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ABSTRACT

Wave based solutions of noise barrier geometries accurately model the
complex direct, reflected and diffracted sound field interactions. However,
these solutions are very computer intensive and thus are not practical as
a design tool. Improved diffraction based methods, that include phase,
now yield wave-like accuracy with trivial calculation times. Extensions of
these methods are made to consider two dimensional geometries, parallel
barrier geometries, the effect of finite ground impedance and the consid-
eration of three-dimensional coherent and incoherent line sources. Good
agreements were observed with both finite element and boundary element
models. These results, however accurate, typically over-predict the actual
performance of noise barriers, because atmospheric effects such as wind,

temperature gradients and turbulence have not been considered.

To overcome this limitation, a new acoustic modeling tool is proposed
that combines an improved diffraction-based sound barrier performance
model with a heuristic atmospheric model. Comparisons with the Par-
abolic Equation (PE), a wave based technique, show good agreements and
preliminary applications of this model yield the expected sound barrier

performance degradation due to the acoustic medium non-homogeneity.
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CHAPTER 1

INTRODUCTION

Traffic noise is a major concern to the general public, especially to those who live in
close praximity to major highways or thoroughfares. To attenuate the noise generated
by large traffic volumes, roadside barriers and berms are constructed. However, these
noise attenuation structures cost in the order of one million dollars per kilometer [1.1].
In designing and implementing these barriers, it is therefore critical to understand
the parameters which dominate their effectiveness.

This chapter presents a brief discussion on the road noise problem, different bar-
rier types and current techniques that are used to predict barrier performances. Lim-
itations of the current methods are discussed and motivation is given to extend a
promising method for road noise modeling.

It has often been noted though that the actual performance of barriers is usu-
ally overpredicted by such techniques. This is because a homogeneous atmosphere is
assumed in their formulations, thus ignoring atmospheric effects. Several initiatives
have been undertaken to study the effects of atmospheric inhomogeneities on sound
propagation, and as a result, various models have been developed for modeling out-
door sound propagation. However, a major limitation with these models is that they
require excessive computational times. This motivated the development of a heuristic
atmospheric model, based on geometrical ray theory, to model outdoor sound propa-

gation with small computational times. A discussion on the limitations of this model
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and its promising aspects are presented.

To model atmospheric effects on barrier performance, a novel combined approach
is outlined. In this approach, current diffraction based techniques for modeling bar-
riers is combined with the heuristic atmospheric model.

1.1 Background

1.1.1 The Road Noise Problem

The study of road noise problem and its attenuation is a multi-faceted problem. The
subject can be broken down into three areas: (i) noise generation, (ii) propagation or

transmission, and (iii) perception.

e Noise generation depends highly on the type of vehicle, speed of vehicle and
the traffic volume. The primary sources of noise are the engine, for low-speed
traffic, and the tire-road contact, for high speed traffic. This area has been
studied experimentally and several empirical relationships have been derived

which are used to model the source [1.2] and its frequency content [1.3].

e The propagation or transmission of the generated noise is affected by many
factors including: geometric spreading, ground impedance or absorption and
atmospheric effects which include wind, temperature gradients, turbulence and
atmospheric absorption. The other major influencing factor in noise propaga-
tion is that due to the scattering and diffraction of the sound waves over objects

and noise control measures such as barriers and berms.

e The perception of the received noise is the final factor in determining its annoy-
ance. This is primarily a psycho-acoustic problem and factors that are consid-
ered include the noise levels, their frequency content and the time of day that

they occur.
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This thesis focuses on the second area, namely the propagation of sound. In
particular, the focus will be on noise barrier analysis and the effects of atmosphere

on noise barriers.

1.1.2 Noise Barriers

Noise barriers are used to shield the direct line-of-sight between the noise source and
the listener as shown in Figure 1.1. Several configurations of noise barriers have been

implemented, some of which are shown in Figure 1.2. These include:

e single barriers - thin walls placed on one side of a highway that is next to a

residential area.

e parallel barriers - thin walls placed on either side of a highway passing through

a residential area.
e variable geometry barriers - examples are T-shaped barriers and angled barriers.

e absorptive barriers - barriers with sound absorbing panels (on the traffic side)

absorb the sound energy from the incident wave.
e depressed roadways - may be used in combinations with conventional barriers.

e earth berms - mounds of earth covered usually with grass and sometimes has a
conventional barrier at the top.

e vegetative barriers - barriers that are in part, or totally, made up of natural

vegetation such as trees and bushes.

The bulk of barrier modeling techniques assume rigid thin walls for single/parallel

barrier geometries. As such, this thesis will focus on barriers modelled as rigid thin

walls.



1.2 Techniques for Analysing Noise Barriers

1.2.1 Diffraction Based Methods

Traditional methods for analysing noise barriers are based on geometrical ray theory
which treats sound as a series of rays emitted from a source. These rays are reflected
off the ground and diffracted off the top and sides of the barrier, as they make their
way from the source to the receiver. This is depicted in Figure 1.3.

Current literature contains a wide variety of these methods [1.4, 1.5, 1.6, 1.7, 1.8,
1.9]. These methods are diffraction based, which extend the optical geometric theory
of diffraction to that of acoustic waves. One of the simplest and most widely used in
the engineering community, is that of Maekawa [1.4]. He introduced an empirically
based diffraction model that provides the insertion loss due to a thin-walled barrier
in terms of the Fresnel number. Maekawa then suggested that the insertion loss for a
finite-length barrier could be determined by multiple application of this curve to the
diffraction paths around the barrier and then summing the energy contributions of
these paths. By doing this, the phase information between the diffraction paths was
lost, and thus lead to poor approaximations of the sound field behind the barrier.

1.2.2 Wave Based Methods

More exact approaches for estimating barrier insertion loss are performed with wave
based methods such as the Boundary Element Method (BEM), and the Finite Ele-
ment Method and in particular the Infinite Wave Envelope Method (IFEM). These
methods solve the governing Helmholtz wave equation and exactly model the reflec-

tion, diffraction and the phase interferences in the sound field around the barrier.

1.2.2.1 Boundary Element Methods (BEM)

The boundary element method in acoustics is formulated by applying Green’s the-
orem to the Helmholtz integral equation. This has the effect of converting a three



dimensional volume integral of the acoustic domain to a two dimensional surface
integral. This means that only a description of the radiating or scattering body is
required rather than a complete, and often inadequate, description of the surrounding
domain. The boundary element method is well suited for infinite domains, and thus
for exterior problems as the radiation condition is inherently satisfied through the
Green function kernels.

When applying this method, the surface of the body is subdivided, or discretized,
into nodes and elements. The Helmholtz integral equation, which relates the acoustic
pressure and velocity on the body, is applied to each node. This has the effect of
linking it to all other elements (and nodes) on the body. This technique thus generates
a fully populated, complex, non-symmetric matrix for each analysis frequency.

For two dimensional and axisymmetric geometries, boundary element methods
yield excellent results in very reasonable calculation times. However, when consider-
ing a real-life geometry of a finite length barrier (i.e. an exterior three-dimensional
problem with large geometry (barrier lengths greater than 500 m) and analysis fre-
quencies up to 2000 Hz), BEM methods quickly become impractical to run. Typical
barrier geometries at road noise frequencies prove to be computationally intensive
and take in the order of hours, and for some cases days, to solve for one frequency on
an engineering workstation. Another limitation of the boundary element method, is
that the Green function kernels, which are basically the solution of a point source in

the acoustic medium, assume a homogeneous propagation medium.

1.2.2.2 Finite Element Methods (FEM) using Infinite Wave Envelope Elements (IFEM)

Acoustic finite element solutions typically make use of a variational or Galerkin resid-
ual formulation for solving the Helmholtz equation. An enclosed volume (for three
dimensional problems) is divided into a series of smaller subregions or finite elements
connected at discrete nodes. The variation of the acoustic variables within an element

is described by shape functions (usually simple polynomials). Governing equations
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are written for each element and these are assembled into a global matrix. Boundary
conditions are applied and the unknowns are determined.

Due to the formulation of this method, the resulting matrices are banded because
each node is only related to its surrounding neighbors. This is in contrast to the
boundary element method where each node is related to all other nodes. Of course
the penalty with the finite element method is that a much larger number of nodes are
required because of the volume discretization. Another problem is that for modeling
unbounded domains a large, but finite size of mesh is required to approximate this
infinite domain. The trick is to come up with appropriate boundary conditions to
simulate this case.

One method to deal with unbounded domains using finite element methodology
is with the use of infinite elements, and in particular, infinite wave envelope methods
[1.12, 1.13]. Recent work has shown that is it possible to very efficiently model
both radiation and scattering phenomena with these elements. When applying these
elements to a body, it is often necessary to surround the body with several layers of
conventional elements to permit the near field to be accounted for, while the far field
is modeled with the infinite elements. With the use of higher order infinite elements,
it is possible to reduce and even eliminate this conventional element layer [1.13].

This type of modeling is very attractive because it has many of the advantages of
the finite element methodology (banded matrices and quick frequency sweeps), while
still being able to accurately model unbounded problems. The major limitation of
this method is that only low frequency/small size geometries can be studied. Once
the problem approaches ka = 20 (where k is the wave number (27/)), and a is a
typical body dimension), the results begin to deteriorate [1.13]. This limits the use

of this method for many practical geometries.



1.2.2.3 Infinite Boundary Element Methods (IBEM)

To overcome the above mentioned limitations of the boundary element method (namely
the large matrix size and slow solution times) and the infinite finite element method

(limited to low frequency solutions), hybrid infinite boundary element schemes have

been devised [1.14, 1.15]. This approach makes use of boundary element methodology

but, relies on sub-domaining to divide the infinite radiation region into small sub-

regions. This has the effect of adding bandedness to the boundary element method,

which is good to keep memory storage problems to a minimum. Accurate modeling

is thus insured with good implementation characteristics.

The sub-domaining of the acoustic fluid is not without its difficulties however.
The effect of sub-domaining with the boundary element method is to localize the
application of the radiation condition. This affects the radiation of higher order mul-
tipoles which are fundamental to more complicated radiation and scattering problems
[1.15]. In addition, testing has shown that it is necessary to include acoustic windows

to permit proper modeling of the acoustic near field {1.15)].

1.2.3 Improved Diffraction Based Methods

The multitude of problems associated with BEM, FEM/IFEM and IBEM methods
are further underlined when considering typical barrier geometries at typical road
noise frequencies. This motivated the search for a quicker, more practical means for
modeling the acoustic performance of roadside barriers.

Recently, Lam [1.9] improved on Maekawa’s method by summing complex pres-
sures, instead of energies, of each diffraction path around the barrier. This was done to
incorporate the phase interaction and interference between the paths, the absence of
which, Lam suggested, was the cause of poor agreement between Maekawa’s method
and experimental results. By incorporating phase interaction, excellent agreement
was observed with experimental and wave-based BEM results.

This model was seen as an important contribution in modeling noise barriers as
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it was then possible to obtain results with wave-based accuracy in diffraction based
calculation times. As such, Lam’s method was implemented and extended to model
real-life barrier geometries, such as single and parallel barrier geometries, and also
take the effects of ground impedance into account.

1.3 Atmospheric Effects

Barrier insertion losses predicted by current methods have often been noted to be
different from the actual performance of barriers. This is thought to be because the
atmosphere is assumed to be perfectly homogeneous in these methods. In actuality,
the atmosphere consists of several inhomogeneities such as wind and temperature
gradients, and turbulence. These inhomogeneities greatly affect the way in which
sound energy is transmitted.

The variation of wind and air temperature with height, and the presence of tur-
bulence, results in an effective sound speed that varies not only with location, but
also with time. As sound waves travel in a medium with a sound speed that varies
with height, parts of the wave front travel at different speeds. As a result, the sound
rays, which are normals to wave fronts, are curved as shown in Figure 1.4.

During typical daytime or upwind conditions, the speed of sound decreases with
height. This is known as an upward refracting atmosphere because sound rays curve
upwards as depicted in Figure 1.5. This condition results in a shadow region some
distance away from the source where the sound pressures are minimal.

Also shown in Figure 1.5 are sound rays in typical nighttime or downwind con-
ditions. During these conditions, the sound speed increases with height, and the
atmosphere is referred to as downward refracting. It is during these conditions that
the effectiveness of noise barriers is degraded. This is because the direct ray, which
was previously along the line-of-sight and was shielded by the barrier in homoge-
neous conditions, now curves over top the barriers, as shown in Figure 1.6, thereby

increasing the sound pressures within the shielded, or shadow regions.



1.4 Sound Propagation in the Presence of Atmospheric Effects

1.4.1 Wave Solutions

The area of outdoor sound propagation has been reviewed by many researchers in
the past [1.16, 1.17, 1.18, 1.19]. Some state-of-the-art prediction schemes have been
developed to model long range sound propagation in a medium with an arbitrary
sound speed profile. These techniques include the Fast Field Program (FFP) [1.20,
1.21] and the Parabolic Equation (PE) [1.22, 1.23] techniques. A summary of these
and other computational techniques can be found in a review by Attenborough et al.
[1.24].

Although these techniques can account for various types of sound speed profiles
and atmospheric turbulence [1.25, 1.26], they are generally restricted to flat ground
propagation and can only model axisymmetric geometries. Moreover, these models

require excessive computational times.

1.4.2 Heuristic Atmospheric Model

To counter the problems of excessive computational times associated with the wave
methods, L'Espérance et al recently developed a model based on geometrical ray
theory to predict outdoor sound propagation {1.28]. This heuristic model assumes a
linearly varying sound speed profile for the atmosphere which permits a closed-form
solution of all the rays, and the associated parameters.

The cases for upward and downward refracting profiles are handled separately in
this model. For upward refracting profiles, the sound pressures within the shadow
region are determined using a diffraction theory based on residual series solution. For
downward refracting profiles, the roots of a fourth order polynomial aids in determin-
ing the multitude of rays, each having multiple ground reflections, that can appear
between a source and receiver above ground [1.29].

This model provides a good first approximation for predicting outdoor sound
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propagation in light of the complexities associated with the FFP and the PE. However,
it was developed for flat ground propagation and cannot readily predict effects of a
scattering body such as a barrier.

1.5 Investigations into Atmospheric Effects on Barrier Performance

Experimental studies have been conducted to study the effects of wind on the acoustic
performance of barriers [1.30, 1.31]. Both studies concluded that wind does affect the
barrier performance and that it is during downwind conditions that barrier perfor-
mance is degraded. In a separate study, Daigle investigated the effects of turbulence
over the top of barriers [1.32]. The overall effect was to scatter some of the sound
energy down to the shadow regions close to the barriers thereby reducing the shielding
effect of the barrier in these regions. Comparisons with experimental results showed
that this was the case especially at higher frequencies.

Salomons recently developed a model, based on geometrical ray theory, to include
atmospheric refraction in barrier performance calculations [1.33]. Comparisons were
made with a PE technique incorporating a thin screen [1.27], and good agreements,
in general, were observed. This work only included downwind conditions and was
considered for long range sound propagation. It excludes the rays that undergo mul-
tiple reflections off the ground under the notion that these rays are absorbed in the
presence of an absorbing ground. The only rays considered are the rays that travel
from the source to the barrier top and from the barrier top to the receiver. In the
presence of absorbing ground, the effects of the curved rays due to the refractive pro-
file are considered in barrier insertion loss calculations, however, in the presence of a
perfectly reflecting ground, these rays are assumed to be straight. Another weakness
in this formulation is that, in the presence of a downward refracting atmosphere and
at large distances away from the barrier, it is possible to have some sound rays pass-
ing over the barrier unattenuated [1.34], the effects of which were not discussed by

Salomons.

10
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This motivated the developement of a ray based model which, not only takes into
account the multiple rays that can appear between a source, shielded by a barrier,
and a receiver, but also accounts for the rays that can pass over the barrier. In this

manner, a more accurate representation of the effects of atmosphere on noise barriers

can be provided.

1.6 Thesis Outline

The first part of this thesis studies the current techniques for predicting barrier in-
sertion loss. These techniques assume a homogeneous atmosphere, and as a result,
the acoustic performance of barriers is usually overpredicted. The later part of this
thesis investigates the effects of atmosphere on barrier performances, and a model
is proposed that includes this missing link in an effort to accurately predict barrier
insertion losses.

In particular, Chapter 2 focuses on extensions of Lam’s principles to a wider range
of source and barrier geometries, and comparisons were made to the wave-based BEM
and FEM. The preliminary work of Lam was extended to include the modeling of two
dimensional geometries, the comparison of two and three dimensional modeling, the
consideration of parallel barriers, modeling the effect of finite ground impedance and
the consideration of three-dimensional coherent and incoherent line sources. The work
was also extended to include the diffraction models of Kurze and Anderson [1.5], and
Pierce [1.10].

In Chapter 3, the heuristic atmospheric model is combined with Pierce’s diffraction
equations for a thin screen [1.10] to provide a more accurate means of barrier inser-
tion loss predictions with the benefit of the trivial calculation times associated with
geometrical and diffraction based techniques. The model, referred to as the combined
model, includes the contributions of the many possible rays with multiple reflections
on the ground and also the possible rays that pass over the barrier unattenuated. Also
included are the effects of ground, atmospheric absorption and turbulence. In this

11
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work, only the case for the positive sound speed gradients (downwind or nighttime
conditions) are considered. The results from the combined model are compared to
the PE formulation incorporating a thin screen [1.27].

Finally, a summary and the major conclusions of this thesis are outlined in Chap-
ter 4. Also provided are some recommendations for future research work.

Chapters 2 and 3 are written as separate stand-alone papers. Chapter 2 has been
accepted for publication in Applied Acoustics, while Chapter 3 has been submitted
for review. At the end of the thesis, more detail is presented on certain topics. Appen-
dix A summarises the principles behind geometrical theory of diffraction. Appendix B
describes the modeling of atmospheric absorption. Appendix C outlines the formu-
lation for the spherical reflection coefficient used for modeling the effects of ground
impedance. Appendix D provides brief descriptions on the Fast Field Program (FFP)
and the Parabolic Equation (PE).

12
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Figure 1.6: The direct ray curves over the top of the barrier due to atmospheric
refraction.
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CHAPTER 2

A STuDY OF 2D AND 3D BARRIER INSERTION LOSS

UsING IMPROVED DIFFRACTION BASED METHODS!

2.1 Introduction

Current literature contains a wide variety of methods for evaluating the attenuation
due to a barrier of finite length [2.1, 2.2, 2.3, 2.4, 2.5, 2.6]. These methods are all
diffraction based, which extend the optical geometric theory of diffraction to that
of acoustic waves. One of the simplest and most widely used in the engineering
community, is that of Maekawa [2.1]. He introduced an empirically based diffraction
model that provides the insertion loss due to a thin-walled barrier in terms of the
Fresnel number. Maekawa then suggested that the insertion loss for a finite-length
barrier could be determined by multiple application of this curve to the diffraction
paths around the barrier and then summing the energy contributions of these paths.

There exist more sophisticated mathematical models for determining barrier dif-
fraction coeficients. One model is Pierce’s work for diffraction due to a semi-infinite
wedge of arbitrary angle with ideal (rigid) boundary conditions [2.7]. This model
can determine the diffraction field for both 2D and 3D geometries, and involves the
evaluation of Airy functions and Fresnel integral functions. Another model is that

of Kurze and Anderson’s for sound attenuation by semi-infinite barriers [2.2]. This

LA version of this chapter has been accepted for publication in Applied Acoustics.
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model also addresses both 2D and 3D geometries. In a paper by Hayek [2.8], other
diffraction models are discussed. These include the diffraction due to a half plane and
a wedge, with either ideal boundary conditions or impedance boundary conditions on
either face of the plane/wedge.

The more exact approach to estimating the insertion loss of a barrier is with
wave-based methods such as the Boundary Element Method (BEM) [2.9, 2.10] and
Finite Element Methods (FEM) [2.11]. These methods solve the wave equation and
thus model the phase interaction and the diffraction field around the barrier. Since
the problem of the barrier is an exterior three-dimensional (3D) problem with large
geometry, the BEM/FEM methods necessitate unreasonable calculation times. Typ-
ical barrier geometries at road noise frequencies prove to be computational intensive
and take in the order of hours, and for some cases days, to solve for one frequency on
a workstation. This makes it impossible to conduct typical barrier design tests such
as frequency sweeps to high frequencies, broad band tests, and parametric studies on
barrier geometries with the BEM/FEM methods.

More recently, Lam [2.6] improved on Maekawa’s method by summing complex
pressures, instead of energies, of each diffraction path around the barrier. This was
done to incorporate the phase interaction and interference between the paths, the
absence of which, Lam suggested, was the cause of the poor agreement between
Maekawa’s method and experimental results. By incorporating this phase interaction,
excellent agreement was observed with experimental and wave-based BEM results.
With this method then, it was possible to obtain wave-based accuracy with diffraction-
based calculation time.

Due to the initial success of Lam, it was decided to extend the principles of Lam to
a wider range of source and barrier geometries and compare the results to the wave-
based BEM and FEM. The work described in this paper implements and compares
the diffraction models of Maekawa, Kurze and Anderson and Pierce. This work also
considers and compares both 2D and 3D geometrical modelling, single and parallel
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barrier configurations, finite impedance plane considerations and a study of coherent

and incoherent line sources.

2.2 Theory

2.2.1 Background

For diffraction based models, the pressure at the receiver is determined by summing
the contribution from each diffracted path as it propagates from the source. Fig-
ures 2.1 and 2.2 illustrate the different diffraction paths around a barrier present in
both two dimensional and three dimensional cases. The pressure due to the diffracted
path i is

p; = AidG(kd;) (2.1)

where A;, ¢; and d; are the amplitude change at diffraction, phase shift at diffraction
and the path length of the diffracted wave, respectively. The function, G, is the
geometric spreading for the source being considered. The total pressure at the receiver
is the sum of the individual paths,
n n
pr= ; pi= ;A.-e"ﬁ'c(kd,-) (2.2)
where n is the total number of paths being considered.

For 2D geometries, n = 4 and G = H{"(kd;), which is a Hankel function of the
first kind of order zero (Figure 2.1). It is used to determine the scattering due to
a cylindrical source. For the 3D case, n = 8 and G = e~ 7*%/d; (Figure 2.2). Note
that there are ten possible paths for the 3D geometry, however only eight of which
are applicable for any source-receiver configuration. When the receiver is closer to
the ground, paths 7 and 8 are replaced with paths 9 and 10 which consider ground
reflections on the receiver side.

In this Chapter, Lam’s principles incorporating various diffraction models will

be compared. For 2D geometries the diffraction models considered are Kurze and
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Anderson’s equation, and Pierce’s equations, while for 3D geometries the diffraction
models considered are Maekawa’s curve, Kurze and Anderson’s equation, and Pierce’s

equations.

2.2.2 Lam’s method using Maekawa’s curve

In Lam’s paper, the equation for the finite barrier insertion loss is given by

2
1+ 28 cos(nN;) + (%)
IL(dB) = M; + 10lo e =
( ) 1 g Zs ZS 10-M:/20 j0—Mm/20 cos [1r (ZV't — Nm)]

i=1 L.m=1 19-M1/20 10-M1/20

(2.3)

where N is the Fresnel number for the i** path, and M is the insertion loss value
from Maekawa’s curve. The subscript o refers to the direct path (from the source to
receiver) and the subscript r refers to the ground reflected path (from the source image

to receiver). Maekawa's curve can be represented by the following two equations
o /X
M=20logﬁ (N(l)

M = 101log(20N) (N>1)

(2.4)

The Fresnel number is given by
N=%M+B—@

where (A + B — d) is the path length difference as shown in Figure 2.3, and A is the
wavelength.
Lam’s equation for finite barrier insertion loss can be broken down to determine

the pressure due to each of the diffracted path in the form of Equation 2.1

=ik
Di = A;ejf £ - (2’5)
where A; is an amplitude term and can be determined by
. ftanh(x/&)
A=%(= s ) <1
(2.6)

A=t W=
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using Maekawa'’s diffraction equations. In this equation, d, is the direct path length
from the source (image) to receiver (image) depending on what path is being consid-
ered.

Note that Lam’s method incorporating Maekawa’s curve only accounts for the
amplitude change at the diffraction edge (A; in Equation 2.5). The phase shift (/4) is
included in Equation 2.5 based on Lam’s suggestion that the phase shift at diffraction
(for 3D geometries) reaches an asymptotic limit of w/4 at high frequencies, in the far
field and the shadow zone [2.6]. Note that Equation 2.5 appears to predict a phase
shift, however, this phase shift is not unique in that it is applied to all the paths. The
unique diffraction effects for each path reside in the amplitude term of Equation 2.5.

2.2.3 Lam’s method using Kurze and Anderson’s equations

2.2.8.1 8D - Point source

Kurze and Anderson formulated an equation that determines the reduction of sound
pressure level due to the insertion of a semi-infinite barrier between a point source

and receiver [2.2]. A slightly modified version of their equation is
d(1 —cot 3(8 —
( COJG( a) l ) (2-7)
(A + B)\/K(l + m)
See Figure 2.4 for an explanation of the symbols. Note the 6/ term in the denom-
inator. The symbol, 8, is the path length difference between the diffracted and the

IL(dB) = —20log (

direct path ((A+ B—d) from Figure 2.4). For receivers close to the line-of-sight of the
source, 6 is small, and the equation diverges. Same can be said for large wavelengths
A, or low frequencies. Thus it would be reasonable to assume that this equation is
more applicable for high frequencies and for receivers in the deep shadow region.
The pressure for each diffraction path in the form of Equation 2.1 for the 3D

geometry implementing Kurze and Anderson’s formulation can then be determined

by

d; d(1 - cot3(f — g e Tkds
pi = d_( ( 25( )‘)1 )614 7 (28)
o\2m(A + B),/5(1 + 7%5) ;
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This equation has the same properties as Lam’s method implementing Maekawa's
curve in that it only accounts for the amplitude change at the diffraction edge. Also
note that the phase shift at diffraction edge is assumed to be the asymptotic limit of
w/4 following Lam’s suggestion for diffraction for 3D geometries. Using Kurze and
Anderson’s diffraction model, it is once again seen that the diffraction for each path is
really only an amplitude adjustment, as all paths receive the same phase adjustment.

2.2.8.2 2D - Line source

Kurze and Anderson’s equation for the 2D line source and semi-infinite barrier is

similar to the one for the point source, except for a few variable changes.

- 200 d(1 — cot %(O—a))
IL(dB) = —20log (27r(A'+ B’)\/é—“j\“(l +-f_,:737)) (2.9)

See Figure 2.4 for an explanation of the symbols. Noting the similarity between this
equation and the one for the point source, it can also be said that this equation is
valid for high frequencies and for receivers deep in the shadow region.

The idea of an amplitude change at diffraction for the 3D case is extended for
the 2D line source case. The pressure for the i* diffraction path in the form of
Equation 2.1 for the 2D geometry is determined by

pi = ( d(1 - cot 3(8 — o))
on(A' + B')\/ 5= (1 + w45

)) (—FHD (kdy)) (2.10)

Note that a phase shift of 7/4 was not introduced in this equation, as it was in
Equation 2.8, since there was no justification to do so. Lam’s suggestion was in the
context of 3D goemetries, whereas Equation 2.10 is for 2D geometries. However,
tests were conducted with the phase shift of w/4 introduced in Equation 2.10 and

were compared to the case for without this phase shift and there was little difference

between the two cases.
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2.2.4 Lam’s method using Pierce’s equation for diffraction

Pierce formulated an approximate solution to the wave equation for the single-edge
diffraction by a semi-infinite wedge [2.7]. His solution considers cases where the
source and receiver are at large distances from the barrier in terms of wavelength.
Figure 2.5 shows the geometry considered. Diffraction due to a semi-infinite thin
screen is a special case where the angle 3 is equal to 2.

2.2.4.1 8D - Point source

Pierce’s equation reduces to the following for a 3D point source

pe = (40() + 40 0N 55) (S57) (2.11)

where
Ap(X) = sign(X)[f(1X]) — jg(IX])]
X, =X(6+6,)

The functions f and g are series representation of Fresnel integrals and Ap is the Airy
function. Since the Airy functions are complex functions, the diffraction effect for each
path is a complex numerical value. Hence, Pierce’s diffraction model determines a

phase shift at the diffraction edge in addition to the amplitude change.

2.2.4.2 2D - Line source

In modifying Pierce’s equation for a cylindrical source, the only change introduced is
the term for cylindrical spreading.

pi = [Ap(X+) + Ap (X_)] (%) (i HO (kds)) (2.12)
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9.2.5 2D Impedance Plane

Chandler-Wilde and Hothersall studied 2D acoustic propagation above a homogenous
impedance plane [2.12]. In addition to the direct and the ground reflected pressures, a
ps term is introduced. This is a correction term to adjust the pressure at the receiver
due to the presence of the impedance plane. The pressure at the receiver in Figure 2.6

is thus given by
p=—jHP (kro) = jHP (kr') + dps(k. ', ¢, 6) (2.13)

Note that the factor of 4 in front of the pg term is due to the form of the kernel
functions used for cylindrical spreading. The correction term ps depends on the wave
number k, the path length of the ground reflected wave r’, the angle of incidence ¢,
and the relative impedance of the ground 8. Further details on the correction term
ps can be obtained from [2.12].

The manner of the impedance plane application to barrier calculations is best
described by illustration. Take, for example, path number 2 from Figure 2.1. This
path is shown on an impedance plane in Figure 2.7. For hard ground, the pressure
at the receiver would be

p2 = A2 (—H{D (kdy))

where A, and (, are the amplitude and phase change at diffraction. With the intro-

duction of the impedance plane, the pressure at the receiver is
P2 = AZéca(_JHgl)(kd2) + 4Pﬁ(k, d27 ¢2) ﬂ))

where d is the path length of path 2. However, for path 4 from Figure 2.1, there
are two ground reflections present. For this path, the pressure at the receiver is

determined by (as shown in Figure 2.8):

Da = A (= H D (kdy) + 4ps(k, da, 4.1, B) + 4pa(k, da, B2, B))



AL AR L L S T A

BT L 20

T TEEpwey

2.2.6 Parallel Barrier Modelling

A source placed between two parallel barriers was modelled using the multiple image
method with the diffraction based methods. Figure 2.9(a) shows parallel barriers of
separation of d. A source is placed a distance z; from barrier number 1, z; from
barrier number 2, and a height of h, above ground. A receiver is placed on the far
side of barrier number 2. This scenario would involve several reflections between the
barriers. This can be modelled by replacing barrier number 1 with an infinite series
of sources, in theory, as shown in Figure 2.9(b) [2.13]. The total pressure at the
receiver is then determined by summing the pressure contributions from a large, but
finite number of source images. In testing, it was found that anywhere from 50 to 200
images were required to achieve convergence. Note that such large number of images
needed for convergence was verified by using the multiple image method with BEM
to model parallel barriers.

2.3 Applications

2.3.1 Preliminaries

The results for the diffraction methods are compared to their wave-based counter-
parts, which will serve as the benchmark cases. The commercial software SYSNOISE
[2.14], which uses both the boundary element and finite element methods to model
acoustic problems, was used to provide wave-based results for comparison (2.15]. Con-
vergence tests for each of the models was conducted to ensure sufficient number of
nodes/elements were used in modelling of the barriers.

The diffraction results were calculated for both the shadow region, where the
receiver is hidden from the source, and the illumination region, or the bright zone. The
paths involved when the receiver is in the illumination region is shown in Figure 2.10
for the single barrier case. The coherent sum of the pressures from each path then
provides the total pressure at the receiver location. For the parallel barrier case, the
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sum of the pressure contributions from all of the source images from both barriers
provides the total pressure when the receiver is in between the barriers (illumination
zone).

The following results are provided as insertion loss. This is the difference in sound
pressure levels with and without the barrier(s).

2.3.2 Two-Dimensional Studies
2.3.2.1 Single Barrier

The first test is that of a two-dimensional line source placed in front of a single infinite
barrier. The barrier is 3 m high and the source is placed 0.5 m from the ground (rigid)
and 7.5 m from the barrier. Figure 2.11 shows a comparison of the insertion loss at
250 Hz along a line that runs 1.5 m off the ground and 50 m on either side of the
source. This comparison shows the 2D boundary element method modeling and the
2D Lam/Pierce and Lam/Kurze and Anderson (K&A) formulations. A remarkably
good agreement is seen throughout the range, even though we might expect otherwise
for receivers that are close to the barrier based on the assumptions for both Pierce’s
and K&A'’s models.

Figure 2.12 compares the same three methods for a directivity plot of the acoustic
pressures at a radius of 10 m from the base of the barrier at a frequency of 250 Hz.
Good agreement is observed over most of the angular range except in the line-of-sight
region where the Lam/K&A method breaks down as expected. It should be noted
that we could have made use of a special equation that Pierce developed for receivers
close to this the line-of-sight region. However, it was not pursued owing to the good
agreement in Figure 2.12 in this region with his original formulation.

The final test case for the single barrier is a frequency response. The same source
and barrier positions are used, but now a receiver is placed 30 m from the source and
3 m from the ground. Figure 2.13 shows the comparison of the frequency response
functions over a range of 2000 Hz. The three methods are nearly indistinguishable
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except in the lower frequency range, where the Lam/K&A method begins to deviate
slightly. This is expected as based on the frequency conditions of K&A’s model and
the fact that the receiver is not in the deep shadow region, leaving é to be small.

2.8.2.2 Parallel Barrier

A line source is placed in between a set of 2D parallel barriers. The source is 0.5 m
from the ground and the barriers are 3 m tall. Two different spacings of the barriers
are considered: 15 m and 30 m. Figures 2.14 and 2.15 show a comparison of the
insertion losses for barrier separations of 15 m and 30 m respectively. The source
frequency is 1000 Hz and a line of receivers is placed 1.5 m from the ground running
50 m on either side of the source. This modeling scenario proves to be more of a
challenge for the Lam/Pierce and Lam/K&A methods due to the multiple reflections
between the barriers that take place. Both of the diffraction methods generally agree
within 5 dB for the 15 m case and within 3 dB for the 30 m case. The 30 m separation
exhibits better agreement due to the less enclosed setting and thus fewer reflections.

The multiple image method was also implemented with BEM. This yielded results
that were close to the diffraction method results but different from the parallel barrier
BEM model. This is thought to be because wave based methods, in addition to
modeling multiple sound reflections between barriers, also model other, more complex,
wave behaviours that may be occuring for a source in between parallel barriers.

Figures 2.16 and 2.17 compare the pressures at a 30 m radius from a 1000 Hz
source with the barriers separated by 15 m and 30 m respectively. In both cases, the
Lam/Pierce method shows much improved performance over the Lam/K&A model.
This is especially true in the shadow regions of the barriers, where the diffraction
of the multiple image sources is occurring. With the inability of K&A’s model to
account for phase shift at diffraction, the compounded error is large.

Figure 2.18 compares the frequency response for a point located 30 m from the
source at a height of 3 m from the ground for the 30 m separation case. It is observed
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that the Lam/K&A method exhibits large shortcomings over much of the frequency
range, while the Lam/Pierce method is quite close. In these multiple reflection cases,
we see the advantage in using the Pierce diffraction model due to its ability to be
able to model both the amplitude and phase change at the barrier edge.

2.8.2.8 Finite Impedance Ground

The 2D impedance plane results are compared with a 2D acoustic finite element model
[2.14] so that the effects of finite ground impedance could be considered. Figure 2.19
shows the sound pressure levels for hard ground and for relative ground admittances
of B8 =0.1 and 8 = 0.5. The Lam/Pierce diffraction results agree well with the finite
element models over the tested range.

Figure 2.20 shows a frequency response over the range of 10,000 Hz for the im-
pedance plane without taking a barrier into consideration. The heights of source and
receiver are 0.5 m and 1.5 m, respectively, and d is the distance between the source
and receiver. The familiar insertion dips due to the impedance plane are observed at

appraximately 300 Hz for 8 = 0.5 for all source-receiver distances shown.

2.3.3 Three-Dimensional Studies

In the first part of this paper, we explained three ways for calculating 3D acoustic
pressures/insertion losses from diffraction methods: Lam/Maekawa, Lam/Pierce and
Lam/K&A. These will now be compared against the 3D boundary element method.
Figure 2.21 shows the insertion loss along a receiver line running perpendicular to a
30 m wide barrier. The source is placed 0.5 m from the ground (rigid) and 7.5 m
from the barrier. Figure 2.21 compares the insertion loss of the four methods a source
frequency of 250 Hz. All the diffraction models provide results that are close to the
BEM results. There does not appear an advantage of one diffraction method over
another in this case.

A polar plot of sound pressure at a distance of 30 m and a frequency of 250 Hz is
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shown in Figure 2.22. In this figure it is seen that all methods yield good results at low
angles and appraximate results in the illumination areas above the source. Figure 2.23
shows a frequency response comparison for the three Lam methods. This figure shows
the response from 0 to 2000 Hz for a point that is 30 m away from the barrier and 1.5 m
from the ground. The three methods agree well over most of the frequency range,
however the Lam/K&A method does deviate over the central frequency region. BEM
results were not included in this test as large mesh sizes were required to satisfy the
convergence criterion of 6 nodes per wavelength in the frequency range considered.
As such, the computational requirements exceeded currently available computational
abilities.

2.3.8.1 Two and Three Dimensional Comparisons

Having developed and verified efficient 2D and 3D barrier insertion loss calculational
schemes, it is now possible to examine an issue of paramount importance; that being,
how well do 2D prediction methods work for truly 3D geometries? Daumas [2.16]
and subsequent authors compared insertion losses between 2D and 3D geometries
and found close agreements between the two. The results can now be verified using
BEM and the diffraction techniques discussed in this paper. However, for all of the
preceding tests, the diffraction technique of Lam/Pierce was used. Figure 2.24 depicts
the frequency response function of (i) a 2D line source and infinite barrier, (ii) a 3D
point source and infinite barrier and finally (iii) a 3D point source and a 400 m finite
length barrier. In all cases, the source is 0.5 m from the ground and 7.5 m from
the barrier. The receiver point 30 m away from the source and 3 m off the ground.
For this test, very little difference is observed between the three curves. The close
comparison of the 3D point source in front of an infinite barrier and a finite length
barrier is not surprising owing to the fact that the contribution of the side diffraction
paths is small for the long barrier considered. The other aspect of this comparison

is the indifference in the results between the point and line sources for the infinite
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barrier model.

Figure 2.25 tackles this question from a slightly different point of view. Here a
receiver location is selected 50 m from the barrier and the barrier width is changed
from 10 to 2,000 m. This figure compares the insertion loss of a 2D geometry (i.e.
line source, infinite barrier geometry) to that of a point source in front of a finite
width barrier. For both the 250 Hz and 1000 Hz curve it is observed that after the
barrier becomes about 300 m long that there is very little difference between the finite
(3D) and infinite (2D) modelling. Figure 2.26 is more representative of when a finite
barrier can effectively be considered infinite. For 6 different combinations of 3D source
and receiver geometries, the octave average insertion losses for 250, 500 and 1000 Hz
center frequencies were calculated (with Lam/Pierce model for 3D geometries) and
normalized (source locations - 7.5, 15, and 30 m away from the barrier, at a height of
0.5 m; receiver locations - 50 and 100 m away from the barrier, at a height of 1.5 m).
It is observed that, from all the cases, barrier widths in excess of 300 m can effectively
be assumed to be infinite.

2.8.8.2 Point and Line Sources

A series of 3D point sources were used to model a 3D line source. Various test cases
were considered for the source spacings and the line source lengths. It was initially
determined that there must be at least four sources per smallest wavelength consid-
ered. Additionally, the length of the appraximated line source was increased until
convergence was achieved. As an example, Figure 2.27 compares the 2D boundary
element method frequency response (from Figure 2.12) to that appraximated by a
400 m line source with a source spacing of 0.05 m. The receiver is 30 m from the
source and 3 m above the ground. A good agreement is seen thus indicating that the
length and spacing of the line source closely appraximates an ideal line source for the
frequency range considered.

Figure 2.27 considered a coherent line source, whereas, an incoherent line source
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is of more interest from a traffic noise point of view [2.17]. With the possibility
of approximating a line source as a series of point sources, this test is possible by
assigning, at random, a phase shift to each point source. Figure 2.28 compares the
one-third octave averages for a 2D coherent line source and a 3D incoherent line
source for the same source, receiver and barrier geometries as in Figure 2.27. There
is a significant difference between the two cases. However, the differences depend on
the relative positions of source and receiver, and, as Figure 2.28 indicates, on the
frequency content of the source. It should be noted that for a 3D incoherent line
source, source spacings between 0.05 m and 20 m were tested to find little difference
between them for the geometry considered in Figure 2.28.

Current limitations are that only coherent line sources can be taken into account
in 2D techniques and the only way to model an incoherent line source is with a series
of point sources. A worthwhile test would be to develop correction factors that could
be factored into 2D coherent source results to transform the results to those for an

incoherent line source (for traffic flow purposes).

2.4 Conclusions

To overcome the limitations of traditional wave-based modeling, the diffraction based
modeling principles of Lam were extended to include the diffraction models of Pierce
and Kurze and Anderson, modeling of 2D geometries, the consideration of parallel
barriers, modeling the effect of finite ground impedance, and the consideration of
3D coherent and incoherent line sources. In genmeral, comparisons with the BEM
showed that the diffraction models agreed well for both the single and parallel barrier
geometries. However it was noted that the Lam/K&A method fell short when the
receivers were in the proximity of the line-of-sight, and when parallel geometries in 2D
were considered. This is due to the fact that this method does not predict a unique
phase shift at the diffraction edge for each path.

A finite impedance ground plane was incorporated into the 2D modeling scheme
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using the work of Chandler-Wilde et al. Single barrier tests on an impedance plane
compared well with the FEM. 2D and 3D modeling strategies where also compared.
It was found that barriers longer than 300 m could be well appraximated by a simple
2D model with a line source. Finally, 3D coherent and incoherent line sources were
compared to the 2D model. Our testing showed large differences in the 2D line model
compared to the 3D incoherent line source case.

The major conclusion of this work is that improved diffraction based models, like
those presented in this paper, compare well with and can indeed be used in place
of the computational intensive wave based modeling methods like the BEM. As an
example, consider the frequency response curve in Figure 2.13. BEM calculations on
an IBM RS 6000 machine took several hours, whereas the diffraction based models
produced the same results in a few seconds on the same machine. The wave based
accuracy and diffraction based calculation times of these modeling enhancements now

permit fast, accurate predictions of large-scale environmental noise problems.

2.5 Future work

The insertion losses reported in this paper are rarely equaled in full-scale experimen-
tal tests. This is due to the fact that the modeling assumes a stationary, uniform
acoustic fluid. This is in contrast to real life, where temperature gradients and wind
greatly affect the transmission of sound energy. The focus of the current research is
to model these non-uniform atmospheric effects. This research is being undertaken in
much the same fashion as it developed for this paper: first to work with and under-
stand the exact solutions to simple problems of this type using methods like the Fast
Field Program and Parabolic equation solution and to then later adapt a ray-based
approach to give similar results for a fraction of the calculation time.
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Figure 2.1: Diffraction paths for a 2D barrier geometry.

Barrier

Figure 2.2: Diffraction paths for a 3D finite length barrier geometry.
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Figure 2.3: Definition of symbols used to determine the Fresnel number, N.
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Figure 2.4: Definition of symbols used in Kurze and Anderson’s 2D and 3D diffraction
models.
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Figure 2.11: Single barrier insertion loss along a line at 250 Hz.
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Figure 2.12: Polar plot of sound pressures for single barrier at 250 Hz.
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Figure 2.15: 30 m separated parallel barrier insertion loss along a line at 1000 Hz.
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Figure 2.28: Third octave results for 2D coherent and 3D incoherent line sources.
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CHAPTER 3

ACCURATE BARRIER MODELING IN THE PRESENCE OF

ATMOSPHERIC EFFeECTS!

3.1 Introduction

There are numerous techniques for determining the performance of noise barriers.
The more commonly used techniques in practice are diffraction based because of
their calculational efficiency (3.1, 3.2, 3.3, 3.4, 3.5]. These techniques are based on
geometrical ray theory and extend the theory of optical diffraction to that of acoustic
waves. These techniques are primarily energy based and thus ignore phase. The
more exact approach to estimating barrier insertion loss is with wave based methods
such as the Boundary Element Method, BEM [3.7, 3.8], and the Finite Element
Method, FEM, and in particular the infinite wave envelope method (IFEM) (3.9, 3.10].
Wave based methods solve the governing wave equation and thus model exactly the
reflection, diffraction and the phase interferences in the sound field around the barrier.
However, wave based methods require excessive computational times with increased
geometry dimensions and analysis frequency.

Lam recently introduced an improved diffraction based method that included
phase interference [3.6]. Muradali and Fyfe extended this work to include the model-

ing of two dimensional geometries, the comparison of two and three dimensional mod-

LA version of this chapter has been submitted to Applied Acoustics.
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eling, the consideration of parallel barriers and modeling the effect of finite ground
impedance [3.11]. Comparisons with the wave based methods demonstrated good
agreements, with the diffraction based methods taking only a fraction of the calcu-
lation times. The quick calculation times allowed for a series of barrier tests such as
frequency sweeps, octave averaging and varying barrier width tests.

Although these techniques for evaluating barrier performance have received wide
acceptance, it has been commonly noted that the actual acoustic performance of
barriers is different from what is predicted by these modeling tools. This is because
all the above mentioned techniques assume a homogeneous, stationary atmosphere. In
actuality, the atmosphere consists of wind and temperature gradients, and turbulence,
all which affect the sound speed profile. These inhomogeneities greatly affect the way
in which the sound energy is transmitted.

Several techniques have been developed to model sound propagation in non-
homogeneous medium conditions. These include the Fast Field Program (FFP)
[3.12, 3.13] and the Parabolic Equation (PE) [3.14, 3.15, 3.16], to name a few. These
techniques can take into account various types of sound speed profiles, and the PE
formulations can also model the effects of turbulence [3.17). However, these tech-
niques are generally restricted to flat ground propagation and only model axisym-
metric geometries. Moreover, these models require excessive computational times
and a detailed understanding of the controlling parameters to provide results that are
representative of the atmospheric conditions being considered.

To counter the problems associated with excessive computational times for mod-
eling atmospheric inhomogeneities, L'Espérance et al recently developed a model
based on geometrical ray theory to predict outdoor sound propagation [3.18]. This
model, hereby referred to as the heuristic model, assumes a linearly varying sound
speed profile which allows an analytical determination of all the possible rays between
a source and receiver, and the associated ray parameters. The curvature of the rays

is based on Snell’s law which states that the direction of the sound ray changes in the
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presence of a sound speed gradient [3.18]. For a linear sound speed profile, the result-
ing sound rays are circular. As the sound speed increases with height (downwind or
nighttime conditions), the rays curve back towards the ground. For upwind or day-
time conditions, where the sound speed decreases with height, the sound rays curve
towards the sky. These rays are depicted in Figure 3.1. The heuristic model handles
the two sound speed gradient cases separately. For the downwind conditions (posi-
tive sound speed gradient), many rays can appear between a source and a receiver
with multiple reflections on the ground [3.19]. For the upwind conditions (negative
sound speed gradient), a shadow zone emerges past which the sound pressures are
determined using a diffraction theory based on a residue series solution. The heuristic
model also includes the effects of ground, atmospheric absorption and turbulence.

Experimental studies have been conducted to study the effects of wind on acoustic
barrier performance [3.20, 3.21]. Both studies concluded that the wind does affect the
barrier performance and that it is the case for downwind conditions (positive sound
speed gradient) that the performance of the barrier is degraded. In a separate study,
Daigle investigated the effects of turbulence over top the barriers [3.22]. The overall
effect was to scatter some of the sound energy down to the shadow regions close
to the barriers thereby reducing the shielding effect of the barrier in these regions.
Comparisons with experimental results showed that this was the case especially at
higher frequencies.

Salomons recently developed a model, based on geometrical ray theory, to include
atmospheric refraction in barrier performance calculations [3.23]. Comparisons with
the PE technique, with a thin screen incorporated, showed good agreements [3.24].
This work only included downwind conditions and was considered for long range sound
propagation. Moreover, it excludes the rays that undergo multiple reflections off the
ground under the notion that these rays are absorbed in the presence of absorbing
ground. The only rays considered are the rays that travel from the source to the
barrier top and from the barrier top to the receiver. In the presence of absorbing
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ground, the curvature due to the refractive profile are included in barrier insertion
loss calculations, however, in the presence of a perfectly reflecting ground, these rays
are assumned to be straight. Another weakness in this formulation is that, in the
presence of a downward refracting atmosphere and at large distances away from the
barrier, it is possible to have some sound rays passing over the barrier unattenuated
[3.25], the effects of which were not discussed by Salomons.

For this present study, the heuristic atmospheric model is combined with Pierce’s
diffraction equations for a thin screen [3.26] to provide a more accurate means of
barrier insertion loss predictions with the benefit of the trivial calculation times asso-
ciated with geometrical and diffraction based techniques. The model, hereby referred
to as the combined model, includes the contributions of the many possible rays with
multiple reflections on the ground and also the possible rays that pass over the bar-
rier unattenuated. Also included are the effects of ground absorption, atmospheric
absorption and turbulence. In this work, only the case for the positive sound speed
gradients (downwind or nighttime conditions) are considered. The results from the
combined model are compared to the PE formulation incorporating a thin screen
[3.24]. Some preliminary applications of the combined model are also presented.

3.2 Model Descriptions

First, classical barrier modeling in homogeneous atmospheric conditions using the
method of Lam [3.6] with Pierce’s diffraction model [3.26] will be described. Then a
short description of the heuristic model developed by L'Espérance et al. [3.18] will
be presented for sound propagation in the presence of atmospheric conditions. The
combination of the heuristic model with Pierce’s diffraction equations for modeling
barrier insertion loss in the presence of atmospheric conditions (a linear sound speed
profile) will then be described.
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3.2.1 Classical Barrier Modeling (Homogeneous Atmosphere)
3.2.1.1 The Method of Lam Incorporating Pierce’s Equations for Diffraction

For diffraction based methods, the pressure at the receiver is determined by summing
the contribution from each diffracted path as it propagates from the source to the
receiver. Figures 3.2 and 3.3 illustrate the different diffraction paths around a barrier
present in both two dimensional and three dimensional geometries. The pressure due
to the diffracted path i is
pi = Ai®“G(kd;) (3.1)
where A;, ¢; and d; are the amplitude change at diffraction, phase shift at diffraction
and the path length of the diffracted wave, respectively. The function, G, is the
geometric spreading for the source being considered. The total pressure at the receiver
is the sum of the individual paths,
pr= Zn;Pi = iAiei “G(kd;) (3.2)

=1
where n is the total number of paths being considered.

For 2D geometries (Figure 3.2), n = 4 and G = H{"(kd;), which is a Hankel
function of the first kind of order zero. It is used to determine the scattering due
to a cylindrical source. For the 3D case with a barrier of finite width (Figure 3.3),
n =8 and G = e 7 /d;. Note that there are ten possible paths for the 3D geometry,
however only eight of which are applicable for any source-receiver configuration. When
the receiver is closer to the ground, paths 7 and 8 are replaced with paths 9 and 10
which consider ground reflections on the receiver side.

For the diffraction effects at the barrier edge, Pierce’s formulation, which is an
appraximate solution to the wave equation for the single-edge diffraction by a semi-
infinite wedge [3.26], is used. His solution considers cases where the source and
receiver are at large distances from the barrier in terms of wavelength. Figure 3.4
shows the geometry considered. Diffraction due to a semi-infinite thin screen is a

special case where the angle J is equal to 27.
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Pierce’s equations for barrier edge effects reduce down to the following for both
2D and 3D geometries:

els

A = [Ap(X+) + Ap (X-)] (7;-) (3.3)
where
Ap(X) = sign(X)[f(1X]) — jg(IX])]
X+ = X(0 + 00)
X_-=X(0-6,)
X(6) = [—2%] ’ [—2 cos (g)]
di=rTo+T

In the above equations, f and g are series representations for the Fresnel integral
functions, and Ap is the Airy function. From this point forward A4;e’ will be denoted
as the coefficient for diffraction, Cy.

3.2.2 Barrier Modeling Including Atmospheric Effects
3.2.2.1 The Heuristic Model

The heuristic model described below assumes a linear sound speed profile which per-
mits an analytical determination of all the rays (and the associated parameters) be-
tween source and receiver location on a flat, infinite half-space [3.18]. The discussion
below is intended to supplement the heuristic model description offered in L'Espérance

et al’s respective publication.

Sound Speed Profile Under typical conditions, the air temperature and wind vary
with height, and thus so does the effective sound speed. The heuristic model assumes
a linear relationship between the speed of sound, ¢, and height, y, in the form

c(y) = cq(1 + ay) (3.4)
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where ¢, is the speed of sound on the ground in m/s, and a is referred to as the sound
speed gradient, which has the units of m~!. For barrier performance predictions, the
sound rays curving towards the ground are of particular interest, as earlier discussed.
This occurs when a > 0.

The following table associates common atmospheric conditions with some values
of a. Positive values of a refer to nighttime conditions, whereas negative values refer

to daytime conditions.

a (m~!) | Common atmospheric conditions

0.00001 | Cloudy conditions, no wind.

0.0001 | Calm, semi-cloudy, light breeze conditions.

0.001 Strong inversion, clear skies, breezy conditions.

0.01 Strong winds.

Table 3.1: Common atmospheric conditions associated with sound speed gradients.

Sound Rays in the Presence of a Positive Gradient Under a positive gradient,
more than 2 rays may appear between a source and a receiver as shown in Figure 3.5.

The following 4th order equation has been shown to determine all of these rays,
n(n+1)z*—(2n+1) D+ b2+ (2n*~1)b2+ D% z?~ (2n—1)b2Dz+n(n—1)b; = 0 (3.5)

where b? = (2 + ay;)(y:/a) for i = s (source) and r (receiver), and n =1, 2,3, ... is the
number of reflections on the ground [3.19].

This equation determines the locations, z, of the first reflection for rays that
undergo n reflections on the ground. Since this is a fourth order equation, it is
possible to get up to 4 rays for each n > 2. For n = 0 (i.e. no reflections on the
ground) there is only one ray that appears, that is from the source to the receiver, and
is always present. For each additional n, all of the real roots pertain to the valid rays
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between the source and receiver. This equation must be solved for all » until there
are no real roots (or until the appearance of complex conjugate roots). Figure 3.6
shows these x locations for rays with 1 and 2 ground reflections. Figure 3.6(a) is for
n = 1 (i.e. each ray having single ground reflection). The x locations for the first
reflections, as determined by Equation 3.5, are z; and z; for both of the rays shown.
Note that only 2 rays are shown for n = 1, however it is possible to obtain up to 3
rays for the case of single ground reflection. Figure 3.6(b) shows two rays undergoing
2 ground reflections (n = 2), with z; and z, being the locations of first reflections.
However, for this and higher values of n, it is possible to obtain up to 4 rays.

To demonstrate the stages for determining the ray parameters, consider the case
shown in Figure 3.7. This is the case for n = 1 (each ray having one reflection on
the ground). For this case the 4th order equation contained two real roots for the
source-receiver geometry and the gradient being considered. Thus there are two rays
that appear for n = 1, with the locations of the first reflection being D,, and D,,.

The ray parameters needed for further calculations are the length of the ray, Rray,
the angle of incidence to the ground, 1,, and the time of travel from the source to

the receiver, Trqy. These parameters are determined with the help of the following

equations,
R = sorg [ (4 v conlwy)} = 5+ (36)
where
14 /1= (1+ay)*cos’(,)
)= 1- \/1 — (1 + ay)? cos?(y,) (38)
and
tan(yp,) = 5‘22 + 1'(2—2*'5“—”’—) (3.9)

These equations pertain to Figure 3.8 where the source is on the ground and the
receiver is at a height of y,. Note that the ray is curved, however it has not passed
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the point of maximum height. When the receiver happens to be at the location of

maximum height for the ray, ym, the following equations apply,

R(ym) = Zc%ﬁ??/}ﬁ (3.10)

T(ym) = 201% In [1:’::2%:;] (3.11)
1 1

Ym = ; (COS(‘(/)g) - 1) (312)

Dy = E‘Ei_“':;)_ (3.13)

The length and travel time of the rays with multitude of reflections on the ground
can be determined by simple additions and deductions using the above equations.
Consider again the case shown in Figure 3.7. The ray lengths and travel times for
both of the rays are determined using the results from Equations 3.6-3.13 in the

following form:

Reay1 = R(ys) + 2R(Yym1) — R(yr) (3.14)
Trayt = T(Ya) + 27(Ym1) — 7(yr) (3.15)
Rray2 = 2R(ym2) — R(ys) + R(y-) (3.16)
Tray2 = 27(Yma2) — 7(ys) + 7(yr) (3.17)

Note that the component of ray #1 going from the ground to the receiver passes its
maximum point. Thus, the latter part of Equations 3.14 and 3.15 is a correction for
this length. The same can be said for ray #2, except now for the component going
from the source to the ground.

In general, the parameters for a ray undergoing n reflections can be determined

using the following expressions:
Ry = 2(n — 1) R(ym) + R(ys) + R(y-) (3.18)

Tray = 2(n — 1)7(ym) + 7(ys) + 7(¥+) (3.19)
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Note that R(y,), R(yr), T(ys), and T(y-) should be corrected if the maximum height
has been passed (D > Dn).

Once the parameters for all rays between the source and the receiver have been
determined, the pressure at the receiver can be determined by the following expres-

sion:

s - R AR QL

y ng‘
N i-1 . . j
0 Z Z A(Rray.';fff;fv)le:”QJl cos |21 f(T; — Ti) + Arg (%)](320)

=2 j=1 i

=1

where A(R,qy,) is the atmospheric absorption coefficient and Q) is the spherical wave
reflection coefficient determined as shown in the Appendices. It is important to note
that the phase interference between the rays is determined using the frequency and
the travel times instead of the wave number and the length of the rays, because the

wave number changes with height in the presence of a varying sound speed profile.

3.2.2.2 Applications of Pierce’s Equations in Non-Homogeneous Medium

Pierce’s formulations described earlier are for homogeneous medium conditions. In
the presence of a varying sound speed profile, the wavelength changes with height.
This affects the equation for X(6) in Equation 3.3, and is thus modified to,

X(6) = [2T;Tf r [—2 cos (g)] (3.21)

T=1,+T1

where T, is the travel time from the source to the barrier top, T is the travel time
from the barrier top to the receiver, and f is the frequency of the spherical source.
To demonstrate the applications of Pierce’s equations for non-homogeneous medium
conditions, consider a single ray going from the source to the receiver, via a barrier
edge as shown in Figure 3.9. The ray parameters are determined by considering the

barrier top both as a source and a receiver. With the heuristic model, the length
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of the rays on either side of the barrier, as well as the associated travel-times are
determined, and the parameters for the single ray going from the source to receiver

are given by

Rfay = Rrayl + Rrom (3-22)
Trcy = Tray; + Tray, (323)
Q=Q:1Q2 (3.24)

However, to determine the coefficient for diffraction, Cy, from Pierce’s equations,
the angles incident on the barrier top are required. Expressions for these angles
are not given in the heuristic model, but with some geometrical manipulations, the

following expression can be shown to determine these angles relative to the horizon,

cos(ta) = cos(,) (1 + ayy) (3.25)

Figure 3.10 shows this angle. Note that a minor correction to the angle would be
necessary in the event the ray passes its maximum height (D > D,,). In addition,
14, for any ray incident upon the barrier top must be adjusted to the angles # and 8,
for input into Pierce’s equations depending on what side of the barrier the ray exists.
The coefficient for diffraction for the single ray in Figure 3.8 is then determined

by
Ci = Pierce(Rray, Tray; Trap Trayes [, 6, 00) (3.26)

where the parameters in the brackets are used in Pierce’s equations.

2.2.2.8 The Combined Model

When considering all of the rays between a source and receiver separated by a barrier,
numerous rays can appear and disappear depending on geometry and the sound speed
gradient. The case shown in Figure 3.11, a point source in front of an infinitely wide
barrier, is that for a = 0.1, from the sound speed - height relationship given in
Equation 3.4. The heuristic model determined 2 rays between the source and the
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barrier top, and 4 rays between the barrier top and the receiver. Thus the total
number of rays that diffract off the barrier is 8. The parameters associated with
these 8 rays are determined as shown in the previous section.

In addition, all the rays between the source and the receiver that pass over the
barrier must also be considered. For the case shown in Figure 3.11, there are 5
such rays. Since these rays are not attenuated by diffracting off the barrier top,
the diffraction coefficient for these rays are assigned the value of 1 (Cy = 1 + j0).
However, it should be noted that this may not be the case for some of these rays as
they may pass close to the barrier edge and, as a result, be diffracted down to the
shadow region. This effect has not been included in the current combined model.

Once the parameters for all the rays are determined, the pressure at the receiver
point can be determined by the following equation:

2= 3 (A(Rm;iw.-ucail)z .
i=1 ay:
S ABray) A(Rray, )| QilIQ5lIC4]ICas|

2322

i=2 j=1 Reray Rray;
| (&) +s(a)]
cos |2mf(T; — 1) + Arg | =L | + Arg | =2 (3.27)
Qs Cq,

where N = 13 for the case shown in Figure 3.11.

3.2.2.4 Modeling the effects of turbulence

The atmosphere is neither homogeneous nor is it associated with a single sound speed
gradient throughout the entire travel of any particular ray. Several inhomogeneities
occur in the atmosphere within any time period. As air moves past vegetation, or
as small pockets of air rise and descend, atmospheric turbules are generated which
cause fluctuations in the wind velocity gradients. Fluctuations in the temperature
gradients can be caused, for example, by the intermittent heating of the ground by
the sun in the presence of a band of moving clouds. Such conditions result in a sound

speed gradient that fluctuates with time.
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In a recent study by L’Espérance et al., the effects of atmospheric turbulence were
modelled using the Fast Field Program by conducting a weighted average of the sound
pressures due to the instantaneous sound speed profiles measured within a specified
time period [3.27]. The results compared well with field measurements made under
the same atmospheric conditions.

For this study, the effects of turbulence were modelled along the same lines as
L’Espérance et al. The sound pressures due to single linear profiles within a specified

range, as shown in Figure 3.12, were averaged as shown by the following expression

, _&”
Pave = m (328)

where p? is the pressure-squared due to the ith profile, of a total of m profiles con-
sidered.

3.3 Results

3.3.1 Preliminaries

The proposed model is first compared with the Parabolic Equation (PE) formulation
incorporating a thin screen [3.24]. The controlling parameters used for this study are
the same as those used by Salomons for the 100 and 1000 Hz cases. It should be
noted that the results in the illumination region are not accurate as both the PE and
the combined model do not account for reflections off the barrier. However, it is the
results in the shadow region that are of most interest.

The results for the model verification are shown as relative sound pressure levels.
This is the sound pressure relative to free field geometrical spreading. All other results
are shown as insertion losses (IL).

For computations, the speed of sound at the ground, ¢, was assigned the value of
343 m/s. For ground properties, hard ground was assigned an effective flow resistivity
value of 10,000 cgs Rayls, and soft ground was assigned a value of 300 cgs Rayls [3.28].
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3.3.2 Model Verification
8.3.2.1 The Heuristic Model Verification and QObservations

Figure 3.13 shows the PE model and the heuristic model results at 100 Hz for the
source and receiver, both at a height of 2 m, above rigid ground. This figure demon-
strates the true nature of the heuristic model. The PE levels increase continuously and
the heuristic model levels exhibits step changes. The locations of these step changes
indicate that additional rays appear, as determined by Equation 3.5. However, it is
observed that the heuristic model approximates the PE solution.

The case for soft ground for the same conditions as in the previous figure, is
shown in Figure 3.14. Here, it is noted that the rays that appeared at about 220 m
and 250 m do not contribute greatly to the sound field as they are absorbed due to
multiple reflections on the soft ground.

Figure 3.15 shows the results at 1000 Hz for a source and receiver above soft
ground. Once again, the source and receiver are 2 m above the ground. The results
for both techniques agree well. Additional rays do not appear for the range considered.
However, the results are different than the case for still air and this can be attributed

to the curvature of the rays.

3.3.2.2 The Combined Model Verification

Figure 3.16 shows results with a barrier, at 100 Hz above soft ground for the same
source and receiver heights as the previous figures. The barrier is 4 m high and 30 m
away from the source. Additional rays appear at about 160 m and 260 m that result in
the step changes at these locations. However, it is observed that the combined model
results, once again, approximate the PE results. The spurious oscillations in the PE
results originate from the numerical integration used in the calculational procedure
[3.24].

Figure 3.17 shows the case at 1000 Hz for the same source-barrier-receiver geom-
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etry as in Figure 3.16. Again, good agreement between the two models is observed.

3.3.3 Applications

Figure 3.18 shows insertion loss (IL) vs. receiver position for 2 gradients, namely the
strong (a = 0.01) and moderate (a = 0.0001) gradients at 500 Hz. Also shown are
results that for an averaged gradient field and the homogeneous case. The source is
0.5 m above the rigid ground and 10 m away from the 3 m high rigid barrier. The
receiver positions are 1.5 m above ground and extend up to 300 m away from the
barrier. It is observed that the results vary wildly when considering only a single
gradient. However, due to turbulence and local deviations, the atmospheric sound
speed gradient changes constantly, and as such, averaged results over a range of sound
speed profiles better depict reality. The averaged results, hereby designated as the
turbulent condition, for this and all of the subsequent figures, were conducted linearly
over 10 sound speed profiles ranging from a strong gradient (a = 0.01) to a moderate
gradient (a = 0.0001).

Figure 3.19 shows the same test case as the previous figure, except now the tur-
bulent and homogeneous conditions are compared for both hard and soft ground at
500 Hz. First, it is observed that the insertion loss is lower for the soft ground case
as the soft ground itself already contributes a great deal to the sound absorption.
Secondly it is seen that for either case, the barrier insertion loss greatly deteriorates
after about 75 m. After this distance, the rays that walk over the barrier, negate most
of the barrier shielding. Figure 3.20 shows the same turbulent test cases, except now
a frequency average is performed between 100 and 2000 Hz instead of just a single
frequency. Similar responses are observed.

Figures 3.21 and 3.22 show the frequency response at 2 receiver locations for the
same source - barrier geometry as in the previous figures. The receiver locations are
50 m (Figure 3.21) and 100 m (Figure 3.22) away from the barrier. Shown are the
homogeneous and turbulent cases for both hard and soft ground. A relatively flat
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response is observed for the turbulent conditions as compared to the homogeneous
conditions.

The applications shown up to this point have considered a single barrier height
of 3 m. Figure 3.23 demonstrates the effect of the varying the barrier height. Shown
are the frequency averaged insertion losses, for both homogeneous and turbulent
conditions, as a function of barrier height at three receiver locations; 50 m, 100 m
and 150 m away from the barrier. The source is 0.5 m above the rigid ground and
10 m away from the barrier. The results are weighted frequency averages for both
homogeneous and turbulent conditions. The first thing to note is that the top three
curves are very nearly coincident. This implies that there is no significant distinction
between the homogeneous solutions at the three receiver positions. However it is
observed that when considering atmospheric effects the insertion losses decrease as
the receiver moves away from the barrier. This is consistent with the response shown
in Figure 3.20.

In 1971, Scholes et al. conducted some field measurements to study the effect
of wind on barrier performance [3.20]. The experimental conditions were not well
documented to permit valid comparisons with the combined model. As such, educated
guesses were made for the parameters needed for computations with the combined
model. The ground, which was grass covered, was assigned an EFR value of 150 cgs
Rayls (based on the impedance dip characteristic provided with the experimental
results) and the temperature near the ground was assumed to be room temperature
(ie. ¢, = 343 m/s). Shown in Figure 3.24 is the data collected for downwind
conditions on a 4.9 m high barrier and the results computed using the combined
model. Good agreements are observed.

3.4 Summary and Conclusions

A major limitation of conventional wave based and diffraction based techniques is
that both formulations assume homogeneous atmospheric conditions. As a result, the
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acoustic performance of barriers is usually overpredicted. For this study, a heuristic
model based on the geometrical ray theory, and Pierce’s equations for diffraction,
are combined to introduce the atmospheric element in barrier performance prediction
with the benefit of quick calculation times associated with geometric and diffraction
based models. The model accounts for the various rays that diffract off the top of
the barrier and those rays that simply walk over the barrier in the presence of a
linearly varying sound speed profile. Comparisons with the Parabolic Equation (PE)
formulations have shown good agreements for receivers in the short to medium range
of sound propagation in the shadow of a barrier.

Calculations made with just a single sound speed gradient, however, do not ade-
quately model actual atmosphere conditions as the gradient at any location changes
with time due to atmospheric turbulence. Thus the sound pressures for sound speed
gradients ranging from moderate to strong were averaged to better depict reality.

From tests that were conducted in this work, it was observed that, past a certain
distance, the shielding effect of the barrier was greatly reduced (or nearly eliminated),
in downwind conditions, due to rays that walk over the barrier. It was also seen that
the averaged gradient, or turbulent, results showed a relatively flat frequency response
as compared to the homogeneous results. Finally, good agreements were observed in
the preliminary comparisons with the experimental data collected by Scholes et al.

3.5 Future work

The good agreement observed in the preliminary comparisons with experimental data
shows promise for the combined model in modeling the atmospheric conditions with
barrier calculations. However, the modeling technique needs further validation with
experimental measurements made under well documented conditions. This will help
judge the usefulness of a linear sound speed profile in short and medium range barrier
studies. To take into account longer range sound propagation studies, an improved

sound speed profile model will need to be developed. This might include a more
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realistic logarithmic profile and a profile that might change from source to receiver.

Other improvements include the modeling of upwind conditions (negative sound
speed gradient) and the diffraction of the rays that pass over, but close, to the barrier.
As well, the work to date has only considered the resulting pressure field in the shadow
zone of the barrier; work should be carried out to consider the reflections off the
barrier, for bright region considerations.
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Figure 3.1: Sound rays present in typical atmospheric conditions [3.25].
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Figure 3.3: Diffraction paths for a 3D finite length barrier geometry.
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Figure 3.4: Semi-infinite wedge diffraction for Pierce’s diffraction model.
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Figure 3.5: Sound rays between a source and a receiver present in homogeneous and
strong positive gradient conditions.
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Figure 3.6: Locations of first reflections for sound rays with single(a) and double(b)
ground reflections.
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Figure 3.7: Geometrical parameters of curved sound rays.

Figure 3.8: Figure pertaining to Equations 3.6 - 3.13.
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Figure 3.9: Single ray going from source to receiver, via the barrier top.

Figure 3.10: The angle, y;, needed for diffraction coefficient calculations.
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Figure 3.11: Example of sound rays in strong gradient conditions passing and diffracting
over the barrier top.
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Figure 3.14: Comparisons with PE at 100 Hz; no barrier and over soft ground.
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Figure 3.15: Comparisons with PE at 1000 Hz; no barrier and over soft ground.
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Figure 3.16: Comparisons with PE at 100 Hz; with barrier and over soft ground.
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Figure 3.21: Frequency response at receiver 50 m away from barrier.
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Figure 3.22: Frequency response at receiver 100 m away from barrier.
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CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

4.1 Summary and Conclusions

Noise barriers are commonly used to shield residential areas from traffic noise. How-
ever, these barriers are costly in nature and, as such, it is critical to understand the

underlying parameters that govern their performance.

4.1.1 Barrier Performance Models

There are several techniques in current literature for modeling the performance of
noise barriers. These techniques fall into two main classes: (i) diffraction based
methods and (ii) wave based methods. Diffraction based methods are based on the
geometric theory of diffraction, and are widely used in the engineering community.
The more recent wave-based methods such as Boundary Element Methods (BEM)
and the Finite Element Methods (FEM), solve the governing wave equation, and thus,
model exactly the reflection, diffraction and the phase interferences in the sound field
around the barrier. However, the excessive computational requirements associated
with these methods make them impractical design tools for modeling typical noise
barrier geometries at typical road noise frequencies.

From the diffraction based class of methods, Maekawa’s method is the simplest

and thus widely used in the engineering community. However, Lam recently improved
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on Maekawa’s energy summation of the diffraction paths, by taking into account the
phase interference between these paths. As a result, better agreements were observed
with experimental and wave-based results.

In Chapter 2, Lam'’s preliminary work was extended to include the diffraction
models of Pierce, and Kurze and Anderson, the modeling of two-dimensional geome-
tries, finite ground impedance, and the consideration of parallel barrier geometries.
Comparisons with the BEM results showed good agreements for both single and par-
allel barrier geometries. However, predictions using the diffraction model of Kurze
and Anderson fell short in regions close to the diffraction boundary layer, and when
parallel barrier geometries were considered in 2D. This was attributed to the fact that
the diffraction model diverges as receivers get close to the diffraction boundary layer,
and also to the fact that this model only predicts an amplitude change (i.e. phase is
assumed to be unaffected) at the diffraction edge. Some other conclusions arrived at

in this chapter are as follows:

e Comparisons with FEM showed good agreements for finite impedance consid-
erations in 2D modeling schemes.

e In comparing 2D and 3D geometries, it was found that barriers longer than
300m could be well appraximated by a simple 2D model with a line source.

e Large differences were observed between a 2D line source to a 3D incoherent

line source.

The major conclusion for this chapter was the advantage of diffraction based
techniques over the wave based methods in terms of calculation times. The diffraction
based methods took only a fraction of the calculation times and provided wave-based
accurate results. This then made it possible to conduct typical barrier tests such
as frequency sweeps, octave averaging and varying barrier width tests in reasonable

calculations times.
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4.1.2 Atmospheric Consideration

A major limitation of the techniques discussed thus far is that a homogeneous at-
mosphere is assumed, and as such, the predicted barrier insertion losses are different
from the actual barrier insertion losses. The atmosphere consists of several inho-
mogeneities such as wind and temperature gradients, and turbulence, which greatly
affect the way sound energy is transmitted.

There are various prediction schemes for modeling the propagation of sound out-
doors. Two wave-based formulations are the Fast Field Program (FFP) and the
Parabolic Equation (PE). Recently, a heuristic atmospheric model based on geomet-
ric ray theory, was developed as an alternative to the wave-solutions due to their
excessive calculational times. This model assumes a linearly varying sound speed
profile, whereas the wave solutions can account for arbitrary profiles.

These prediction schemes, however, are generally restricted to flat ground propa-
gation and cannot readily account for the screening effects of a barrier. Experimental
studies have been done to investigate the effects of atmosphere on barriers, and it was
concluded that the barrier effectiveness was reduced when they are downwind from
the source. Also, turbulence over the top of barriers scattered sound energy from the
source into the shadow regions thereby reducing the barrier’s shielding effect.

In Chapter 3, a model was proposed for introducing the atmospheric element into
barrier calculations. The heuristic atmospheric model, for the downward refracting
profiles, was combined with the diffraction coefficient equations of Pierce. Compar-
isons with the PE model incorporating a thin screen showed good results.

It was found that calculations made with a single sound speed gradient resulted
in wildly varying insertion loss values in the shadow region of the barrier. This does
not adequately represent the atmospheric effect on berriers. In turn, an average over
a number of sound speed gradient reduced the wild variation of results, and instead
showed the expected degradation of noise barriers in the presence of atmospheric in-
homogeneities. It was seen that past a certain distance behind a barrier, the insertion
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loss decreased considerably. This is attributed to the rays that walk over the barrier.

Also preliminary comparisons with experimental data collected by Scholes et al.
were conducted. However, the experimental conditions were not well documented and
guesses had to be made on the ambient temperature and the effective flow resistivity of
the ground. In despite of this, good agreements were observed between the proposed
model and the experimental data.

4.2 Future Work

The preliminary comparisons with the experimental data shows promise for the com-
bined model for predicting barrier performance in the presence of atmospheric con-
ditions. However, further validations with experimental measurements made under
well documented conditions is required. This will help judge the usefulness of the
linear sound speed profile, and its averaging, in short and medium range barrier stud-
ies. For longer range barrier studies, a more general sound speed profile and a more
representative averaging of sound speed profiles for modeling atmospheric conditions
will need to be developed.

Other improvements include the modeling of upwind conditions (negative sound
speed gradients) and the diffraction of the rays that pass over, but close to, the barrier
edge. To make the model more complete, considerations for predictions in the bright

zone by modeling sound reflections off the barrier will need to be made.
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APPENDIX A

GEOMETRICAL THEORY OF DIFFRACTION

A.1 Imtroduction

A principle branch in acoustical theory called geometrical acoustics or ray acoustics,
describes the spreading of sound in terms of rays. The path of a ray is traced out
when observing the time travel history of a single point on a wavefront. This theory
is very similar to that of geometrical optics, the oldest and most widely used theory of
light propagation. Geometrical theory explains the behaviour of rays as they reflect
off of various surfaces or as they are transmitted through opaque surfaces. However,
the behaviour of rays as they hit edges and corners remains unexplained by ordinary
geometrical theory [1.35].

As rays come across these edges and corners, new rays called diffracted rays are
generated [1.35]. Various theories on diffraction have been developed such as those
by Fresnel, Kirchhoff and Keller, to name a few. These theories cover diffraction for
various conditions such as diffraction through appertures and edges. However, edge
diffraction is of more interest for noise barrier applications since most barriers are
modelled as thin screens.

To explain the physics behind edge diffraction, the following discussion will focus
on Huygens-Fresnel principle leading to Kirchhoff’s diffraction theory [1.36]. Kirch-
hoff’s theory explains diffraction in terms of waves. Keller’s diffraction theory, on

the other hand, describes edge diffraction in terms of rays and associates these dif-

113



fracted rays with a diffraction coefficient multiplied to the field incident to an edge
[1.35]. The notion of a diffraction coefficient played a central role in the formulation
of diffraction path equations in Chapters 2 and 3 (Equations 2.1 and 3.1).

A.2 Kirchhoff’s Theory of Diffraction

A.2.1 Huygens-Fresnel Principle

According to Huygens’ wave construction, every point on a wavefront can be con-
sidered the source of secondary spherical wavelets. The envelope of these secondary
wavelets then describe a wavefront at a later instant. Fresnel postulated that these
secondary wavelets mutually interfere. The combination of the two notions is thus
known as Huygens-Fresnel Principle [1.36].

A depiction of a wavefront and the secondary wavelets is shown in Figure A.1.
The amplitude of the secondary wavelets cannot be uniform in all directions simply
because this would produce an equally strong wavefront travelling backwards. The
contribution to the light disturbance at some point P from a point Q on a wavefront
S, shown in Figure A.2, can be expressed as follows:

jkro Jks
A 618 ds (A1)

dU(P) = K(x)

To

where 8 = QP and K (x) is referred to as the inclination factor describing the varia-
tion of secondary wavelet amplitude with the angle X, often referred to as the angle
of diffraction.

An expression for the inclination factor was not given by Fresnel, however he
assumed that the amplitude of the secondary wavelet was at its maximum in the
direction of propagation (i.e. x = 0) rapidly decreasing to zero in the direction
tangential to propagation (i.e. x = 7/2). Kirchhoff later proved that this was not

true.
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A.2.2 Kirchhoff’s Diffraction Theory

Upon applying Green's theorem to the Helmholtz equation, Kirchhoff formulated the
integral theorem of Helmholtz and Kirchhoff. One form of this theorem is

wn- [ La(5) SR w

where S represents the boundary of the region of integration, and s is the distance

between the source and a point (z,y, z) [1.36].
Kirchhoff applied this theorem to the diffraction of light through a small opening
in a plane opaque screen, and with some approximations he derived an expression for

the inclination factor to be

K(x) = —35(1 +cos) (A.3)

This confirms that the amplitude is a maximum in the direction of propagation (i.e.
x = 0). This also shows that Fresnel’s assumption that the amplitude is the weakest
in the direction tangential to propagation (ie. x = 7/2) is not true, and that the
amplitude is the weakest in the opposite direction of propagation (i.e. x = 7). Kirch-
hoff also showed that the interference of wavelets around the envelope was mutually
destructive, thus leaving a wave travelling away from the source.

In the event of a wave encountering an edge, the spherical wavelets close to the
edge, shown in Figure A.3, spread some of the light into the shadow region. The
inclination factor for the amplitude of the spherical wavelet suggests the amount
of light that is diffracted into this region. In the region immediately next to the
screen, the least amount of light is observed. The brightness gradually increases
upon reaching the line-of-sight (this corresponds to x = 0) where the amplitude of

the spherical wavelet at the tip of the edge is a maximum.
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A.3 Kaeller’s Diffraction Theory

Although Kirchhoff’s diffraction theory explains the physical aspects behind edge
diffraction, Keller's theory explains the behaviour of rays that come into contact
with the edge of a semi-infinite screen [1.35]. For a plane wave that is normally
incident on a straight edge, the diffracted wave spreads in a cylindrical fashion with
the straight edge as its axis. In terms of rays, this suggests that an incident ray normal
to a straight edge gives rise to diffracted rays that leave the edge in all directions.
Figure A.4 depicts both the wave and ray representations of diffraction.

In geometrical optics, rays that are incident upon a surface and are reflected or
transmitted, are multiplied with a reflection or transmission coefficient, respectively.
Keller followed this analogy and presumed that diffracted rays are associated with
a diffraction coefficient that is multiplied to the incident ray. For a ray normally
incident upon an edge shown in Figure A.5, the field for a diffracted ray can be

represented by
Ue = Du;r‘%e""' (A.4)

where D is the diffraction coefficient, u; is the incident field at the edge and r is
the distance from the edge. In comparing this expression with Sommerfeld’s exact
solution for diffraction of a planar wave for large values of kr, the diffraction coefficient

tends to
ejr /4

" o(2nk)} sin B
Here 3 is the angle between the incident ray and the edge, which for this case is 7/2

[sec %(o — a) *osc %(o +a) (A.5)

since the ray is normally incident to the edge.

A.4 Diffraction Modeling in 2D and 3D

The notion of a diffraction coefficient by Keller played a central role in formulating
the diffraction equations in Chapters 2 and 3. For this thesis, diffraction coefficients
were determined using the semi-empirical models of Maekawa [1.4], and Kurtz and
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Anderson [L.5], and the approximate solution to the wave equation for wedge dif-
fraction proposed by Pierce [1.10]. These models are proposed for both 2 and 3
dimensional considerations, with the exception of Maekawa which was only applied
to 3D geometries.

For 2D applications, the incident field is that produced by a cylindrical source
and the diffracted field spreads in a cylindrical fashion with the edge as its axis. This
is an extension to the case for a plane wave incident upon a straight edge in Keller’s
theory, and can easily be explained with Huygens’ wave construction. The sound
from a source S on one side of a semi-infinite screen, detected by a receiver R on the
other side, travels along the path shown in Figure A.6. In Chapter 2, this path is
referred to as the diffraction path. The sound pressure at receiver R is then

pr = DH (kr1) HSV (kr) (A.6)

where Hgl)(kr) is the Hankel function of the first kind of order zero and D is the
diffraction coefficient as determined by the diffraction models. This diffraction coef-
ficient is a change in both the amplitude and the phase of the incident ray as it is
diffracted towards the receiver R. Thus, Equation A.6 is modified to

pr = ASH;) (kd) (A7)
where A is the amplitude change, ¢ is the phase shift at diffraction and

HP(kd) = HO(kr)H (kro)
d

r1i+r

Figure A.7 shows a semi-infinite screen between a spherical point source S and
a receiver R. For such 3D applications, the incident field is spherical, however the
diffracted field is not obvious. According to Huygens’ wave construction, the sec-
ondary point sources would exist along the edge. These secondary sources, however
do not lie on the same wavefront. In accordance with Huygens-Fresnel principle, con-

tributions from these secondary sources to the receiver R, other than the one at Sg,
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are negligible as secondary wavelets interfere destructively in directions other than
that of propagation. This is reiterated by Keller’s law of edge diffraction (based on
Fermat’s principle for minimum path travel times), which states that the diffraction
path between S and R is the shortest distance that goes from the source to the edge,
and then to the receiver [1.35]. Also, the incident and diffracted rays make the same
angle v with the diffracting edge. Similar to Equation A.7, the sound pressure at the
receiver R for 3D geometries can be represented by

—jkd

d

= (A8)

pr = A
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Figure A.1: Sources of secondary disturbances on a wavefront by Huygens’ wave
construction. The amplitude of the spherical wavelets however cannot be uniform in all
directions or an equally strong wave will travel backwards.

Figure A.2: Derivation of directional variation for a secondary spherical wavelet.
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Figure A.3: Light diffracts into the shadow region with the aid of the spherical sources
close to the tip of the edge.
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Figure A.4: 2D projection of plane wave diffraction by a thin screen and the associated
ray representation.
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Figure A.6: Diffraction path in 2D.
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Figure A.7: Diffraction path in 3D.
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APPENDIX B

ATMOSPHERIC ABSORPTION

As sound waves pass through the atmosphere, some of the energy is lost to the
air due to viscosity effects and thermal diffusion. This is most apparent at large
distances, and for high frequencies. The atmospheric absorption coefficient, A(R),
from Equation 3.20 is determined as follows:

A(R) = 10R-AT()/2000 (B.1)

where R is the distance of propagation, and AT'(f) is the atmospheric absorption
coefficient, in dB/100m, for frequency f determined using the Standard ANSI S1.26

[3.28).
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APPENDIX C

SPHERICAL REFLECTION COEFFICIENT

Under homogeneous conditions, there are 2 sound rays between a source and a receiver
above ground as depicted in Figure C.1. One ray travels directly from the source to
the receiver and the other reflects off of the ground with an angle of incidence ,.
The acoustic pressure at the receiver is then the summation of the contributions of

both the rays. For 3D geometries we obtain,

_ exp(jkR:1) | exp(jkRa)
pr= Rl + Q R2 (C’l)

where k, R; and R are the wave number and the path lengths of the direct and the
reflected sound rays.

The spherical reflection coefficient @ for the ground of finite impedance Z, is
determined as follows [3.30,3.31]:

Q = Ry + (1 — Rp)F(w) (C2)
_ sing, — 1/Z,
By = siny, +1/Z, (C3)
F(w) = 1+ jr'*wexp (—w?) erfc(—jw) (C.4)
w= 2L (kRy) V2(siny, +1/2,) (C5)
-0.75 0.73
Zy = [1 +9.08 (é) + j11.9 (-(f;) } (C.6)

125



A St R A o Tt it A A e ML i S

where ¢ is the effective flow resistivity.

Under a strong positive gradient, any single ray between the source and receiver
may undergo multiple reflections on the ground as shown in Figure C.2. The effective
spherical reflection coefficient is then

Qerr=Q" (C.7)

where Q is the spherical reflection for the angle of incidence v,, and n is the number
of reflections on the ground for the respective ray.
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source R, receiver

Figure C.1: Sound rays between a source and receiver above ground under homogeneous
conditions.

Figure C.2: Multiple ground reflections for any sound ray under strong positive gradients.
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APPENDIX D

THE FAST FIELD PROGRAM (FFP) AND THE

PARABOLIC EQUATION (PE)

D.1 Introduction

The FFP and the PE models begin with the classical wave equation for the acoustic

pressure:

2 1 82 _
(V - c2 (Z) ?a_t—i p(r’ Z, t) - —47('6(.'3, Y, 2 — 2, t) (D.l)
where ¢ (z) is the sound speed as a function of height z, é represents a delta function

source of unit strength located at height z,.
Assuming simple harmonic time dependance exp (—iwt), the above equation be-

comes the Helmholtz equation,
(V2 + k(z)z) p(r,z) = —4md(r, z — 2,) (D.2)

where k = w/c(z) is the wave nurber. Writing this equation in cylindrical coordinates

and assuming no variation with @, the Helmholtz equation becomes

&p 10p 0% .o _ 2
o2 + ror + 922 +kp= —1,6(7')5(2 — 24) (D.3)

where the source is assumed to be at r = 0.

Reflection from a porous ground can be described by the boundary condition

[g% + ikﬁp] =0 (D.4)

z=0
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where 3 is the normalized surface admittance.
From this point, both the FFP and PE models differ. The following sections

describe each in more detail.

D.2 FFP models

FFP models were originally developed for underwater sound propagation predictions
and have since been adapted to model sound propagation through the atmosphere.

D.2.1 Basic formulation

By taking the Hankel transform of Equation D.3, the r dependance can be dropped.
The zero order Hankel transform of p is

o, 2) = A * P(K, z)Jo(Kr)KdK (D.5)

where K is the horizontal component of the wave number, Jp is the Bessel function
and P(K, z) satisfies

d?P(K, z)

=2 4 K@) - KIP(K, 2) = =8z — 2) (D.6)

FFP models perform a direct numerical integration on Equation D.5.

D.2.2 Implementations

With the notion of axial symmetry about the source, FFP models assume the at-
mosphere is a layered medium in the zz plane with source and receiver bounded by
impedance surfaces. This is depicted in Figure D.1. Each layer is associated with a
single value for the sound speed and the sound speed value can vary from layer to
layer.

FFP models are restricted to flat ground propagation and cannot readily account
for the scattering effects of a barrier. Therefore they were not used in the preparation
of this thesis. For further details on FFP models, refer to [3.12,3.13].
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D.3 PE models

PE models have been used for various wave propagation problems. Some areas in-
clude optics, electromagnetics, underwater acoustics, and more recently, atmospheric
sound propagion. The models assume that sound is always directed away from the
source and very little backscattering occurs. The main advantange from making this
assumption is that a boundary value problem is reduced to an initial boundary value
problem, permitting much simpler solutions of the resulting differential equation.

D.3.1 Basic formulation

By making a change of variables U = pr'/2 and a far-field assumption (kr >> 1),

Equation D.3 becomes
U U

?"+-a7'+k2U=0 (D.7)
By denoting @ as the operator such that
sl
Q= 352 + k2 (D.8)

then Equation D.6 can be written as

(&+R) (2~ ) U =0 (D:9)

This represents the incoming waves and the outgoing waves. If only the outgoing

waves are considered, Equation D.8 reduces down to
— =14/QU (D.10)

This equation is solved numerically by implicit stepping on a 2D grid in the zz
plane. The resulting equation is as follows:

Mz(ﬁ(.’l? + A.’L‘) = Ml(ﬁ(.‘L‘) (D.ll)

where M; and M, are tridiagonal matrices. The vectors ¢(z) and ¢(z+ Azx) represent

neighboring grid arrays. These vectors are proportional to the sound pressure p as
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follows:

$(z,z) = p(z, 2) exp(~ikoz) VT (D.12)

where ko is the wave number at z = 0. Note that k(z) = 27 f/c(z). A more detailed
description of the variables is provided in [3.15, 3.23].

D.3.2 Implementation

The 2D acoustic field through which the PE steps is shown in Figure D.2. The
medium is bound by surfaces of finite impedance as in FFP implementations. Ground
impedance is enforced on the bottom surface, whereas pc boundary condition is en-
forced on the top surface to minimize the reflection of sound energy back into the
field. However, this boundary condition absorbs completely only plane waves with
normal incidence to the surface. Therefore, an absorbing layer is added directly below
the top surface to dampen sound waves. This layer, shown in Figure D.2, is added
by introducing an imaginary term iA[(z — 2m)/(2m — 2m)]? to the wave number. A
is a constant, and zn is the height of the bottom of the absorbing layer as shown in
Figure D.2. The boundary conditions, and the absorbing layer are all accounted for
in the formulation of matrices M; and Ms.

A tutorial on use of the PE model provides guidelines for variables pertaining
to the absorbing layer and hieght of the acoustic medium [3.15]. However, these
parameters vary for the frequency of analysis. It was found to be time consuming
to obtain these parameters for the consideration of a positive linear sound speed
profile and large propagation ranges (up to 500 m) for various frequencies as this
involved a trial and error proceedure. Therefore, the same parameters were used
for analysis frequencies of 100 an 1000 Hz as those determined by Salomons [3.24].
The only difference was the specification of a linear sound speed profile instead of
a logarithmic sound speed profile. Convergence tests were conducted to confirm the
validity of these parameters.

The parameters used for analysis frequency of 1000 Hz were: Az = Az = 0.05 m,
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M = 8000, m = 7700, and A = 1. Similarly, for the analysis frequency of 100 Hz
the following parameters were used: Az = Az = 0.04 m, M = 2000, m = 1600, and
A=03.
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Figure D.1: Layered atmosphere for FFP implementations.

Z  pc boundary condition
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Figure D.2: Field for PE implementations.
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