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Abstract

We propose a framework for semi-automatically verifying relational database schema mappings for

data exchange.

Schema mappings for data exchange formally describe how to move data between a source and

target database. State-of-the-art schema mapping tools propose several mappings, but require user

intervention to determine their semantic correctness. For this, the user must understand the domain

the schemas represent and the meanings of individual schema elements in relation to the domain.

Our framework eases the task of understanding the domain and schemas and performs prelimi-

nary mapping verification. We use a readable, expressive, and formal conceptual model - a domain

ontology - to model the source and target schema domain. We model the schema semantics by

annotating schema elements with ontology elements. Our mapping verification algorithm rewrites

mappings as statements in terms of the ontology, and uses a reasoner to check that the statements

are entailed by the ontology.
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Chapter 1

Introduction

1.1 Motivation: Data Interoperability

Data interoperability occurs when an application can use data from one or more disparate data

sources. With the amount of data being produced, stored, and exchanged in the world today, there

are numerous situations for which achieving data interoperability is essential. For example:

• Multiple organizations with their own data storage schemas, such as regional government

health services, might merge into one, larger organization and consolidate their data.

• A governing body may require its various organizations to submit annual performance data in

a particular format; this format may change from year to year.

• Two separate organizations having data about a certain topic may wish to exchange or con-

solidate this data; however, they do not want to share private data about their employees and

finances.

• A frequent traveler may wish to have a single interface that queries flight information from a

number of airline and travel websites of their choice.

• A supplier may wish to exchange data with a manufacturer.

The common thread in the preceding examples is that the data to be exchanged and/or inte-

grated comes from separate sources that were developed independently. This means that the data

might reside in completely different formats - for example, some data might be stored in a rela-

tional database, the other as XML files. With the advance of Information Extraction, even textual

sources can provide data. In addition, because each data schema is designed independently, these

schemas will be different - even if they are expressed in the same data model (e.g. the relational data

model) and describe the same domain. As stated by the authors of “The Lowell Database Research

Self-Assessment” [Abiteboul et al., 2005]:

“Any two schemas designed by different people will never be identical. They will

have different units (one salary is in euros, another is in dollars), different semantic
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interpretations (one salary is net including a lunch allowance, another is gross), and

different names for the same thing (Samuel Clemens is in your database, but Mark

Twain is in mine).”

Thus a central problem in achieving data interoperability is to find a way to overcome this seman-

tic heterogeneity in schemas. Data exchange, data integration, and peer-to-peer approaches are a

common way to do this.

S1 S2 Sn

Mediated Schema

Wrapper Wrapper Wrapper

query q

...

...

q'1
q'2

q'nan
sw
er

an
sw
er

answer

results

Figure 1.1: The mediated schema approach to data integration.

S1
S2

answer

μ1,2 ( q ) 

query q

results

S3answer

μ
2,3 ( q ) 

Figure 1.2: The peer-to-peer approach to data integration.

In data integration, a mediated schema is used to provide a uniform query interface for multiple

data sources. The mediated schema approach is often used in enterprise data integration, for example

when various branches of the same organization merge. In this approach, shown in Figure 1.1, the

data stays in the individual source databases. Queries are expressed in terms of the mediated schema,

while wrappers containing schema mappings between the source schemas and the mediated schema

translate the queries and the results back and forth.

Another approach, often used in Web applications, is peer-to-peer data integration, as shown in

Figure 1.2. In this approach, pairwise mappings are made directly between a number of individual
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S T

query

μ: S → T

data

results

Figure 1.3: The data exchange approach to data integration.

database schemas, usually maintained independently at individual peers. Each peer has direct access

only to its own schema and, through mappings, the data of its peers. There is no one unifying schema

as in the mediated schema approach. Again, in this approach, the data stays in each individual source

database and only the results of the queries are exchanged.

A third approach, data exchange, is shown in Figure 1.3. In this approach a mapping is created

between a source and a target schema with the goal of moving all of the data from the source database

to the target database. Queries are then made in terms of the target database.

The Use of Schema Mappings

As illustrated by the examples above, schema mappings are key to achieving data interoperability.

A schema mapping is a precise specification of the relationships between the elements of a source

schema and the elements of a target schema. This specification makes it possible to transform data

from the source schema to fit into the target schema.

Executable schema mappings are schema mappings that can take an instance of a source schema

and restructure it to meet the syntax and integrity constraints of a target schema. The source and

target schemas need not be in the same format; for instance, the source database might be a relational

database while the target database could be stored in XML. Executable schema mappings can be

expressed in any executable language that can be used to extract data from or input data into the

databases, such as SQL, XQuery, XSLT or PHP.

When creating schema mappings it is necessary not only to reconcile the syntax and integrity

constraints of heterogeneous schemas; it is also important that the intended semantics of each

schema is preserved. That is, it is important that elements in the source schema get mapped to

elements in the target schema that represent the same real-world concepts.

In this thesis we focus on preserving semantics in schema mappings in the context of the data

exchange approach to data integration.
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1.2 Schema Mapping Creation

Given the importance of schema mappings and their potential complexity, a number of tools and

techniques have been proposed to help in their creation. Generally, this process takes as input a

source schema S and a target schema T , and outputs an executable mapping µ : S → T which can

be used to translate data from S to T . Deriving schema mappings is usually a three-step process,

as shown in Figure 1.4. The three steps are: schema matching, mapping generation, and mapping

verification.

Schema 
Matching

Mapping 
Generation

Mapping 
Verification

S, T

Mexec: S → TM: S → T

μexec: S → T

Figure 1.4: The schema mapping creation process

1.2.1 Schema Matching

The schema matching step involves finding correspondences between pairs of individual elements

of the source and target schemas. (Schema matching is somewhat of a misnomer for this step; in

fact, it is individual elements of schemas, such as attributes of relations, being matched - not the

schemas themselves). Taking as input a source schema S and a target schema T , this step outputs a

multimapping1 M : S → T , which consists of pairs of correspondences between elements of S and

elements of T . (Where elements, in a relational database, are the attributes of relations).

Essentially, the schema matching step filters out those pairs of elements in the source and target

schemas that are not likely to have a similar meaning. The methods used for this step use clues

from the labels of the schema attributes [Cohen et al., 2003], the structures of the schemas [Melnik

et al., 2002], and occasionally lexical comparisons to words present in external taxonomies of words

[Pedersen et al., 2004]. The most effective schema matchers (e.g. LSD [Doan et al., 2001]) use

a hybrid of these techniques. Even the best schema matchers do not achieve 100% accuracy - for

example, Doan et al. [Doan et al., 2001] reported 71% - 92% accuracy for their hybrid matcher,

LSD, and noted that two specific characteristics of schemas preventing the accuracy from being

higher were: ambiguity in the meaning of labels, and being unable to anticipate every type of format

1Multimapping is a term used by Melnik et al. [Melnik et al., 2002] to describe a set of correspondences from which a
number of potential mappings could be derived.
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for the data. These deficiencies in accuracy are propagated to the next step in schema mapping

creation, mapping generation.

1.2.2 Mapping Generation

Mapping generation tools (e.g. Clio [Miller et al., 2001b]) turn the pairwise correspondences from

the previous step into executable mappings between the schemas; each mapping consists of exe-

cutable queries from the source database to the target database. This step is not concerned with the

semantics of the schemas - it is assumed that those are dealt with in steps one and three of schema

mapping creation. The central problem in schema mapping generation is to create a mapping from

the given correspondences, and to make sure that the mapping satisfies the specifications and con-

straints of the target schema, for instance: translating between heterogeneous schema types (e.g.

relational to XML), ensuring foreign key constraints are met, or ensuring null values are used where

appropriate, and ensuring that primary keys and foreign keys are not violated by the data that is

mapped.

1.2.3 Mapping Verification

The mapping verification step involves verifying that the mapping generated in the previous step

is accurate and reflects the intent of the source and target schema designers. In addition, where

multiple alternative mappings are possible, a choice between them may be made. This step takes as

input the executable mappings from the previous step and outputs an executable mapping µ : S → T

that meets the semantic constraints of the target schema as intended by the schema designer.

Some aspects of mapping verification are relatively simple - checking for datatype compatibility

or primary key constraints, for instance. Such verifications involve violations against the formal

schema specification, and are usually dealt with in the mapping generation step.

Other aspects of mapping verification, however, are more involved: for example, detecting sub-

tle, semantic violations - those in which an element of the source schema is mapped to an element in

the target schema with a compatible datatype but a different meaning. This is a highly understudied

area - most schema mapping tools leave this part up to the user, with innovation being mainly at the

graphical user interface level [Alexe et al., 2008], to make this step easier. This is not surprising,

as such violations are impossible for a computer to detect without any extra information about the

schemas. Users, on the other hand, are capable of gathering this knowledge elsewhere, for exam-

ple by reading documentation, discussing with knowledgeable employees, or by using their own

expertise and intuition.

For instance, see the example in Figure 1.5. Here two schemas, S and T , are shown, as well

as some pairwise correspondences (a, b, c) between elements of the schemas. There is some

inherent ambiguity present here that the schema matching step cannot deal with: the question

is whether T.Program.supervisor refers to the technical leader of a project, or the man-

5



name

Project

techlead
manager

eid
Employee

name
email

pname

Program

supervisor
contact

*
*

S

Ta

b

c

Figure 1.5: An example schema mapping verification problem

ager. Without any additional knowledge, it is impossible to algorithmically determine whether

S.Project.techlead or S.Project.manager (or both) should be mapped to

T.Program.supervisor. Even if we were to examine instances of data in the database, it

is unlikely that the employee information about technical leaders (their names and emails) would

have any unique characteristics that differentiate them from managers. In these kinds of cases, most

schema mapping creation tools would at this point turn to the user to decide which mapping is

correct (or which mapping is preferable, if more than one is correct).

This, however, is a significant problem. Such situations occur quite often in real-world schema

mapping situations. Using commercial schema mapping suites, it still takes, on average, three man-

months to complete a schema mapping [Sikka, 2006]. A considerable portion of this time is spent

by the user on this mapping verification step. The user must spend time learning the meanings

of individual elements in both schemas (which can be very large), then manually checking each

mapping to see if it violates the intended semantics of the schemas.

1.2.4 Our Contribution

Mapping verification is the problem we study in this thesis. We approach the problem by exploring

ways in which the schema designers’ knowledge can be harnessed and formalized so that it can be

taken advantage of computationally during the mapping verification step, reducing the amount of

user effort required.

Our approach is formal and amenable to implementation in real systems. We envision it be-

ing used to enhance state-of-the-art schema mapping creation systems such as Clio [Miller et al.,

2001b], replacing much of the work normally done by the schema mapping designer.
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1.3 Illustrative Example

To further illustrate the schema mapping problem and the context of mapping verification, we

present a more detailed example here.

Schema S

lname: string

Lab

director: int

admin: int

eid: int

name: string

contact: string

Researcher

eid: int

name: string

contact: string

Administrator

*
* Schema T

name: string

Group

manager: string

email: string

Figure 1.6: Schemas describing research labs in Company B (schema S) and the more general
groups in Company A (schema T ).

Suppose Company A is the parent company of a number of smaller companies. Each child

company has a number of departments, which in turn have various groups working on different

projects. Each child company also maintains its own databases. Company A decides it wants to

keep its own database of information about each group in the child companies. Its information

technology department creates a schema for this database and sends it to the child companies with

instructions that each company must move the relevant data to Company A’s database. Among other

things, Company A is interested in keeping track of each group’s name, manager, and the manager’s

email address. This schema subset is shown in Figure 1.6 as schema T .

Company B is a child company of Company A. Due to Company A’s decision, Company B must

find a way to move the required data to Company A’s database. Company B assigns this task to

Debbie, an experienced database expert at Company B.

Company B has a very large research department which is divided into a number of research

labs. Company B’s research labs correspond to Company A’s “groups”. The part of the schema that

holds information about the research labs is shown in Figure 1.6 as schema S. Each research lab

in Company B has a name, a lab administrator, and a lab director who is also a researcher. In this

example we will demonstrate the process for finding a schema mapping from S to T .

Company B’s schema S has three relations: Lab, Researcher and Administrator.
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Lab describes a research lab in the company, with a primary key lname (the lab name), an at-

tribute director (the researcher who directs the lab), and an attribute admin (the administrator

of the lab). Lab.director is a foreign key to the Researcher relation, which describes em-

ployees of Company B who are researchers. Researcher has three attributes: the primary key

eid, the researcher’s name name, and the researchers’s email address, contact. Lab.admin is

a foreign key to the Administrator relation, which describes employees in administrative po-

sitions. Like Researcher, Administrator also contains a primary key eid, the employee’s

name name, and the employee’s email address contact.

Table 1.1: An instance of Company B’s schema S before data exchange occurs.
(a) Lab

lname director admin
BDataInterop 1 4

BRobots 2 3

(b) Researcher

eid name contact
1 Alice Smith as@b.com
2 Bob Miller bm@b.com

(c) Administrator

eid name contact
3 Carol Jones cj@b.com
4 David Davis dd@b.com

Table 1.1 shows an example instance of Company B’s schema S before any data exchange oc-

curs. This example will demonstrate how this instance is translated to fit with Company A’s schema

T .

Schema T describes the groups stored in Company A’s database. It contains one relation,

Group, which describes a group. Group has a primary key name (the group’s name), an at-

tribute manager containing the name of the group’s manager, and an attribute email containing

the email address of the group’s manager.

Table 1.2: An instance of Company A’s schema T before data exchange occurs.
(a) Group

name manager email
DMarketing Ellen Allen ea@c.com
Accounting Filip Frost ff@d.com

Table 1.2 shows an example instance of Company A’s schema T before any data exchange oc-

curs. This instance contains some data from other child companies of Company A.

Company B is faced with a data exchange problem: how can it translate the data stored in its

database into a format that can be input into Company A’s database? Furthermore, how can it
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automate this data translation so that it can be repeated periodically?

One solution is to create an executable schema mapping between Company B’s database schema

and Company A’s database schema. If the schemas to be translated are quite large, the executable

schema mapping might be complicated to create by hand, so Company B would decide to use a

schema mapping generation tool such as Clio [Miller et al., 2001b].

We illustrate how an executable schema mapping may be created to translate the project infor-

mation from Company B’s S to Company A’s T using such a tool.

1.3.1 Schema Matching

Recall that the first step in schema mapping generation is to discover correspondences between

schema elements in S and T , known as schema matching. A typical schema matcher might assign a

similarity value to each pair of elements in S × T , and set a threshold for the similarity value above

which a pair of elements is considered likely to correspond. Suppose that our schema mapping

generation tool finds the following correspondences for the database instances in Table 1.1 and

Table 1.2:

(S.Lab.lname, T .Group.name, 0.98)

(S.Researcher.name, T .Group.manager, 0.90)

(S.Administrator.name, T .Group.manager, 0.89)

(S.Researcher.contact, T .Group.email, 0.92)

(S.Administrator.contact, T .Group.email, 0.93)

This indicates that Lab.lname and Group.name likely have the same meaning. However,

it is difficult to determine whether Group.manager and Group.email refer to the name and

email address of a lab director or administrator. Researcher and Administrator are very

similar in their schema structure and there are no distinguishing characteristics in the instances of

Researcher and Administrator - there is no inherent property of names and email addresses

that would allow one to discern whether a particular name or email address belongs to a researcher

or an administrator.

1.3.2 Generating Executable Schema Mappings

Our schema mapping generation tool uses the correspondences from the previous step to create

executable schema mappings that can translate data from one schema to another. Clio does this in

a two-step process. In the first step, it represents the two schemas according to a general model

(this is to support mapping between schemas of different types); it then creates logical mappings by

using the correspondences as well as the dependencies (foreign keys in relational databases) of the

schemas. In the second step, it translates these logical mappings into the appropriate language for

each schema (such as SQL, XSLT, or XQuery).
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Clio could generate a number of mappings from the above correspondences; we present two

possible logical mappings here, written in the syntax used by Clio. For more information about this

syntax, see [Miller et al., 2001b].

The first mapping, µ1, moves the contents of Lab.lname into Group.name. The map-

ping joins Lab and Researcher to move Researcher.name into Group.manager and

Researcher.contact into Group.email.
µ1:

for Lab l, Researcher r in S
where l.director = r.eid
exists Group g in T
where g.name = l.lname and

g.manager = r.name and
g.email = r.contact

The second mapping, µ2, also moves the contents of Lab.lname into Group.name. How-

ever, it joins Lab and Administrator to move Administrator.name into Group.manager

and Administrator.contact into Group.email.
µ2:

for Lab l, Administrator a in S
where l.admin = a.eid
exists Group g in T
where g.name = l.lname and

g.manager = a.name and
g.email = a.contact

Essentially, µ1 assumes that Company A would like to store the name of the lab director - the

researcher - as the project manager, whereas µ2 assumes that Company A prefers to store the lab’s

administrator as the manager.

Note that this mapping will alter the target database (Company A’s database), but not the source,

Company B’s database.

A Note About Notation

For simplicity, in the remainder of this thesis, we write schema mappings as Datalog-style queries.

In this notation, the mappings above would be written as:

µ1 : q1 : T.Group(x1, x2, x3) ← S.Lab(x1, y,−), S.Researcher(y, x2, x3)

and

µ2 : q1 : T.Group(x1, x2, x3) ← S.Lab(x1,−, z), S.Administrator(z, x2, x3)

1.3.3 Verifying Schema Mappings

We now have two mappings, both valid according to the constraints of schema T . We must now

determine whether one or both of these mappings reflect the meaning of T as intended by its schema

designer. This is the mapping verification step.

In this case, Clio will choose a small subset of the instance of S, apply the schema mappings,

and show each mapping and the resulting instance of T to the user. The user then decides, based on
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the results, the correctness of the mapping. Table 1.3 and Table 1.4 show the results of applying µ1

and µ2, respectively.

Table 1.3: An instance of Company A’s schema T after data exchange if the manager is the lab
director.

(a) Group

name manager email
AdCampaign Ellen Allen ea@c.com

Fin Filip Frost ff@d.com
BDataInterop Alice Smith as@b.com

BRobots Bob Miller bm@b.com

Table 1.4: An instance of Company A’s schema T after data exchange if the manager is the lab
administrator.

(a) Group

name manager email
AdCampaign Ellen Allen ea@c.com

Fin Filip Frost ff@d.com
BDataInterop David Davis dd@b.com

BRobots Carol Jones cj@b.com

Note that there is no discernible difference between the characteristics of the two instances.

Syntactically, both are valid instances of T . Both have the same entries in name, both have employee

names and emails that do not have any characteristics that distinguish them as being lab directors vs.

managers. Neither instance has any information that would look out of place to a schema designer.

Now, consider the schema mapping designer, Debbie. She is an employee of Company B, and is

quite knowledgeable about the meanings of the various database schema elements. She looks at the

two suggested schema mappings, takes a moment to figure out how they are different, then realizes

she is not actually sure which kind of manager Company A requires in their database - the one

managing the research direction of the lab, or the one that deals with administrative issues? Or does

Company A not have a preference? Debbie checks the documentation for T , but the description of

the manager field states that it describes “the name of the manager of the group”. Finally, she finds

a contact at Company A who, after some discussion, decides that Company A would prefer to store

the lab director’s contact information, not the administrator’s. So Debbie chooses µ1 as the correct

mapping.

Note that this small verification required background information that was not present nor appar-

ent in the schema or instances of Company A’s database. It also took quite a bit of time. If Debbie

were only mapping the small subsets of the schemas that we see in this example, this would not

be a problem. However, at a larger scale and with more complex mappings, this turns into a very

time-consuming and error-prone part of the schema mapping creation task.

Although the schema matching step was able to guess the semantic correspondences for some of
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the elements, there still remained some ambiguity that even Debbie herself was not able to resolve

without turning to other sources. The approach presented in this thesis focuses on harnessing the

knowledge that Debbie was able to obtain by looking at the schema documentation and discussing

with Company A’s schema designers.

1.4 Harnessing Knowledge

In order to harness the schema designers’ knowledge, it must be captured in a formal conceptual

model. For this, we find the Semantic Web research effort to be very useful.

The goal of the Semantic Web research effort is to create a World Wide Web that is more con-

ducive to searching for complex information across multiple sources than the current Web is. In the

current Web, information is annotated with instructions about how that information should be pre-

sented - for instance, which parts of the text should be shown in a bold or italic font, what size and

colour the text should be, or where elements should be placed on the page and how they should be

arranged. In the Semantic Web, information would also be annotated with its meaning in a machine-

readable way, so that it would be much easier to automatically query across multiple data sources

on the Web.

The goal of the Semantic Web research effort is to create a World Wide Web in which the

meaning behind web page content can be understood by computers just as well as its structure, so

that complex information can be found more easily. The Semantic Web community is an active

research community.

Central to the data interoperability goal of the Semantic Web are ontologies, hierarchical de-

scriptions of knowledge about a specific domain. They are derived from First Order Logic (FOL),

and thus have precise interpretations and can be reasoned on. Ontologies are an established technol-

ogy, with a number of standard representation languages (OWL is the standard ontology language

for the Semantic Web), and available reasoners. They are frequently used as descriptions of data,

both Semantic Web data and regular data in databases. Increasingly there is an industry forming

around ontologies; they are already widely used in the biology research community for classifica-

tion purposes.

We propose to use ontologies and formal reasoning to address the key problem in mapping verifi-

cation: capturing the knowledge of the schema designers. An ontology can capture knowledge about

the domain of the schema, in particular the properties of and relationships between elements. For ex-

ample, the simple ontology represented graphically in Figure 1.7 describes the concepts Employee,

TechStaff, and AdminStaff, and states that: every employee has a name and email; technical staff

and administrative staff are both a type of employee (and thus also have a name and an email); and

a technical staff member is not the same as an administrator.

In our framework, each schema is semantically annotated using concepts from the ontology,

effectively enriching the schema with human- and machine-readable metadata in the form of rela-
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TechStaff
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≠ AdminStaff

Figure 1.7: A graphical representation of a simple ontology.

tionships and properties. The ontology itself uses clear, unambiguous names for each concept, and

describes a number of facts about the domain, making it an easier-to-understand conceptual model

for this domain than a normalized schema with ambiguous or unclear attribute labels. We discuss

ontologies in more depth in Chapter 3.

1.5 Overview

The remainder of this thesis is organized as follows: Chapter 2 describes relevant work in the field

of data interoperability, as well as work describing ontologies, reasoning, and data interoperability

using ontologies. Chapter 3 explains ontologies and reasoning in more detail.

Chapter 4 formally defines the mapping verification problem we address in this thesis. Chapter 5

introduces our framework and describes an algorithm for finding concepts in an ontology associated

with schema elements as well as an algorithm for performing mapping verification using ontologies

and reasoning.

Chapter 6 and Chapter 7 provide a discussion of our proposed framework and describe our vision

for future applications of this framework.
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Chapter 2

Related Work

The work presented in this thesis brings together two separate, but related disciplines: data exchange

between heterogeneous data sources and the Semantic Web. In this chapter we outline work related

to both disciplines.

2.1 Part I: Managing Heterogeneous Data Sources

Facilitating interoperability of heterogeneous data sources is an important problem in the field of

data management. Applications use various data formats and schemas; in order for these applica-

tions to communicate with one another, they must be able to understand each others’ data.

Two main approaches to data interoperability are data integration and data exchange. Data

integration focuses on allowing queries to be answered over a number of data sources; this is done

using either mediated schemas or views. Data exchange involves transforming an instance of a

source schema into an instance of a target schema. Both data integration and data exchange rely on

schema mappings.

There are two main types of data interoperability settings, which we call critical settings and

casual ones.

Casual data interoperability settings involve peers exchanging small amounts of data in situations

where errors and inaccuracies can be tolerated; for instance, users mashing up data on the Web using

a tool like Potluck [Huynh et al., 2008], or two colleagues integrating their calendars. Here, failure

to map the data correctly is not catastrophic.

Critical data interoperability settings occur in business, health care, or similar settings. Typi-

cally, they use very large schemas, are expensive, and might take a few months to complete. Those

involved in critical data integration get paid to do it and make use of existing schema integration

tools such as Clio [Miller et al., 2001b] to find the schema mappings. In addition, they may use the

same schema in more than one data integration project over the long-term. Here, accuracy is very

important, thus user involvement in the process is necessary; failure to map the data correctly can

be disastrous.
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In this thesis we focus on the critical data interoperability setting.

2.1.1 Data Integration

Data integration systems provide users with a single query interface for multiple heterogeneous data

sources. The basic approach to this problem is to reformulate queries that the user makes over a

mediated schema in terms of a number of source schemas.

One approach is to have a single, global mediated schema with separate mappings to each source

schema. The earliest approaches [Batini et al., 1986] defined the global schema as a view over the

source schemas, known as the Global-As-View (GAV) approach. The Information Manifold [Levy

et al., 1996] introduced the Local-As-View (LAV) approach, in which each data source is described

as a view over the mediated schema; this approach made it easier to add new source schemas after the

mediated schema was created. Lenzerini [Lenzerini, 2002] compares the LAV and GAV approaches

from a theoretical perspective. LAV and GAV can be combined to form the Global-Local-As-View

(GLAV) approach [Friedman et al., 1999].

In other approaches, multiple mediated schemas are used. TSIMMIS [Garcia-Molina et al.,

1995] allows the integration of various sources (including semi-structured sources written in XML)

using a number of mediated schemas as well as translators between data sources and mediated

schemas. In peer-to-peer data sharing (e.g. [Kementsietsidis et al., 2003]), peers in a network

maintain mappings between their own schemas and those of their neighbours, but there is no one

global schema across all sources.

An overview of recent progress in the field can be found in “Data Integration: The Teenage

Years” [Halevy et al., 2006].

2.1.2 Data Exchange

The framework presented in this thesis is based upon data exchange. The goal of data exchange

is to move data structured under a source schema to a database structured under a different target

schema. This approach is well-suited to a scenario where two groups merge and wish to consolidate

their data in one database, under one schema. The data exchange problem was formalized by Fagin

et al. [Fagin et al., 2005a]; they provide a theoretical discussion of the data exchange problem in

[Fagin et al., 2005b].

In practise, data exchange is executed using extraction, transformation, load (ETL) tools, usu-

ally commercial ones such as Microsoft’s SSIS [Wyatt et al., 2009]. ETL tools extract data from

heterogeneous data sources, transform it to fit a target database (this includes checking integrity

constraints and ensuring primary and foreign key relationships are preserved), and load it into the

target database. These tools focus on solving performance issues - how to extract, transform, and

load large amounts of data in the shortest amount of time once the source and destination of the data

is known.
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In contrast, we are more concerned with helping the user - the database expert involved in the

data exchange - to determine which parts of the schemas from the source databases correspond to

which parts of the schema of the target database. Once this information is known, it can be input

into an ETL tool so that the actual data exchange is performed.

2.1.3 Designing Schema Mappings

In order to exchange data from a source to a target database, it is necessary to find an executable

mapping from the source to the target schema that satisfies both the formal and the semantic con-

straints of the target schema. Approaches to finding schema mappings can generally be divided

into three steps: schema matching, schema mapping generation, and schema mapping verification.

(Some tools perform more than one step at once).

Schema Matching

Schema matching involves finding correspondences1 between individual elements of the source and

target schemas. For relational databases, these are generally correspondences between attributes of

relations rather than the relations themselves.

Schema matching techniques build on a variety of similarity metrics, both for atomic (e.g. at-

tribute names) and composite (e.g. relations) schema elements. Similarity metrics use structural,

lexical, statistical, and semantic characteristics of the schemas and their elements to quantify the

semantic distance between schema elements.

The most basic similarity metrics are lexical: they examine the structures of words and sentences,

for example string-distance metrics [Cohen et al., 2003]. Structural similarity metrics examine the

placement of elements inside the schema structure. For example, Similarity Flooding [Melnik et al.,

2002] represents schemas as graphs, then uses both lexical and structural similarities between nodes

in the graphs to choose correspondences between schema elements.

A number of similarity measures attempt to quantify the semantic distance between elements

using information beyond what is contained in the schemas themselves. Some methods, such as

multi-column substring matching [Warren and Tompa, 2006], rely on comparing instances of data

in the source and target database to determine which elements or groups of elements correspond to

each other. A number of semantic similarity measures, such as WordNet::Similarity [Pedersen et al.,

2004] and some information theoretic definitions of similarity [Lin, 1998] are based on WordNet

[Fellbaum, 1998], a taxonomy that groups English words into sets of synonyms called synsets. These

synsets are organized in a hierarchy based on their hypernyms and hyponyms. Note that for these

approaches it is necessary to have labels that appear in the WordNet dictionary - mainly English

words. Other text corpora may be used instead of, or in conjunction with, WordNet [Li et al., 2003].

1Note that, in the literature, the terms “matches” and “mappings” are often used interchangeably to refer to “corre-
spondences”, the result of the first step in finding schema mappings. Throughout this thesis, we use “matches” to refer to
correspondences, and “mappings” to refer to executable mappings - the result of the second and third steps of the schema
mapping creation process.
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Schema matching is a very difficult problem [Gal, 2006]. To maximize precision, most schema

matching tools use a variety of similarity metrics, some designed specifically for matching schemas,

others more general-purpose. Some prominent schema matching tools that use this hybrid approach

are COMA++ [Aumueller et al., 2005], Cupid [Madhavan et al., 2001], and LSD [Doan et al.,

2001, Doan, 2002]. For a comprehensive survey of schema matching approaches, see “A survey of

approaches to automatic schema matching” [Rahm and Bernstein, 2001].

Schema Mapping Generation

The second step of finding schema mappings is the generation of executable mappings that can

move data from the source to the target schema. These executable mappings must match all of the

integrity constraints of the target schema. Many mapping generation tools also include their own

schema matching tools.

Mapping generation tools are available for a variety of schema types. Clio [Miller et al., 2001b,

Popa et al., 2002] can create correspondences and executable mappings between schemas in various

languages (such as XML and relational schemas). FleDEx [Mesquita et al., 2007] is a framework

for exchanging data in semi-structured data sources; its Data Fitting method both matches attributes

and creates the executable mapping between schemas.

Schema Mapping Verification

The third, and final, step in creating schema mappings is to verify the semantic correctness of these

mappings. That is, to ensure that when data is mapped from an element s in a source schema to an

element t in a target schema, that s and t represent the same real-world concepts. This is done by

examining the executable mappings produced in the mapping generation step. The end goal is to

have a mapping that is not only syntactically correct (as ensured in the mapping generation step),

but also semantically correct.

Due to the inherent difficulty of this task - it requires a knowledge and understanding of the

meanings of schema elements in both schemas - it is difficult to automate; this is the least-explored

step in schema mapping creation. The majority of current schema mapping tools defer the task of

verifying schema semantics to the user, which can be a time-consuming process when dealing with

large schemas.

However, there have been several attempts to partially automate this task. Rull et al. [Rull

et al., 2008] validate schema mappings by examining a number of properties of these mappings,

including query satisfiability and number of null values generated. MUSE [Alexe et al., 2008]

shows the user examples of data instances translated by the schema mapping to preview the effects

of the mapping on the data; this approach still requires a high level of user involvement. The Spicy

approach [Bonifati et al., 2008] compares the data instances translated by the schema mapping from

the source to the data instances originally in the target; this approach is dependent upon the quality
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of the original target database instance and its inherent similarity to the source data to be mapped,

as well as the existence of detectable correlations between data in the source and target instances.

2.1.4 Model Management

A more abstract approach to data interoperability is model management. The goal of model manage-

ment [Bernstein and Melnik, 2007] is to create generic tools for matching, merging, and translating

schemas created in terms of various heterogeneous data models. These tools involve operations on

specific types of schemas (e.g. relational schemas, XML schemas), rather than particular instances

of schema types.

2.2 Part II: The Semantic Web

2.2.1 The Semantic Web

A significant amount of research is being performed with the goal of making the Semantic Web

vision a reality. In this vision, the Semantic Web is an extension of the World Wide Web in which all

publicly available data is annotated so that any independently designed data source is understandable

to both machines and humans. This would allow the creation of applications that can tap into the

vast data stores on the Web regardless of when or by whom the applications were created. Today’s

Web is highly focused on displaying data, whereas the Semantic Web is focused on easily integrat-

ing and reusing data of any form (including textual data displayed on Web sites). The creation of a

Semantic Web is a substantial, ongoing research effort that draws on knowledge from many disci-

plines, including databases, knowledge representation and reasoning, information retrieval, machine

learning, natural language processing, peer-to-peer networks, Web services, and more. For a thor-

ough overview of this research, see The Semantic Web [Kashyap et al., 2008]. For an overview of

established Semantic Web standards, see the W3C’s Semantic Web website2 or the official Semantic

Web wiki3.

Semantic Annotation of Data

The backbone of the Semantic Web is annotation. Rather than having a common annotation scheme,

data owners can design their own annotation scheme and specify the semantics and vocabulary of

the annotation scheme in a formal, machine-readable manner using an ontology. While there is

no single, universally agreed-upon definition of an ontology, [Noy, 2004] provides the following

summary of the most common definitions:

“...the common thread in these definitions is that an ontology is some formal de-

scription of a domain of discourse, intended for sharing among different applications,

and expressed in a language that can be used for reasoning.”
2http://www.w3.org/2001/sw/
3http://semanticweb.org/
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We describe ontologies based on Description Logics, which we use in this thesis, in more detail in

Chapter 3.

Ontologies are represented using a well-defined knowledge representation language, which de-

termines its expressiveness and the complexity of the reasoning which can be performed on the

ontology. Ontology representation languages are derived from description logic (DL), which con-

sists of decidable subsets of first-order logic (FOL). For an overview of knowledge representation,

see “What is a Knowledge Representation?” [Davis et al., 1993]. For a thorough overview of DL,

see The Description Logic Handbook [Baader et al., 2007]. For a description of the use of DL as

ontology languages, see [Baader et al., 2005]. The standard ontology language for the Semantic

Web is the Web Ontology Language (OWL), which comes in three versions, each of varying ex-

pressiveness: OWL Lite, OWL DL, and OWL Full. In our framework we use OWL DL, a language

equivalent to the description logic language SHOIN (D) [Horrocks and Patel-Schneider, 2004].

For the full specification of OWL, see the W3C OWL Language Reference4.

Reasoning

A fundamental aspect of using ontologies is reasoning on them, that is, inferring new facts about

the ontology and verifying the consistency of statements in the ontology. Although reasoning on

FOL is not decidable in general, there are subsets of FOL (such as OWL DL), on which reasoning

is decidable. For a thorough background to reasoning on knowledge representation languages, see

Knowledge Representation and Reasoning [Brachman and Levesque, 2004].

Reasoners exists for various knowledge representation languages. For some examples of rea-

soners directly related to FOL see [Patel-Schneider, 1990] and [Tsarkov et al., 2004]. Reasoners

for OWL DL include RACER [Haarslev and Möller, 2003], Pellet [Parsia and Sirin, 2004], and

FACT++ [Tsarkov and Horrocks, 2006].

2.2.2 Data Interoperability on the Semantic Web

There is substantial research both in data interoperability using ontologies and in ontology align-

ment, the integration of ontologies. For a discussion of the importance of ontology alignment for

interoperability on the Semantic Web, see [Shahri et al., 2008].

Ontology Alignment

Ontology alignment is the integration or merging of two or more ontologies. There are several

parallels between aligning ontologies and finding schema mappings. Many ontology alignment

approaches use lexical and structural similarity measures. For example, [Ehrig and Sure, 2004] use

neural networks to combine various similarity measures for ontology alignment, and find that this

hybrid approach is superior to using a single similarity measure. A machine learning approach to

4http://www.w3.org/TR/owl-ref/
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ontology alignment is GLUE [Doan et al., 2003, 2002], which classifies instances of concepts in one

ontology using a classifier trained on instances of concepts in another ontology to find overlapping

concepts. Some ontology alignment approaches [Qin et al., 2007, Lei, 2005] focus on creating

executable semantic mappings between ontologies. Zhdanova and Shvaiko [Zhdanova and Shvaiko,

2006] propose a community-driven approach to ontology alignment, so that distributed groups can

both contribute to and reuse mappings between ontologies.

Where ontologies differ from relational schemas is in the possibility of using reasoning to de-

termine semantic compatibility between concepts in the ontologies. (This ability is fundamental to

our mapping verification framework.) Bouquet et al. [Bouquet et al., 2003] approach ontology

alignment from a logical perspective, framing it as a problem of satisfying logical formulae derived

from the ontologies rather than relying on lexical or structural similarities between the ontologies.

They find that this approach performs better than those that rely on lexical and structural similarities

alone. Meilicke et al. [Meilicke et al., 2006] and Udrea et al. [Udrea et al., 2007] debug ontology

mappings by using reasoning to verify their satisfiability, an approach that inspired our own.

For an overview of the state-of-the-art in ontology alignment, see Noy [Noy, 2004], Kalfoglou

and Schorlemmer [Kalfoglou and Schorlemmer, 2003], or Choi et al [Choi et al., 2006].

Ontologies and Data Interoperability

Ontologies have been used in various ways to facilitate data interoperability. Doan and Halevy

[Doan and Halevy, 2004] have written an overview of semantic integration research in the database

community. Aleksovski et al. [Aleksovski et al., 2006] match unstructured vocabulary lists to each

other using an ontology as background knowledge. Embley et al. [Embley et al., 2004, Embley,

2004] use snippets of ontologies in a schema matching tool. Calvanese and DeGiacomo [Calvanese

and De Giacomo, 2005] align a federated database schema to an ontology so that queries against the

databases are made in a language more natural to the user. Giunchiglia and Shvaiko [Giunchiglia

and Shvaiko, 2004] turn schemas into ontology-like hierarchies and reason on them to facilitate

schema matching.

There has also been some work on linking relational databases with ontologies. MapOnto [An

et al., 2005, 2006] semi-automatically annotates relational database schemas with semantic infor-

mation from an ontology. Poggi et al. [Poggi et al., 2008] present a new ontology language and a

language for mapping between database schemas and ontologies. Motik et al. [Motik et al., 2007]

extend OWL with integrity constraints.

2.3 Conclusion

We have presented an overview of data interoperability issues related to both data integration and

data exchange, particularly in the realm of creating schema mapping for data exchange and verifying

these mappings. We also introduced some Semantic Web technologies (ontologies and reasoning)
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intended to facilitate data interoperability on the Web and noted some parallels between traditional

data interoperability issues (finding schema mappings) and newer interoperability issues on the Se-

mantic Web (aligning ontologies). We noted that in ontology alignment, approaches that take ad-

vantage of the ability to reason perform better than those that rely only on structural and lexical

properties; this ability is being integrated into traditional approaches for data interoperability, as in

this thesis.

In the next chapter, we examine ontologies and reasoning in more detail.
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Chapter 3

Ontologies, OWL, and Reasoning

Ontologies are conceptual models that describe some domain of knowledge about the world, often

referred to as the domain of discourse or the universe of discourse, or simply domain. Recall Noy’s

summary of the most common definitions of an ontology [Noy, 2004]:

“...the common thread in these definitions is that an ontology is some formal de-

scription of a domain of discourse, intended for sharing among different applications,

and expressed in a language that can be used for reasoning.”

We consider an ontology to be a classification of real-world concepts into a hierarchical taxon-

omy or a graph of concepts, their properties, and the relationships between them. Essentially, it is a

knowledge base, consisting of a model - a terminology for the domain - and individual instances of

this model.

A key advantage of ontologies as compared to other types of conceptual models (such as UML

or database schemas) is their expressiveness, structure, and readability. They are easy to understand

because they support abstraction, encourage descriptive concept names, and are expressive enough

to allow a large number of details about the domain of discourse to be described.

Ontologies are described using languages that support reasoning. That is, an ontology can be

input into a reasoner, which will check that the ontology contains no contradictory statements and

will perform automatic classification. Automatic classification uses the facts - statements inside the

ontology relating to concepts, properties, and relationships - to derive new facts that may not have

been evident to the ontology designer.

Ontologies are a general construct that can be applied in a variety of situations. Among previous

applications of ontologies are: as knowledge bases for intelligent agents in artificial intelligence; as

taxonomies of biological terminology; and as shared vocabularies in Semantic Web applications. In

addition, there are various types of ontologies. Some, like the Suggested Upper Merged Ontology

(SUMO) [Niles and Pease, 2001], aim to broadly define terms that other ontologies may use. Others

describe small parts of very specific domains.
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Due to the varying needs of each application, many ontology representation languages have been

proposed over the years, each with varying degrees of expressiveness and decidability. These have

included, notably, the Resource Description Framework (RDF)1, DAML+OIL [Horrocks, 2007],

and the Web Ontology Language (OWL)2.

A very expressive language for representing knowledge is First-Order Logic (FOL), but reason-

ing on FOL is not tractable. Thus, a class of languages containing decidable fragments of FOL has

been created; these languages are called Description Logic, or DL, languages.

We have chosen to use one variant of OWL, known as OWL-DL, as the basis for our framework

and the discussion in this chapter. OWL-DL is known to be equivalent to the Description Logic

language SHOIN (D). OWL-DL has an appropriate level of expressiveness for our purposes, yet

is still practical in terms of reasoning costs.

This chapter outlines the basic concepts needed to understand ontology modeling in OWL-DL

as well as the basics of reasoning on ontologies. We do not discuss OWL syntax, but we do explain

the relevant properties and limitations of OWL-DL. To learn about OWL syntax, see Chapter 4 of

A Semantic Web Primer [Antoniou and van Harmelen, 2004]. Throughout this chapter and this

thesis we use standard DL syntax. For more information about this syntax, see Appendix 1 of The

Description Logic Handbook [Baader et al., 2007].

3.1 OWL

The Web Ontology Language (OWL) is the standard language for modeling ontologies on the Se-

mantic Web. There are three versions, each with differing expressiveness. OWL Lite and OWL-DL

are both based on description logics (OWL-DL is more expressive). Both are decidable languages

for reasoning. OWL Full is much more expressive, but not decidable. We use OWL-DL.

3.2 Describing Ontologies in OWL-DL

There are two main parts of an ontology: the TBox and the ABox. The TBox describes the termi-

nology of the domain, what is known as intentional knowledge. It is what describes the general

structure and relationships of the domain. The ABox contains assertions about the domain, what is

known as extensional knowledge. It describes an individual instance of the domain. The relation-

ship between a TBox and and ABox is, in some ways, similar to the relationship between a relational

database schema and an instance of that database.

There are three main components in an ontology: classes, properties, and individuals. Defi-

nitions of classes and properties make up the TBox; definitions of individuals make up the ABox.

Classes are sets of individuals; properties are binary relationships between classes and other classes
1http://www.w3.org/RDF/
2http://www.w3.org/TR/owl-ref/
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(known as object properties) or between classes and values (known as data properties). Properties

can also be applied to individuals.

hasName
hasEmail

Employee

AdministrativeStaffTechnicalStaff

Manager

hasName
Project

hasCountry
Nationality

1..*manages

manages

leads

hasNationality

worksWithisSupervisedBy

reportsTo

ANNE
Instance of: Employee
hasName: Anne
hasEmail: anne@co.com

CANADIAN
Instance of: Nationality
hasCountry: Canada

hasNationality

T-Box

A-Box

TechnicalExpert

≠

isNationalityOf

Figure 3.1: Diagrammatic representation of examples used to explain OWL-DL related concepts in
this chapter

Throughout this chapter, refer to Figure 3.1 for an illustration of the main examples used. Here,

classes are represented by rectangles, their names in bold. Data properties appear in regular-weight

text inside the rectangles. Object properties are represented by dashed-line arrows. Inheritance is

represented by solid-line arrows. Individuals are represented by rounded rectangles inside the ABox.

3.2.1 Concept Classes

OWL-DL classes are models of real-world concepts. The modeled concepts may be concrete (for

instance, the concept of Person), or reified abstract concepts - concepts that are not tangible, such

as a Loan or a Trip.
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We use the terms class and concept interchangeably.

The way a class is described determines what types of individuals can be members of that class.

There are two ways of describing classes: as atomic (or primitive), or as defined. Atomic classes

are declared, and membership in the class is explicitly defined. For instance, in our example we

explicitly declare the concept AdministrativeStaff. Defined classes need necessary and sufficient

conditions for membership. These conditions can be defined by properties, relationships (such as

inheritance or disjointness), or operations (such as u and t) on other classes. For instance, in our

example we define the concept Manager as follows:

Manager ≡ AdministrativeStaff u ≥ 1 manages

That is, a Manager is any member of AdministrativeStaff who manages at least one project. (The

difference between AdministrativeStaff and Manager is a subtle one: AdministrativeStaff con-

tains individuals who can manage Projects, whereas Manager contains individuals who do manage

Projects).

Multiple inheritance is possible in ontologies. For instance, we could define a concept Techni-

calStaff like so:

TechnicalStaff v Employee u TechnicalExpert u ¬ AdministrativeStaff

This declares that all technical staff are both employees and technical experts.

We use the standard naming convention for concepts, which is to capitalize the first letter of

every word and use no spaces, like so: AdministrativeStaff. Note that concepts, properties, and

individuals should all use clear, descriptive names so that they are easily understood by users.

3.2.2 Properties

OWL Properties model real-world binary relationships between concepts and other concepts, or

between concepts and values. Their equivalents in other conceptual models are slots (in frames

[Minsky, 1981]), roles (in general DLs [Baader et al., 2007]), or relations (in UML [Fowler, 2003]).

There are two types of properties: object properties and datatype properties.

Object properties represent relationships between two classes; datatype properties represent re-

lationships between classes and values. The relationship manages in the declaration AdminStaff

manages Project is an object property. The relationship hasName in the declaration Employee

hasName xsd:string is a datatype property.

Properties can have a number of characteristics, all typical of relations. These characteristics

apply to individuals with these properties. The characteristics and examples of them are shown

below:

• Functional: A functional property can only have a single value. For example, suppose we

define a functional property hasNationality with domain Employee and range Nationality.
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Then an instance of Employee can be related to at most one instance of Nationality via the

hasNationality property; in other words, an employee can only have one nationality.

• Inverse functional: An inverse functional property can only be a single value. For example,

suppose we define an inverse functional property isNationalityOf with domain Nationality

and range Employee. isNationalityOf is the inverse property of hasNationality; since has-

Nationality is functional, isNationalityOf must be inverse functional. In this case, if two

instances of isNationalityOf are related to the same instance of an Employee, then the two

instances must be equal. In other words, once again, an employee can have only one nation-

ality.

• Transitive: A transitive property, if applied to a sequence of classes, applies to any two classes

in order. For example, suppose we define a transitive property reportsTo, with domain and

range Employee. Then if employee A reports to employee B, and employee B reports to

employee C, then employee A reports to employee C. Note that a transitive property cannot

be functional.

• Symmetric: Symmetric properties apply to both their domain and range. For example, sup-

pose we define a symmetric property worksWith with domain and range Employee. Then if

employee A works with employee B, then employee B works with employee A.

• Antisymmetric: An antisymmetric property, as the name suggests, is not symmetric. For

example, suppose we define an antisymmetric property reportsTo, with domain and range

Employee. Then if employee A reports to employee B, then employee B cannot report to

employee A.

• Reflexive: Reflexive properties can be applied to their domains. For example, suppose we

define worksWith to be a reflexive property. Then we can say that employee A works with

employee A.

• Irreflexive: Irreflexive properties cannot be applied to their domains. For example, suppose we

define reportsTo to be irreflexive. Then we cannot say that employee A reports to employee

A.

OWL properties can have a domain and a range defined. It is important to note that the domain

and range are not treated the same as integrity constraints by most reasoners. If a property has

domain X and we apply the property to individuals in the concept Y , most reasoners will infer that

Y v X . This is discussed further in Chapter 6.

We use the standard naming convention for properties, which is to use an asymmetric name

(usually prefixed by is or has), use no spaces, and capitalize the first letter of every word except the

first word, like so: hasProjectStartDate.
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3.2.3 Individuals

Individuals are instances of concepts and model individual objects in the universe of discourse.

As with concepts, individuals can model concrete objects (e.g. Anne, an instance of Employee)

or abstract concepts (e.g. Canadian, an instance of Nationality).

All individuals have a unique identifier and are countable. This fact is a key consideration when

deciding whether to model something as an individual or a concept. For example, we choose to

model Employee as a concept because it is likely we will have several instances of Employee

with different characteristics (different names, email addresses, and relationships). Anne is one such

instance. On the other hand, it is unlikely we would need several instances of a concept describing

the nationality “Canadian”. Thus we model it as an instance of the concept Nationality.

We use the standard naming convention for individuals, which is to capitalize the first letter of

every word and use no spaces, like so: JohnSmith.

3.3 Reasoning on Ontologies

Reasoning on ontologies is the automatic classification of individuals, properties, and classes in the

ontology. If we take the set of statements that define the classes, properties, and individuals in the

ontology to be a set of facts about the universe of discourse, then reasoning uses these facts to infer

new facts about the universe. In addition, given a specific statement about the universe of discourse

(written in terms of the ontology), the reasoner can determine whether the statement is entailed by

the ontology, that is, whether it is consistent with the terminology of and facts in the ontology.

The basic standard algorithm for reasoning on FOL languages is called resolution, first intro-

duced in by Robinson [Robinson, 1965]. Resolution takes as input a knowledge base in conjunctive

normal form3 (CNF) and a query, also in CNF. It then uses a refutation procedure to determine

whether the query is entailed by the knowledge base. Refutation procedures work by negating the

query and searching for a contradiction. In resolution, clauses are successively resolved until an

empty clause (the contradiction) is found. Resolution is explained in more detail in Chapter 4 of

Knowledge Representation and Reasoning [Brachman and Levesque, 2004].

An example of resolution, also from Chapter 4 of [Brachman and Levesque, 2004] is shown

in Figure 3.2. Suppose the knowledge base (KB) in Figure 3.2 describes some knowledge about a

person. Thus what is known is that the person is a toddler; if the person is a toddler then the person

is a child; if the person is a child and male then the person is a boy; if the person is an infant then

the person is a child; if the person is a child and female, then the person is a girl; and the person is a

female.

The example shows the steps taken in the resolution procedure to determine whether the person

described by KB is a girl; that is, whether KB |= Girl. For clarity, formulas are written in clausal

3In conjunctive normal form, clauses of disjunctions are joined by conjunctions. E.g. (p ∨ q) ∧ (x ∨ y ∨ z), which can
also be written in clausal form, {[p, q], [x, y, z]}
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CNF form (so that [¬Toddler, Child] is equivalent to saying Toddler ∨ Child). Clauses above the

dotted line are taken from KB or the negated query [¬Girl]; clauses below the dotted line are those

resolved (inferred) by the resolution procedure. Each resolved clause has two solid lines pointing to

its inputs.

KB: 
  (TBox)
  Toddler ⊃ Child 
  Child ⋀ Male ⊃ Boy
  Infant ⊃ Child
  Child ⋀ Female ⊃ Girl

  (ABox)
  Toddler 
  Female 

[Toddler]

[¬Toddler, Child]

[Female]

[¬Child, ¬Female, Girl]

[¬Girl]

[Child]

[¬Female, Girl]

[Girl]

[ ]

negation of
query

Figure 3.2: Example of resolution derivation, from Chapter 4 of [Brachman and Levesque, 2004]

The goal of resolution is to resolve clauses until the empty clause, [ ], is found. In the example,

[ ] is not in KB or the query, so we find two clauses in KB that resolve to a new clause (one not

already in KB). [Toddler] and [¬Toddler, Child] are two such clauses; they resolve to [Child]. This

is because the formula Toddler∧ (¬Toddler∨Child) implies Child. Next, by similar reasoning, we

find that [Child] resolves with [¬Child,¬Female,Girl] to produce the new clause, [¬Female,Girl].

This new clause resolves with [Female] to produce [Girl], which resolves with the negated query,

[¬Girl] to produce the empty clause. Thus [¬Girl] produces a contradiction within KB, so KB entails

[Girl], that is, KB |= [Girl].

Note that this is a very simple example of resolution on FOL. In practise, resolution is more

complicated, and resolution on full FOL is intractable. The resolution procedure has been optimized

in various ways: for instance, a set of inference rules can be set to determine how and in what order

clauses should be resolved. In addition, we can restrict the types of clauses in the knowledge base.

When we do this we are in fact using a different representation language for the knowledge base,

such as OWL-DL.

OWL-DL is not as expressive as full FOL, but reasoning on it is much easier. Reasoners for

OWL-DL generally use a form of tableau reasoning, which was introduced shortly after resolution
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by Smullyan and is explained in First-order Logic [Smullyan, 1995]. Tableau reasoning is a refu-

tation procedure very similar to resolution. In tableaux reasoning, clauses are written in disjunctive

normal form. The clauses are expanded into a tree, where each node of the tree represents a for-

mula, and each branch represents the conjunction of its formulas. The tree is seen as a disjunction of

branches. Tableaux reasoning, like resolution, uses a number of inference rules to find contradictions

in each branch of the tree.

Reasoners can be optimized to work faster for the more common types of queries, often by

changing the inference rules or the order the rules are applied in. Some well-known OWL-DL

reasoners are Pellet [Parsia and Sirin, 2004], RACER [Haarslev and Möller, 2003], and FaCT++

[Tsarkov and Horrocks, 2006].

3.4 Conclusion

In this chapter we described the important concepts related to expressing ontologies in OWL-DL,

and explained what it means to reason on an ontology. In the next chapters, we use these concepts

to lay out a framework for schema mapping verification.
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Chapter 4

The Mapping Verification Problem

This chapter explains what the mapping verification problem is and provides a formal definition of

the problem we address in this thesis.

4.1 An Overview of the Mapping Verification Problem

Mapping verification occurs in the third and last step in the process of finding schema mappings

between a source relational schema S and a target relational schema T . Recall from Figure 1.4

that the first step produces a multimapping M : S → T that matches pairs of elements in S and

T based on lexical, structural, semantic, and statistical properties. The second step turns M into a

set Mexec : S → T = {µ1, ..., µm}, where each µi ∈ Mexec is an executable mapping from S to

T . Mappings in Mexec are ensured to be consistent with the constraints of the schemas (such as

datatype definitions, primary and foreign key constraints, and null value restrictions).

The third step is the mapping verification step, in which the mappings in Mexec are checked for

semantic consistency. We define semantic consistency in Section 4.3.2.

We focus on mappings between relational schemas. A relational schema is a set of relations

r(a), where a is an ordered list of attributes1 a1, ..., an. We say that ai is the attribute of r at

position i. Each attribute ai can be associated with a real-world domain di.

The input to the mapping verification step consists of relational schemas S and T , as well as

the results of the mapping creation step, Mexec. Mexec is a set of executable schema mappings, as

defined below:

DEFINITION 1 (EXECUTABLE SCHEMA MAPPING) Let S and T be relational schemas. An exe-

cutable schema mapping µexec : S → T is a set of queries q of the form:

(∀x)qT(x)← (∃(y))qS(x,y)

where qT is a relation in T and qS is a conjunctive query over relations in S. Note that all variables

that appear in qT must appear in qS .
1Note that relations correspond to tables and attributes correspond to columns in relational databases.

30



We restrict qT to describe exactly one relation for simplicity. In addition, we will use Datalog-

style notation to represent queries, so that quantifiers are implicit. This notation is explained in

Chapter 5.

Our goal in the mapping verification step is to semantically verify each executable schema map-

ping µ ∈ Mexec. Informally, semantically verifying µ involves determining whether the meanings

of the elements in S are compatible with the meanings of the elements in T to which they are mapped

byµ.

4.1.1 Example

To illustrate the mapping verification problem, we revisit an example we introduced in Chapter 1, as

shown in Figure 4.1.

name

Project

techlead
manager

eid
Employee

name
email

pname

Program

supervisor
contact

*
*

S

Ta

b

c

Figure 4.1: An example data exchange scenario, modified from the running example in [Alexe
et al., 2008]. A schema mapping is to be found from schema S to the schema T . Arrows denote
correspondences between the schemas found in the schema matching step.

The figure shows the source schema S and the target schema T . The arrows denote the results

of the matching step of the schema mapping process, the multimapping M : S → T . M consists of

the following pairs:

a: (S.Project.name, T.Program.pname)
b: (S.Employee.name, T.Program.supervisor)
c: (S.Employee.email, T.Program.contact)

The correspondences in M are used to generate possible schema mappings. Clio [Popa et al.,

2002] creates schema mappings by using logical relations to “understand” the correspondences.

Logical relations are groups of one or more relations in a schema that are joined using primary

and foreign key constraints defined in the schema. These logical relations suggest to Clio which

correspondences should be interpreted together.

Based upon the logical relations present in S and T , the list of mappings Mexec : S → T that

a schema mapping generation tool like Clio might find are shown below. Note that, for simplicity,
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we chose an example in which the possible mappings consist of only one query each; in real appli-

cations mappings would consist of more than one query. Also note that we use the Datalog-style

notation here rather than Clio’s notation.

µ1 : q1 : T.Program(x1, x2, x3) ← S.Project(x1, y,−), S.Employee(y, x2, x3)
(Denotes that the supervisor and contact fields in T are filled by the technical leader’s
name and email in S)

µ2 : q2 : T.Program(x1, x2, x3) ← S.Project(x1,−, y), S.Employee(y, x2, x3)
(Denotes that the supervisor and contact fields in T are filled by the manager’s name and
email in S)

µ3 : q3 : T.Program(x1, x2, x3) ← S.Project(x1, y, z), S.Employee(y, x2, x3),
S.Employee(z, x2, x3)

(Denotes that the supervisor and contact fields in T are filled by the technical leader’s
and manager’s name and email in S; two entries in Program are created for each project.)

In order to semantically verify these queries, we must determine whether T.Program.supervisor

refers to the name of the technical leader of a project (S.Project.techlead), or of the man-

ager (S.Project.manager). We must also determine whether T.Program.contact refers

to the email address of the technical leader of a project or of the manager.

In this example, in the source schema S, techleads and managers are disjoint. The designers

of the target schema T intended for supervisor to refer to the administrative leader of a program

(the manager), not the technical leader.

Notice that there is no way to determine this information - the intent of the target schema design-

ers - without using information about the schema elements beyond the schema itself, such as schema

documentation, a knowledge base, clues in the data instances, or the schema designer’s knowledge

about the schema (which requires user intervention).

4.2 Representing Semantics

Before we can formally define the mapping verification problem, it is important to determine how

to find the meaning of schema elements. In other words, we need to find a way to harness the intent

and knowledge the schema designers had when designing the schemas.

We represent knowledge about the domain using a domain ontology. Ontologies were described

in Chapter 3. We now formally define an ontology as follows:

DEFINITION 2 (DOMAIN ONTOLOGY) A domain ontology O is a description of a domain d. O

consists of a set {C,P, I} of concepts C, properties P and individuals I. Every ontology has a

concept Thing ∈ C, which we denote by >, that subsumes all other concepts.

The domain ontology used for mapping verification should describe the same domain as the

schemas being mapped.
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In order to describe the meanings of attributes in a schema using a domain ontology, we use

semantic annotations.

DEFINITION 3 (SEMANTIC ANNOTATION MAPPING) Let r(a), a = a1, ..., an be a relation in a

schema S and O = {C,P, I} be an ontology that partially covers the domain of S. A semantic

annotation mapping for r is a partial function

αr : {1, ..., n} → C

Note that a semantic annotation mapping is a partial mapping, which means that we do not

require that every attribute in a schema be annotated. Thus we do not require O to contain at

least one concept or property that corresponds to every attribute in the schema; however, the more

corresponding concepts and properties thatO contains, the more meaningful the semantic annotation

mapping can be.

DEFINITION 4 (SEMANTIC ANNOTATION) Let S = {r1, ..., rk} be a relational schema with k re-

lations, such that each ri has a semantic annotation mapping αri . We call a set

αS = {αr1 , ..., αrk
}

a semantic annotation for S.

TechStaff

hasName
hasEmail

Employee

ThingO

≠ AdminStaff hasName
Project

hasLeader

hasManager

Figure 4.2: A sample ontology

Suppose we have an ontology O, like the one shown in Figure 4.2. A semantic annotation αS for

the schema S described in Figure 4.1 might look like the following:
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αProject : {2→ TechStaff, 3→ AdminStaff}
αEmployee : {1→ Employee, 2→ Employee, 3→ Employee}

A semantic annotation αT for the schema T described in Figure 4.1 might look like the follow-

ing:

αProgram : {2→ AdminStaff, 3→ AdminStaff}

Notice how much background information is contained in these semantic annotations. The on-

tologyO in Figure 4.2 describes the domain of S and T . It states that technical staff (TechStaff) and

administrative staff (AdminStaff) are both a type of Employee, and that TechStaff and AdminStaff

are disjoint concepts.

The semantic annotation for S (αS) tells us that the Employee relation corresponds exactly

to the Employee concept in O; in the Project relation, techlead corresponds to the concept

TechStaff and manager corresponds to the concept AdminStaff; and from the information con-

tained in O we know that a techlead cannot be a manager and vice versa because TechLead

and AdminStaff are disjoint.

The semantic annotation for T (αT ) clarifies that supervisor and contact are associated

with the AdminStaff concept, which means they do not refer to the TechStaff concept. Thus αT

captures the intent behind T ’s schema designers’ attribute labeling choices.

Notice also the flexibility of semantic annotations: although our ontology has a concept Project

that corresponds to the S.Project and T.Program relations, it is not necessary to express this

fact in the annotations.

4.3 Semantic Consistency of Schema Mappings

We use the notion of semantic consistency of a schema mapping to semantically verify a mapping.

For a mapping to be semantically consistent, the concepts associated with variables on the left hand

side of the mapping must match those associated with the same variables on the right hand side. The

definitions below explain this concept more precisely.

4.3.1 Associated Concepts

DEFINITION 5 (γr(v, j)) Let r (a), a = a1, ..., an be a subgoal in a conjunctive query in which the

variable v appears. The concept associated with v in r at position j is

γr(v, j) =

{
α r(j) if αr(j) is defined
> otherwise

DEFINITION 6 (γr(v)) Now let j1, ..., jk be all positions in r where v appears. The concept asso-
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ciated with v in r is:

γr(v) =

{
γ r(v, j1) u ... u γr(v, jk) if v appears in r
> otherwise

Accounting for Key Constraints

In the example in Section 4.1.1, S.Employee.eid is a primary key for S.Employee.name and

S.Employee.email. Suppose we have the semantic annotation αS defined at the end of Section

4.2, and suppose we have a conjunctive query:

q : S.Project(x1, y,−), S.Employee(y, x2, x3)

Consider the variable x2, which refers to the attribute S.Employee.name. αEmployee associates

this attribute with the concept Employee. However, we can see that x2 actually refers to the name

of a technical leader. This is because the primary key for x2 in Employee is Employee.eid,

represented by y, and y also represents Project.techlead in q1. Project.techlead is

associated with the concept TechStaff. Thus x2 should be associated with the concept Employee

u TechStaff.

We take key constraints into account when determining the concept associated with a variable in

a query.

DEFINITION 7 ( δr(j) ) Let r (a), a = a1, ..., an be a relation, and ai1 , ..., aik
→ aj be a primary

key constraint over a. The key constraint set of position j in r, δr(j), is the set {i1, ..., ik}

DEFINITION 8 ( ∆r(v) ) Let qX be a conjunctive query over a schema X and let r (v), v =

v1, ..., vn be a subgoal in qX . Let v be a variable in qX that appears in position i in r (v). The key

constraint set of v in r, ∆r(v), is the set of variables {u1, ..., uk} such that:

• uj is a variable in qX at position j in r (v).

• j ∈ δr(i)

For example, for the query q, ∆Employee(x2) = {y} because y refers to Employee.eid, the

primary key of Employee.

Associated Concepts in Queries

We extend our previous definitions of concepts associated with variables in relations to conjunctive

queries, taking into account key constraints.

DEFINITION 9 (Γq(v)) Let q = r1(a1), ..., rk(ak) be a conjunctive query in which the variable v

appears. The concept associated with v in q , Γq(v) is defined as:

Γq(v) = γ′r1
(v) u ... u γ′rk

(v)
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where

γ′ri
(v) = γri

(v) u
l

u∈∆ri
(v)

Γq(u)

For example, using the query q and semantic annotation αS , we can define the following associated

concepts for the variables y and x2:

Γq(y) = γProject(y) u γEmployee(y) = TechStaff u Employee

(Note that ∆Project(y) = ∆Employee(y) = ∅, so its associated concept in q is simply a

conjunction of its associated concepts in the two relations in which it appears.)

γEmployee(x2) = γEmployee(x2, 2) = Employee

(This is because the semantic annotation mapping αEmployee states that the attribute

in position 2 of Employee, Employee.name, is associated with the concept Em-

ployee.)

Γq(x2) = γEmployee(x2) u Γq(y) = Employee u (TechStaff u Employee)

(Note that ∆Employee(x2) = y because Employee.eid is the primary key for Employee).

4.3.2 Semantic Consistency

DEFINITION 10 (SEMANTIC CONSISTENCY OF VARIABLES) Let q : qT ← qS be a query in a

mapping from a source schema S to a target schema T , and let αS and αT be their semantic

annotations with respect to an ontology O. If the concept associated with a variable v in qS is

ΓqS
(v) and the concept associated with v in qT is ΓqT

(v) then q states that:

O |= ΓqS
(v) v ΓqT

(v) (4.1)

We say that v in q is consistent with the semantics of S and T with respect to O if and only if

statement 4.1 is true.

DEFINITION 11 (SEMANTIC CONSISTENCY OF QUERIES) We say that q is consistent with the se-

mantics of S and T with respect to O if ∀v ∈ q, v in q is consistent with the semantics of S and T

with respect to O.

DEFINITION 12 (SEMANTIC CONSISTENCY OF SCHEMA MAPPINGS) Let µ : S → T be a schema

mapping and O be a domain ontology. We say that µ is consistent with the semantics of S and T

with respect to O if ∀q ∈ µ, q is consistent with the semantics of S and T with respect to O.
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4.4 A Formal Definition of the Mapping Verification Problem

Given the above definitions, we can now formally define the mapping verification problem when

knowledge is represented using a domain ontology. Suppose we have

• Two relational schemas S and T ;

• An ontology O that partially covers the domain of S ∪ T ;

• A semantic annotation of S in terms of O, αS ;

• A semantic annotation of T in terms of O, αT ; and

• An executable mapping from S to T , µ : S → T .

The mapping verification problem for µ is to determine whether µ is consistent with the seman-

tics of T .

4.5 Conclusion

In this chapter we formally defined the concepts related to mapping verification, then used these to

formally define the mapping verification problem. In the next chapter, we present a framework and

its algorithms for solving the mapping verification problem.
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Chapter 5

A Framework for Mapping
Verification

We now present our framework for mapping verification and describe two algorithms: our main

algorithm for verifying the semantic consistency of schema mappings, and one for finding concepts

associated with variables in a query based on semantic annotation mappings. We also discuss a

method for obtaining semantic annotations semi-automatically.

5.1 Our Framework

Figure 5.1 shows an overview of our mapping verification framework.

5.1.1 Input

As input, the framework takes two relational schemas1 S and T , a domain ontology O, a reasoner

R compatible with O, a set of semantic annotation mappings from S to O, αS , a set of semantic

annotation mappings from T toO, αT , as well as a single executable mapping µexec : S → T (a set

of conjunctive queries of the form q : qT ← qS).

Given a list of executable mappings Mexec : S → T (the output from the second step of the

process of finding schema mappings - see Figure 1.4 for a general overview of this process) our

framework is applied to each executable mapping in turn.

5.1.2 Checking Semantic Consistency of a Schema Mapping

Our framework checks the semantic consistency of the mapping by checking the semantic consis-

tency of each query in the mapping with respect toO. This process is outlined in our main mapping

verification algorithm, Algorithm 1. We break each query q into two parts: the head qT and the body

qS . We then use an algorithm (Algorithm 3) to find ΓqS
and ΓqT

, the concepts associated with the

variables in qT and qS based on the semantic annotation mappings we were given.

1We use only the schemas, not the data present in the databases.
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INPUT

OαS αT

S T
μexec: S → T

Reasoner

CHECK CONSISTENCY OF EACH QUERY IN THE SCHEMA MAPPING

GENERATE Z: LIST 
OF STATEMENTS 

AGAINST O 

FIND CONCEPTS 
ASSOCIATED WITH 

VARIABLES IN q

q is inconsistent 
with the semantics 
of S and T  w.r.t. O

For each query q: qT ← qS in μexec 

q is consistent 
with the semantics 
of S and T  w.r.t. O

CHECK CONSISTENCY OF STATEMENTS

Reasoner

O ⊨ zO  O ⊭zO  

O , zO

For each zO in Z: 

¬(O ⊨ zO for all zO in Z ) O ⊨ zO for all zO in Z  

μexec is consistent with the 
semantics of S and T  w.r.t. O

μexec is inconsistent with the 
semantics of S and T  w.r.t. O

For all q in μexec , q is consistent with the 
semantics of S and T  w.r.t. O

¬(For all q in μexec , q is consistent with the 
semantics of S and T  w.r.t. O)

Figure 5.1: Our mapping verification framework

Using ΓqS
and ΓqT

, we rewrite q as a list of statements written in terms of the ontology (see

Algorithm 2). In essence, if a1 in S is associated with a concept C1 in O, a2 in T is associated with

a concept C2 in O, and q maps a1 into a2, then q implies that the statement C1 v C2 is satisfied

in O. Intuitively, data under a1 is a “kind” of C1, and data under a2 is a “kind” of C2; because q

moves data from a1 to a2, it implies that a2 accepts data of kind C1, so C1 must be a kind of C2.

Our framework uses a reasoner to verify the validity of these statements. If all the statements

are satisfied in O, then we say that q is consistent with the semantics of S and T with respect to O.

Otherwise, we say it is inconsistent.

Similarly, µexec is consistent with the semantics of S and T with respect toO if and only if each

query q in µexec is consistent with the semantics of S and T with respect to O.

The schema mapping designer uses this information to choose a final, executable mapping
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µexec : S → T , which can be used to transfer the data from the source database S to the target

database T .

5.1.3 Representation and Notation

S and T are relational schemas and we assume they will be input expressed in standard SQL nota-

tion. However, when we refer to relations inside our framework (for example in queries or semantic

annotation mappings), we represent them in the form r (a), that is, the relation name followed by an

ordered list of attributes, for example: Project(pname, techlead, manager).

The ontology O was formally defined by Definition 2 in Chapter 4. We assume O is defined

using OWL-DL, which was explained in Chapter 3.

The semantic annotation mappings between the schemas and the ontology are written as a set

of partial mappings, one for each relation in the schema. Positions of attributes in the relation

are mapped to concepts in the ontology. Note that, because this is a partial mapping, not every

position needs to be mapped to a concept. A sample semantic annotation mapping, from our running

example, can be expressed as follows:

αProject : {2→ TechStaff, 3→ AdminStaff}

αProject maps the attribute at position 2 of Project, techlead, to the concept TechStaff in

the ontology. This suggests that the meaning of techlead is most closely related to the meaning

of the concept TechStaff. αProject maps the attribute at position 3, manager, to the concept Ad-

minStaff. This suggests that the meaning of manager is most closely associated with the meaning

of the concept AdminStaff. The attribute at position 1, name, is not mapped at all. This suggests

that its meaning is unknown or deemed unnecessary to specify.

The mapping µ is a set of queries, each of which is also expressed as a Datalog-style query,

q : qT ← qS , where qT is a conjunctive query over T and qS is a conjunctive query over S. qT

contains a single relation r in T , where each attribute in r is represented by a unique variable name.

If a variable v represents an attribute in the relation r in qT , we say that v occurs in qT .

qS contains a conjunction of relations in S, where each attribute in each relation in qS is rep-

resented by a variable - either a variable that occurs in qT , or some other unique variable, often

representing a join or data that is not moved. Note that q must meet the safety condition for Datalog

- that is, each variable that occurs in qT must occur in qS .

An example query that could be made over our running example is one that maps technical lead-

ers (techlead) in S to supervisors and contacts in T , as follows:

q: T.Program(x1, x2, x3) ← S.Project(x1, y, z), S.Employee(y, x2, x3)
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5.1.4 Example

To illustrate how our framework runs, let us introduce an expanded version of our running exam-

ple. Figure 5.2 shows our example schemas semantically annotated using a domain ontology. The

semantic annotations of S and T are represented by dotted lines.

TechStaff

hasName
hasEmail

Employee

ThingO

≠ AdminStaff hasName
Project

hasLeader

hasManager

name

Project

techlead
manager

eid
Employee

name
email

pname

Program

supervisor
contact

*
*

T

S

Figure 5.2: Our example schema mapping scenario, now annotated with an ontology

Let us describe the input to our framework from this example. We begin with the source schema

S, with two relations Project and Employee; and the target schema T , with a single relation

Program. These relations are represented in standard SQL notation, but when used in queries or

semantic annotation mappings, we write them in the form:

S.Project(name, techlead, manager)

S.Employee(eid, name, email)

T .Program(pname, supervisor, contact)

Note that the order of attributes is important, so the attribute techlead is known as the attribute

in position 2 of the relation Project.

The next input is an ontology O. O contains a concept Employee with two data properties,
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hasName and hasEmail, and two disjoint children TechStaff and AdminStaff. O also contains

the universal concept Thing (denoted >), which subsumes all other concepts in O. For the sake of

clarity we use a UML-style notation to display the ontology in Figure 5.2. Concept names are at the

top of the boxes, data properties are below concept names, and object properties are the relationships

between concepts.

Next we input a semantic annotation αS for S and a semantic annotation αT for T . Notice once

again that semantic annotation mappings are partial, so not all attributes are annotated.

αS consists of two semantic annotation mappings: αProject and αEmployee. These are repre-

sented as follows:

αProject : {2→ TechStaff, 3→ AdminStaff}
αEmployee : {1→ Employee, 2→ Employee, 3→ Employee}

αT consists of one semantic annotation mapping, αProgram, which looks like the following:

αProgram : {2→ AdminStaff, 3→ AdminStaff}

We are also given two executable mappings from S to T :
µ1 : q1: T.Program(x1, x2, x3) ← S.Project(x1, y, z), S.Employee(y, x2, x3)
µ2 : q: T.Program(x1, x2, x3) ← S.Project(x1, y, z), S.Employee(z, x2, x3)

Let us show how our framework verifies µ1, which is denoted by the solid arrows in Figure 5.2.

µ1 has only one query, q1. This query maps the name and email of techlead in Project

into the supervisor and contact attributes of Program. To verify µ1, our framework will

determine whether or not q1 is consistent with the semantics of S and T with respect to O.

The first step for our framework is to find the concepts associated with the variables in the head and

body of q. This is done using Algorithm 3, and results in the following:

ΓqS(x1) = > ΓqT (x1) = >
ΓqS(x2) = Employee u TechStaff ΓqT (x2) = AdminStaff
ΓqS(x3) = Employee u TechStaff ΓqT (x3) = AdminStaff
ΓqS(y) = Employee u TechStaff
ΓqS(z) = AdminStaff

The next step is to use Algorithm 2 to rewrite our query q1 in terms of these associated concepts.

One statement is created for each variable v in qT , and each is of the form ΓqS
(v) v ΓqT

(v). For

our example, the statements generated are:

x1 : > v >
x2 : Employee u TechStaff v AdminStaff
x3 : Employee u TechStaff v AdminStaff

42



The first statement, > v > is discarded immediately by Algorithm 2 because it is trivial - it will

always be satisfied by O.

The remaining two statements are returned by Algorithm 2. At this point, the reasoner is called

to check whether the statements for x2 and x3 are satisfied by O. When the reasoner checks the

statement Employee u TechStaffv AdminStaff, it finds that it is not satisfied byO; this is because

the statement is equivalent to the statement TechStaff v AdminStaff, which is false because in O,

TechStaff and AdminStaff are specified to be disjoint.

Thus we see that q1 is not consistent with the semantics of S and T with respect toO. Essentially,

q1 is trying to map technical leaders in S to supervisors in T , but the semantic annotation for T

clearly specifies that supervisors are administrative staff, not technical staff.

Based on this result, our framework concludes that µ1 is not consistent with the semantics of S

and T with respect to O.

Now let us show how our framework verifies µ2. µ2 also has only one query, q2. This query maps

the name and email of manager in Project into the supervisor and contact attributes

of Program. To verify µ2, our framework will determine whether or not q2 is consistent with the

semantics of S and T with respect to O.

Once again, the first step is to find the concepts associated with the variables in the head and

body of q. This is done using Algorithm 3, and results in the following:

ΓqS(x1) = > ΓqT (x1) = >
ΓqS(x2) = Employee u AdminStaff ΓqT (x2) = AdminStaff
ΓqS(x3) = Employee u AdminStaff ΓqT (x3) = AdminStaff
ΓqS(y) = TechStaff
ΓqS(z) = Employee u AdminStaff

The next step is to use Algorithm 2 to rewrite q2 in terms of these associated concepts. One statement

is created for each variable v in qT , and each is of the form ΓqS
(v) v ΓqT

(v). For our example, the

statements generated are:

x1 : > v >
x2 : Employee u AdminStaff v AdminStaff
x3 : Employee u AdminStaff v AdminStaff

The first statement, > v > is discarded immediately by Algorithm 2 because it is trivial - it will

always be satisfied by O.

The remaining two statements are returned by Algorithm 2. At this point, the reasoner is called to

check whether the statements for x2 and x3 are satisfied by O. When the reasoner checks the state-

ment for x2, Employee u AdminStaff v AdminStaff, it finds that it is equivalent to the statement

AdminStaff v AdminStaff because AdminStaff v Employee. Thus it finds that the statement is

satisfied by O. The statement for x3 is identical.
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Since all of the generated statements are satisifed by O, we say that q2 is consistent with the

semantics of S and T with respect to O.

This makes sense because q2 maps managers in S to supervisors in T , and the intended meaning

of supervisor is to denote administrative staff such as managers.

Based on this result, our framework concludes that µ2 is consistent with the semantics of S and

T with respect to O.

5.2 Algorithms

We now present the algorithms used in our framework. In the Section 5.2.1 we describe two algo-

rithms used to check the semantic consistency of a single mapping from a source schema to a target

schema; in Section 5.2.2 we describe how we find concepts associated with variables in a query.

5.2.1 Mapping Verification Algorithm

Algorithm 1: SemanticallyVerifySchemaMapping

input: Ontology O, source schema S, target schema T , semantic annotation αS , semantic
annotation αT , mapping µ : S → T , reasoner R

output: true if µ is consistent with the semantics of S and T with respect to O, false
otherwise

local map ΓqS
, map ΓqT

, list Z , boolean isConsistent
isConsistent := true

foreach query q : qT ← qS in µ do
Z , ΓqS

, ΓqT
:= ∅

Let VT be the set of variables occurring in qT
foreach variable v ∈ VT do

ΓqT
(v) := FindAssociatedConceptsInQuery (v, qT , αT )

end

Let VS be the set of variables occurring in qS
foreach variable v ∈ VS do

ΓqS
(v) := FindAssociatedConceptsInQuery (v, qS , αS)

end

Z := GenerateVerificationStatements (ΓqS
, ΓqT

)
foreach statement z in Z do

isConsistent := R.CheckConsistency (z, O) ∧ isConsistent
end

end
return isConsistent

Algorithm 1 is our main algorithm for semantically verifying a schema mapping from a source

schema S to a target schema T using semantic annotations αS and αT in terms of an ontology O

and a reasoner R.

The goal of this algorithm is to semantically verify the mapping µ; in other words, to check

whether µ is consistent with the semantics of S and T with respect to O. Recall that µ is a set of
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queries which map a conjunctive query of relations in S to individual relations in T . A mapping is

semantically verified if all queries inside it are semantically verified; thus Algorithm 1 verifies each

query individually.

To semantically verify a query q : qT ← qS , the algorithm checks that the concepts associated

with the variables in qT (the head of q) subsume the concepts associated with the variables in qS

(the body of q).

We first find ΓqT
, a map that associates concepts in O with variables in qT , and ΓqS

, a map that

associates concepts in O with variables in qS . The procedure for finding these concepts makes use

of the semantic annotations for S and T , and is outlined in Section 5.2.2. Recall that a conjunction

of concepts is also a concept; thus, each variable may be mapped to a concept or a conjunction of

concepts in O. Since semantic annotation mappings are only partial mappings, some variables may

not be associated with a specific concept; in this case we assume they are associated with >, the

universal concept that subsumes all other concepts.

Now that we have ΓqT
and ΓqS

, we essentially know the assigned meaning of each attribute a in

S and T . The next step is to check that, if q maps an attribute aS in S to an attribute aT in T , that

the meanings of aS and aT are compatible.

To do this, Algorithm 1 uses Algorithm 2 to check whether ΓqT
and ΓqS

associate the exact

same concepts with the same variables and, in those cases where they do not, to generate a list of

verification statements of the form ΓqS
(v) v ΓqT

(v).

Algorithm 1 then inputs these statements to a reasoner, which checks whether they are satisfied

by the ontology O. (Reasoning is explained in Chapter 3.) If any of the statements is not satisfied,

this indicates that the meanings of the attributes represented by v are incompatible, thus the query is

not consistent with the semantics of S and T with respect to O, and neither is the mapping µ.

The algorithm returns a boolean variable isConsistent. If isConsistent is true, then µ is consistent

with the semantics of S and T with respect to O; otherwise it is not.

Algorithm 2: GenerateVerificationStatements
input: map ΓqS

, map ΓqT

output: list of statements Z
local list Z := ∅
foreach variable v in ΓqT

where ΓqT
(v) 6= > do

if ΓqT
(v) 6= ΓqS

(v) then
z := ΓqS

(v) v ΓqT
(v)

add z to Z
end

end
return Z

Algorithm 2 uses the two maps ΓqS
and ΓqT

to generate a list of statements about the concepts

that are implied by the query q. Essentially, we want to rewrite the original query as a list of

statements in terms of the concepts associated with its variables. Since q maps variables in S into
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variables in T and not vice versa, each statement is of the form ΓqS
(v) v ΓqT

(v); that is, q implies

that the attribute referred to by v in S has a meaning that is subsumed by the meaning of the attribute

referred to by v in T .

The algorithm iterates over all variables in ΓqT
. This is because all variables in ΓqT

must occur

in ΓqS
(based on the safety condition of Datalog, as discussed earlier).

For each variable v in ΓqT
, the goal of Algorithm 2 is to generate a statement that is not trivial

and must be checked by a reasoner to see if it is satisfied by the ontology O. We consider trivial

statements to be of the form A v A or A v >; these will always be satisfied by O.

In order to avoid trivial statements of the form A v >, we ignore all variables v in ΓqT
such that

ΓqT
(v) = >.

In order to avoid trivial statements of the form A v A, we ignore all variables v in ΓqT
such

that ΓqT
(v) = ΓqS

(v). Equality is determined using string matching. Note that it is possible for

concepts to be ordered differently; this should be accounted for when string matching. For example,

A u B is equivalent to B u A

This leaves us with non-trivial statements of the form ΓqS
(v) v ΓqT

(v), where ΓqT
(v) 6= ΓqS

(v) and ΓqT
(v) 6= >. Such a statement asserts that the concept associated with v in qT subsumes

the concept associated with v in qS . If O satisfies this statement, then v in q is consistent with the

semantics of S and T with respect to O.

The satisfiability of non-trivial statements must be checked using a reasoner; thus the non-trivial

statements are compiled into a list that is output by Algorithm 2.

5.2.2 Finding Associated Concepts

Finding the concepts associated with a variable is a key part of our framework. Associated concepts

are used to populate the maps ΓqS
and ΓqT

in Algorithm 1, which are then used to generate the

statements about the implied meanings of queries that are checked by a reasoner to perform semantic

verification.

Concepts associated with a variable in a query differ from the semantic annotation mappings

in that semantic annotation mappings map specific attributes of relations to concepts, whereas con-

cepts associated with a variable take into account all occurrences of the same variable throughout

multiple relations in a query. Algorithm 3 uses the semantic annotation mapping to find the concepts

associated with a variable in a query.

Algorithm 3 takes as input: the variable v for which an associated concept is to be found; a

conjunctive query qX , which is a conjunction of relations, or subgoals, in a schemaX (in the context

of our main algorithm, Algorithm 1, this will be either qT or qS from the query q : qT ← qS); and

the semantic annotation of schema X , αX . The algorithm returns ΓqX
(v), the concept associated

with v in qX , based on the semantic annotation αX .

We begin by setting ΓqX
(v) to be the universal concept >. This is the default meaning of a

46



Algorithm 3: FindAssociatedConceptsInQuery

input: Variable v, conjunctive query qX , and semantic annotation αX .
output: ΓqX

(v), the concept associated with v in qX
ΓqX

(v) := >
foreach subgoal r(v) ∈ qX do

Let j1, ..., jk be the positions where v appears in r(v)
foreach j ∈ j1, ..., jk do

ΓqX
(v) := ΓqX

(v) u αr(j)
end
if ∆r(v) 6= ∅ then

foreach u ∈ ∆r(v) do
ΓqX

(v) = ΓqX
(v)u FindAssociatedConceptsInQuery (u, qX , αX )

end
end

end
return ΓqX

(v)

variable if αX does not assign a concept to it. Note that > u A ≡ A, since A v > for all concepts A

in an ontology.

The algorithm iterates over each subgoal r(v) in qX 2. For each subgoal, it does two things: one

is to find the concepts associated with v in each position in r in which v appears (γr(v, j)); the other

is to find the concepts associated with the variables in the key constraint set of v in r, ∆r(v), using

a recursive call.

The end result, ΓqX
(v), is a conjunction of all concepts associated with v in all positions and in

all relations in which v occurs, and all concepts associated with ∆r(v) for all relations r in which v

occurs.

Iterating Over Positions of r

When we iterate over the positions it is because the semantic annotation mappings assign concepts

to individual positions of relations. At each position j we find αr(j), the concept mapped to position

j of the subgoal, and add it to the existing concept associated with v with the u operator.

The Key Constraint Set of v

The next step is to find the concepts associated with all of the variables in the key constraint set of

v. This occurs when aj is part of a relation that has a primary key, and is especially important when

the variable representing that primary key occurs in other relations in qX .

To illustrate, we return to an example that was introduced in Section 4.3.1. Suppose we have

input into Algorithm 3 the following query from our running example:

qS : S.Project(x1, y,−), S.Employee(y, x2, x3)

2Note that if we have a query q : qT ← qS and pass qT as an argument, there will only be one subgoal.
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And suppose we have these semantic annotation mappings for S:

αProject : {2→ TechStaff, 3→ AdminStaff}

αEmployee : {1→ Employee, 2→ Employee, 3→ Employee}

Now suppose we want to find the concept associated with the variable x2 in qS . For the subgoal

Employee, the loop on positions would find that ΓqX
(x2) = Employee. This is because the

attribute at position 2 in Employee is annotated with the concept Employee using αEmployee.

However, the variable y is in the key constraint set of x2, ∆Employee(x2); it is the primary key for

Employee. In addition, y occurs in another relation in qS , Project, so that qS joins the attribute

at position 2 in Project, techlead, with the Employee relation. Essentially, qS is saying that

Project.techlead refers directly to the subgoal Employee with y as its primary key. Thus

the meaning of x2 is dependent upon the meaning of Project.techlead; in fact, its meaning is

dependent upon the meanings of all attributes represented by y in qS .

Thus Algorithm 3 finds the concepts associated with y (the only member of ∆Employee(x2)) and

appends them to ΓqS(x2) using the u operator.

The result is that ΓqS(x2) = Employee u TechStaff.

5.3 Obtaining Semantic Annotations

Semantic annotations can be seen as correspondences between individual attributes in a schema and

concepts in an ontology. While they could be chosen manually by a schema mapping designer, we

envision them being derived from a set of alignments created semi-automatically by a tool such as

MapOnto [An et al., 2005].

In MapOnto, an alignment between a relational schema and an ontology is a set of local-as-view

(LAV) mappings of the form r(x)→ ∃yφ(x,y), where r is a relation, x is the set of attributes in r,

y is a set of variables, and is a conjunctive formula over the ontology.

For example, possible alignments for the source and target schemas S and T in our running

example are:
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S.Project(name, techlead,manager) → ∃p, O:Project(p),
O:hasName(p, name),
O:TechStaff(techlead),
O:hasLeader(p, techlead),
O:AdminStaff(manager),
O:hasManager(p, manager)

S.Employee(eid, name, email) → O:Employee(eid),
O:hasName(eid, name),
O:hasEmail(eid, email)

T.Program(pname, supervisor, contact) → ∃p, e, O:Project(p),
O:AdminStaff(e),
O:hasName(p, pname),
O:hasName(e, supervisor),
O:hasEmail(e, contact)

Algorithm 4: AlignmentToSemanticAnnotation

input: Alignment r(x)→ ∃yφ(x,y)
output: Semantic annotation αr

local map αr

Let n be the number of attributes in x.
foreach i : 1..n do

Let xi ∈ x be the attribute at position i in r(x)
αr(i) = >
foreach predicate O:C(xi) in φ do

αr(i) := αr(i)u O:C
end
foreach predicate O:p(u, xi) in φ, where p is a data property do

foreach predicate O:C(u) do
αr(i) := αr(i)u O:C

end
end

end
return αr

Our algorithm for transforming alignments into semantic annotations is Algorithm 4. This algo-

rithm takes as input an alignment for a relation r and returns a semantic annotation for that relation,

αr.

Algorithm 4 iterates over each attribute x in r and searches for predicates describing x on the

right hand side of the alignment. For those predicates that describe x as a concept (e.g. Tech-

Staff(x)), the concept is added to the contents of αr using a conjunction. For those predicates that

describe x as the value of a data property for some concept (e.g. hasName(e, x)), the concepts

associated with the variable in the domain of that data property are added to the contents of αr using

a conjunction.
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Note that it does not make sense for an attribute to be described as both the value of a data

property and a concept itself (although it can be the value of an object property and a concept)

For example, the alignment for S.Project shown above would result in the following seman-

tic annotation:

αProject: {1→ Project, 2→ TechStaff, 3→ AdminStaff}

The first attribute, name, becomes annotated with the concept Project because in the alignment

we have the predicate O:hasName(p, name), which states that name is the value of the data

property hasName for p; furthermore, based on the predicate O:Project(p) in the alignment, we

can say that p is annotated with the concept Project.

The second attribute, techlead, becomes annotated with the concept TechStaff because in

the alignment we have the predicate O:TechStaff(techlead). Although techlead also occurs

in another predicate,O:hasLeader(p, techlead), we disregard this predicate because it describes

an object property rather than a data property.

Similarly, the second attribute, manager, becomes annotated with the concept AdminStaff

because in the alignment we have the predicate O:AdminStaff(manager).

5.4 Conclusion

This chapter explained the framework we use for mapping verification, which involves finding the

concepts associated with attributes in source and target schemas based on semantic annotation,

rewriting queries in a mapping as statements in terms of these associated concepts, then using a

reasoner to check these statements for satisfiability by the ontology used. We presented two main

algorithms: one for verifying a mapping, and one for finding concepts associated with variables in a

query based on a semantic annotation.

The next chapter provides a discussion of this framework and the algorithms.
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Chapter 6

Discussion

This chapter provides a discussion of the feasibility of using our framework as a solution to the

mapping verification problem.

6.1 Context

This framework was designed in the context of the Semantic Web and critical data integration set-

tings.

This framework was designed with the Semantic Web in mind. That is, the degree of its fea-

sibility is partially dependent upon the availability of certain Semantic Web technologies: domain-

specific ontologies and reasoners. It is still unclear to what degree this vision will become a reality,

but the Semantic Web research community is an active one. However, both ontologies and reasoners

are already well-defined and available in mature forms, though they are not in widespread use.

In addition, our framework is meant for critical data exchange settings rather than casual ones.

In the casual setting, the steps needed to obtain the inputs to our framework - finding a suitable

ontology, creating semantic annotations, and creating proposed schema mappings - would likely

take longer than mapping a small database schema by hand. In addition, in such settings, failure to

map the data correctly is not catastrophic, so mapping verification is not as important.

However, in the critical setting, we argue that the added cost of using our framework - finding an

ontology and creating semantic annotations - is not unreasonable, particularly in a scenario in which

ontologies are widely available and the same schemas are likely to be involved in data exchange

more than once. In such a setting it is expected that the data exchange will take a long time to

complete, that a schema mapping generation tool such as Clio [Miller et al., 2001b] will be used,

and that the data will be mapped accurately.

It is with this critical data integration scenario in mind that we frame the following discussion.
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6.2 Ontologies and Semantic Annotations

Ontologies were a natural choice for our framework because, in the context of the Semantic Web,

they are being used to provide a shared vocabulary for heterogeneous data sources. Using ontologies

and semantic annotations, our solution provides a formal way to express the semantics of schemas

so that they are both machine-readable and human-understandable.

6.2.1 Advantages of Ontologies

With semantic annotations, ontologies become a single point of reference for the vocabulary of the

domain of the source and target schemas. In the context of our framework, this means that there is

no longer any need for the schema mapping designer to be an expert on both schemas. Normally,

when the schema mapping designer is verifying schema mappings by hand, he must first take the

time to understand both schemas in detail. Using our framework, the semantic annotation and the

ontology provide a translation of the schema elements in terms of the vocabulary of the ontology.

Thus, not only is the bulk of the mapping verification done automatically, but understanding the

schemas is also made easier.

There are several advantages to using ontologies to provide a terminology for multiple relational

schemas.

First, the language ontologies are expressed in is understandable to both humans and machines.

Ontologies are expressed formally in a language suitable for automatic reasoning. However, this for-

mal language does not preclude the use of an arbitrary natural vocabulary to describe concepts and

relationships, making ontologies understandable to humans as well (for example, statements that can

be formally expressed in an ontology include TechnicalStaff isA Employee, or Employee has-

Name personName). This is in contrast to relational schemas, whose attributes and relations are

often given short names that are not meaningful. Relational schemas are also generally normalized

for query efficiency, which makes them even less readable to humans.

Another advantage of ontologies is that their level of expressiveness is high enough that they

have great potential for reuse in various applications and over many different schemas. Ontologies

can define detailed classes of objects and rich relationships between these classes. They are more

expressive than relational schemas; therefore, we can expect an ontology in a particular domain

of discourse to be able to describe several schemas in that domain (relational or otherwise). The

implication of this is that, in a scenario where our mapping verification framework is used on two

schemas, the semantic annotations could be useful in subsequent operations involving these and

other schemas.

Ontologies can capture the subtleties of the domain they are describing, as understood by the

ontology designer. They are unambiguous - generally, one concept is used per real-world entity,

but equivalence of concepts can also be specified. This, combined with their high expressiveness,

means that ontologies can be used in order to become familiar with a new domain of discourse,
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for instance when a new employee is hired or when a schema mapping designer is working with

unfamiliar schemas.

6.2.2 Entity-Relationship Diagrams

It could be argued that entity-relationship (ER) diagrams would be a suitable way of annotating the

semantics of relational schemas, since, like ontologies, they are conceptual models of the schemas.

The advantage of ER diagrams is that they are usually created during the schema design process, and

so they are readily available. However, there are several reasons why ER diagrams are not suitable

for our framework.

ER diagrams are not as expressive enough to allow the specification of complex domain con-

straints that may be of interest when trying to understand a domain of discourse (e.g. “an Experi-

enced Manager is one who has managed at least one project”). Additionally, ER diagrams do not

reflect the changes in the schemas after schema normalization is performed. ER diagrams are also

very specific to one schema and may not be general enough to model a different schema.

6.2.3 Disadvantages of Ontologies

The high expressivity of ontologies is advantageous, but has some downsides. Large ontologies can

be overwhelming to try to understand without a good visualization tool. In addition, the paradigm

used in ontologies is subtly different from that used in relational databases, in that ontologies are

designed using the open world assumption, whereas relational databases use the closed world as-

sumption. (This is explained further in Section 6.3). There is also a tradeoff between expressiveness

of an ontology and tractability of reasoning, which is explained in Section 6.4.

In the context of the Semantic Web, one problem that occurs with ontologies is heterogeneity of

ontologies. This somewhat hampers the advantage of reuse of semantic annotations. Suppose we

have two schemas, each annotated to a different ontology in the same domain. We must now decide

whether to create new annotations for one of the schemas, or try to align the two ontologies to each

other. However, it must be noted that ontology alignment is also an active research topic.

6.2.4 Assumptions about ontologies

We make a number of assumptions about the robustness and specificity of the ontologies used in our

framework.

First of all, we assume that the ontology we use is robust enough to encompass all significant1

schema elements in both schemas. Such a domain ontology could be available from a third-party

source, however it is possible that even a robust third-party ontology would have to be modified to

fit the needs of the tool. In the absence of an adequate third-party ontology, the schema designers

would have to create the ontology themselves - a time-consuming undertaking. However, there are
1Generally, the significant schema elements are those to and from which data is moved, especially those elements for

which accuracy in the schema mapping is critical.
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tools for ontology creation (such as Protege2) that would make this process easier. In addition, as

we have already discussed, ontologies have the potential for reuse, so creating an ontology could

benefit more than just the task of finding schema mappings.

Secondly, we assume that both the ontology and the semantic annotations are specific enough

to accurately describe the meaning of the schema elements. For instance, in our running example,

if the ontology did not make a distinction between AdminStaff and TechStaff and instead had

only the concept Employee, the ontology would not be specific enough to distinguish between the

manager and techlead attributes in the source schema. On the other hand, if both manager

and techlead were annotated with Employee, then it would be assumed that there is no relevant

distinction between their meanings. If in fact there were a relevant distinction between the meanings

of manager and techlead, but they were still annotated with Employee, then this semantic

annotation would not be specific enough to distinguish between them (i.e it would be incorrect).

We assume that the schema mapping designer would be aware of this fact and be skilled enough

to provide as much information about each schema element as is necessary despite the fact that

semantic annotations are only required to be partial mappings.

6.3 Reasoners

Typically applications that use reasoners for tasks in the realm of databases must deal with a subtle

mismatch between the assumptions behind reasoners and databases; our framework avoids these

problems by using reasoners as they were intended to be used: as automatic type classifiers.

Contrary to the typical behaviour of tools designed for checking consistency (such as syntax

checkers or compilers), reasoners are not designed for the purpose of debugging. Instead, they are

designed to (a) determine if a particular statement is entailed by an ontology; and (b) infer new

statements, or facts, based on existing facts in the ontology. This results in some subtle behaviours

that are unintuitive or unexpected for those with a database background, as many schema mapping

designers are.

This problem stems largely from a mismatch in the assumptions behind knowledge bases and

databases. Databases are created using a closed-world-assumption, which means that in practise

information in the database is generally complete. Unknown information can be denoted by using

null values, but it is also possible to specify that certain fields must be complete (i.e. not null). For

instance, if we assert that every employee has a Social Insurance Number (SIN), we can have a

constraint in the database that every tuple in the Employee relation must have a non-null value for

the SIN field. In practise, if we create a tuple in the database describing the employee, the database

will require that we input a non-null value for his or her SIN. Ontologies, on the other hand, use the

open-world assumption. If there is an assertion in the TBox of an ontology that every Employee

has a SIN, and we create an instance of Employee, it is not actually necessary to associate a SIN

2http://protege.stanford.edu
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with that instance. Instead, a reasoner will assume that because every Employee has a SIN, this

particular instance of Employee has a SIN, even if this SIN is not specified.

In short, there is no way to specify a database-style integrity constraint in an ontology. There is

also no way to specify type constraints.

This mismatch problem is described in detail by Motik et al. [Motik et al., 2007]. Here the

authors cite the example of BioPAX3, an ontology used for exchanging biological pathway data.

BioPAX defines a property NAME as follows:

∃NAME.> v bioSource t entity t dataSource

The intent of this property is to constrain the types of objects that can be named; that is, to ensure

that only objects of type bioSource, entity or dataSource can have a name. However, according

to this property, when a reasoner encounters an object with a name it will infer that the object is of

type bioSource, entity or dataSource rather than checking that this is so.

Such subtle differences must be understood when working with relational databases and ontolo-

gies.

It is important to note that this mismatch problem occurs only when working with both the

TBox and the ABox of the ontology; that is, it only becomes an issue when working with both the

terminology and the individual instances of concepts, where there might be some overlap between

the role of a database (storing data) and the ontology (storing information about individuals). This

is not a problem we are concerned with because our framework works only with the TBox of an

ontology.

When working with the reasoner, our framework is mainly concerned with the question: can

the description of one attribute fill the role of the description of another attribute? Essentially, it is

asking the reasoner to perform type checking rather than constraint checking. Because reasoners

perform automatic type classification, they are well-suited to this task.

6.4 Computational Complexity

The running time of our framework is largely dependent upon the size and complexity of inputs into

the reasoner. Here we describe the complexity of finding these inputs and discuss the performance

of the reasoner.

6.4.1 The Cost of Finding Associated Concepts

Recall that, given a query qX , a semantic annotation αX , and a variable v, Algorithm 3 finds the con-

cept associated with v in qX , ΓqX
(v). This is used later in our framework to generate the verification

statements that are input to the reasoner.

3http://www.biopax.org
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Note that given a variable v, Algorithm 3 iterates on the subgoals of qX , and at each subgoal

r, determines whether to make a recursive call based on the contents of ∆r(v). Thus in order for

Algorithm 3 to terminate, we must assume that it is cycle-free, that is:

DEFINITION 13 (CYCLE-FREE) Let q = r1(v1), ..., rk(vk) be a conjunctive query in which distinct

variables v, u appear. q is cycle-free if there are no subgoals ri, rj in q such that u ∈ ∆ri
(v) and

v ∈ ∆rj
(u).

Let us assume that Algorithm 3 is given qX , αX , v, as well as ∆r(v) for each relation r and

variable v in qX , and that αX and ∆r(v) can be accessed in constant time.

Then Algorithm 3 computes ΓqX
(v) in O(v2|qx|) time, where v is the maximum number of

variables in any subgoal of qX , and |qx| is the total number of subgoals in qX .

6.4.2 The Cost of Finding Verification Statements

Verification statements are computed by Algorithm 2. Given a query q : qT ← qS , Algorithm 2

takes as input ΓqS
and ΓqT

, and generates the verification statements in O(|ΓqT
|) time, where |ΓqT

|

is the number of variables in ΓqT
. The number of statements generated is also in O(|ΓqT

|).

Our main mapping verification algorithm, Algorithm 1, generates and checks verification state-

ments for each query in a given mapping µ : S → T . The total number of verification statements

checked by the reasoner is in O(m|µ|), where |µ| is the number of queries q : qT ← qS in the

mapping to be verified, and m is the maximum number of variables in ΓqT
for all qT in any query

in µ.

Thus we see that the number of inputs to the reasoner - the verification statements - is polynomial

on the size of the input.

In addition, the maximum number of terms in a verification statement is polynomial in the max-

imum number of subgoals among queries in µ, the maximum number of variables among them, and

the maximum number of predicates among semantic annotation mappings in the semantic annota-

tions for the source and target schemas.

Knowing that the number of verification statements and the length of these statements is bounded

by polynomials on the size of the inputs to the main algorithm, what remains is to determine the cost

of checking the consistency of these verification statements with the ontology.

6.4.3 The Cost of Reasoning

In general, the computational cost of reasoning over an ontology depends upon the expressiveness of

the language used to represent the ontology. Reasoning on full first-order logic (FOL) is intractable,

however there are subsets of FOL on which reasoning is tractable.

We have based our framework upon ontologies expressed in OWL-DL, which is known to corre-

spond to the descrption logic language SHOIN (D). Reasoning on SHOIN (D) has been found
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to be NEXPTIME-complete [Tobies, 2001].

However, in practise, reasoners are optimized to perform quickly for the most common queries.

For instance, Pellet [Sirin et al., 2007] is a reasoner that is optimized to work with OWL-DL on-

tologies on the the Semantic Web. FaCT++ [Tsarkov and Horrocks, 2006] is another optimized

reasoner. Optimizations can make a significant difference in reasoner performance; for example,

Horrocks [Horrocks, 1998] showed that the FaCT system (a reasoner supporting the ALCHR+

description logic) was able to classify a large, realistic knowledge base in 379s of CPU time, for

an average of 0.003s per subsumption test for 122,695 tests. It took 100 hours of CPU time for an

unoptimized reasoner (KRIS [Baader and Hollunder, 1991]) to classify just 10% of a simplified

version of this knowledge base.

Thus, in practise, we expect that the reasoner will terminate in a reasonable amount of time

for most statements. In an implementation of our framework, it is not unreasonable to terminate

the reasoner if it does not finish evaluating a statement after a certain number of steps; for these

statements, verification can be done by hand.

6.5 Implementation

Our framework is conceptual, but it is possible to build a working tool based upon it. It is designed

to complement existing tools related to data integration (schema mapping creation tools) as well as

mature Semantic Web technologies (ontologies and reasoners).

We envision a tool based on our framework being used alongside an existing tool for finding

schema mappings, such as Clio [Miller et al., 2001b]. Clio or a similar tool would provide one of

the inputs - the executable schema mapping to be verified.

Our tool could be written in three main modules: finding associated concepts, generating verifi-

cation statements, and reasoning.

The semantic annotations could be created by hand or in conjunction with tools for finding

semantic annotations automatically, such as MapOnto [An et al., 2006]. Alternatively, the module

for finding associated concepts could be ignored, and associated concepts could be defined by hand.

However, such a solution would make it difficult to reuse these associated concepts later, since

associated concepts are much more general than semantic annotations.

We have assumed in this framework that the ontology would be specified in OWL-DL. It is

certainly possible for other languages to be used as well, as long as a compatible reasoner is pro-

vided. However, this would have implications on what kind of information could be expressed in

the semantic annotations as well as the running time of reasoning.

Given that the ontology is specified in OWL-DL, we recommend that a reasoner such as Pellet

[Parsia and Sirin, 2004] or FaCT++ [Tsarkov and Horrocks, 2006] is used.
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6.6 Feasibility of Use

The initial motivation for creating this framework was to find a way to reduce the cost and difficulty

of performing mapping verification as compared to verifying mappings by hand.

Although a full evaluation of a working tool would be needed to determine whether the frame-

work truly reduces the cost of mapping verification, we outline here a number of expected benefits

and downsides.

6.6.1 Time Investment

Finding schema mappings is already a time-consuming process; this is unavoidable. The question

is whether using our framework would reduce the time needed to verify mappings as opposed to

doing so by hand, which is the predominant method used today. Note that some user involvement is

inevitable in a critical data integration scenario, as it is unreasonable to expect our framework to be

accurate in all mapping verification cases; we hope and expect to minimize this user involvement.

Our framework requires some initial time investment to find a suitable ontology and create se-

mantic annotations. Quality ontologies are difficult to find today, but in the context of a more

advanced Semantic Web, such ontologies should be much more widely available. In fact, it is not

unreasonable to expect that many schemas will already be annotated with ontologies at design-time

due to the potential applications in data interoperability.

Creating semantic annotations could be time consuming for large schemas, but recall that there is

already some research in automating the task of creating detailed alignments between schemas and

ontologies, such as the MapOnto tool [An et al., 2006]. As we described in Section 5.3, it is possible

to turn these automatically create alignments into the less specific semantic annotations needed for

our framework by using Algorithm 4.

Note also that we do not require semantic annotations to be complete mappings, so the time

needed to create them manually could be reduced by annotating only a subset of the schemas. How-

ever, the accuracy of mapping verification is dependent on how accurate and specific the given

semantic annotations are.

An additional cost is that of maintaining the semantic annotations over the long-term. If the

semantic annotations and ontology are not to be reused, this is not a problem. However, we have

argued that there are many hidden potential benefits to having semantically annotated schemas, both

for the purposes of data interoperability and of documentation. Thus maintenance of the semantic

annotations would be necessary.

We believe that, on the whole, our semi-automatic reasoning-based framework would be faster

than manual mapping verification for large-scale critical data exchange tasks. However, without an

evaluation it is impossible to tell how quickly an automatic reasoner could compute the entailment of

the most common types of verification statements. If reasoning is fast for the majority of verification
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statements, it is possible to implement the tool in such a way that, for statements that take unusually

long to verify, the reasoner is terminated and the user performs the verification.

6.6.2 Evaluation

The true costs and benefits of this framework cannot be known without doing a thorough evaluation.

Such an evaluation would be a large undertaking due to our expectation that this would be most

useful in a critical data integration setting. We discuss this further in Chapter 7.

6.7 Future Possibilities

This framework could serve as the basis of many future enhancements and directions.

As Semantic Web research advances, ways to improve our framework might emerge - for in-

stance, there may be reasoners designed to work better in the context of relational database schemas.

In addition, some advances in ontology alignment (the equivalent of schema mapping for ontologies)

might be applicable to our framework.

Since the Semantic Web is focused on data interoperability of heterogeneous schemas, it is also

conceivable that we could extend this framework to work with other kinds of schemas. This is

discussed further in Chapter 7.

6.8 Conclusion

In this chapter we have discussed how our conceptual framework could make the mapping verifi-

cation step of designing schema mappings more cost- and time-efficient as compared to verifying

mappings by hand in a critical data exchange setting. We showed that the benefits of this framework

would be strongest in the context of a flourishing Semantic Web with abundant ontologies, reason-

ers, and many applications that serve as incentives for semantically annotating schemas. We also

noted the most significant concern of our framework - whether the time to semantically annotate a

schema and the computational demands of reasoners outweighs the time it takes to verify schema

mappings by hand.

In the next chapter we discuss the potential future directions we could take with this framework.
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Chapter 7

Future Work

The framework we have presented lays the foundation for a number of possible future directions.

We divide these into two categories: those that are directly related to mapping verification, and those

that extend the functionality of the framework beyond mapping verification.

7.1 Future Work in Mapping Verification

For the framework in its current state, we would like to perform a comprehensive evaluation of its

practical effectiveness, display explanations for inconsistencies, and see it extended to work with

other kinds of schemas.

7.1.1 Explaining Semantic Inconsistency Using Proof Trees

Reasoners can provide proof trees, which show the steps that were used to arrive at a conclusion

about whether a statement is satisfied by an ontology. Given such proof trees, it is possible to retrace

these steps and provide an explanation of why an inconsistent statement is deemed to be so.

Such explanations would be useful to a schema mapping designer as they would pinpoint the

source of the inconsistency. The schema mapping designer could use the information to change the

semantic annotation or change the schema mapping.

These proof trees could also be useful for automatically suggesting schema mappings, as ex-

plained in Section 7.2.1.

7.1.2 Evaluation

An evaluation of this framework is necessary to test two major areas: the precision and recall of

testing for semantic consistency, and the practical benefits of the framework in terms of usability,

and time saved.
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Precision and Recall - Benchmarks

For a meaningful evaluation of precision and recall, we would need a set of source and target

schemas in a domain D, a set of ontologies in domain D, a set of semantic annotations between

the schemas and ontologies, and a set of correct and incorrect mappings between the source and

target schemas. Ideally, this set would contain multiple schemas, ontologies, semantic annotations,

and mappings from various domains.

We have found no standardized benchmark for testing the precision and recall of schema map-

pings, though one notable effort is the Amalgam test suite [Miller et al., 2001a]. Amalgam contains

several small schemas and their conceptual models, but does not have full ontologies, semantic

annotations, or schema mappings. It would be a worthwhile endeavour to create such a benchmark.

Given a benchmark, it would be possible to automate the testing of precision and recall and

measure things such as practical efficiency of the algorithms as well.

Practical Usability

It would also be worthwhile to test the practical usability of this framework. Assuming that on-

tologies are widely available, does the framework make the job of mapping verification easier and

faster than doing mapping verification by hand? How does it compare against statistical mapping

verification methods such as the Spicy method [Bonifati et al., 2008].

A meaningful evaluation of practical usability would be quite resource- and time-consuming.

Our framework is not designed or expected to be practical for use with small schemas, so larger,

more complex schemas would have to be used for the evaluation. While these would not need to be

quite as large as the schemas used in real data integration scenarios, they should at least approximate

these schemas. Since the process of finding schema mappings is inherently time-consuming, we

would expect an evaluation of the usability of the framework to require a large time investment.

7.1.3 Beyond Relational Schemas

As noted earlier, while we frame both the mapping verification problem and our solution in terms

of relational databases, the same problem could be applied to other types of schemas, such as XML

schemas or natural language schemas (like those on web forms). This could possibly be done by

generalizing the internal schema model to work with both structured and semi-structured schema

types, as Clio [Popa et al., 2002] does to support many schema types.

7.2 Beyond Mapping Verification

Beyond simply verifying mappings, our framework could be used for suggesting both schema map-

pings and semantic annotation mappings.
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7.2.1 Suggesting Schema Mappings

Aside from simply verifying mappings, the rich domain information present in ontologies combined

with semantic annotations could allow us to suggest mappings as well.

Given a semantically annotated attribute a in a schema, the ontology can provide information

such as which concepts are related to a, and by what kinds of properties. A semantic annotation for

a different schema provides clues as to which other attributes a could be mapped to. For instance, a

could be mapped into any attribute that is semantically annotated with the same concept as a or its

parent concepts. It may be closely related to attributes mapped to concepts related to the concept of

a by properties that are not disjointness. Such heuristics could be used to create a scoring function

for ranking attributes by their likelihood to be a good match for a.

Such a method could be applied to suggest completions for partial schema mappings, or to

suggest alternate queries to make a complete schema mapping consistent.

A partial schema mapping is one in which not all attributes in the source schema are mapped

to the target schema. The reasons why a partial mapping may exist are similar to the reasons some

tools for finding schema mappings suggest multiple schema mappings: ambiguity in the semantics

of the schemas makes it difficult to decide which attributes in the target schema are the best match.

7.2.2 Ranking Candidate Schema Mappings

Whether working with schema mappings suggested by a schema mapping generation tool or schema

mappings suggested by a tool based on our framework, it would be useful to have a mechanism

for ranking candidate schema mappings according to their likelihood of being the “best” mapping.

This could be useful when a number of mappings are found to be semantically consistent and the

schema mapping designer must choose the best one. It could also be useful in a situation where no

mappings are semantically consistent and the schema mapping designer wishes to find the mapping

that is closest to being correct to minimize the number of adjustments that must be made manually

to the mapping.

Ranking mappings would require quantifying their quality in some way. This might involve

using some sort of semantic similarity measure on the ontology in order to determine how “close”

the mapping is to being correct, as well as how specific it is. For instance, going back to our

running example, if one mapping maps a project in the source schema to a manager in the target

schema, and another mapping maps a technical leader in the source schema to a manager in the

target schema, both mappings would be semantically inconsistent, but the second mapping would

be much closer to being the correct mapping because technical leaders and managers are more

closely related semantically than projects and managers.
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7.2.3 Suggesting Semantic Annotation Mappings

It is possible that the semantic annotation mappings that are input to the framework will not always

be correct, or they might occasionally be too general. This would be a more prominent issue if a

tool (such as MapOnto [An et al., 2005]) is used to automatically find semantic annotations.

Thus when our framework discovers a semantically inconsistent query, it may prove useful to

be able to suggest alternate semantic annotation mappings that would make the query semantically

consistent. Such a feature might use proof trees to pinpoint why the query is semantically inconsis-

tent, then use a combination of reasoning and examining the related concepts and properties to make

a suggestion to the schema mapping designer.

Such functionality would be especially useful were semantic annotations to become a way of

documenting schemas.

7.3 Conclusion

Our framework opens up a number of research possibilities. The framework as it is could be en-

hanced by expanding it to work with more types of schemas besides relational schemas, its usability

could be enhanced by giving it the ability to explain semantic inconsistencies using proof trees pro-

vided by the reasoner, and a thorough evaluation needs to be done to determine the true costs and

benefits of using the framework.

Beyond simple mapping verification, there are numerous directions for which this framework

lays a foundation. It could be used to not only verify, but also suggest schema mappings, rank

schema mappings based on a measure of quality, and suggest semantic annotation mappings as well.
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Chapter 8

Conclusion

The major difficulty in attaining data interoperability is the inevitable semantic and syntactic het-

erogeneity of schemas. Schema mappings are key to overcoming this heterogeneity. In the data

exchange approach to data interoperability, the most under-explored area has been the step in which

schema mappings are checked for semantic consistency - the mapping verification step. Rela-

tively little research has been dedicated to semi-automatically verifying schema mappings, and most

schema mapping creation tools leave the bulk of this step up to the schema mapping designer, who

has the additional knowledge about the schemas and the capability to reason about this knowledge

needed to decide whether the semantics of a schema mapping are correct. Those approaches to

schema mapping verification which do exist generally rely on database instances to provide some

additional knowledge about the schemas being mapped, but the knowledge contained in database

instances is limited and of inconsistent quality.

The maturation of a few key Semantic Web technologies - ontologies and reasoners - makes it

feasible to formally express and reason about external information about schemas without relying

on database instances.

We have presented a framework that brings these Semantic Web innovations to data exchange.

By annotating schema elements with terms from an ontology, we make available to the schema

mapping creation tool a rich layer of background knowledge that cannot be gleaned from database

instances alone.

We have defined the notion of semantic consistency of a schema mapping in terms of an ontology

and presented algorithms that verify this semantic consistency. We annotate the meanings of schema

elements using semantic annotations, then use these semantic annotations to rewrite queries in a

schema mapping as statements about their meaning in terms of the ontology.

Our framework approaches schema mapping verification from a unique angle and lays the

groundwork for a number of exciting possible extensions that could make schema mapping creation

a faster, easier, and more automated process.
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