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Abstract

This thesis discusses the financial market model with proportional transac-

tion costs considered in Cvitanic and Karatzas (1996) (hereafter we use CK

(1996)). For a modified dual problem introduced by Choulli (2009), I discuss

solutions under weaker conditions than those of CK (1996), and further-

more the obtained solutions generalize the examples treated in CK (1996).

Then, I consider the exponential utility which does not belong to the family

of utility considered by CK (1996) due to the Inada condition. Finally, I

elaborate the same results as in CK (1996) for the exponential utility, and

I derive other related results using the specificity of the exponential utility

function as well. These lead to a different method/approach than CK (1996)

for our utility maximization problem, and different notion of admissibility

for financial strategies as well.
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Chapter 1

Introduction

Louis Bachelier is considered as the first mathematician to use the con-
cept of Brownian motion for modeling a financial phenomena before Albert
Einstein, who used it to model the movement of the particles in physics in
1905. Precisely, in 1900, Bachelier defended his Ph.D. thesis under the title
”Théorie de la Spéculation.” In this thesis, he modeled the movement of the
stock price by using the Brownian motion and addressed the problem of eval-
uation of financial options, see Davis and Etheridge (2006) for details about
this issue. He derived a formula that is very close to the results of Fischer
Black, Myron Scholes, and Robert Merton in 1973, which led to the Nobel
Prize in 1997.

Samuelson (1965) stated that the geometric Brownian motion is useful to
describe a general stochastic model of price. He also referred to the martin-
gale property of the present discounted value of asset and the lack of memory
property, so that any attempt of prediction on the pattern of the stock prices
from the past would be failed. Merton (1969) applied the Brownian motion
to describe the rate of the stock returns. Actually Merton solved explic-
itly the optimization problem of the constant relative risk utility with the
geometric Brownian motion. Black and Scholes (1973) derived the famous
Black-Scholes formula based on the assumption of the geometric Brownian
motion and no arbitrage opportunity in the hedged positions. They explained
that the expected return rate of the risky asset must be equal to the short-
term interest rate under the no arbitrage assumption. Black and Scholes
(1973) referred to the no-arbitrage concept of Merton’s paper (1973). Mer-
ton, Black, and Scholes played a big role of developing the no-arbitrage option
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pricing via solving the so-called Black-Scholes-Merton differential equation,
which was derived under the equality of the return rate and the interest rate.
This no-arbitrage pricing method has been then developed extensively in the
mathematical and the financial literature. For instance, we can cite Ross
(1976), Harrison and Kreps (1979), Harrison and Pliska (1981, 1983), who
applied the Girsanov Theorem and the martingale theory to the risk-neutral
pricing. They connected the existence of a risk-neutral probability measure
with no arbitrage.

As mentioned in Black and Scholes (1973), the ”ideal conditions” are
mostly assumed in many research papers with various kinds of problems.
These assumptions are basically related to define a complete market, where
there is no arbitrage opportunity and any risky asset can be replicated with
some combinations of contingent claims. For example, Black and Scholes
(1973) assumed the following:

a) The short-term interest rate is known and is constant through time.

b) The stock pays no dividends.

c) There are no transaction costs in trading.

d) It is allowed to sell or hold any fraction of the price at the short- term
interest rate.

e) No penalties to short selling.

It is only later in mid-seventies that Magill and Constantinides (1976)
pointed out the costless trading opportunities lead to a unrealistic portfolio
behavior, such like investors would indulge in a huge amount of security
trading due to covering the continually varying prices. This is true because no
transaction costs allow investors to trade stocks with no limit, i.e., they can
change their position immediately when stock prices move. Since the total
variation of Brownian motion is infinite, if the geometric Brownian motion
is assumed, the total change of stock prices will be infinite. In order to
meet the realistic environment they introduced the proportional transaction
costs to both of selling and buying at the same rate. This idea was then
supported by Leland (1985), who also stated that nonzero transaction costs
let continuous trading be ruinously expensive since diffusion processes have
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infinite variation and replicating operations are occurred infinitely many.

Taksar, Klass, and Assaf (1988) brought the more mathematical aspect to
the financial market with transaction costs. They mathematically simplify
the market by defining the two kinds of assets, the bank account and the
stock, then transaction costs are charged when money is transferred from
the bank account to the stock or vice versa. Davis and Norman (1990) also
used the almost same model of Taksar et al (1988), but they illustrated the
graphical analysis in the space of bank and stock holding strategy.

Other mathematical papers dealing with the problem of transaction costs,
we can cite Jouini and Kallal (1995), Cvitanic and Karatzas (1996), and the
references therein. As clearly indicated in the literature, there is some diffi-
culty in solving directly the utility maximization problem for the transaction
costs model. In order to deal with this difficulty, Karatzas, Lehoczky, and
Shreve (1987), Cox and Huang (1989), and others have developed the duality
methods, which give powerful ideas to reach the solutions of the maximiza-
tion. In this paper, we want to discuss the optimal solution for the transaction
costs model through this duality methods and without the Inada condition,
while Klein and Rogers (2007) stated that this condition is required to obtain
the optimal solution.

This thesis is organized as follows. Chapter 2 reviews useful mathematical
tools for mathematical finance, some of them are used in this thesis. Precisely,
in Section 2.1 we recall the definition of filtration, Brownian motion, and
martingales. In Section 2.2 we define the stochastic exponential, and state
Girsanov’s theorem and Radon-Nikodym derivative, which are related to
the change of probability measure (such as the change from the physical
probability measure to the risk-neutral probability measure). Stopping times
and their role in martingale are reviewed in Section 2.3. One of the most
important foundation of mathematical finance is Itô calculus, which includes
Itô integral, Itô isometry, Itô-Doeblin formula, and martingale representation
theorem. All these concepts are given in Section 2.4. Finally we define utility
functions and their risk aversion, and discuss the classification of utilities in
Section 2.5. Also we consider the Inada condition, which is widely assumed
for utility functions.

In Chapter 3 we mathematically outline the financial market model with
transaction costs. We introduce auxiliary martingales and convex conjugate
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of utility in order to find an alternate risk-neutral probability measure via
establishing the dual problem. In Chapter 4 we solve the dual problem
defined in Chapter 3. We obtain each component of the optimal solution
separately. In Chapter 5 we solve the expected utility maximization problem
for the exponential utility, which does not satisfy the Inada condition. We
also obtain the relationship between the solutions to the primal problem and
the dual problem.
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Chapter 2

Review on Stochastic Tools

2.1 Filtration and Brownian Motion

Definition 2.1.1. Let Ω be a nonempty set and T > 0. Suppose there exists
a σ-algebra F(t) for ∀ t ∈ [0, T ], such that F(s) ⊆ F(t) if 0 ≤ s ≤ t,
F(0) = {∅, Ω} ∪ N , where N is the set of negligible events, i.e., if A ∈
N , then P (A) = 0. The collection of σ-algebras F(t), t ∈ [0, T ], is called a
filtration.

We can interpret Ω as the set of all scenarios, T as the horizon of time,
and a filtration as aggregate information available to investors up to time
t ∈ [0, T ].

Definition 2.1.2. Let X be a random variable on a nonempty sample space
Ω. Let G be a σ-algebra of subsets of Ω. X is G-measurable if every set in
the σ-algebra generated by X is in G.

This means the information in G allows investors to determine the value
of X. For example, a portfolio holding position at time t should be F(t)-
measurable, which indicates that the value of portfolio is determined by only
the information up to time t.

Definition 2.1.3. Let Ω be a nonempty sample space and F(t) be a filtration
on t ∈ [0, T ]. Let X(t) be a collection of random variables indexed by t ∈
[0, T ]. X(t) is an adapted stochastic process if X(t) is F(t)-measurable for
any t ∈ [0, T ].
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Values of assets, portfolio, and wealth are considered as adapted processes
to a filtration of market/public information.

Definition 2.1.4. Let (Ω, F , P) be a probability space. Suppose there exists
a continuous function W (t) on t ≥ 0 for each ω ∈ Ω. W (t) is a Brownian
motion if

1) W (0) = 0,
2) For 0 = t0 < t1 < ... < tm, the increments

W (t1) −W (t0), W (t2) −W (t1), ...,W (tm) −W (tm−1)
are independent

3) Each increment follows the normal distribution
W (ti+1) −W (ti) ∼ N(0, ti+1 − ti), i = 0, 1, ...,m− 1

The Brownian motion is assumed to be F(t)- measurable, which means
that all information up to time t allows to evaluate W (t). Moreover, each
increment W (t) −W (s), 0 ≤ s < t, is independent of F(s). All information
up to time s does not determine any increments of the Brownian motion after
time s. In addition, W (t) −W (s) is F(t) -measurable.

Proposition 2.1.1. Let W (t) be a Brownian motion. For any constant
σ > 0, the following assertions hold.

(1) W (t) is a martingale.
(2) A process ξ(t) = exp

{
−1

2
σ2t+ σW (t)

}
is also a martingale.

Proof:
(1) Any increments after time s are independent of F(s) and the expected
value of increment is 0. For 0 ≤ s < t,

E[W (t)|F(s)] = E[(W (t) −W (s)) +W (s)|F(s)]

= E[W (t) −W (s)|F(s)] + E[W (s)|F(s)]

= E[W (t) −W (s)] +W (s)

= W (s)

Thus, W (t) is a martingale.
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(2) For 0 ≤ s < t,

E[ξ(t)|F(s)] = E

[
exp

{
−1

2
σ2t+ σW (t)

}∣∣∣∣F(s)

]
= E

[
exp

{
−1

2
σ2t+ σ(W (t) −W (s)) + σW (s)

}∣∣∣∣F(s)

]

E[ξ(t)|F(s)] = E [exp {σ(W (t) −W (s))}|F(s)] ∗ exp

{
−1

2
σ2t+ σW (s)

}
= E[exp{σ(W (t) −W (s))}] ∗ exp

{
−1

2
σ2t+ σW (s)

}
= exp

{
1

2
σ2(t− s)

}
∗ exp

{
−1

2
σ2t+ σW (s)

}
= exp

{
−1

2
σ2s+ σW (s)

}
= ξ(s)

This ends the proof of the proposition.

Example 2.1.1. (Stock with constant return rate/volatility)
It is a well-known assumption that the price of stock S(t) follows the geomet-
ric Brownian motion, such as if we assume the stock has a constant return
rate b ≥ 0 and a constant volatility σ > 0

dS(t) = S(t)[bdt+ σdW (t)]

S(t) = S(0) exp

{
σW (t) +

(
b− 1

2
σ2

)
t

}
where S(0) is the stock price at t = 0. Then if we take ξ(t) = exp

{
−1

2
σ2t+ σW (t)

}
,
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for 0 ≤ s < t,

E[S(t)|F(s)] = S(0)E

[
exp

{
bt+

(
−1

2
σ2t+ σW (t)

)}∣∣∣∣F(s)

]
= S(0) exp{bt}E[ξ(t)|F(s)]

= S(0) exp{bt}ξ(s)

= S(0) exp{b(t− s)} exp{bs} exp

{
−1

2
σ2s+ σW (s)

}
= eb(t−s)S(0) exp

{
σW (s) +

(
b− 1

2
σ2

)
s

}
= eb(t−s)S(s)

This implies that the expected value of stock in the future time t with the
information up to time s is equal to the value of exponential growth at the
stock return rate of S(s) for the duration t− s.

Proposition 2.1.2. For the exponential function with constant σ > 0, eσW (t), 0 ≤
s < t,

E[exp{σ(W (t) −W (s))}] = exp

{
1

2
σ2(t− s)

}
.

Proof:
Denote x = W (t) −W (s). Since W (t) −W (s) follows a normal distribution
with the mean zero and variance σ(t− s), then we get,

E[exp{σ(W (t) −W (s))}]

=

∫ +∞

−∞

1√
2π(t− s)

exp

{
σx− x2

2(t− s)

}
dx

=

∫ +∞

−∞

1√
2π(t− s)

exp

{
−(x− σ(t− s))2 − (σ(t− s))2

2(t− s)

}
dx

= exp

{
1

2
σ2(t− s)

}(∫ +∞

−∞

1√
2π(t− s)

exp

{
−(x− σ(t− s))2

2(t− s)

}
dx

)
.
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By considering the change of variable u = x− σ(t− s), we get,

E[exp{σ(W (t) −W (s))}]

= exp

{
1

2
σ2(t− s)

}(∫ +∞

−∞

1√
2π(t− s)

exp

{
− u2

2(t− s)

}
du

)

= exp

{
1

2
σ2(t− s)

}

2.2 Stochastic Exponential

The stochastic exponential is a very useful tool for the stochastic analysis.

Definition 2.2.1. (Doléans-Dade Exponential) Let X be a martingale,
where Xc denotes its continuous martingale part and X −Xc is a pure jump
martingale part. The stochastic exponential (Doléans-Dade Exponential) of
X is the unique solution of the following stochastic differential equation,

dZ(t) = Z−(t)dX(t), Z(0) = 1

and it is given by

Z(t) = exp

{
X(t) +

1

2
< Xc >

}
Π0<s≤t(1 + ∆Xs)e

−∆xs

The above definition sounds much general than the context of this thesis,
so we present a weaker version.

Definition 2.2.2. Let W be a Brownian motion and X be a process, such
that

dX(t) = µX(t)dt+ σX(t)dW (t), t ≥ 0

where µX : a function, σX : a positive function.
The stochastic exponential (Doléans-Dade Exponential) is the unique solution
of the following stochastic differential equation,

dZ(t) = Z(t)dX(t), Z(0) = 1
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and it is given by

Z(t) = exp

{∫ t

0

(
µX(t) − 1

2
σ2

X(t)

)
dt+

∫ t

0

σX(t)dW (t)

}
.

Example 2.2.1. (Stock with non-constant return rate/volatility)
The stock price S(t) is commonly assumed with geometric Brownian motion,
such that

dS(t) = S(t)[b(t)dt+ σ(t)dW (t)],

where b(t), σ(t) are (positive) functions. By Doléans-Dade exponential, we
have the stock price S(t) given by

S(t) = S(0) exp

{∫ t

0

(
b(t) − 1

2
σ2(t)

)
dt+

∫ t

0

σ(t)dW (t)

}
.

Remark 2.2.1. If the stochastic exponential is expressed by

Z(t) = exp

{
−1

2

∫ t

0

σ2(t)dt+

∫ t

0

σ(t)dW (t)

}
,

then we denote the following to this stochastic exponential

Et(σ ·W ) = exp

{
−1

2

∫ t

0

σ2(t)dt+

∫ t

0

σ(t)dW (t)

}
.

We have an important theorem with the stochastic exponential.

Theorem 2.2.1. (Girsanov’s Theorem)
Let (Ω, F , P) be a probability space, and let W (t), t ∈ [0, T ] be a Brownian
motion on (Ω, F , P), and F(t) is a filtration for W (t). Suppose θ(t) is an
adapted process. Consider

Z(t) = exp

{∫ t

0

θ(u)dW (u) − 1

2

∫ t

0

θ2(u)du

}
W̃ (t) = W (t) −

∫ t

0

θ(u)du

with E

[∫ T

0

θ2(u)Z2(u)du

]
< +∞.
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Define a random variable ζ : Ω → R such that for ω ∈ Ω

ζ(ω) = Z(T )(ω)

Also define a measure Q such that for any A ∈ F ,

Q(A) =

∫
A

ζ(ω)dP(ω)

Then, Q is a probability measure on F(T ) and W̃ (t) is a Brownian motion
with respect to Q.

Proof:
For the proof of this result, we refer to Shreve (2004), page 212-214.

Remark 2.2.2. ζ is called the Radon-Nikodym derivative of Q with respect
to P and is denoted by

ζ =
dQ

dP
.

Girsanov’s theorem allows to change a probability measure from the actual
P to the risk-neutral Q. In terms of mathematical finance Z(t) is called the
state-price density and if we choose an appropriate state-price density, then
by Girsanov’s theorem we can calculate risk-neutral prices. Moreover, it is
well-known that risk-neutral prices allow no arbitrage opportunities in the
market, so they are considered as ”fair” prices.

2.3 Stopping Time

Definition 2.3.1. (a nonnegative-integer valued stopping time)
A random variable

τ : Ω → N ∪ {+∞}

is called a stopping time if {τ ≤ n} ∈ F(n) for all n ∈ N.

Stopping time is considered as the time when a random event happens.
In the case that the event never occurs, we say stopping time takes the value
+∞. This definition is commonly used, but slightly inconvenient for the
continuous-time trading model. So, we want to modify this definition as
following.
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Definition 2.3.2. (a nonnegative-real valued stopping time)
A random variable

τ : Ω → [0, +∞]

is called a stopping time if {τ ≤ t} ∈ F(t) for all t ≥ 0.

Definition 2.3.2. allows to make a decision with all information up to
time t ∈ [n, n+1), while Definition 2.3.1. allows only information up to time
n for all t ∈ [n, n + 1). Since we treat the continuous-time trading, we use
Definition 2.3.1. through out this thesis .

A typical example of stopping time in terms of mathematical finance is
the time when an American option is exercised. An American option allows
an investor to exercise at any time before maturity. She will make a decision
with all information up to at that time, but with no anticipative/future
information.

Definition 2.3.3. (a bounded stopping time)
A stopping time τ is bounded if there exists a constant c such that for all
ω ∈ Ω

P{τ(ω) ≤ c} = 1.

This is important because we assume the finite time horizon, such that,
t ∈ [0, T ] where T < +∞ is maturity. Then we have a powerful theorem
from probability theory.

Theorem 2.3.1. (Doob’s Optional Sampling Theorem)
Let (X(t))t≥0 be a martingale and let u, v be stopping times bounded by
T < +∞ with 0 ≤ u ≤ v a.s. Then,

E
[
X(v)|F(u)

]
= X(u) a.s.

Proof:
The proof of this theorem can be found in Jacod and Protter (2004), page
215-216.

We see the martingale property on the fixed time in Proposition 2.1.1., but
here we see the martingale property on the stopping time.
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2.4 Itô Calculus for Mathematical Finance

Consider a partition on [0, T ], such that

0 = t0 ≤ t1 ≤ ... ≤ tn = T

and we trade the stock on the trading time t0, t1, ... , tn−1. Let ∆X(ti) denote
the holding position of stock in the interval [ti, ti+1), i = 0, 1, ... , n−1. This
means that ∆X(ti) is constant on [ti, ti+1). We assume that ∆X(ti) is F(ti)-
measurable. Then the cumulative gain from trading at time t ∈ [tk, tk+1) is
given by

I(t) =
k−1∑
j=0

∆X(tj)(W (tj+1) −W (tj)) + ∆X(tk)(W (t) −W (tk))

also we define the Itô integral of ∆(t)

I(t) :=

∫ t

0

∆X(u)dW (u)

Theorem 2.4.1. The Itô integral is a martingale.

Proof:
Let 0 = t0 ≤ s ≤ t ≤ T and s ∈ [tm, tm+1), t ∈ [tn, tn+1), where tm < tn ≤
tn+1 ≤ T . The Itô integral is represented by

I(t) =
m−1∑
j=0

∆X(tj)[W (tj+1) −W (tj)] +
n−1∑

j=m+1

∆X(tj)[W (tj+1) −W (tj)]

+∆X(tm)[(W (tm+1) −W (s)) + (W (s) −W (tm))]

+∆X(tn)[W (t) −W (tn)]

We know any increments in [0, s] are F(s)-measurable,

E

[
m−1∑
j=0

∆X(tj)[W (tj+1) −W (tj)] + ∆X(tm)[W (s) −W (tm)]

∣∣∣∣∣F(s)

]

=
m−1∑
j=0

∆X(tj)[W (tj+1) −W (tj)] + ∆X(tm)[W (s) −W (tm)] = I(s)
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We know any increments in (s, t] are independent of F(s), and the expected
values of any increments in (s, t] are zero.

E

[
n−1∑

j=m+1

∆X(tj)[W (tj+1) −W (tj)] + ∆X(tn)[W (t) −W (tn)]

+∆X(tm)[W (tm+1) −W (s)]| F(s)]

=
n−1∑

j=m+1

∆X(tj)E[W (tj+1) −W (tj)]︸ ︷︷ ︸
0

+∆X(tn)E[W (t) −W (tn)]︸ ︷︷ ︸
0

+∆X(tm)E[W (tm+1) −W (s)]︸ ︷︷ ︸
0

= 0

Hence E[I(t)|F(s)] = I(s).

Theorem 2.4.2. (Itô isometry) The Itô integral satisfies

E[I2(t)] = E

[∫ t

0

∆X2(u)du

]
Proof:
Let ∆Wj denote W (tj+1)−W (tj) for j = 0, 1, ... , k− 1 and ∆Wk = W (t)−
W (tk). Then,

I2(t) =
k∑

j=0

∆X2(tj)∆W
2
j + 2

∑
0≤i<j≤k

∆X(ti)∆X(tj)∆Wi∆Wj

We know E[∆Wj] = 0 and ∆Wj is independent of F(tj).

E[∆X(ti)∆X(tj)∆Wi∆Wj] = E[∆X(ti)∆X(tj)∆Wi] ∗ E[∆Wj]

= E[∆X(ti)∆X(tj)∆Wi] ∗ 0

= 0

Since ∆X(tj) is F - measurable and ∆Wj is independent of F(tj), ∆X2(tj) is
F -measurable and ∆W 2

j is independent of F(tj). Also E[∆W 2
j ] = tj+1 − tj.
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Then,

E[I2(t)] =
k∑

j=0

E[∆X2(tj)∆W
2
j ] =

k∑
j=0

E[∆X2(tj)] ∗ E[∆W 2
j ]

=
k−1∑
j=0

E[∆X2(tj)(tj+1 − tj)] + E[∆X2(tk)(t− tk)]

=
k−1∑
j=0

E

[∫ tj+1

tj

∆X2(u)du

]
+ E

[∫ t

tk

∆X2(u)du

]

= E

[
k−1∑
j=0

∫ tj+1

tj

∆X2(u)du+

∫ t

tk

∆X2(u)du

]

= E

[∫ t

0

∆X2(u)du

]

Definition 2.4.1. Let W (t), t ≥ 0, be a Brownian motion and F(t) be a
filtration. A process X(t) expressed below is called Itô process.

X(t) = X(0) +

∫ t

0

b(u)du+

∫ t

0

a(u)dW (u)

where X(0) is deterministic and a(u), b(u) are adapted stochastic process,
satisfying

E

[∫ t

0

a2(u)du

]
<∞,

∫ t

0

|b(u)|du <∞ (2.1)

We always assume (2.1) in terms of Itô process.

Lemma 2.4.1. The quadratic variation of the Itô process above is

[X, X](t) =

∫ t

0

a2(u)du

Proof: See Shreve (2004), page143-144, for the proof.
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Theorem 2.4.3. (Itô-Doeblin Formula for Itô process)
Let X(t), t ≥ 0 be an Itô process and f(t, x) be a function such that par-
tially differentiable on t and twice partially differentiable on x and all partial
derivatives are continuous. For T ≥ 0,

f(T, X(T )) = f(0, X(0)) +

∫ T

0

ft(t, X(t))dt+

∫ T

0

fx(t, X(t))dX(t)

+
1

2

∫ T

0

fxx(t, X(t))d[X, X](t)

= f(0, X(0)) +

∫ T

0

ft(t, X(t))dt+

∫ T

0

fx(t, X(t))(a(t)dW (t) + b(t)dt)

+
1

2

∫ T

0

fxx(t, X(t))a2(t)dt

Proof: See Øksendal (2005), page44-48, for the proof.

Theorem 2.4.4. (Predictable Representation for Martingales)
Let F(t) be a σ-field generated by a Brownian motion W (s), 0 ≤ s ≤ t.

1) If (M(t)), 0 ≤ t ≤ T, is a square integrable martingale on (F(t)), then

there is an adapted process
(
H(t), 0 ≤ t ≤ T

)
, such that E

[∫ T

0
H2(u)du

]
<

+∞ and for ∀ t ∈ [0, T ],

M(t) = M(0) +

∫ t

0

H(s)dW (s) a.s.

2) If M(t) is a F(t)-local martingale, then there exist ξ adapted process such

that
∫ T

0
ξ2(u)du < +∞ P − a.s. and

M(t) = M(0) +

∫ t

0

ξ(u)dW (u), 0 ≤ t ≤ T.

Proof: See Elliot and Kopp (1999), page144-145, for the proof of the first
part. The second part follows by stopping and can be found in the literature.
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This theorem is very useful in obtaining the state price densities, which
usually lead to the risk-neutral pricing. As written in Shreve (2004), this
theorem has a strong condition on the filtration, which is generated only by
the Brownian motion. Investors will obtain all information in F(t) from the
observation of the Brownian motion. This implies that the Brownian motion
is the only source of uncertainty in the model and this uncertainty can be
removed by hedging. Moreover, this martingale will not have any jumps
because the part of Itô integral is continuous. This martingale process is
called ’ predictable’ since it is continuous and F(t)- measurable.

2.5 Utility Functions

A utility function U maps a set of numerical variables into real numbers.
Numerical variables can be a combination of consumption of goods, a com-
bination of assets, etc. Basically utility functions allow us to see preference
relations among various levels of consumption, various strategies for asset
holdings, etc. For example, let x1, x2 be strategies of holding assets. If
U(x1) ≥ U(x2), then we say x1 is more preferable than x2. Sometimes we
use the following expression

U(x1) ≥ U(x2) =⇒ x1 ≽ x2

U(x1) ≤ U(x2) =⇒ x1 ≼ x2

U(x1) = U(x2) =⇒ x1 ∼ x2.

In general, a utility function U is assumed to be concave, i.e.,

U(αx+ (1 − α)y) ≥ αU(x) + (1 − α)U(y),

for any x, y ∈ R and 0 ≤ α ≤ 1.
This combined with Jensen’s inequality leads to

U(E[X]) ≥ E[U(X)],

for a random variable X. In order to meet the assumptions above we usually
assume the following:

(1) U is (strictly) increasing.
(2) U is twice differentiable.
(3) U is concave, i.e., U ′′ ≤ 0.
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2.5.1 Some Examples

The following utility functions are the most practically used utilities in eco-
nomics and finance. All of them meet the above three assumptions (1)-(3).

• Logarithmic Utility:

U(x) = ln(x), x > 0

This utility has been widely used, for instance, Cvitanic and Karatzas (1996).
• Power Utility:

U(x) =
xγ

γ
, 0 < γ ≤ 1

This utility is discussed in Merton (1969), Davis and Norman (1990), etc.
• Exponential Utility:

U(x) = 1 − e−αx, α > 0

This utility is treated as a particular case in Schachermayer (2001).
• Quadratic Utility:

U(x) = x− βx2, β > 0, x ∈ (−∞,
1

2β
)

This utility is considered in Sharpe (2007).

2.5.2 Classifications of Utility

Each investor has his/her own utility and the curvature of his/her utility
represents the risk averseness of the investor. Arrow and Pratt (1964) intro-
duced the absolute risk aversion A(x)

A(x) := −U
′′(x)

U ′(x)
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Any utility function with the exponential form −e−αx have the constant
absolute risk aversion

A(x) = −−α2e−αx

αe−αx
= α

Those utility functions are called to belong to the family of constant relative
risk aversion (CARRA family).

Those utility functions whose absolute risk aversions are hyperbolic are
called to belong to the hyperbolic relative risk aversion (HARA family).
The power utility above belongs to the HARA family. In general, we have

U(x) = c0 + c1x+ c2(α+ γx)1−β
γ , 0 <

β

γ
< 1, α+ γx > 0, c1, c2 ∈ R

(2.2)

A(x) = −−β(γ − β)(α+ γx)−1−β
γ

(γ − β)(α+ γx)−
β
γ

=
β

α+ γx
. (2.3)

As Menoncin (2002) stated, (2.2) contains the CARRA family and other
utility functions.
In fact, if c0 = 1, c1 = 0, c2 = −1, α = 1, γ → 0, then we will obtain the
exponential utility.

U(x) = 1 − lim
γ→0

(1 + γx)1−β
γ = 1 − e−βx

If c0 = c1 = 0, c2 = 1, α = 0, γ = a−
1
a , β = (1 − a)a−

1
a , 0 < a ≤ 1, then we

will obtain the power utility.

U(x) = (a−
1
ax)

1− (1−a)a
− 1

a

a
− 1

a =
xa

a

If c0 = − 1
a
, c1 = 0, c2 = 1, α = 0, γ = a−

1
a , β = (1− a)a−

1
a , a→ 0, then we
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will obtain the logarithm utility.

U(x) = lim
a→0

(
−1

a
+ (a−

1
ax)

1− (1−a)a
− 1

a

a
− 1

a

)

= lim
a→0

(
−1

a
+
xa

a

)
x = lim

a→0
(1 + aU(x))

1
a = eU(x)

U(x) = ln(x)

If c0 = 0, c1 = 1, c2 = −1, α = 0, γ = −
√
b, β =

√
b, b > 0, then we will

obtain the quadratic utility.

U(x) = x− (−
√
bx)

1−
√

b

−
√

b = x− bx2

2.5.3 The Inada Condition for Utility

The Inada condition is usually assumed for the production function in the
economic growth model. This condition is also assumed for the utility func-
tion U in many cases. It is,

lim
x→0

U ′(x) = +∞, lim
x→+∞

U ′(x) = 0. (2.4)

This condition prevents the optimal solution of zero consumption (or holding)
in maximization problems, which is useful to ensure the non-trivial positive
solution. However, the Inada condition is not satisfied with a very common
utility function, which is the exponential utility, U(x) = 1−e−x. This utility
satisfies another condition instead of the Inada condition which is given by,

lim
x→−∞

U ′(x) = +∞, lim
x→+∞

U ′(x) = 0. (2.5)

This allows to have the optimal solution in the non-positive consumption (or
holding), so this condition is weaker than the Inada condition.
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The Inada condition is commonly used for the assumption of utility func-
tions. For example, this condition is assumed in Cvitanic and Karatzas
(1996), Kramkov and Schachermayer (1999), Rogers (2001), and Klein and
Rogers (2007), etc. In Schachermayer (2001) the Inada condition is not as-
sumed and he succeeded to obtain the same result as Kramkov and Schacher-
mayer (1999) without the Inada condition. In Chapter 5 we want to show
the same result of Cvitanic and Karatzas (1996) with the non-Inada type of
utility function, i.e., the exponential utility.
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Chapter 3

The Economy and Its
Preliminary Analysis

3.1 The Mathematical Model

In order to rigorously describe the financial market model that we will con-
sider in the coming chapters, we start by assuming given a filtered probability
space

(Ω, F , (F(t))0≤t≤T , P), (3.1)

where Ω is the set of all scenarios, F is a σ-field (σ-algebra) on Ω that
represents the whole information about the market, F(t) is the aggregate
information available up to time t ∈ [0, T ], T is the fixed horizon time, and
P is the probability measure.

On this stochastic basis defined in (3.1) that is assumed to be complete, (i.e.,
F(0) contains all negligible sets), we consider a Brownian motion

W = (W (t))0≤t≤T . (3.2)

Then the underlying assets of our market model are constituted of a bank
account (risk-free asset) whose price process is denoted by

B = (B(t))0≤t≤T , (3.3)
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and the stock (risky asset) whose price process is denoted by

S = (S(t))0≤t≤T . (3.4)

The dynamics of these two processes B, S are given by for t∈ [0,∞)

dB(t) = B(t)r(t)dt, B(0) = 1, (3.5)

dS(t) = S(t)[b(t)dt+ σ(t)dW (t)], S(0) = p ∈ (0,∞), (3.6)

where p is the initial price of stock. r(t) is a nonnegative bounded adapted
process which represents the risk-free interest rate, b(t) is a bounded adapted
process which represents the return rate of the risky asset, and σ(t) is a
bounded adapted process which represents the volatility of the risky asset
satisfying σ(t) ≥ ϵ (ϵ is a positive constant) .

A trading strategy is a pair (L,M) of F(t)-adapted processes on t ∈
[0, T ], with left-continuous, nondecreasing paths and L(0) = M(0) = 0. L(t)
represents the total amount of money transferred from the risk-free asset to
the risky asset at time t andM(t) represents the amount of money transferred
from the risky asset to the risk-free asset at time t.

Assume the model has the proportional transaction costs 0 < λ, µ < 1
for buying the risky asset, selling the risky asset respectively. Let the initial
assets be x, y respectively, then we have value processes, X(t), Y (t) of the
value processes for the bank account and the stock respectively. They are
given by

X(t) = x− (1 + λ)L(t) + (1 − µ)M(t) +

∫ t

0

X(u)r(u)du (3.7)

Y (t) = y + L(t) −M(t) +

∫ t

0

Y (u)[b(u)du+ σ(u)dW (u)]. (3.8)

Proposition 3.1.1. The processes X and Y defined in (3.7) and (3.8) re-
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spectively satisfy

d

(
X(t)

B(t)

)
=

(1 − µ)dM(t) − (1 + λ)dL(t)

B(t)
(3.9)

d

(
Y (t)

S(t)

)
=
dL(t) − dM(t)

S(t)
(3.10)

Proof:
The proof of this proposition is a direct application of Itô-Doeblin formula.

Below, we will define the wealth process of the investor as described in
Cvitanic and Karatzas (1996) and Schachermayer (2001).

Definition 3.1.1. The total wealth at time t ∈ [0, T ] is given by

X+(t) := X(t) + f(Y (t)), (3.11)

where f(y) = (1 − µ)y+ − (1 + λ)y−, for any y ∈ R and y+ = yI{y≥0}, y
− =

−yI{y<0}. The total wealth is equivalent to the value if an investor liquidates
all position in the stock at time t with the appropriate transaction costs.
Especially the terminal wealth is denoted by

X(T+) := X+(T ).

The main objective of an investor — here in our context — is to maximize
her expected utility from the terminal wealth. This maximization problem
will be called through out the thesis as the primal problem and is denoted
for (x, y) ∈ (0, +∞)2 by

V (x, y) := sup
(L,M)∈A(x,y)

E[U(X(T+))], 0 < x, y <∞ (3.12)

where A(x, y) represents the class of admissible strategies and it will be
specified in Chapter 5, Section 5.2.
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3.2 Auxiliary Martingales and Dual Problem

Our main (primal) problem is the utility maximization of the terminal wealth.
In the case of no-transaction-cost market model, finding the risk-neutral
probability measure Q, which is equivalent to P, is a key to solve this type
of problem and other related problems. However, in the case of the market
with transaction costs, it is a little difficult to find Q directly. So, before
going the primal problem we establish the dual problem via introducing the
auxiliary martingales (Z0, Z1) and the convex conjugate function Ũ .

3.2.1 Auxiliary Martingales

First we consider the class of a pair (Z0, Z1). Let θ0(t) and θ1(t) be F(t)-
meauserable processes. Then, with the martingale representation theorem
(see Theoram 2.4.4.), we can define

Z : = {(Z0, Z1) | Z0, Z1 are strict positive F(t) −martingales}
(3.13)

where Z0(t) = Z0(0) exp

{∫ t

0

θ0(u)dW (u) − 1

2

∫ t

0

θ2
0(u)du

}
(3.14)

Z1(t) = Z1(0) exp

{∫ t

0

θ1(u)dW (u) − 1

2

∫ t

0

θ2
1(u)du

}
. (3.15)

Let R(t) be the process such that

R(t) :=
Z1(t)

Z0(t)P (t)
(3.16)

where P (t) is the discounted stock price,

P (t) : =
S(t)

B(t)
= p exp

{∫ t

0

(
b(u) − r(u) − 1

2
σ2(u)

)
du+

∫ t

0

σ(u)dW (u)

}
.

(3.17)

Then, we also define a subset of Z defined in (3.13)

D :=
{

(Z0, Z1) ∈ Z |Z0(0) = 1, 1− µ ≤ R(t) ≤ 1 + λ, ∀t ∈ [0, T ]
}
. (3.18)
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In Chapter 4 we try to find the optimal pair (Ẑ0, Ẑ1) as the solution to the
dual problem defined in the next section.

Proposition 3.2.1. For any (Z0, Z1) ∈ D, and any (L, M) strategy, the
process

Z0(t)
X(t)

B(t)
+ Z1(t)

Y (t)

S(t)
(3.19)

is a local supermartingale.

Proof:
By Itô-Doeblin formula (Theorem 2.4.3.),

Z0(t)
X(t)

B(t)
+ Z1(t)

Y (t)

S(t)

= Z0(0)
X(0)

B(0)
+ Z1(0)

Y (0)

S(0)
+

∫ t

0

Z0(u)d

(
X(u)

B(u)

)
+

∫ t

0

X(u)

B(u)
dZ0(u)

+

∫ t

0

Z1(u)d

(
Y (u)

S(u)

)
+

∫ t

0

Y (u)

S(u)
dZ1(u) +

∫ t

0

d[Z0,
X

B
](u) +

∫ t

0

d[Z1,
Y

S
](u)

= x+
y

p
z1 +

∫ t

0

Z0(u)

B(u)
[(1 − µ)dM(u) − (1 + λ)dL(u)] +

∫ t

0

X(u)

B(u)
θ0(u)Z0(u)dW (u)

+

∫ t

0

Z1(u)

S(u)
[dL(u) − dM(u)] +

∫ t

0

Y (u)

S(u)
θ1(u)Z1(u)dW (u)

= x+
y

p
z1 +

∫ t

0

Z0(u)

B(u)
[X(u)θ0(u) +R(u)Y (u)θ1(u)]dW (u)

−
∫ t

0

Z0(u)

B(u)
[(1 + λ) −R(u)]dL(u) −

∫ t

0

Z0(u)

B(u)
[R(u) − (1 − µ)]dM(u)

(3.20)

It is clear that the second term on the right-hand side term in the above
equality is a local martingale, and the third and the fourth terms are non-
positive and non-increasing processes. This proves that Z0(t)

X(t)
B(t)

+Z1(t)
Y (t)
S(t)

is a local supermartingale. This completes the proof of the proposition.
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3.2.2 Dual Problem

As we mention above, we need the dual problem to avoid some difficulty in
the primal problem. Here we establish the dual problem.

Let U denote the utility function, which is U : R −→ R, twice continu-
ously differentiable on R, strictly increasing, strictly concave, and satisfies

U ′(∞) := 0, U ′(−∞) := ∞ U(0) ≥ 0 (3.21)

U ′ is invertible on R, and I denote its inverse function. Then we can find
the convex conjugate function Ũ by

Ũ(ζ) : = max
x∈R

[U(x) − xζ], ζ > 0. (3.22)

Thanks to (3.22), we are able how to define the dual problem

Ṽ (ζ; y) := inf
(Z0,Z1)∈D

E

[
Ũ

(
ζ
Z0(T )

B(T )

)
+
y

p
ζZ1(T )

]
, 0 < ζ <∞. (3.23)

In Chapter 5 we discuss how the dual problem relates to the primal problem.

3.3 Hedging

Here also we follow the stream of Cvitanic and Karatzas (1996). When we
keep financial solvency, we need to hold some margin in the bank account.
We can hedge the contingent claim (C0, C1) under the admissible strategy
(L, M) ∈ A(x, y).

Definition 3.3.1. A contingent claim is a pair (C0, C1) of F-measurable
random variables. A trading strategy (L, M) hedges the claim (C0, C1) start-
ing with (x, y) as initial holdings, if X, Y of (3.7), (3.8) satisfy

X(t) + (1 − µ)Y (t) ≥ C0 + (1 − µ)C1 (3.24)

X(t) + (1 + λ)Y (t) ≥ C0 + (1 + λ)C1 (3.25)

Let C denote the class of (C0, C1) satisfying (3.24) and (3.25).
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Definition 3.3.2. The minimal holdings in the bank account h(C0, C1, y) is
called hedging price and defined by

h(C0, C1, y) := inf{x ∈ R : (L, M) ∈ A(x, y), (L, M) hedges (C0, C1)}
(3.26)

Theorem 3.3.1. Cvitanic and Karatzas (1996)
If C0 and C1 are bounded from below, then we have

h(C0, C1; y) = sup
(Z0, Z1)∈D

E

[
Z0(T )

B(T )
C0 +

Z1(T )

S(T )

(
C1 −

y

p

)]
. (3.27)

Proof:
For the proof of this theorem we refer to Cvitanic and Karatzas (1996).
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Chapter 4

Modification of the Dual
Problem

This chapter is devoted to discuss a possible explicit description of the op-
timal solution to the dual problem (3.23) defined in Chapter 3, Section 3.2.
Through out the following chapters, let ” ˆ ” denote the optimality.

4.1 Sketch of Prof. Choulli’s Approach

As admitted in Cvitanic and Karatzas (1996), the general optimal solution
to the dual problem is very hard and difficult to describe. However, Prof.
Choulli proposed an approach, through which we successfully obtained some
optimal solutions under certain conditions. These conditions are weaker than
those discussed in Cvitanic and Karatzas (1996), while these optimal solu-
tions generalize Cvitanic-Karatzas’ examples.

Choulli’s1 approach started by slightly modifying the dual problem. This
modification is based on considering a subset of D (D is defined in (3.18))
denoted by Dv and is given by

Dv =

{
(Z0, Z1) ∈ D | R(t) =

Z1(t)

Z0(t)P (t)
has finite variation

}
.

(4.1)

1University of Alberta, Department of Mathematical and Statistical Science, Edmon-
ton, Canada
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Then, the modified dual problem can be stated as follows.

Ṽ (ζ; y) = min
(Z0, Z1)∈Dv

E

[
Ũ

(
ζ
Z0(T )

B(T )

)
+
y

p
ζZ1(T )

]
, 0 < ζ <∞. (4.2)

After defining the modified dual problem, the remaining sketch of the ap-
proach consists of three main steps.

The first step deals with the following minimization problem.

min
Z0∈Z0

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
, (4.3)

where Z0 = {Z is a positive martingale | Z(0) = 1}.
The solution to this minimization problem will be called the optimal first
component and will be denoted by Ẑ0.

The second step deals with the following minimization problem

inf
Z1: (Ẑ0, Z1)∈Dv

E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
ζZ1(T )

]
. (4.4)

The solution to this minimization problem will be called the optimal second
component and will be denoted by Ẑ1.

The third and last step will deal with verification results.

In the following without the proof, I will state a conjecture of Prof.
Choulli that deals with verification of the optimality of the pair (Ẑ0, Ẑ1).

Proposition 4.1.1. Let Ẑ0 (respectively Ẑ1) be the solution to (4.3) (respec-
tively (4.4)). Then (Ẑ0, Ẑ1) is the solution to (4.2), i.e.,

Ṽ (ζ; y) = E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
ζẐ1(T )

]
. (4.5)

The proof of this proposition is beyond the scope of this thesis. My con-
tribution consists of proving some pieces of this approach. Precisely, I will
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address the first and second steps in the current framework of Brownian mo-
tion. The general case as well as other conjectures are extensively developed
in Choulli (2009) (Prof. Choulli informed me about these advances).

4.2 The Optimal First Component

This section is devoted to the characterization and description of the first
component in the solution of the dual problem (3.23) for particular cases and
the solution of (4.3) for general cases. This will be achieved for general utility
with deterministic interest rate (see Proposition 4.2.1.) and for logarithm and
exponential utilities with stochastic interest rate satisfying some boundness
conditions (see Proposition 4.2.2. and Theorem 4.2.1.).

From (3.18), denote

Z1(0) := z1 ∈ [p(1 − µ), p(1 + λ)]. (4.6)

Proposition 4.2.1. If the risk-free interest rate r(t) is deterministic, then
the following assertionss hold.

1) The process Ẑ0 ≡ 1 is the solution to (4.3), that is

min
Z0∈Z0

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
= Ũ

(
ζ

B(T )

)
, ∀ζ > 0. (4.7)

2) If furthermore, r(t) ≥ b(t) and

∫ T

0

(r(u) − b(u))du ≤ ln

(
1 + λ

1 − µ

)
, then

Ẑ0 ≡ 1, Ẑ1(t) = p(1 − µ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

}
(4.8)

is the solution to the dual problem (3.23).

Proof:
1) Since Ũ is a convex function, then due to Jensen’s inequality, for any
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(Z0, Z1) ∈ D we have

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
≥ Ũ

(
ζ
E[Z0(T )]

B(T )

)
≥ Ũ

(
ζ

1

B(T )

)
(4.9)

Hence, if we consider Ẑ0 given by

Ẑ0(t) = 1, ∀ t ∈ [0, T ],

then Ẑ0 ∈ Z0 and the proof of the assertion 1) follows.

2) From (3.16), (3.14) and (3.15) with the Doléans-Dade exponential,

R̂(t) =
ẑ1Et(σ ·W )

Ẑ0(t)pEt(σ ·W + (b− r)dt)

=
ẑ1

Ẑ0(t)p
exp

{∫ t

0

(r(u) − b(u))du

}
If we consider the pair given by{

Ẑ0(t) = 1

Ẑ1(t) = p(1 − µ) exp
{∫ t

0
σ(u)dW (u) − 1

2

∫ t

0
σ2(u)du

} , (4.10)

then
1 − µ ≤ R̂(t) ≤ 1 + λ.

This is true due to z1 ∈ [p(1 − µ), p(1 + λ)] and the condition,

r(t) ≥ b(t),

∫ T

0

(r(u) − b(u))du ≤ ln

(
1 + λ

1 − µ

)
.

Hence (Ẑ0, Ẑ1) ∈ D and

E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
ζẐ1(T )

]
= Ũ

(
ζ

B(T )

)
+ yζ(1 − µ) .
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This proves that the pair (Ẑ0, Ẑ1) defined in (4.10) attains the infimum value
in (3.23). This completes the proof of the proposition.

In the following proposition, we will prove that the pair (Ẑ0, Ẑ1) defined in
(4.10) is also the optimal solution to the dual problem corresponding to the
logarithm utility without the deterministic assumption on r(t).

Proposition 4.2.2. Suppose r(t) is a bounded process, and consider the
logarithm utility function, i.e., U(x) = ln x.
1) Then for any ζ > 0,

min
Z0∈Z0

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
= E

[
Ũ

(
ζ

B(T )

)]
. (4.11)

2) If furthermore, r(t) ≥ b(t) and
∫ T

0
(r(u) − b(u))du ≤ ln

(
1+λ
1−µ

)
, then

Ẑ0(t) = 1, Ẑ1(t) = p(1 − µ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

}
is the solution to the dual problem (3.23).

Proof:
1) Since U(x) = ln x, then Ũ(x) = − ln x− x(lnx)′ = −1 − ln x, and hence

Ũ

(
ζ
Z0(T )

B(T )

)
= −1 − ln

(
ζ
Z0(T )

B(T )

)
= Ũ

(
ζ

B(T )

)
− ln(Z0(T )).
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Then, by taking the expectation in both sides of the above equation,

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
= E

[
Ũ

(
ζ

B(T )

)]
− E[ln(Z0(T ))]

= E

[
Ũ

(
ζ

B(T )

)]
+

1

2
E

[∫ T

0

θ2
0(u)du

]
≥ E

[
Ũ

(
ζ

B(T )

)]
. (4.12)

Hence, if we consider Ẑ0 given by

Ẑ0(t) = 1(⇔ θ0(t) = 0), ∀ t ∈ [0, T ],

then Ẑ0 ∈ Z0 and the proof of the assertion 1) follows.

2) Consider the pair (Ẑ0, then Ẑ1) defined in (4.10) via similar calculation as
in Proposition 4.2.1., we obtain

E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
ζẐ1(T )

]
= E

[
Ũ

(
ζ

B(T )

)]
+ yζ(1 − µ).

Thus, the pair (Ẑ0, Ẑ1) attains the infimum value in (3.23). This completes
the proof of the proposition.

In the following theorem, we will state the general result for the exponential
utility.

Theorem 4.2.1. (Conjectured by Prof. Choulli)
Suppose r(t) is a nonnegative and bounded process. Consider the exponential
utility function U(x) = 1−e−x. Then for any ζ > 0 the minimization problem

min
Z∈Z0

E

[
Ũ

(
ζ
Z(T )

B(T )

)]
,
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admits the optimal solution for any ζ > 0 given by

Ẑ(t) =
E[B(T )|Ft]

E[B(T )]
. (4.13)

Remark 4.2.1. The proof of this theorem is beyond the scope of this thesis,
while it is clear that it generalizes the previous results. Indeed, if r(t) is
deterministic, then the process B(t) is also deterministic. Thus,

E[B(T )|F(t)] = E[B(T )] = B(T ),

which implies that Ẑ0(T ) = 1

Using the predictable representation theorem (Theorem 2.4.4.), we con-

clude that there exists an adapted process, θ̂0, such that
∫ T

0
θ̂2
0(u)du <

+∞ P − a.s. and

B(T )

E[B(T )]
= 1 +

∫ T

0

Ẑ(u)θ̂0(u)dW (u). (4.14)

4.3 The Optimal Second Component

In Section 4.2 we describe the optimal first component Ẑ0. Throughout this
section, we assume that Ẑ0 is known (i.e., equivalently θ̂0 is known), and we
will determine the optimal second component Ẑ1 as the solution to (4.4).

For any (Z0, Z1) ∈ D, the process R(t) = Z1(t)
Z0(t)P (t)

has the following
dynamic

R(t) =
z1

p
exp

{∫ t

0

(θ1(u) − θ0(u) − σ(u))dW (u)

+

∫ t

0

(
−1

2
θ2
1(u) +

1

2
θ2
0(u) + r(u) − b(u) +

1

2
σ2(u)

)
du

}
(4.15)
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Therefore, (Z0, Z1) ∈ Dv if and only if R(t) has finite variation. This is
equivalent to

θ1(t) = σ(t) + θ0(t). (4.16)

Then we obtain

R(t) =
z1

p
exp

{∫ t

0

(r(t) − b(t) − θ0(t)σ(t))du

}
. (4.17)

Hence if Z1 is such that (Ẑ0, Z1) ∈ Dv, then

Z1(t) = z1Et((θ̂0 + σ) ·W ) (4.18)

where Et

(
(θ̂0 + σ) ·W

)
is the Doléans-Dade exponential of

(
(θ̂0 + σ) ·W

)
and is given by

Et((θ̂0 + σ) ·W ) = exp

{∫ t

0

(θ̂0(u) + σ(u))dW (u) − 1

2

∫ t

0

(θ̂0(u) + σ(u))2du

}
(4.19)

Below is our main result that describes this second optimal component Ẑ1.

Theorem 4.3.1. Suppose that r(t) is a nonnegative process such that,

sup
0≤t≤T

∣∣∣∣∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

∣∣∣∣ ≤ ln

(
1 + λ

1 − µ

)
, P − a.s. (4.20)

Then the process

Ẑ1(t) = p(1 − µ) exp

{∥∥∥∥∥ sup
0≤s≤T

(∫ s

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

)−
∥∥∥∥∥
∞

}
Et((θ̂0 + σ) ·W )

(4.21)

where (C)− = −CI{C<0}, for C ∈ R, is a solution to (4.4).

Proof:
The proof of this theorem will be given first for two particular cases where
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our main idea of the proof will be illustrated.

Case1: We assume the following condition: For any t ∈ [0, T ],

0 ≤
∫ t

0

[
r(t) − b(t) − θ̂0(u)σ(u)

]
du ≤ ln

(
1 + λ

1 − µ

)
. (4.22)

Under the above assumption we will prove that

θ̂1 = θ̂0 + σ, and ẑ1 = p(1 − µ)

In fact,

R(t) =
z1

p
exp

{∫ t

0

(θ1(u) − θ̂0(u) − σ(u))dW (u)

+

∫ t

0

(
−1

2
θ2
1(u) +

1

2
θ̂2
0(u) + r(u) − b(u) +

1

2
σ2(u)

)
du

}
(4.23)

By taking θ1 = θ̂0 + σ, we obtain

1 − µ ≤ R(t) =
z1

p
exp

{∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

}
≤ 1 + λ.

Then, let K(t) denote
∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

p(1 − µ) exp {−K(t)} ≤ z1 ≤ p(1 + λ) exp {−K(t)} . (4.24)

Since K(t) is a nonnegative and non-decreasing process, and z1 ∈ [p(1 −
µ), P (1 + λ)], we get

p(1 − µ) exp {−K(t)} ≤ p(1 − µ) ≤ z1 ≤ p(1 + λ)exp {−K(t)} ≤ p(1 + λ).

The minimum of these z1 is achieved at ẑ1 given by

ẑ1 = p(1−µ)

(
⇔ Ẑ1(t) = p(1 − µ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

})
.

(4.25)
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Hence, (Ẑ0, Ẑ1) ∈ Dv and

E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
ζZ1(T )

]
= E

[
Ũ

(
ζ
Ẑ0(T )

B(T )

)]
+ yζ(1 − µ).

In fact, (4.25) is the solution to (4.4).

Case2: Here we assume the following condition: For any t ∈ [0, T ],

− ln

(
1 + λ

1 − µ

)
≤
∫ t

0

[
r(t) − b(t) − θ̂0(u)σ(u)

]
du ≤ 0. (4.26)

Similarly to Case 1, we obattain with K(t) =
∫ t

0

[
r(u)−b(u)− θ̂0(u)σ(u)

]
du,

p(1 − µ) exp {−K(t)} ≤ z1 ≤ p(1 + λ) exp {−K(t)} . (4.27)

Due to (4.26) and z1 ∈ [p(1 − µ), P (1 + λ)] we deduce,

p(1 − µ) ≤ p(1 − µ) exp {−K(t)} ≤ z1 ≤ p(1 + λ) ≤ p(1 + λ) exp {−K(t)} .

Since this is true for all scenarios and any t ∈ [0, T ], then the minimal value
of these z1 is achieved at ẑ1 given by

ẑ1 = p(1 − µ) exp

{∥∥∥∥ sup
0≤t≤T

(−K(t))

∥∥∥∥
∞

}
, (4.28)

we conclude for (Ẑ0, Ẑ1) ∈ Dv, and (4.28) is the solution to (4.4).

General Case: The previous two cases are particular cases of the current
case. Again, in order to have R(t) a finite variation process, we choose

θ̂1 = θ̂0 + σ. (4.29)
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Denote

χ+
t =

(∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

)+

, χ−
t =

(∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du

)−

.

ξ+
t =

∥∥∥∥ sup
0≤s≤t

χ+
s

∥∥∥∥
∞

, ξ−t =

∥∥∥∥ sup
0≤s≤t

χ−
s

∥∥∥∥
∞

where (C)+ = CI{C>0} and (C)− = −CI{C<0}, for any C ∈ R. Then, we
write

1 − µ ≤ R(t) =
z1

p
exp

{∫ t

0

(r(u) − b(u) − θ̂0(u)σ(u))du

}
=
z1

p
exp

{
χ+

t − χ−
t

}
≤ 1 + λ.

Then it is clear that

p(1 − µ) exp
{
χ−

t − χ+
t

}
≤ z1 ≤ p(1 + λ) exp

{
χ−

t − χ+
t

}
From (4.20), we derive

− ln

(
1 + λ

1 − µ

)
≤ −ξ+

T ≤ −ξ+
t , ξ−t ≤ ξ−T ≤ ln

(
1 + λ

1 − µ

)
(4.30)

Let Ω−
t , Ω+

t denote for t ∈ [0, T ]

Ω−
t = {ω ∈ Ωt :

∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du < 0} (4.31)

Ω+
t = {ω ∈ Ωt :

∫ t

0

[
r(u) − b(u) − θ̂0(u)σ(u)

]
du ≥ 0} (4.32)

where Ωt = Ω−
t ∪ Ω+

t . (4.33)

For any ω ∈ Ω+
t , it is clear

p(1 − µ) exp
{
−χ+

t

}
≤ p(1 − µ) ≤ z1 ≤ p(1 + λ) exp

{
−χ+

t

}
≤ p(1 + λ)

(4.34)
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Then we can choose z1 = p(1 − µ). Then (Ẑ0, Ẑ1) is optimal, where

Ẑ1(t) = p(1 − µ) exp

{∫ t

0

(θ̂0(u) + σ(u))dW (u) − 1

2

∫ t

0

(θ̂0 + σ(u))2du

}
.

For any ω ∈ Ω−
t , it is clear

p(1 − µ) ≤ p(1 − µ) exp
{
χ−

t

}
≤ z1 ≤ p(1 + λ) ≤ p(1 + λ) exp

{
χ−

t

}
(4.35)

From (4.30), we can choose z1 = p(1−µ) exp{ξ−T }. Then (Ẑ0, Ẑ1) is optimal,
where

Ẑ1(t) = p(1 − µ) exp{ξ−T } exp

{∫ t

0

(θ̂0(u) + σ(u))dW (u) − 1

2

∫ t

0

(θ̂0 + σ(u))2du

}
.

Remark 4.3.1. Professor Choulli thinks that a slight modification of the
solution obtained in Theorem 4.3.1 solves the more general case where r(t)
is only bounded, i.e., the assumption (4.20) is not necessary. The more
general solution is beyond the scope of this thesis, so it is remained as an
open question.

4.4 Cvitanic-Karatzas’ examples: comparison

We will check whether our optimal solution in Sections 4.2 and 4.4, matches
the particular cases considered in Cvitanic and Karatzas (1996).

Example 4.4.1. (Example 6.1 in Cvitanic and Karatzas (1996))
In Example 6.1, Cvitanic and Karatzas assume the condition that

y = 0, r(t) is deterministic. (4.36)

From Proposition 4.2.2., the condition ”r(t) is deterministic” leads to the
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constant optimal first component

Ẑ0(t) ≡ 1, equivalently θ̂0(t) ≡ 0. (4.37)

Furthermore Proposition 4.2.1., and the condition ”y = 0” leads to

Ṽ (ζ; 0) = inf
(Z0, Z1)∈D

E

[
Ũ

(
ζ
Z0(T )

B(T )

)]
= Ũ

(
ζ

B(T )

)
.

Thus, our result coincides with that of Cvitanic and Karatzas (1996).

The authors (Cvitanic and Karatzas (1996)) also stated that under the con-
ditions (4.36) the solution to the dual problem is,

Ẑ1(0) = p(1 + λ), θ̂1(t) ≡ σ(t), θ̂0 ≡ 0, (4.38)

if and only if

0 ≤
∫ t

0

[b(s) − r(s)]ds ≤ ln

(
1 + λ

1 − µ

)
. (4.39)

To see that this result is a particular case of our result, we apply Proposition
4.2.1. or Theorem 4.2.1. under the assumption that r(t) is deterministic and
we conclude that

θ̂0 ≡ 0.

Then notice that the rest of the proof follows immediately from our Theorem
4.3.1., and the fact that (4.39) is a stronger condition than our condition
(4.20). Thus, under (4.39), we get

θ̂1(t) = θ̂0(t) + σ(t) = 0 + σ(t) = σ(t)

Ẑ1(t) = p(1 − µ) exp

{∥∥∥∥∫ T

0

[
r(s) − b(s)

]−
ds

∥∥∥∥
∞

}
Et((0 + σ) ·W )

= p(1 − µ) exp

{
ln

(
1 + λ

1 − µ

)}
Et(σ ·W )

= p(1 + λ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

}
Ẑ1(0) = p(1 + λ)Et=0(σ ·W ) = p(1 + λ)
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Hence, this proves that our results generalize this case of Cvitanic and
Karatzas (1996).

Example 4.4.2. (Example 6.2 in Cvitanic and Karatzas (1996))
The conditions under which Cvitanic and Karatzas work in their example
consist of assuming

r(t) is deterministic, r(t) ≡ b(t).

Thus if we assume these conditions on our results, then by using Proposition
4.2.1., we calculate that

Ẑ0(t) = 1, equivalently θ̂0 ≡ 0

This resulting equation (i.e., θ̂0 ≡ 0) combined with r(t) = b(t) implies that
(4.20) holds. Then, Theorem 4.4.1. allows us to claim that

Ẑ1(t) = p(1 − µ) exp{0}Et(σ ·W )

= p(1 − µ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

}
This optimal pair (Ẑ0, Ẑ1) matches the result in Cvitanic and Karatzas
(1996).

Example 4.4.3. (Example 6.3 in Cvitanic and Karatzas (1996))
Cvitanic-Karatzas’ conditions are

b(t) ≡ r(t), U(x) = lnx.

This case can be obviously categorized as a particular case of our results. The
calculation of Ẑ0 ≡ 1 is given by Proposition 4.2.2. without the assumption

b(t) ≡ r(t).

The equation Ẑ0 ≡ 1 is equivalent to θ̂0 ≡ 0, and by combining this equality
together with the assumption b(t) = r(t), we deduce that our assumption
(4.20) is fulfilled. Therefore Theorem 4.4.1. gives us Ẑ1(T ) through the
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equation (4.21). Since b(t) ≡ r(t) and θ̂0 ≡ 0, we get

Ẑ0(t) = 1

Ẑ1(t) = p(1 − µ) exp

{∫ t

0

σ(u)dW (u) − 1

2

∫ t

0

σ2(u)du

}
,

This optimal pair (Ẑ0, Ẑ1) coincides with the one proposed by Cvitanic and
Karatzas (1996) for this case. This proves that our results generalize those
of Cvitanic and Karatzas (1996).

In this chapter we observe the following. From Proposition 4.2.1. if the
risk-free interest rate r(t) is deterministic, then

inf
(Z0, Z1)∈D

{the Dual Problem} ∼ inf
(Z0, Z1)∈Dv

{the Dual Problem}.

From Proposition 4.2.1. if the risk-free interest rate r(t) is a bounded process
and consider the logarithm utility function, i.e., U(x) = ln x, then

inf
(Z0, Z1)∈D

{the Dual Problem} ∼ inf
(Z0, Z1)∈Dv

{the Dual Problem}.
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Chapter 5

Exponential Utility
Maximization

This chapter represents our second contribution in this topic through exten-
sion of Cvitanic and Karatzas (1996) to the exponential utility in one hand.
On the other hand, the majority of our proofs are original due to the speci-
ficity of the exponential utility. Precisely in this chapter, we will solve the
exponential utility maximization problem and show that Cvitanic-Karatzas’
results remain true in this case. Furthermore, we will prove that some of the
Cvitanic-Karatzas assumptions are in fact unnecessary in our case and then
always hold for the model described in Section 3.

Through out this chapter, we assume there exists (Ẑ0, Ẑ1) ∈ D solution to
the dual problem (3.23) for any ζ ∈ (0, +∞), and Ṽ (ζ; y) < +∞, ∀ y > 0.

5.1 Preliminary Results

In this section we focus on the exponential utility

U(x) = 1 − e−x. (5.1)

The reason why we pick up this utility function is that this does not satisfy
the Inada condition defined in (2.4). We start by giving some preliminary
calculations that will be useful in what follows. For ζ > 0

I (ζ) = − ln ζ, Ũ(ζ) = 1 − ζ + ζ ln ζ. (5.2)
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Below, we will establish the dual problem for our exponential case. Let ζ > 0
and x, y > 0. Then,

Ṽ (ζ; y) = inf
(Z0,Z1)∈D

E

[
Ũ

(
ζ
Z0(T )

B(T )

)
+
y

p
ζZ1(T )

]
= inf

(Z0,Z1)∈D
E

[
1 − ζ

Z0(T )

B(T )
+ ζ

Z0(T )

B(T )
ln

(
ζ
Z0(T )

B(T )

)
+
y

p
ζZ1(T )

]
.

(5.3)

Proposition 5.1.1. Let (Ẑ0, Ẑ1) ∈ D is the optimal solution to (5.3) for
any ζ > 0. Then, for any (Z0, Z1) ∈ D and any ζ ∈ (0, ∞), we have

E

[
Z0(T )

B(T )
ln

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
Z1(T )

]
≥ E

[
Ẑ0(T )

B(T )
ln

(
ζ
Ẑ0(T )

B(T )

)
+
y

p
Ẑ1(T )

]
(5.4)

The proof of this proposition requires intermediate remarks which are inter-
esting in themselves. To state these results, we first introduce the following
notations. For any x ∈ [0, 1] and any (Z0, Z1) ∈ D, such that

E

[
Ũ

(
ζ
Z0(T )

B(T )

)
+
y

p
ζZ1(T )

]
< +∞,

we denote

Zx
0 := xZ0 + (1 − x)Ẑ0, Zx

1 := xZ1 + (1 − x)Ẑ1. (5.5)

Then, the derivatives of Zx
0 , Z

x
1 with respect to x ∈ (0, 1) exist and are given

by

d

dx

(
Zx

0

B

)
(t) =

Z0(t) − Ẑ0(t)

B(t)
,

dZx
1

dx
(t) = Z1(t) − Ẑ1(t). (5.6)
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In the remaining part of this chapter, we consider

ϕ(x) = Ũ

(
ζ
Zx

0 (T )

B(T )

)
+ ζ

y

p
Zx

1 (T ), 0 ≤ x ≤ 1. (5.7)

Proposition 5.1.2. For almost all ω ∈ Ω, the function x ∈ [0, 1] → ϕ(x),
is convex. As a result, the function

Φ : x ∈ (0, 1] −→ Φ(x) :=
ϕ(x) − ϕ(0)

x
(5.8)

is nondecreasing.

Proof:
For u > 0, we get

Ũ(u) = 1 − u+ u lnu

Ũ ′(u) = lnu


< 0 0 < u < 1
= 0 u = 1
> 0 1 < u

Ũ ′′(u) =
1

u
> 0.

We easily observe the following equality for 0 ≤ u < v ≤ 1 and 0 ≤ s ≤ 1,

Z
su+(1−s)v
i (T ) = ((su+ (1 − s)v)Zi(T ) + (1 − (su+ (1 − s)v))Ẑi(T )

= s(uZi(T ) + (1 − u)Ẑi(T )) + (1 − s)(vZi(T ) + (1 − v)Ẑi(T ))

= sZu
i (T ) + (1 − s)Zv

i (T ) > 0 (5.9)

Hence, we know su+ (1 − s)v > 0

Ũ

(
ζ
Z

su+(1−s)v
0 (T )

B(T )

)
= Ũ

(
s

(
ζ
Zu

0 (T )

B(T )

)
+ (1 − s)

(
ζ
Zv

0 (T )

B(T )

))
≤ sŨ

(
ζ
Zu

0 (T )

B(T )

)
+ (1 − s)Ũ

(
ζ
Zv

0 (T )

B(T )

)
(5.10)
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Moreover, from (5.9)

y

p
ζZ

su+(1−s)v
1 (T ) = s

y

p
ζZu

1 (T ) + (1 − s)
y

p
ζZv

1 (T ) > 0

Thus,

ϕ(su+ (1 − s)v) = Ũ

(
s

(
ζ
Zu

0 (T )

B(T )

)
+ (1 − s)

(
ζ
Zv

0 (T )

B(T )

))
+s

y

p
ζZu

1 (T ) + (1 − s)
y

p
ζZv

1 (T )

≤ sŨ

(
ζ
Zu

0 (T )

B(T )

)
+ (1 − s)Ũ

(
ζ
Zv

0 (T )

B(T )

)
+s

y

p
ζZu

1 (T ) + (1 − s)
y

p
ζZv

1 (T )

= sϕ(u) + (1 − s)ϕ(v). (5.11)

This proves that ϕ(x) is a convex function. Due to this convexity, for any
x ∈ (0, 1)

ϕ(0) − ϕ(x) ≥ −xϕ′(x),

which is equivalent to

xϕ′(x) − ϕ(x) + ϕ(0) ≥ 0.

Then, the derivative of Φ satisfies

Φ′(x) =
xϕ′(x) − (ϕ(x) − ϕ(0))

x2
≥ 0.

Thus, Φ is nondecreasing. This completes the proof of the proposition.

Lemma 5.1.1. The family of a random variable
{

ϕ(x)−ϕ(0)
x

, 0 < x ≤ 1
}

is

uniformly integrable.

Proof:
Thanks to the previous proposition, we deduce that

for x ∈ (0, 1],
ϕ(x) − ϕ(0)

x
≤ ϕ(1) − ϕ(0). (5.12)
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Thus, the uniformly integrability of
{

ϕ(x)−ϕ(0)
x

, 0 < x ≤ 1
}

follows from find-

ing a lower bound of this random variable. The lower bound may be a random
variable that should be integrable but should not depend on x ∈ (0, 1].

ϕ(x) − ϕ(0)

x
=

1

x

(
Ũ

(
ζ
Zx

0 (T )

B(T )

)
+ ζ

y

p
Zx

1 (T ) − Ũ

(
ζ
Ẑ0(T )

B(T )

)
− ζ

y

p
Ẑ1(T )

)

=
1

x

(
− ζ

B(T )
(Zx

0 (T ) − Ẑ0(T )) +
y

p
ζ(Zx

1 (T ) − Ẑ1(T ))

)
+

ζ

xB(T )

(
Zx

0 (T ) ln

(
ζ
Zx

0 (T )

B(T )

)
− Ẑ0(T ) ln

(
ζ
Ẑ0(T )

B(T )

))

=
ζ

B(T )
(Ẑ0(T ) − Z0(T )) +

y

p
ζ(Z1(T ) − Ẑ1(T ))

+
ζ

xB(T )

[
Zx

0 (T ) ln

(
ζZx

0 (T )

B(T )

)
− Ẑ0(T ) ln

(
ζẐ0(T )

B(T )

)]

=
ζ

B(T )
(Ẑ0(T ) − Z0(T )) +

y

p
ζ(Z1(T ) − Ẑ1(T ))

+
ζ

xB(T )
Ẑ0(T ) ln

(
ζZx

0 (T )

B(T )

B(T )

ζẐ0(T )

)

+
ζ

xB(T )
x(Z0(T ) − Ẑ0(T )) ln

(
ζZx

0 (T )

B(T )

)
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ϕ(x) − ϕ(0)

x
=

ζ

xB(T )
x(Ẑ0(T ) − Z0(T )) +

y

p
ζ(Z1(T ) − Ẑ1(T ))

+
ζ

xB(T )
Ẑ0(T ) ln

(
Ẑ0(T ) + x(Z0(T ) − Ẑ0(T ))

Ẑ0(T )

)

+
ζ

̸ xB(T )
̸ x(Z0(T ) − Ẑ0(T )) ln

(
ζ

B(T )
Ẑ0(T )

)
+

ζ

xB(T )
x(Z0(T ) − Ẑ0(T )) ln

(
Ẑ0(T ) + x(Z0(T ) − Ẑ0(T ))

Ẑ0(T )

)

=
ζ

B(T )
(Z0(T ) − Ẑ0(T )) ln

(
ζ

B(T )
Ẑ0(T )

)
+
y

p
ζ(Z1(T ) − Ẑ1(T ))

+
ζ

xB(T )
Ẑ0(T ) ln

(
1 + x

Z0(T ) − Ẑ0(T )

Ẑ0(T )

)

+
ζ

xB(T )
x(Ẑ0(T ) − Z0(T ))

[
−1 + ln

(
1 + x

Z0(T ) − Ẑ0(T )

Ẑ0(T )

)]

DenoteX = Z0(T )−Ẑ0(T )

Ẑ0(T )

Y = ζ
B(T )

(Z0(T ) − Ẑ0(T )) ln
(

ζ
B(T )

Ẑ0(T )
)

+ y
p
ζ(Z1(T ) − Ẑ1(T ))

(5.13)

Since Z0, Ẑ0 > 0, we get Z0 − Ẑ0 > −Ẑ0 or equivalently Z0−Ẑ0

Ẑ0
= X > −1.

ϕ(x) − ϕ(0)

x
= Y +

ζ

xB(T )
Ẑ0(T ) ln (1 + xX) +

ζ

xB(T )
Ẑ0(T )xX [−1 + ln (1 + xX)]

= Y +
ζ

xB(T )
Ẑ0(T ) [−xX + (1 + xX) ln(1 + xX)] (5.14)

Since for any a > −1, (1 + a) ln(1 + a) − a ≥ 0, we deduce

−xX + (1 + xX) ln(1 + xX) ≥ 0. (5.15)
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This inequality combined with (5.14) leads to

ϕ(x) − ϕ(0)

x
≥ Y.

Therefore, we summarize

Y ≤ ϕ(x) − ϕ(0)

x
≤ ϕ(1) − ϕ(0).

Due to the integrability assumption on the pair (Z0, Z1), we deduce that Y
and {ϕ(1) − ϕ(0)} are integrable random variables. Thus, we conclude that
ϕ(x)−ϕ(0)

x
is uniformly integrable. This completes the proof of the lemma.

Proof of Proposition 5.1.1.
We consider the following function for x ∈ [0, 1]

ψ(x) := E

[
Ũ

(
ζ
Zx

0 (T )

B(T )

)
+
y

p
ζZx

1 (T )

]
. (5.16)

It is clear that ψ(0) = Ṽ (ζ; y), and since for any x ∈ [0, 1], (Zx
0 , Z

x
1 ) ∈ D,

we conclude that
ψ(x) ≥ ψ(0). (5.17)

From Lemma 5.1.1., and (5.17), it is deduced that:

ψ′(+0) = lim
x→+0

ψ(x) − ψ(0)

x
= lim

x→+0
E

[
ϕ(x) − ϕ(0)

x

]
= E

[
lim

x→+0

ϕ(x) − ϕ(0)

x

]
= E[ϕ′(+0)] ≥ 0. (5.18)
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Hence, (5.6) and by chain rule,

ψ′(+0) = E

[
Ũ ′
(
ζ
Zx

0 (T )

B(T )

∣∣∣∣
x=+0

)
ζ
d

dx

(
Zx

0

B

)
(T ) +

y

p
ζ
dZx

1

x
(T )

]
= E

[
ln

(
ζ
Ẑ0(T )

B(T )

)
ζ

(
Z0(T ) − Ẑ0(T )

B(T )

)
+
y

p
ζ(Z1(t) − Ẑ1(T ))

]

= E

[{
ζ ln

(
ζ
Ẑ0(T )

B(T )

)
Z0(T )

B(T )
+
y

p
ζZ1(T )

}

−

{
ζ ln

(
ζ
Ẑ0(T )

B(T )

)
Ẑ0(T )

B(T )
+
y

p
ζẐ1(T )

}]
≥ 0

Thus,

E

[
ln

(
ζ
Ẑ0(T )

B(T )

)
Z0(T )

B(T )
+
y

p
Z1(T )

]
≥ E

[
ln

(
ζ
Ẑ0(T )

B(T )

)
Ẑ0(T )

B(T )
+
y

p
Ẑ1(T )

]
(5.19)

This ends the proof of Proposition 5.1.1.

Proposition 5.1.3. Let (Ẑ0, Ẑ1) ∈ D be the optimal solution to the dual
problem (5.3) for any ζ > 0. Suppose ζ̂ denotes

ζ̂ = exp

−

(
E

[
Ẑ0(T )

B(T )

])−1(
x+

y

p
E[Ẑ1(T )] + E

[
Ẑ0(T )

B(T )
ln

(
Ẑ0(T )

B(T )

)]) ,

(5.20)

and Ĉ0, Ĉ1 are given by

Ĉ0 = − ln

(
ζ̂
Ẑ0(T )

B(T )

)
, Ĉ1 = 0. (5.21)

Then, the following assertions hold.
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(1) The value function of the dual problem is expressed by

Ṽ (ζ̂; y) = E

[
1 − ζ̂

Ẑ0(T )

B(T )

]
− ζ̂x. (5.22)

(2) The hedging price h(Ĉ0, Ĉ1; y) defined in (3.26) of (Ĉ0, Ĉ1) coincides
with x, i.e.,

x = sup
(Z0, Z1)∈D

E

[
Z0(T )

B(T )
Ĉ0 + Z1(T )

(
Ĉ1

S(T )
− y

p

)]
. (5.23)

Proof:
From (5.20) and (5.21), we calculate

E

[
Ẑ0(T )

B(T )
Ĉ0

]
= −E

[
Ẑ0(T )

B(T )
ln

(
ζ̂
Ẑ0(T )

B(T )

)]
= x+

y

p
E[Ẑ1(T )] = x+

y

p
ẑ1.

(5.24)
(1) From (5.3) and (Ẑ0, Ẑ1) ∈ D is the optimal solution,

Ṽ (ζ̂; y) = inf
(Z0,Z1)∈D

E

[
1 − ζ̂

Z0(T )

B(T )
+ ζ̂

Z0(T )

B(T )
ln

(
ζ̂
Z0(T )

B(T )

)
+
y

p
ζ̂Z1(T )

]
= E

[
1 − ζ̂

Ẑ0(T )

B(T )
+ ζ̂

Ẑ0(T )

B(T )
ln

(
ζ̂
Ẑ0(T )

B(T )

)
+
y

p
ζ̂Ẑ1(T )

]

= E

[
1 − ζ̂

Ẑ0(T )

B(T )
+ ζ̂

(
Ẑ0(T )

B(T )
ln

(
ζ̂
Ẑ0(T )

B(T )

)
+
y

p
Ẑ1(T )

)]
.

Then by multiplying both sides of (5.24) with ζ̂, we obtain

Ṽ (ζ̂; y) = E

[
1 − ζ̂

Ẑ0(T )

B(T )
+ ζ̂(−x)

]

= E

[
1 − ζ̂

Ẑ0(T )

B(T )

]
− ζ̂x. (5.25)
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(2) From (3.27), we have

h(Ĉ0, Ĉ1; y) = sup
(Z0, Z1)∈D

E

[
Z0(T )

B(T )
Ĉ0 + Z1(T )

(
Ĉ1

S(T )
− y

p

)]

= sup
(Z0, Z1)∈D

E

[
Z0(T )

B(T )

(
− ln

(
ζ̂
Ẑ0(T )

B(T )

))
− y

p
Z1(T )

]

= − inf
(Z0, Z1)∈D

E

[
ln

(
ζ̂
Ẑ0(T )

B(T )

)
Z0(T )

B(T )
+
y

p
Z1(T )

]

Thanks to Proposition 5.1.1., we deduce that the infimum is attained by
(Ẑ0, Ẑ1). This combined with (5.24) leads to

h(Ĉ0, Ĉ1; y) = −E

[
ln

(
ζ̂
Ẑ0(T )

B(T )

)
Ẑ0(T )

B(T )
+
y

p
Ẑ1(T )

]
= x (5.26)

This ends the proof of the proposition.

5.2 Solution to the Primal Problem

Here we need to define A(x, y), the admissible class of (L, M) as promised
in Chapter 3, Section 3.2.

Definition 5.2.1. A strategy (L, M) is said to be admissible if

E

[
sup

0≤t≤T
exp {−X+(t)}

]
< +∞, (5.27)

where (X+(t))0≤t≤T is the process defined in (3.11). The set of all admissible
strategies with the initial asset of (x, y) in the bank account and the stock
respectively will be denoted by A(x, y).
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Assumption 5.2.1. There exists a strategy (L̂, M̂) ∈ A(x, y) such that,{
X̂(T ) + (1 − µ)Ŷ (T ) ≥ Ĉ0

X̂(T ) + (1 + λ)Ŷ (T ) ≥ Ĉ0

(5.28)

Below is our main result in this chapter.

Theorem 5.2.1. Suppose Assumption 5.2.1. is satisfied. Then the following
assertions hold.

1) The strategy (L̂, M̂) obtained from Assumption 5.2.1., is the optimal
solution to the primal problem (3.12).

2) The optimal terminal wealth is given by

X̂(T+) := X̂(T ) +

{
(1 + λ)Ŷ (T ) if Ŷ (T ) ≤ 0

(1 − µ)Ŷ (T ) if Ŷ (T ) > 0
= I

(
ζ̂
Ẑ0(T )

B(T )

)
= Ĉ0

3) The process L̂ is flat off the set {0 ≤ t ≤ T | R̂(t) = 1 + λ}.

4) The process M̂ is flat off the set {0 ≤ t ≤ T | R̂(t) = 1 − µ}.

5) The process Ẑ0(X̂+R̂Ŷ )
B

is true martingale, that is R̂ = Ẑ1

Ẑ0P
.

6) The following equation holds.

Ṽ (ζ̂; y) = V (x; y) − xζ̂ < +∞ (5.29)

Proof:
Due to (5.28), we obtain

X̂(T ) + R̂(T )Ŷ (T ) ≥ X̂(T+) ≥ Ĉ0 (5.30)

From Proposition 3.2.1. and admissibility of (L̂, M̂), Ẑ0(t)(X̂(t)+R̂(t)Ŷ (t))
B(T )

is a
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supermartingale. Then, we get

E

[
Ẑ0(T )

B(T )
Ĉ0

]
≤ E

[
Ẑ0(T )

B(T )
(X̂(T ) + R̂(T )Ŷ (T ))

]
≤ x+

y

p
ẑ1.

Thanks to (5.24), we obtain

E

[
Ẑ0(T )

B(T )
Ĉ0

]
= E

[
Ẑ0(T )

B(T )
(X̂(T ) + R̂(T )Ŷ (T ))

]
= x+

y

p
ẑ1. (5.31)

As a result, by combining (5.30) and (5.31),

Ĉ0 = X̂(T ) + R̂(T )Ŷ (T ) = X̂(T+), (5.32)

in one hand and thus the assertion (2) of the theorem is proved. On the other

hand, (5.31) implies that Ẑ0(X̂+R̂Ŷ )
B

is a true martingale, and the assertion
(5) of the theorem follows. Hence this implies that

((1 + λ) − R̂) · L̂ = (R̂− (1 − µ)) · M̂ ≡ 0. (5.33)

These two equations lead to the assertions (3) and (4) of the theorem.
Let (L, M) ∈ A(x y) and X, Y be their value processes. Then,

X(T+) = X(T ) + f(Y (T )) ≤ X(T ) + R̂(T )Y (T ).

Since U(x) = 1 − e−x is increasing, and U(x) ≤ Ũ(x) + xz, we get

U(X(T+)) ≤ U(X(T ) + R̂(T )Y (T ))

≤ Ũ

(
ζ̂
Ẑ0(T )

B(T )

)
+ ζ̂

Ẑ0(T )

B(T )
(X(T ) + R̂(T )Y (T ) (5.34)

From Proposition 3.2.1. and admissibility of (L, M), Ẑ0(t)(X(t)+R̂(t)Y (t))
B(T )

is a
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supermartingale. Then, we get

E[U(X(T+))] ≤ E

[
Ũ

(
ζ̂
Ẑ0(T )

B(T )

)]
+ ζ̂

(
x+

y

p
ẑ1

)

= E

[
Ũ

(
ζ̂
Ẑ0(T )

B(T )

)]
+ E

[
ζ̂

ˆZ0(T )

B(T )
(X̂(T ) + R̂(T )Ŷ (T ))

]

= E

[
Ũ

(
ζ̂
Ẑ0(T )

B(T )

)]
+ E

[
ζ̂
Ẑ0(T )

B(T )
Ĉ0

]
= E

[
U(Ĉ0)

]
(5.35)

The last equality is due to Ũ(ζ) = U(I(ζ)) − ζI(ζ) defined in (3.22).
Then we get

E[U(X̂(T+))] ≤ sup
(L, M)∈A(x, y)

E[U(X(T+))] ≤ E[U(Ĉ0)] ≤ E[U(X̂(T+))]

(5.36)
As a result, (L̂, M̂) is the optimal solution to the primal problem. This
proves the assertion (1).
From (5.22), we deduce that

V (x, y) = E[U(X̂(T+))] = E[U(Ĉ0)]

= E[1 − exp{−Ĉ0}] = 1 − E

[
ζ̂
Ẑ0(T )

B(T )

]
= Ṽ (ζ̂; y) + ζ̂x

This proves the assertion (6). Hence the proof of the theorem is achieved.
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