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Abstract 

Influenza or the ‘flu’ can affect people from all walks of life. The burden from 

influenza epidemics puts tremendous pressure on health services and other 

resources during a flu season. To better prepare for an incoming flu season, 

clinicians, health services and policy makers have a great interest in developing 

the capacity to predict the timing of the peak of an influenza epidemic based on 

identified cases in the early phase of the season. 

The objective of this thesis is to formulate an influenza model that can predict the 

week when the laboratory confirmed influenza cases peak for different 

geographical zones in the Province of Alberta: Edmonton, Calgary, North, Central 

and South zones. A Kermarck-McKendrick type compartmental model that 

comprises of the susceptible-infected (SI) compartments for three age groups (0-

18 years, 19-64 years, and 64 years and over) is proposed. Contact mixing matrix 

among the age groups is computed. Estimates of model parameters are obtained 

by fitting the model to past influenza data (Year 2014-2015) from Alberta Health, 

using the nonlinear least squares method and the Mathematica software. The 95% 

confidence intervals for model parameters are obtained using the Markov Chain 

Monte Carlo method and then used for uncertainty analysis of our model 

predictions. 

Our model predictions for the peak time have shown a good agreement with past 

data for all Alberta zones. The findings in this thesis provide the groundwork and 

insight valuable for further development of influenza forecasting models.  
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Chapter 1 

1 Introduction 

In this Chapter, a general background on the influenza virus which comprises the 

epidemiology of the virus, symptoms and preventions of the virus, worldwide 

influenza epidemics as well as some influenza pandemics that have been 

experienced are provided in Section 1.1. The objective of this thesis and its 

implication are also provided in Section 1.2. The methodology used in the thesis, 

the limitations encountered and the organization of the thesis are presented in 

Sections 1.3, 1.4 and 1.5. 

1.1 Background Information 

1.1.1 Epidemiology of Influenza 

Influenza or the ‘flu’, is a respiratory disease that affects the nose, throat and 

occasionally the lungs of humans as well as animals like birds, dogs etc. It is 

caused by the influenza viruses known as orthomyxoviruses which are a family of 

RNA viruses made up of six genera viruses: Influenza-virus A, Influenza-virus B, 

Influenza-virus C, Isa-virus, Thogoto-virus and Quaranja-virus [11]. Influenza A, 

B, and C viruses affect humans, birds, pigs, dogs, seals as well as other mammals 

[11]. Influenza A virus is considered to be the most dangerous human pathogen 

among the three influenza types since it is the cause of most or all of the flu 

pandemics that occur around the world [14]. Influenza B and C are considered to 

be less common with Influenza C usually causing both severe illnesses and local 
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epidemics [16]. The inability of influenza B to mutate at a faster rate, that is, to 

change its antigens, ensures that pandemics of this type of influenza do not occur 

[25]. Types of influenza viruses can be divided into subtypes or different 

serotypes based on their antibody response to their viral particles [7]. For 

instance, Influenza A viruses are divided into subtypes based on their antibody 

responses to the viral surface proteins: Hemagglutin (HA or H) and neuraminidase 

(NA or N) [24]. H1N1, H2N2, H3N2, H5N1, H1N2, H7N9 are some of the 

subtypes of influenza virus A with H1N1 and H3N2 commonly found in humans. 

Influenza viruses’ B and C are not divided into subtypes however influenza B is 

further divided into lineages and strains with some of the lineages being 

B/Yamagata and B/Victoria. Influenza viruses undergo certain antigenic changes 

that happen continually over time. Two processes that cause the antigens to 

change are the antigenic shift and antigenic drift with antigenic drift being more 

common than the other [4]. Antigenic drift of influenza causes the virus to change 

over time usually a new strain of virus evolves against the current recognised 

strain of virus. When this happens the antibodies that are built against the current 

strain of virus are not able to fight against the newer strain hence resulting in 

reinfection. This is why there is the need for new vaccinations every year. Due to 

the ability of the antigens to change over time, people usually have little or no 

immunity at all. The Antigenic shift on the other hand causes two different flu 

strains to combine and infect the same cell hence creating a new type of flu. 

People end up having no immunity against the new virus [4].  
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1.1.2 Symptoms and Preventions 

Influenza is usually passed from person to person or through droplets from an 

infected individuals’ cough or sneeze. It can also be spread by touching surfaces 

that have been contaminated by the virus and then touching the mouth or the eyes 

[13]. Influenza symptoms can be mild or severe. Some of the common symptoms 

include high fever, headache, aching muscles, sore throat, loss of appetite, feeling 

tired etc. The symptoms of influenza typically begin two days after one has been 

exposed to the disease [13]. According to the World Health Organization [WHO], 

most infected people tend to recover within a week without requiring any medical 

treatment; however in the young, elderly and those with serious medical 

conditions, influenza seems to be more severe and can results in death [10]. 

Influenza viruses circulate worldwide and can affect anybody in any age group: 

children younger than 2 years of age, adults aged 65 years or older, pregnant 

women and people of any age with medical conditions like liver, lung disease and 

kidney disease can be infected [10]. People are asymptomatic in the initial 

infection stage and can still infect others but as time goes on can be very 

infectious. Vaccination is one of the most effective way to protect people against 

the flu viruses. The flu vaccines are effective against the viruses when they 

contain either the same or related strain of the virus. For example, influenza A 

(H1N1) and A(H3N2) and one or two of influenza B are usually included in 

influenza vaccines each year [22]. However, changes in the strains of the 

influenza virus tend to cause any particular vaccine received to confer minimal 

protection.  
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1.1.3 Worldwide Epidemics 

According to the World Health Organization [WHO], seasonal epidemics mainly 

occur during winter in temperate climates as compared to the tropical region 

where influenza occurs throughout the year. WHO also estimate that the annual 

influenza epidemics usually results in about 3 to 5 million cases of severe illness 

and about 250000 to 500000 deaths worldwide. This imposes economic burden in 

the form of hospital and other health cost and lost productivity on the world. In 

the industrialised countries, most deaths associated with influenza occur among 

people aged 65 years and over [10]. Flu season typically runs from August (week 

35) to August (week 34). However, in Canada, active seasonal influenza occurs 

annually between November and March. In Canada, the number of hospitalization 

from flu ranges between 1000 and 8000 with death rate estimated to be between 

100-800 cases per year [21]. The Community and Hospital Infection Control 

Association (CHICA) in Canada estimates that the numbers of influenza cases 

have increased from 7422 cases in 2005-2006 to 43510 cases in 2014-2015 [3]. In 

Alberta alone, 4,850 laboratory-confirmed cases were reported for the 2014-2015 

influenza season which was 20% and 60% more than in the 2013-2014 and 2012-

2013 seasons respectively [1]. The strains of the influenza virus in Alberta have 

been ranging between H3N2 and H1N1. 
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1.1.4 Influenza Pandemics 

Influenza pandemic is the outbreak of the influenza virus worldwide which 

normally affects a large proportion of the human population. These pandemics 

results in high mortality among the people. It usually occurs when new strains of 

the flu virus are transmitted from animal species to humans [9]. Some influenza 

pandemics that have occurred in the world include: 

• the 1889-1890 pandemic flu known as the Asiatic or Russian flu,  

• the 1918-1920 flu pandemic known as the Spanish flu where H1N1 was 

the most predominant strain experienced, 

• the Asian flu in 1957-1958 with H2N2 subtype of influenza A being the 

predominant strain where the elderly had the highest rates of death, 

• the Hong Kong flu in 1968-1969 which was caused by the H3N2 strain of 

influenza A, and  

• the 2009-2010 pandemic flu known as swine flu which occurred 

worldwide and was caused by the H1N1 influenza virus. [9]. 

 

1.2 Objective and Implications 

Influenza epidemics and pandemics place a huge burden on society and 

individuals. Every year, influenza and its health problems put a significant burden 

on the health-care system as well as an economic toll on productivity through lost 

workforce and school absenteeism. Forecasting influenza epidemics not only 

helps in health resource allocation, it also helps in preparedness planning as well 

as educating the public on how they can adopt better personal health care around 
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infected individuals. In Alberta, the interest of most clinicians and policy makers 

is to control influenza epidemics since it put more pressure on the health systems 

and productivity.  

The objective of this thesis is to formulate an influenza model to predict the peak 

influenza week. This is the week with the highest laboratory confirmed influenza 

cases within the geographical zones of Alberta: Edmonton, Calgary, Central, 

North and South zones. This is in the interest of the Alberta Health Services 

which is to only determine the timing of when a rise in the influenza cases should 

be expected based on an identified cases of the influenza season. Epidemiology 

has made it possible for researchers to analyse different types of diseases 

including influenza. Knowing the week at which each zone peaks will help in 

health resource allocation and will enable government, health agencies and other 

stakeholders to plan ahead as to what medications to introduce and how to 

allocate them; that is, which zones requires immediate attention. It will also help 

to know whether the measures that have been put in place are enough to prevent 

the spread of the virus from one zone to another or from person to person.  

 

1.3 Methodology Used 

The methodology used in this thesis is as follows: 

• A simple deterministic compartmental model developed by Kermarck and 

McKendrick in 1927 [12] is used. The mathematical model is made up of 

three compartments namely the susceptible(S), infected but not lab 

confirmed(ID) and infected but lab confirmed (IL). The three compartments 
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are subdivided into three age groups 0-18 years, 19-64 years and 65 years 

and over. 

•  Numerical simulations are performed using Wolfram Mathematica 

Version 10.3.1 and Microsoft Excel. The simulations are conducted using 

data obtained from the Alberta Health services. The data comprises of all 

the laboratory confirmed cases obtained for each zone. Individual visits to 

the physicians as well as antiviral dispensing are also provided as part of 

the data. 

• The best fit estimates are also obtained using the weighted nonlinear least 

squares method and the NDSOLVER in Mathematica. To ascertain that 

the parameters are the best estimates, the Metropolis Hasting Algorithm of 

the Markov Chain Monte Carlo method is used to determine the 95% 

confidence intervals for each of the parameters obtained. Latin Hypercube 

Sampling (LHS) is also used to generate 10000 samples based on the 

posterior distribution (the lower and upper confidence intervals and the 

point estimates) from the MCMC. This is to check the uncertainty in the 

peak week obtained. 

 

1.4 Limitations 

To obtain the best fit parameters, that is, the probability of transmission per 

contact for each age group, the parameters are randomly generated using the 

RANDOMREAL method in Mathematica where the parameters are chosen 

between a range of selected values from a specified sample. It is important to note 
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that the larger the sample size the more accurate the parameter estimates. 

However, as a result of computational time demand in running the program it was 

decided to use a sample size of 500,000 which gives a fairly accurate result as 

compared to using a larger sample size. Thus the parameter estimates obtained are 

usually local minimum instead of global minimum. 

 

1.5 Organization of thesis 

This thesis is organized into five chapters. Chapter 1 gives a general background 

and objective and methodology of the thesis. Chapter 2 presents literature review 

on some of the compartmental models as well as statistical models proposed for 

the influenza virus by previous researchers. A brief description of the data, 

statistical analysis and the formulation of the influenza model can be found in 

Chapter 3. Chapter 4 presents the results and discussions obtained from the 

simulations and analysis with Chapter 5 containing the conclusion and 

recommendations. 
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Chapter 2 

2 Literature Reviews of Influenza Models 

Understanding the dynamics of influenza has compelled several authors to model 

it using mathematical or statistical methods. In this chapter, a brief description of 

some of the previous mathematical and statistical models of influenza is 

presented. The views of some of these authors are presented below. 

2.1 Compartmental Models 

2.1.1 Henneman, Peursem and Huber (2013)  

The authors proposed a mathematical model for influenza pandemic which takes 

into account that individuals are first infected with the influenza virus and then 

later contract a secondary bacterial infection. The authors presume that an 

individual with influenza become susceptible to the bacterial infection specifically 

bacterial pneumonia and then either contract the disease or recover. Henneman et 

al. proposed the influenza model based on this fact since this is the main cause of 

most of the deaths associated with influenza [8]. The influenza model proposed is 

a modification of the basic Kermarck and McKendrick SIR (Susceptible-Infected-

Recovered) model with the introduction of a compartment for individuals who are 

susceptible to the secondary bacterial infection. The proposed model is expected 

to estimate the number of individuals who first become infected with the 

influenza virus and then become infected with the bacterial infection. The 

proposed model consisted of individuals who are susceptible (S) to the influenza 
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virus, infected with influenza virus (I1), that is, those with symptomatic influenza, 

and individuals who recover from the virus and are temporarily susceptible to the 

bacteria infection (T). The individuals in the T compartment can either recover 

and move to the recovered (R) compartment or they can be infected with the 

secondary bacterial infection and move to the I2 compartment. Individuals in the I2 

compartment on the other hand either die and are removed from the model or 

recover from the bacterial infection and move to R compartment. A schematic 

representation of the model proposed by Henneman et al. can be seen in Figure 

2.1.1. 

 

Figure 2.1.1: Henneman et al. Influenza Model 

 

The ordinary differential equation derived by Henneman et al. [8] is as follows: 

         							
		� � 
β1I1S  

 

   
	��
	� � β1I1S
���� 

 

     
	�
	� � ���� 
 (� � ����)�                                                                (2.1.1a) 

 

   
	��
	� � β2I2T
(�� � ��)�� 

 

   
	�
	� � ���� � �� 
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The transmission rate of influenza is denoted by β1, the rate at which an infected 

influenza patient recovers is denoted by �� with � showing the rate at which an 

individual looses his susceptibility from influenza to secondary infection after 

recovering. β2 shows the transmission rate of the bacterial infection, with �� 

denoting the recovery rate from the bacterial infection and �� representing the 

excess death rate due to bacterial infection. The model was constructed based on 

the assumption that there was no entry into or departure from the population 

except through an increased death rate from the secondary bacterial infection. 

Mathematical analysis of system (Equation 2.1.1a) shows that the maximum 

number of individuals infected with influenza during an epidemic is given by  

 ����� � ��� �  � 
 !�
"� #$ � 


!�
"� �

!�
"� #$

!�
"�                                    (2.1.1b) 

The above equation predicts whether there will be an influenza epidemic or not 

and the severity of that epidemic at the beginning of any flu outbreak. In addition, 

the number of individuals that may become infected with the secondary bacterial 

infection can also be determined. Numerical simulations showed that the proposed 

model predicts the number of influenza cases obtained as well as the number of 

deaths.   

Even though the influenza model proposed by Henneman et al. seems to predict 

the number of influenza cases as well as the number of deaths from the bacterial 

infection, the authors were mainly concerned with individuals with symptomatic 

influenza and did not consider individuals with asymptomatic influenza. This is 

because the authors presumed that those with asymptomatic influenza do not have 

an increased risk of getting the secondary bacterial infection hence concentrated 
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more on the symptomatic influenza. Another aspect that the model did not 

consider was the age distribution of the susceptible population and the fact that 

there can be cross infection among the various age groups. That is, the model 

proposed didn’t take into considerations the various age groups specifically the at-

risk populations which usually includes children, elderly individuals (65 years and 

older) etc. and so did not consider the contact that each of these groups make with 

themselves and others. 

 

2.1.2 Bedada, Lemma and Koya (2015) 

The authors proposed an SEISINR mathematical model which was an extension of 

the SEIR model to describe the propagation of the influenza disease among the 

population. According to Bedada et. al., Influenza type A, virus specifically 

H1N1, has a latent or exposed phase during which the individuals are said to be 

infected but are not showing any symptoms [2]; hence the SEIR mathematical 

model is modified to include these individuals. The infectious compartment of the 

SEIR model is segmented into the symptomatic, �
, and the non-symptomatic �%, 

compartments. Unlike the simple SEIR model, Bedada et al. included death rate in 

the symptomatic infectious compartment. The proposed model consists of the 

following compartments: susceptible (S), exposed (E), infected with symptoms 

(IS), infected without symptoms (IN), and recovered or removed (R). The model 

was constructed based on the assumption that individuals in the susceptible 

compartments are subject to infection due to contact with an infected population 

at a rate �. These susceptible after being infected with the disease move to the 
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exposed compartment where the virus multiplies for a period of time, &, and then 

from the exposed compartment a portion � of individuals enter into the infected 

with the symptoms compartment with a proportion (1-�) entering into the infected 

but without symptoms compartment. A pictorial view of the model proposed by 

Bedada et al. can be seen below: 

 

Figure 2.1.2: Bedada et. al. flow diagram of the influenza model 

 

The mathematical formulation of the SEISINR model can be expressed as a system 

of differential equations as follows: 

            		
		� � -β (�
 � '�%)  
 

            
	(
	� � β (�
 � '�%) 
 *+ 

 

            
	�,
	� � �*+ 
 ��
 
 -�
                                                                        (2.1.2) 

 

            
	�.
	� � (1 
 �)*+ 
 0�% 

 

            
	�
	� � ��
 � 0�% 

 

Here β is the transmission rate of the susceptible individual with infection, k is the 

latency period in the exposed class, � is the fraction of the exposed individuals 

that enter into IS compartment, � is the rate of recovery from the virus in the IS 
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compartment, - is the death rate with influenza in the IS compartment, 0 is the 

rate of recovery from the disease in the IN compartment and ' is the factor by 

which IN have reduced infectivity. Simulation studies done by using different 

basic reproductive numbers show that the influenza disease, specifically the H1N1 

influenza virus epidemic dies out within the population.  

The mathematical model proposed by Bedada et al. included individuals who are 

infected but aren’t showing symptoms (that is the asymptomatic individuals) as 

well as individuals that also show the symptoms; however, the proposed model 

did not take into consideration the age distribution of the susceptible population, 

that is, the various age groups specifically 0-18 years, 19-64 years and 65 years 

and over, where the young and elderly are usually considered to be the at risk 

individuals, and therefore did not consider the contact that each of these groups 

make with themselves and others. 

2.1.3 Varughese (2015) 

Varughese [23] proposed a mathematical model which was used to predict the 

peak of influenza in all of Alberta. The proposed mathematical model considered 

the three age groups 0-18 years, 19-64 years and 65 years and over. The 

mathematical model comprised of the susceptible compartment (S), infected but 

without laboratory confirmation (ID) and infected but with laboratory 

confirmation (IL). The model is constructed based on the assumption that births 

and deaths do not add much to the model since it just runs for a short period of 

time. Also, there was homogenous mixing within each compartment and by age 

groups (school age, workers and seniors). In the model proposed by Varughese, 
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there are cross infections among the various age groups implying that an 

individual from the younger age group (0-18years) can be infected with influenza 

by someone in the older group (64 years and over). The ordinary differential 

equations obtained from the mathematical model proposed by Varughese can be 

seen below 

           
	
�
	� � -β1S1ID1- β1S1ID2 - β1S1ID3 

           
	�1�
	� � β1S1ID1+β1S1ID2+β1S1ID3-��2�-3���2�                                    (2.1.3a) 

           
	�4�
	� � 3���2� 

 

           
	
�
	� � -β2S2ID1-β2S2ID2- β2S2ID3 

 

           
	�1�
	� � β2S2ID1+ β2S2ID2 + β2S2ID3- � �2� -3���2�                    (2.1.3b) 

 

           
	�4�
	� � 3���2� 

           
	
5
	� � -β3S3ID1- β3S3ID2 - β3S3ID3 

 

           
		�15
	� � β3S3ID1+ β3S3ID2 + β3S3ID3- � �26 -3�6�26                                             (2.1.3c) 

 

           
	�45
	� � 3�6�26 

 

Here � is the period of infectiousness usually, 7 days or 1-week, after which the 

patient recovers and obtains immunity, 3 is a factor that is used to determine the 

estimate of Albertans having influenza symptoms, � is the weekly proportion of 

those individuals with symptoms who have been lab confirmed as having 

influenza and β is the transmission rate. Numerical simulations conducted using 

the above ordinary differential equations on the data obtained from the Alberta 

health services predicted the 52nd week with 95% confidence interval (51, 3) week 
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as where influenza was expected to be the highest for the next influenza season. 

This will help promote effective planning and allocation of resources within the 

province [23].  

Even though Varughese’s influenza model did all the predictions and considered 

the age groups, the transmission rate for cross infections among each of the age 

groups was assumed to be the same. For instance, a person from the younger age 

group (0-18 years) who gets infected with influenza by someone from the 

working class age group (19-64 years) had the same transmission rate as a person 

from the younger age group (0-18 years) who gets infected with influenza by 

someone from the old age group (65 years and over). In addition, the transmission 

rate measures the probability of transmitting the virus times the number of 

contacts made with an infected person; however, in Varughese’s influenza model, 

the number of contacts that an individual make was not considered. 

2.2 Statistical Models 

There have been some methods in time series analysis like Box-Jenkins methods 

that apply autoregressive moving average models to find the best estimates of any 

time series model that can be used to forecast infectious diseases like influenza. 

The aim of most of these approaches is to forecast certain aspects of the influenza 

epidemic usually the peak time, height, magnitude and spread of the disease. 

2.2.2 Wei (2011) 

Authors like Q ui Wei [20] used spatio-temporal modelling and cross-validated 

predictions in predicting clusters of influenza cases in Edmonton using real time 

data that has been collected over time and space from emergency department (ED) 
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visits by the Alberta Real Time Syndromic Surveillance Net (ARTSSN). Qui Wei 

uses the spatio-temporal modelling as well as pseudo likelihood estimation to 

estimate the parameters and also makes use of a cross validation method to 

validate the model. This method was used to analyze health link (HL) calls (2003-

2009) and emergency departments (ED) visit data (2004-2009) as well as school 

absenteeism reports which were obtained by using the Alberta Real Time 

Syndromic Surveillance Net (ARTSSN) for the Edmonton area. Qui Wei also 

examined the geographic spread of influenza based on the Forward Sortation Area 

of residents’ postal codes. Results obtained by [20] from 34,796 ED visits and 

25,493 HL calls without using spatial or temporal correlations showed seasonal 

trend; however, incorporating spatial and temporal correlations improved the 

models’ predictive abilities and was able to detect the peak days. For instance, 

using 2 weeks of data, the model used by Qui Wei was able to detect the peak 

days with over 30 influenza-related HL calls per day and 32 influenza-related ED 

visits per day. However, a problem identified with the temporal and spatial 

correlations was that in the case of earlier predictions, influenza peaks were not 

well captured. Also due to it computational complexity, the model could not be 

easily generalised by researchers in non-mathematical fields [20]. 

 

2.3.2 Nsoesie, Marathe, and Brownstein (2013) 

Nsoesie et. al. [19], presented a framework for near real-time forecast of influenza 

epidemics using a simulation optimization approach. The approach consisted of 

the stochastic individual-based epidemiology model which was used for 
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simulating influenza-like disease transmission and a simple root finding 

optimization method for parameter estimation and forecasting that captures any 

ongoing disease activity. The individual-based model aims to capture the 

underlying process of disease transmission based on the population contact 

patterns which makes up the dynamics in the observed epidemic time series curve 

[19]. The optimization approach on the other hand is used to produce parameter 

values that capture the trend observed in the data and obtain new parameter values 

from simulated outcomes of the individual-based model. The individual-based 

model which consists of the dynamic social contact network and an individualized 

disease model makes use of the compartmental model SEIR: susceptible, exposed, 

infected and recovered [19]. Nsoesei et al. presumes that an infected agent moves 

from one compartment to another through the different transmission states based 

on defined incubating and infectiousness time periods which are described using 

discrete probability distributions [19]. The probability of transmission between 

the susceptible (u) and infectious (v) individuals is given by: 

           789(:, <)= � 1 
 (1 
 >)?(@,A)                                                       (2.2.2.a) 

where (9	(:, <)) represents the contact duration and r is the disease transmission 

rate which is defined as per second.  

Under the optimization approach, several algorithms are usually used in the 

parameter search. Nsoesie et al. proposed certain assumptions under which the 

proposed simulation optimization technique can be used in conjunction with the 

individual-based model. This will be used to forecast the peak of any ongoing 

epidemic by minimizing the difference between the cumulative infections for the 
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ongoing epidemic and simulated instances for the same time period [19]. The data 

used was obtained from the US Outpatient Influenza-like Illness Surveillance 

Network (ILINet) which was provided by the Centers for Disease Control and 

Prevention (CDC). Results obtained for the 2007-2008 and 2012-2013 influenza 

season showed the true peak observed to be week 20 and week 15 respectively. 

The simulation approach used by Nsoesie et al.  made use of the SEIR 

compartmental model and is able to predict the peak of influenza. However, the 

approach didn’t consider the different age groups: the at-risk groups like the older 

and younger age groups. 

 

2.3 Contact Mixing Matrix 

Meltzer, Gambhir, Atkins and Swerdlow [17] proposed a method that was used in 

calculating the contact mixing matrix for an epidemiological model. Their aim 

was to model 4 epidemic curves built using a simple, deterministic model where 

the population was divided into 4 age groups. Thus in order to measure the risk of 

contact and possible onward spread between and within each age group, they 

developed an approach which they used in deriving the contact mixing matrix for 

their model. The data used was from a Polymod study that collected contact data 

from approximately 8000 persons living in the United Kingdom [17]. The contact 

data, which was separated into 5-year age groups was aggregated into 4 age 

groups specifically 0-10 years, 11-20 years, 21-60 years and 61 years and over. 

They constructed the contact mixing matrix based on the assumption that the 

number of contacts from one age group, for instance, age group A to another age 
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group, say age group B, should equal the number of contacts in the reverse 

direction; hence, the contact mixing matrix must be symmetric. According to 

Meltzer et al., it is important to note that the dimension of the Polymod matrix 

is,	B � 	1, … , $, however because fewer age groups are being considered, say age 

group, :, then the Polymod contact data can be made to contain narrower age 

groups, that is, D � #(3)	�E	:(3).  
The approach consists of 4 steps that is outlined below: 

Step 1: The contact rate between someone in group D	and another in group B can 

be calculated by using 

           �FG � ∑ IFJ@(G)
JKL(G) ,                                                                                 (2.3.a) 

where  IFJ is the mixing matrix element of the contact matrix data from UK,  D, M 
� 	1,… ,N refer to the rows and columns respectively and m is the number of age 

groups in the mixing matrix.  

Step 2: If the population in age group D	is OF, then calculate the population-

weighted means of each of the elements � to obtain the contact rates between 

groups 3 and B. For 3 � B, the calculation is given as  

           PQQ � ∑ %R	RS(T)
RUV(T)
∑ %RS(T)
RUV(T)

                                                                                    (2.3.b) 

Step 3:  In order to have a correct number of contacts made between each age 

group for the off-diagonal elements, there is the need to sum them up, that is,  

           WQG � ∑ OF�FG@(Q)
FKL(Q)                                                                                (2.3.c) 

          WGQ � ∑ OF�FQ@(G)
FKL(G)                                                                                (2.3.d) 
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Step 4: Due to the assumption of symmetry among the off diagonals, in order for 

those values calculated in Step 3 to be equal, there is the need to average them 

before the final mixing matrix elements PQG and PGQ can be calculated. The 

formulae for calculating both can be seen below: 

           XQG � (YTZ[YZT)
�                                                                                      (2.3.e) 

           PQG � \TZ
∑ %RS(T)
RUV(T)

                                                                                        (2.3.f) 

           PGQ � \TZ
∑ %RS(Z)
RUV(Z)

                                                                                       (2.3.g) 

Thus  PQG measures the rate at which an individual in age group 3 makes contact 

with an individual in age group B, per unit time and reverse order [17].   

The method proposed by Meltzer et al. [17] as noted in this subsection has been 

adopted in calculating the contact mixing matrix for the three age groups used in 

this thesis. 
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Chapter 3 

3 Formulation of Influenza Model 

3.1 Data Description 

The data for this project is obtained from the Provincial Laboratory for Public 

Health (Provlab), Alberta’s Influenza Like Illness (ILI), Sentinel Physician 

System (TARRANT), Supplemental Enhanced Service Event (SESE), Physician 

claims, the Pharmacy Information Network (PIN), as well as outbreak reports and 

hospitalized case report forms from Alberta Health’s Communicable Disease 

Reporting System (CDRS) from the Alberta Health Services.  

In this thesis, the data considered was the laboratory confirmed influenza cases 

obtained for the 2014-2015 influenza season. The data comprised of the 

laboratory confirmed influenza cases, antiviral dispensing event as well as 

physician claims which were obtained for each week and age group, specifically 

0-18 years, 19-64 years and 65 years and over. The confirmed cases are obtained 

for 52 weeks, starting from week 35 (August, 2014) and ending on week 34 

(August, 2015). The data was obtained in Microsoft Excel spread sheet format. It 

was formatted and classified according to the various zones: Edmonton, Calgary, 

South, Central and North zones. A Microsoft Excel line plot of the 2014-2015 

laboratory confirmed cases can be seen in Figures 3.1.1, 3.1.2, 3.1.3 for each age 

groups and Figure 3.1.4 for the combined data.  
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Figure 3.1.1: Laboratory confirmed cases for age group 0 – 18 years 

 

The initial cases of influenza for the 0-18 years’ age group were observed in 

Edmonton at the 37th week followed by Calgary in the 40th week. Edmonton, 

Central and North zones recorded their highest number of lab-confirmed influenza 

cases, 41, 38 and 45 cases respectively in the 50th week. Calgary and the South 

zones recorded their highest lab-confirmed influenza cases 49 and 17 respectively 

in the 52nd week. The peak period in influenza across the zones was observed in-

between the 49th and 1st week, Figure 3.1.1. During the peak period, Calgary had 

the highest laboratory confirmed cases as compared to all the other zones. 
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Figure 3.1.2: Laboratory confirmed cases for age group 19 – 64 years 

 

The Edmonton and the North zones with 71 and 40 lab-confirmed influenza cases, 

respectively, were the first to record their maximum number of influenza cases in 

the 50th week for the 19-64 years’ age group. In the 52nd week the Calgary, 

Central and South zones recorded their highest lab-confirmed influenza as 

follows: Calgary - 83, Central - 46, and South - 30.  

Similar to the ‘0-18 years’ age group, the peak period in influenza across the 

zones for the ‘19-64 years’ age group was observed in-between the 49th and 1st 

week with Calgary recording the highest. 
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Figure 3.1.3: Laboratory confirmed cases for age group 65 years and over 

 

Calgary, Edmonton, Central and South zones had their highest number of lab-

confirmed influenza cases, that is, 178, 123, 53, 58 cases respectively in the 52nd 

week for the 65 years and over age group. The north zone observed it peak in the 

51st week with 50 lab-confirmed influenza cases obtained. Calgary had the highest 

number of influenza cases followed by Edmonton zone across the zones.  

It can be observed from Figures 3.1.1, 3.1.2, 3.1.3 that Calgary recorded the most 

lab-confirmed influenza cases among the zones. Among the three age groups, the 

elderly age group (65 years and over) had the highest number of cases. The 

elderly age groups are the at-risk individuals and they are more prone to being 

infected with the influenza virus, seen Figure 3.1.4.  

From the surveillance report for the 2014-2015 influenza season in Alberta from 

the Surveillance and Assessment branch of the Alberta Health, there were high 
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morbidity and mortality among the seniors and the elderly in the long term care 

and supportive living facilities. 

 

Figure 3.1.4: Laboratory confirmed cases for all age groups and all zones 

 

3.2 The Influenza Model 

3.2.1 Introduction 

Influenza epidemics can persist and cause harm if left untreated and uncared for. 

Predicting the peak in influenza cases will not only help in resource allocation but 

it will help clinicians and policy makers plan ahead as to how to control the 

spread of the influenza. It will also help them on how to distribute medicines and 

educate people about the virus. In this section, the transmission mechanism of 

influenza is modelled using the classic epidemic theory of Kenmarck-

McKendrick. The formulated influenza model is an extension of the influenza 

model proposed by Varughese [23] to predict the peak of influenza in Alberta. 
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The current model proposed in this thesis considers the asymptomatic patients and 

the contact mixing matrix that is obtained as a result of a susceptible individual 

coming into contact with an infected individual which is not considered by other 

models. It is usually important to consider such factors because they help in the 

detection of early infections and provide precise estimation. 

 

3.2.2 Derivation of the Influenza Model  

The Kenmarck-McKendrick compartmental model that was considered was the 

Susceptible-Infected epidemic model where the infected population is classified 

into two parts: those people who are infected with the influenza virus and have 

been lab-confirmed as having influenza, �] and those who have been infected with 

the influenza virus but have not been lab-confirmed as having influenza, �2. The 

individuals in the �2 compartment are classified as the asymptomatic individuals. 

These individuals can also recover before visiting any health departments. These 

individuals are difficult to account for. 

 The susceptible compartment comprises individuals that have not been infected 

with the influenza virus but are prone to be infected with the virus. The infected 

individuals are those individuals that have the influenza virus and can easily infect 

someone who does not have.  

This is an age distribution model that is classified into three age groups 0-18 

years, 19-64 years and 65 years and over. Simulation study will be conducted by 

assigning different valid values to the parameters of the model.  The model is a 

one strain influenza SI model designed based on the assumption that the 
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population is a closed population. This implies that births, deaths and migrations 

are assumed to be negligible since the model runs for only a short period of time. 

A vaccination compartment is also not included in the model due to the minimal 

impact that it has on the overall influenza curve. The members of the population 

also mix homogeneously within each compartment and by age groups (school 

age, workers and seniors). Another assumption is that an individual is immune 

after he or she recovers from the virus. 

We also assumed that an individual in the susceptible compartment can be 

infected with the flu virus after coming into contact with an infected individual at 

a rate of �. The susceptible population on getting the infection moves into the �2 

compartment. After been lab-confirmed as having influenza, these individuals 

move into the �]	compartment at a rate of �. Within the �2 compartment, there are 

those infected individuals who, after a period of time, usually 1 week or 7 days, 

recover and move out of the compartment at a rate of �. 

 3 in the model acts as a scale factor to estimate the total number of Albertans 

showing the influenza symptoms. This number is usually under reported hence we 

estimate from the model. This is because, people who are sick or infected with the 

virus often do not go to clinics or the hospitals hence the actual total number of 

people showing symptoms is difficult to be accounted for. In the model, 3 

multiplies �, the weekly proportion of individuals that have been lab-confirmed as 

having the influenza virus. Cross infections among the three age groups results in 

an individual from age group D infecting someone within age group D or infecting 

another individual in age group	M. The compartmental structure and flow diagram 
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of the influenza model, which is an extension of the influenza model proposed by 

Varughese [23], can be seen in Figure 3.1.5. 

 

Figure 3.1.5: Flow diagram of the proposed influenza model 

 

From the flow diagram above, it must be noted that the subscript 1, 2, and 3 

represent the age groups: 0-18 years, 19-64 years and 65 years and over 

respectively. The time frame is in weeks. The mathematical formulation of the SI 

model can be expressed as a system of differential equations as follows: 
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Then for D = 1, 2, 3,  F	represents the Susceptible population for the three age 

groups. �2F represent the individuals or Albertans who have the influenza virus but 

haven’t been lab-confirmed for each age group. �]F represent those individuals or 

Albertans with influenza who have been lab confirmed as having influenza. A 

description of the parameters used is given in Table 3.1.1: 
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Table 3.1.1: Parameter Descriptions and Units used in the model 

 

�F,J can be classified as the probability of transmitting the influenza virus, defined 

as �F	, times the average number of contacts that an individual in one age group, 

that is, age group D has with an individual in another age group, that is, M defined 

as ^F,J, �F,J=�F ∗ ^F,J. In this thesis, we calculated the contacts rates,	^F,J	,which are 

measured per unit of time (weekly). However, �F is what we do not know and 

have to fit it. 

 

3.3 Derivation of the Contact Mixing Matrix 

In order to do simulation studies on the differential equations stated above, we 

need to derive the contacts that an individual in one age group can make with 

another individual in another age group. This leads to the derivation of the contact 

mixing matrix. The contact mixing matrix contains the elements ^F,J that represent 

the average number of contacts an individual in one age group, D	makes with 

Parameters Descriptions Units 

�F,J age specific transmission rate of influenza 

or the rate at which susceptible individual 

become infected with the influenza virus. 

1/time 

(time in weeks) 

3 Factor that estimate the individuals or the 

Albertans having influenza symptoms. 

 

σ measures the period of infectiousness or the 

period when one recovers from the flu. 

time (weeks) 

�F(�) measures the weekly proportion of those 

individuals with symptoms who have been 

lab confirmed as having influenza. 

1/time 

(time in weeks) 
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another individual in another age group, that is,	M. The contact mixing matrix for 

each zone was derived using the method proposed by Meltzer et al. in Section 2.3 

in Chapter 2. A sample calculation following the steps proposed using the Calgary 

zone is shown below.  

It must be noted that the contact data used was the Polymod contact data from the 

United Kingdom which was used in calculating the contact mixing matrix by 

Meltzer et al. [17]. The contact data is shown in Table A.2 in Appendix A. 

However, the age specific population distribution used was obtained from the 

Alberta Health Services which is shown in Table A.1 in Appendix A. The steps 

used in calculating the contact rate is given as follows: 

Step 1:  

This step considers all the contact data obtained from the Polymod study [17] 

which is presented in the form of a matrix as seen in Table A.2 in Appendix A. 

The elements of this matrix show the daily number of contacts that an individual 

in one 5-year age group makes with another individual in another 5-year age 

group.   

This thesis considers the three age groups 0-18 years, 19-64 years and 65 years 

and over, however, summing the columns of the 5-year group matrix yields the 

following age groups 0-19 years, 20-64 years and 65 years and over which can be 

seen in Table 3.1.2. 

 

 

 



33  

Table 3.1.2: Daily number of contacts for the three age groups 

0-19 years 20-64 years > 65 years 

0-4 years 3.2 3.9 0.4 

5-9 years 9.4 5.9 0.7 

10-14years 10.2 4.6 0.7 

15-19years 8.3 6.6 1.1 

20-24years 1.9 9.2 0.7 

25-29years 2.6 8.9 1.0 

30-34years 3.2 8.9 0.9 

35-39years 4.4 9.7 1.2 

40-44years 3.6 8.8 1.6 

45-49years 2.2 8.5 1.2 

50-54years 1.5 6.6 1.2 

55-59years 1.1 6.1 1.2 

60-64years 1.0 4.3 1.5 

65-69years 0.5 2.0 1.3 

70-74years 0.6 4.0 2.2 

 

Step 2:  

The 5-year age population distribution for Calgary which is obtained from the 

2014-2015 population estimates from the Alberta Health Service shown in Table 

A.1 in Appendix A, is also used in calculating the contact matrix. This is to help 

in calculating the population weighted means. Then the average number of 

contacts that an individual in one age group can make with another individual in 

the same age group can be calculated by finding the total number of contacts for 

that age group and then dividing it by the number of individuals in that age group.  

for instance, the daily number of contacts between two individuals in the 0-19-

year age group can be calculated as below: 

 
	6.�∗aa,bc�[a.b∗ab,dea[��.�∗eb,�dc[e.6∗ee,dad

aa,bc�[ab,dea[eb,�dc[ee,dad �7.6 
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A similar calculation done for the 20-64-year age group gave the daily number of 

contacts to be 8.1. 

The daily number of contacts between two members of the > 65 years’ age group 

is calculated to be  

										 
 					�.f∗58,041�0.6∗37,80158,041�37,801 �1.7 

 

Step 3: 

This step involves calculating the daily number of contacts for the off diagonals; 

that is, the daily number of contacts that an individual in one age group, say, 0-19 

years, makes with another individual in another age group, say 20-64 years.  

However, the assumption of symmetry ensures that the total number of contacts 

between those in age group 0-19 years and 20-64 years is the same as the total 

number of contacts between those in the 20-64 years and the 0-19 years. 

However, due to differences in population estimates, we don’t expect them to be 

equal; hence we need to average these two numbers and then find the daily 

number of contacts made by dividing the average by the sum of the number of 

individuals in each age group. 

For instance, calculating the average number of contacts that an individual in age 

group 0-19 years makes with another individual in 20-64 years can be done as 

follows: 

• first find the total number of contacts 
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The total number of contacts that an individual in age group 0-19 years makes 

with another individual in 20-64 years is given as: 

1.9 ∗ 104,599 � 2.6 ∗ 129,283 � 3.2 ∗ 141,225 � 4.4 ∗ 126,575 � 3.6 ∗
118,704 � 2.2 ∗ 110,091 � 1.5 ∗ 113,879 � 1.1 ∗ 103,098 � 1.0 ∗ 77,895 �
		2575379.8 

 

The total number of contacts that an individual in age group 20-64 years make 

with another individual in 0-19 years is also given as: 

3.9 ∗ 99,470 � 5.9 ∗ 94,689 � 4.6 ∗ 84,267 � 6.6 ∗ 88,696 � 1919619.9 

• Then averaging both total contacts above gives: 

2575379.8 � 1919619.9
2 � 2247499.85 

• Now the daily number of contacts that an individual in 0-19 years make 

with an individual in 20-64 years is given as: 

2247499.85
104,599 � 129,283 � 141,225 � 126,575 � 118,704 � 110,091 � 113,879

�103,098 � 77,895
� 2.2 

• and the daily number of contacts that an individual in 20-64 years make 

with an individual in 0-19 years is given as: 

2247499.85
99,470 � 94,689 � 84,267 � 88,696 � 6.1 

The same calculations can also be done for the other off diagonal elements. 

Hence a table of the daily number of contacts that an individual in one age group 

makes with another individual in another age group for the Calgary zone can be 

seen below in Table 3.3. 
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Table 3.3.3: A contact mixing matrix for each age group for the Calgary zone  

Age Groups 

Age Groups 0-19 years 20-64 years > 65 years 

0-19 years 7.6 6.1 0.4 

20-64years 2.2 8.1 0.7 

> 65 years 1.6 7.6 1.7 

 

The above steps were used to calculate the contact mixing matrices for the other 

zones, specifically, the Edmonton, North, South and Central zones. 

It is important to note that although in this thesis the age groups we considered 

were 0-18 years, 19-64 years and 65 years and over, respectively, the age groups 

for the contact mixing data after summation is 0-19 years, 20-64 years and 65 

years and over; however, we considered the differences to be negligible. 

 

3.4 Statistical Analysis using Nonlinear Regression  

Nonlinear regression is an essential form of regression analysis that is used to 

analyze biological data as well as many other forms of data [16]. It is used to fit 

data to a specified model where the interest may be in determining the best-fit 

parameters that define that model. The result obtained from nonlinear model 

fitting is used in generating a standard curve that is expected to fit our data 

perfectly well. Nonlinear regression is usually represented in the form 

           Wp � 3(qp, I) � Xp                                                                             (3.4.1a) 

Where 3 is the expectation function, qp is a vector of regressor variables or 

independent variables for the nth case, Wp is a vector of the dependent variables 

for the nth case, Xp is a vector of residuals or noise for the nth case [6].  
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Nonlinear regression has no close form solution; instead, it uses iterations to 

determine the solutions of interest. It normally requires a starting value for each 

parameter before it can iteratively run through the program to select the best 

estimates. These starting values are usually estimated values you can obtain by 

observing your data or by assuming constant values for some of the parameters. 

The linearization method is also another way of determining the starting values 

for your model. In this thesis, �(�) which measures the weekly proportion of lab-

confirmed cases for the three age groups, is fitted using a standard normal 

equation which is chosen based on the assumption that the data points are 

independent and follows the standard normal distribution. As a result, no starting 

values were specified; Mathematica automatically generates the starting values 

and then derives the best-fit parameters for the chosen model. The standard 

normal equation used to analyze �(�) is given as  

           ^�q�Prs�                                                                                            (3.4.1b) 

where a, b, and c are what we are interested in determining. 

We also considered the 90% prediction bands which was constructed for each age 

group’s �(�). This was to determine the area expected to contain 90% of all data 

points if there were additional available data points. Prediction bands are most 

often wider than confidence bands because they include both the uncertainty in 

the true position of the curve as well as the scatter of the data around the curve. 

The parameters, the test statistics and the p-values can also be obtained for the 

estimates. The p-value shows if the parameters obtained are significant or not 

significant based on a specified significance level. 
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Obtaining the parameter estimates of interest is what is termed as nonlinear least 

squares fitting. The nonlinear least squares fitting involves obtaining a solution or 

parameters for the model that minimizes the sum of squared errors written as  

             + � 	∑ PF�pFK� � ∑ [uF 
 uvw]�pFK� �	∑ [uy@zA{ 
 u	���]�pFK�            (3.4.1c) 

Formulae 3.4.1c is used if we assume that the errors follow a normal distribution 

with constant or equal variance [16]. However, in the case where the variance is 

not constant, that is, there is variability in the data points such that the least 

squares assigns unequal weights, then weighted nonlinear least squares fitting is 

the method to use [16]. Thus minimizing the sum of squares of the relative 

distances of points from the curve given as 

             + � ∑|}~S���r}����}���� ��                                                                    (3.4.1d) 

It is also essential to note that whenever a parameter is fitted to a model, the 

accuracy or the precision can be expressed as a confidence interval or a prediction 

interval. Confidence intervals show how well the mean has been determined. The 

best confidence intervals are the narrower intervals since they show that 

uncertainty in the true value of the parameter, especially the mean, is smaller as 

compared to a wider confidence interval showing a larger uncertainty. The width 

of the confidence interval depends to a large extent on the sample size, the 

variation of the data, the type of the interval and the confidence level [16]. This is 

because larger samples tend to give more precise estimates, hence narrower 

confidence intervals, than smaller samples. 
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Hence, after determining the best fit parameters after running a sample of 

500 000, these parameters are then used to determine the 95% confidence 

intervals and the mean. The mean is then chosen to be used for the predictions. 

 

3.5 Description of the Simulation code used in the analysis 

The simulation code used for analysing the laboratory confirmed data obtained 

from the Alberta Health Services was written in Mathematica. It consisted of 

finding �(�), the best fit parameters,	�, and also the 95% confidence intervals to 

ascertain if the parameters and mean obtained are the best estimates for 

predictions. The 95% confidence interval is obtained using the Metropolis hasting 

algorithm of the Markov Chain Monte Carlo Method. Latin hypercube sampling 

method is then used to generate 10000 sample points based on the point estimate 

and their 95% confidence interval. The peak is then recorded 10000 times and the 

minimum and maximum peak is calculated from the resulting distribution.  

�(�) measures the weekly proportion of the individuals who have been lab-

confirmed as having influenza either through emergency departments visits or 

general practitioners’ visits and antiviral dispensing. �(�) is measured by dividing 

the total laboratory confirmed cases for each zone by the total physician visits 

from physician’s claims and antiviral dispensing. In the simulation code, a 

nonlinear model fit in the form of ^�q�Prs�  where a, b, c are constants is fitted to 

the data points for each age group and then plotted. This gave a perfect fit to the 

data points although there was variability observed in the data points.  
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The force of infection, �FJ F�2J, where �FJ,D, M � 1,2,3, …. is the transmission rate 

which consist of the contact rate, ^FJ and the probability of transmission,	�F	is also 

fitted. However, in order to fit the transmission rate, the contact rates for each 

zone was obtained using the steps proposed by Meltzer et. al. [17]. To obtain the 

best-fit parameters, that is the probability of transmission for each age group, the 

parameters are randomly generated using RANDOMREAL in Mathematica, 

where the parameters are chosen between a range of selected values from a 

specified sample. These generated numbers are then applied to the laboratory 

confirmed data and the ordinary differential equations to obtain the best fit 

parameters for both the transmission parameters and the scale factor, 3. Using 

nonlinear least squares fitting, the best-fit parameters that minimizes the sum of 

squares errors; that is, the sum of squares of the vertical distances between the 

curve and the data divided by the average of the data, given as equation (3.5.1a) is 

fitted. 

 ∑|�@zA{r	����{�p(	���)�
�
                                                                                        (3.5.1a) 

This acts as a weighting scheme to determine the best fit parameters. This is used 

to compensate for the variability in the data. 

To ascertain if the parameters obtained are the best fit parameters, 95% 

confidence intervals are obtained using the Metropolis hasting algorithm of the 

Markov Chain Monte Carlo proposed by Gbasemi et al. [5]. The M-H algorithm is 

iteratively used to generate samples such that as more and more samples are being 

generated, the distribution of these values will generally approximate the desired 

distribution. According to Gbasemi et al., M-H algorithm provides a scheme that 
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is helpful in generating random samples from any desired posterior distribution 

7(I|u). These random samples can then be used to approximate the posterior 

distribution from which the unknown parameters (I) can be determined by using 

the minimum mean squared error which estimate the parameters by the mean or 

mode of the posterior distribution 7(I|u) (Gbasemi et al., 2011). The posterior 

distribution is given by the formula  

           7(I|u) � 	�8u�I=	�(�)
� 	�(}|�)	�(�)	�                                                                    (3.5.1b) 

where 7(u|I) estimates the likelihood function, 7(I) is the prior distribution,	I is 

the parameter estimate and u is the data. The M-H algorithm of the MCMC 

method is used to determine the posterior distribution numerically instead of 

equation (3.5.1b) due to the nonlinearity of the differential equations obtained, 

which makes determining the closed form solutions of 7(u|I) as well as the 

estimates analytically difficult (Gbasemi et al., 2011) . 

Generally, at each iteration, the M-H algorithm selects a suitable candidate for the 

next sample based on the current sample and then, at a specified probability, the 

proposed candidate is either accepted (and used in the next iteration) or rejected 

(and the current sample is used instead in the next iteration).  

The M-H algorithm proposed by Gbasemi et al. [5] used in this thesis includes the 

following steps: 

Step 1:Take the parameter sample IF obtained in the Dth iteration. This step entails 

starting with a random parameter value which is usually from the variable’s prior 

distribution. 
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Step 2: Draw I∗ from the proposal distribution �(I∗|IF) as a proposed sample. 

For this step, all that needs to be done is to obtain a new sample I∗ which acts as 

a candidate sample from a proposal distribution which can be Gaussian, Gamma 

or Poisson. The gamma distribution is however chosen as the proposal  

distribution with the assumption that all the parameters are positive [5]. 

Step 3: Calculate the acceptance probability 

           � � min �1,	�(}|�∗)�(�∗)�(�R|�∗)�(}|�R)�(�R)�(�∗|�R)�                                                        (3.5.1c) 

  where the likelihood function 7(u|I) is given as      

           7(u|I) � |�5� �
�5� �	|���5

� �
(��)

�
� 	�|�5� �

(�.([	"5
� )r���5

� =(�.([	"5
� )r���5

�                     (3.5.1d) 

 

and    �.+, which is the model error, is also given as 

                �.+ � ∑|�:><P
����NP�$(����)�
2
                                                                          (3.5.1e) 

 and          ��(ID|I∗)�(I∗|ID)� � |�R�∗�
� �r� P

�
��(

¡∗
¡Rr

¡R
¡∗)                                                              (3.5.1f) 

Step 4: Then draw a random sample U (0,1) such that 

																					IF[� � |I∗																if									£ ≤ �
IF																		E�ℎP>9D¦P		�                                             (3.5.1g) 

Steps 3 and 4 show the acceptance probability that will be used to determine 

whether to accept or reject the proposed (candidate) sample. The min ensures that 

the acceptance probability,	�, is never greater than 1, if any random number 

drawn from U(0,1) is less than or equal to �, then the sample proposal (candidate) 

will be accepted, that is,	IF[� � I∗ is accepted with a probability of �. On the 

other hand, if the candidate is rejected, then we set  IF[� � IF. The above step is 
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used to obtain the confidence intervals of the parameters by excluding the 2.5% 

from each end of the posterior distribution. 

The peak is then obtained from the fitted parameters by determining the week 

with the most laboratory confirmed cases. This is done by first obtaining a list of 

all the weekly laboratory confirmed cases, 3��2, for all the age groups and then 

determining the week where the largest number of influenza cases is obtained. 

Latin hypercube sampling method is then used to generate 10000 sample points 

based on the point estimate and their 95% confidence interval. The peak is then 

recorded 10000 times and the minimum and maximum peak is calculated from the 

resulting distribution. Latin hypercube sampling is usually used to sample random 

numbers that attempts to distribute samples evenly [15]. This is to check the 

uncertainty in the peak week obtained.  
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Chapter 4 

4 Numerical Investigations 

4.1 Results from Numerical Investigations 

From the influenza model obtained in Section 3.3 in Chapter 3, first order 

ordinary differential equations were obtained which were used to estimate the 

unknown parameters of the model. These equations, alongside the laboratory 

confirmed data obtained from the Albertan Health Services, were employed in the 

simulation analysis described in section 3.5 in chapter 3. It is essential to note that 

the more samples you run, the better the estimates that will be obtained; hence in 

this thesis we chose to run the code with a sample size of about 500,000. Since the 

results obtained for the Edmonton and South zone are similar to the others, this 

thesis present results for only the Central, Calgary and North zones.  

 

4.1.1 Results from Numerical Investigations for Central Zone 

Before the parameters were fitted, �(�), which measures the weekly proportion of 

individuals that have been lab-confirmed either through emergency department or 

general practitioner’s office or antiviral dispensing departments as having 

influenza, is fitted to a nonlinear function. This is to determine if the nonlinear 

function can generate a smooth standard curve that can interpolate the 52 data 

points. The intent is to determine the parameters, �, §, ^ for each age group and 

then determine if the chosen nonlinear function actually produces a curve that is 
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smooth enough as well as comes close to our data. The parameters obtained are 

shown in Table 4.1.1. 

Table 4.1.1: Parameter estimates for �(�) for each age groups. 

Parameter estimates 0-18 years 19-64 years 65 years and over 

a 5.5445 3.89014 5.25331 

b 0.291892 0.173557 0.251612 

c 0.00234067 0.0051543 0.00240244 

 

Hence Figures 4.1.1, 4.1.2, 4.1.3 show the results obtained as a result of plotting 

the fitted nonlinear function to �(�) obtained for the three age groups 0-18 years, 

19-64 years and 65 years and over. 

  

Figure 4.1.1: �(�) for the 0-18 years age group. 
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Figure 4.1.2: �(�) for the 19-64 years age group. 

 

 

Figure 4.1.3: �(�) for the 65 years and over age group. 

Figures 4.1.1 to 4.1.3 show the �(�) for the three age groups and it can be 

observed that the curves fit the data points well. The curves depict an increasing 

trend with one or two cases at the initial start and then a maximum is reached after 

which it decreases again. However, a look at the actual data shows few visits at 
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the start of the season but as time elapses, more visits were observed. The trend is 

typical of other epidemics where a limited number of cases are observed at the 

initial stage but as time elapses there is an sharp or steady increase in the number 

of cases which then declines at the end. It can also be observed that although there 

is variability in the dataset, that is, the average scatter among the data varies, they 

are more clustered in the middle. The elderly (64 years and over) and younger age 

group (0-18 years) seems to have had more lab-confirmed cases than the working 

age group as can be observed from the graph, where the highest proportions for 

both age group was about 50% as compared to 14% for the working age group 

(19-64 years).  

Figures 4.1.4, 4.1.5 and 4.1.6 shows the 90% prediction bands for �(�) obtained 

for the three age groups 0-18 years, 19-64 years and 65 years and over 

respectively.  

 

Figure 4.1.4: Prediction bands for 0-18-year age group. 
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Figure 4.1.5: Prediction bands for 19-64-year age group. 

 

 

Figure 4.1.6: Prediction bands for 65 years and over age group. 

The prediction bands are shown by the cream-colored curves with the actual or 

true best-fit curve shown by the blue curve. The prediction bands, which show the 

scatter of the data, mean that if more data points were to be obtained for �(�) for 

each age group, then we should expect 90% of these data points to fall within 

these bands. It can also be observed that the prediction bands are wider because 

they have to account for the uncertainty of the curve as well as the scatter of the 

data. 
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The initial conditions in Table 4.1.2 shows the 2014-2015 population estimates 

for the Central zone which we obtained from Alberta Health Services website 

with 	�2F � 1	and �]F � 0, D=1,2,3 . 

Table 4.1.2: 2014-2015 Population estimates for Central zone. 

 

Parameter Estimates 

  �� 118444 

 � 289306 

 6 65332 

 

The contact mixing matrix obtained for the Central zone is shown in Table 4.1.3: 

Table 4.1.3: Contact mixing matrix for Central zone. 

 

    Age     

Groups 

Age Groups 0-19 years 20-64 years > 65 years 

0-19 years 7.7 5.6 0.4 

20-64years 2.3 8.0 0.8 

> 65 years 1.5 6.0 1.7 

 

It can be observed that the working group (19-64-year age group) make more 

contacts with themselves than the elderly age group. This might be due to the fact 

that the elderly age group are often more confined to a fixed location for example, 

supportive living facilities, as compared to the working group who come into 

contact with people either at work, at eating places or at recreational centers etc. 

The younger age group also makes more contact within itself and this is usually at 

schools, at sleepovers etc. We also have the case where someone from the 

younger age group who is suffering from the influenza can infect his or her mom 

or grandma through visits or staying together. All these factors contribute greatly 

to the contacts that an individual can make. 
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Next, we obtained the fitted parameters with their 95% confidence intervals; this 

is done using the weighted nonlinear least squares method in Mathematica with 

the ordinary differential equations obtained from the influenza model as well as 

the metropolis hasting algorithm of the MCMC on the 2014-2015 laboratory 

confirmed cases for the Central zone. This is shown in Table 4.1.4.  

Table 4.1.4: Parameter estimates for Central zone. 

 

Parameters Estimates 95% Confidence interval 

��  3.88917 ∗ 10rc (3.69598*10rc,			4.08436 ∗ 10rc	) 
�� 6.76495∗ 10rc (6.64212*10rc, 6.89996 ∗ 10rc) 

�6 2.11598*10rd (1.8696*10rd,				2.37174 ∗ 10rd	) 
3 0.0146828 (0.000459573, 0.0153642) 

 

The parameter estimates obtained above are as a result of running about 500 000 

samples. These estimates are the mean estimates and it can be observed that they 

fall within the 95% confidence intervals obtained. The 95% confidence intervals 

are narrower, hence the uncertainty in the parameter estimates is smaller. 

Although the 95% confidence interval for 3 seems to be a little bit wider but we 

will use it in our predictions. 

 Plugging the estimates into the simulation code to determine the week where we 

should expect the highest or peak influenza cases for the Central zone, we 

obtained the results shown in Figure 4.1.7.  
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Figure 4.1.7: Laboratory confirmed cases for the Central zone. 

Figure 4.1.7 shows the weekly laboratory confirmed cases for the Central zone. 

The dotted points show the actual laboratory confirmed data obtained from the 

Alberta Health Services. It can be observed from Figure 4.1.7 that even though 

the prediction curve predicts an earlier rise in the cases as compared to the actual 

data, the model predicted the 52nd week to be the peak week where the most cases 

of influenza were to be expected with a 95% confidence interval of (51, 1) week. 

The highest number of laboratory confirmed cases predicted by the model was 

about 100, although the actual data showed the highest number to be about 131. 

Hence the model does the predictions fairly well. Also, the actual data obtained 

shows the 1st week as where most cases of influenza was obtained, that is, the 

actual peak, as compared to the 52nd week predicted by the model. The best-fit 

curve fits the data well although a few of the data points lie outside the curve. 

The accumulated laboratory confirmed cases for each of the age group was also 

plotted. This can be seen in Figures 4.1.8, 4.1.9 and 4.1.10, respectively: 



52  

 

Figure 4.1.8: Accumulated laboratory confirmed cases for 0-18 years. 

 

 

 

Figure 4.1.9: Accumulated laboratory confirmed cases for 19-64 years. 
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Figure 4.1.10: Accumulated laboratory confirmed cases for 65 years and over. 

 

Figures 4.1.8, 4.1.9 and 4.1.10 show the accumulated laboratory confirmed cases 

for the three age groups, 0-18 years,19-64 years and 65 years and over. The dotted 

points are the actual accumulated cases and our model is able to fit this data well.  

These accumulated cases are obtained by summing up the cases week by week 

which results in the rise in the cases. The elderly and the working age group had 

more accumulated laboratory confirmed cases as compared to the younger age 

group. 

 

4.1.2 Results from Numerical Investigations for North Zone 

Similar to the Central zone, the contact mixing matrix for North zone was 

calculated using the method proposed by Meltzer et al. (2015) which was 

presented in Section 3.3 of Chapter 3. The contact mixing matrix obtained for the 

North zone is presented in Table 4.2.1. 
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Table 4.2.1: Contact mixing matrix for North zone. 

 

    Age     

Groups 

Age Groups 0-19 years 20-64 years > 65 years 

0-19 years 7.6 5.5 0.4 

20-64years 2.3 8.1 0.7 

> 65 years 2.0 8.1 1.7 

 

It can be observed from Table 4.2.1 that the working group (19-64-year age 

group) makes more contacts with people within their age group as well as with the 

elderly age group. The elderly age group on the other hand makes less contact 

with people of their age as well as with the other age groups as compared to the 

other age groups. This might be a result of being confined, in for instance, 

supportive living facilities, homes etc. The younger age group also makes more 

contact within themselves as well as with others and this is usually at schools, at 

sleepovers as well as coming into contacts with people like teachers etc.  

From the 2014-2015 population estimates obtained for the North zone, the initial 

conditions used are shown in Table 4.2.2 with 	�2F � 1	and �]F � 0, D=1,2,3 . 

 

Table 4.2.2: 2014-2015 Population estimates for North zone. 

 

Parameter Estimates 

  �� 130876 

 � 310039 

 6 43474 

 

The fitted parameters with their 95% confidence interval are shown in Table 

4.2.3. This is as a result of applying the weighted nonlinear least squares method 

in Mathematica with the ordinary differential equations obtained from the 
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influenza model as well as the metropolis hasting algorithm of the MCMC on the 

2014-2015 laboratory confirmed cases for the North zone. 

Table 4.2.3: Parameter estimates for North zone. 

 

Parameters Estimates 95% Confidence interval 

��  3.80171 ∗ 10rc (3.20292 *10rc,			4.43698 ∗ 10rc	) 
�� 5.9343	∗ 10rc (5.69809*10rc, 6.26682 ∗ 10rc) 

�6 1.2105*10rd (8.78672*10rc,			1.63766 ∗ 10rd	) 
3 0.0218228 (0.0193009, 0.0243848) 

 

The parameter estimates obtained above are a result of running about 500 000 

samples. These estimates are the mean estimates and it can be observed that they 

fall within the 95% confidence intervals obtained. The 95% confidence intervals 

are narrower hence the uncertainty in the parameter estimates is smaller hence we 

will use it in our predictions. But before we get on with the predictions, we first 

have to also analyze �(�) for the North zone. 

The results, after running the 52 data points for �(�), the weekly proportion of 

laboratory confirmed cases for the North zone, show the selected nonlinear least 

squares function to fit the data well as it passes through two or more points for 

each age group. Also the data points are widely scattered; that is, variability is 

observed in the data sets although it is mostly clustered in the mid-section. From 

Figures 4.2.1, 4.2.2 and 4.2.3, the elderly and younger age group had the highest 

number of visits as compared to the working age group. 

The parameter estimates obtained for the nonlinear function used in analysing 

�(�), are shown in Table 4.2.4. 
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Table 4.2.4: Parameter estimates for �(�) for each age groups. 

 

Parameter estimates 0-18 years 19-64 years 65 years and over 

a 4.68004 5.50203 4.0924 

b 0.271735 0.283306 0.196978 

c 0.00567141 0.00137066 0.00648688 

 

Then the results obtained for the nonlinear function is plotted and shown below. 

 

Figure 4.2.1: �(�) for the 0-18 years age group 

 

 

Figure 4.2.2: �(�) for the 19-64 years age group 
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Figure 4.2.3: �(�) for the 65 years and over age group. 

 

Figures 4.2.4, 4.2.5 and 4.2.6 shows the 90% prediction bands for �(�) obtained 

for the 0-18 years, 19-64 years and 65 years and over respectively.  

 

 

Figure 4.2.4: Prediction bands for 0-18 years’ age group. 
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Figure 4.2.5: Prediction bands for 19-64 years’ age group. 

 

 

Figure 4.2.6: Prediction bands for 65 years and over age group. 

The prediction bands are shown by the cream-colored curves with the actual or 

true best-fit curve shown by the blue curve. The prediction bands shows that if 

more data points were to be obtained for �(�) for each age group, then we should 

expect 90% of these data points to fall within these bands. It can also be observed 

that the prediction bands are wider because they have to account for the 

uncertainty of the curve as well as the scatter of the data. The bands for the elderly 

age group appear flatter because the true curve also appears flatter. 
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From using the parameter estimates obtained in Table 4.2.3 on all the 52 weekly 

data points, it was established that the week where the highest number of cases of 

influenza was observed was the 1st week with 95% confidence interval (52, 4) 

week. This prediction is later than the actual week where the most lab-confirmed 

influenza cases was observed for the 2014-2015 influenza season which was 

between the 51st and 52nd week, as can be observed from the actual data. This is 

shown in Figure 4.2.7. 

  

Figure 4.2.7: Laboratory confirmed cases for the North zone. 

Figure 4.2.7 shows the weekly laboratory confirmed cases for the North zone 

where it can be observed that our influenza model is able to fit the actual data well 

since it was able to pass close to most of the data points. The number of 

laboratory confirmed cases that our model predicts is about 98 cases however the 

actual highest influenza case obtained was about 113. The model predicts the 1st 

week with 95% confidence interval (52, 4) week as the peak week. However, the 
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actual peak obtained from plotting the laboratory confirmed cases was between 

the 51st and 52nd week.  

The weekly laboratory confirmed cases are then accumulated for each age group 

to determine the total number of laboratory confirmed cases obtained for the 

2014-2015 influenza season. This is shown in Figures 4.2.8, 4.2.9, 4.2.10. 

 
 

Figure 4.2.8: Accumulated laboratory confirmed cases for 0-18 years. 

 

 
 

Figure 4.2.9: Accumulated laboratory confirmed cases for 19-64 years. 
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Figure 4.2.10: Accumulated laboratory confirmed cases for 65 years and over. 

The above diagrams show the accumulated laboratory confirmed cases for the age 

groups 0-18 years, 19-64 years and 65 years and over. As can be observed from 

Figures 4.2.8, 4.2.9, 4.2.10., our model is able to fit the data points well; that is, 

the accumulated cases that is obtained as a result of using our model fits perfectly 

to the actual laboratory confirmed data obtained for each age group for the 2014-

2015 influenza season. 

 

4.1.3 Results from Numerical Investigations for Calgary Zone 

Like the Central and North zones, the contact mixing matrix for Calgary zone was 

calculated using the method proposed by Meltzer et al., 2015 which was presented 

in section 3.3 of Chapter 3. The contact matrix obtained for the Calgary zone is 

presented in Table 4.3.1: 
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Table 4.3.1: Contact mixing matrix for Calgary zone. 

 

    Age     

Groups 

Age Groups 0-19 years 20-64 years > 65 years 

0-19 years 7.6 6.1 0.4 

20-64years 2.2 8.1 0.7 

> 65 years 1.6 7.6 1.7 

 

From Table 4.3.1, it can be observed that the working class age group also makes 

more contact with themselves and the elderly age group. There are other 

interactions between the age groups including by the contacts between the 

working age group and the younger age group. This might be due to meeting in 

places like schools, playground, shops, home etc. 

The initial conditions for Calgary were also obtained from the Alberta Health 

Services. It comprises of the 2014-2015 population estimates for Calgary with 

�2F � 1	and �]F � 0, i	=1,2,3=0 . This can be seen in Table 4.3.2. 

Table 4.3.2:  2014-2015 Population estimates for Calgary zone. 

Parameter Estimates 

  �� 367122 

 � 1025349 

 6 164099 

 

Like the Central and North zones respectively, the fitted parameters with their 

95% confidence interval are obtained using the weighted nonlinear least squares 

fitting method with the ordinary differential equations in Mathematica. The 95% 

confidence interval is also obtained using the Metropolis hasting algorithm of the 

MCMC and the results obtained are shown in Table 4.3.3. 
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Table 4.3.3: Parameter estimates for Calgary zone 

Parameters Estimates 95% Confidence interval 

��  1.26558 ∗ 10rc (1.18168 *10rc,			1.34082 ∗ 10rc	) 
�� 1.82501	∗ 10rc (1.79589 *10rc, 1.85331 ∗ 10rc) 

�6 1.01849 *10rd (8.51819 *10rc,				1.19509 ∗ 10rd	) 
3 0.0140083 (0.0133275, 0.0146999) 

 

The estimates obtained in Table 4.3.3 fall within the 95% confidence intervals. It 

can also be observed that the confidence intervals are narrower hence the 

uncertainties in the estimates are lesser as compared to having a wider confidence 

interval. These estimates were obtained as a result of running a sample of 500000. 

Before we can go ahead to do any predictions, we first have to analyze �(�). 
�(�) which measures the weekly proportion of laboratory confirmed cases 

including individual visits to the general practitioner’s office and emergency 

departments, is analyzed using a specified nonlinear model. The nonlinear least 

squares function fits the data well as it passes through two or more points for each 

age group. Also the data points are widely scattere; that is, variability observed in 

the data sets although they are mostly clustered at the mid-section. From Figures 

4.3.1, 4.3.2 and 4.3.3, the elderly and younger age group had the highest 

proportion of laboratory confirmed cases as compared to the working age group. 

The parameter estimates obtained for the nonlinear function used in analysing 

�(�), are shown in Table 4.3.4. 
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Table 4.3.4: Parameter estimates for �(�) for each age groups. 

 

Parameter estimates 0-18 years 19-64 years 65 years and over 

a 13.9853 4.72771 4.3588 

b 0.834321 0.223292 0.180505 

c 1.29624*10rd 0.00207674 0.00437972 

 

From these results, we obtain the following plots below for the three age groups 

respectively. 

 

Figure 4.3.1: �(�) for the 0-18 years age group. 
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Figure 4.3.2: �(�) for the 19-64 years age group. 

 

 

 

Figure 4.3.3: �(�) for the 65 years and over age group. 

 

Figures 4.3.4, 4.3.5 and 4.3.6 shows the 90% prediction bands for �(�) obtained 

for the 0-18 years, 19-64 years and 65 years and over respectively.  
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Figure 4.3.4: Prediction bands for 0-18 years’ age group. 

 

 

 

Figure 4.3.5: Prediction bands for 19-64 years’ age group. 
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Figure 4.3.6: Prediction bands for 19-64 years’ age group. 

The prediction bands are shown by the cream-colored curves with the actual or 

true best-fit curve shown by the blue curve. The prediction bands, which show the 

scatter of the data, show that if more data points were obtained for �(�) for each 

age group, then we should expect 90% of these data points to fall within these 

bands. It can also be observed that the prediction bands are wider because they 

have to account for the uncertainty of the curve as well as the scatter of the data 

From using the parameter estimates obtained in Table 4.3.3 on all the 52 weekly 

data points, it was established that the week where the highest number of lab-

confirmed influenza cases was observed, that is, peak in the influenza cases, was 

the 1st week with 95% confidence interval (52, 2) week. Our model predicted the 

1st week and we can observe from the actual data that the highest case was also 

observed in the 52nd week. This is shown in Figure 4.3.7. 
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Figure 4.3.7: Laboratory confirmed cases for the Calgary zone. 

 

Figure 4.3.7 shows the weekly laboratory confirmed cases for the Calgary zone 

where it can be observed that our influenza model is able to fit the actual data 

obtained as it comes close almost all of the data points. The number of laboratory 

confirmed cases that our model predicted is about 200 cases however the actual 

number of cases obtained was about 300. Hence our model fairly predicts the 

actual data well. 

These weekly cases are then accumulated for each age group and then plotted to 

determine if our model can fit these cases as well as predict it. 
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Figure 4.3.8: Accumulated laboratory confirmed cases for  0-18 years. 

 

 

 

Figure 4.3.9: Accumulated laboratory confirmed cases for 19-64 years. 
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Figure 4.3.10: Accumulated laboratory confirmed cases for 65 years and over. 

 

The accumulated laboratory confirmed cases for the age groups are shown in 

Figures 4.3.8, 4.3.9 and 4.3.10. It was identified that the model does fit the actual 

data at the initial start but not at the later part of the influenza season.  
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4.2 Discussions from Numerical Investigation 

A question of interest that one might ask is “why the interest in predicting the 

peak of influenza?”. Influenza epidemics, like any other viral epidemics, can 

persist and tend to cause more harm and havoc if more thought is not given on 

how the outbreak of this viral infection can be eradicated. Forecasting the peak of 

influenza will not only help in resource allocation but it will also help clinicians 

and policy makers plan ahead as to how to control the spread of the influenza, as 

well as how to distribute medicines and educate people on the do’s and don’ts of 

this viral epidemic.  

Our objective for this thesis was to propose a mathematical model for influenza 

that will be able to predict the week where there will a peak in the number of lab-

confirmed influenza cases for the 2014-2015 influenza season for each zone. 

From the proposed influenza model, we were able to generate the ordinary 

differential equations which we used to analyse the laboratory confirmed cases 

obtained for each of the zones. These cases were analysed using weighted 

nonlinear least squares fitting. This was to obtain the parameters that we used to 

determine the week with the highest number of influenza cases, that is, the peak 

week for the 2014-2015 influenza season. However, before the peak week was 

determined, nonlinear least squares function was used to fit		�(�), the weekly 

proportions of laboratory confirmed cases. These are fitted for the three age 

groups considered in this thesis.  

As was observed from the table of parameter estimates for �(�) and the plots for 

�(�) for the zones considered, Central, North and Calgary in section 4.1, the 
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selected nonlinear least squares function fits the data well as it passed through the 

points. Although the average scatter of the data was fairly wide, that is, there is 

variability in the data sets, it was usually clustered at the mid-section. The 90% 

prediction band was also plotted for �(�) to determine if any additional points 

obtained for �(�) will fall within the band. From the results it was identified that 

should there be any additional points obtained for �(�), then 90% of these data 

points will fall within the bands.  

The parameter estimates for each of the zones was obtained using the weighted 

nonlinear least squares fitting method in Mathematica and the 95% confidence 

interval was obtained using the Metropolis hasting algorithm of the MCMC. It 

was identified that each of the estimates for the zones fall within the 95% 

confidence interval. The 95% confidence interval was also identified to be 

narrower, hence uncertainty in the estimates was lesser as compared to a wider 

confidence interval. 

For the Central zone, the model predicted the 52nd week with 95% confidence 

interval (51,1) week as the peak week where the most laboratory confirmed cases 

of influenza was obtained for the 2014-2015 influenza season. The actual data 

however showed the 1st week to be the week with the most laboratory confirmed 

influenza cases. The number of laboratory confirmed cases that our influenza 

model predicted was about 100 as compared to 131 actual cases obtained. 

The influenza model also predicted the 1st week with 95% confidence intervals 

(52,4) week as the peak week where most of laboratory confirmed influenza cases 

was obtained for the 2014-2015 influenza season for the North zone. The model 
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predicted about 98 lab-confirmed cases whereas the actual number of cases 

obtained was about 113. 

 The Calgary zone had its peak week also being the 1st week with 95% confidence 

interval (52,2) week. The model predicted about 200 lab-confirmed cases whereas 

the actual highest number of cases obtained was about 300. Knowing this peak 

will help health agencies and the governments.  

From the Central, North and Calgary zones results, it was identified from the 

actual data obtained that the actual peak week ranged between the 50th and 1st 

week whereas the model peak week ranged between the 52nd and 1st week. The 

same goes for the other zones too. The model also showed Calgary zone to have 

the highest number of laboratory confirmed cases. This therefore shows that our 

model was able to do the predictions well. Hence, given full data or real time data 

our model will likely be able to predict well. 
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Chapter 5 

5 Conclusions and Recommendations 

5.1 Conclusions 

Forecasting the occurrence of epidemics will not only contribute to creating 

awareness but it will also help in resource allocation in terms of how to stock and 

distribute medicines as well as educate the masses on how to effectively ensure 

that the spread of the influenza virus is contained. In this thesis, a mathematical 

model for the influenza epidemic was developed and then used to predict the peak 

week where influenza was expected to be the highest within the geographical 

zones in the province of Alberta. The influenza model showed the relationship 

between the Susceptible (S) individuals, the infected but not lab-confirmed (�2) 

individuals and the infected and lab-confirmed individuals (�2). It was identified 

that within the infected but not lab confirmed compartment, there were some who 

were showing symptoms as well as others who were not showing any symptoms 

but could still infect a susceptible person. A person can also recover and leave the 

compartment and it was assumed that these people obtain immunity and so do not 

become susceptible again. From the results obtained, it was identified that using 

all the 52 data points given, our model was able to predict the peak week to range 

between the 52nd and 1st week. The model was also able to predict the number of 

laboratory confirmed cases which ranged between 95 and 400. Thus, the proposed 

influenza model is able to predict the peak week given all the data points. It is 
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expected that given any real time data, the proposed model should be able to 

predict the peak week. 

 

5.2 Recommendations 

There were many limitations that were encountered in this project. For instance, 

running the appropriate sample to get the appropriate parameter estimates takes 

about 7 days to complete and it takes 2 additional days to obtain the 95% 

confidence intervals. As a result of the computational demand in running the 

simulation code, the use of an interface like CDF player and parallel coding in 

Mathematica that can provide the peak prediction with their 95% confidence 

interval is recommended for future work on the proposed model.  

The current model did not consider vaccination. However, it is recommended for 

future work on the proposed model to consider vaccination and how it will affect 

the prediction of the peak. Also the model did not consider the basic reproduction 

number; hence, it is recommended for future work to consider it. 
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Appendix A 

Table A.1: Population Estimates for each age groups and each zones. 

Age group 
South   

zone 

Calgary 

zone 

Central 

zone 

Edmonton   

zone 

North    

zone 

0-4 years 20,279 99,470 30,370 83,032 36,445 

5-9 years 19,798 94,689 29,498 75,422 32,988 

10-14years 18,333 84,267 28,003 68,551 29,727 

15-19years 19,790 88,696 30,573 75,105 31,716 

20-24years 22,174 104,599 33,741 97,128 37,306 

25-29years 22,477 129,283 35,376 114,529 42,438 

30-34years 22,329 141,225 34,996 115,779 41,909 

35-39years 19,708 126,575 31,285 99,218 35,608 

40-44years 17,800 118,704 29,428 89,888 32,755 

45-49years 17,635 110,091 29,862 87,283 32,227 

50-54years 20,515 113,879 35,442 94,900 35,182 

55-59years 19,845 103,098 32,913 86,066 30,650 

60-64years 16,495 77,895 26,263 67,723 21,964 

65 - 69 years 13,381 58,041 21,125 51,171 15,595 

70-74 years 9,852 37,801 15,309 34,804 10,722 

75-79 years 7,431 27,585 11,510 26,147 7,383 

80-84 years 5,904 20,950 8,727 20,175 5,247 

85-89 years 3,811 12,908 5,366 12,653 2,928 

90-94 years 2,300 6,814 3,295 7,236 1,599 
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Table A.2:  Daily number of contacts between age groups obtained from the 

Polymod study conducted in United Kingdom. 

  0-4 

years 

    5-9   

years 

10-14 

years 

15-19 

years 

20-24 

years 

 25-29       

years 

0-4 years 1.9 0.7 0.4 0.2 0.5 0.7 

5-9 years 1.0 6.6 1.1 0.7 0.6 0.8 

10-14years 0.5 1.3 6.9 1.5 0.3 0.3 

15-19years 0.3 0.3 1.0 6.7 1.6 0.7 

20-24years 0.5 0.3 0.2 0.9 2.6 1.5 

25-29years 0.8 0.7 0.4 0.7 1.3 1.8 

30-34years 1.0 1.1 0.6 0.5 0.9 1.2 

35-39years 1.0 1.0 1.3 1.1 0.8 1.0 

40-44years 0.6 1.0 1.1 0.9 0.7 0.9 

45-49years 0.3 0.5 0.6 0.8 1.0 0.9 

50-54years 0.3 0.4 0.4 0.4 0.4 0.9 

55-59years 0.3 0.2 0.3 0.3 0.4 0.5 

60-64years 0.3 0.3 0.2 0.2 0.2 0.3 

65-69years 0.1 0.1 0.1 0.2 0.2 0.2 

70-74years 0.1 0.2 0.2 0.1 0.2 0.2 
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Table A.2 Continued:  Daily number of contacts between age groups obtained 

from the Polymod study conducted in United Kingdom. 

30-34 

years 

35-39 

years 

40-44  

years 

45-49 

years 

50-54 

years 

55-59 

years 

0-4 years 0.7 0.8 0.2 0.2 0.4 0.2 

5-9 years 1.0 1.4 0.9 0.2 0.3 0.2 

10-14years 0.5 0.8 1.0 0.7 0.3 0.4 

15-19years 0.4 0.6 0.9 1.2 0.7 0.3 

20-24years 0.8 0.6 0.8 0.9 0.9 0.6 

25-29years 1.0 0.7 0.7 0.9 0.9 0.9 

30-34years 1.7 0.9 1.0 0.9 0.9 0.6 

35-39years 1.5 1.5 1.3 1.1 0.8 0.7 

40-44years 0.7 0.9 0.8 1.2 1.4 1.3 

45-49years 1.0 0.9 0.6 0.8 1.3 1.9 

50-54years 0.4 0.9 0.6 0.6 0.7 1.0 

55-59years 0.4 0.5 0.7 0.5 0.6 0.5 

60-64years 0.2 0.3 0.4 0.4 0.5 0.6 

65-69years 0.2 0.2 0.1 0.3 0.2 0.1 

70-74years 0.2 0.2 0.2 0.4 0.5 0.7 
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Table A.2 Continued:  Daily number of contacts between age groups obtained 

from the Polymod study conducted in United Kingdom. 

60-64 years 65 - 69 years 70-74 years 

0-4 years 0.2 0.3 0.1 

5-9 years 0.5 0.5 0.2 

10-14years 0.3 0.4 0.3 

15-19years 0.2 0.5 0.6 

20-24years 0.5 0.4 0.3 

25-29years 0.7 0.7 0.3 

30-34years 0.8 0.6 0.3 

35-39years 1.0 1.0 0.2 

40-44years 0.9 0.8 0.8 

45-49years 0.6 0.6 0.6 

50-54years 0.6 0.6 0.6 

55-59years 0.9 0.9 0.3 

60-64years 0.7 0.9 0.6 

65-69years 0.4 0.7 0.6 

70-74years 0.5 0.7 1.5 

 


