
Improving the Performance and Availability of
Microservice-Based Cloud Applications

by

Alireza Goli

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

University of Alberta

© Alireza Goli, 2021

Abstract

With the advent of cloud computing, many organizations are moving their

software systems to cloud environments. This migration from on-premises to

cloud infrastructure has led to the emergence of cloud applications. One of

the essential concepts around cloud applications and cloud services is Quality

of Service (QoS). Cloud providers are responsible for maintaining the QoS of

the cloud services according to the Service Level Agreement (SLA). In this

thesis, we focus on performance as one of QoS’s dimensions and explore three

different ways to improve the performance of cloud applications.

In the first part of this thesis, we use the serverless paradigm to improve

the performance of a cloud application with a monolithic architecture running

on a single virtual machine. The results suggest that the serverless paradigm

improves the performance of the application under study by 93x.

In the second part of this thesis, we introduce an autoscaling approach

for microservice applications that leverages machine learning to model the

performance behaviour of each service in the application and the performance

impact of services on each other. The results show that the proposed autoscal-

ing method improves the performance of microservice applications compared

to Kubernetes HPA, the de facto standard for autoscaling in the industry.

In the third part of this thesis, we leverage software multi-versioning as

a cost-effective way to improve the performance and availability of cloud ap-

plications, particularly in situations where our computational resources are

limited. The results show that multi-versioning can be used as an effective

ii

method for maintaining the performance of cloud applications at the desired

level.

iii

Preface

This thesis is mainly based on three research works which have been conducted

in the Performant and Available Computing Systems (PACS) Lab led by Dr.

Hamzeh Khazaei and Sustainable Computing Lab led by Dr. Omid Ardaka-

nian.

Parts of Chapter 2 has been published as: A. Goli, O. Hajihassani, H.

Khazaei, O. Ardakanian, M. Rashidi, T. Dauphinee, “Migrating from Mono-

lithic to Serverless: A FinTech Case Study”, in ICPE20: Companion of

the ACM/SPEC International Conference on Performance Engineering (Hot-

CloudPerf 2020) [38].

Parts of Chapter 3 has been accepted as: A. Goli, N. Mahmoudi, H.

Khazaei, O. Ardakanian, “A Holistic Machine Learning-Based Autoscaling

Approach for Microservice Applications”, in 11th International Conference on

Cloud Computing and Services Science [39].

Parts of Chapter 4 has been published as: S. Gholami, A. Goli, C.P. Beze-

mer, H. Khazaei, “A Framework for Satisfying the Performance Requirements

of Containerized Software Systems Through Multi-Versioning”, in ICPE20:

Proceedings of the ACM/SPEC International Conference on Performance En-

gineering [35]. I was responsible for preparing the testbed, conducting the

ZNN experiments, and developing the manuscript. S. Gholami was responsi-

ble for other parts of the work.

iv

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervi-

sors, Hamzeh Khazaei and Omid Ardakanian, for their support and guidance

throughout my graduate studies. It has been a privilege for me to work under

the supervision of such knowledgeable, kind, and energetic professors.

I would like to thank all of my colleagues and friends from the PACS

Lab and Sustainable Computing Labs for their help. I also would like to

thank ATB Financial for providing funding and computational resources on

the Google Cloud Platform for this research.

Last but by no means least, I would like to thank my parents for their

unconditional love, support, and encouragement.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Cloud Applications and Quality of Service 3
1.3 Summary of Contributions . 5
1.4 Outline of the Thesis . 6

2 Migrating from Monolithic to Serverless: A FinTech Case
Study 7
2.1 Introduction . 7
2.2 Background . 9

2.2.1 Serverless Computing 9
2.2.2 Monolithic Architecture 10

2.3 A FinTech Case Study . 11
2.4 Migration Journey . 12

2.4.1 Motivation . 12
2.4.2 Breaking the Monolith 13
2.4.3 Migration Challenges 14
2.4.4 Serverless Architecture 16

2.5 Evaluation . 17
2.5.1 Dataset Description . 17
2.5.2 Experimental Setup . 18
2.5.3 Results . 18

2.6 Related Work . 20
2.7 Conclusion . 21

3 A Holistic Machine Learning-Based Autoscaling Approach for
Microservice Applications 23
3.1 Introduction . 24
3.2 Motivating Scenario . 26
3.3 Related Work . 29
3.4 Predicting Performance . 32

3.4.1 Predictive Model for CPU Utilization 33
3.4.2 Predictive Model for Request Rate 33
3.4.3 Data Collection . 34
3.4.4 Model Training Results 36

3.5 Waterfall Autoscaler . 36
3.5.1 Architecture . 37
3.5.2 Microservice Graph . 38
3.5.3 Scaling Algorithm . 40

3.6 Experimental Evaluation . 41
3.6.1 Experimental Setup . 45
3.6.2 Results and Discussion 47

3.7 Conclusion . 53

vi

4 Maintaining the Performance of Containerized Cloud Appli-
cations Through Multi-versioning 55
4.1 Introduction . 56
4.2 Motivating Example . 58
4.3 Multi-Versioning in Containerized Cloud Applications 58
4.4 Experimental Setup . 61

4.4.1 Subject Cloud Applications 61
4.4.2 Experiments . 62
4.4.3 Workload . 64
4.4.4 Deployment and Load Balancing Rule Sets 65

4.5 Experimental Evaluation . 66
4.5.1 Experiments with the Teastore Application 67
4.5.2 Experiments with the Znn Application 67

4.6 Related Work . 68
4.7 Conclusion . 70

5 Conclusion 72

References 74

vii

List of Tables

2.1 Comparing the monolithic architecture with serverless architec-
ture in terms of performance and cost 19

3.1 Request Rate and Downstream Rate of the Webui service to
each service. The number of replicas for the Webui service
changes from 1 to 5. 29

3.2 The ratio of Downstream Rate values of Webui service to its
Request Rate for different number of replicas under the same
workload intensity. 35

3.3 The accuracy and R2 score of CPU Model for different services
using Linear Regression (LR), Random Forest (RF), and Sup-
port Vector Regressor (SVR). 37

3.4 The accuracy and R2 score of Request Model for different ser-
vices using Linear Regression (LR), Random Forest (RF), and
Support Vector Regressor (SVR). 37

3.5 Resource request and limit of Teastore services. 46
3.6 Comparison of Waterfall and HPA autoscalers in terms of per-

formance metrics. 52
3.7 Comparison of Waterfall and HPA in terms of CPU>Threshold(T),

overprovision, and underprovision time. 53

4.1 A description of the experiments that we conducted for the
Teastore and Znn applications 64

4.2 Description of the virtual machines 65
4.3 Description of the containers in the experiments 66

viii

List of Figures

1.1 Cloud computing delivery model: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) . 2

1.2 Cloud application types based on the level of compatibility with
cloud environment. 4

2.1 Architecture of the Original document processing system before
migration. Arrows denote dependencies between modules. . . 12

2.2 Structure of page classifier neural network after splitting. . . . 14
2.3 Serverless Architecture of Document processing pipeline. . . . 15
2.4 Sequence diagram of serverless document processing pipeline for

one document with one page. 17
2.5 The turnaround time of jobs in the serverless document pro-

cessing pipeline. 20

3.1 Interaction of services in an example microservice application. 26
3.2 Architecture of the Teastore application. 28
3.3 Request rate and total downstream rate of Webui under the

same load intensity for different numbers of replicas. 29
3.4 Input features and the predicted value of the CPU model. . . 33
3.5 Input features and the predicted value of the request model. . 34
3.6 The construction of datasets for CPU Model and Request Model.

Request Model dataset is built by merging data points from the
CPU Model dataset. 36

3.7 Architecture of Waterfall autoscaler. 38
3.8 Teastore microservice graph. 39
3.9 The CPU utilization and number of replicas for the Webui ser-

vice. The red dashed line in the upper plot shows the scaling
threshold and the green dashed line in the lower plot denotes
the ideal number of replicas throughout the experiment. . . . 48

3.10 The CPU utilization and number of replicas for the Persistence
service. The red dashed line in the upper plot shows the scaling
threshold and the green dashed line in the lower plot denotes
the ideal number of replicas throughout the experiment. . . . 49

3.11 CPU utilization and number of replicas for Auth service. The
red dashed line in the upper plot shows the scaling threshold
and the green dashed line in the lower plot denotes the ideal
number of replicas throughout the experiment. 50

3.12 The CPU utilization and number of replicas for the Image ser-
vice. The red dashed line in the upper plot shows the scaling
threshold and the green dashed line in the lower plot denotes
the ideal number of replicas throughout the experiment. . . . 51

ix

3.13 The CPU utilization and number of replicas for the Recom-
mender service. The red dashed line in the upper plot shows
the scaling threshold and the green dashed line in the lower plot
denotes the ideal number of replicas throughout the experiment. 52

3.14 Cumulative Transaction Per Second (TPS) of Waterfall and
HPA autoscalers. 53

4.1 High-level architecture of the Teastore application with multi-
versioning applied to the Recommender microservice. 57

4.2 High-level architecture of a regular Docker service with round-
robin load distribution. 59

4.3 High-level architecture of a service with multi-versioning where
requests are balanced based on a rule-set. 61

4.4 High-level architecture of the Znn application 63
4.5 Containerized deployment of Znn with two different versions of

the Media service. 63
4.6 Shape of the Znn application workload 65
4.7 The Teastore application experiments and the distribution ra-

tio of traffic using software multi-versioning and adaptive load
balancing . 68

4.8 The Znn application experiments using only the multimedia vs
only the text version of the service. Note that the scales on the
y-axes are different. 69

4.9 The Znn application experiment using software multi-versioning
and adaptive load balancing 69

x

Chapter 1

Introduction

1.1 Background

Over the past decade, cloud computing has emerged as the mainstream model

for delivering computational resources and online services. As can be seen in

Figure 1.1, the cloud computing delivery model can be divided into three main

categories: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS),

and Software-as-a-Service (SaaS). The control over the underlying infrastruc-

ture decreases as we go from IaaS to SaaS. IaaS refers to fundamental com-

puting resources such as storage, networking, servers, and other raw resources.

PaaS provides a pre-defined and cloud-based environment for developing and

deploying custom applications. SaaS refers to all cloud-based applications

which are available online and maintained by the service provider [10]. Public

cloud providers such as Google, Amazon, Microsoft, and IBM offer these three

types of cloud computing at a large scale.

Cloud computing provides a wide range of benefits. It reduces infrastruc-

ture costs, improves organizational agility, and makes capacity planning easier

for organizations [31]. Companies and startups can avoid the huge capital

expense for infrastructure ownership that they had to pay up-front in the

past. With on-demand access to computational resources, they can rapidly

work on new ideas, adapt themselves to market needs, and have a shorter

time-to-market. Besides, the risk of overprovisioning and underprovisioning of

resources will be mitigated [33].

Cloud computing has transformed the design, development, and deploy-

1

SaaS

PaaS

IaaS

End Users

Software Developers

IT Administrators

Gmail, Office 365, Dropbox, Google
Drive, Google Docs

Google App Engine, Heroku,
AWS Elastic Beanstalk

AWS Elastic Compute
Cloud (EC2),

Google Compute
Engine,

 Microsoft Azure

Less

More

C
on

tro
l

Figure 1.1: Cloud computing delivery model: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)

ment of software systems. Nowadays, software engineers design software sys-

tems with scalability in mind thanks to cloud elasticity. They favour more

scalable software architectures, such as service-oriented architectures [26]. In

the development phase, developers save time by using cloud services for general

tasks such as authentication, storage, and logging instead of reinventing the

wheel every time they work on a new project. In the deployment phase, the

elasticity of resources and pay-as-you-go cost model make the cloud an ideal

place for deploying applications compared to on-premises servers. Moreover,

infrastructure setup is not a manual process in the cloud and can be automated

using infrastructure as code tools (IaC) (e.g., Chef, Puppet) [26]. In addition,

implementing fault-tolerant mechanisms for server instances and data storage

is no longer the developers’ responsibility. Cloud providers take care of in-

frastructure and are responsible for maintaining and resolving hardware and

software issues [72]. Consequently, developers are free from operational tasks

and can focus solely on the product at hand.

2

1.2 Cloud Applications and Quality of Service

Applications that leverage the cloud computing delivery model are called cloud

applications in general. As Figure 1.2 shows, based on the level of compati-

bility with the cloud environment, cloud applications can be further divided

into three types: cloud-enabled, cloud-aware, and cloud-native. Cloud-enabled

applications originally have been designed in a tightly coupled fashion for the

on-premises static servers and later tweaked to be deployed on the cloud en-

vironment. Cloud-aware applications are in the next level after cloud-enabled

applications. They interact with the cloud platform and take advantage of

different cloud services such as load balancer, storage, service bus, etc. Cloud-

native applications are in the next level and are fully designed and optimized

for the cloud environment [70]. Cloud Native Computing Foundation (CNCF)1

defines cloud-native as: “Cloud native technologies empower organizations to

build and run scalable applications in modern, dynamic environments such

as public, private, and hybrid clouds. Containers, service meshes, microser-

vices, immutable infrastructure, and declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manage-

able, and observable. Combined with robust automation, they allow engineers

to make high-impact changes frequently and predictably with minimal toil.”

Cloud-native applications are scalable, flexible, and platform agnostic. Mi-

croservice and serverless are two popular architectures which are in compliance

with the cloud-native principles.

One fundamental concept regarding cloud services is quality of service

(QoS). QoS is a measurement for the level of availability, reliability, and per-

formance provided by the service residing in the cloud [13]. Availability is the

probability that the service is up and provides the expected operation at a

point in time. For example, six-nines or 99.9999% availability means that the

service is available 99.9999% of the time and may be down only 0.0001% of

the time. Reliability indicates the probability that the service provides the ex-

pected operation correctly and without failure over a stated time period [69].

1Cloud Native Foundation: https://www.cncf.io

3

https://www.cncf.io

Cloud Applications

Cloud-enabled
Applicaions

Cloud-aware
Applications

Cloud-native
Applications

More optimized for the cloud environment

Figure 1.2: Cloud application types based on the level of compatibility with
cloud environment.

Performance shows how well the service carries out the expected operation

in terms of response time and throughput. Cloud providers should maintain

the QoS at a certain level according to the service level agreement (SLA);

otherwise, they will be penalized based on SLA terms. Moreover, failure to

provide advertised QoS according to SLA can lead to customer dissatisfaction

and financial loss of service consumers.

In this thesis, we aim to investigate different ways to improve and maintain

performance as one of the QoS’s dimensions. One of the most influential factors

in having a performant application is compatibility with cloud environments.

Applications designed based on cloud-native principles have a scalable archi-

tecture that can easily benefit from the elasticity of cloud resources to handle

the high traffic load. Considering that the target application has a scalable ar-

chitecture, the next step is to have an effective adaptation mechanism in place

to maintain the application performance. With the increase in application

load, the most straightforward way to maintain the application’s performance

4

is increasing the application capacity by horizontal/vertical scaling. In hori-

zontal scaling (aka scaling out), we increase the application capacity by adding

more instances of the application/application components. In vertical scaling

(aka scaling up), we increase the application capacity by adding more resources

to the current application instances/application components. Cloud providers

use autoscalers to automate the task of increasing and decreasing applica-

tion capacity based on the application load. However, autoscaling may not

be applicable in situations where our budget and computational resources are

limited. In these situations, we can maintain the application performance by

adapting our application and managing the available resources more efficiently.

Therefore, to improve the performance of cloud applications, we identify

the following objectives:

• Redesigning applications with old architectures that suffer from poor

scalability and migrate them to more scalable architectures that follow

cloud-native principles. This objective is accomplished in Chapter 2.

• Developing an effective autoscaling mechanism for applications with scal-

able architectures. This objective is accomplished in Chapter 3.

• Developing a cost-effective approach for maintaining the performance in

situations where autoscaling is not possible. This objective is accom-

plished in Chapter 4.

1.3 Summary of Contributions

In this thesis, we focus on performance as one of the QoS’s dimensions and

explore three ways for improving the performance of cloud applications.

This thesis makes the following contributions:

• We investigate how serverless computing can improve the performance

of cloud applications by migrating a document processing system with

monolithic architecture to a serverless architecture and comparing the

performance of the serverless version with the monolithic version.

5

• We introduce a holistic autoscaling approach for cloud applications with

microservice architecture that uses supervised learning to model the per-

formance of each service in the application and the performance impact

of services on each other.

• We present a cost-effective way for improving the performance of cloud

applications using software multi-versioning. We show that container-

ization enables us to apply multi-versioning to specific components of a

cloud application instead of the whole application to improve the per-

formance.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 discusses the migra-

tion of a FinTech cloud application with monolithic architecture to a serverless

architecture. Chapter 3 presents the proposed machine learning-based ap-

proach for autoscaling of applications with microservice architecture. Chapter

4 presents our cost-effective approach for maintaining the performance of cloud

applications at the level required by service level agreement using software

multi-versioning. Chapter 5 concludes the thesis and presents some directions

for future work.

6

Chapter 2

Migrating from Monolithic to
Serverless: A FinTech Case
Study

Serverless computing is steadily becoming the implementation paradigm of

choice for a variety of applications, from data analytics to web applications,

as it addresses the main problems with serverfull and monolithic architec-

ture. In particular, it abstracts away resource provisioning and infrastructure

management, enabling developers to focus on the logic of the program in-

stead of worrying about resource management which will be handled by cloud

providers. In this chapter, we consider a document processing system used in

FinTech as a case study and describe the migration journey from a monolithic

architecture to a serverless architecture. Our evaluation results show that the

serverless implementation significantly improves performance while resulting

in only a marginal increase in cost. The results presented in this chapter have

been published in ICPE 2020 conference [38].

2.1 Introduction

Serverless computing is a new paradigm for developing applications and ser-

vices, and a natural step in the evolution of cloud computing. It has emerged

through the development of Function-as-a-Service (FaaS) and Backend-as-a-

Service (BaaS) technologies [51]. In this paradigm, the application logic is

broken into functions that are stateless in nature and are left to the server-

7

less platform to manage. The granularity of serverless units has shifted from

functions to stateless containers in recent years [7], [40]. Stateless containers

are similar to stateless functions in the sense that they are triggered by an

event, such as a HTTP request, and after the job execution completes, they

disappear and do not save or carry any state information over to the next

request. However, using stateless containers, developers are free to use the

programming language and libraries of their choice to write code, which is not

the case with stateless functions [41].

By supporting provisioning and autoscaling of resources while offering fine-

grained pay-per-use billing [64], serverless computing has gained the attention

of many enterprise and small-scale companies [5]. Recently, several machine

learning and analytics applications have been successfully migrated to server-

less computing. The Siren distributed machine learning framework [75] and

Graphless serverless graph analysis toolkit [73] are examples of these applica-

tions.

Today, cloud providers, such as Amazon and Google, provide a compre-

hensive list of benefits and caveats for serverless application developers (see

for example AWS Lambda [6] and Cloud Functions [27]). However, the server-

less computing paradigm has a number of disadvantages which have been

explored in the literature. One example is the potential performance degrada-

tion of applications with data intensive and communication dependent tasks

and functions [46], [64], [73]. Thus, whether the transition to a serverless im-

plementation makes sense, in terms of performance and cost, depends on the

target application. This chapter aims to answer this question for a rudimen-

tary financial technology (FinTech) application.

We present a CPU and data intensive FinTech application as a case study

and discuss the migration of this application from its crude monolithic archi-

tecture to a distributed, performant serverless architecture. The actual names

have been removed as requested by our collaborator. We evaluate the system

with serverless architecture in terms of performance and cost, and compare

it with the original system before migration. We present different challenges

and pitfalls that we faced in our implementation journey and discuss how we

8

addressed them. For example, to overcome the performance issue of communi-

cation between services, we used non-blocking I/O, and to meet the resource

constraints of the serverless platform, we divided machine learning models.

In this work, instead of using stateless functions, we use stateless containers

executed in a serverless manner by the Cloud Run platform [40]. The main

contributions of this chapter are as follows:

• We migrate a real-world application with traditional monolithic archi-

tecture to serverless architecture.

• We address the gap in the literature on the challenges of migrating to

serverless architecture by identifying the barriers and challenges in the

process of migrating a monolithic document processing system to server-

less architecture.

• We evaluate the new system with serverless architecture in terms of

performance, scalability and cost, and compare it with the legacy system.

The rest of this chapter is organized as follows. Section 2.2 provides back-

ground information about the terminologies that are used throughout the

chapter. Section 2.3 introduces the case study system which is used in this

study. Section 2.4 explains the migration journey, motivation, challenges, and

the proposed serverless architecture. Section 2.5 introduces the data set used

in this work and evaluates the proposed serverless solution. Section 2.6 reviews

related work on serverless computing, and Section 2.7 concludes the chapter.

2.2 Background

In this section, we provide background information and define the terminology

used throughout this chapter.

2.2.1 Serverless Computing

In serverless computing, despite what its name suggests, we still have servers

that work in the background, but they are not visible to cloud users [51]. The

9

cloud provider takes care of infrastructure management, allowing the develop-

ers to focus on the business logic of their applications [46]. Hence, as a result

the developers do not need to worry about allocating resources and preventing

under/over provisioning of resources. As the number of requests for a service

increases, the serverless platform scales the number of running instances to

accommodate the increased demand. Similarly, when there is no workload, it

scales them down to zero. The cost model is also different from traditional

computation resources in the cloud. In serverless platforms, users only pay for

the time that they use a specific resource.

The serverless paradigm also brings several benefits to the cloud providers.

Specifically, it benefits cloud providers by increasing the utilization of their

servers that might not be appealing to users or platforms such as ARM and

RISC-V to handle computations [51]. Moreover, multitenancy reduces the

amount of idle infrastructure, thereby reducing the degree of under-utilization.

These advantages make serverless appeal to cloud providers to the extent that

today all main cloud providers offer serverless solutions, including Amazon

AWS Lambda [6], Google Cloud Functions [27], and open source projects such

as Apache OpenWhisk [12].

2.2.2 Monolithic Architecture

Monolithic architecture is a simple way of designing and implementing soft-

ware systems. In monolithic architecture, all of the component are combined

into a single tightly coupled piece of software. Applications with monolithic

architecture have a single code base and are deployed as a single unit in the

runtime environment. For brand new projects, this architecture may work

well at the beginning, but as requirements evolve this architecture makes it

more difficult for developers to adapt. This is one of the main disadvantages

of monolithic architecture.

10

2.3 A FinTech Case Study

We focus on a document processing system which is commonly used by finan-

cial institutions and, in particular, by our FinTech collaborator as a case study.

The document processing pipeline is a replacement for the laborious tasks of

reading, classifying, and extracting information from financial documents such

as bank statements, balance sheets, letters, etc. Historically, these tasks were

done manually in banks and financial institutions but have been automated in

the past couple of years.

The first version of this system is implemented in the Python programming

language and has a monolithic architecture. As shown in Figure 2.1, this

system has five main components:

• PDF to Image Converter: Converts each page of a PDF document to

image so that it can be processed by other components. This component

is implemented using the PDF2Image library [16].

• Page Classifier: Gets an image as input and classifies it into one of the

predefined document classes. This component is implemented using the

Keras library [24] with Tensorflow backend [62].

• Preprocessing: Applies image processing and enhancement techniques

to the input image, making it ready for the OCR component. This

component is implemented using the OpenCV library [18].

• Optical Character Recognition (OCR): Extracts the text content from

the input image. This component is implemented using the Tesseract

OCR Engine [68].

• Database: Indexes and stores the output of the document processing

pipeline for each input document.

The output of this system is fed to a Key-Value extractor system which is ca-

pable of extracting key-value pairs that the financial institutions are interested

in.

11

PDF to Image

Preprocessing

Page Classifier

OCR

Database

Monolith

Figure 2.1: Architecture of the Original document processing system before
migration. Arrows denote dependencies between modules.

2.4 Migration Journey

In this section, we walk through the migration journey and describe the chal-

lenges faced in each step. We start with the motivation behind the transition

from a monolithic architecture to a serverless architecture. At last, we present

the new serverless architecture.

2.4.1 Motivation

The original document processing system works well for a small number of

input documents; however, it cannot handle a large number of documents

in a reasonable amount of time within the non-functional requirements of

large financial institutions. The two main issues with the original system are

therefore speed and scalability.

We can imagine different ways to improve the performance of this sys-

tem and make it process documents faster. For example, we can use multi-

threading and parallel processing [78], but multi-threading may not be the

most cost-effective solution because of the extra effort needed to tailor an

existing software solution to a multi/many core execution environment. Fur-

thermore, to achieve the best multi/many core performance, there is a need

for certain infrastructure and hardware scale-ups which may not be afford-

12

able. For these reasons, the multi-threaded solutions could be less appealing

compared to the serverless alternative.

For scalability, due to monolithic nature of the system, the only option for

scaling without changing the implementation is vertical scaling by adding more

resources to the machine that runs the application. This approach provides

limited scalability and at some point cannot catch up with the growing demand

[1]. Thus, the main motivation for migrating to the serverless architecture is

to improve the performance and scalability of the system.

2.4.2 Breaking the Monolith

We started the migration journey by decoupling the system and breaking it

down to a number of well-defined and loosely coupled services. In a loosely

coupled system, components are separated so that they have the minimum

knowledge of each other and changes in the implementation of one component

do not impact other components. As depicted in Figure 2.1, it is possible

to identify four well-defined services in the original monolithic architecture.

These four services are: PDF to image conversion, page classification, prepro-

cessing, and OCR.

After further consideration and taking into account the communication

overhead and also the relationship between services, we decided to merge the

preprocessing and OCR services into one service. This resulted in three pri-

mary services that together comprise the document processing pipeline.

Afterward, we started to package each service along with dependencies into

a Docker container that follows the stateless principle of serverless computing.

Each service resides in a container and listens for HTTP requests and input

arguments. We trigger the stateless services via HTTP request and pass them

the necessary arguments. The page classification service takes the image of a

document as input and returns the prediction result as output. The input for

the OCR service is also the image of the document; it returns the extracted

text from the image.

However, after deploying this first architecture, we faced several challenges

that led to modifying this architecture. In the next section, we review these

13

first	part	of	the	neural	network
(Page	Classifier	1)	

Second	part	of	the	neural	network
(Page	Classifier	2)	

output	layer

input	layer

output	of	first
part	is	the	input
of	second	part

hidden	layer hidden	layer hidden	layer hidden	layer hidden	layer

Figure 2.2: Structure of page classifier neural network after splitting.

challenges and changes that we implemented.

2.4.3 Migration Challenges

After implementing the first version of the serverless document processing

pipeline based on the architecture in the previous section, we faced two main

challenges. They can be attributed to the constraints that exist in the imple-

mentation and serverless solution provided by the cloud provider, which in our

case was Google Cloud Platform (GCP).

The first challenge is the constrained resource of the serverless platform.

This challenge is mainly due to the limitations and constraints that GCP im-

poses on instances of Cloud Run service. In particular, the maximum amount

of memory that can be allocated to a Cloud Run service is 2 GB, but the page

classification service needs more memory. To mitigate this challenge, we split

the classifier component into two parts by breaking the trained neural network

model, as shown in Figure 2.2. The first part performs a part of the prediction

task and sends the output of the last hidden layer to the second part, which

subsequently provides us with the final prediction, i.e., the document class.

Therefore, the page classification service is replaced by two separate services

Page Classifier 1 and Page Classifier 2.

The second challenge was related to the way that serverless services com-

municate with each other. In the first implementation, synchronous HTTP

14

Pub/Sub

Dispatcher

Coordinator

Coordinator

Coordinator

Coordinator

Coordinator

Page Classifier 1

Page Classifier 2

OCR

Page Classifier 1

Page Classifier 1

Page Classifier 2

Page Classifier 2
Document 1

Document 2

Document 3

Document 4

Document n

Page 1

Page 2

Page n

Page 1

Page 2

Page n

Message: {Bucket, Documents}

BigQuery

OCR

OCR

Results

PC1 output

PC1 output

PC1 output

output

output

output

output

output

output

output

output

output

Figure 2.3: Serverless Architecture of Document processing pipeline.

requests were used for communication between services. So when we send an

HTTP request in a synchronous manner, it blocks the execution of the program

and waits for the response to arrive. In scenarios where we can execute other

tasks at the same time, this paradigm diminishes the performance of the sys-

tem and leads to wasting a considerable amount of computation time without

doing useful computation, considering the cost model of serverless platform.

To deal with this problem, we replaced synchronous HTTP requests with asyn-

chronous HTTP requests for communication between services. Asynchronous

HTTP requests follow the non-blocking programming paradigm in which after

sending a request, the program can continue running other statements and do

some useful task until the response arrives. Hence, in the document process-

ing pipeline, when we send an asynchronous HTTP request, the program can

continue sending other I/O requests, aggregate, and store the results of re-

quests and complete the job in a shorter time in comparison with synchronous

mode. We observe in the evaluation section that using asynchronous HTTP

requests instead of synchronous HTTP requests improves the performance of

the system tremendously. In the next section, we present the final serverless

architecture after migration for the document processing pipeline.

15

2.4.4 Serverless Architecture

Figure 2.3 provides a high-level overview of the serverless architecture of the

document processing pipeline after migration. In the new architecture, we

have the following serverless services:

• Dispatcher: Receives a Pub/Sub message that contains the bucket name

and the list of document names. It then assigns each document to an

instance of the coordinator service.

• Coordinator: Plays the role of an orchestrator in the pipeline. This ser-

vice is responsible for executing the pipeline logic on a single document,

aggregating the results, and storing the results in BigQuery.

• Page Classifier 1: Gets an image as input and performs the first part

of the classification task and sends the last hidden layer output to the

coordinator service.

• Page Classifier 2: The input for this service is the output of Page Clas-

sifier 1. It executes the second part of the classification task and returns

the final prediction to the coordinator service.

• OCR: Gets an image as input, extracts the text content from the image

after preprocessing, and sends it to the coordinator service.

In this architecture, we leverage the inherent parallelism in the serverless

platform which is the ability to launch a new service instance per request to

speedup the document processing pipeline. As Figure 2.3 shows, in this new

architecture, the coordinator service gets a document as input and splits the

document into pages. Next it feeds each page to the Page Classifier 1 and OCR

services at the same time using asynchronous HTTP requests. This means that

each page is sent to a separate instance of OCR and Page Classifier 1 services

and processed in parallel with other pages; this leads to higher throughput

and increased performance.

Page Classifier 1 carries out the first part of the whole classification job

and sends the output of the last hidden layer to the Page Classifier 2 through

16

Client (Pub/Sub)Client (Pub/Sub)
Request

Dispatcher

Request

Dispatcher
CoordinatorCoordinator

Send(Bucket, Documents)

Invoke(Document1)

Page Classifier 1Page Classifier 1 Page Classifier 2Page Classifier 2 OCROCR

Invoke(Page1)

Invoke(Page1)

Hidden Layer Output

Invoke(Hidden Layer Output)

Prediction

BigQueryBigQuery

Write(Resutls)

Text

200 OK

Figure 2.4: Sequence diagram of serverless document processing pipeline for
one document with one page.

the coordinator service. Page Classifier 2 carries out the rest of the classifi-

cation job and returns the final prediction to the coordinator service. In the

OCR service, each page is preprocessed first and the text content is extracted

and returned to the coordinator service. The coordinator service receives the

results from all services, aggregates and stores them in BigQuery.

To simply show the interaction between different serverless services in the

new architecture, we pass a single document with one page to the pipeline as

depicted in Figure 2.4.

2.5 Evaluation

In this section, we evaluate the serverless document processing pipeline in

terms of performance, scalability, and cost, and compare it with the old mono-

lithic version.

2.5.1 Dataset Description

Due to privacy issues regarding financial documents, we cannot publicly share

the dataset of financial documents that we used in our system; instead we

take advantage of the publicly available RVL-CDIP dataset for classifier train-

ing and performance/cost evaluation of the new system1[45]. This dataset

contains 400,000 document images in 16 different classes. These 16 classes

are letter, form, email, handwritten, advertisement, scientific report, scientific

1https://www.cs.cmu.edu/ aharley/rvl-cdip

17

publication, specification, file folder, news article, budget, invoice, presen-

tation, questionnaire, resume, and memo. We stitch random samples from

RVL-CDIP together to form a synthetic dataset of PDFs between 7-15 pages

long.

2.5.2 Experimental Setup

We deploy each service in the proposed serverless architecture on GCP as a

Cloud Run service. 2 GB of memory is allocated to each instance of the service.

We also run the monolithic version on two separate virtual machines with

different specifications on GCP to observe the effect of adding more resources

on the scalability and performance of the monolithic version. The first virtual

machine has 4 vCPU and 15 GB of memory, while the second one has 96 vCPU

and 360 GB of memory.

We conduct two experiments. In the first experiment, we compare the

serverless architecture with the monolithic one in terms of performance and

cost by benchmarking both systems on a set of 100 documents that have be-

tween 7 and 15 pages. In the second experiment, we evaluate the performance

and scalability of the new architecture as the number of input documents in-

creases. We repeat each experiment three times and ignore the result of the

first run to eliminate the cold start effect. Hence, we report the average of the

results of the second and third runs.

2.5.3 Results

Table 2.1 shows the performance and cost results obtained for the old system

and the new system on 100 documents in the first experiment. It can be

readily seen that the serverless version is about 93x faster than the monolithic

version; it processes the documents in about four minutes, whereas it takes

about six hours for the monolithic version with 4 vCPU and 15 GB of memory

to finish the same job. Turning our attention to cost, the monolithic version

with 4 vCPU and 15 GB of memory turns out to be about $1.2 cheaper than

serverless version. Note that we have not taken into account the idle time for

the virtual machine in our cost calculations. The cost for the virtual machine

18

Table 2.1: Comparing the monolithic architecture with serverless architecture
in terms of performance and cost

Architecture Spec Turnaround Time Cost

Monolithic

(Single VM)

4 vCPU, 15 GB

(n1-standard-4)
∼ 6.27 h ∼ $1.23

Monolithic

(Single VM)

96 vCPU, 360 GB

(n1-standard-96)
∼ 5.07 h ∼ $23.12

Serverless

(Cloud Run)
1 vCPU, 2 GB ∼ 4.05 min ∼ $2.43

is only for the duration that it processes the document, so if we consider the

idle time in the cost calculation (which is the case in the real-world setting),

it would become more expensive than the serverless solution.

We also repeated the first experiment for the monolithic version on a more

powerful virtual machine with 96 vCPU and 360 GB of memory to understand

to what extent we can improve the performance and reduce the turnaround

time by adding more resources. As expected, adding more resources did not

greatly improve the performance despite increasing the cost dramatically. We

attribute this to the sequential execution of the monolithic version.

In the second experiment, we change the number of input document to the

serverless pipeline from 1 to 500 documents to measure the performance of the

new system on different loads. Figure 2.5 illustrates the turnaround time as

we increase the number of input documents. The x-axis of this figure shows

the total number of documents submitted to the system where each document

consists of multiple pages (11 pages on average).

Due to the limit set by GCP, each Cloud Run service can currently scale to

a maximum of 1000 instances simultaneously. Thus, the number of instances

varies between 0 to 1000 based on the input workload. As we invoke some

services such as Page Classifier 1 for each page, at some point, these services

reach this instance limit, causing the next requests to experience a waiting

time before getting service. Therefore, we observe an almost linear increase in

the turnaround time as the number of documents increases.

19

0 100 200 300 400 500
Number of Documents

0

100

200

300

400

500

600

Tu
rn

ar
ou

nd
 T

im
e

(s
ec

)

Figure 2.5: The turnaround time of jobs in the serverless document processing
pipeline.

2.6 Related Work

Maintaining the application performance under heavy loads demands a scal-

able architecture. For applications with traditional software architectures,

this goal can be achieved by migrating to more scalable architectures such

as serverless architecture. In recent years, due to the appealing characteris-

tics of FaaS serverless solutions such as implicit autoscaling and fine grained

billing benefits, many companies and developers have migrated their solutions

to the serverless architecture to benefit from these advantages and provide

better services to their costumers. Such companies include Reuters, iRobot,

Autodesk and many more that reportedly use AWS Lambda to better serve

their customers and internal processes [8].

Toader et al. [73] proposed a detailed implementation of a serverless graph

processing framework implemented with AWS Lambda which benefits from

automated resource autoscaling and provisioning. Graphless abstracts away

resource management and configuration from the users. This will benefit end

20

users who are not familiar with HPC concepts. However, the authors have

shown that because of the variability of network characteristics under cer-

tain communication intensive workloads, the Graphless efficiency degrades.

Wang et al. [75] proposed a serverless framework for machine learning tasks,

called Siren, which is fully asynchronous and achieves different levels of par-

allelism and elasticity. Siren, through stateless serverless functions, much like

Graphless eliminates the burden of resource management and scaling machine

learning algorithms imposed on the end users by the current well established

serverfull frameworks. The Siren framework is deployed on the AWS Lambda

serverless platform. Kurz et al.[57] leveraged the inherent parallelism in the

serverless execution model and introduced a serverless architecture to esti-

mate double machine learning models. Adzic et al. [5] discussed economic

and architectural benefits of serverless computing and study two real world

services, namely MindMup and Yubl [5], that have been migrated to and

adopted serverless computing. They discussed how MindMup and Yubl could

benefit from serverless deployment; these benefits include reduced time to fea-

ture delivery and time to market for developers and faster request processing

for customers. However, it is mentioned that serverless platforms are not well

suited for mission critical and time sensitive tasks [5].

2.7 Conclusion

With the advent of serverless computing, several monolith applications which

were previously developed for a single-core or multi-core execution environ-

ment are implemented from scratch following the serverless paradigm to take

advantages of auto-scaling and automated resource provisioning. In this chap-

ter, by observing the gap in the literature and the lack of studies concerning the

challenges of migration to serverless and performance of the serverless imple-

mentation of financial services, we present the migration journey of a FinTech

application from its monolithic form to a high-performance serverless imple-

mentation. Based on our evaluations, the proposed serverless implementation

outperforms the previous monolith serverfull implementation by 93 times with

21

a marginal increase in cost. Our cost calculation does not take into account the

under utilization of the serverfull infrastructure and the investment required to

build the serverless system. In conclusion, the serverless implementation pro-

vides unparalleled speedup and performance improvement over the serverfull

implementation without making drastic changes to the software design.

22

Chapter 3

A Holistic Machine
Learning-Based Autoscaling
Approach for Microservice
Applications

Microservice architecture is the mainstream pattern for developing large-scale

cloud applications as it allows for scaling application components on demand

and independently. By designing and utilizing autoscalers for microservice

applications, it is possible to improve their availability and reduce the cost

when the traffic load is low. In this chapter, we propose a novel predictive

autoscaling approach for microservice applications which leverages machine

learning models to predict the number of required replicas for each microser-

vice and the effect of scaling a microservice on other microservices under a

given workload. Our experimental results show that the proposed approach in

this work offers better performance in terms of response time and throughput

than HPA, the state-of-the-art autoscaler in the industry, and it takes fewer

actions to maintain a desirable performance and quality of service level for the

target application. The results presented in this chapter will be published in

CLOSER 2021 conference [39].

23

3.1 Introduction

Microservice is the most promising architecture for developing modern large-

scale cloud software systems [29]. It has emerged through the common patterns

adopted by big tech companies to address similar problems, such as scalabil-

ity and changeability, and to meet business objectives such as reducing time

to market and introducing new features and products at a faster pace [65].

Traditional software architectures, such as monolithic architecture, are not ca-

pable of providing such level of efficiency [29]. Companies like SoundCloud,

LinkedIn, Netflix, and Spotify have adopted the microservice architecture in

their organization in recent years and reported success stories of using it to

meet their non-functional requirements [20], [48], [63], [65].

In the microservice paradigm, the application is divided into a set of small

and loosely-coupled services that communicate with each other through a

message-based protocol. Microservices are autonomous components which can

be deployed and scaled independently.

The Microservice architecture provides a wide range of benefits. In terms

of software development, microservice architecture provides higher agility, bet-

ter comprehensibility, and simplified testability. New features can be added to

the system more frequently without changing the whole system or too much

configuration. In the development process, each team usually works on a ser-

vice independent of other teams, which leads to an increase in the speed of

development. The language and tools can also be different in different teams

so that the right tool and programming language can be used according to the

service requirement. The whole system is also easier to maintain thanks to

the replaceability of components. Microservice architecture also improves the

team’s understanding of the whole system. In the case of monolithic architec-

ture, it is not easy to understand the whole system, and team members usually

know just about the components that they are involved in their development

process. From the performance perspective, microservice systems have better

availability and runtime scalability compared to monolithic systems since each

service can be managed and scaled independently [65], [71].

24

One of the key features of the microservice architecture is autoscaling. It

enables the application to handle an unexpected demand growth and continue

working under pressure by increasing the system capacity. While different

approaches have been proposed in the literature for autoscaling of cloud ap-

plications [32], [56], [58], [60], [67], most related work is not tailored for the

microservice architecture [67]. This is because a holistic view of the microser-

vice application is not incorporated in most related work; hence each service in

the application is scaled separately without considering the impact this scaling

could have on other services. To remedy the shortcoming of existing solutions,

a more effective and intelligent autoscaler can be designed for microservice

applications, a direction we pursue in this chapter.

We introduce Waterfall autoscaling (hereafter referred to as Waterfall for

short), a novel approach to autoscaling microservice applications. Waterfall

takes advantage of machine learning techniques to model the behaviour of

each microservice under different load intensities and the effect of services on

one another. Specifically, it predicts the number of required replicas for each

service to handle a given load and the potential impact of scaling a service

on other services. This way, Waterfall avoids shifting load or possible bot-

tlenecks to other services and takes fewer actions to maintain the application

performance and quality of service metrics at a satisfactory level. The main

contributions of our work are as follows:

• We introduce data-driven performance models for describing the be-

haviour of microservices and their mutual impacts in microservice appli-

cations.

• Using these models, we design Waterfall which is a novel autoscaler for

microservice applications.

• We evaluate the efficacy of the proposed autoscaling approach using Tea-

store, a reference microservice application, and compare it with a state-

of-the-art autoscaler used in the industry.

The rest of this chapter is organized as follows. Section 3.3 reviews re-

25

Service 3

Service 1

Service 2

R1

R2

R3

Figure 3.1: Interaction of services in an example microservice application.

lated work on autoscaling and Section 3.2 provides a motivating example.

Section 3.4 presents the proposed machine learning-based performance models

for microservice applications. Section 3.5 describes the design of Waterfall au-

toscaler. Section 3.6 evaluates the proposed autoscaling technique, and Section

3.7 concludes the chapter.

3.2 Motivating Scenario

A microservice application usually consists of multiple services interacting with

each other to accomplish their job. The rate at which a service sends requests

to the downstream services depends on the rate at which it receives requests

and the amount of resources available for processing these requests. Thus,

scaling a service that may invoke a group of other services might subsequently

change the load on those services. Consider the interaction between three ser-

vices in an example microservice application depicted in Figure 3.1. Service 1

calls Service 2 and Service 3 to complete some tasks. If Service 1 is under heavy

load (R1), scaling Service 1 would cause an increase in the load observed by

Service 2 (R2) and Service 3 (R3). If we predict how scaling Service 1 degrades

the performance of Service 2 and Service 3, we can avoid the shift in the load

and a possible bottleneck from Service 1 to Service 2 and Service 3 by scaling

Service 2 and Service 3 proactively at the same time as Service 1.

To further examine the cascading effect of scaling a service in a microser-

vice application on other services, we conducted an experiment using an ex-

26

ample microservice application called Teastore [55]. Teastore1 is an emulated

online store for tea and tea-related products. It is a reference microservice

application developed by the performance engineering community to provide

researchers with a standard microservice application that can be used for test-

ing and evaluating research in different areas such as performance modelling,

cloud resource management, and energy efficiency analysis [55]. Figure 3.2

shows services in the Teastore application and their interactions. The solid

lines show the dependencies between services, and dashed lines indicate that

the service call happens only once at startup time. Teastore includes five

primary services: Webui, Auth, Persistence, Recommender, and Image. We-

bui is the front-end service that users interact with and is responsible for

rendering the user interface. Auth stands for authentication; it verifies the

user’s credentials and session data. The Persistence service interacts with the

database and performs create, read, update, and delete (CRUD) operations.

The Recommender service predicts the user preference for different products

and recommends appropriate products to users using a collaborative filtering

algorithm. The Image service provides an image of products in different sizes.

In addition to main services, Teastore has another component named Registry,

which is responsible for service registration and discovery.

As can be seen in Figure 3.2, depending on the request type, the Webui

service may invoke Image, Persistence, Auth, and Recommender services. We

generate a workload comprising different types of requests so that Webui ser-

vice calls all of these four services. Keeping the same workload intensity, we

increased the number of replicas for the Webui service from 1 to 5 and mon-

itored the request rate of Webui in addition to the downstream rate of the

Webui service to other services that each has one replica. For the two services

m and n, we define the request rate of service m, and the downstream rate of

service m to service n as:

Request Rate(m) = number of requests service m receives per second (3.1)

1https://github.com/DescartesResearch/TeaStore

27

https://github.com/DescartesResearch/TeaStore

Webui

PersistenceImage Auth Recommender

Registry

Figure 3.2: Architecture of the Teastore application.

Downstream Rate(m,n) = number of requests service m sends to service n

per second (3.2)

For instance, in Figure 3.1, Request Rate(Service 1) is equal to R1 and Down-

stream Rate(Service 1, Service 2) is equal to R2.

Table 3.1 shows the request rate of Webui and its downstream rate to

each service for the different number of replicas. As can be seen, scaling the

Webui service leads to an increase in its request rate, which in turn increases

the downstream rate of the Webui service to other services. Therefore, under

heavy load, scaling the Webui service increases the load on the other four

services. Figure 3.3 shows the results of our experiment. The left plot and

right plot show the request rate and total downstream rate of the Webui service

for different number of replicas, respectively. Error bars indicate the 95%

confidence interval.

The cascading effect of microservices on each other motivates the idea of

having an autoscaler that takes this effect into account and takes action accord-

ingly. Autoscalers that consider and scale different services in an application

independently are unaware of this relationship, thereby making premature de-

cisions that could lead to extra scaling actions and degradation in the quality

28

1 2 3 4 5
Number of Replicas

400

600

800

1000

1200

1400
Re

qu
es

t R
at

e
(p

er
 se

c)

1 2 3 4 5
Number of Replicas

3000

4000

5000

6000

7000

To
ta

l D
ow

ns
tre

am
 R

at
e

(p
er

 se
c)

Figure 3.3: Request rate and total downstream rate of Webui under the same
load intensity for different numbers of replicas.

of service of the application. In this work, we introduce a novel autoscaler to

address this shortcoming in existing autoscalers.

3.3 Related Work

Autoscaling is a widely used and well-known concept in cloud computing,

mainly due to the elasticity and pay-as-you-go cost model of cloud services.

With the shift in the runtime environment of microservice applications from

Table 3.1: Request Rate and Downstream Rate of the Webui service to each
service. The number of replicas for the Webui service changes from 1 to 5.

Monitored Metric 1 2 3 4 5

Request Rate(Webui) 480 936 1334 1438 1445

Downstream Rate(Webui,Persistence) 1083 2108 3005 3239 3253

Downstream Rate(Webui,Auth) 482 938 1337 1441 1447

Downstream Rate(Webui,Image) 562 1094 1559 1680 1688

Downstream Rate(Webui,Recommender) 121 235 334 360 362

29

bare-metal servers to more fine-grained environments, such as virtual machines

and containers in the cloud, autoscaling has become an indispensable part of

microservice applications. The autoscalers can be categorized based on differ-

ent aspects from the underlying technique to the decision making paradigm

(e.g., proactive or reactive) and the scaling method (e.g., horizontal, vertical,

or hybrid) [67]. Based on the underlying technique, autoscalers can be clas-

sified into five categories: rule-based methods, application profiling methods,

analytical modelling methods, and machine learning-based methods.

Rule-based autoscalers act based on a set of predefined rules to scale and

estimate the amount of necessary resources for provisioning. This type of au-

toscalers is common in the industry and usually serves as the baseline [67].

Products such as Amazon AWS Autoscaling service [11] and Kubernetes Hor-

izontal Pod Autoscaler (HPA) [56] fall into this group. Wong et al. [58] pro-

posed two rule-based autoscalers similar to Kubernetes HPA for microservices,

namely HyScaleCPU and HyScaleCPU+Mem. HyScaleCPU uses both horizontal

and vertical scaling to scale each microservice in the target application sep-

arately based on CPU utilization. It gives priority to vertical scaling and

applies horizontal scaling only if the required amount of resources cannot be

acquired using vertical scaling. HyScaleCPU+Mem operates similarly except that

it considers memory utilization in addition to CPU utilization for making the

scaling decision. Although rule-based autoscalers are easy to implement, they

typically need expert knowledge about the underlying application for tuning

the thresholds and defining the scaling policies [67].

Application profiling methods measure the application capacity with a va-

riety of configurations and workloads and use this knowledge to determine the

suitable scaling plan for a given workload and configuration. For instance, Fer-

nandez et al. [32] proposed a cost-effective autoscaling approach for single-tier

web applications using heterogeneous Spot instances [9]. They used applica-

tion profiling to measure the processing capacity of the target application on

different types of Spot instances for generating economical scaling policies with

a combination of on-demand and Spot instances.

In autoscalers with analytical modelling, a mathematical model of the sys-

30

tem is used for resource estimation. Queuing models are the most common

analytical models used for performance modelling of applications in the cloud.

In applications with more than one component, such as microservice applica-

tions, a network of queues is usually considered to model the system. Gias et

al. [37] proposed a hybrid (horizontal+vertical) autoscaler for microservice ap-

plications based on a layered queueing network model (LQN) named ATOM.

ATOM uses a genetic algorithm in a time-bounded search to find the opti-

mal scaling strategy. The downside of modelling microservice applications

with queuing network models is that finding the optimal solution for scaling

is computationally expensive. Moreover, in queueing models, measuring the

parameters such as service time and request mix is non-trivial and demands a

complex monitoring system [67].

Search-based optimization methods use a meta-heuristic algorithm to search

the state space of system configuration for finding the optimal scaling decision.

Chen et al. [22] leveraged a multi-objective ant colony optimization algorithm

to optimize the scaling decision for a single-tier cloud application with respect

to multiple objectives.

Machine learning-based autoscalers leverage machine learning models to

predict the application performance and estimate the required resources for

different workloads. Machine learning techniques can be divided into regres-

sion and reinforcement learning methods. Regression-based methods usually

find the relationship between a set of input variables and an output variable

such as resource demand or a performance metric. Wajahat et al. [74] pro-

posed a regression-based autoscaler for autoscaling of single-tier applications.

They considered a set of monitored metrics to predict the response time of the

application, and based on predictions, they increased or decreased the num-

ber of virtual machines assigned to the application on OpenStack. Jindal et

al. [50] used a regression model to estimate the microservice capacity (MSC)

for each service in a microservice application. MSC is the maximum number

of requests that a microservice with a certain number of replicas can serve per

second without violating the service level objective (SLO). They obtained this

value by sandboxing and stress-testing each service for several configuration

31

deployments and then fitting a regression model to the collected data. In rein-

forcement learning approaches, an agent tries to find the optimal scaling policy

for each state of the system (without assuming prior knowledge) through in-

teraction with the system. Iqbal et al. [49] leveraged reinforcement learning

to learn autoscaling policies for a multi-tier web application under different

workloads. They identified the workload pattern from access logs and learned

the appropriate resource allocation policy for a specific workload pattern so

that SLO is satisfied and resource utilization is minimized. The drawback of

reinforcement learning methods is the poor performance of autoscalers at the

early stages of deployment because it takes some time for the reinforcement

learning model to learn the optimal policy. Moreover, machine learning has

been used for workload prediction in proactive autoscaling. These methods use

time series forecasting models to predict the future workload and provision the

resources ahead of time based on the prediction for the future workload. Coul-

son et al. [28] used a stacked LSTM [47] model to predict the composition of

the next requests and scale each service in the application accordingly. Ab-

dullah et al [2] introduced a proactive autoscaling method for microservices in

fog computing micro data centers. They predict the incoming workload with

a regression model using different window sizes and identify the number of

containers required for each microservice separately. The main problem with

these methods is that they can lead to dramatic overprovisioning or under-

provisioning of resources [67] owing to the uncertainty of workload arrivals,

especially in the news feed and social network applications.

3.4 Predicting Performance

This section presents machine learning models adopted for performance mod-

elling of microservice applications. These models are at the core of our au-

toscaler for predicting the performance of each service and possible variations

in performance as a result of scaling another service. Hence, we utilize two

machine learning models for each microservice which are described in the fol-

lowing sections.

32

CPU Model

Replica

Request Rate
CPU Utilization

Figure 3.4: Input features and the predicted value of the CPU model.

3.4.1 Predictive Model for CPU Utilization

The CPU Models captures the performance of microservices in an application

in terms of CPU utilization. CPU utilization is a good proxy for estimating the

workload of a microservice [43]. Therefore, we use the average CPU utilization

of the microservice replicas as the performance metric for scaling decisions.

Depending on the target performance objective, this metric can be replaced

with other metrics, such as response time and message queue metrics.

As Figure 3.4 demonstrates, the CPU Model takes the number of service

replicas and the request rate of service as input features and predicts the

service’s average CPU utilization. In other words, this model can tell us what

would be the average CPU utilization of service under a specific load.

3.4.2 Predictive Model for Request Rate

The Request Model predicts the new request rate of a microservice after scaling

and changing the number of service replicas. As shown in Figure 3.5, we feed

the current number of service replicas, the current average CPU utilization, the

current request rate, and the new number of service replicas as input features

to the Request Model to predict the new request rate for the service. The

current replica, current CPU utilization, and current request rate describe the

state of the service before scaling. The new replica and new request rate reflect

the state of the service after scaling. We use the output of the Request Model

for a given service to calculate the new downstream rate of that service to

other services. Thus, the Request Model helps us predict the effect of scaling

a service on other services.

As we discussed in Section 3.2, any changes in the request rate of a service

in a microservice application might lead to changes in the downstream rate

33

Request Model

Current Replica

New Request Rate
Current Reques Rate

Current CPU Utilization
New Replica

Figure 3.5: Input features and the predicted value of the request model.

of that service to other services. However, we observed that under the same

workload intensity, when we scale a service, the downstream rate of that ser-

vice to another service changes linearly with respect to its request rate. For

instance, we used the results from Section 3.2 in Table 3.1 and divided the

downstream rate of Webui service to other services by its request rate and

produced Table 3.2. Consequently, when we scale a service, if we have the

new request rate after scaling, we can calculate its new downstream rate to

other services. We achieve this goal through Request Model. For example,

according to Table 3.1 for one replica Request Rate(Webui) ≈ 480 and Down-

stream Rate(Webui,Persistence) ≈ 1083. Moreover, from Table 3.2 we know

that for all replica counts, Downstream Rate(Webui,Persistence) / Request

Rate(Webui) ≈ 2.25. Therefore, if we scale out the Webui service to two repli-

cas and have the new value for Request Rate(Webui) as 936, we can estimate

the new Downstream Rate(Webui,Persistence) by multiplying the new Request

Rate(Webui) by 2.25 which will be 936 * 2.25 ≈ 2106. The reason for the

difference between the calculated value (2106) and the real value (2108) for

the new Downstream Rate(Webui,Persistence) is that numbers in Table 3.1

and Table 3.2 are rounded due to lack of space.

3.4.3 Data Collection

To train CPU Model and Request Model for each microservice, we needed to

collect two datasets per microservice. The data collection for each microservice

is performed independent of other services. We deploy enough number of

replicas from other services to avoid any limitations imposed by other services

on the target service for data collection.

The dataset for CPU Model includes three metrics: the number of replicas,

34

Table 3.2: The ratio of Downstream Rate values of Webui service to its Request
Rate for different number of replicas under the same workload intensity.

Downstream Rate/Request Rate 1 2 3 4 5

Downstream Rate(Webui,Persistence)/

Request Rate(Webui)
2.25 2.25 2.25 2.25 2.25

Downstream Rate(Webui,Auth)/

Request Rate(Webui)
1.00 1.00 1.00 1.00 1.00

Downstream Rate(Webui,Image)/

Request Rate(Webui)
1.17 1.17 1.17 1.17 1.17

Downstream Rate(Webui,Recommender)/

Request Rate(Webui)
0.25 0.25 0.25 0.25 0.25

the request rate per second, and the average CPU utilization of replicas. Each

data point results from applying a workload with a fixed number of threads

for 12 minutes to the front-end service. At the end of each run, we collect

each metric’s values during this period and use their mean as the value of

the metric for that data point. Note that we ignored data values for the first

and last minute of each run to exclude the warm-up and cool-down periods.

We consider a different number of replicas for the target service, and for each

number of replicas, we change the number of threads to increase the number

of requests until we reach the saturation point for that specific number of

replicas. For instance, for one replica of an example service, we apply the

workload with 1, 2, 3, 4, and 5 threads, resulting in five data points.

The Request Model dataset contains five metrics: the current number of

replicas, the current request rate per second, the current average CPU uti-

lization of replicas, the new number of replicas, and the new request rate per

second. Each data point for this dataset results from the merging of two runs

from the CPU Model dataset with the same number of threads but a different

number of replicas. For example, we merge the result for the run with one

replica and five threads with the result for two replicas and five threads to

generate a data point for the Request Model dataset. More specifically, we get

the current replica, current CPU utilization, and current request rate from the

35

Thread Replica Request Rate CPU Utilizaion
n x y z

Thread Replica Request Rate CPU Utilizaion
n x' y' z'

Input Features Target Feature

Thread OId Replica Old Request Rate Old CPU Utilizaion New Replica New Request
n x y z x' y'

Input Features Target Feature

CPU Model Dataset
Request Model Dataset

Figure 3.6: The construction of datasets for CPU Model and Request Model.
Request Model dataset is built by merging data points from the CPU Model
dataset.

first run and the new replica and new request rate from the second run.

Figure 3.6 shows an example data point for CPU Model and Request Model

datasets. The data point for Request Model is a combination of two runs that

have n threads with x and x′ replicas, respectively.

3.4.4 Model Training Results

We trained CPU Model and Request Model for all microservices in the Teas-

tore application using datasets created from collected data. Each dataset was

split into training and validation sets. The training sets and validation sets

contain 80% and 20% of data, respectively. We used Linear Regression, Ran-

dom Forest, and Support Vector Regressor algorithms for the training process

and compared them in terms of mean absolute error (MAE), mean squared

error (MSE), root mean squared error (RMSE), and R2 score. Table 3.3 and

Table 3.4 show the results for CPU Model and Request Model of each microser-

vice, respectively. As can be seen from the results, Support Vector Regressor

and Random Forest provide lower MAE, MSE, RMSE, and higher R2 score for

CPU Model and Request Model compared to Linear Regression. Currently,

we use offline learning to train machine learning models, but our approach can

be adapted to leverage online learning as well.

3.5 Waterfall Autoscaler

In this section, we present the autoscaler we designed using the performance

models described in Section 3.4. We first outline the architecture of Waterfall

36

Table 3.3: The accuracy and R2 score of CPU Model for different services using
Linear Regression (LR), Random Forest (RF), and Support Vector Regressor
(SVR).

Service
Linear Regression Random Forest SVR

MAE MSE RMSE Score MAE MSE RMSE Score MAE MSE RMSE Score

Webui 4.97 45.32 6.73 92.21 3.67 18.57 4.31 96.81 1.43 3.07 1.75 99.47

Persistence 4.12 27.55 5.25 94.03 3.26 17.02 4.13 96.31 0.88 1.91 1.38 99.59

Auth 4.40 37.39 6.11 94.82 4.26 34.45 5.87 95.23 1.73 6.45 2.54 99.11

Recommender 2.62 12.42 3.52 92.94 1.39 4.23 2.06 97.60 1.38 5.00 2.23 97.16

Image 3.81 20.12 4.49 96.87 3.61 21.09 4.59 96.72 1.54 3.45 1.86 99.50

Table 3.4: The accuracy and R2 score of Request Model for different services
using Linear Regression (LR), Random Forest (RF), and Support Vector Re-
gressor (SVR).

Service
Linear Regression Random Forest SVR

MAE MSE RMSE Score MAE MSE RMSE Score MAE MSE RMSE Score

Webui 50.01 3568.55 59.74 97.83 25.67 1596.37 39.95 99.02 32.01 2134.50 46.20 98.70

Persistence 71.21 9708.55 98.53 99.50 34.94 2717.49 52.13 99.86 39.36 3041.56 55.15 99.84

Auth 79.23 11158.89 105.64 96.35 47.34 3857.84 62.11 98.74 39.57 3611.02 60.09 98.82

Recommender 31.22 1258.56 35.48 94.26 24.49 911.24 30.19 95.84 20.27 620.22 24.90 97.17

Image 71.45 8137.23 90.21 98.72 72.48 7328.20 85.60 98.85 42.99 3642.93 60.36 99.43

and discuss its approach to abstracting the target microservice application.

Finally, we elaborate on the algorithm that Waterfall uses to obtain the scaling

strategy.

3.5.1 Architecture

Figure 3.7 shows the architecture of Waterfall which is based on the MAPE-K

control loop [19], [53], [54] with five elements, namely monitor, analysis, plan,

execute, and a shared knowledge base.

The Monitor component collects the monitoring data including different

metrics from microservices in the target application, aggregates the data, and

extracts the features for machine learning performance models and then hands

it over to the Analysis component. The Analysis component initializes the

microservice graph using the data provided by the Monitor component. After-

wards, It uses the machine learning performance models and scaling algorithm

to obtain the new number of replicas for each microservice in the application

and sends a change request to Plan Component. The plan component gets the

37

Servers

Monitor Analysis

Execute

Apply

 New Configuration New Configuration

Get
Metr

ric
s

Change
Request

ML Performance
ModelsMonitoring Data

Microservice Graph

Plan

Perform
ance Predictions

Metric Data

Figure 3.7: Architecture of Waterfall autoscaler.

output of the Analysis component and calculates the new configuration and

required changes for the system, and passes the change plan to the Execute

component. Execute component interacts with the system and applies the

new configuration to the system. The knowledge base contains the microser-

vice graph of the application and machine learning performance models and

is shared among the Monitor, Analysis, Plan, and Execute components.

3.5.2 Microservice Graph

Waterfall abstracts the target microservice application as a directed graph,

which is called microservice graph, hereafter. In the microservice graph, ver-

texes represent services, and edges show the dependencies between services.

The direction of an edge determines which service sends request to the other

one. For instance, consider the following vertex (V) and edge (E) sets for an

example microservice graph:

V = {A,B,C}

E = {(A,B) , (A,C)}
(3.3)

This microservice graph contains three services and two edges. A, B, and C

are three different services. The edges (A,B) and (A,C) show that service A

calls services B and C respectively. In addition, we assign the following three

weights to each directed edge (m,n) between two microservices m and n:

38

Clients Webui

Persistence

Auth

Image

Recommender

Request Rate Ratio(c,w)
Downstream Rate Ratio(c,w)
Downstream Rate(c,w)

Request R
ate Ratio(w,p)

Downstre
am Rate Ratio(w,p)

Downstre
am Rate(w,p)

Request Rate Ratio(w,a)
Downstream Rate Ratio(w,a)
Downstream Rate(w,a)

Request Rate Ratio(w,i)

Downstream Rate Ratio(w,i)

Downstream Rate(w,i)
Request Rate Ratio(w,r)

Downstream Rate Ratio(w,r)

Downstream Rate(w,r)

R
equest R

ate R
atio(a,p)

D
ow

nstream
 R

ate R
atio(a,p)

D
ow

nstream
 R

ate(a,p)

Figure 3.8: Teastore microservice graph.

• Downstream Rate(m,n) which is defined in Section 3.2.

• Request Rate Ratio(m,n) which is defined for two services m and n

as:

Request Rate Ratio(m,n) =
DownstreamRate(m,n)

RequestRate(n)
(3.4)

• Downstream Rate Ratio(m,n) which is defined for two services m

and n as:

Downstream Rate Ratio(m,n) =
DownstreamRate(m,n)

RequestRate(m)
(3.5)

We calculate these weights for each edge and populate the graph using

the monitoring data. Figure 3.8 shows the microservice graph for the Teast-

ore application. The microservice graph for small applications can be derived

manually according to service dependencies. There are also tools [61] for ex-

tracting the microservice graph automatically.

39

3.5.3 Scaling Algorithm

Our proposed algorithm for autoscaling of microservices leverages machine

learning models to predict the number of required replicas for each service

and the impact of scaling a services on the load of other services. This way,

we provide a more responsive autoscaler that takes fewer actions to keep the

application at the desired performance.

At the end of each monitoring interval, Waterfall initializes the microservice

graph weights using monitoring data and runs the scaling algorithm to find

the new scaling configuration. The steps in the Waterfall scaling algorithm are

summarized in Algorithm 1. The algorithm takes the microservice graph, start

node, and monitoring data as input and provides the new scaling configuration

as the output. In the beginning, it initializes the New Config with the current

configuration of the system using monitoring data and starts finding the new

configuration.

It traverses the microservice graph using the Breadth-First Search (BFS)

algorithm and starts the search from the start node. The start node is usually

the front-end service, which is the users’ interaction point with the application.

At each node, the algorithm checks whether the CPU utilization of the service

is above or below the target threshold.

In case that the CPU utilization is higher than the threshold, it calls the

scaleOut function. This function increases the service replicas and predicts

the new request rate of the service using Request Model. After predicting the

new request rate, it uses CPU Model to predict the new CPU utilization with

the new number of replicas and the new request rate. If the new predicted

CPU utilization is below the threshold, it considers the new replica as the new

configuration for the service. Afterwards, it updates the microservice request

rate using the updateReqRate function. As Algorithm 3 indicates, function

updateReqRate updates the DownstreamRate value on all edges ending to

this microservice based on the Request Rate Ratio value on each edge.

If the CPU utilization is less than the threshold, it calls the scaleIn func-

tion. This function reduces the number of service replicas and predicts the new

40

request rate of the service using Request Model. It then feeds the new request

rate and new replica to CPU Model to predict the new CPU utilization. If the

new CPU utilization is still below the threshold, it considers the new replica

as the new configuration for service and updates the microservice request rate

using the updateReqRate function. Otherwise, it keeps the current replica as

the configuration of the service.

If the node that is being processed has any children, the algorithm goes to

the next step which is applying the effect of change in service replica number

on downstream services by calling the updateDownstreamRate function. As

Algorithm 3 shows, this function updates the DownstreamRate value on all

edges starting from the current node and ending at child nodes based on the

Downstream Rate Ratio value on each edge.

After this step, the algorithm continues the BFS search by the next node

and repeats the steps mentioned above. After searching the whole graph and

inferring the new configuration for each service, the search is over and the

algorithm returns the new scaling configuration.

As can be seen in lines 8-11, if the request rate of the service in the current

node has been changed in the graph in previous steps, the CPU utilization

in the monitoring data is not valid anymore, and we should estimate the new

CPU utilization using CPU Model. The getRequestRate function calculates

the request rate of a node by summing the Downstream Rate value on all

edges ending to this node.

In cases that the microservice graph of the target application includes a

cycle, we need to add a stop condition to the scaling algorithm. For example,

this stop condition can be based on a threshold for changes in predicted values

or can be achieved simply by ensuring that each node is visited only once in

the search process.

3.6 Experimental Evaluation

In this section, we evaluate the performance of Waterfall autoscaler by com-

paring Waterfall with Kubernetes Horizontal Pod Autoscaler (HPA), which

41

Algorithm 1: Autoscaling Algorithm

Input: Microservice Graph G, Start Node S, Monitoring Data M
Output: New Scaling Configuration New Config

1 New Config ←− initilize with current config
2 queue←− []
3 queue.append(S)
4 while queue is not empty do
5 service←− queue.pop(0)
6 req rate updated←− False
7 req rate←− getReqRate(G, service)
8 if M [service][′Req Rate′] == req rate then
9 cpu util ←−M [service][′CPU Util′]

10 else
11 cpu util ←−

CPU Model(service, new config[service], req rate)

12 curr req rate←− req rate
13 curr cpu util ←− cpu util
14 curr replica←− new config[service]
15 if cpu util >= THRESH then
16 (new replica, pred req rate)←−

scaleOut(curr replica, curr cpu util, curr req rate)
17 updateReqRate(G, service, pred req rate)
18 new config[service]←− new replica
19 req rate updated←− True

20 else if cpu util < THRESH ∧ curr replica > 1 then
21 (new replica, pred req rate)←−

scaleIn(curr replica, curr cpu util, curr req rate)
22 if new replica 6= curr replica then
23 updateReqRate(G, service, pred req rate)
24 new config[service]←− new replica
25 req rate updated←− True

26 if G[service].hasChild() ∧ req rate updated then
27 updateDownstreamRate(G, service, pred req rate)

28 for each v ∈ G[service].adjacent() do
29 queue.append(v)

42

Algorithm 2: Scale Out and Scale In Functions

1 Function scaleOut(curr replica, curr cpu util, curr req rate):
2 new replica←− curr replica
3 pred cpu util ←− curr cpu util
4 while pred cpu util > THRESH do
5 new replica←− new replica + 1
6 pred req rate←− Request Model(service, curr replica,

curr cpu util, curr req rate, new replica)
7 pred cpu util ←− CPU Model(service, new replica,

pred req rate)

8 return (new replica, pred req rate)

9 Function scaleIn(curr replica, curr cpu util, curr req rate):
10 new replica←− curr replica
11 pred cpu util ←− curr cpu util
12 while pred cpu util < THRESH do
13 new replica←− new replica− 1
14 pred req rate←− Request Model(service, curr replica,

curr cpu util, curr req rate, new replica)
15 pred cpu util ←− CPU Model(service, new replica,

pred req rate)
16 if pred cpu util < THRESH then
17 new req rate←− pred req rate

18 return (new replica + 1, new req rate)

43

Algorithm 3: Microservice Graph Helper Functions

1 Function getReqRate(Microservice Graph G, Node service):
2 req rate←− 0
3 for each (m,n) ∈ G do
4 if n == service then
5 req rate←− req rate + G[m][n][′DownstreamRate′]

6 return req rate

7 Function updateReqRate(Microservice Graph G, Node service,
new req rate):

8 for each (m,n) ∈ G do
9 if n == service then

10 G[m][n][′DownstreamRate′]←−
new req rate ∗G[m][n][′ReqRateRatio′]

11 Function updateDownstreamRate(Microservice Graph G, Node
service, new req rate):

12 for each (m,n) ∈ G do
13 if m == service then
14 G[m][n][′DownstreamRate′]←−

new req rate ∗G[m][n][′DownstreamRateRatio′]

44

is the de facto standard for autoscaling in the industry. First, we elaborate

on the details of our experimental setup. After that, we present and discuss

our experimental results for the comparison of Waterfall and HPA in terms of

different metrics.

3.6.1 Experimental Setup

Microservice Application Deployment

We forked the source code of the Teastore application from GitHub and instru-

mented all Teastore services with a monitoring agent. Moreover, we improved

the startup time of the microservice containers by tuning the performance of

the Tomcat web server. After these modifications, we recreated the Docker

image of each microservice.

We created a Kubernetes2 cluster as the container orchestration system

with one master node and four worker nodes in the Compute Canada Ar-

butus Cloud3. Each node is a virtual machine with 16 vCPU and 60GB of

memory running Ubuntu 18.04 as the operating system. We deployed each

microservice in the Teastore application as a Kubernetes deployment exposed

by a Kubernetes service. The incoming traffic is distributed in a round-robin

fashion between pods that belong to a deployment. We imposed constraints

on the amount of resources available to each pod using the resource request

and limit mechanism in Kubernetes. The resource request is the amount of

resources guaranteed for a pod, and the resource limit is the maximum amount

of resources that a pod can have in the cluster. We used the same value for

both resource request and limit to decrease the variability in pods’ perfor-

mance. Table 3.5 shows the details of CPU and memory configuration for

each pod. We configured the startups, readiness, and liveness probes for each

pod to measure the exact number of ready pods at any time in the system

and also have a recovery mechanism in place for unhealthy pods. We used the

Kubernetes API to query or change the number of pods in a deployment.

2Kubernetes: https://kubernetes.io
3Compute Canada Cloud: https://computecanada.ca

45

https://kubernetes.io
https://computecanada.ca

Table 3.5: Resource request and limit of Teastore services.

Service Name CPU Memory

Webui 1200mCore 512MB

Persistence 900mCore 512MB

Auth 900mCore 512MB

Recommender 800mCore 512MB

Image 1100mCore 512MB

Monitoring and Load Generation

Datadog4, which is an online monitoring service for cloud applications, is used

to monitor each microservice in the monitoring component. We deployed

Datadog agents on each node of the Kubernetes cluster and instrumented

each microservice with the Datadog tracing library. The following metrics are

collected for each service:

• CPU utilization (%): The average CPU utilization of pods that belong

to a service deployment in percentage.

• Request rate (per second): The sum of request rates of all pods that

belong to a service deployment.

• Downstream rate (per second): The downstream rate of each service

deployment to other service deployments.

• Replica: The number of pods in a service deployment.

We used Jmeter5, an open-source tool for load testing of web applications,

to generate an increasing workload with a length of 25 minutes for the Teastore

application. This workload is a common browsing workload that represents

the behaviour of most users when visiting an online shopping store. It follows

a closed workload model and includes actions like visiting the home page,

login, adding product to cart, etc. Jmeter acts like users’ browsers and sends

requests sequentially to the Teastore front-end service using a set of threads.

4Datadog: https://datadoghq.com
5Jmeter: https://jmeter.apache.org

46

https://datadoghq.com
https://jmeter.apache.org

The number of threads controls the rate at which Jmeter sends requests to

the front-end service. We deployed Jmeter on a stand-alone virtual machine

with 16 vCPU and 60GB of memory running Ubuntu 18.04 as the operating

system.

3.6.2 Results and Discussion

To compare the behaviour and effectiveness of Waterfall autoscaler with HPA,

we applied the increasing workload described in the previous section to the

front-end service of the Teastore application for 25 minutes. Figures 3.9-3.13

show the average CPU utilization and replica count for each service in the

Teastore application throughout the experiment. The red dashed line in CPU

utilization plots denotes the CPU utilization threshold that both autoscalers

use as the scaling threshold. The green dashed line in each service’s replica

count plot shows the ideal replica count for that service at each moment of

the experiment. The ideal replica count is the minimum number of replicas

for the service which is enough to handle the incoming load and keep the

CPU utilization of the service below the threshold. According to Figures 3.9-

3.13, HPA scales a service whenever the service’s average CPU utilization

goes above the scaling threshold. However, Waterfall scales a service in two

different situations: 1) the CPU utilization of the service goes beyond the

scaling threshold; 2) the predicted CPU utilization for the service exceeds

the threshold due to scaling of another service. Therefore, when Waterfall

scales a service while its CPU utilization is below the threshold (e.g., around

the 6th minute in Figure 3.10), it must be due to the predicted performance

degradation of the service as a result of scaling of another service(s).

As Figure 3.9 shows, for the Webui service, both autoscalers increase the

replica count when the CPU utilization is above the threshold with some delay

compared to the ideal state. According to Figure 3.8, as Webui is the front-end

service and no other internal services depend on it, scaling of other services

does not affect the performance of the Webui service. Hence, all Waterfall’s

scaling actions for the Webui service can be attributed to CPU utilization.

As can be seen in Figure 3.10, we observe that Waterfall scales the Per-

47

00 05 10 15 20 25
Time (minutes)

0

50

100
CP

U
Ut

iliz
ai

on
 (%

)

HPA
Waterfall
Threshold

00 05 10 15 20 25
Time (minutes)

2

4

Nu
m

be
r o

f R
ep

lic
as HPA

Waterfall
Ideal

Webui Service

Figure 3.9: The CPU utilization and number of replicas for the Webui service.
The red dashed line in the upper plot shows the scaling threshold and the green
dashed line in the lower plot denotes the ideal number of replicas throughout
the experiment.

sistence service around the 6th minute, although the CPU utilization is below

the threshold. We attribute this scaling action to the decision for scaling the

Webui service in the same monitoring interval that leads to an increase in the

CPU utilization of Persistence service as Webui service depends on Persistence

service. In contrast, as we can see in Figure 3.10, the HPA does not scale the

Persistence service at the 6th minute. Consequently, a short while after the 6th

minute, when the second replica of Webui service completes the startup pro-

cess and is ready to accept traffic, the CPU utilization of Persistence service

increases and goes above the threshold. The other scaling action of Waterfall

for Persistence service after the 15th minute is based on CPU utilization.

Results for the Auth service shown in Figure 3.11 suggest that the increase

in the replica count of Auth around the 6th minute is based on the prediction

for the impact of scaling of the Webui service, as the CPU utilization of Auth

is below the threshold during this time. On the other hand, we can see that

48

00 05 10 15 20 25
Time (minutes)

0

50

100
CP

U
Ut

iliz
ai

on
 (%

)

HPA
Waterfall
Threshold

00 05 10 15 20 25
Time (minutes)

1

2

3

Nu
m

be
r o

f R
ep

lic
as HPA

Waterfall
Ideal

Persistence Service

Figure 3.10: The CPU utilization and number of replicas for the Persistence
service. The red dashed line in the upper plot shows the scaling threshold and
the green dashed line in the lower plot denotes the ideal number of replicas
throughout the experiment.

at 6th minute, the HPA does not increase the replica count for Auth service.

Therefore, after adding the second replica of Webui, the CPU utilization of

Auth reaches the threshold. The other scaling action of Waterfall for Auth

after the 20th minute is based on the CPU utilization.

According to the Image service results in Figure 3.12, Waterfall scales the

Image service around the 11th minute. This scaling action is due to scaling

the Webui service that depends on Image service from two to three replicas

in the same monitoring interval. However, HPA does not scale the Image

service simultaneously with Webui causing an increase in the CPU utilization

of the Image service. For Waterfall, as Figure 3.12 shows, there is a sudden

increase in the CPU utilization of Image service right before the time that

the second replica of Image service is ready to accept traffic. This sudden

increase in CPU utilization of Image service is because of the time difference

between the time that Webui and Image services complete the startup process

49

00 05 10 15 20 25
Time (minutes)

0

50

100
CP

U
Ut

iliz
ai

on
 (%

) HPA
Waterfall
Threshold

00 05 10 15 20 25
Time (minutes)

1

2

3

Nu
m

be
r o

f R
ep

lic
as HPA

Waterfall
Ideal

Auth Service

Figure 3.11: CPU utilization and number of replicas for Auth service. The
red dashed line in the upper plot shows the scaling threshold and the green
dashed line in the lower plot denotes the ideal number of replicas throughout
the experiment.

and reach the ready state. During the interval between these two incidents,

the Webui service has three replicas; therefore, its downstream rate to Image

service increases while the second replica of the Image service is not ready yet.

For the Recommender service, as Figure 3.13 illustrates, during the whole

time of the experiment, the CPU utilization is below the threshold. Conse-

quently, there is no scaling action for both autoscalers.

Putting the results of all services together, we can see that the Waterfall

autoscaler predicts the effect of scaling a service on downstream services and

scale them proactively in one shot if it is necessary. Therefore, it takes fewer

actions to maintain the CPU utilization of the application below the threshold.

For example, around the 6th minute, we can see from Figures 3.9, 3.10, and 3.11

that Waterfall autoscaler scales the Persistence and Auth services along with

Webui in the same monitoring interval. However, HPA scales these services

separately in different monitoring intervals.

50

00 05 10 15 20 25
Time (minutes)

0

50

100
CP

U
Ut

iliz
ai

on
 (%

) HPA
Waterfall
Threshold

00 05 10 15 20 25
Time (minutes)

1

2

3

Nu
m

be
r o

f R
ep

lic
as HPA

Waterfall
Ideal

Image Service

Figure 3.12: The CPU utilization and number of replicas for the Image service.
The red dashed line in the upper plot shows the scaling threshold and the green
dashed line in the lower plot denotes the ideal number of replicas throughout
the experiment.

To quantify the effectiveness of Waterfall compared to HPA, we evaluate

both autoscalers in terms of several metrics. Figure 3.14 shows the total num-

ber of transactions executed per second (TPS) for Waterfall and HPA through-

out the experiment. It can be seen that Waterfall has a higher cumulative TPS

than HPA thanks to timely scaling of services.

We repeated the same experiment five times and calculated the average

of the total number of served requests, TPS, and response time for both au-

toscalers over these runs. Table 3.6 shows the results along with the 95%

confidence interval. It can be seen that TPS (and the total number of served

requests) is 9.57% higher for Waterfall than HPA. The response time for Wa-

terfall is also 8.79% lower than HPA.

Additionally, we have calculated the following metrics for both autoscalers

and presented them in Table 3.7:

• CPU>Threshold time: The percentage of time that CPU utilization of

51

00 05 10 15 20 25
Time (minutes)

50

100
CP

U
Ut

iliz
ai

on
 (%

)
HPA
Waterfall
Threshold

00 05 10 15 20 25
Time (minutes)

0.95

1.00

1.05

Nu
m

be
r o

f R
ep

lic
as HPA

Waterfall
Ideal

Recommender Service

Figure 3.13: The CPU utilization and number of replicas for the Recommender
service. The red dashed line in the upper plot shows the scaling threshold and
the green dashed line in the lower plot denotes the ideal number of replicas
throughout the experiment.

Table 3.6: Comparison of Waterfall and HPA autoscalers in terms of perfor-
mance metrics.

HPA Waterfall

Total Request 727270.0± 12369.95 796867.4± 4594.77

TPS 484.55± 8.23 530.93± 3.06

Response Time 20.47± 0.36 18.67± 0.11

the service is above the threshold.

• Underprovision time: The percentage of time that the number of service

replicas is less than the ideal state.

• Overprovision time: The percentage of time that the number of service

replicas is more than the ideal state.

It can be seen that for all services except the Recommender service, both

autoscalers have a nonzero value for CPU>T. However, CPU>T is less for

52

0 5 10 15 20 25
Time (minutes)

0

2000

4000

6000

8000

10000

12000

Cu
m

ul
at

iv
e

TP
S

HPA
Waterfall

Figure 3.14: Cumulative Transaction Per Second (TPS) of Waterfall and HPA
autoscalers.

Table 3.7: Comparison of Waterfall and HPA in terms of CPU>Threshold(T),
overprovision, and underprovision time.

Service
CPU >T Underprovision Overprovision

HPA Waterfall HPA Waterfall HPA Waterfall

Webui ∼31% ∼16% ∼54% ∼15.33% 0% 0%

Persistence ∼16% ∼4% ∼28.66% ∼7.33% 0% 0%

Auth ∼6.33% ∼0.33% ∼32% ∼8% 26% 0%

Image ∼13.33% ∼0.33% ∼28% ∼6% 24% 0%

Recommender 0% 0% 0% %0 0% 0%

Waterfall in all services. Moreover, Waterfall yields a lower underprovision

time and zero overprovision time for all services. Despite the overprovisioning

of HPA for two services, we observe that Waterfall still provides a higher TPS

and better response time; we attribute this to the timely and effective scaling

of services by the Waterfall autoscaler.

3.7 Conclusion

We introduced Waterfall, a machine learning-based autoscaler for microservice

applications. While numerous autoscalers consider different microservices in

53

an application independent of each other, Waterfall takes into account that

scaling a service might have an impact on other services and can even shift

the bottleneck from the current service to downstream services. Predicting

this impact and taking the proper action in a timely manner could improve

the application performance as we corroborated in this study. Our evaluation

results show the efficacy and applicability of our approach.

Waterfall can be adopted as a part of container orchestration platforms to

improve the performance of microservice applications in cloud environments.

As the future work, we plan to explore the feasibility of adding vertical scaling

to the Waterfall autoscaling approach.

54

Chapter 4

Maintaining the Performance of
Containerized Cloud
Applications Through
Multi-versioning

Containerization technology is widely adopted for the development of cloud

applications as it makes the deployment and management of applications in the

cloud platform easier. The common practice for maintaining the performance

of containerized cloud applications is increasing the application resources by

horizontal or vertical scaling. However, this approach may not be cost-effective

and applicable in situations where the available resources or budget is limited.

In this chapter, we study an alternative, more cost-effective approach for

satisfying the performance requirements of containerized cloud applications.

In particular, we investigate how we can satisfy such requirements by applying

software multi-versioning to the resource-intensive containers in cloud appli-

cations. We demonstrate the efficacy of multi-versioning for satisfying the

performance requirements of containerized cloud applications through exper-

iments on the Teastore, a microservice reference test application, and Znn, a

containerized news portal application. The results presented in this chapter

have been published in ICPE 2020 conference [35].

55

4.1 Introduction

Maintaining the performance of cloud applications is a challenging task due

to uncertainty in the incoming workload. For example, one common problem

that may happen for an online web application is the Slashdot effect. The

Slashdot effect is a sudden increase in website traffic that occurs when a high-

traffic website posts a link to a low-traffic website [3], [4]. If the low-traffic

website cannot handle the sudden increase in traffic, it may experience pro-

longed response times or unavailability. One way to mitigate this situation

is to increase the available resources for processing requests by horizontal or

vertical scaling. However, this approach can become very expensive and could

add high over-provisioning costs, which not every project can afford. An al-

ternative solution could be to have different versions of the services provided

by the website. For instance, if the website had lightweight versions of some of

its essential, resource-intensive components, it could use them during the high

load to reduce its resource usage while maintaining a reasonable response time.

A similar example of this software multi-versioning concept has been used by

the Gmail service, which has a lightweight HTML-based version that is used

when the user’s browser does not support the feature-rich but resource-heavy

JavaScript-based version [21]. By falling back on the lightweight version, the

user would still be able to use Gmail with a minimal and simple user interface.

Software multi-versioning has been traditionally applied to mission-critical

systems, such as flight or nuclear power plant control systems, to improve

their reliability and safety [14], [15], [30], [52]. These systems usually have a

monolithic architecture. Therefore, applying multi-versioning to these systems

means developing and maintaining multiple versions of the whole system at

the same time. This makes multi-versioning an impractical technique and a

costly process for non-critical systems. However, the advent of containeriza-

tion technology, cloud computing, and loosely coupled architectures, such as

microservice, has paved the way for employing multi-versioning in non-critical

systems. We can apply software multi-versioning to a specific component of a

system running inside a container rather than the whole system.

56

Registry Auth

Image Persistence Recommender

Database

LightWeight1

LightWeightn

HeavyWeight1

HeavyWeightm

Microservice

WebUI

Communication of services with Registry

The WebUI service issues calls

Connection to a provided interface
at the Persistence service
Access and caching for the store’s
relational database

Figure 4.1: High-level architecture of the Teastore application with multi-
versioning applied to the Recommender microservice.

In this chapter, we examine how software multi-versioning can help satisfy

the performance requirements of containerized cloud applications. We conduct

a set of experiments on the performance of two containerized cloud applica-

tions under varying loads. In the first experiment, we study the Teastore [55],

which is a reference microservices application for benchmarking and perfor-

mance testing. We apply multi-versioning to this application by developing

two versions of its Recommender service. One version is resource-intensive

but provides more accurate results. The other version is lightweight but re-

turns less accurate results. In the second experiment, we study Znn [23], a

three-tier online news application where we develop two versions of its content-

providing component. One version offers high-fidelity content, and the other

one provides low-fidelity content.

The rest of the chapter is organized as follows. Section 4.2 presents a mo-

tivational example for our approach. In Section 4.3, we present our approach

for employing multi-versioning in containerized cloud applications. In Sec-

tion 4.4, we explain our experimental setup. Section 4.5 discusses the results

of our experiments. Section 4.6 gives an overview of the related work. Finally,

Section 4.7 concludes the chapter.

57

4.2 Motivating Example

Consider a newly founded startup that sells its products through an online

shopping store. This startup has limited financial resources and would like

to run its business in a cost-effective manner. The product manager of this

startup has recently decided to add a product recommendation feature to the

online store and assigned a developer to this task. The developer implemented

this new feature, but in the testing phase, they noticed that this new feature

is resource-hungry and becomes a bottleneck in high loads. The developer

suggested two possible options for solving this issue: 1) Assign more resources

to the recommendation component 2) Use a lightweight algorithm for the rec-

ommendation component that generates less accurate recommendations. The

product manager rejected the first option and asked the developer to work on

a solution that keeps the balance between performance and accuracy based on

website load. Therefore, the developer decided to implement two versions of

the recommendation feature: resource-intensive version and lightweight ver-

sion. The resource-intensive version is used when the website traffic is not

high, and the lightweight version is used when the website is experiencing a

high load, especially during sales events. The website switches between these

two versions to continue serving customers with less accurate recommenda-

tions during high loads and with more accurate recommendations when the

website is not under a heavy load.

4.3 Multi-Versioning in Containerized Cloud

Applications

Software multi-versioning is about developing and deploying multiple versions

of a software system or a software system component to improve the qual-

ity attributes of that software system. We aim to employ this technique for

improving the performance of containerized cloud applications.

In general, when we deploy a containerized cloud application, each com-

ponent resides inside a container created from an image. For components

58

Load
Balancer

V11

V1n

Service S1

Request Response

Figure 4.2: High-level architecture of a regular Docker service with round-robin
load distribution.

with more than one replica, the incoming requests are distributed equally be-

tween replicas. For example, Figure 4.2 shows an example of a Docker service

containing n replicas. As shown in Figure 4.2, Docker has an internal load

balancing mechanism that distributes the incoming load between replicas in a

round-robin fashion.

In our approach, we apply multi-versioning to components of a cloud appli-

cation to maintain the performance at the desired level. Therefore, we deploy

different versions of the same component instantiated from different images.

Different versions perform the same operation at different service fidelity. For

instance, they may use different algorithms to carry out the same task (sim-

ilar to our motivating example in Section 4.2). To maintain the performance

requirement of the application, we need to distribute the requests between

different versions of a component based on a metric, such as response time,

CPU utilization, etc., representing the current load of the applications. To

this end, we developed an adaptive load balancer that distributes the incom-

ing load based on a set of rules. The rule-set determines how the incoming

requests should be distributed between different versions based on the value

of the monitored metric. We used a customized version of NGINX1 to imple-

ment this load balancer. Listing 4.1 shows the format of the rules for the load

balancer.

The parameters in the rule in Listing 4.1 are as follows:

• $METRIC: The metric that is used to check whether a rule should fire.

1https://www.nginx.com

59

https://www.nginx.com

Listing 4.1: Format of the rules for the load balancer

1 $METRIC $OPERATOR $THRESHOLD ,
2 (version $VERSION NAME perc=$PERCENTAGE;)+

Listing 4.2: Example rule for the load balancer

1 RT > 0.4 ,
2 version recommender:HeavyWeight perc=40;
3 version recommender:LightWeight perc=60;

Currently, only RT (median response time) is supported.

• $OPERATOR: The relational operator (<,<=, >,>= or ==) that is used

in the condition to check whether a rule should fire.

• $THRESHOLD: The threshold for the metric that is used in the condition

to check whether a rule should fire.

• $VERSION NAME: The name of one of the versions of the service.

• $PERCENTAGE: The percentage of requests to be directed to the container

(between 1 and 100).2

Listing 4.2 shows an example rule, in which 40% of the requests are routed

to the first version (e.g., resource-intensive version) and the other 60% are

routed to the second version (e.g., lightWeight version). We monitor the NG-

INX’s log file and calculate the median response time every five seconds. The

value of median response time determines which rule should be used for dis-

tributing the load between different versions. NGINX saves the $time local,

and $request time for each of the incoming requests. The $time local re-

turns the local time of the machine, and we use that time to identify the

requests which were received in the last n seconds. The $request time is the

elapsed time since the first bytes were read from the client.

One could argue that software multi-versioning could easily be implemented

using if-statements inside a component source code. However, source code-

2NGINX does not accept 0 as the percentage of requests.

60

Load
Balancer

V11

V1m

Service S1

Vn1

Vnk

Request

Rules

Response

Figure 4.3: High-level architecture of a service with multi-versioning where
requests are balanced based on a rule-set.

based solutions are against the separation of concerns principle and clutter

the source code. In addition, the maintenance and understanding of source

code become challenging. Therefore, our approach provides multi-versioning

in containerized cloud applications in a non-cluttered manner.

4.4 Experimental Setup

In this section, we elaborate on our experimental setup. The goal of our exper-

iments is to study the effectiveness of software multi-versioning for satisfying

the performance requirements of containerized cloud applications.

4.4.1 Subject Cloud Applications

In our experiments, we use two well-known cloud applications: Teastore [55]

and Znn.

Teastore is a reference microservice application developed for performance

testing and benchmarking. As Figure 4.1 shows, this application is composed

of six microservices and a database emulating an online shopping store. Each

microservice and also the database component is encapsulated in a container.

We introduced multi-versioning in the Teastore application by developing two

61

different versions of the Recommender service. This service uses a collabo-

rative filtering algorithm to provide product recommendations and has a pa-

rameter that adjusts the retraining frequency. In the lightweight version, this

parameter is set so that retraining happens only once at startup time. In the

heavyweight version, this parameter is set so that retraining happens multiple

times. The source code of the Teastore 3 is publicly available.

Znn [23] is a three-tier web-based application developed for testing and

benchmarking of self-adaptive applications. The Znn application emulates

a news portal and contains a pool of web servers, a MySQL database with

news-related text and multimedia contents, and a load balancer that receives

requests from clients and distributes them among the web servers in a round-

robin manner. The high-level architecture of the Znn application is shown in

Figure 4.4. The original version of the Znn application is not containerized. We

containerized the Znn application by encapsulating Web server and database

components in two separate containers. Normally, the Znn servers respond to

an HTTP request with an HTML page containing a some news with multime-

dia content such as image and video. To introduce multi-versioning in Znn, we

developed two versions of the web server component. The lightweight version

returns only news text without any multimedia content to be able to handle a

large number of requests. The heavyweight, on the other hand, returns news

along with multimedia content. Figure 4.5 shows the high-level architecture

of the containerized version of the Znn application with multi-versioning. The

source code of the Znn 4 is publicly available.

4.4.2 Experiments

We conducted three experiments for each of the target cloud applications:

• Heavyweight-only experiment: In this experiment, all requests are

served using the heavyweight versions of the services to provide the best

user experience. Therefore, for the Teastore application, all requests are

served by the heavyweight version of the Recommender service (constant

3https://github.com/DescartesResearch/TeaStore
4https://github.com/cmu-able/znn

62

https://github.com/DescartesResearch/TeaStore
https://github.com/cmu-able/znn

Load
Balancer

Webserver1

Webservern

Media Service

Request Response

Figure 4.4: High-level architecture of the Znn application

Load
Balancer

Webserver1
Text

Webservern
Text

Media Service

Webserver1
Multimedia

Webserverm
Multimedia

Request

Rules

Response

Figure 4.5: Containerized deployment of Znn with two different versions of the
Media service.

retraining), and for the Znn application, all requests are served by the

heavyweight version of the web server component (text + multimedia).

• Lightweight-only experiment: In this experiment, we studied the

worst-case scenario from users’ perspective as all requests are served by

the lightweight versions of the services. Hence, for the Teastore appli-

cation, all requests are served by the lightweight version of the Recom-

mender service (single training), and for the Znn application, all requests

are served by the lightweight version of the web server component (only

text).

• Adaptive experiment: In this experiment, we tried an adaptive ap-

proach that falls between two other experiments. The goal is to maintain

the performance by distributing the requests between heavyweight and

63

Table 4.1: A description of the experiments that we conducted for the Teastore
and Znn applications

Experiment Teastore Description Znn Description

Heavyweight-only Recommender with multiple training Multimedia responses only

Lightweight-only Recommender with single training Text responses only

Adaptive Adaptive load distribution Adaptive load distribution

lightweight versions based on a predefined rule set and the current load

of the system. Therefore, for the Teastore application, both versions of

the Recommender service, and for the Znn application, both versions of

the web server component are used.

These experiments are summarized in Table 4.1. In all experiments, we

considered an upper threshold of 450 milliseconds for the median response

time of the Teastore application and 1 second for the median response time of

the Znn application as the SLA requirement.

4.4.3 Workload

We used Apache JMeter,5 a tool for load testing of web applications, to gen-

erate two workloads for our experiments.

For the Teastore application, we modified the JMeter test plan6 provided

by the Teastore developers and added more items to the shopping cart to put

more pressure on the Recommender service. We generated a workload of 100

users who concurrently send HTTP requests to the Teastore application for

different purposes, such as visiting the home page, logging in, or adding items

to the cart. For each request, users receive an HTML page as the response,

and as soon they get the response, they send the next request. The length of

this workload is 1,000 seconds.

For the Znn application, we generated an increasing workload simulating

multiple users sending requests to the Znn application concurrently. Figure 4.6

shows the shape of the workload. The length of the workload is 2 hours, and

5https://jmeter.apache.org
6The workload’s JMeter test plan is available on the project’s GitHub repository [36].

64

https://jmeter.apache.org

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0

50

100

150

200

Nu
m

be
r o

f a
ct

iv
e

us
er

s

Figure 4.6: Shape of the Znn application workload

Table 4.2: Description of the virtual machines

Cloud Instance VCPUs Memory OS

Cybera Experiment 4 8GB Ubuntu-18.04

Compute Canada JMeter 4 15GB Ubuntu-18.04

the number of users increases from 60 to 210 over time. At the highest peak,

the number of active users is 210, which means 210 threads concurrently send

HTTP requests to the servers.

4.4.4 Deployment and Load Balancing Rule Sets

We provisioned one virtual machine in the Compute Canada cloud7 and one

virtual machine in the Cybera Rapid Access Cloud8 to deploy our containers

for our experiments. In particular, we ran the JMeter script on the Com-

pute Canada cloud and the subject systems on the Cybera cloud. Table 4.2

summarizes the configurations of our virtual machines.

Table 4.3 shows the description of the containers that we used for the

experiments. We limited the containers’ memory, swap memory, and CPU to

prevent them from consuming all of the resources on the host machine. These

7https://www.computecanada.ca/research-portal/national-services/

compute-canada-cloud
8https://www.cybera.ca/services/rapid-access-cloud

65

https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud
https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud
https://www.cybera.ca/services/rapid-access-cloud

Table 4.3: Description of the containers in the experiments

Name Docker Image Memory Swap Memory CPU

HeavyWeightRecommende sgholami/teastore-recommender:HeavyWeight 1G 1G 0.4

LightWeightRecommender sgholami/teastore-recommender:LightWeight 1G 1G 0.4

Multimedia alirezagoli/znn-multimedia:v1 1G 1G 0.4

Text alirezagoli/znn-text:v1 1G 1G 0.4

NGINX sgholami/nginx-monitoring unlimited unlimited unlimited

NGINX official NGINX unlimited unlimited unlimited

MySQL alirezagoli/znn-mysql:v1 unlimited unlimited unlimited

Listing 4.3: NGINX rule set for the Teastore application

1 RT < 0.1 ,
2 version recommender:HeavyWeight perc=99;
3 version recommender:LightWeight perc=1;
4 RT < 0.25 ,
5 version recommender:HeavyWeight perc=90;
6 version recommender:LightWeight perc=10;
7 RT < 0.4 ,
8 version recommender:HeavyWeight perc=80;
9 version recommender:LightWeight perc=20;

10 RT >= 0.4 ,
11 version recommender:HeavyWeight perc=70;
12 version recommender:LightWeight perc=30;

limits were defined based on our experience with the subject systems.

For the Teastore application, we define the rule set presented in Listing 4.3

in NGINX to balance the load between the two versions of the Recommender

service. Listing 4.4 shows the rule set for the Znn application. Both rule sets

were defined empirically based on observations during preliminary runs of the

experiments.

4.5 Experimental Evaluation

In this section, we discuss the results of our experiments for each subject cloud

application.

66

Listing 4.4: NGINX rule set for the Znn application

1 RT < 0.1 ,
2 version znn−multimedia:v1 perc=99;
3 version znn−text:v1 perc=1;
4 RT < 0.2 ,
5 version znn−multimedia:v1 perc=80;
6 version znn−text:v1 perc=20;
7 RT < 0.3 ,
8 version znn−multimedia:v1 perc=70;
9 version znn−text:v1 perc=30;

10 RT < 0.6 ,
11 version znn−multimedia:v1 perc=40;
12 version znn−text:v1 perc=60;
13 RT < 0.8 ,
14 version znn−multimedia:v1 perc=30;
15 version znn−text:v1 perc=70;
16 RT >= 0.8 ,
17 version znn−multimedia:v1 perc=20;
18 version znn−text:v1 perc=80;

4.5.1 Experiments with the Teastore Application

Figure 4.7a shows the median response times of the Teastore application in our

experiments. As it can be seen, the median response time in the lightweight-

only experiment stays below the threshold and in the heavyweight-only exper-

iment goes above the threshold. For the adaptive experiment, we observe that

the median response time fluctuates around the threshold since the load bal-

ancer distributes the load between the heavyweight and lightweight versions

of the service. In addition, Figure 4.7b shows the ratio of requests that were

responded to by the heavyWeight version of the Recommender service in the

adaptive experiment.

4.5.2 Experiments with the Znn Application

Figure 4.8a shows the median response time of the Znn application in the

heavyweight-only experiment. During this experiment, although all requests

were served by the web server with multimedia content, the median response

time of the application went far beyond the threshold (up to around 25 seconds)

67

0 200 400 600 800 1000
Time (seconds)

350
400
450
500
550
600
650

M
ed

ia
n

Re
sp

on
se

 T
im

e
(m

s)

Lightweight Recommender (with single training)
Heavyweight Recommender (with multiple training)
Adaptive distribution
Threshold of 450 ms

(a) Median response time of the Teastore
application

0 200 400 600 800 1000
Time (seconds)

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ra
tio

 o
f r

eq
ue

st
s r

es
po

nd
ed

 b
y

He
av

yW
ei

gh
t s

er
vi

ce

(b) The ratio of requests responded by the
HeavyWeight version of the service

Figure 4.7: The Teastore application experiments and the distribution ratio
of traffic using software multi-versioning and adaptive load balancing

which is not acceptable for users. The high median response time in this

experiment indicates that available resources are insufficient for maintaining

the performance at the desired level. Figure 4.8b shows the median response

time of the Znn application in the lightweight-only experiment. The results

suggest that that the available resources are enough for handling the incoming

traffic load. However, the user experience is poor since all requests are handled

by the text-only version of the web server. Figure 4.9a shows the median

response time of the Znn application in the adaptive experiment, where we

leverage multi-versioning to distribute the requests between multimedia and

text-only versions of the web server. As it can be seen, the median response

time is maintained around the threshold and does not go beyond four seconds.

In addition, Figure 4.9b shows the ratio of the requests which were responded

to by the multimedia web server in the adaptive experiment. We can observe

that the system deals with the increases in workload by routing most of the

requests (first approximately 50-70% and then approximately 80%) to the

text-only version of the web server.

4.6 Related Work

Software multi-versioning is a known technique in software engineering derived

from a similar method in hardware systems where multiple redundant hard-

ware modules are used to make a system fault-tolerant [69]. In the hardware

68

1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0

5000

10000

15000

20000

25000

M
ed

ia
n

Re
sp

on
se

 T
im

e
(m

s)

(a) The median response time when run-
ning only the
multimedia-version of the service

1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0

200

400

600

800

1000

M
ed

ia
n

Re
sp

on
se

 T
im

e
(m

s)

(b) The median response time when run-
ning only the text version
of the service

Figure 4.8: The Znn application experiments using only the multimedia vs
only the text version of the service. Note that the scales on the y-axes are
different.

1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0
500

1000
1500
2000
2500
3000
3500
4000

M
ed

ia
n

Re
sp

on
se

 T
im

e
(m

s)

(a) The median response time when run-
ning the services with
multi-versioning and using the rules de-
fined in Listing 4.4

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ra
tio

 o
f r

eq
ue

st
s r

es
po

nd
ed

 b
y

m
ul

tim
ed

ia
 se

rv
ice

(b) The ratio of requests responded by the
multimedia version of the service

Figure 4.9: The Znn application experiment using software multi-versioning
and adaptive load balancing

domain, the redundant modules are usually exactly the same. However, in the

software domain, although different versions are functionally equivalent, they

are implemented diversely according to the target goal. For example, differ-

ent versions may use different algorithms, programming languages, compilers,

etc. software multi-versioning has been used to improve software systems se-

curity [17], [34], [59], [66], safety [44], reliability [25], and availability [42].

In the security domain, the software multi-versioning has been used to de-

tect and mitigate cyber security attacks. Borck et al. [17] developed a system

named FEVIS for detecting cyber attacks using multi-versioning. FEVIS gen-

erates multiple versions of a program from functionally equivalent code clones

and runs them in parallel. It detects attacks through divergence in behaviour

69

of different versions. Larsenet et al. [59] studied the types of cyber attacks

that can be mitigated using diverse versions of a software system and also

different approaches for diversifying a software system. Franz [34] introduced

a compiler-based method for generating unique versions of a software system

as a defence mechanism against security attacks. The authors argued that

distributing several versions of a software system decreases the success rate of

attackers because they can target only a specific version of the software with

each attack. In addition, they need to design a new attack for every version

which is challenging and costly. Persaud et al. [66] combined different imple-

mentation of SSL library to generate variant versions of a program which is

less vulnerable to security attacks.

Software multi-versioning also has been used as an effective strategy for

mitigating the design faults and improving the reliability of software systems.

Eckhardt et al. [30] investigated the effectiveness of multi-versioning in pro-

moting reliability by developing and comparing the probability of failure in

twenty versions of an aerospace application. Each version was developed by

an independent programming team and evaluated by developers who were not

involved in the development process. Gorbenko et al. [42] proposed an ap-

proach for building fault-tolerance service-oriented systems using redundant

versions of existing web-services. Wang et al. [76] introduced the idea of ap-

plying multi-versioning to critical components of cloud applications to enhance

the reliability of cloud applications. They used sensitivity analysis to identify

the critical components of a cloud application. Zheng et al. [77] used multi-

versioning for improving the reliability of service-oriented systems. They mod-

elled the selection of fault tolerance strategy according to a set of constraints,

such as cost, response time, etc., as an optimization problem and solved it

using a heuristic algorithm.

4.7 Conclusion

Traditionally, software multi-versioning has been applied only to mission-

critical systems due to the high cost of developing and maintaining multiple

70

versions of the software. However, due to the emergence of containers, cloud

computing, and loosely-coupled architecture, multi-versioning is now a feasible

technique for non-critical systems.

In this chapter, we studied how software multi-versioning can be used as

a technique to satisfy the performance requirements of containerized cloud

applications while maintaining the service fidelity as high as possible. We

showed the effectiveness of this technique by applying multi-versioning to two

example open-source cloud applications and conducting an extensive set of

experiments.

As future work, we plan to study to investigate the effectiveness of soft-

ware multi-versioning for satisfying other non-functional requirements of a

containerized cloud applications.

71

Chapter 5

Conclusion

Cloud applications are becoming increasingly popular thanks to the benefits

of cloud computing. One of the vital concepts around cloud applications and

cloud services is quality of service. In this thesis, we focused on performance,

one of the important dimensions of QoS, and explored three approaches for

improving the performance of cloud applications.

In chapter 2 (published in ICPE 2020), we considered a document process-

ing system with monolithic architecture running on a single virtual machine in

the cloud and migrated this application to a scalable and performant serverless

architecture on the Google Cloud Platform. As results showed, this migration

led to a tremendous speed-up in the document processing task with a marginal

increase in cost.

In chapter 3 (accepted in CLOSER 2021), we introduced a new approach

for autoscaling of cloud applications with microservice architecture. In this

approach, we leveraged machine learning to capture the performance behavior

of each microservice in applications and also the impact of services on one

another. This new machine learning-based approach for the autoscaling of

microservice applications outperformed the Kubernetes Horizontal Pod Au-

toscaler (HPA) in terms of response time and throughput.

In chapter 4 (published in ICPE 2020), we leveraged software multi-versioning,

a known concept in software engineering, as a cost-effective way to improve

the performance of cloud applications. Evaluation of this approach on two dif-

ferent applications verified the applicability and effectiveness of this approach

72

for improving the performance of cloud applications.

In future work, we plan to explore the following paths:

• Deploy and compare the performance of the document processing system

introduced in chapter 2 on other serverless platforms such as Amazon

AWS Lambda, Microsoft Azure Function, and IBM Openwhisk

• Evaluate the feasibility of adding vertical scaling to the autoscaler intro-

duced in chapter 3 to provide more fine-grained scaling and improve the

resource utilization

• Investigate the effectiveness of software multi-versioning for satisfying

other non-functional requirements of cloud applications such as reliabil-

ity, security, etc.

73

References

[1] M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web archi-
tecture, processes, and organizations for the modern enterprise. Pearson
Education, 2009.

[2] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, “Pre-
dictive autoscaling of microservices hosted in fog microdata center,”
IEEE Systems Journal, 2020.

[3] S. Adler, Addendum to the slashdot effect internet paper, 1999.

[4] ——, “The slashdot effect: An analysis of three internet publications,”
Linux Gazette, vol. 38, no. 2, 1999.

[5] G. Adzic and R. Chatley, “Serverless computing: Economic and architec-
tural impact,” in Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ACM, 2017, pp. 884–889.

[6] Amazon. (2019). “Amazon aws lambda,” [Online]. Available: https:

//aws.amazon.com/lambda/ (visited on 12/23/2019).

[7] ——, (2019). “Amazon fargate,” [Online]. Available: https://aws.

amazon.com/fargate/ (visited on 12/23/2019).

[8] ——, (2019). “Aws lambda costumer case study,” [Online]. Available:
https : / / aws . amazon . com / lambda / resources / customer - case -

studies/ (visited on 12/23/2019).

[9] ——, Amazon ec2 spot instances, https://aws.amazon.com/ec2/

spot/, Accessed: 2020-10-25, 2020.

[10] ——, Aws auto scaling, https://aws.amazon.com/types-of-cloud-
computing/, Accessed: 2020-12-25, 2020.

[11] ——, Aws auto scaling, https://aws.amazon.com/autoscaling/,
Accessed: 2020-10-25, 2020.

[12] Apache. (2019). “Openwhisk,” [Online]. Available: https://openwhisk.
apache.org/ (visited on 12/23/2019).

[13] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang, “Quality-
of-service in cloud computing: Modeling techniques and their applica-
tions,” Journal of Internet Services and Applications, vol. 5, no. 1, p. 11,
2014.

74

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/types-of-cloud-computing/
https://aws.amazon.com/types-of-cloud-computing/
https://aws.amazon.com/autoscaling/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

[14] A. Avizienis and J. P. Kelly, “Fault tolerance by design diversity: Con-
cepts and experiments,” Computer, no. 8, pp. 67–80, 1984.

[15] A. Avizienis and J.-C. Laprie, “Dependable computing: From concepts
to design diversity,” Proceedings of the IEEE, vol. 74, no. 5, pp. 629–638,
1986.

[16] Belval et al., A python module that wraps the pdftoppm utility to convert
pdf to pil image object, https://github.com/Belval/pdf2image, 2020.

[17] H. Borck, M. Boddy, I. J. De Silva, S. Harp, K. Hoyme, S. Johnston,
A. Schwerdfeger, and M. Southern, “Frankencode: Creating diverse pro-
grams using code clones,” in Proceedings of the 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), IEEE, vol. 1, 2016, pp. 604–608.

[18] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[19] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software engineering for self-adaptive sys-
tems, Springer, 2009, pp. 48–70.

[20] P. Calçado, “Building products at soundcloud—part i: Dealing with the
monolith,” Retrieved from: https://developers. soundcloud. com/blog/building-
products-at-soundcloud-part-1-dealing-withthe-monolith, 2014, Accessed:
2020-10-25.

[21] G. H. Center, Gmail help, https : / / support . google . com / mail /

answer/15049?hl=en, Accessed: 2019-09-27.

[22] T. Chen and R. Bahsoon, “Self-adaptive trade-off decision making for
autoscaling cloud-based services,” IEEE Transactions on Services Com-
puting, vol. 10, no. 4, pp. 618–632, 2015.

[23] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness
of the rainbow self-adaptive system,” in Proceedings of the 9th Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), IEEE,
2009, pp. 132–141.

[24] F. Chollet et al., Keras, https://keras.io, 2015.

[25] C. Cigsar and Y. Lim, “Modeling and analysis of cluster of failures in
redundant systems,” in Proceedings of the 2nd International Conference
on System Reliability and Safety (ICSRS), IEEE, 2017, pp. 119–124.

[26] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud
applications: An empirical study on software development for the cloud,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 393–403.

[27] G. Cloud. (2019). “Cloud functions,” [Online]. Available: https : / /

cloud.google.com/functions/ (visited on 12/23/2019).

75

https://github.com/Belval/pdf2image
https://support.google.com/mail/answer/15049?hl=en
https://support.google.com/mail/answer/15049?hl=en
https://keras.io
https://cloud.google.com/functions/
https://cloud.google.com/functions/

[28] N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive microservice scal-
ing for elastic applications,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4195–4202, 2020.

[29] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, today, and to-
morrow,” in Present and ulterior software engineering, Springer, 2017,
pp. 195–216.

[30] D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAl-
lister, M. A. Vouk, and J. P. J. Kelly, “An experimental evaluation
of software redundancy as a strategy for improving reliability,” IEEE
Transactions on Software Engineering, vol. 17, no. 7, pp. 692–702, 1991.

[31] T. Erl, R. Puttini, and Z. Mahmood, Cloud computing: concepts, tech-
nology, & architecture. Pearson Education, 2013.

[32] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling web applica-
tions in heterogeneous cloud infrastructures,” in 2014 IEEE Interna-
tional Conference on Cloud Engineering, IEEE, 2014, pp. 195–204.

[33] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, et al., “Above the clouds: A berkeley view of
cloud computing,” Dept. Electrical Eng. and Comput. Sciences, Univer-
sity of California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p. 2009,
2009.

[34] M. Franz, “E unibus pluram: Massive-scale software diversity as a de-
fense mechanism,” in Proceedings of the New Security Paradigms Work-
shop, ACM, 2010, pp. 7–16.

[35] S. Gholami, A. Goli, C.-P. Bezemer, and H. Khazaei, “A framework
for satisfying the performance requirements of containerized software
systems through multi-versioning,” in Proceedings of the ACM/SPEC
International Conference on Performance Engineering, 2020, pp. 150–
160.

[36] ——, DockerMV, https://github.com/pacslab/DockerMV, Accessed:
2019-10-19.

[37] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven autoscal-
ing for microservices,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2019, pp. 1994–2004.

[38] A. Goli, O. Hajihassani, H. Khazaei, O. Ardakanian, M. Rashidi, and
T. Dauphinee, “Migrating from monolithic to serverless: A fintech case
study,” in Companion of the ACM/SPEC International Conference on
Performance Engineering, 2020, pp. 20–25.

[39] A. Goli, N. Mahmoudi, H. Khazaei, and O. Ardakanian, “A holistic
machine learning-based autoscaling approach for microservice applica-
tions.”

76

https://github.com/pacslab/DockerMV

[40] Google. (2019). “Google cloud run,” [Online]. Available: https://cloud.
google.com/run/ (visited on 12/23/2019).

[41] ——, (2019). “What is serverless?” [Online]. Available: https://cloud.
google.com/serverless-options (visited on 01/27/2020).

[42] A. Gorbenko, V. Kharchenko, and A. Romanovsky, “Using inherent ser-
vice redundancy and diversity to ensure web services dependability,” in
Methods, Models and Tools for Fault Tolerance, Springer, 2009, pp. 324–
341.

[43] M. Gotin, F. Lösch, R. Heinrich, and R. Reussner, “Investigating per-
formance metrics for scaling microservices in cloudiot-environments,” in
Proceedings of the 2018 ACM/SPEC International Conference on Per-
formance Engineering, 2018, pp. 157–167.

[44] E. Gracie, A. Hayek, and J. Borcsok, “Evaluation of fpga design tools
for safety systems with on-chip redundancy referring to the standard iec
61508,” in Proceedings of the 2nd International Conference on System
Reliability and Safety (ICSRS), IEEE, 2017, pp. 386–390.

[45] A. W. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of deep convo-
lutional nets for document image classification and retrieval,” in Inter-
national Conference on Document Analysis and Recognition (ICDAR).

[46] J. M. Hellerstein et al., “Serverless computing: One step forward, two
steps back,” arXiv preprint arXiv:1812.03651, 2018.

[47] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[48] S. Ihde and K. Parikh, “From a monolith to microservices + rest: The
evolution of linkedin’s service architecture,” Retrieved from: https://www.
infoq.com/presentations/linkedin-microservices-urn/, 2015, Accessed: 2020-
10-25.

[49] W. Iqbal, M. N. Dailey, and D. Carrera, “Unsupervised learning of dy-
namic resource provisioning policies for cloud-hosted multitier web ap-
plications,” IEEE Systems Journal, vol. 10, no. 4, pp. 1435–1446, 2015.

[50] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, 2019, pp. 25–32.

[51] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[52] J. P. J. Kelly, T. I. McVittie, and W. I. Yamamoto, “Implementing
design diversity to achieve fault tolerance,” IEEE Software, vol. 8, no. 4,
pp. 61–71, 1991.

[53] J. Kephart, J. Kephart, D. Chess, C. Boutilier, R. Das, J. O. Kephart,
and W. E. Walsh, “An architectural blueprint for autonomic computing,”
IBM White paper, pp. 2–10, 2003.

77

https://cloud.google.com/run/
https://cloud.google.com/run/
https://cloud.google.com/serverless-options
https://cloud.google.com/serverless-options

[54] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[55] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, “Teastore: A micro-service reference application for bench-
marking, modeling and resource management research,” in 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS), IEEE, 2018,
pp. 223–236.

[56] Kubernetes, Kubernetes hpa, https://kubernetes.io/docs/tasks/
run-application/horizontal-pod-autoscale/, Accessed: 2020-10-
25, 2020.

[57] M. S. Kurz, “Distributed double machine learning with a serverless ar-
chitecture,” arXiv preprint arXiv:2101.04025, 2021.

[58] A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, “Hyscale: Hy-
brid and network scaling of dockerized microservices in cloud data cen-
tres,” in 2019 IEEE 39th International Conference on Distributed Com-
puting Systems (ICDCS), IEEE, 2019, pp. 80–90.

[59] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in Proceedings of the 35th IEEE Symposium on Se-
curity and Privacy, IEEE, 2014, pp. 276–291.

[60] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of grid computing, vol. 12, no. 4, pp. 559–592, 2014.

[61] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), IEEE, vol. 2, 2018, pp. 81–86.

[62] Martin Abadi et al., TensorFlow: Large-scale machine learning on het-
erogeneous systems, Software available from tensorflow.org, 2015. [On-
line]. Available: https://www.tensorflow.org/.

[63] T. Mauro, “Adopting microservices at netflix: Lessons for architectural
design,” Retrieved from https://www. nginx. com/blog/microservices-at-
netflix-architectural-best-practices, 2015, Accessed: 2020-10-25.

[64] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW), IEEE,
2017, pp. 405–410.

[65] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. ” O’Reilly Media,
Inc.”, 2016.

78

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.tensorflow.org/

[66] B. Persaud, B. Obada-Obieh, N. Mansourzadeh, A. Moni, and A. So-
mayaji, “Frankenssl: Recombining cryptographic libraries for software
diversity,” in Proceedings of the 11th Annual Symposium On Informa-
tion Assurance. NYS Cyber Security Conference, 2016, pp. 19–25.

[67] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 1–33, 2018.

[68] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), IEEE, vol. 2, 2007, pp. 629–633.

[69] I. Sommerville, Software Engineering GE. Pearson Australia Pty Lim-
ited, 2016.

[70] J. Spillner, Y. Bogado, W. Benitez, and F. López Pires, “Co-transformation
to cloud-native applications: Development experiences and experimen-
tal evaluation,” in 8th International Conference on Cloud Computing
and Services Science (CLOSER), Funchal, Portugal, 19-21 March 2018,
SciTePress, 2018.

[71] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,”
IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32, 2017.

[72] A. K. Talukder, L. Zimmerman, et al., “Cloud economics: Principles,
costs, and benefits,” in Cloud computing, Springer, 2010, pp. 343–360.

[73] L. Toader et al., “Graphless: Toward serverless graph processing,” in
2019 18th International Symposium on Parallel and Distributed Com-
puting (ISPDC), IEEE, 2019, pp. 66–73.

[74] M. Wajahat, A. Karve, A. Kochut, and A. Gandhi, “Mlscale: A machine
learning based application-agnostic autoscaler,” Sustainable Computing:
Informatics and Systems, vol. 22, pp. 287–299, 2019.

[75] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a server-
less architecture,” in IEEE INFOCOM 2019-IEEE Conference on Com-
puter Communications, IEEE, 2019, pp. 1288–1296.

[76] L. Wang and K. S. Trivedi, “Architecture-based reliability-sensitive crit-
icality measure for fault-tolerance cloud applications,” IEEE Transac-
tions on Parallel and Distributed Systems, 2019.

[77] Z. Zheng, M. R. T. Lyu, and H. Wang, “Service fault tolerance for highly
reliable service-oriented systems: An overview,” Science China Informa-
tion Sciences, vol. 58, no. 5, pp. 1–12, 2015.

[78] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2013.

79

	Introduction
	Background
	Cloud Applications and Quality of Service
	Summary of Contributions
	Outline of the Thesis

	Migrating from Monolithic to Serverless: A FinTech Case Study
	Introduction
	Background
	Serverless Computing
	Monolithic Architecture

	A FinTech Case Study
	Migration Journey
	Motivation
	Breaking the Monolith
	Migration Challenges
	Serverless Architecture

	Evaluation
	Dataset Description
	Experimental Setup
	Results

	Related Work
	Conclusion

	A Holistic Machine Learning-Based Autoscaling Approach for Microservice Applications
	Introduction
	Motivating Scenario
	Related Work
	Predicting Performance
	Predictive Model for CPU Utilization
	Predictive Model for Request Rate
	Data Collection
	Model Training Results

	Waterfall Autoscaler
	Architecture
	Microservice Graph
	Scaling Algorithm

	Experimental Evaluation
	Experimental Setup
	Results and Discussion

	Conclusion

	Maintaining the Performance of Containerized Cloud Applications Through Multi-versioning
	Introduction
	Motivating Example
	Multi-Versioning in Containerized Cloud Applications
	Experimental Setup
	Subject Cloud Applications
	Experiments
	Workload
	Deployment and Load Balancing Rule Sets

	Experimental Evaluation
	Experiments with the Teastore Application
	Experiments with the Znn Application

	Related Work
	Conclusion

	Conclusion
	References

