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Pre-processing spectrogram parameters improve the accuracy of 

bioacoustic classification using convolutional neural networks 

A variety of automated classification approaches have been developed to extract 

species detection information from large bioacoustic datasets. Convolutional 

neural networks (CNNs) are an image classification technique that can be 

operated on the spectrogram of an audio recording. Using CNNs for bioacoustic 

classification negates the need for sophisticated feature extraction techniques; 

however, CNNs may be sensitive to the parameters used to create spectrograms. 

We used AlexNet to classify spectrograms of audio clips from 19 species of 

birdsong. We trained and tested AlexNet with the spectrograms and observed that 

mean classification accuracy ranged from 88.9% to 96.9% depending on the 

parameters used to create the spectrogram. Classification accuracy was highest 

when we used a composite of four spectrograms with different combinations of 

scales for frequency and amplitude. Classification accuracy also varied 

depending on the FFT window size of the spectrogram. Overall, our results 

suggest that optimal spectrogram parameters for CNN classification may differ 

from those used for other human visualization or other classification approaches. 

We suggest that if spectrogram parameters are appropriately selected, 

classification accuracy similar to current state-of-the-art methods can be achieved 

using off-the-shelf software and without the need to extract domain-specific 

features. 

Keywords: autonomous recording unit; birdsong; classification; signal 

processing; machine learning; spectrogram 

Introduction 

The need for rapid and accurate classification of acoustic sounds is increasing as 

ecologists use new recording technology to collect acoustic data over extended periods 

of time. Bioacoustic sampling with autonomous recording units (ARUs) is increasingly 

popular because it facilitates collection of a permanent time-series record of acoustic 

diversity and can be easily scaled over large areas. Recordings collected by ARUs can 

be used for a variety of ecological purposes, including biodiversity assessment (Sueur 



 

 

and Farina 2015), monitoring ecosystem disturbance (Deichmann et al. 2017), 

monitoring population trends (Furnas and Callas 2015; Jeliazkov et al. 2016), 

behavioural studies (Ehnes and Foote 2014), modelling habitat associations (Campos-

Cerqueira and Aide 2016), studying phenology (Willacy et al. 2015), detecting rare or 

inconspicuous species (Sidie-Slettedahl et al. 2015), and monitoring range shifts 

(Potamitis et al. 2014). However, audio recordings must be processed to extract species 

data, which can be time-consuming if large volumes of acoustic data are collected 

(Shonfield and Bayne 2017). 

A multitude of automated species classification approaches have been developed 

to improve the efficiency of processing audio recordings. Researchers have built 

classifiers for bird (reviewed by Priyardarshani et al. 2018), bat (Armitage and Ober 

2010; Walters et al. 2012), frog (reviewed by Xie et al. 2016), fish (Noda et al. 2016), 

cricket (Brandes et al. 2006; Jaiswara et al. 2013), bee (Gradišek et al. 2016), and 

monkey species (Heinicke et al. 2015; Turesson et al. 2016) from audio recordings. 

Extracting species detection information from full length audio recordings has four 

general steps: signal detection, signal pre-processing, feature extraction, and 

classification (Xie et al. 2016; Priyadarshani et al. 2018). We focus here on the latter 

three steps that occur after acoustic signals have been separated from the background 

noise of a recording. Signal pre-processing can involve transformation to a visual 

representation (e.g., spectrogram), filtering of unwanted background noise, and 

segmentation of the acoustic syllables for further processing. The next step, feature 

extraction, computes feature values for each of the segmented syllables. Commonly 

used features in species classification are Mel Frequency Cepstral Coefficients (Cheng 

et al. 2010), time and frequency domain features such as signal bandwidth or spectral 

centroid (Huang et al. 2009), time-frequency features such as minimum and maximum 



 

 

frequency (Acevedo et al. 2009), or specialized approaches such as ridge-based features 

(Dong et al. 2015; Xie et al. 2015). The final step, classification, compares those feature 

values to the feature values of labelled training data. Machine learning techniques are 

most commonly used for comparison, including Hidden Markov models (Chu and 

Blumstein 2011), k-nearest neighbour (Huang et al. 2009; Bang and Rege 2014), 

support vector machines (Acevedo et al. 2009; Armitage and Ober 2010), and random 

forests (Armitage and Ober, 2010; Noda et al. 2016). Non-machine learning approaches 

including band-limited energy detection (Charif et al. 2010) and cross-correlation (Katz 

et al. 2016) have also been employed. 

Recent state-of-the-art approaches to automated species classification include 

image classification techniques such as convolutional neural networks (CNNs) that 

operate directly on the spectrogram (Stowell et al. 2016; Stowell et al. 2018). CNNs are 

artificial neural networks that combine convolutional, max pooling, and fully connected 

layers within a deep (i.e., multilayer) artificial neural network. A convolutional layer 

consists of a collection of kernels, which allow the network to detect arbitrary patterns 

in the spectrographic image that correspond to arbitrary patterns of sound in the audio 

recording. When such a pattern is detected, its location within the image is recorded by 

activating corresponding elements in the output of the convolutional layer. Next, the 

max pooling layers aggregate the activations in a convolutional layer into a smaller 

image, which helps make pattern detection less location sensitive. Eventually a visual 

pattern detected by a kernel anywhere in the spectrographic image can carry its 

activation all the way to the appropriate output of the CNN and predict the classification 

of the input species. 

CNNs were first applied to audio recordings for automatic speech recognition 

(Deng et al. 2013) and have since been used to classify bird and whale species from 



 

 

acoustic recordings with high accuracy (Cakir et al. 2017; Salamon and Bello 2017; 

Stowell et al. 2018). One of the reasons CNNs have been proposed for bioacoustic 

classification is that the convolutional layers can render the network location invariant 

(Cakir et al. 2017; Salamon and Bello 2017). In other words, a CNN should be able to 

accurately classify a pattern regardless of where it is located within the spectrographic 

image (Bunne et al. 2018), which means the algorithm can be robust to variation in the 

timing and frequency of the target acoustic signal within a recording. 

An additional advantage of CNNs is that they remove the need to develop 

sophisticated feature extraction techniques because they operate on the spectrogram; 

however, this dependency on the spectrographic image suggests the accuracy of 

bioacoustic classification with CNNs could be particularly sensitive to the pre-

processing parameters used to compute the spectrogram. In this paper, we assess the 

effect of spectrogram parameters on the accuracy of bioacoustic classification using a 

CNN. To make our methods accessible to ecologists, we did not build our own custom 

CNN. Instead, we used a pre-trained out-of-the-box network available in Matlab, 

AlexNet (Krizhevsky et al. 2012), to classify the primary vocalizations of 19 species of 

boreal bird. We tested the effect of five spectrogram parameters on the classification 

accuracy of AlexNet: frequency scale, amplitude scale, number of spectrograms, FFT 

window length (ms), and frequency resolution. We chose our spectrogram parameters 

and their settings independent of prior assumptions because the classification 

mechanism of CNNs remains poorly understood and we did not want to assume it 

would be optimized by existing conventions for human visualization or other 

classification approaches. Finally, we compared the species-level classification 

accuracy of AlexNet to a simple, frequency-based classifier. 



 

 

Methods 

Acoustic Data Collection 

We were interested in understanding whether AlexNet could differentiate between 

species of differing vocalization frequency because the spatial invariance of CNNs 

could potentially apply to the frequency domain as well as the temporal domain (Bunne 

et al. 2018). We thus selected 19 species of bird for our acoustic dataset that had 

vocalizations of varying frequency (Table 1). Audio clips of the song or primary 

vocalization for each species were selected from the Bioacoustic Unit database 

(http://bioacoustic.abmi.ca). The Bioacoustic Unit database is a collection of 16-bit 

audio recordings collected in the boreal forest of Canada with Song Meter SM2+ 

recorders (Wildlife Acoustics, Concord, MA, USA), which are dual-channel recorders 

with omnidirectional microphones spaced 10” apart. Recordings were made with a 

sampling rate of 44.1 kHz, no high-pass filter, and a bit depth of 16. Vocalizations of 

the focal study species were identified from recordings during aural interpretation by 

expert human listeners. Each vocalization was then manually clipped from the full-

length recording with approximately 0.1 seconds of additional recording at the 

beginning and end of the vocalization using the program Audacity (Audacity Team, 

2018). For species with song repertoires, we used only the dominant song type. In total, 

we used 3048 WAV format audio clips (Table 1) of varying amplitudes, signal-to-noise 

ratios, and partial masking by other species’ vocalizations. 

Frequency Characterization 

We first characterized the dominant frequency of each of our 19 bird species. We used 

the warbleR package (Araya-Salas and Smith-Vidaurre 2016) in R (R Core Team, 2017) 

to extract 100 evenly spaced measurements of dominant frequency from the left channel 



 

 

of each test clip. To remove the influence of background noise produced by the audio 

recorders, we set a bandpass filter for each species following the maximum and 

minimum frequencies of the vocalization of each species as described in the Birds of 

North America online (Rodewald 2015; Table 1) and only extracted the dominant 

frequency of samples with amplitude above 30% mean frequency. We calculated the 

dominant frequency of each clip as the mean of the 100 measures of dominant 

frequency. We characterized each species by calculating the mean and standard 

deviation in dominant frequency across all clips for that species. 

Spectrogram Creation 

We converted each audio clip to a spectrogram in preparation for training and testing 

our classifier. Audio files were transformed into spectrograms by applying the Fast 

Fourier Transform (FFT), as introduced by Koenig et al. (1946). The FFT is a class of 

algorithms designed to maximize the speed of calculating the discrete Fourier 

transform, with the most common FFT algorithm requiring the number of discrete 

frequency points be a power of 2 (summarized in Fulop 2011). The discrete Fourier 

Transform, when applied to an audio sample of a predetermined length, calculates a 

spectrum of the sounds analyzed, which are expressed as amplitude (generally decibels) 

as a function of frequency (Hertz or cycles/second). A spectrogram is then created by 

plotting a series of spectra from the short-time (i.e., brief segments of the signal) 

discrete Fourier Transforms (discrete short-time Fourier transform; STFT). The 

spectrographic image resolution depends on window size and is a tradeoff between the 

time and frequency domains. For example, longer time windows provide increased 

spectral resolution (narrowband spectrogram) while shorter time windows provide 

increased temporal resolution (wideband spectrogram). 



 

 

We selected five spectrogram parameters to manipulate with no prior 

assumptions about discipline-specific spectrogram creation methods. 1. Frequency 

scale: we built spectrograms with a linear and a log frequency scale because we 

predicted that a log transformation of the frequency scale would improve classification 

accuracy by allowing for better discrimination of species that vocalize at low 

frequencies (Figure 1). 2. Amplitude scale: we built spectrograms with a dB and a log 

dB scale (i.e., log of the log) because we predicted that a log dB scale would improve 

the classification accuracy of AlexNet by allowing for better discrimination of the lower 

amplitude details in each clip (Figure 1). 3. Number of spectrograms: we built a 

composite image of multiple spectrograms with different combinations of the scales for 

amplitude and frequency because we predicted it would improve classification accuracy 

by allowing the network to pick the most useful information in the combination for each 

species (Figure 1). 4. FFT window length: we built spectrograms of varying window 

length (0.5, 1, 5, 10, 50, 100 ms; Figure 2) because window length affects both the 

temporal and frequency resolution of the spectrogram and we were interested in how 

this tradeoff affects classification accuracy. We predicted that classification accuracy 

would be highest for intermediate values of time window length, similar to those used to 

visualize birdsong (e.g., 10 ms). 5. Number of frequency segments: we built 

spectrograms of varying frequency resolution because CNNs are limited by pixel 

resolution input and we were interested in the effects of limiting this resolution. We 

independently manipulated the frequency resolution by dividing each discrete Fourier 

Transform into varying numbers of segments (10, 25, 50, 75, 113; Figure 2) and 

summing the amplitude within each segment. We predicted that more segments (i.e., 

higher frequency resolution) would improve the classification accuracy of AlexNet. 



 

 

We used a fully-crossed design to create spectrograms for every combination of 

our five parameters (150 sets of spectrograms in total). Each set contained a 

spectrogram for each of the 3048 audio clips in our dataset. We created spectrograms 

using a modified discrete STFT so that we could manipulate the selected parameters. 

First, we divided the WAV file up by the selected FFT window length and calculated 

the discrete Fourier Transform. For the log dB amplitude scale, we took the log of the 

amplitude values from the discrete Fourier Transform. We then allocated the amplitude 

values into the selected number of frequency segments and summed the values in each 

segment. For the log frequency scale, we spaced the frequencies contained in each 

frequency segment logarithmically. We converted each spectrogram to an RGB image 

with the jet colormap from MATLAB and 100 distinct colors. The amplitude scale was 

thus specific to each spectrogram, with blue indicating the minimum amplitude within 

that clip and red indicating the maximum amplitude within that clip. Finally, we 

bicubically resized each spectrogram to 227 pixels to 227 pixels to fit AlexNet’s image 

input requirements. All spectrograms were resized to this image size regardless of audio 

clip length. We created all spectrograms from the raw audio; we did not bandpass filter 

or implement pre-processing noise reduction to the signal. We averaged the two 

channels of the clip because the 10” distance between the microphones did not cause 

substantial differences in time of arrival. We used rectangular windowing and limited 

the frequency range between 0.1 to 10 kHz for all FFT transformations. All 

spectrograms were created in MATLAB using audioread, fft, colormapping, and 

imresize functions (The Mathworks Inc. 2017). 

Network Setup 

We used an out-of-the-box network called AlexNet (Krizhevsky et al. 2012) from the 

MATLAB neural network toolbox. AlexNet is a CNN that is comprised of 5 



 

 

convolutional layers, 3 max pooling layers, 3 fully connected layers, and 1 softmax 

layer (Appendix 1). AlexNet is pretrained on Imagenet (Deng et al. 2009), an open-

source image database, to classify a color image into one of 1000 categories. We then 

changed the last fully connected layer of the network from 1000 class outputs to 19 

class outputs; one for each of the selected bird species. We used a grid search to 

determine the best hyperparameters for the number of epochs (10, 50, 100, 200) and 

batch size (3, 5, 10, 50, 100).We fixed the  learning rate of 0.0001 because we have 

previously found it yields high test accuracy with reasonable training time for a variety 

of image classification tasks (unpublished data). We selected 50 epochs and a batch size 

of 5 as our hyperparameters for all subsequent experiments because the combination 

yielded a high average test accuracy (96.4%) with reasonable training time (40 minutes 

on Nvidia GTX Titan, Maxwell architecture). 

Network Training and Testing 

We trained and tested AlexNet separately on each of the 150 spectrogram sets using the 

stochastic gradient descent algorithm implemented by MATLAB’s trainNetwork 

function. We ran 4 cross-validation trials for each spectrogram set with 75% of the 

dataset selected randomly for training, and 25% withheld for testing. We used the class 

with the highest predicted probability in the softmax layer as the predicted species. To 

estimate class accuracy of each species, we ran ten trials using our top-performing 

spectrogram settings (composite spectrogram, 50 ms FFT time window, 113 frequency 

segments; see Results for details) and calculated the confusion matrix for each trial. We 

ran these as additional trials to increase the sample size for our estimate of best class 

accuracy per species and to analyze the relationship between dominant frequency and 

class accuracy. 



 

 

Statistical Analysis 

We calculated the classification accuracy for each trial (4 trials x 150 spectrogram sets 

= 600 samples) as the number of test spectrograms classified correctly, divided by the 

total number of test spectrograms. We used a general linear model of the single 

spectrogram trials (4 trials x 120 spectrogram sets) to test for an effect of spectrogram 

frequency scale, amplitude scale, FFT window length, and number of frequency 

segments on the classification accuracy of AlexNet. We included FFT window length as 

a second-order polynomial because visualization of the raw data showed a nonlinear 

relationship. We then tested our prediction that the log frequency scale improved the 

network’s ability to classify low frequency species by regressing the mean dominant 

frequency of each species and the interaction with frequency scale type against the 

classification accuracy of each species from the ten confusion matrix trials. 

Next, we used all spectrogram sets (5 trials x 150 spectrograms) to test whether 

the composite spectrogram improved classification accuracy. We used a general linear 

model with the composite spectrogram set as the reference category to compare the 

composite spectrogram to the four frequency and amplitude scale combinations for 

single spectrograms (linear - dB, linear - log dB, log - dB, log - log dB). We included 

FFT window length as a second-order polynomial and number of frequency segments to 

account for any covariation.  

Finally, we investigated the importance of dominant frequency for species 

classification because the spectrogram resolution results suggested frequency was 

particularly important for classification by AlexNet. We used linear discriminant 

analysis in the MASS package in R (R Core Team, 2017) to create a classification 

matrix based on the dominant frequency of each audio clip, as measured during 

frequency characterization. We chose linear discriminant analysis because it can use 



 

 

univariate or multivariate input to classify data into a predetermined number of 

categories. We ran 10 cross-validation trials with 75% of the dataset selected randomly 

for training, and 25% withheld for testing. We then compared the confusion matrix of 

the linear discriminant analysis classifier to the confusion matrix of the AlexNet 

classifier trained and test composite spectrograms. All statistical analyses were 

completed in R version 3.4 (R Core Team 2017) using the MASS package and base 

functions. 

Results 

Spectrogram Resolution 

FFT window length and number of frequency segments both had a strong effect on the 

classification accuracy of AlexNet (t474 = 14.09, P < 0.001, t474 = 6.47, P < 0.001). 

Classification accuracy increased quickly with decreasing FFT window length and 

peaked near 50 ms windows (Figure 3). Classification accuracy increased with 

increasing number of frequency segments and was highest at the maximum number of 

frequency segments (113; Figure 3). 

Spectrogram Scale 

Frequency scale and amplitude scale both had an effect on the classification accuracy of 

AlexNet, although the effect of frequency scale (t474 = -3.20, P = 0.001) was greater 

than the effect of amplitude scale (t474 = 2.24, P = 0.03; Figure 4). Classification 

accuracy was 0.6% (± 0.2% SE) higher for the linear frequency scale than the log scale. 

Classification accuracy was 0.4% (± 0.2% SE) higher for the log dB amplitude scale 

than the dB scale. There was a weak interaction between frequency scale and the mean 

dominant frequency of a species (t756 = -1.92, P = 0.06); classification accuracy for the 



 

 

log scale was 0.3% (± 0.3% SE) lower than the linear scale for every 1 kHz increase in 

dominant frequency (Figure 5). Contrary to our predictions, there was no difference in 

classification accuracy between the linear and log frequency scale for species that 

vocalize at lower frequency. 

Composite Image 

The composite spectrogram had higher classification accuracy than the four frequency 

and amplitude scale combinations for single spectrograms (linear - dB, linear - log dB, 

log - dB, log - log dB), but it was not significantly higher than the linear frequency and 

log dB amplitude single spectrogram (t592 = -0.74, P = 0.45; all other P < 0.001; Figure 

4). The mean accuracy of the composite image was 94.9% (± 0.2% SE). 

Classifier Comparison 

The classification accuracy of the linear discriminant analysis classifier based on sound 

frequency attributes was 51.7% (± 0.8% SE; Figure 6). Species with similar frequencies 

were misclassified most often, particularly the passerine species with similar 

intermediate frequency ranges (REVI, SWTH, WTSP, ALFL, BCCH, HETH). In 

contrast, the AlexNet classifier most frequently misclassified species that have similar 

song structure (SWTH and HETH, ALFL and LEFL, BBWA and AMRE). 

Summary of Classifier Performance 

Classification accuracy across all trials of all spectrograms ranged from 85.5% to 

98.6%, with a mean of 94.3%. The spectrogram settings that our analyses indicated 

would maximize classification accuracy (composite spectrogram, 113 frequency 

segments, 50 ms FFT window length) yielded a mean classification accuracy of 96.9% 

(± 0.2% SE). The spectrogram settings that our analyses indicated would minimize 



 

 

classification accuracy (log frequency scale, dB amplitude scale, 10 filters, 0.5 ms 

window length) yielded a mean classification accuracy of 88.9% (± 0.2% SE). 

Discussion 

High classification accuracy is an important goal for automated species classification 

from audio recordings because it affects how well the resulting data represents the 

ecological conditions of the recording. We showed that the accuracy of a CNN 

bioacoustic classifier built with AlexNet is affected by choice of the parameters used to 

convert each audio clip to a spectrogram. We found that mean classification accuracy 

ranged from 88.9% to 97.3% depending on the parameters used to create the 

spectrogram. Classification accuracy was affected by the scales used for frequency and 

amplitude, by the FFT window length, and by the number of frequency segments of the 

spectrogram. Current state-of-the-art approaches to species classification from audio 

clips typically achieve classification accuracy above 95% on similarly sized datasets 

(Nicholson 2016; Salamon and Bello 2017; Zhao et al. 2017), and our results for 19 

species are comparable. We achieved this high classification rate with off-the-shelf 

software (AlexNet) and relatively short training time (< 40 minutes), suggesting that 

state-of-the-art bioacoustic classification is becoming increasingly accessible to 

ecologists and can be achieved if appropriate spectrographic parameters are selected. 

For ecologists wishing to use AlexNet for birdsong classification of audio clips, we 

recommend using an online tutorial (e.g., MathWorks 2018) and a computer with a 

graphics processing unit (GPU). AlexNet can be run without a GPU, but the processing 

time will be approximately an order of magnitude longer. Ecologists should note, 

however, that using AlexNet as a recognizer similar to other out-of-the-box software 

programs (e.g., MonitoR, Katz et al. 2016; Kaleidoscope, Wildlife Acoustics Inc.) will 

require signal detection prior to application of the AlexNet classifier. 



 

 

The results of our study and others suggest that frequency is likely an important 

characteristic for birdsong classification. Our linear discriminant analysis classifier 

based on mean dominant frequency achieved a classification accuracy of 52.9%. Band-

limited energy detectors that use only the frequency range of an acoustic signal for 

classification of audio clips (Charif et al. 2010) are reported to achieve similar accuracy 

(43%; reviewed by Priyadarshani et al. 2018). Even though CNNs can be spatially 

invariant (Bunne et al. 2018), frequency is likely also important for CNN classification 

of birdsong. We observed an increase in classification accuracy with increasing number 

of frequency segments, which improved the frequency resolution of the spectrogram. 

Unlike the linear discriminant classifier, however, the AlexNet classifier did not 

commonly misclassify species of similar mean dominant frequency. Instead, AlexNet 

commonly misclassified species of similar song structure like Swainson’s Thrush 

(Catharus ustulatus) and Hermit Thrush (C. guttatus), which suggests AlexNet’s 

classification is based, at least in part, on other frequency characteristics such as 

frequency range and harmonics. Future work should use spectrogram manipulation to 

determine which specific frequency characteristics contribute to CNN classification 

accuracy. 

Classification accuracy was highest for intermediate values of FFT window 

length  however, the maximum accuracy was achieved with a longer window length (50 

ms) than is generally used for birdsong visualization (10 ms) which was contrary to our 

predictions. This longer time window further emphasizes the importance of frequency 

resolution in birdsong classification with AlexNet. Some authors have predicted that 

temporal resolution should be particularly important in birdsong classification 

(Priyardarshani et al. 2018) because auditory experiments indicate the temporal 

information in birdsong is important for communication by birds (Dooling et al. 2002). 



 

 

Graciarena et al. (2010) found no improvement in classification accuracy by Gaussian 

mixture models when they increased time window resolution for Mel frequency cepstral 

coefficient extraction. We suggest, however, that the impact of FFT window length on 

classification accuracy is likely to vary across datasets. Graciarena et al. (2010) showed 

that the importance of temporal resolution for Mel frequency cepstral coefficient 

extraction was dependent on the bird species.  

We found that using a log dB scale for amplitude increased the classification 

accuracy of AlexNet. Previous authors have shown that CNNs are capable of classifying 

energy modulated patterns (Salamon and Bello 2015), which are particularly common 

in birdsong, and the log dB scale for amplitude may further improve this capability by 

allowing for better discrimination of the lower amplitude details in each clip. We 

suggest using a log dB scale for amplitude may also improve the ability of AlexNet to 

classify clips that were recorded at greater distances by emphasizing the lower 

amplitudes of those clips via the hue of the spectrographic image. Audio signals 

recorded far from the sound source are particularly difficult to classify due to the 

attenuation and spherical spreading of sound as it travels (Knight and Bayne 2018). 

Future work should compare dB and log dB spectrogram scales for classification of 

clips recorded at known distances. 

Using a log scale for frequency resulted in lower overall classification accuracy 

because it decreased the classification accuracy of species that vocalize at higher 

frequencies. We predicted the opposite; that the log scale would increase classification 

accuracy by improving AlexNet’s ability to differentiate between species that vocalize 

at lower frequencies. We noted, however, that summing the amplitude in each 

frequency segment reduced the relative amplitude of the lower frequencies for the log 

frequency scale, which may have confounded any potential improvement in 



 

 

classification accuracy of low frequency species that the log scale provided. Many top-

performing classifiers use a mel scale, which is a log-based scale designed to 

approximate the frequency-band sensitivity of human hearing (Stowell et al. 2018). We 

suggest that a log scale may improve classification accuracy if a traditional discrete 

STFT is used to construct spectrograms without frequency segments. 

Overall, we showed the choice of spectrogram parameters is important for 

bioacoustic classification using CNNs. Other authors have also shown that spectrogram 

parameters can affect the classification accuracy of CNNs and other approaches. Xie et 

al. (2018) showed that the algorithm used to create the spectrogram can affect CNN 

classification accuracy, with chirplet spectrograms outperforming a short-time Fourier 

Transform spectrogram. Ulloa et al. (2016) showed that using spectrograms with 

intermediate resolution and zero window overlap resulted in the highest classification 

accuracy when using normalized cross-correlation for classification. Colour scale may 

also affect CNN classification accuracy and the perceptually-uniform viridis colour 

scale has been shown to improve classification accuracy over the jet colour scale used 

here (Amiriparian et al. 2017). Overall, our results suggest that optimal spectrogram 

parameters may differ from those used for human visualization or other classification 

approaches, and thus should be selected independent of prior assumptions. Optimal 

spectrogram parameters will also likely also vary depending on the target bird species or 

community. We therefore encourage practitioners to use our results as a starting point 

for optimizing spectrogram settings before using a multi-species CNN classifier to 

process audio recordings. 
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Table 1. Bird species included in a bioacoustic classifier built in AlexNet. Typical 

spectrograms were constructed with a 1024 FFT size and are plotted with time (s) on the 

x-axis and frequency (Hz) on the y-axis. Species are sorted in order of ascending mean 

dominant frequency. 

Name Number 

of clips 

Mean 

dominant 

frequency 

(kHz) 

Mean 

clip 

length 

(s) 

Mean 

AlexNet 

classification 

accuracy (%) 

Typical spectrogram 

Barred owl 

(Strix varia) 

 

139 0.28 3.47 97.9 

 
Great-horned 

owl (Bubo 

virginianus) 

 

134 0.32 2.58 99.7 

 
Common 

raven (Corvus 

corax) 

371 1.44 0.49 99.7 

 
White-breasted 

nuthatch (Sitta 

carolinensis) 

97 2.05 1.75 99.6 

 
Olive-sided 

flycatcher 

(Contopus 

cooperi) 

159 3.12 1.21 96.2 

 
Swainson’s 

thrush 

(Catharus 

ustulatus) 

120 3.46 1.62 90.7 

 
Red-eyed vireo 

(Vireo 

olivaceus) 

111 3.49 0.76 97.8 

 



 

 

Name Number 

of clips 

Mean 

dominant 

frequency 

(kHz) 

Mean 

clip 

length 

(s) 

Mean 

AlexNet 

classification 

accuracy (%) 

Typical spectrogram 

Common 

nighthawk 

(Chordeiles 

minor) 

100 3.56 0.85 99.6 

 
White-throated 

sparrow 

(Zonotrichia 

albicollis) 

114 3.64 3.88 95.9 

 
Alder 

flycatcher 

(Empidonax 

alnorum) 

133 3.67 0.54 94.5 

 
Black-capped 

chickadee 

(Poecile 

atricapillus) 

111 3.85 1.11 94.4 

 
Hermit thrush 

(Catharus 

guttatus) 

293 4.40 1.98 97.8 

 
Yellow-

rumped 

warbler 

(Setophaga 

coronata) 

141 4.46 1.84 94.9 

 
Least 

flycatcher 

(Empidonax 

minimus) 

491 4.84 0.49 98.8 

 
Yellow 

warbler 

(Setophaga 

petechia) 

116 5.22 1.25 96.6 

 



 

 

Name Number 

of clips 

Mean 

dominant 

frequency 

(kHz) 

Mean 

clip 

length 

(s) 

Mean 

AlexNet 

classification 

accuracy (%) 

Typical spectrogram 

Tennessee 

warbler 

(Leiothlypis 

peregrina) 

111 5.25 3.37 100.0 

 
Brown creeper 

(Certhia 

americana) 

108 5.60 1.36 99.6 

 
American 

redstart 

(Setophaga 

ruticilla) 

103 5.82 1.31 96 

 
Bay-breasted 

warbler 

(Setophaga 

castanea) 

99 7.20 1.06 92.9 

 
  



 

 

Figure 1. Spectrogram types used as input for bioacoustic classification with AlexNet. 

Examples are of a simple sound with increasing frequency through time. From left to 

right: linear frequency and dB amplitude scales, linear frequency and log dB amplitude 

scales, log frequency and dB amplitude scales, log frequency and log dB amplitude 

scales, composite spectrogram: an array of the preceding four spectrograms. Colour 

scale ranges from minimum (blue) to maximum (red) amplitude for that audio clip. 

Figure 2. FFT window length and number of frequency segment values used to create 

spectrograms for bioacoustic classification with AlexNet. Examples are of an alder 

flycatcher (Empidonax alnorum). 

Figure 3. Classification accuracy of birdsong relative to spectrogram FFT window 

length (ms) and number of frequency segments, as predicted by a bioacoustic classifier 

built in AlexNet. Spectrograms were constructed with a linear frequency scale and a log 

dB amplitude scale. Points are raw classification accuracy and have been jittered for 

visualization. Lines are model predictions with 95% confidence intervals from a linear 

regression, holding frequency scale as linear, amplitude scale as log dB, and other 

covariates at their mean. 

Figure 4. Classification accuracy of birdsong for different spectrogram inputs for a 

bioacoustic classifier built with AlexNet. The composite spectrogram was a composite 

image of the four single spectrograms in a 2x2 array. Error bars represent 95% 

confidence intervals. 

Figure 5. Classification accuracy and mean dominant frequency of 19 species of 

birdsong, as predicted by a classifier built in AlexNet and trained on spectrograms of 

the primary vocalizations of each species. Two spectrograms were constructed for each 

training clip: one with a linear frequency scale and one with a log scale. Best fit lines 

are model predictions with 95% confidence intervals from a linear regression. Points are 

raw classification accuracy from confusion matrices and have been jittered for 

visualization. 

Figure 6. Mean classification rate for 19 species of birdsong classified with AlexNet 

(left) and linear discriminant analysis (right). Each cell represents the mean 

classification rate for that species combination across ten classification trials. Species 

are sorted in order of ascending mean dominant frequency. Note the scale is from 0 to 



 

 

10% classification accuracy on the left and 0 to 100% on the right to highlight 

differences in misclassification. 

  



 

 

Appendix 1. AlexNet is a convolutional neural network originally used for image 

classification (Krizhevsky et al. 2012). The structure is comprised of 5 convolutional 

layers, 3 max pooling layers, 3 fully connected layers, and 1 softmax layer, as described 

below. The network accepts images of size 227 x 227 pixels as input. Each pixel is 

represented by a triple of color components (RGB). 

1. Convolutional layer 1: 96 kernels of size 11x11x3 

2. Max pooling layer 1 

3. Convolutional layer 2: 256 kernels of size 5x5x48 

4. Max pooling layer 2 

5. Convolutional layer 3: 384 kernels of size 3x3x256 

6. Convolutional layer 4: 384 kernels of size 3x3x192 

7. Convolutional layer 5: 256 kernels of size 3x3x192 

8. Max pooling layer 3 

9. Fully connected layer 1: 4096 neurons x 9216 

10. Fully connected layer 2: 4096 neurons x 4096 

11. Fully connected layer 3: 11 neurons x 4096 

12. Softmax layer 
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