ, x) = X(µ, n)(x), it is

enough to prove that Xn :M(S)× [0, 1)→ S is jointly measurable for all n.
Fix any n ∈ N and, for simplicity, let ρ̂(µ, x) = Xn(µ, x). Then we show

• ρ̂x :M(S)→ S is measurable,

• ρ̂µ : [0, 1)→ S is right continuous.

By Theorem 1.3.3 the joint measurability of ρ̂ is implied.

To show the first part recall ρ̂(µ, x) = t(gx), where gx is the unique element
of Gn such that ∫

Σn(gx) dµ ≤ x <

∫

Σn(g
+
x ) dµ.
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Since the range of ρ̂x is a subset of {t(g) : g ∈ Gn} ⊂ S, we can conclude that
ρ̂x only takes countable many values in S. Hence, to verify measurability,
we only need to check whether or not the set ρ̂−1x {t(g)} is measurable for all
g ∈ Gn. Notice that,

ρ̂−1x {t(g)}) = {µ ∈M(S) : ρ̂x(µ) = t(g)}

=

{

µ ∈M(S) :

∫

Σn(f) dµ ≤ x <

∫

Σn(f
+) dm, t(f) = t(g)

}

.

On the other hand, the set

{

µ ∈M(S) :

∫

Σn(f) dµ ≤ x <

∫

Σn(f
+) dµ

}

can be rewritten as
{

µ ∈M(S) :

∫

Σn(f) dµ ≤ x

}
⋂
{

µ ∈M(S) : x <

∫

Σn(f
+) dµ

}

,

the intersection of two measurable subsets of M(S) (example 3, Section
1.3.4). This proves that ρ̂−1x is measurable.

Now, we prove the second part. Take any µ ∈ M(S) and fix x ∈ [0, 1),
we must show that for any decreasing sequence {xk}

∞
k=1 converging to x we

have ρ̂µ(xk)→ ρ̂µ(x). Let

ǫ =

∫

Σn(g
+
x ) dµ− x > 0.

Find k∗ such that |x− xk| = xk − x < ǫ for all k ≥ k∗. Since
∫
Σn(gx) dµ ≤

x ≤ xk, we can conclude

∫

Σn(gx) dµ ≤ xk <

∫

Σn(g
+
x ) dµ for all k ≥ k∗.

The fact that x 7→ gx is uniquely determined implies gxk
= gx for all k ≥ k∗.

That is, ρ̂µ(xn) = ρ̂µ(x) for a large enough k, and the proof is complete.
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Chapter 3

Liftings with Fixed Boundary
Values

3.1 Construction of Liftings with Fixed Bound-

ary

In this chapter we present another variation of Skorohod’s theorem by Jean
Cortissoz (see [5]). We begin with some notation: let L0(Ω, S) be the space
of S-valued random elements from Ω, where S is a Polish space. Suppose α
is a continuous path from [0, 1] toM(S), then we ask ourselves: is it possible
to find a continuous α : [0, 1] → L0(Ω, S) so that the distribution of α(t) is
α(t) for all t ∈ [0, 1]? Notice that we ask continuity for the path α but we
have not yet specified a topology in L0(Ω, S). If by “continuous” we mean
that whenever tn → t we must have α(tn) → α(t) a.s., then knowing the
existence of a (C2)-continuous representation ρ and putting Ω = [0, 1], we
can easily take

α(t) = ρ(α(t), ·) (3.1)

to obtain the desired result. Indeed, there is no need to restrict ourselves to
the case Ω = [0, 1]. It is possible to generalize equation (3.1) when (Ω,F , P )
is a non atomic probability space. A subset A of Ω is an atom if ∀B ∈
F , B ⊂ A we have either P (B) = P (A) or P (B) = 0. If there is no atom
then the probability space is said to be non atomic.
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Lemma 3.1.1 Let (Ω,F , P ) be non atomic. For any t ∈ [0, 1] there exists
Et ∈ F satisfying P (Et) = t.

A proof for the lemma above can be found in [4] (Corollary 1.12.10, p.56)
or [14].

Lemma 3.1.2 If Ω is non atomic then there exists a [0, 1]-uniform random
variable X from Ω. That is, the distribution of X, P ◦X−1, is equal to the
Lebesgue measure λ in [0, 1].

Proof. Let {qn}
∞
n=1 be an enumeration of Q ∩ (0, 1). Inductively we con-

struct Eq1 , Eq2 , . . . so that

P (Es) = s and Es ⊂ Et iff s ≤ t.

To do so, start with Eq1 satisfying P (Eq1) = q1. If q2 < q1 take Eq2 ⊂ Eq1

with P (Eq2) = q2. If q2 > q1 find A ⊂ Ω\Eq1 with P (A) = q2 − q1 and
take Eq2 = Eq1 ∪A. Following that method we can get sets with the desired
properties. In addition we ask E0 = ∅ and E1 = Ω.

Define X : Ω→ [0, 1] as

X(ω) = inf{q : ω ∈ Eq}.

The set X−1[0, q] is given by
⋂

t>q, t∈Q

Et. It follows that X is indeed a mea-

surable function with distribution λ, because for all s > q

Eq ⊂
⋂

t>q, t∈Q

Et ⊂ Es,

then P

(

⋂

t>q, t∈Q

Et

)

= q.

As a consequence, (3.1) can be transformed into

α(t) = ρ(α(t), X(ω)).
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Clearly it meets the requirements described in the first paragraph. From now
on Ω is non atomic.

Another question that rises when looking for a path α is if one can fix
the endpoints at t = 0 and t = 1. The previous path does not satisfy this
extra condition, because once we evaluate ρ at α(t) ∈M(S) we get a random
element whose law is indeed α(t), but we do not get to choose the random
element we wanted from all possible X ∈ L0(Ω, S) having this law. It makes
us wonder if convergence a.s. in L0(Ω, S) is too “strong” and if we should
consider other topologies in this set.

Let Xn, X : (Ω,F , P )→ S, we say that {Xn}n converges in probabil-

ity to X (Xn
P
→ X) if for every ǫ > 0

lim
n→∞

P{ω : d(Xn(ω), X(ω)) ≥ ǫ} = 0.

As before, let α : [0, 1] → M(S) be a continuous path. A lifting of α
is a continuous function α : [0, 1] → L0(Ω, S) (L0(Ω, S) endowed with the
topology of the convergence in probability) such that, for all t ∈ [0, 1], the
law of α(t) is α(t).

Cortissoz was able to prove the existence of liftings with fixed endpoints
at 0 and 1. That is, if X0 and X1 are S-valued random elements defined
on (Ω,F , P ), a non atomic probability space, with distributions α(0) and
α(1) respectively, then we can construct a lifting α for which α(0) = X0 and
α(1) = X1. This chapter is devoted to proving this statement.

Let d̂ : L0(Ω, S)× L0(Ω, S)→ [0, 1] be given by

d̂(X, Y ) = inf{ ǫ > 0 : P{ω : d(X(ω), Y (ω)) ≥ ǫ} ≤ ǫ }.

The metric d̂ is called the Ky Fan metric, [7] (p. 226).

Lemma 3.1.3 Given a sequence {Xn}
∞
n=1 and X an element of L0(Ω, S)

Xn
P
→ X iff lim

n→∞
d̂(Xn, X) = 0.

Proof. Suppose d̂(Xn, X) → 0. We must show P{d(Xn, X) ≥ ǫ} → 0 for
any ǫ > 0. Take ǫ′ ∈ (0, ǫ), since lim

n→∞
d̂(Xn, X) = 0 there exists N ∈ N so
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that P{d(Xn, X) ≥ ǫ′} ≤ ǫ′ for all n ≥ N . Then

P{d(Xn, X) ≥ ǫ} ≤ P{d(Xn, X) ≥ ǫ′} ≤ ǫ′ , ∀n ≥ N.

Therefore,
lim
n→∞

P{d(Xn, X) ≥ ǫ} = 0,

which implies Xn
P
→ X.

On the other hand, supposeXn
P
→ X and fix any ǫ∗ > 0. Since P{d(Xn, X) ≥

ǫ∗} → 0 we can find N ∈ N so that ∀n ≥ N

P{d(Xn, X) ≥ ǫ∗} ≤ ǫ∗.

Hence,

d̂(Xn, X) = inf{ ǫ > 0 : P{ω : d(Xn(ω), X(ω)) ≥ ǫ} ≤ ǫ } ≤ ǫ∗.

It follows that d̂(Xn, X)→ 0.

The Prohorov metric dP in M(S) and d̂ in L0(Ω, S) are related through
Theorem 1.3.24, which establishes

dP (µ, ν) = inf
m∈P(µ,ν)

inf{ǫ > 0 : m({(x, y) : d(x, y) ≥ ǫ}) ≤ ǫ}.

The relation looks more evident in the equality

dP (µ, ν) = inf{d̂(X, Y ) : law of X = µ, law of Y = ν}. (3.2)

As a consequence, convergence in probability of Xn to X implies weak con-
vergence of their distributions. So, if we see “law” as a function from L0(Ω)
to M(S) this function is continuous.

We say that µ ∈M(S) is finitely supported if it can be rewritten as

µ =
n∑

i=1

ciδai , ci ≥ 0, {ai}
n
i=1 ⊂ S.

Let {Ai}
n
i=1 be a measurable partition of Ω. The random element X that

assigns ai for all elements of Ai, written as

X =
n∑

i=1

aiIAi
,

is said to be a simple S-valued random element.
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Lemma 3.1.4 Let µ and ν be finitely supported measures. Let

0 ≤ dP (µ, ν) < ǫ.

Then, given X a random variable such that law (X) = µ, there exists Y
whose law is ν satisfying

d̂(X, Y ) < ǫ.

Proof. Since µ and ν are finitely supported, by (3.2) we can find

X ′ =
m∑

i=1

aiIA′i and Y ′ =
m∑

i=1

aiIB′i ,

where {a1, . . . , am} is the union of the supports of µ and ν, so that law (X ′) =

µ, law (Y ′) = ν and d̂(X ′, Y ′) < ǫ. Write X =
m∑

i=1

aiIAi
. By Lemma 3.1.1, we

can find measurable sets {Bij}
m
j=1, i = 1, . . . ,m, such that

Bij ⊂ Ai, P (Ai ∩Bij) = P (A′i ∩ B′j) and Ai =
m⋃

j=1

Bij.

Then, take

Bj =
m⋃

i=1

Bij , Y =
m∑

j=1

ajIBj
.

Since P (Bj) = P (B′j), we must have law (Y ) = ν. Moreover d̂(X, Y ) =

d̂(X ′, Y ′) < ǫ.

Lemma 3.1.5 Assume dP (law (X), law (Y )) < ǫ, for a given ǫ > 0. Then
there is Y ′ such that law (Y ′) = law (Y ) and d̂(X, Y ′) < ǫ.

Proof. The proof will be split in three cases:

• X and Y are simple. Already proved in previous lemma.
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• X is arbitrary and Y is simple. Take δ > 0 small enough so that

dP (law (X), law (Y )) < ǫ− δ.

Since the set of simple random variables is dense in L0(Ω, S), and the
function “law” is continuous, we can choose X ′ a simple random vari-
able such that

d̂(X,X ′) < δ and dP (law (X ′), law (Y )) < ǫ− δ.

By the previous case, we can find Y ′
D
= Y so that d̂(X ′, Y ′) < ǫ − δ.

Therefore

d̂(X, Y ′) ≤ d̂(X,X ′) + d̂(X ′, Y ′) < δ + ǫ− δ = ǫ.

• X and Y arbitrary. Let δ > 0 be such that

2δ < ǫ− dP (law (X), law (Y )).

Find a sequence {Yn}n of simple random elements converging to Y such
that

d̂(Yn, Yn+1) <
1

2n+1
and dP (law (Yn), law (Y )) < δ.

This can be done because the continuity of the function law. Let N ∈ N

so that 2−N < δ and, at the same time, d̂(YN , Y ) < δ. Construct a new
sequence {Y ′j }j≥N as follows:
when j = N , choose Y ′N such that

law (Y ′N) = law (YN) and d̂(Y ′N , X) < dP (law (X), law (Y )) + δ.

which can be done because

dP (law (YN), law (X)) ≤ dP (law (YN), law (Y )) + dP (law (Y ), law (X))

< dP (law (Y ), law (X)) + δ.

Once {Y ′j }
N+m
j=N have been chosen, pick Y ′N+m+1 satisfying

law (Y ′N+m+1) = law (YN+m+1) and d̂(Y ′N+m+1, Y
′
N+m) <

1

2N+m+1
.
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The existence of such random elements follows from

dP (law (YN+m+1), law (Y ′N+m)) = dP (law (YN+m+1), law (YN+m))

<
1

2N+m+1
.

By construction, the new sequence {Y ′j } is convergent, and for its limit
Y ′ we can verify law (Y ′) = law (Y ). Moreover

d̂(X, Y ′) ≤ d̂(X, Y ′N) + d̂(Y ′N , Y ) ≤ d̂(X, Y ′N) +
∑

j

δ

2j

< dP (law (X), law (Y )) + δ + δ < ǫ.

This completes the proof.

As part of the proof of Lemma 3.1.2, it has been shown that there exists
a family of measurable sets {At}t∈[0,δ] so that As ⊂ At whenever s ≤ t and
P (At) = t. Such family is called a [0, δ]-family and it will be very useful when
proving the existence of liftings with fixed endpoints.

Let X =
m∑

j=1

ajIAj
and Y =

m∑

j=1

ajIBj
be two simple random elements. We

set
Eij = Ai ∩ Bj and eij = P (Eij).

Let {[Eij]t} be a [0, eij]-family of Eij. A segment joining X to Y is defined
as αX,Y : [a, b]→ L0(Ω, S) given by

αX,Y (t) =
m∑

i=1

aiI
Eii∪

(

⋃

k=1, k 6=i

[Eki]( t−a
b−a)eki

) +
m∑

i=1

m∑

j=1, j 6=i

aiIEij\[Eij ]( t−a
b−a)eij

.

Next we describe some important properties of these segments.

Lemma 3.1.6 α := αX,Y thus defined is a continuous function with αX,Y (a) =
X and αX,Y (b) = Y . Moreover,

α(t) := law (α(t)) =

(
b− t

b− a

)

law (X) +

(
t− a

b− a

)

law (Y ).
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Proof. Let ǫ > 0 and s < t. Then we have

P ( d(α(t), α(s)) ≥ ǫ ) ≤
∑

{(i,k):d(ai,ak)≥ǫ}

P
(
[Eik](t−s)eik

)

≤ (t− s)
∑

{(...)}

eik ≤ t− s.

An immediate consequence of the inequality is the continuity of αX,Y .

Now we show that law (α) = α. Without loss of generality we may assume
a = 0 and b = 1. In order to prove the last statement we only have to show
that the coefficient of δai in law (α) is (1− t)P (Ai) + tP (Bi). Let’s fix i = 1.
Then

P (α = a1) = P (E11) +
m∑

j=2

P
(
[Ej1]t·ej1

)
+

m∑

j=2

P
(
E1j\[E1j]t·e1j

)

= e11 +
m∑

j=2

tej1 +
m∑

j=2

(1− t)e1j

= t
m∑

j=1

ej1 + (1− t)
m∑

j=1

e1j

= tP (B1) + (1− t)P (A1).

The same can be shown when i = 2, . . . ,m.

To help us find liftings with fixed endpoints, continuous maps from [0, 1]
toM(S) will be approximated using a special family of paths we call polyg-
onals. β : [0, 1] →M(S) is called a polygonal with vertices at µ0, . . . , µn+1

if there is a partition t0 = 0, t1, . . . , tn, tn+1 = 1 of [0, 1] such that β restricted
to [ti, ti+1] is given by

β(t) =

(
ti+1 − t

ti+1 − ti

)

µi +

(
t− ti

ti+1 − ti

)

µi+1.

The function defined as above is called the segment (with domain [ti, ti+1])
joining µi to µi+1.

An easy consequence of Lemma 3.1.6 is the following fact about polygo-
nals.
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Lemma 3.1.7 Let α : [0, 1] → M(S) be a polygonal with vertices at mea-
sures of finite support. Given X0 and X1 such that law (X0) = α(0) and
law (X1) = α(1), there is a lifting α : [0, 1] → L0(Ω, S) such that α(0) = X0

and α(1) = X1.

To show that polygonals can be used to approximate continuous maps
from the unit interval to M(S) we will show that they form a dense set in
such space. To make the proof of this statement easier, we make the following
observation

Lemma 3.1.8 Let µ, ν ∈M(S). For t ∈ [0, 1] we have

dP (ν, tµ+ (1− t)ν) ≤ dP (ν, µ).

Proof. Let ǫ > dP (ν, µ), then µ(F ) ≤ ν(Fǫ)+ ǫ for all F ⊂ S closed. Then
we have

tµ(F ) + (1− t)ν(F ) ≤ tν(Fǫ) + tǫ+ (1− t)ν(Fǫ) + (1− t)ǫ

= ν(Fǫ) + ǫ.

It means that dP (ν, tµ+ (1− t)ν) ≤ ǫ. Since this is true for any ǫ ≥ dP (ν, µ)
the statement of the lemma follows.

Now we prove the density property of polygonals.

Lemma 3.1.9 Given α : [0, 1] → M(S) a continuous function and ǫ > 0,
there is a polygonal β with vertices at measures of finite support such that

sup
t∈[0,1]

dP (α(t), β(t)) ≤ ǫ.

Proof. Let ǫ > 0 be given. Since α is continuous and [0, 1] is compact, we
can find δ > 0 such that whenever |s− t| < δ we have dP (α(t), α(s)) <

ǫ
5
(by

the uniform continuity of α). Let N ∈ N be large enough so that 1
N

< δ, and
define a partition of the interval [0, 1] by ti =

i
N

for i = 0, 1, . . . , N. For each
i pick a finitely supported measure µi such that

dP (µi, α(ti)) ≤
ǫ

5
.
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Let β be the polygonal defined by the segments β : [ti, ti+1] → M(S) with
endpoints µi and µi+1. For each t ∈ [ti, ti+1] we have

dP (α(t), β(t)) ≤ dP (α(t), α(ti)) + dP (α(ti), µi) + dP (µi, β(t))

≤ dP (α(t), α(ti)) + dP (α(ti), µi) + dP (µi, µi+1)

≤ dP (α(t), α(ti)) + dP (α(ti), µi) + dP (µi, α(ti))

+ dP (α(ti), α(ti+1)) + dP (α(ti+1), µi+1)

<
ǫ

5
+

ǫ

5
+

ǫ

5
+

ǫ

5
+

ǫ

5
= ǫ.

Clearly
sup
t∈[0,1]

dP (α(t), β(t)) ≤ ǫ,

as we wanted to show.

Lemma 3.1.10 Let µ and ν be two finitely supported measures. If

Xµ =
m∑

j=1

ajIAj
and Xν =

m∑

j=1

ajIBj

are such that law (Xµ) = µ and law (Xν) = ν then

d̂(Xµ, α(t)) ≤ d̂(Xµ, Xν),

where α = αXµ,Xν
is the segment joining Xµ to Xν.

Proof. Given ǫ > 0 we have

P (d(Xµ, Xν) ≥ ǫ) =
∑

{(i,j):d(ai,aj)≥ǫ}

P (Eij)

≥
∑

{(i,j):d(ai,aj)≥ǫ}

P ([Eij]tei,j)

= P (d(Xµ, α(t)) ≥ ǫ).

The conclusion of the lemma follows.

Using the previous lemma we can now show
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Lemma 3.1.11 Let α : [0, 1]→M(S) be a continuous path. Fix any ǫ > 0
and let β be an arbitrary polygonal with vertices at measures of finite support
and such that

sup
t∈[0,1]

dP (α(t), β(t)) < ǫ.

Then, given any continuous lifting α of α, there is a lifting β of β such that

sup
t∈[0,1]

d̂
(
α(t), β(t)

)
< 5ǫ.

Proof. Let α be a continuous lifting of α. Take a partition t0 = 0 < t1 <
· · · < tn+1 = 1 of the unit interval, in such a way that

d̂(Xi, α(t)) < ǫ where Xi = α(ti), for all ti ≤ t ≤ ti+1.

Choose Yi for i = 0, 1, . . . , n + 1 so that law (Yi) = β(ti) and d̂(Xi, Yi) < ǫ,
which can be done by Lemma 3.1.5. Then we have

d̂(Yi, Yi+1) ≤ d̂(Yi, Xi) + d̂(Xi, Xi+1) + d̂(Xi+1, Yi+1) < 3ǫ.

Construct a lifting β of β, such that β restricted to the segment [ti, ti+1] is
a lifting of β : [ti, ti+1] →M(S) with β(ti) = Yi (use segments joining Yi to
Yi+1). Then β is continuous and for t ∈ [ti, ti+1) we have

d̂(α(t), β(t)) ≤ d̂(α(t), Xi) + d̂(Xi, Yi) + d̂(Yi, β(t))

≤ d̂(α(t), Xi) + d̂(Xi, Yi) + d̂(Yi, Yi+1) (by Lemma 3.1.10)

≤ ǫ+ ǫ+ 3ǫ = 5ǫ.

Finally, we prove the existence of liftings with fixed endpoints.

Theorem 3.1.12 Let α : [0, 1] → M(S) be a continuous function. Let X0

and X1 be two elements of L0(Ω, S) such that law (X0) = α(0) and law (X1) =
α(1). Then, there exists a continuous path α : [0, 1] → L0(Ω, S), (L0(Ω, S)
endowed with the topology of the convergence in probability) such that

α(0) = X0 , α(1) = X1 and law (α) = α.
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Proof. Let {X0
n} and {X1

n} be two sequences of simple random elements
in L0(Ω, S) satisfying X0

n → X0, X
1
n → X1,

d̂(X0
n, X

0
n+1) <

1

5n+1
and d̂(X1

n, X
1
n+1) <

1

5n+1
.

Take a sequence of polygonals {αn}n with vertices at measures of finite sup-
port, in particular αn(0) = law (X0

n) and αn(1) = law (X1
n), such that

αn → α and sup
t∈[0,1]

dP (αn(t), αn+1(t)) <
1

5n+1
.

Now, by induction we construct the liftings {αn}n. At the n
th step, by Lemma

3.1.7, we can find αn associated to αn with αn(0) = X0
n and αn(1) = X1

n.
Then, by 3.1.11, we can find αn+1 associated to αn+1 so that

sup
t∈[0,1]

d̂(αn(t), αn+1(t)) <
1

5n
,

which can be done because sup
t∈[0,1]

dP (αn(t), αn+1(t)) <
1

5n+1 . In fact, we can

even take αn+1(0) = X0
n and αn+1(1) = X1

n because d̂(X0
n, X

0
n+1) <

1
5n+1 and

d̂(X1
n, X

1
n+1) <

1
5n+1SSSSS . Hence

αn(0)→ X0 and αn(1)→ X1.

It is clear by construction that {αn} is a convergent sequence. Let α be
its limit. Then, since the convergence is uniform, α is continuous. By the
continuity of the function law we must have

law (α(t)) = α(t) , ∀t ∈ [0, 1].

This finishes the proof.
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Chapter 4

Results

4.1 (C1)-continuity

In this section we prove that there is no (C1)-continuous representation unless
S contains only one point.

Theorem 4.1.1 Let S be a Polish space containing more that one element.
Let ρ be a representation of M(S). Then ρ cannot be (C1)-continuous.

Proof. Let x1, x2 be two different elements of S. Define L ⊂M(S) as

L = {µα : µα = αδx1 + (1− α)δx2 , α ∈ [0, 1]} ,

where δx1 , δx2 ∈M(X) are given by (1.2), Section 1.3.4.

Suppose that ρ : M(S) × U → S is a (C1)-continuous representation.
Without loss of generality, we assume that ρu :M(S)→ S is continuous for
all u ∈ U . It follows that ρ(µα, ·) : U → S has distribution µα and the set
{u : ρµα

(u) ∈ {x1, x2}} has λ-measure equal to 1. However, it may be false
that

λ ({u : ρµα
(u) ∈ {x1, x2}, α ∈ [0, 1]}) = 1.

In contrast, since Q ∩ [0, 1] is countable

U ′ = {u : ρµα
(u) ∈ {x1, x2}, α ∈ Q ∩ [0, 1]}
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satisfies λ(U ′) = 1.

We want to analyze how many u ∈ U ′ ⊂ (0, 1) are mapped to x1 and how
many to x2 for each µα ∈ L, but more importantly, how the transition from
one point to the other is going to be. Fix u ∈ U ′, then consider the sets

A1 = {α : ρu(µα) = x1, α ∈ Q ∩ [0, 1]} ,

A2 = {α : ρu(µα) = x2, α ∈ Q ∩ [0, 1]} .

Clearly A1 ∪ A2 = Q ∩ [0, 1] and A1 ∩ A2 = ∅. In addition, it is easy to see
that A1 ∪ A2 = [0, 1].

Now, consider the sets

B1 = {α : ρu(µα) = x1, α ∈ [0, 1]}

B2 = {α : ρu(µα) = x2, α ∈ [0, 1]} .

It’s also clear that A1 ⊂ B1, A2 ⊂ B2, B1 ∪ B2 ⊂ [0, 1], and B1 ∩ B2 = ∅.
In order to prove that B1 ∪ B2 is indeed the interval [0, 1] we are going to
show that A1 ⊂ B1. Take any α ∈ A1, then there exists {αn} ⊂ A1 such that
lim
n

αn = α. As a consequence µαn
⇒ µα and, since ρu is continuous,

lim
n→∞

ρu(µαn
) = ρu(µα).

Notice that the fact that ρu(µαn
) = x1 for all n ∈ N (because αn ∈ A1),

implies ρu(µα) = x1. Hence α ∈ B1.

Similarly we can prove A2 ⊂ B2, so that

A1 ∩ A2 = ∅, B1 = A1 and B2 = A2.

It is important to see that B1 and B2 are both closed (and open!) disjoint
subsets of [0, 1] whose union is [0, 1] itself. Since this interval is connected
either B1 or B2 is an empty set. In other words, ρu :M(S)→ S is a constant
function. However, since ρµα

must have distribution µα

λ({u : ρu is constant }) = 0.

In conclusion, the hypothesis of ρu being (C1)-continuous is false when S has
more than one point.
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4.2 (C2)-continuity

4.2.1 A Counterexample

As stated before, our version of ρ, given by (2.3), may fail to be (C2)-
continuous. Consider the following counterexample: let S be the infinite
dimensional Hilbert space

S =

{

x = (x1, x2, . . .) : xi ∈ R,
∞∑

i=1

x2
i <∞

}

with orthonormal basis {ei}
∞
i=1, ei = (δi,j)j where δi,j = 1 iff i = j. Let D be

a countable dense subset of S given by

D = {y = (y1, y2, . . .) : yi ∈ Q, yi = 0 ∀i ≥ n, for some n ∈ N}.

Let m : N × N → N give the enumeration of the spheres G1, G2, . . ., that is
Gm(i,j) = B(yj, ri), where yj ∈ D and ri ∈ Q. Then the function ca can be
expressed as

ca(x) =
∑

i,j

1

3m(i,j)
Id(x,yj)<ari .

For any α ≥ 0, x ∈ S we have

‖αen − x‖2 = α2 − 2αxn + ‖x‖
2 → α2 + ‖x‖2 .

Now, define the function f given by

f(α) =
∑

i,j

1

3m(i,j)
Iα2+||yj ||2<a2r2i

,

and compare with

ca(αen) =
∑

i,j

1

3m(i,j)
Iα2+||yj ||2−2αyj,n<a2r2i

,

where yj,n is the nth term of yj. Notice that every yj contains only a finite
amount of non zero elements. Hence for a fixed m we can find a large enough
n so that 2αyj,n = 0 for all j = 1, 2, . . . ,m. It follows that

lim
n→∞

ca(αen) = f(α).
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It’s easy to see that, for α > 0, f(α) /∈ ca(S). Otherwise, because c−1a is
continuous on ca(S), we would have that the sequence {αen}n is convergent,
which is a contradiction. However, f(0) = ca(0) ∈ ca(S).

The function f is right continuous and strictly decreasing. To see this,
take any sequence αn ↓ α, for a large enough n

α2 + ||yj||
2 < a2r2i implies α2

n + ||yj||
2 < a2r2i ,

α2 + ||yj||
2 ≥ a2r2i implies α2

n + ||yj||
2 ≥ a2r2i ,

in other words Iα2+||yj ||2 = Iα2
n+||yj ||

2 . Then choose an appropriate (finite)
amount of j, i in J so that

|f(αn)− f(α)| =

∣
∣
∣
∣
∣
∣

∑

i,j /∈J

1

3m(i,j)

(

Iα2+||yj ||2<a2r2i
− Iα2

n+||yj ||
2<a2r2i

)

∣
∣
∣
∣
∣
∣

≤ ǫ,

for any ǫ > 0. In other words f(αn) → f(α). We have shown that f(αn)
increases strictly to f(α) and f(αn) ∈ ca(S) for all n. Thus, for every α > 0
there exists an increasing sequence {wn} ⊂ ca(X) whose limit is f(α). Let
xn ∈ S be such that ca(xn) = wn, i.e. xn = h(wn). Without loss of generality
we may assume ||xn|| ≤ 2α and wn ≤ f(2α) for all n.

Fix u ∈ (0, 1) and define the probability measure

µα = u

(
∞∑

n=1

1

2n
δxn

)

+ (1− u)δ0,

where δx is given by (1.2), Section 1.3.4. Notice that µα ⇒ δ0 as α→ 0. Also
notice that

Ja(µα) = u

(
∞∑

n=1

1

2n
δwn

)

+ (1− u)δca(0).

We arranged things so that ρ∗[Ja(µα), u] = f(α) /∈ ca(S). This means that

ρa(µα, u) = h̄[ρ∗(Ja(µα), u)] = x∗,

which does not converge to ρa(δ0, u) = h̄[ρ∗(Ja(δ0), u)] = 0 as α→ 0, for this
we require x∗ 6= 0. In other words, every value of u and a is a discontinuity

80



point for some sequence converging to δ0. This proves that our new version
of ρ fails to be (C2)-continuous.

Remark : In a similar way we can take w = (1, 0, 0, . . .) instead of 0 and
get a sequence of measures converging to δw for which the representation is
not continuous at u for any u.

4.2.2 (C2)-continuity on R

(C2)-continuity seems to be a very strong kind of continuity for a represen-
tation of M(S), however when S = R, ρ∗ has this property. If, instead of
taking the complete real line we only take a Borel subset B of it, we would
like to know whether or not is possible to construct a (C2)-continuous rep-
resentation of M(S). Then, our intuition will probably lead us to try with
ρ∗ restricted to the set B. The first problem we find is that the values taken
by ρ∗(µ), the pseudoinverse of µ, may be outside B, (see Section 1.3.2). So,
it will be necessary to modify the function in order to get a well defined
representation. Still, the way we redefine ρ∗ outside B has to somehow pre-
serve continuity. In the next two lemmas we show the existence of such a
representation ofM(B) when B satisfies certain properties. Before that, we
recall that B′ represents the closure of B ⊂ R in the upper limit topology
Tu, while B represents the closure in the usual topology.

Lemma 4.2.1 Let B a Borel set such that
(

B′\B
)

∩ B = ∅. Then the

function ρ∗ :M(B)× (0, 1)→ B given by

ρ∗(µ, u) = F (−1)
µ (u)I

F
(−1)
µ (u)∈B

+ b∗I
F

(−1)
µ (u)∈B′\B

,

where b∗ is an arbitrary element of B, is a (C2)-continuous representation
of M(B).

Proof. First of all, notice that joint measurability of ρ∗ follows from the
measurability of its components. Now, take any µ ∈M(B) and define

Nµ = {u ∈ (0, 1) : F (−1)
µ (u) is discontinuous at u} ∪ {F (−1)

µ (u) ∈ B′\B}.

Lemma 1.3.10 guarantees that RanF
(−1)
µ ⊂ B′. Clearly λ(Nµ) = 0.
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We claim that for a fixed u /∈ Nµ

ρ∗(µn, u)→ ρ∗(µ, u) whenever µn ⇒ µ.

Before we prove this, recall that F
(−1)
µn (u)→ F

(−1)
µ (u) for every u /∈ Nµ. Let

C1 = {n ∈ N : F (−1)
µn

(u) ∈ B} and C2 = {n ∈ N : F (−1)
µn

(u) ∈ B′\B}.

Clearly C1 ∩ C2 = ∅ and C1 ∪ C2 = N. Suppose that C2 is an infinite set.
Then, let’s rewrite C2 = {n(k)}k so that n(k) < n(k + 1). Then

lim
k→∞

F (−1)
µn(k)

(u) = F (−1)
µ (u),

but F
(−1)
µn(k)(u) ∈ B′\B and F

(−1)
µ (u) ∈ B, hence F

(−1)
µ (u) ∈

(

B′\B
)

∩ B,

which is a contradiction. Therefore C2 must be finite. Note that no matter
what sequence {µn} we take, this set is always finite. This means that there

exists N such that ρ∗(µn, u) = F
(−1)
µn (u) for all n ≥ N . Hence

lim
n→∞

ρ∗(µn, u) = lim
n≥N

ρ∗(µn, u) = lim
n≥N

F (−1)
µn

(u)

= F (−1)
µ (u) = ρ∗(µ, u),

and the proof is complete.

The previous lemma give us a construction of a (C2)-continuous repre-
sentation ofM(B), when B satisfies an additional property. For instance, if
B is an open set then

B′\B ⊂ ∂B and
(

B′\B
)

∩B = ∅.

Similarly, when B is closed then we have B′ = B = B (Tu is finer than the
usual topology) and B′\B = ∅, in which case ρ∗µ is just F (−1) restricted to
the set B.

In fact, the last lemma can be generalized to the next lemma

Lemma 4.2.2 Let B a Borel set such that
(

B′\B
)

∩B is a closed set.
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Then the function ρ∗ :M(B)× (0, 1)→ B given by

ρ∗(µ, u) = F (−1)
µ (u)I

F
(−1)
µ (u)∈B

+ f
(

F (−1)
µ (u)

)

I
F

(−1)
µ (u)∈B′\B

(4.1)

(where f : R → B is the projection in
(

B′\B
)

∩ B) is a (C2)-continuous

representation of M(B).

Proof. First of all, let’s define the function f : R→ B so that

|x− f(x)| = inf
{

|x− y| : y ∈
(

B′\B
)

∩ B
}

.

In plain words, f(x) is the closest (or one of the closest) point in
(

B′\B
)

∩B

to x. Since
(

B′\B
)

∩B is a closed set, the function is well defined. Clearly,

if {xn}
∞
n=1 ⊂ B′\B, x ∈ B and xn → x then x ∈

(

B′\B
)

∩B. Thus

|f(xn)− x| ≤ |f(xn)− xn|+ |x− xn| ≤ 2|x− xn| → 0,

implying
lim
n→∞

f(xn) = x. (4.2)

Take any sequence {µn} ⊂ M(B) converging to µ ∈ M(B) and ρ∗(µ, u) as
in (4.1). Let

Nµ = {u ∈ (0, 1) : F (−1)
µ is discontinuous at u} ∪ {F (−1)

µ (u) ∈ B′\B}.

Again, λ(Nµ) = 0. We claim that, for a fixed u /∈ Nµ, ρ∗(µn, u) → ρ∗(µ, u).
To prove this, define

C1 = {n ∈ N : F (−1)
µn

(u) ∈ B} and C2 = {n ∈ N : F (−1)
µn

(u) ∈ B′\B}.

Clearly C1 ∩ C2 = ∅ and C1 ∪ C2 = N. If C2 is a finite set then

lim
n→∞

ρ∗(µn, u) = lim
n→∞,n∈C1

ρ∗(µn, u) = lim
n→∞

F (−1)
µn

(u)

= F (−1)
µ (u) = ρ∗(µ, u).
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Let’s suppose now that C2 is an infinite set. Then for n ∈ C2 we must have
F

(−1)
µn (u) ∈ B′\B and F

(−1)
µ (u) ∈ B. Recall that F

(−1)
µn (u)→ F

(−1)
µ (u). Hence

F
(−1)
µ (u) ∈

(

B′\B
)

∩B, and by (4.2)

lim
n→∞,n∈C2

ρ∗(µn, u) = lim
n→∞

f
(

F (−1)
µn

(u)
)

= F (−1)
µ (u) = ρ∗(µ, u).

Since F
(−1)
µn (u) and f

(

F
(−1)
µn (u)

)

both converge to F
(−1)
µ (u) = ρ∗(µ, u) the

representation is (C2)-continuous.

Finally, joint measurability follows from the measurability of the compo-
nents of ρ∗.

4.2.3 (C2)-continuity in a Locally Compact Polish Space

In Section 4.2.1 of this chapter we modified the original Blackwell and Dubins
representation but we lost (C2)-continuity. However, in Section 4.2.2 we
prove that under some conditions of B a Borel subset of R we may redefine
ρ∗(µ, u) = F

(−1)
µ (u) to get a (C2)-continuous representation of M(B).

In the rest of the section we prove that if S is a locally compact Polish
space, then we can find a (C2)-continuous representation. Before we prove
this, we show some other results. In the next lemma {Hn}n is an enumeration
of open balls with centers in a countable dense subset of S and rational radius,
as in (2.2).

Lemma 4.2.3 Let S be a locally compact Polish space. The basis {Hn}n
of the topology in S may be reduced to a collection {Hn(k)}k where Ha

n(k) is

compact for all k and all a ∈ [1, 2].

Proof. First of all, notice that if H2
n is compact, then it remains true for

Ha
n, when a ∈ [1, 2]. As usual, let D = {xn}n be the (countable dense) set of

all centers of {Hn}n. Let

s(n) = sup

{

1

k
: B

(

xn,
2

k

)

is compact, k ∈ N

}

.
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Clearly, s(n) > 0 because S is locally compact. Then define

Cn = {B(xn, r) : r ≤ s(n), r ∈ Q }.

It is very easy to see that
⋃

n

Cn ⊂ {Hn}n.

Then we take {Hn(k)}k =
⋃

n

Cn. We must show now that this is a basis of

the topology in X.

Take any open set U and choose x ∈ U . Let r ∈ R be small enough to
make the the closure of B(x, r) compact and B(x, r) ⊂ U . Because D = {xn}
is dense, we can find xn∗ ∈ D such that d(x, xn∗) ≤

r
4
. Then x ∈ B(xn∗ , r

∗)
where r∗ ∈

(
r
4
, r
2

)
and r∗ ∈ Q. Clearly

B(xn∗ , r∗) ⊂ B(x, r)

as a consequence, r∗ ≤ s(n∗) and B(xn∗ , r
∗) ∈ {Hn(k)}k. We just proved that

for any x ∈ U there exists an element in {Hn(k)}k contained in U and at the
same time containing x.

For simplicity, in this section {Hn(k)}k will be denoted just by {Hn}n but
it is important to keep in mind the the closure of this sets are compact sets.
Now, we redefine the function c introduced in Section 2.2, let c̄ : [1, 2]×S → R

be given by

c̄(x) =
∞∑

n=1

1

3n
IHa

n
(x),

where, as established before {Ha
n} is based on the “reduced” basis. Because

{Hn}n is a basis of the topology in S c̄ has all the properties that c has. For
instance, c̄a is an injective, continuous function in the complement of

⋃

n

∂Ha
n

and measurable.

This slight change in c will allow us to obtain an continuous extension of
the (already continuous in c̄([1, 2]× S)) inverse of c̄.

Lemma 4.2.4 There exists a continuous function g : c̄(A × S)′ → S such
that

g[c̄(a, x)] = x for all x ∈ S, a ∈ [1, 2].
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Proof. In this proof h represents the projection in S of the inverse of c̄. In
Lemma 2.3.4 we showed that such function is continuous in c̄([1, 2]×S). So,
we only need to find a way to extend h outside c̄([1, 2]× S).

Let y ∈ c̄(A × S)′\c̄(A × S). Then, there exista a sequence {yn}n in
c(A× S) converging to y. Let (an, xn) be the (unique) pair of numbers that
give us c̄(an, xn) = yn. Denote by {αi}

∞
i=1 and {αn,i}

∞
i=1 the ternary expansion

of y and yn respectively, that is

y =
∞∑

i=1

αi

3i
, yn =

∞∑

i=1

αn,i

3i
, αi, αn,i = 0, 1 for all i, n.

To see that αi cannot be equal to 2 for any i, notice that c̄(A×S) is a subset
of the Cantor-like set

C =

{

y ∈ R : y =
∑

n

βn

3n
, βn = 0, 1, n ∈ N

}

,

which is already closed. Hence c̄(A × S)′ ⊂ C (the upper limit topology is
finer than the usual topology).

Now, since yn → y, we must have αn,i → αi, for all n, i, in fact αn,i = αi

for all sufficiently large n. The fact that y /∈ c̄(A × S) implies that, for any
a ∈ A

∞⋂

i=1

(Ha
i )

αi = ∅,

where

(Ha
i )

αi =

{
Ha

i if αi = 1
(Ha

i )
c if αi = 0.

However, for any n ∈ N, there exists a large enough m so that

xk ∈
n⋂

i=1

(Hak
i )αi ⊂

n⋂

i=1

(H∗
i )

αi , for all k ≥ m,

where H∗
i = H2

i if αi = 1 and H∗
i = H1

i if αi = 0. Since c̄(A × S) is
contained in (0,∞), which is closed in the upper limit topology, we have

c̄(A×S)′ ⊂ (0,∞) and so y 6= 0. The sets
n⋂

i=1

(H∗
i )

αi are closed and eventually

compact. We say eventually compact because y 6= 0 implies the existence of
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k such that αk = 1, and H∗
k is compact. Hence, these compact sets have the

finite intersection property. Therefore

lim
n→∞

n⋂

i=1

(H∗
i )

αi =
∞⋂

i=1

(H∗
i )

αi 6= ∅.

Suppose that x1 and x2 are both elements of this set. If x1 6= x2, find Hi so
that x1 ∈ H1

i ⊂ H2
i but x2 /∈ H2

i . So, if αi = 1 then x1 ∈ (H∗
i )

αi = H2
i while

x2 /∈ (H∗
i )

αi = H2
i . On the other hand, if αi = 0 then x1 /∈ (H∗

i )
αi = (H1

i )
c

while x2 ∈ (H∗
i )

αi = (H1
i )

c. This contradicts the fact that both x1 and x2

belong to
⋂

i

(H∗
i )

αi . Therefore we may take the unique element x of this set

and define g(y) = x, while g(y) = h(y) if y ∈ c̄(A× S).

The function g : c̄(A×S)′ → S can be seen as an extension we are looking
for. Of course c̄(g(y)) may not be equal to y, but we claim that if {zn}n is a
sequence in c̄(A× S)′ that converges to z ∈ c̄(A× S)′ then

lim
n→∞

g(zn) = g(z).

To prove our claim, let {βi} and {βn,i} be the ternary expansion of z and zn
respectively. Then

{g(z)} ∈
∞⋂

i=1

(H∗
i )

βi ,

similarly,

{g(zn)} ∈
∞⋂

i=1

(H∗
i )

βn,i ,

and βn,i → βi. Fix any ǫ > 0, we must show d(g(zn), g(z)) < ǫ for a large
enough n. Since {H2

n}n is a basis of the topology in X, there exists H2
k such

that g(z) ∈ H2
k and the radius of H2

k is less than ǫ. Then, find m ∈ N large
enough so that

{g(zi)}
∞
i=m ⊂

k⋂

i=1

(H∗
i )

βi ⊂ H2
k .

Therefore
d(g(zn), g(z)) ≤ ǫ, ∀n ≥ m,

which proves g(zn)→ g(z).
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Lemma 4.2.5 Let S be a locally compact Polish space, in particular S may
be Rn. Then there exists a (C2)-continuous representation of M(S).

Proof. Define ρ :M(S)× [1, 2]× (0, 1)→ S as

ρ(m, a, u) = g(ρ∗(J̄a(m), u)),

where J̄a(µ) is the distribution of c̄a : S → R in the probability space
(S,B(S), µ). Notice that J̄a has the same properties of Ja, as in Section
2.2.

Suppose µn ⇒ µ, then if µ

(
⋃

n

∂Ha
n

)

= 0 (condition that holds for almost

every a), Ja(µn) ⇒ Ja(µ). Since ρ∗ is a (C2)-continuous representation of
M(R), for any u /∈ Nµ, where

Nµ = {u : ρ∗(J̄a(µn), u)→ ρ∗(J̄a(µ), u)}
c,

we must have
g(ρ∗(J̄a(µn), u))→ g(ρ∗(J̄a(µ), u))

Clearly λ(Nµ) = 0, moreover Nµ is a countable set.

On the other hand, notice that all the components of ρ are jointly mea-
surable. Overall, we can conclude that ρ is a continuous representation of
M(S).
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