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Abstract

The aim of this study was to evaluate the impact of genotype imputation on the performance of the GBLUP and Bayesian
methods for genomic prediction. A total of 10,309 Holstein bulls were genotyped on the BovineSNP50 BeadChip (50 k). Five
low density single nucleotide polymorphism (SNP) panels, containing 6,177, 2,480, 1,536, 768 and 384 SNPs, were simulated
from the 50 k panel. A fraction of 0%, 33% and 66% of the animals were randomly selected from the training sets to have
low density genotypes which were then imputed into 50 k genotypes. A GBLUP and a Bayesian method were used to
predict direct genomic values (DGV) for validation animals using imputed or their actual 50 k genotypes. Traits studied
included milk yield, fat percentage, protein percentage and somatic cell score (SCS). Results showed that performance of
both GBLUP and Bayesian methods was influenced by imputation errors. For traits affected by a few large QTL, the Bayesian
method resulted in greater reductions of accuracy due to imputation errors than GBLUP. Including SNPs with largest effects
in the low density panel substantially improved the accuracy of genomic prediction for the Bayesian method. Including
genotypes imputed from the 6 k panel achieved almost the same accuracy of genomic prediction as that of using the 50 k
panel even when 66% of the training population was genotyped on the 6 k panel. These results justified the application of
the 6 k panel for genomic prediction. Imputations from lower density panels were more prone to errors and resulted in
lower accuracy of genomic prediction. But for animals that have close relationship to the reference set, genotype
imputation may still achieve a relatively high accuracy.
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Introduction

Genomic selection has become a new tool for genetic

improvement in livestock species and plants thanks to the

discovery of many thousands of single nucleotide polymorphisms

(SNP) and cost-effective high-throughput genotyping technology.

Since the first publication of Meuwissen et al. [1], numerous

statistical methods have been proposed for genomic prediction.

Two main categories are genomic best linear unbiased prediction

(GBLUP) methods [2–7], and Bayesian methods [1,8–10].

Assumptions of SNP marker effects on the trait vary across

different statistical methods. In general, GBLUP methods assume

that all markers effects are from a normal distribution, while

Bayesian methods assume non-normally distributed marker effects

with distributions vary in different methods. Performance of

different methods depends on the genetic architecture underlying

the studied trait [11]. For traits that are affected by a few large

quantitative trait loci (QTL), Bayesian methods usually outper-

form the GBLUP method, while for traits that are affected by

many QTL with small effects, GBLUP would likely perform better

than or similar as the Bayesian methods [11–13].

Accuracy in estimated breeding values has been increased

significantly for young candidates in dairy cattle from application

of genomic prediction using the BovineSNP50 BeadChip (50 k;

Illumina Inc., San Diego, USA) [12,13]. While the current price of

genotyping on the 50 k panel still hurdles a large number of male

and female candidates to be screened, a cost-effective strategy has

been proposed that uses cheap low density panels for genotyping

followed by imputing to the 50 k panel [14–17]. In October 2011,

Illumina, Inc. has released the BovineLD Genotyping BeadChip

(6 k) to replace its predecessor, the Illumina Golden Gate

Bovine3K chip (3 k). Compared to the 3 k panel, the 6 k panel

has lower genotyping errors, denser genome coverage, and more

accuracy in imputing to 50 k genotypes [14,18]. The GeneSeek

Genomic Profiler (GGP) BeadChip has also become available

since February 2012. The GGP chip has slightly higher

imputation accuracy than the 6 k panel but performs similar as

the 6 k panel in genomic evaluations [19]. The Illumina Golden

Gate technology also allows an array to be customized containing

96, or from 384 to 3072 SNP loci. Genotype imputation from

these lower density panels to 50 k genotypes was poorer than those

from the 3 k, 6 k or the GGP chip. But these lower density panels

may still have their applicability for genotyping selection

candidates whose both parents have genotypes with at least one

genotyped on the 50 k panel [16,20]. The cheap, cost-effective low

density panels and high accuracy of genotyping imputation would

facilitate genomic selection by allowing screening on a larger
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number of young bulls and allowing for the selection to be

conducted on cows.

Studies have shown that imputation errors affect the accuracy of

genomic prediction [21,22]. However, no comparisons of the

impact of imputation errors on different genomic prediction

methods have been reported. The aim of this study was to evaluate

the performance of the GBLUP and Bayesian methods when

imputed genotypes were used for genomic prediction.

Materials and Methods

Genotypes
A total of 10,309 Holstein dairy bulls born between 1950 and

2007 were genotyped on the Illumina BovineSNP50 BeadChip

(50 k; Illumina Inc., San Diego, USA). SNPs with minor allele

frequency (MAF) less than 0.05, missing rate more than 15% or P-

value from Hardy-Weinberg disequilibrium test smaller than

0.0001 were filtered. After filtering, 35,790 SNPs with known

locations on autosomal chromosomes were kept for analyses.

Five low density SNP panels including the Illumina Golden

Gate Bovine3K BeadChip (3 k), the BovineLD BeadChip (6 k),

and three simulated panels containing 384 (L384), 768 (L768), and

1536 (L1536) SNPs were considered in this study. In fact, 2,480

and 6,177 SNPs, from the 3 k and 6 k panel, respectively,

coincided with the 50 k panel. Therefore, genotypes of the 2,480

and 6,177 SNPs extracted from the 50 k panel were used instead

of re-genotyping animals on the 3 k and 6 k panels. The size of the

simulated panels was chosen according to Illumina Golden Gate

technology, which allows customized genotyping with 384 to 3,072

SNPs. SNPs in the three simulated panels were selected from the

50 k panel by compromising between uniform marker density and

high MAF [23]. Number of SNPs on each chromosome is

described in Table 1 for all panels.

Phenotypes
Milk yield, fat percentage, protein percentage, and somatic cell

score (SCS) traits were considered for this study. Official bull

proofs and reliabilities in April 2008 and December 2011 were

obtained from Canadian Dairy Network (CDN). De-regressed

proofs and corresponding reliabilities were derived by CDN from

the 2008 bull proofs. Bulls born before 2004 and had reliabilities of

de-regressed proofs greater than 0.80 were used as the training

data set (n = 1,608). Bulls born in or after 2004 and had reliabilities

of proofs greater than 0.80 in 2011 were used for validation

(n = 3,232). Bulls born before 2004, but had less reliable de-

regressed proofs in 2008 (n = 5,469) were used for genotype

imputation only. Numbers of bulls in different groups are listed by

birth year in Table 2.

Scenarios
Four scenarios were designed to mimic situations that different

proportion of bulls in the training and validation sets were

genotyped on low density panels. In scenario 0 (S0), all bulls

(n = 10,309) had genotypes on the 50 k SNP panel. In scenario 1

(S1), all bulls in the training set had genotypes from the 50 k panel,

and all bulls in the validation set (n = 3,232) had genotypes on low

density panels. In scenario 2 (S2) and scenario 3 (S3), 33% and

66% of bulls were randomly selected from the training set,

respectively, to have low density genotypes, and all bulls in the

validation set had low density genotypes. Size of the reference

population was also reduced correspondingly to have the same

proportion of animals that had 50 k genotypes. Animals in the

training set that had 50 k genotypes were also combined with the

reference population for genotype imputation and thus the actual

numbers of bulls in the reference population used for genotype

imputation were 7,077 for S1, 4,741 for S2, and 2,406 for S3.

Genotype imputation was implemented using software FImpute

(version 2) developed by Sargolzaei et al. [24]. FImpute uses family

imputation algorithm followed by population imputation steps

based on a sliding window technique [25].

Genomic prediction
A GBLUP method and a Bayesian method with a spike and slab

mixture prior distribution for marker effects were used to predict

direct genomic values (DGV) for bulls in the validation set. The

GBLUP method used a genomic relationship matrix proposed by

VanRaden [5] and was implemented via the GEBV software [26].

For the Bayesian method, the statistical model can be written as:

yi~mz
Xm

j~1

bjxijzei i~1, . . . ,nð Þ,

where yi is the phenotypic value (de-regressed EBVs) for animal i;
m is the population mean; n is the total number of animals, and m
is the total number of SNPs; xij is the genotype coded 0, 1 or 2 as

number of copies from a randomly chosen allele; bj is the

regression coefficient (allele substitution effect) for SNP j; and ei is

the random residual effect.

The spike and slab mixture prior distribution for SNP effects is a

mixture of two normal distributions with weights p and (1 - p), i.e.,

bj jp
� �

*pN 0,ts2
b

� �
z 1{pð ÞN 0,s2

b

� �
, where t is an arbitrarily

small value. p was assigned a uniform prior distribution with a

support on (0, 1). A scaled inverse Chi-square distribution with

degree of freedom vb and a scale S2
b was assigned to s2

b. The

strategy of using a group specific variance rather than a locus

specific variance was to avoid the lack of Bayesian learning as in

the BayesB method [1,9,27]. The arbitrarily small value t shrinks

the SNP effects towards zero so that it can effectively, but not

completely remove an irrelevant SNP from the model. Advantages

of using such a two-group mixture distribution have been

discussed previously [28,29]. m was given a flat prior distribution,

and the residual was assigned a normal distribution, i.e.,

eijs2
e

� �
*N 0,s2

e

� �
, where s2

e follows a scaled inverse Chi-square

distribution with degree of freedom ve and a scale S2
e .

A Gibbs sampling algorithm was developed to draw inferences

from the joint posterior distribution. Hyper-parameters were

determined before running Gibbs sampling. vb and ve were

arbitrarily set to 4 and 10, respectively. t was chosen to be 0.0001.

The scale parameter S2
b was derived from the expected value of a

scaled inverse chi-square distributed random variable, i.e.,

E s2
b

� �
~vbS2

b= vb{2
� �

: Assuming SNPs can capture all the

additive genetic variance (s2
a), S2

b can be approximated by

vb{2
� �

v{1
b

1{pzptð Þ{1s2
a=
P

2pj 1{pj

� �
, where pj is the allele

frequency for SNP j. Similarly, S2
e can be approximated by

ve{2ð Þv{1
e s2, where s2 is the random environmental error

variance. s2
a and s2 were estimated by ASReml 3.0 [30] from a

preliminary analysis on de-regressed EBVs using an animal model.

Residual effects were assumed to have a homogeneous variance

due to a high cut-off value for the reliability of de-regressed EBVs

in the training population.

A self-developed computer program was written with ANSI C

language to implement the Gibbs sampler. The Gibbs sampling

was run for 100,000 iterations with the first 20,000 cycles

discarded as burn-in. Burn-in period were determined by visually
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Table 1. Number of SNPs on each chromosome for all SNP panels used in the study.

Chromosome 50 k 6 k 3 k L1536 L768 L384

BTA1 2,291 369 160 97 49 24

BTA2 1,856 331 136 85 42 21

BTA3 1,792 284 120 77 38 19

BTA4 1,731 285 125 75 37 19

BTA5 1,504 283 117 76 38 19

BTA6 1,750 283 115 74 37 18

BTA7 1,510 260 108 68 34 17

BTA8 1,631 280 112 71 35 18

BTA9 1,427 255 108 65 33 16

BTA10 1,496 254 103 64 32 16

BTA11 1,590 268 104 67 33 17

BTA12 1,157 211 88 52 26 13

BTA13 1,236 206 86 51 25 13

BTA14 1,206 207 82 49 25 12

BTA15 1,200 202 83 51 25 13

BTA16 1,049 194 77 47 24 12

BTA17 1,137 185 72 46 23 12

BTA18 973 168 66 40 20 10

BTA19 977 163 57 39 20 10

BTA20 1,072 191 72 46 23 11

BTA21 947 174 73 42 21 10

BTA22 912 160 66 37 19 9

BTA23 800 146 52 32 16 8

BTA24 895 165 63 39 20 10

BTA25 746 136 46 26 13 7

BTA26 752 139 46 31 15 8

BTA27 714 131 47 30 15 7

BTA28 700 119 43 28 14 7

BTA29 739 128 53 31 16 8

Total 35,790 6,177 2,480 1,536 768 384

doi:10.1371/journal.pone.0101544.t001

Table 2. Number of bulls in different groups by birth year.

Year of birth Reference1 Training Validation

1950–1954 4 0 0

1955–1959 7 1 0

1960–1964 17 5 0

1965–1969 13 3 0

1970–1974 15 11 0

1975–1979 25 15 0

1980–1984 76 29 0

1985–1989 437 86 0

1990–1994 382 140 0

1995–1999 2,557 843 0

2000–2003 1,936 475 0

2004–2007 0 0 3,232

Total 5,469 1,608 3,232

1Bulls in the reference group were used only for genotype imputation.
doi:10.1371/journal.pone.0101544.t002
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inspecting the Gibbs sampling chain. All samples were kept after

the burn-in and the sample means were used as estimates for SNP

effects. Direct genomic breeding values for bulls in the validation

set were estimated by summing the SNP effects over all loci.

Evaluation
Imputed genotypes were compared to the actual genotypes from

the 50 k panel and the percentage of genotypes imputed correctly

out of the total imputed genotypes was calculated as a measure of

imputation accuracy. For genomic prediction, Pearson’s correla-

tion coefficient between DGV and bull proofs from 2011 for bulls

in the validation set was estimated as a measure of accuracy.

Results and Discussion

Accuracy of genotype imputation
Table 3 shows the accuracy of genotypes that were imputed

from various low density panels to the 50 k SNP panel under

different scenarios. The imputation accuracy was the highest

(0.9841) when all bulls in the training set were genotyped with 50 k

panel and bulls in the validation set were genotyped on the 6 k

panel. Accuracy was dropped rapidly when the density of the SNP

panels was decreased. Imputation accuracy from 6 k SNP panel

were greater than that from the 3 k panel by about 2, 3 and 4

percentage points, when 0%, 33% and 66% of animals in the

training set, respectively, were also genotyped on the low density

panel. The accuracy decreased as more training bulls were

genotyped on low density panels which, consequently, resulted in

reduced reference size for imputation. The trends of imputation

accuracy were consistent with reports from other studies

[14,22,23].

Prediction accuracy using actual 50 k SNP genotypes
Table 4 shows the accuracy of DGV in the validation set

predicted via the GBLUP and Bayesian methods using the

observed 50 k SNP genotypes in the training and validation sets.

The Bayesian method outperformed GBLUP by 3, 11, 5 and 0

percentage points, for milk yield, fat percentage, protein percent-

age and SCS, respectively, with the greatest difference for fat

percentage and the least for SCS.

Results also shown in the table were the posterior estimates of p,

which were 0.96, 0.99, 0.99, and 0.93, for milk yield, fat

percentage, protein percentage, and SCS, respectively. p is an

indicator on the proportion of SNPs that were expected to have no

effects on the trait. When p is small, the trait is likely affected by

many QTL with small effects, and when p is large, a few large

QTL are expected to influence the trait [9]. Daetwyler et al. [11]

concluded that Bayesian methods would perform similarly or

slightly worse than GBLUP when the trait was affected by many

QTL each with a small effect, and better if the trait was influenced

by a few large QTL. The largest p in our study was estimated for

fat percentage, for which the Bayesian method showed the greatest

advantage compared to GBLUP. A relatively smaller estimate of p
for SCS corresponded to no difference of accuracy between the

Bayesian and GBLUP methods. These results agreed with other

studies comparing the performance between GBLUP and

Bayesian methods for traits with different genetic architectures

[12,13].

To show the difference of estimated SNP effects between the

GBLUP and Bayesian methods, Figure 1 plots estimated SNP

effects on chromosome 14 for fat percentage. Both GBLUP and

the Bayesian methods highlighted a QTL region harbouring the

known DGAT1 gene which has been confirmed to have a large

effect on milk fat percentage in cattle [31]. The Bayesian method

tended to select fewer relevant SNPs, while the GBLUP method

picked many more SNPs surrounding the QTL.

Prediction accuracy using imputed 50 k SNP genotypes
Table 5 presents the accuracy of DGV for bulls in the validation

set under different scenarios. Accuracies achieved from the

Bayesian method were greater than or similar to those from

GBLUP, for all low density panels, under all scenarios. Accuracy

of genomic prediction decreased when the density in the SNP

panel was reduced. For scenarios where genotype imputation

subjected to more errors, accuracy of genomic prediction also

declined more rapidly. The scenario S1used the same training

population as scenario S0, and thus the estimated p values from

the Bayesian method were the same as in S0. For scenario S2 and

S3 in Table S1, the estimated p values were shown.

The trend that the accuracy changed with the density of SNP

panel and with the proportion of training bulls being genotyped on

the low density panels agreed with results of Weigel et al. [22].

However, in their study, only up to a 3 k low density panel was

evaluated. Our study revealed that the 6 k SNP panel performed

better than the 3 k panel and resulted in the least reduction of

genomic prediction accuracy among all the low density panels. In

fact, no reduction was observed for 6 k panel using GBLUP

method under all scenarios, and only slight reductions (up to 1

percentage point) were observed for the Bayesian method under

S2 and S3.

The influence of imputation errors on the genomic prediction

accuracy also depends on the traits. For example, when bulls in the

validation set were imputed from L384 SNP panel, accuracy of

DGV predicted via GBLUP was reduced by a rate of 20, 34, 20

and 15%, for milk yield, fat percentage, protein percentage, and

SCS, respectively; and for the Bayesian method, the accuracy was

dropped by 22, 44, 25, and 15%, respectively. This was likely due

to different genetic architectures underlying different traits. For

traits affected by a few large QTL, such as fat percentage,

accuracy of genomic prediction seemed much more sensitive to

imputation errors than traits controlled by many small QTL, such

as SCS. A similar trend was observed in a simulation study [32],

Table 3. Accuracy of genotype imputation under different scenarios.

Scenario1 6 k 3 k L1536 L768 L384

S1 0.9841 0.9604 0.9430 0.8787 0.7965

S2 0.9792 0.9507 0.9300 0.8573 0.7617

S3 0.9723 0.9367 0.9120 0.8285 0.7210

1The reference population sizes used for imputation were n = 7,077, n = 4,741 and n = 2,406 for scenario S1, S2 and S3, respectively; 0%, 33%, and 66% of the training set
in scenario S1, S2, and S3, respectively, and all bulls in the validation set were genotyped on the low density panel.
doi:10.1371/journal.pone.0101544.t003
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where the accuracy of genomic prediction from low density panels

declined much more rapidly for traits with a smaller number of

QTL. Figure 1 showed that for chromosome regions with a large

QTL, the Bayesian method tended to select fewer relevant SNPs,

while GBLUP or the Ridge-regression picked many more SNPs

surrounding the QTL. For other regions, the Bayesian method

placed less weight on the SNPs than GBLUP. Therefore, the

Bayesian method could suffer more if the few relevant SNPs were

imputed with error, but the GBLUP method would suffer from

imputation errors accumulated over many more SNPs. This could

possibly explain why the Bayesian method had a greater reduction

rate in accuracy for traits with large QTL and why the Bayesian

method still resulted in higher or equal accuracies than GBLUP

for all scenarios. Relative performance of the two methods might

be more related to distributions of imputation errors. If more

imputation errors were distributed around the QTL, one could

speculate that the Bayesian method would suffer more from these

errors than GBLUP and consequently resulted in more reductions

in the accuracy of genomic prediction. Most of the economically

important traits in dairy cattle may be controlled by large number

of QTL with small effects, and the GBLUP and Bayesian method

would perform similar for genomic prediction for these traits [11–

13]. It is expected that for most of the complex traits the impact of

imputation errors on the GBLUP and Bayesian method will be

similar as observed for SCS in this study.

To examine the imputation errors on SNPs with large effects,

two SNPs within the DGAT1 gene region were chosen. The two

SNPs had the largest effects estimated from both the GBLUP and

Bayesian methods. Imputation accuracies under scenario S1 are

shown in Table 6. Both SNPs are present in the 6 k panel and thus

the accuracies were 1. Imputation from the 3 k panel reached a

higher accuracy than the average as shown in Table 3. But for

L1536, L768, and the L384 panels, imputation accuracies for the

two SNPs were below average. This could explain the rapid

decline in accuracy of genomic prediction to 0.63 from 0.75 for the

low density panel L1536 although the average imputation

accuracy was not low (0.9430). To further investigate the potential

of selecting SNPs with largest effects in the design of low density

panels, actual genotypes from the two SNPs were included for

genomic prediction under scenario S1 together with other imputed

genotypes from the low density panels. Table 7 shows the results of

genomic prediction using the GBLUP and Bayesian methods.

Accuracy was increased by up to 2 percentage points for the

GBLUP method. But for the Bayesian method, accuracies were

increased by 1, 10, 13, and 22 percentage points, respectively, for

the 3 k, L1536, L768, and L384 panels. These results suggest that

a low density panel comprising SNPs with largest effects has the

potential to preserve the accuracy of genomic prediction from

higher density panels.

Using either the GBLUP or Bayesian method, the 6 k SNP

panel performed better than the 3 k panel. In this study, genotypes

on both the 3 k and 6 k panel were simulated from the 50 k

genotypes. In reality, there are more genotyping errors in 3 k

genotypes than in 6 k or 50 k due to the Golden Gate genotyping

technology used for the 3 k panel [14]. So, results could be worse

for the 3 k panel in practice. The other lower density panels

performed worse due to more inaccurate imputation of SNP

genotypes. Accuracy for either genotype imputation or genomic

prediction was evaluated as an average for the population.

Examining imputation accuracies at an individual animal level

showed that even for very low density SNP panels, there were still

a substantial number of bulls that achieved high imputation

accuracies. These animals should have close relationships to the

reference set which were used by FImpute. In results not shown

above, when both parents were genotyped on the 50 k SNP panel,

accuracy of imputation from L384 SNP panel to 50 k was 0.9436.

The imputation accuracy was 0.7738 when only sires were

genotyped on the 50 k panel, and 0.6213 when no parents had

50 k genotypes. Zhang and Druet [23] also found that when the

genomes of target animals were fully inherited from reference

animals, imputation errors from a 384 SNP panel to 50 k SNP

panel can be as low as 3.2%. In this study, imputed genotypes

were included in the training set regardless of their imputation

accuracies. In practice, only animals that have their genotypes

imputed with high accuracies should be included in the training

set. This scenario should be further studied to investigate the

impact of using imputed genotypes on the accuracy of genomic

prediction.

Table 4. Accuracy of genomic prediction and posterior estimates of p using observed 50 k SNP genotypes under scenario S01.

Trait Accuracy Posterior p

GBLUP Bayesian

Milk 0.61 0.64 0.96

Fat % 0.64 0.75 0.99

Protein % 0.71 0.76 0.99

SCS 0.62 0.62 0.93

1S0: All animals in the training and validation sets were genotyped on the 50 k SNP panel.
doi:10.1371/journal.pone.0101544.t004

Figure 1. SNP effects for fat percentage estimated from GBLUP
and the Bayesian methods.
doi:10.1371/journal.pone.0101544.g001
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In the future, more and more animals might be genotyped on

low density panels. One might have to decide whether to include

these animals in the training population to derive genomic

prediction equations. From Table 5, the accuracy of genomic

prediction was consistently reduced when more animals in the

training set were imputed when the density of the SNP panel was

lower than 6 k. For the 6 k panel, accuracy of genomic prediction

was almost not altered even 66% of the training set was imputed.

This of course, was achieved by the high genotype imputation

accuracy for the 6 k panel. Currently, nearly all males used for

breeding are genotyped or re-genotyped on panels with a density

of 6 k or higher and results from this study justified the application

of the 6 k panel. In this study, the sample size of the training set

was kept constant regardless the use of imputation. The use of

imputation could, however, also aid to enlarge the sample size of

the training set, which might in fact increase the accuracy of the

DGV. This possible scenario warrants further investigation. This

study only uses bull genotypes for genomic evaluations. Large

numbers of females in dairy cattle have also been genotyped on the

50 k or low density panels. Although cautions have been taken to

include cow genotypes in the training population currently due to

biases in genomic evaluations caused by preferential treatment of

elite cows [33], the problem can be alleviated by including

genotypes of randomly selected cows [33] or by appropriately

adjusting for cow evaluations [34]. A large percent of the cows

may be genotyped cost-effectively on low density SNP panels

followed by imputing to the 50 k genotypes. Including imputed

genotypes from cows in the training population and its impact on

the genomic predictions require further evaluation.

Conclusions

Performance of both the Bayesian and GBLUP methods was

influenced by imputation errors. For the traits considered in this

study, the Bayesian method performed similar or better than the

GBLUP method for genomic prediction under all scenarios and

with different densities of the SNP panel or proportions of the

training set being imputed. However, for traits affected by a few

large QTL, the Bayesian method resulted in greater reductions of

accuracy than GBLUP when a very low density of SNP panel was

used. Including SNPs with largest effects in the low density panel

substantially improved the accuracy of genomic prediction for the

Bayesian method. When different low density panels were

compared, with all animals in the training set genotyped on 50 k

SNP panel, and animals in the validation set genotyped on the 6 k

SNP panel, the accuracy of genomic prediction was the greatest

for both GBLUP and the Bayesian methods. Imputation from

SNP panels with a density lower than 6 k was more prone to errors

and resulted in lower accuracy of genomic prediction. But for

animals that have close relationship to the reference set, genotype

imputation may still achieve a relatively high accuracy. Including

genotypes imputed from the 6 k panel achieved almost the same

accuracy of genomic prediction as that of the 50 k panel, even

Table 5. Accuracy of genomic prediction using imputed 50 k SNP genotypes: Accuracies from using Bayesian model are
parenthesized and accuracies for GBLUP are presented outside the parenthesis.

Trait Scenario1 Low density SNP panel

6 k 3 k L1536 L768 L384

Milk S1 0.61 (0.64) 0.60 (0.63) 0.59 (0.61) 0.55 (0.57) 0.49 (0.50)

S2 0.61 (0.64) 0.59 (0.62) 0.58 (0.60) 0.52 (0.54) 0.44 (0.46)

S3 0.61 (0.64) 0.59 (0.61) 0.57 (0.58) 0.50 (0.52) 0.39 (0.42)

Fat % S1 0.64 (0.75) 0.63 (0.73) 0.59 (0.63) 0.54 (0.57) 0.42 (0.42)

S2 0.64 (0.75) 0.63 (0.73) 0.56 (0.61) 0.50 (0.53) 0.37 (0.39)

S3 0.64 (0.74) 0.62 (0.72) 0.53 (0.59) 0.45 (0.51) 0.32 (0.34)

Protein % S1 0.71 (0.76) 0.70 (0.74) 0.69 (0.72) 0.65 (0.66) 0.57 (0.57)

S2 0.71 (0.75) 0.69 (0.73) 0.68 (0.70) 0.62 (0.63) 0.53 (0.54)

S3 0.71 (0.75) 0.68 (0.72) 0.67 (0.69) 0.58 (0.59) 0.47 (0.47)

SCS S1 0.62 (0.62) 0.62 (0.62) 0.61 (0.61) 0.57 (0.57) 0.53 (0.53)

S2 0.62 (0.62) 0.61 (0.61) 0.60 (0.60) 0.54 (0.55) 0.49 (0.50)

S3 0.62 (0.61) 0.60 (0.60) 0.60 (0.60) 0.53 (0.54) 0.44 (0.46)

10%, 33%, and 66% of the training set in scenario S1, S2, and S3, respectively, and all bulls in the validation set were genotyped on the low density panel.
doi:10.1371/journal.pone.0101544.t005

Table 6. Imputation accuracy under scenario S1 for two SNPs with largest effects on fat percentage.

SNP ID Location1 (Bp) Low density SNP panel

6 k 3 k L1536 L768 L384

ARS-BFGL-NGS-4939 443,937 1 0.9830 0.8688 0.8181 0.7249

ARS-BFGL-NGS-57820 226,532 1 0.9802 0.8642 0.8165 0.7200

Bulls in the training were genotyped on the 50 k panel, and bulls in the validation set were genotyped on low density panels.
1Locations of SNPs are shown as from the bovine genome assembly Btau4.2.
doi:10.1371/journal.pone.0101544.t006
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when 66% of the training animals were genotyped on the low

density panels. These results justified the application of the 6 k

panel for genomic prediction.
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