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Abstract

A classic result in the field of Riemannian Geometry is the Splitting Theorem of Cheeger

and Gromoll. Since this result there have been numerous alternate versions under a variety

of different conditions. Continuing in this vein, we prove structure results on manifolds with

boundary components under m-Bakry-Émery Ricci curvature bounds. First we look at a

generalization of Frankel’s theorem [9], extrapolating on the work of Peterson and Wilhelm

[25]. We then prove some related corollaries that were shown by Choe and Fraser [4]. Finally

we generalize the splitting theorems of Sakurai [28], [29] for manifolds with boundary and a

non-gradient vector field.
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1 Introduction

Two of the classical results in Riemannian Geometry are Frankel’s theorem and the Splitting

Theorem of Cheeger and Gromoll [3]. Since Cheeger and Gromoll’s paper in 1971, many

alternate versions of their theorem have been proven under various curvature conditions.

Of particular relevance to the topic of this thesis is the generalization to manifolds with

boundary given by Croke and Kleiner [6]. Recently we have seen versions of the theorem

applying to Bakry-Émery Ricci curvature bounds, and in a pair of papers released in 2016

and 2019, Sakurai [28], [29] generalized these results to the boundary case with a gradient

vector field in a manner similar to Croke and Kleiner.

When discussing manifolds with boundary, Frankel’s theorem naturally arises. With plain

Ricci bounds, one gets the result of Peterson and Wilhelm [25] if the bounds are tight, and

the splitting theorem if the curvature conditions are only marginally violated. In this paper

we follow this idea, first bringing Frankel’s theorem into the Bakry-Émery case with general

X and proving a few corollaries and related theorems, and we then modify the splitting

theorems of Sakurai.

The study of manifolds with a positive density function e−f began with Lichnerowicz in

1971 [16], and was later continued and applied to diffusion processes by Bakry and Émery.

Many results that apply to metrics with Ricci curvature bounds have since been generalized

to metrics with Bakry-Émery bounds, such as Myers’s Theorem by Qian [26]. In particular,

different versions of the splitting theorem have been proven by Fang-Li-Zhang [8], Khuri-

Woolgar-Wylie [11], Sakurai [29], and others. In section 2.2, we summarize all the known

relevant splitting theorem results. A generalization of Frankel’s theorem has also been done

in the case where X = df by Li and Wei [15].

Recently, Bakry-Émery Ricci tensors have been studied in many different contexts in-

cluding Ricci flow, general relativity, and geometric analysis. There is potential for these

results to be generalized further to non smooth settings, and we hope that the smooth cases

presented here may serve as inspiration for those advancements.

The initial motivation for starting this project was the possibility that the results we

obtained could be used in later papers on the study of black holes. For discussion of the

application of splitting theorems to relativity and black holes, the interested reader is directed

to [11] or [19], which are closely related papers that discuss relativity applications.

For positive m, the arguments involving Bakry-Émery Ricci bounds found in this paper

and others work very consistently by following closely to the arguments that show the cor-

responding results with only Ricci bounds. This suggests there may be some kind of close

relationship between the manifolds admitting metrics with these types of conditions. The
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precise formulation of this problem is given in the conclusion of this paper.

In this thesis, we will first prove Theorem 3.1, the generalization of Frankel’s theorem

to the Bakry-Émery setting. One important corollary of the original is Corollary 3.8 and its

effect on the fundamental group of a manifold containing an embedded minimal hypersurface,

found by considering the universal cover. In a recent project, Choe and Fraser [4] use some

different methods to get versions of this corollary for compact manifolds under modified

curvature conditions, and here we show Theorems 3.9 and 3.10 which are generalized from

Choe and Fraser’s results. Finally, we work through the splitting theorems from Sakurai’s

papers to show that they hold without requiring the vector field to be gradient, attaining

Theorems 4.1 and 4.2 for a manifold with multiple boundary components, and Theorem 4.8

for a manifold with a connected boundary component.

There are two main categories of arguments found in this paper. The first are variation of

arclength arguments, and the second are Bochner identity arguments. The arguments work

differently for each result, but generally both begin by supposing we can find a minimizing

curve realizing the distance between two surfaces. The variational argument then considers

such a minimal geodesic, and through differentiating a variation shows that nearby there must

be an even shorter one. The Bochner identity is a formula that arises from local variations

of volume rather than arclength, and the method of proof works by showing the functions

of distance from each surface are subharmonic, and then applying the maximum principle to

get a contradiction.

This thesis is organized as follows. In the remainder of Section 1 we review the back-

ground knowledge of Riemannian geometry, covering the higher level concepts required to

understand the rest of the paper. In Section 2, we give the introduction to the Bakry-Émery

curvature tensor and the types of problems we are going to solve. We review the numerous

relevant generalizations that we are adding to. In section 3, we prove the first major result; a

generalization of Frankel’s theorem. We then go through a number of lemmata which allow

us to get a couple of corollaries, and will come in handy in the next section. In Section 4, we

prove splitting theorems, following closely to the work of Sakurai. Finally, in Section 5, we

review the main results and state a few remaining open problems.

1.1 Basic Concepts in Differential Geometry

Differential geometry is a branch of mathematics which uses the technology of calculus to

study problems of geometry. Riemannian geometry is a sub-branch of differential geome-

try that studies smooth manifolds with an inner product on the tangent space that varies

smoothly from point to point (in a manner to be made precise later in this section). This
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inner product is called a Riemannian metric, and it brings with it local notions of distance,

surface area, volume, and angles. Many of the results in Riemannian geometry deal with

finding global topological properties that can be derived from the local contributions.

Some background knowledge of differential geometry will be assumed, but in order to get

a good picture of the beginning of Riemannian geometry, we will briefly define a few of the

early concepts. For a more detailed introduction, see chapter 0 of [7].

Differential manifolds are spaces which are sufficiently similar to linear space to allow

one to do calculus. More specifically, any differentiable manifold may be described by an

atlas of charts, and in any chart one may apply ideas from calculus since the chart will lie

within linear space. To define a differentiable manifold properly, one begins with a topological

manifold, which is a space that is locally homeomorphic linear space, and attaches a maximal

globally defined differentiable structure.

A differentiable structure is a collection of injective maps xα : Uα ⊂ Rn ↦→M of open sets

Uα into M such that M =
⋃︁
α Uα, and that for all α, β with xα(Uα) ∩ xβ(Uβ) =: W ̸= ∅, the

sets x−1
α (W ) and x−1

β (W ) are open in Rn and the composition x−1
α ◦ xβ, called the transition

function, is differentiable.

Definition 1.1 (The tangent bundle and its basis). Let M be a smooth n dimensional

manifold. At each point p of M , the tangent bundle of M , which is a manifold itself denoted

TM , assigns a vector space TpM , called the tangent space of M at p. We can find an open

U ∈ Rn containing 0 which has some local coordinates x : U ↦→ M . If x(x1, ... , xn) = p ∈
x(U), we define

∂

∂xi
(p) = (dx)p(0, ... , 1, ... , 0) ∈ TpM (1.1)

and observe that by definition the set

{︃
∂
∂x1

⃓⃓⃓
p
, ... , ∂

∂xn

⃓⃓⃓
p

}︃
is a basis of the tangent space TpM .

When defining the differentiable structure, the transition function x−1
α ◦ xβ is a function

from Rn to itself, so differentiablility of this function is understood. It is going to be useful

to generalize the idea of a differentiable function to a function between manifolds.

Definition 1.2 (Differentiable functions). A map f from Mn
1 to Mm

2 is differentiable if

at any point p ∈ M1 and a parametrization x2 : V ⊂ Rm ↦→ M2 at f(p), there exists a

parametrization x1 : U ⊂ Rn ↦→M1 at p such that f(x1(U)) ⊂ x2(V ), and the mapping

x−1
2 ◦f ◦ x1 : U ↦→ Rm (1.2)

is differentiable at x−1(p).
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Definition 1.3 (Covectors and Tensors). Given a vector space V , the corresponding dual

vector space V ∗ is the space of linear functionals on V . When speaking about a dual vector

field of X ⊂ TM , the elements of X are commonly referred to as covectors.

A tensor can be defined with respect to any vector space X, but in Riemannian geometry

we commonly work with tensors ‘at a point’ of a manifold, and unless otherwise specified,

the vector space is usually understood to be the tangent space at that point. A (ab )-tensor is a

multi-linear map

ψ : X × ...×X⏞ ⏟⏟ ⏞
a

×X∗ × ...×X∗⏞ ⏟⏟ ⏞
b

↦→ R (1.3)

The tuple (ab ) is referred to as the valence of ψ. The space of all such tensors is denoted

T ab (X), or just T ab if it is understood that X = TpM , which will be the case when talking

about tensors throughout this paper.

Definition 1.4 (Differentiable tensor fields). A vector field X is a correspondence that as-

sociates to each point p a vector in TpX. In other words, X is a function that maps between

the manifolds M and TM , so the differentiability of X is understood just as in Definition

1.2. More generally, the image of any tensor field can be viewed as a manifold as well.

Example 1.5. Consider Rn, and recall the tangent space TpRn of any point here is just Rn

as well. A (01)-tensor is thus a linear map ψ : (Rn)∗ ↦→ R, which means it can be represented

by a unique vector µ ∈ Rn where ψ(f) = f(µ). Similarly, a (20)-tensor is a bi-linear map

ψ : Rn × Rn ↦→ R, and so it can be represented by a unique matrix M ∈ Mn×n where

ψ(x, y) = x⊥My.

This example highlights how a tensor is not exactly a generalization of a vector or matrix,

but there are correspondences between them. So one expects that there will be a natural

extension of the product and trace operations. Given two tensors ψ1 and ψ2 of valence (ab )

and (kl ), the definition of tensors as multi-linear maps allows the tensor product ψ1 ⊗ ψ2 to

be defined easily. It is a tensor of valence (a+kb+l ) given by

(ψ1 ⊗ ψ2)(v1, ... , va+k, ω
1, ... , ωb+l)

= ψ1(v1, ... , va, ω
1, ... , ωb)ψ2(va+1, ... , va+k, ω

b+1, ... , ωb+l)
(1.4)

The trace operation is generalized to the case of ψ ∈ T 1
1 , just by the natural pairing of

the two indices. Since the first argument acts on vectors, we define

tr(ψ(v, ω)) = ω(v) (1.5)
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Extending this to general mixed tensors is also coordinate independent, though we use

an orthonormal basis in its definition. Let {νi} be an orthonormal basis for X, and {φi} be

an orthonormal basis for {X∗}. For any tensor ψ ∈ T a+1
b+1 , the tensor contraction is the new

tensor tr(ψ) ∈ T ab defined by

(tr(ψ))(v1, ... , va, ω
1, ... , ωb) =

n∑︂
j=1

ψ(v1, ... , va, νj, ω
1, ... , ωb, φj) (1.6)

To take the norm of a (ab )-tensor ψ, define

|ψ| =
n∑︂

i1,...,ia+b=1

ψ(νi1 , ... , νia , φ
ia+1 , ... , φia+b) (1.7)

Definition 1.6 (Pullback operator for (a0)-tensors). Suppose we have two manifolds M1 and

M2 of dimensions n and m. Let Φ : M1 ↦→ M2 be a smooth function, and suppose we have

a tensor field Ψ over M2. Φ and Ψ induce a related tensor field on M1, which we denote

Φ∗Ψ. For a (00)-tensor field (a scalar valued function), the way to do it is obvious; just let

(Φ∗Ψ)(p) = Ψ(Φ(p)). For a (a0)-tensor field, this generalizes to

(Φ∗Ψ)p(x1, ... , xa) := ΨΦ(p)(dΦp(x1), ... , dΦp(xa)) (1.8)

for any p ∈M and xj ∈ TpM .

1.2 Riemannian Manifolds

Definition 1.7 (Riemannian metric). A Riemannian metric g on M is a collection which

assigns to each point p ∈ M a positive definite inner product gp : TpM × TpM ↦→ R and

satisfies a differentiatibility condition: with local coordinates x as defined in 1.1, the functions

hij(x1, ... , xn) := gp (νi(p), νj(p)) : U ↦→ R (1.9)

where p = x(x1, ... , xn) must all be smooth. The functions hij are called the local representa-

tions of the Riemannian metric in the coordinate system x.

Intuitively, this condition tells you that while moving around in a coordinate neighbor-

hood, the product of any two basis vectors changes in a nice and smooth way so that the

measurement of distance behaves as expected. The pair (Mn, g) of the manifold M with a

Riemannian metric is called a Riemannian manifold of dimension n.

Throughout this section, we denote by M a Riemannian manifold of dimension n.
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Note that so far tensor contraction is not defined for tensors of type T a0 or T 0
b , which

is unexpected since we saw that a (20)-tensor essentially generalizes a matrix, and we know

how to take the trace of those. There is a way to do this using the metric, called raising

(or lowering) an index. First, we will define another useful tool when working with tensors

called index notation. If {νj} are a basis for X and {φi} are the corresponding basis for the

dual vector space X∗, a basis for T ab is given by a total of na+b tensors of the form

ei1... iaj1... jb = φi1 ⊗ ...⊗ φia ⊗ νj1 ⊗ ...⊗ νjb (1.10)

as each i and j ranges from 1 to n, which are defined so that

ei1... iaj1... jb(vk1 , ... , vka , ω
l1 , ... , ωlb) = δi1k1 · ... · δ

ia
ka

· δl1j1 · ... · δ
lb
jb

(1.11)

i.e. the basis tensors are 1 if all of their arguments are in the right order, otherwise they are

0. This allows you to write a (ab )-tensor ϕ in these coordinates, as a sum of all na+b tensors

of the following form,

ϕ =
n∑︂

i1,..., ia, j1,..., jb=1

ϕi1... iaj1... jbe
i1... ia

j1... jb :=
n∑︂

i1,..., ia, j1,..., jb=1

ϕ(ei1... iaj1... jb)e
i1... ia

j1... jb (1.12)

Observe that gijφ
i⊗φj is a (20)-tensor field over TpM . Considering the matrix of coefficients

[gij], define g
ijνi ⊗ νj which is called the contravariant metric tensor, whose coefficients gij

come from the inverse matrix of [gij].

Suppose ψ is a (20) tensor, which in index notation is ψkj. Dropping the index of ψ gives

the coefficients of a (11)-tensor

ψij :=
n∑︂
k=1

gikψkj (1.13)

and it is now possible to take the trace of this object as in (1.6).

The next key idea defines an equivalence relation on Riemannian Manifolds.

Definition 1.8 (Isometry of two Riemannian manifolds). Suppose we have two Riemannian

manifolds (Mn
1 , gM1) and (Mn

2 , gM2) and a function Φ :M1 ↦→M2. Φ is called an isometry if

gM1,p(x, y) = gM2,Φ(p)(dΦp(x), dΦp(y)) (1.14)

for all p ∈M1 and all x, y ∈ TpM1.
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Example 1.9 (The Long Line). Consider the set ω1 × [0, 1)− {(0, 0)}, where ω1 is the first

uncountable ordinal. When this set is equipped with the order topology inherited from the

lexicographical order on ω1 × [0, 1), it defines a topological space that is similar to the real

line, but much ‘longer’ despite having the same cardinality. This space is called the Long

Ray, and it can be turned into the Long Line L by attaching a second copy on the left end but

with the order reversed. This space can be equipped with a differentiable structure, however it

is not possible to give it a Riemannian metric that induces its topology. The reason for this is

that any Riemannian manifold can be shown to be metrizable [10], but L is a space which is

normal but not metrizable (this follows from the fact that L is non-compact, yet sequentially

compact).

There are many other odd properties of the Long Line, such as how every differentiable

structure on the real line is diffeomorphic to the standard one, however L has 2ℵ1 pairwise

non-diffeomorphic structures [22].

Definition 1.10 (Covering spaces and universal cover). Given a topological space M , a

covering space is another topological space ˜︂M along with a map π : ˜︂M ↦→ M such that for

any p ∈M , there is a neighborhood U of p such that π−1(U) is a disjoint union of open sets

in ˜︂M , each of which is mapped homeomorphically onto U by π.

If M is a Riemannian manifold, we also obtain a differential structure on ˜︂M and a

Riemannian metric from the pullback operator g˜︂M = π∗gM , which makes π a local isometry.

As a consequence, any curvature bounds imposed on M must also hold on ˜︂M .

One important type of covering space is the universal cover, which is the unique covering

space that is simply connected. A connected Riemannian manifold will always have a universal

cover.

While there are many notions of differentiation on a Riemannian manifold, they will all

agree on the level of a scalar field. There are two important generalizations of differentiation

to tensor fields that we will need, called the Lie derivative and the covariant derivative

(or connection). One of their key features is that they are both uniquely defined to be

compatible with the trace and tensor product operations, and they can both be thought of

as a generalization of the directional derivative.

While these two notions have similarities, there is an important distinction between the

two. The covariant derivative is a generalization of differentiation which introduces geometric

structure to the manifold in order to allow the comparison of vectors in neighboring tangent

spaces. There is no canonical coordinate system, thus there can be no canonical way to do

this comparison. However, the generalization of the directional derivative which results in the

Lie derivative is canonical, and requires knowledge of both the tensor field to differentiate,

and the vector field in which to differentiate it in an open neighborhood.
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Since the covariant derivative creates its own way of evaluating the change of a vector

field, evaluation of it only depends on the tensor field and a vector at a single point. As a

consequence, the Lie derivative is not expected to be linear in either argument, however the

covariant derivative will be linear in the directional argument.

Definition 1.11 (Vector flow). A solution curve of a differentiable vector field X is a curve

α : I ↦→ M with I an open interval containing 0 such that for all t ∈ I, we have α̇(t) =

X(α(t)). It is possible to show that we can choose α to be the maximal solution curve, in the

sense that any other solution curve will be a restriction of α to an interval containing 0 and

contained in I (see [20]). Now, let I =
⋃︁
p∈M {p} × Ip, where Ip ⊆ R is the domain of the

maximal solution curve αp of X at p. The flow of X on M is a differentiable map

φX : I ↦→M, φX(p, t) = αp(t) (1.15)

The flow is a diffeomorphism over I, and it has the property that whenever (p, t1) and

(φX(p, t1), t2) ∈ I, the concatenation of the two points (p, t1 + t2) is in I as well and

φ(φ(p, t1), t2) = φ(p, t1 + t2).

Definition 1.12 (Lie derivative). We will state the definition for contravariant tensors, since

the definitions for covariant or mixed tensors has only minor tweaks. Given a point p ∈ M

and a vector field X over M , let φX be the local vector flow around p associated to X. φX is

a diffeomorphism, so for all t the inverse of the differential

(dpφX)
−1 : TφX(p)M ↦→ TpM (1.16)

extends uniquely to a homomorphism between the tensor algebras (the algebras of tensors over

the vector fields with multiplication given by the tensor product),

θtp : T (TφX
M) ↦→ T (TpM) (1.17)

with this, we define the Lie derivative of the tensor field ψ in the direction of X:

LXψ(p) =
d

dt

⃓⃓⃓
t=0

(︁
θtp (ψ (φX(p, t)))

)︁
= lim

t→0

θtp (ψ (φX(p, t)))− ψ(p)

t
(1.18)

which always outputs a tensor of the same valence as ψ.

This definition highlights how in the case of a scalar valued function, the Lie derivative

is just equivalent to the directional derivative. It quantifies the change in a tensor field along

the flow defined by a vector field.
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Definition 1.13 (Covariant derivative). Given a point p ∈ M on a Riemannian manifold

and a vector x ∈ TpM , we define the covariant derivative of the following objects which are

each defined in a neighborhood of p in the direction of x at p.

Functions - Let γ be a curve in M such that γ(0) = p and γ̇(0) = x. Given a real

function f :M ↦→ R the covariant derivative in a way that coincides with the directional

derivative in the direction x,

(︁
∇X(p)f

)︁
p
= (f ◦ γ)′ (0) = lim

t→0

f(γ(t))− f(p)

t
(1.19)

Vector Fields - The covariant derivative of a vector field X in the direction of x is the

tangent vector (∇xX)p which satisfies the following conditions for all local vector fields

X, Y , all tangent vectors x, y ∈ TpM , all scalar functions f defined in a neighborhood

of p, and all scalars a, b,

– (∇xX)p is linear in x:

(∇ax+byX)p = a · (∇xX)p + b · (∇yX)p (1.20)

– (∇xX)p is additive in X:

(∇x(X + Y ))p = (∇xX)p + (∇xY )p (1.21)

– The product rule with a scalar valued function holds:

∇x(f ·X))p = f(p)(∇xX)p + (∇xf)pX(p) (1.22)

Covector Fields - Given a field of covectors Ψ, the covariant derivative is the unique

covector at p such that the following identity is satisfied for all vector fields X in a

neighborhood of p:

(∇xΨ)p(X(p)) = ∇x (Ψ(X))p −Ψp ((∇xX)p) (1.23)

Tensor Fields - Given two tensor fields Ψ1 and Ψ2, the covariant derivative on tensors

is defined by imposing the following two rules:

∇x (Ψ1 ⊗Ψ2)p = (∇xΨ1)p ⊗Ψ2(p) + Ψ1(p)⊗ (∇xΨ2)p (1.24)

9



and if the valences of Ψ1 and Ψ2 are identical, then

∇x(Ψ1 +Ψ2)p = (∇xΨ1)p + (∇xΨ2)p (1.25)

Once again, the output of the covariant derivative applied to a tensor is always another

tensor of the same valence. Along with the generalization of differentiation comes the defi-

nition of a few key operators that act on functions.

Definition 1.14 (Differential operators on functions). Let f be a smooth function from

M ↦→ R, and Φ a smooth function from M1 ↦→M2.

• The gradient ∇f of a function is the vector field such that for any other vector field X

and any point p ∈M ,

gp((∇f)(p), X(p)) =
∂f

∂X(p)
(p) (1.26)

Where ∂f
∂X(p)

is the usual directional derivative of f in the direction of X(p). Intuitively,

the gradient outputs the direction and magnitude of ‘greatest increase’ of the function

at each point. f is sometimes referred to as the potential of the vector field ∇f .

• The Hessian is the iterated covariant derivative, Hess(u, v)(f) = ∇u (∇vf). In par-

ticular, note that Hess(f) takes two vector arguments and thus is a (20)-tensor field on

M .

• The Laplacian (or Laplace-Beltrami operator) ∆f is the trace of the Hessian as ex-

plained in equation (1.13).

• The linearization of Φ is a map defined in a neighborhood of each point on a manifold.

It is the function (DΦ)p : TpM1 ↦→ TΦ(p)M2 defined in relation to the exponential map;

taking the point x ∈ TpM1 to y ∈ TΦ(p)M2 such that Φ(expp x) = expΦ(p) y.

• The Jacobian determinant det(DΦ)p is defined as the determinant of the matrix of coef-

ficients of (DΦ)p as written in some coordinates with an orthonormal basis. Critically,

the absolute value of the Jacobian determinant is orthonormal-coordinate independent,

despite the determinant operation being of course coordinate dependent.

One important property of the Lie derivative that will come into play later is the fact

that for a smooth function f , the Lie derivative is related to the gradient and hessian by the

following identity,

L∇fg = Hess f (1.27)

In fact, this is commonly how the Hessian is defined for functions.

10



Definition 1.15 (Parallel Transport). Let α : I ↦→ M where I is an interval be a smooth

curve. A smooth section X(t) ⊂ TM is a map which is smooth as in Definition 1.2 from

α(I) ↦→ TM such that the projection π : TM ↦→ α(I) satisfies π ◦ X = IdM |α(I). Suppose

we are just given a single element e0 ∈ TpM at α(0) = p ∈ M . The parallel transport of e0

along α is the extension of e0 to a parallel section X, which uniquely satisfies

• ∇α̇X = 0

• X(α(0)) = e0

Using this, we denote by Tα(t) : Tα(0)M ↦→ Tα(t)M the parallel transport function, which

is a linear isomorphism that outputs vectors parallel transported along α by a length t.

Definition 1.16 (Geodesics and distance). For any two points p, q ∈ M , we define the

geodesic distance d(p, q) to be the infimum of the lengths of all curves joining p to q.

A curve γ : I ⊆ R ↦→ M where I is an interval is called a geodesic if for all t ∈ I, the

covariant derivative of γ̇(t) in its own direction is 0, i.e. ∇γ̇(t)γ̇(t) = 0 for all t ∈ I. γ is

called a minimal geodesic if d(γ(s), γ(t)) = |s− t| for all s, t ∈ I, and a line if I = R.

Geodesics are a generalization of straight lines in Euclidean space. One of the important

characteristics of a straight line is that it is the curve of minimal length between any two of

its points. One may be temped to use this property to define a generalization in a manifold,

however it quickly becomes apparent that defining it in this way would be troublesome.

Consider for example S2 ⊂ R3, where a curve cannot be longer than π before it fails to

minimize length. For this reason, the property of zero acceleration is used to define the

generalization instead. If a geodesic does minimize the distance between any two of its

points we then call it a minimal geodesic, and a line if it is also inextendable.

For a point p on a manifold, the set of cut points is roughly speaking the set of points

q for which there is no longer a single unique length minimizing geodesic joining p to q. For

a p ∈ S2 for example, the polar opposite point is the only cut point. More specifically, the

definition of the cut locus depends on the exponential map.

Definition 1.17 (Exponential map). The exponential function is the map expp : TpM ↦→M

which takes x ∈ TpM to γx(1) ∈ M , where γ is the unique geodesic satisfying γ(0) = p and

γ̇(0) = x. Critical values of this map (which are defined via the Jacobian determinant) are

called conjugate points.

Intuitively, the exponential function maps a vector to a point which is found by traveling

a distance |x| out along a geodesic. If the manifold is complete, this means the exponential

map is defined globally (over all of TpM). It is a diffeomorphism locally around p, however
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it is easy to construct examples where expp is not injective globally. Indeed, just take the

sphere; the exponential map here is a diffeomorphism only on a ball of radius π in TpSn.

Definition 1.18 (Cut Locus). A cut vector of p ∈ M is then a vector in TpM such that

γ(t) := expp(tv) is a minimizing geodesic for all t ∈ [0, 1], but fails to be minimizing for all

t > 1. A cut point q ∈M is then the image of a cut vector, expp(v) = q.

1.3 Curvature

Curvature of a surface can be thought of by considering the difference between walking

around a basketball court and walking around a curved area. If you hold out your arm as

you walk around, being careful to keep it parallel with its previous position, your arm will

be at the same angle as it started when you get back to your starting point. This is because

a basketball court is constructed to be as flat as possible. On the other hand, trying this

same experiment on a large curve around the earth may yield a different result. Start at the

north pole and walk to the equator, walk along 1/4 the length of the equator, and then walk

back up to the north pole. You will notice when you get back that your arm is very muscular

from being held up for that long, and that it has changed direction by 90 degrees.

The Riemannian curvature tensor is an infinitesimal measure of the holonomy of the

manifold, which is precisely this property. Let V and U be two vector fields, and v ∈ V ,

u ∈ U . The parallel transport of a vector w ∈ Tγ(0) with a local extension W about a

quadrilateral with sides tv, su, −tv, −su is given by

T −1
su T −1

tv TsuTtvw (1.28)

Note that this quadrilateral is defined in the vector space TpM with these vectors, and

then projected onto the manifold using the exponential map, resulting in a quadrilateral of

curves. Shrinking s, t → 0 gives the infinitesimal description of the deviation, which is how

we define the curvature tensor:

d

dt

d

ds
T −1
su T −1

tv TsuTtvw
⃓⃓⃓
t=s=0

=: Rm(U, V )W (1.29)

One does not always define curvature in this way, however this equivalent way is one of

the most intuitive interpretations. In the more common way, it is described as a commutator

of the covariant derivative:

Rm(U, V )W := (∇u∇v −∇v∇u −∇LUV )W (1.30)
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Figure 1: w changes direction as it is parallel transported around a quadrilateral

From the description of equation (1.29) and (1.30), it is clear that the input of the tensor

requires at least three vector arguments. But in fact, it also requires a covector argument.

This is because the outputs of the expressions above are still vectors, so we need one more

linear functional to send that vector to R, which makes Rm a (31)-tensor. In index notation

it is

Rmi
jkl = dxi (Rm (νl, νk) νj) (1.31)

where νj are the basis vectors from Definition 1.1.

The sectional curvature comes from the computation of the Gauss curvature in a 2-

dimensional surface inside the manifold. At any point p, there are several sectional curvatures.

Let σ ⊂ TpM be a 2 dimensional subspace, and let x, y be a basis for σ. We define

Kσ = K(x, y) =
g(Rm(x, y)x, y)⃓⃓
|x|2 |y|2 − g(x, y)

⃓⃓ ∈ R (1.32)

to be the sectional curvature of M in σ. The denominator of this is the area of the parallel-

ogram determined by x and y, and its purpose is to re-scale the expression so as to make it

independent of which basis for σ we choose.

The following is an important average of sectional curvatures. At a point p, let x = xn

be a unit vector in TpM . Create an orthonormal basis {x1, ... , xn−1} for the hyperplane in

TpM orthogonal to xn. Now define

Ricp(x, x) := Ricp(x) :=
n−1∑︂
i=1

K(xn, xi) (1.33)

which is the Ricci curvature in the direction x.
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The Ricci curvature can also be formulated as a trace of the curvature tensor. In particular,

Ricjk =
n∑︂
i=1

Rmi
jki (1.34)

which makes it clear that Ric is a (20)-tensor, and it is not hard to show that Ricp(x, x)

defined in this way is equal to Ricp(x) in equation (1.33). One can further take a trace of the

Ricci tensor to get what is known as the scalar curvature, S(p) = trRicp which is indeed a

scalar field. In the literature it is common to see expressions comparing Ric to scalars, such

as the statement “Ric > 0”. To be clear, the implication of this is “for all p ∈ M and all

x, y ∈ TpM , Ric(x, y) > 0”.

1.4 Embedded Hypersurfaces

Definition 1.19 (Embedding and hypersurfaces). A map Φ :M1 ↦→M2 is called an immer-

sion if the linearization (DΦ)p is injective at each point. An immersed submanifold is the

image of an immersion.

An embedding is a map which is a homeomorphism onto its image, and an embedded

submanifold is then an immersed submanifold where the inclusion map is an embedding.

An important class of embedded submanifolds are those of dimension n − 1, which we call

hypersurfaces.

The ambient space allows one to define vector fields normal to the surface and consider

the shape of the hypersurface in the context of its environment, so we will need to define a

few of these concepts here.

Definition 1.20 (Separating hypersurface). A hypersurface N in a connected manifold M

is called non-separating if it does not separate the manifold, i.e. for any p, q ∈ M\N , there

is a continuous curve α : [0, 1] ↦→ M\N such that α(0) = p and α(1) = q. Otherwise, N

called separating.

Definition 1.21 (Orientable hypersurface). A hypersurface in M is called orientable or

2-sided if it admits a globally defined differentiable unit normal vector field in M .

For example, in Rn any smooth embedded hypersurface must be orientable. If the hyper-

surface is also connected and compact, it must be separating, splitting Rn into two connected

components which is a result related to the Jordan-Brouwer separation theorem.

More generally, a manifold does not have to be embedded to define orientability. M is

called orientable if it admits an atlas of charts where every transition function between charts

has a positive Jacobian determinant.
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The definitions of curvature we saw already are all intrinsic; they do not depend on how

the manifold is embedded in any ambient space, just on the geometry of the manifold itself.

In this paper we are going to need an extrinsic notion of curvature to deal with submanifolds.

Definition 1.22 (Mean curvature). Let N ⊂ M be a hypersurface, and let η be a smooth

extension of a unit normal vector field over N to an open neighborhood of N . The following

definition does not depend on the choice of smooth extension. The shape operator Sνp :

TpN ↦→ TpN is a map sending v ↦→ ∇vη. This map defines a (11)-tensor field by sending

(v, φ) ↦→ φ(Sνp(v)) ∈ R. The second fundamental form II is just the shape operator, but with

the index raised so that it defines a (20)-tensor. The mean curvature H(p) is then the trace

of the shape operator, and it defines a scalar field over N .

The definition of H is very commonly set to − trS instead, but our sign convention is

that it should be the positive trace. The sign of the object also depends on the choice of unit

normal field.

Finally, we need to know a couple of conditions on the space that characterize the well

behavedness of functions and geodesics.

Definition 1.23 (Complete and compact manifolds). M is a complete manifold if any

geodesic γ : I ↦→ M has a well defined extension γ : R ↦→ M . This way of defining com-

pleteness is called Geodesic completeness, but one can also define completeness of a manifold

as sequential completeness or completeness in the sense of a metric space. The Hopf-Rinow

theorem tells us that these notions are in fact equivalent.

A manifold is compact if it is compact as a topological space; that is, any open cover has

a finite subcover. We call a manifold that is compact and does not have a boundary closed.

Definition 1.24 (Totally geodesic submanifold). A submanifold N ⊂ M is called totally

geodesic if Sνp = 0 for all p ∈ N .

Essentially, totally geodesic implies that geodesics with initial tangent vector in TpN will

stay inside N .

Remark 1.25. It is uncommon to find non-trivial totally geodesic submanifolds. Murphy

and Wilhelm [21] showed that a manifold chosen at random will not typically have any at all.
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2 Preliminaries

In this paper, we will deal with structural results called ‘splitting theorems’. Roughly speak-

ing, a splitting theorem will say that under certain conditions, the manifold in question must

be isometric to a warped, twisted, or in strongest case Riemannian product.

Definition 2.1 (Twisted/Warped products). Let (M, gM) and (N, gN) be two Riemannian

manifolds, and ϕ, ψ : M × N → (0,∞) be two smooth functions. Consider the product

manifold M ×N with metric tensor gϕ,ψ = ϕ2π∗
MgM +ψ2π∗

NgN where πM :M ×N ↦→M and

πN : M × N ↦→ N are canonical projections. In what follows, we omit the projections and

write gϕ,ψ = ϕ2gM + ψ2gN .

• If ϕ ≡ ψ ≡ 1, then gϕ,ψ is a Riemannian product metric.

• If ϕ ≡ 1 and ψ is a function only of points in M , gϕ,ψ is a warped product metric.

• If ϕ is a function only of points in N , and ψ only of points in M , gϕ,ψ is a doubly-

warped product metric.

• If ϕ ≡ 1, gϕ,ψ is a twisted product metric.

• Otherwise, gϕ,ψ is a doubly-twisted product metric.

One can define product metrics on manifolds with more than two factors as well, but this

will not be necessary for the purposes of this thesis.

This is easiest to visualize as a topological splitting, but splitting as a Riemannian product

is actually a much stronger condition. It tells you that all the structure given by the inner

product has to be something much simpler, a sum of two metrics each acting on one term in

the topological product.

The conditions normally imposed on the metric in a splitting theorem are bounds on the

curvature. The following classical result, the Cheeger-Gromoll splitting theorem, is one of

the most well known theorems in Riemannian geometry.

Theorem 2.2 (Cheeger-Gromoll, Theorem 2). LetM be a complete manifold of non-negative

Ricci curvature. Then M is the isometric product M̄ × Rk where M̄ contains no lines and

Rk has its standard flat metric.

One of the variations on this result is the generalization to manifolds with boundary. It

may be strange to think of a manifold having a boundary, since this means the manifold

violates some of the foundational properties we used to construct differential manifolds.

Indeed, a point on the boundary does not have a neighborhood homeomorphic to Rn at all.
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Definition 2.3 (Manifolds with Boundary and Asymptotic Ends). A manifold with boundary

is a space consisting of both interior points and boundary points. Every interior point has a

neighborhood that is homeomorphic to the open n-dimensional ball. Every boundary point has

a neighborhood with a homeomorphism φ to the half n-ball {(x1, ... , xn) | x1 ≥ 0,
∑︁
x2i < 1}

such that the first component of φ(p) is 0 if and only if p is a boundary point.

A manifold M has an asymptotic end if there is a compact K ⊂ M such that M\K is

diffeomorphic to Rn\B1[0] where B1[0] is the closed unit ball of radius 1 centered at 0.

The key observation is that ifM is a manifold of dimension n with boundary, the interior

intM is a manifold without boundary of dimension n, and the boundary ∂M is a manifold

without boundary of dimension n−1. Note that the notion of geodesic completeness described

in Definition 1.23 will not work either if the manifold has a boundary, so in this case we use

completeness in the sense of a metric space.

Example 2.4 (Cylinder). Consider the set

Cn =

{︄
(x1, x2, ... , xn, y) ∈ Rn+1 :

n∑︂
i=1

x2i = 1

}︄
⊂ Rn+1 (2.1)

We can consider this a Riemannian submanifold of Rn+1 using the induced metric from

Rn+1. Specifically, for any p ∈ C, TpC is the n dimensional linear subspace of the n + 1

dimensional TpRn+1 perpendicular to a normal vector to the surface. So for any x, y ∈ TpC

the metric satisfies gC(x, y) = gRn+1(x, y). This space is isometric to the Riemannian product

manifold Sn−1 × R with metric gCn = gSn−1 + gR.

Consider the new set

Cn
+ =

{︄
(x1, x2, ... , xn, y) ∈ Rn+1 :

n∑︂
i=1

x2i = 1, y ≥ 0

}︄
⊂ Rn+1 (2.2)

Similarly, this can be considered a manifold with boundary with the induced metric from

Rn+1. The boundary in this case is Sn−1×{0}, and the manifold-with-boundary can be written

as a Riemannian product Sn−1 × [0,∞) with the metric gCn
+
= gSn + gR|[0,∞)

. It also has an

asymptotic end; just take K equal to the boundary Sn−1 × {0}.

The sphere is a space of constant positive sectional curvatures, and R is of course flat.

Thus, both of these examples are of spaces with all non-negative sectional curvatures, meaning

Cn fits the requirements of Theorem 2.2.

More generally, any smooth two dimensional surface of revolution of a function ϕ : R ↦→ R
can be considered a warped product manifold with warping function ϕ.
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The first type of argument we will use is the variational argument, so we need to define

what a variation of a curve is. They are smooth one-parameter families of curves centered

at a base curve.

Definition 2.5 (Variation of a curve). A variation of a smooth curve γ : [0, ℓ] ↦→ M is a

smooth function f : [−ε, ε]× [0, ℓ] ↦→ M such that f(0, t) = γ(t). The variation is proper if

additionally f(s, 0) = γ(0) and f(s, ℓ) = γ(ℓ). This definition comes with a vector field along

γ called the variational vector field,

V (t) :=
d

ds
f(s, t)

⃓⃓⃓
s=0

(2.3)

which is a vector field along the base curve in the direction of the variation at each point.

There is one essential type of variational vector field J along a γ, called a Jacobi field.

A vector field is a Jacobi field if it satisfies the Jacobi equation,

∇γ̇(t)∇γ̇(t)J(t) + Rm(J(t), γ̇(t))γ̇(t) = 0 (2.4)

and in particular we look at Jacobi fields arising from 1 parameter families of curves γs,

J(t) =
∂γs(t)

∂s

⃓⃓⃓
s=0

(2.5)

which satisfies the Jacobi equation for γ = γ0.

Jacobi fields are very useful for the way they allow you to find points where nearby

geodesics leaving from the same point ‘reconverge’. Rather than computing the separation

of nearby geodesics, you can instead frame it as a differential equation.

Example 2.6. On Sn, the geodesics are great circles. Consider two geodesics γ0 and γθ

passing through the north pole, leaving at angles separated by θ. They travel a distance of

length π before reconverging. The geodesic distance between γ0(t) and γθ(t) is

d(γ0(t), γθ(t)) = sin−1

(︄
sin t sin θ

√︄
1 + cos2 t tan2

(︃
θ

2

)︃)︄
(2.6)

which shows that these geodesics intersect at every multiple of π. Computing this however

requires complete knowledge of the geodesics, which makes it hard to use in any kind of

generality. A Jacobi field is an alternate approach to finding this reconvergence which depends

only on the initial conditions of γ0. Indeed, just observe that

∂

∂s

⃓⃓⃓
s=0

d(γ0(t), γs(t)) = |J(t)| (2.7)
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and using the Jacobi equation, the solution to this is just a solution to

y′′ + y = 0 (2.8)

with y(0) = 0 and y′(0) = 1, which is sin t. This once again shows that geodesics reconverge

at every multiple of π and did not require knowing any geodesics past their initial conditions.

Using Riemannian products, we will define a version of the exponential function useful

for embedded hypersurfaces or manifolds with boundary. This function works in a different

way; instead of mapping a vector in TpM to M , it acts on vectors orthogonal to the surface

and maps them to M in a natural way.

Definition 2.7 (Normal exponential function). Let N ⊂M be a hypersurface, and let p ∈M .

Let p ∈ U be a neighborhood of p such that there is a well defined unit normal vector field

ηp over U . We define the normal exponential function exp⊥
p : T⊥N ↦→ M , where T⊥N is

the orthogonal vector bundle isometric to a Riemannian product U × R. This maps sends

x ∼ (p, t) ↦→ γηp(t), where γηp is the geodesic in M with initial conditions γηp(0) = p and

γ̇ηp(0) = ηp. The critical points of this map are called Focal points.

2.1 Bakry-Émery Ricci Curvature

Certain important manifolds in physics have bounds on curvature that is ‘weighted’ in a way.

In this section we define the precise nature of this weighting, and then give some motivation

for how it arises.

Definition 2.8. Let X be a vector field on a Riemannian manifold (Mn, g). The m-Bakry-

Émery tensor is

RicmX := Ric+
1

2
LXg −

1

m
X∗ ⊗X∗ , m ̸= 0

Ric0 := Ric , m = 0 and X ≡ 0

Ric∞X = Ric−∞
X := Ric+

1

2
LXg

(2.9)

Observe that each term in the first line of (2.9) is a (20)-tensor, so RicmX is defined properly as

another (20)-tensor. It is very common to write X in the expression instead of its metric dual

X∗(−) = g(−, X). In the special case that X is the gradient of a smooth function f :M ↦→ R,
it is conventional to write Ricmf or Ric∞f , respectively, and then we take f to be constant in

the m = 0 case.
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Along with the Ricci curvature, there is a Bakry-Émery version of mean curvature for

hypersurfaces, defined as follows.

Definition 2.9. The Bakry-Émery mean curvature of the hypersurface N with respect to the

(extended) unit normal field ν is defined to be

HX = H − g(X, ν) (2.10)

If HX = 0 pointwise, we call Σ a Bakry-Émery X-minimal hypersurface.

Note that authors who take the mean curvature to be the negative trace of the shape op-

erator will add rather than subtract the g(X, ν) when defining the weighted mean curvature.

When dealing with a manifold with boundary, we can consider a boundary component

N to be a hypersurface in M , and so we can compute its mean curvature. In this case, we

will always choose the unit normal field to point into M .

There is a modified version of the Laplacian which is weighted to cooperate with the

definitions of weighted curvature. We define the weighted Laplacian (also known as the drift

Laplacian) on functions to be

∆Xf = ∆f − g (X,∇f) (2.11)

Remark 2.10. We say that a continuous function f : M ↦→ R satisfies ∆Xf ≥ 0 in the

barrier sense if for any p ∈M and ε > 0, there is a C2 function fp,ε defined in a neighborhood

of p such that

• fp,ε ≤ f

• fp,ε(p) = f(p)

• ∆Xfp,ε ≥ −ε

and likewise, we say f satisfies ∆Xf ≤ 0 in the barrier sense if −f satisfies ∆X(−f) ≥ 0 in

the barrier sense.

One reason to study smooth metric spaces is the fact that they are examples of collapsed

measured Gromov-Hausdorff limits. The specifics about this observation can be found in [18],

but the idea is to consider the manifold Mn × ˜︂Mm with the warped product metric

gε = gM ⊕
(︁
εe−f/m

)︁2
gN (2.12)
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where M and ˜︂M are compact and f is a smooth function of points in M . As ε → 0, this

manifold converges to M with a ‘weighted volume form e−mfdvolgM ’.

Let u, v be two vectors in Tp(M × ˜︂M) which are orthogonal to the ˜︂M factor. Using

O’Neill’s formula [23, Corollary 7.43], we are going to show that the Ricci curvature satisfies

Ricgε(u, v) = RicgM (u, v) + (Hess f)gM (u, v)− 1

m
df ⊗ df(u, v) (2.13)

which is the same as (2.9). Thus, for m ∈ Z+ the Bakry-Émery Ricci curvature can be

thought of as the Ricci curvature restricted to M from an ambient manifold. Computing

with the formula,

Ricgε(u, v) = RicgM (u, v)− m

εe−f
Hess

(︁
εe−f/m

)︁
(u, v)

= RicgM (u, v)− m

e−f/m
∇u∇ve

−f

= RicgM (u, v)− m

e−f/m

(︃
∇u

(︃
− 1

m
e−f/m∇vf

)︃)︃
= RicgM (u, v)− 1

e−f/m

(︃
1

m
e−f/m∇uf∇vf − e−f/m∇u∇vf

)︃
(2.14)

and after some simplification we are done.

Another very interesting thing to look at is the relationship between the Bakry-Émery

Ricci tensor and concavity properties of distance functions on a connected Riemannian man-

ifold. For a fixed point q ∈M , the distance function ρq(p) = d(p, q) is the infimum of lengths

of curves in M connecting p to q. This function has the properties

• |∇ρq| = 1

• Hess ρ2q ≤ 0 ⇐⇒ M has all non-negative sectional curvatures.

More generally, we will consider in later sections distance functions from an embedded

hypersurface. Such functions also possess the above two properties. The level sets of distance

functions are going to be important later because the Hessian of a distance function is equal

to the second fundamental form on the surface, and the mean curvature is thus equal to the

Laplacian of the distance function. This motivates the use of the drift Laplacian, because

under this definition

H = ∆ρ =⇒ HX = ∆Xρ (2.15)

which keeps all of the modified tensors in line.
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2.2 Previous Splitting Theorem Results

Typically no restrictions on X are necessary for the finite positive m cases in the list below.

For the other cases, it is usually necessary to impose a boundedness condition of some sort as

we will discuss more later. For m ∈ (−∞, 1− n] and X = df , Wylie [31] obtained a warped

product splitting when f is bounded above. For m = ∞ and X = df with f bounded, Fang,

Li, and Zhang [8] obtained a product splitting. Alternatively, Lim [17] obtained a splitting

in this case by assuming instead that ∇f → 0 at ∞.

In a sequence of papers, Sakurai considered manifolds-with-boundary under Bakry-Émery

curvature conditions with gradient vector fields X = df . In [28], versions of the positive m

case are given. The negative m case is considered in [29]. Sakurai’s exact Bakry-Émery

curvature conditions vary across the different cases cited above, whereas in the X ≡ 0

case studied by Croke and Kleiner, the curvature conditions for the connected and disjoint

boundary theorems have the same form. In the present paper, different curvature conditions

are required for the connected and disjoint (multi-component) boundary cases.

The following list summarizes the known splitting theorem results:

• M is a complete manifold obeying RicmX ≥ 0.

1. X = df , m < 1− n, f ≤ K: product splitting theorem [31].

2. X = df , m = 1− n, f ≤ K: warped product splitting theorem [31].

3. X = df , m = ∞, f ≤ K: product splitting theorem [8].

4. X = df , m = ∞, ∇f → 0 at ∞: product splitting theorem [17].

5. Arbitrary X, 0 < m <∞, product splitting theorem [11].

• M is a manifold with boundary.

6. Connected boundary, m ∈ (0,∞], Ricmf ≥ (n + m − 1)κ, Hf ≤ −(n + m − 1)λ

where κ ≤ 0, λ =
√︁

|κ|: warped product splitting theorem [28, Theorem 1.4].

7. Connected boundary, m ∈ [−∞, 1 − n], Ricmf ≥ 0, Hf ≤ 0, f < K: warped

product splitting theorem. [29, Theorem 1.3].

8. Disjoint boundary components, m ∈ (0,∞], Ricmf ≥ 0, Hf ≤ 0: warped product

splitting theorem [28, Theorem 6.13].

9. Disjoint boundary components, m ∈ [−∞, 1 − n], Ricmf ≥ κ, Hf ≤ −λ, f < K,

where λ, κ satisfy a subharmonicity condition: warped product splitting theorem

[29, Theorem 5.10].
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Note how some of the above results require f ≤ K for a constant K. It turns out this

condition is necessary, as we will show with a couple of examples. In general, when the

potential function is unbounded many of the structure results of Riemannian geometry can

fail. The first example is one of the most well known; the so called Gaussian Soliton.

Example 2.11 (Gaussian Soliton). Let M = Rn with the standard Euclidean metric, and

let the function f(p) = λ
2
|p|2 for some λ > 0. Then Hess f = λg and Ricf = λg.

This example highlights how a metric space may be non-compact with Ric∞f ≥ λg, though

Ric ≥ λg forces M to be compact. This fact is known as Myers’s theorem, and there is a

Bakry-Émery version which works if f is bounded.

Using the distance function, we can construct another interesting manifold.

Example 2.12. Let M = Hn be the hyperbolic space, i.e. the maximally symmetric, simply

connected n-dimensional Riemannian manifold of constant negative sectional curvature. Fix

any point q ∈ M , and let f(p) = (n− 1)ρ2q(p). The distance function ρq has a gradient with

norm 1, so by the product rule

Hess ρ2q(x, y) = 2 |∇ρq|2 g(x, y) + 2ρq Hess ρq ≥ 2g(x, y) (2.16)

Note that here, g(x, y) acts as the identity tensor (i.e. the (20)-tensor having the identity

matrix for its matrix of coefficients) since ρq, Hess ρq are both positive and |∇ρq| = 1.

This example shows that Theorem 2.2 does not necessarily hold for Ric∞f ≥ 0. In fact

even if we impose Ric∞f ≥ λg > 0, the theorem still may fail.

The necessity of a bound on f shows that for a general X one needs a condition which

implies the boundedness of the potential when restricted to the special case thatX is gradient.

In [31, Section 6] a twisted product splitting for item (2) from the above list is obtained under

a suitable condition on X.

Remark 2.13. Unlike totally geodesic hypersurfaces (see remark 1.25), it is always possible

to find minimal hypersurfaces in a 3 dimensional compact manifold [5]. This is also true for

f -minimal hypersurfaces [15], but it is unknown whether we can always obtain an X-minimal

hypersurface.

This is not the only important modification of the Ricci tensor. For another version with

applications to conformal geometry, see [2].
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3 A Bakry-Émery Version of a Frankel-Type Theorem

The first result we prove is a generalization of the hypersurface case of Frankel’s theorem

[9] for X-Bakry-Émery curvature conditions. Frankel proved that any two closed, totally

geodesic submanifolds of a complete manifold of positive sectional curvature whose dimen-

sions sum to ≥ n must intersect. For hypersurfaces, Peterson and Wilhelm [25, Theorem

3] were able to weaken the curvature condition to require only positivity of the Ricci curva-

ture and then showed that the result applied to all minimal hypersurfaces whether totally

geodesic or not. More recently, Li and Wei [15] showed the result for Bakry-Émery curvature

assuming the vector field was gradient.

Let f : [−ε, ε] × [0, ℓ] be a variation of a unit speed curve γ(·) := f(0, ·) and define the

arclength function

L(s) =

ℓ∫︂
0

⃓⃓⃓⃓
∂f

∂t
(s, t)

⃓⃓⃓⃓
dt (3.1)

Synge’s second variation of arclength formula states that whenever γ(·) = f(0, ·) is a

stationary point of L(s) then we have

d2L

ds2
(0) = −

ℓ∫︂
0

Sec(V, γ̇)dt+ g

(︃
γ̇,

(︃
∇ ∂f

∂s

∂f

∂s

)︃
(0, t)

)︃ ⃓⃓⃓⃓ℓ
0

(3.2)

where V (t) = ∂f
∂s
(0, t) is the variation vector field.

Theorem 3.1. Let M be an n-dimensional Riemannian manifold that admits an m ∈ (0,∞]

and a C1 vector field X such that the Bakry-Émery Ricci curvature obeys RicmX > 0. Let N1

and N2 be closed Bakry-Émery X-minimal hypersurfaces in M . Then N1 and N2 intersect.

Proof. Let N1, N2 ⊂ M be as above, and let pi ∈ Ni be points in the hypersurfaces which

are closest to each other. By way of contradiction, assume that dist(p1, p2) =: ℓ > 0. Then

choose, as in Frankel’s formula, a non-trivial unit speed minimizing geodesic γ : [0, ℓ] ↦→ M

from p1 to p2. Next, select an orthonormal frame at p1 such that the nth element is γ̇(0)

and parallel-transport it along γ to define an orthonormal basis {E1, ... , En−1, En} along γ

with En = γ̇. At the endpoints of γ, the basis vectors E1, ... , En−1 must be tangent to

the hypersurfaces by construction. Now, pick variations f1, ... , fn−1 with the property that

fj(s, 0) ∈ N1, fj(s, ℓ) ∈ N2 for sufficiently small s, and

∂fj
∂s

(0, t) = Ej (3.3)
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Summing the contributions of all n− 1 such variations, then

n−1∑︂
j=1

d2Lj(0)

ds2
= −

n−1∑︂
j=1

ℓ∫︂
0

Sec(Ej, γ̇)dt+
n−1∑︂
j=1

g

(︃
γ̇,

(︃
∇ ∂fj

∂s

∂fj
∂s

)︃
(0, t)

)︃ ⃓⃓⃓ℓ
0

= −
ℓ∫︂

0

Ric(γ̇, γ̇)dt+H(ℓ) +H(0)

(3.4)

by Synge’s formula, where H(0) denotes the mean curvature of N1 at p1 with respect to γ̇(0)

and H(ℓ) denotes the mean curvature of N2 at p2 with respect to −γ̇(ℓ), this orientation being

consistent with our conventions in the case when N1 and N2 are boundary hypersurfaces for

an interior region containing γ. Thus, we have

n−1∑︂
j=1

d2Lj(0)

ds2
= −

ℓ∫︂
0

RicmX(γ̇, γ̇)dt+

ℓ∫︂
0

[︃
1

2
LXg(γ̇, γ̇)−

1

m
(g(X, γ̇))2

]︃
dt

+H(ℓ) +H(0)

= −
ℓ∫︂

0

RicmX(γ̇, γ̇)dt+ g(X, γ̇)
⃓⃓⃓ℓ
0
− 1

m

ℓ∫︂
0

(g(X, γ̇))2 dt+H(ℓ) +H(0)

= −
ℓ∫︂

0

RicmX(γ̇, γ̇)dt+HX(ℓ) +HX(0)−
1

m

ℓ∫︂
0

(g(X, γ̇))2 dt

< − 1

m

ℓ∫︂
0

(g(X, γ̇))2 dt

(3.5)

where in the last step we used our curvature assumptions. All steps are valid when m = ∞
provided the right-hand side of the last line is interpreted as 0. Thus, in all cases, the

base geodesic γ(t) = f(0, t) must be unstable. This contradicts the assumption that γ is a

minimizing curve between closed hypersurfaces.

A special case is when X is tangent to N1 and N2 which are then minimal surfaces in

the ordinary sense.

Example 3.2 (Sphere and Flat Torus). Let M = S2. This is a space with positive Ricci

curvature everywhere, so any two minimal surfaces will intersect. All minimal surfaces are

given by great circles, so clearly this holds. However, weakening the requirement to RicmX ≥ 0

may cause the result to fail.
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Consider M = T2, the flat torus [0, 1] × [0, 1]/ {(x, 0) ∼ (x, 1), (0, y) ∼ (1, y)}. This is

a compact manifold with 0 Ricci curvature everywhere, but distinct circles parallel to (t, 0)

comprise a family of distinct non-intersecting minimal surfaces.

Remark 3.3. The proof shows that stronger results can be obtained. For example, the last

step of (3.5) follows provided only that
∫︁ ℓ
0
RicmX(γ̇, γ̇)dt−HX(ℓ)−HX(0) > 0 along each such

curve γ. Further, for finite m we may replace the open inequality (< 0) by the closed one

(≤ 0) in (3.5) unless X and γ are orthogonal all along γ.

3.1 Mean curvature comparison

While Theorem 3.1 shows that any manifold of positive Bakry-Émery Ricci curvature with

two compact minimal hypersurfaces may intersect, the same is not true for manifolds of

merely non-negative Bakry-Émery Ricci curvature. However, if we assume a stronger mean

curvature condition on the surface, it is possible to get a few structure results on manifolds

with a single hypersurface in the non-negative and even the negative bounded below Bakry-

Émery case.

These results were obtained for minimal surfaces in a manifold with Ricci curvature

bounds in [4, Theorem 2.5] using a Bochner identity argument. The argument can be modified

to work in the Bakry-Émery case using the following version of the Bochner identity (e.g.,

[11, Lemma 4]):

∆X(|∇w|2) = 2 |Hessw|2 + 2∇∇w(∆Xw) + 2RicmX(∇w,∇w) +
2

m
[X(w)]2 (3.6)

Let γ belong to a congruence of unit-speed geodesics parameterized by t (a family of

integral curves of a non-vanishing vector field Γ such that ∇Γ̇Γ̇ = 0), either issuing from

a point or orthogonally from an initial hypersurface N at t = 0. Since such a congruence

is irrotational, we can consider the hypersurfaces Mt defined by level sets w = t at equal

parameter values along different curves in the congruence (see Figure 4). We will need to use

the behavior of infinitesimal area elements of N as they propagate along the congruence.

Definition 3.4 (Line element). The Line element ds of an n-dimensional manifold is the

quadratic form

ds2 =
n∑︂
ij

gijφ
i ⊗ φj (3.7)

which is often identified with the metric itself, since the metric is completely determined by

the line element.
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For any p ∈ Mt in a level set of the distance function, let {φ1, ... , φn−1, φ} be a basis of

(TpM)∗ such that each φj is orthogonal to φ, and {φ1, ... , φn−1} is a basis of (TpMt)
∗. We

can write

ds2 = hnndφ
2 + 2

n−1∑︂
i=1

hin(dφ⊗ dφi) +
n−1∑︂
i,j=1

hij(dφ
i ⊗ dφj) (3.8)

where h is a symmetric matrix with coefficients determined by the metric. h depends on

p ∈M , and the function A =
√︁
det(h) is the called area element function which we will use

to measure how infinitesimal areas behave as the surface moves outwards. The key is that in

the following, hnn = 1 since the distance functions have unit gradient. Then if A is a function

of only t and hin ≡ 0, the metric splits as

ds2 = dt2 + A2gMt (3.9)

In order to compute the area element, we will make use of the fact that the area element

satisfies the first variation of area formula, relating mean curvature of the surface to this area

element,

H =

(︃
d

dt
A

)︃
/A (3.10)

which shows that minimal surfaces (surfaces with 0 mean curvature) are local minimizers of

area. So the problem of controlling the area element becomes an issue of controlling the mean

curvature. In order to do this in the Bakry-Émery setting, we first verify a modified version

of the Bochner identity that will control the weighted quantities. If w = ρp is a distance

function so that |∇w| = |∇ρp| = 1, we obtain

∇∇ρp∆Xρp = − |Hess ρp|2 − RicmX(∇ρp,∇ρp)−
1

m
[X(ρp)]

2

= −
⃓⃓⃓⃓
tf Hess ρp +

1

n− 1
[∆Xρp +X(ρp)] gMt

⃓⃓⃓⃓2
− RicmX(∇ρp,∇ρp)−

1

m
[X(ρp)]

2

= − |tf Hess ρp|2 −
1

(n− 1)2
(︁
(∆Xρp)

2 + (X(ρp))
2 + (∆Xρp)(X(ρp))

)︁
− RicmX(∇ρp,∇ρp)−

1

m
[X(ρp)]

2

= − |tf Hess ρp|2 − RicmX(∇ρp,∇ρp)−
(∆Xρp)

2

(n+m− 1)

− 1

(n− 1)

(︄√︃
m

n+m− 1
∆Xρp +

√︃
n+m− 1

m
X(ρp)

)︄2

(3.11)
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where tf Hess is the tracefree part of the hessian. If ψ is a (20)-tensor field over a n − 1

dimensional manifold, the tracefree part is the tensor field

tf ψ(x, y) = ψ(x, y)− 1

n− 1
tr(ψ)g(x, y) (3.12)

This means in particular that if {e1, ... , en−1} is an orthonormal basis,

n−1∑︂
i,j=1

(︃
((trψ)g(ei, ej)) ·

(︃
ψ(ei, ej)−

1

n− 1
tr(ψ)g(ei, ej)

)︃)︃
= 0 (3.13)

explaining how we got to line three in the above calculation.

The mean curvature H(t) of these level sets is governed by a scalar Riccati equation

(sometimes called the Raychaudhuri equation)

dH

dt
= −Ric(γ̇, γ̇)− | II |2 = −Ric(γ̇, γ̇)− | tf II |2 − H2

(n− 1)
(3.14)

The Raychaudhuri equation can be rewritten in terms of Bakry-Émery quantities through

the following computation

dH

dt
= − Ric(γ̇, γ̇)− | tf II |2 − H2

(n− 1)

dH

dt
− 1

2
LXg(γ̇, γ̇) = − RicmX(γ̇, γ̇)− | tf II |2 − 1

m
g(γ̇, X)2 − H2

(n− 1)

dHX

dt
= − RicmX(γ̇, γ̇)− | tf II |2 − 1

m
g(γ̇, X)2 − 2

n− 1
HXg(γ̇, X)

− H2
X

(n− 1)
− 1

(n− 1)
g(γ̇, X)2

dHX

dt
= − RicmX(γ̇, γ̇)− | tf II |2 − H2

X

(n+m− 1)

− 1

(n− 1)

[︄√︃
m

n+m− 1
HX +

√︃
n+m− 1

m
g(γ̇, X)

]︄2

(3.15)

which is in fact just equation (3.11), and another verification that HX = ∆Xρp.

Using these equations, we prove three very similar structure lemmata for m positive,

infinite, and negative. These lemmata control the mean curvature along geodesics leaving a

hypersurface orthogonally.
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Lemma 3.5 (Finite m structure result). Let there be an X, an m ∈ (0,∞), and a δ ∈
{0, 1} such that RicmX ≥ −(n− 1)δg. Denote the Bakry-Émery mean curvature of the initial

hypersurface Σ at t = 0 by HX(0). If

(i) δ = 0, or

(ii) δ = 1 and (HX(0))
2 ≥ (n− 1)(n+m− 1),

then HX(t) ≤ HX(0) for all t > 0 for which H is defined. If HX(t1) = HX(0) ≤ 0 for any

t1 > 0 in the domain then HX(t) = HX(0) for all 0 ≤ t ≤ t1 and then along γ : [0, t1] ↦→ M

we have that HX(0) = −
√︁

(n− 1)(n+m− 1)δ = HX(t), RicmX(γ̇, γ̇) = −(n − 1)δg, the

tracefree part tf II of the second fundamental form vanishes, and g(γ̇, X) = −mδ
√︂

n−1
n+m−1

.

Proof. Defining x(t) := HX√
(n−1)(n+m−1)

and c :=
√︂

n−1
n+m−1

, then equation (3.15) yields the

inequality

x′(t) ≤ c
(︁
δ − x2(t)

)︁
(3.16)

Let u(t) := ec
∫︁ t
0 x(s)ds. Then x = u′

cu
, and the inequality x′ ≤ c (δ − x2) becomes u′′

cu
≤ cδ,

or u′′ ≤ c2δu. Let v(t) be the unique solution of v′′ = c2δv such that v(0) = u(0) =: u0 > 0

and v′(0) = u′(0) =: u′0. Let T > 0 be the first point at which either u(t) or v(t) has a zero

or becomes undefined, and restrict attention to t ∈ [0, T ). Now let y(t) := v′

cv
, and

[uv(x− y)]′ =

[︃
uv

(︃
u′

cu
− v′

vv

)︃]︃′
=

1

c
(vu′′ − uv′′) ≤ 0 (3.17)

Now integrating and using x(0) = y(0) to find the constant of integration, we have that

uv(x− y) ≤ 0. Then x(t) ≤ y(t) for all t ∈ [0, T ).

When δ = 0, then v(t) = u′0t+ u0 and so

x(t) ≤ y(t) =
u′0

c(u′0t+ u0)
=
u′0/(cu0)
u′0
u0
t+ 1

=
x(0)

cx(0)t+ 1
≤ x(0) for t ∈ [0, T ) (3.18)

When δ = 1, then v(t) = u0 cosh ct+
u′0
c
sinh ct. If [x(0)]2 ≥ 1 as well, then we have

x(t) ≤ y(t) =
u0 sinh ct+

u′0
c
cosh ct

u0 cosh ct+
u′0
c
sinh ct

=
tanh ct+

u′0
cu0

1 +
u′0
cu0

tanh ct
=

x(0) + tanh ct

1 + x(0) tanh ct
≤ x(0) (3.19)

for t ∈ [0, T ). This proves the inequality.
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To prove the equality statement, observe that the last (i.e., rightmost) inequalities in

(3.18) and (3.19) are strict for t > 0 unless x(0) = 0 in (3.18) or x(0) = ±1 in (3.19), and

then

HX(0) = ±
√︁

(n− 1)(n+m− 1)δ (3.20)

and since HX(0) ≤ 0, we need only consider the negative case, and so

HX(t) = −
√︁
(n− 1)(n+m− 1)δ (3.21)

for some t > 0. But then there is a local minimum of HX at some 0 < t0 < t such that

H ′
X(t0) = 0. Since the left-hand side of (3.15) vanishes there, the right-hand side must as

well. But under the given conditions we have

−RicmX(γ̇, γ̇)−
H2
X

(n+m− 1)
≤ 0 (3.22)

and then

RicmX(γ̇) = − H2
X

(n+m− 1)
= −(n− 1)δ (3.23)

at t0, so

HX(t) = −
√︁
(n− 1)(n+m− 1)δ (3.24)

at t0 and thus for all t. But then HX(t) is constant and d
dt
HX = 0 for all t, so RicmX(γ̇) +

H2
X

(n+m−1)
, | tf II |, and the final term on the right of (3.15) in square brackets must each vanish

independently throughout the domain. This can only happen when the conditions listed in

the lemma hold.

Furthermore, this result extends to m = ∞ and m < 1− n when δ = 0.

Lemma 3.6 (Structure result when m = ∞). Let there be an X such that Ric∞X ≥ 0. Denote

the Bakry-Émery mean curvature of the initial hypersurface Σ at t = 0 by HX(0). Then

HX(t) ≤ HX(0) for all t > 0 for which H is defined. If HX(t1) = HX(0) ≤ 0 for any t1 > 0

in the domain then HX(t) = HX(0) = −g(γ̇, X) for all 0 ≤ t ≤ t1 and along γ : [0, t1] ↦→ M

we have that RicmX(γ̇, γ̇) = 0 and the tracefree part tf II of the second fundamental form

vanishes.

Proof. In this case, equation (3.15) yields

dHX

dt
= −Ric∞X (γ̇, γ̇)− |tf II|2 − 1

(n− 1)
(HX + g(γ̇, X))2 (3.25)
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Since Ric∞X ≥ 0, each term on the right is negative semi-definite, so HX(t) ≤ HX(0) for t > 0,

and HX(t1) = HX(0) if and only if Ric∞X (γ̇, γ̇) = 0, tf II = 0, and HX + g(γ̇, X) = 0 for all

0 ≤ t ≤ t1. This last result implies that H(0) = HX(t) = −g(γ̇, X)(t) for all 0 ≤ t ≤ t1.

Lemma 3.7 (Negative m structure result). For m ∈ (−∞, 1 − n), let there be an X such

that RicmX ≥ 0. Then

e
2

n−1

t∫︁
0

g(γ̇,X)dr
HX(t) ≤ HX(0) (3.26)

for all t > 0 for which H is defined. Further, if

e
2

n−1

t1∫︁
0

g(γ̇,X)dr
HX(t1) = HX(0) ≤ 0 (3.27)

for any t1 > 0 in the domain then HX(t) = HX(0) = g(γ̇, X) = 0 for all 0 ≤ t ≤ t1 and

along γ : [0, t1] ↦→ M we have that RicmX(γ̇, γ̇) = 0 and the tracefree part tf II of the second

fundamental form vanishes. In particular these equality statements will also hold in the case

that HX(0) = 0 and HX(t1) = 0 for any t1 > 0 in the domain.

Proof. In this case, equation (3.15) yields

dHX

dt
=− RicmX(γ̇, γ̇)− |tf II|2 − 1

m
g(γ̇, X)2

− 2

n− 1
HX · g(γ̇, X)− H2

X

(n− 1)
− g(γ̇, X)2

(n− 1)

2

n− 1
HX · g(γ̇, X) +

dHX

dt
=− RicmX(γ̇, γ̇)− |tf II|2

− 1

(n− 1)
g(γ̇, X)2 − 1

m
g(γ̇, X)2 − H2

X

(n− 1)

e
−2
n−1

·∫︁
0

g(γ̇,X)dr

(︄
e

2
n−1

·∫︁
0

g(γ̇,X)dr
HX

)︄′

=− RicmX(γ̇, γ̇)− |tf II|2

− n+m− 1

m(n− 1)
g(γ̇, X)2 − H2

X

(n− 1)

(3.28)

and since RicmX ≥ 0 and m < 1− n, each term on the right is non-positive, so

e
−2
n−1

s∫︁
0

g(γ̇,X)dr
HX(s) ≤ e

−2
n−1

t∫︁
0

g(γ̇,X)dr
HX(t) ≤ HX(0) (3.29)

for s > t > 0, and then e
2

n−1

∫︁ t1
0 g(γ̇,X)dtHX(t1) = HX(0) if and only if RicmX(γ̇, γ̇) = 0,

tf II = 0, g(γ̇, X) = 0, and HX = 0 for all 0 ≤ t ≤ t1. This last result implies that

H(0) = HX(t) = g(γ̇, X) = 0 for all 0 ≤ t ≤ t1.
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3.2 Manifolds with a Single Hypersurface

We first show one immediate consequence of Frankel’s theorem that applies to a manifold

with a single minimal hypersurface.

Corollary 3.8. Let M be a complete manifold with a vector field X and an m ∈ (0,∞]

such that RicmX > 0 pointwise on M , and such that M has a closed Bakry-Émery X-minimal

surface N . Then the homomorphism i∗ : π1(N) ↦→ π1(M) induced by inclusion is surjective.

If N ⊂ M is a hypersurface, there is a map i : N ↦→ M which is injective. We define i∗

as the corresponding map between the fundamental groups, which sends an equivalence class

of curves to the equivalence class of those same curves as they sit in M , and this is what is

meant when we say i∗ is “induced by inclusion”. Observe that i∗ need not be injective.

Proof of 3.8. Suppose i∗ is not surjective. Then there is a class [c′] ∈ π1(M, p) of loops based

at p ∈ N which cannot be deformed to lie in N , and for which c′ is a length-minimizing

representative. If we further minimize over all p in the closed submanifold N , there will be a

shortest non-trivial loop c of length L(c) > 0. We may pass to the universal covering space

M̄ , with Riemannian metric ḡ and vector field X̄ on M̄ defined by pullback. Then the m-

Bakry-Émery Ricci tensor on M̄ will obey RicmX̄(ḡ) > 0, and there will be two disjoint copies

of the Bakry-Émery X-minimal surface N joined by a minimal geodesic of length L(c) > 0.

By Theorem 3.1 these two hypersurfaces must intersect a contradiction.

The structure results in section 3.1 allow us to obtain the non-negative Bakry-Émery

version of 3.8, following the arguments of [4, Theorem 2.5]. When RicmX is allowed to be 0

at points, the theorem can actually fail just as shown in example 3.2, but it turns out this

failure only occurs when the manifold is separated by the surface. In this case, we can still

constrain the structure on the fundamental group of the manifold.

Theorem 3.9. Let M be a compact manifold with a vector field X and an m ∈ [0,∞] such

that RicmX ≥ 0 pointwise on M , and such that M has a closed embedded 2-sided X-minimal

hypersurface N .

a) If N is non-separating, then M is isometric to a mapping torus

N × [0, a]

(x, 0) ∼ (y, a) iff ϕ(x) = y
(3.30)

where ϕ : N ↦→ N is an isometry, and if m > 0 is finite then X is tangent to N , which

is then a minimal hypersurface in the usual sense.
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b) If N is separating, let D1 and D2 be the connected components of M\N . Then for

j = 1, 2, the maps

i∗ : π1(N) ↦→ π1(Dj) , i∗ : π1(N) ↦→ π1(M) , and i∗ : π1(Dj) ↦→ π1(M) (3.31)

induced by inclusion are all surjective.

Proof. The proof of part (a) follows that of [4, Theorem 2.5], which proves the m = 0 case

so without lose of generality we assume m ∈ (0,∞]. Reference [4] gives two proofs. One

proof follows from a splitting theorem, and for finite m > 0 it follows in the same way in our

setting using the splitting theorem proved in [11]. The second proof follows directly from a

Bochner formula.

Reference [4] begins by defining a smooth f : M\N → R which is identically zero on

a collar neighborhood of one side of N and identically 1 on a collar neighborhood of the

other side. By identifying the range modulo the integers, they obtain f : M ↦→ S1. This

induces a map of fundamental groups f∗ : π1(M) ↦→ Z whose kernel G < π1(M) is the

subgroup consisting of classes of loops that can be deformed away from one of the above

neighborhoods. By passing first to the universal cover M̂ of M and then identifying points

modulo G, they obtain a cover of M which, roughly speaking, unwraps only those loops

which must pass through both collar neighborhoods.

Then the argument proceeds by considering two adjacent preimages N1 and N2 in M̂

of N under the projection π : M̂ ↦→ M . They let D be the compact connected region

bounded by the preimages. Let ρNi
denote the distance map in M̂ from Ni, i ∈ {1, 2}. We

show in Lemma 3.5 (Lemma 3.6) that ∆XρNi
≤ 0, given RicmX ≥ 0 for m > 0 (respectively

Ric∞X ≥ 0) in the barrier sense, and hence ∆X(ρN1 + ρN2) ≤ 0. But ρN1 + ρN2 will have an

interior minimum and so must be constant on D. But since ∆XρNi
≤ 0 for i ∈ {1, 2}, then

∆XρNi
= 0, and from (3.11) we deduce that Hess ρNi

= 0, that RicmX = 0, and that either

m = ∞ or X is tangent to level sets of the ρNi
. This proves part (a).

Finally, for part (b), fix a j and let π : D̂j ↦→ Dj be the universal cover of Dj. We

claim that ∂D̂j = π−1(N) is connected. For the sake of contradiction, suppose ∂D̂j is not

connected, and let

d0 = inf
{︂
d(Σ′,Σ′′) : Σ′ and Σ′′ are distinct components of ∂D̂j

}︂
(3.32)

Now, there exist distinct components Σ1 and Σ2 that minimize this distance, and a

geodesic γ in D̂j from Σ1 to Σ2 that realizes it. By continuity, the distance functions d1 and

d2 are well defined on a neighborhood of γ.

33



By the argument in part (a), it follows that a tubular neighborhood of γ is isometric to

a product manifold U × (0, d0) where U is an open ball centered at γ(0) in Σ1.

Let U be the set of points in Σ1 which can be joined to Σ2 by a geodesic of length d0.

Clearly U is open, and we can also show it is closed. Let p ∈ Σ1 such that {pm} ⊂ U
converges to p, and let γm be a geodesic with length d0 from pm to Σ2. By continuity there

is a geodesic γ0 from p to Σ2 such that {γn} converges to γ0. γ0 will have a length of d0 as

well, however it could happen that γ0 now hits a different boundary component Σ3 on the

way. But then Σ1 and Σ3 would be less than d0 apart which is not possible, so U is closed.

Thus U = Σ1, and so D̂j is isometric to a product manifold Σ1 × (0, d0). This implies

that M is diffeomorphic to N × S1, but that would make N a non-separating hypersurface,

which is a contradiction. From here, the arguments are identical to [4].

Note that from Remark 3.3, Corollary 3.8 would also hold if the pointwise assumption

RicmX > 0 were replaced by the condition that
∫︁ ℓ
0
RicmX(γ̇, γ̇)dt > 0 on each closed geodesic

loop c.

Another way to modify the corollary is to let the curvature have a negative lower bound.

This was also done in the Ricci case in [4, Theorem 2.8].

Theorem 3.10. Let M be a compact manifold with a C1 vector field X and an m ∈ (0,∞)

such that RicmX ≥ −(n+m−1)k pointwise on M for a k > 0, and such that M has a compact

hypersurface N that bounds a connected region Ω in M . Suppose that HX ≤ −(n+m−1)
√
k,

where the normal used to define HX points into Ω. Then N is connected, and the map

i∗ : π1(N) ↦→ π1(Ω̄) induced by inclusion is surjective.

As pointed out in [4, Remark 2.9], the requirement that N bounds a connected region

could be altered; it follows from Theorem 3.9 that when the rest of the conditions are satisfied,

N will necessarily bound a collection of connected regions.

Proof of 3.10. I claim that π−1(N) is connected in the universal cover M̂ of M . If this is the

case, let ℓ be a loop in Ω̄ starting at a point p ∈ N . Lift this to a curve ℓ̂ in Ω̂ joining points

p1, p2 ∈ π−1(p) and let ℓ̂
′
be a curve joining p1 to p2 contained in π−1(N). Since Ω̂ is simply

connected, ℓ̂ and ℓ̂
′
are homotopic, so π(ℓ̂) = ℓ and π(ℓ̂

′
) are as well, thus i∗ is surjective.

To prove the claim, suppose that N was not connected, and let N1 and N2 be distinct

connected components of N . Once again let γ be the unit speed geodesic that realizes the

distance between these components. Let ϕ be a solution to ϕ′′−kϕ = 0, with ϕ(0) = ϕ(ℓ) = 1,
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and let Vi(t) = ϕ(t)Ei(t). Note that in particular, ϕ(t) = cosh(
√
k(t−ℓ/2))

cosh(
√
kℓ/2)

. Then we compute

0 ≤
n−1∑︂
j=1

d2Lj(0)

ds2

=

ℓ∫︂
0

(︁
(n− 1)(ϕ′)2 − ϕ2Ric(γ̇, γ̇)

)︁
dt+

n−1∑︂
i=1

ϕ2⟨∇Ei
Ei, γ̇⟩

⃓⃓⃓ℓ
0

=−m

ℓ∫︂
0

(ϕ′)2dt+

ℓ∫︂
0

(︁
(n+m− 1)(ϕ′)2 − ϕ2Ric(γ̇, γ̇)

)︁
dt+H(ℓ) +H(0)

=−
ℓ∫︂

0

(︁
(n+m− 1)ϕϕ′′ + ϕ2RicmX(γ̇, γ̇)

)︁
dt+ (n+m− 1)ϕϕ′

⃓⃓⃓ℓ
0

+

ℓ∫︂
0

ϕ2

[︃
1

2
LXg(γ̇, γ̇)−

1

m
(g(X, γ̇))2

]︃
dt−m

ℓ∫︂
0

(ϕ′)2dt+H(ℓ) +H(0)

≤−
ℓ∫︂

0

(︁
(n+m− 1)ϕϕ′′ − ϕ2(n+m− 1)k

)︁
dt+ (n+m− 1)ϕϕ′

⃓⃓⃓ℓ
0

+ ϕ2g(X, γ̇)
⃓⃓⃓ℓ
0
−

ℓ∫︂
0

(ϕ2)′g(X, γ̇)dt−
ℓ∫︂

0

ϕ2 1

m
(g(X, γ̇))2 dt

−m

ℓ∫︂
0

(ϕ′)2dt+H(ℓ) +H(0)

=−
ℓ∫︂

0

2ϕϕ′g(X, γ̇)dt−
ℓ∫︂

0

ϕ2 1

m
(g(X, γ̇))2 dt−m

ℓ∫︂
0

(ϕ′)2dt

+HX(ℓ) +HX(0) + 2(n+m− 1)
√
k tanh

(︂√
kl/2

)︂
<−

ℓ∫︂
0

(︃
1√
m
ϕg(X, γ̇) +

√
mϕ′

)︃2

− 2(n+m− 1)
√
k + 2(n+m− 1)

√
k

≤ 0

(3.33)

which is a contradiction. So N must be connected, and similarly, π−1(N) is connected.
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4 Splitting Theorems

The Frankel-type theorem works for non-compact manifolds, which raises the issue of whether

there is some rigidity when the curvature conditions are marginally violated. As mentioned,

a prototypical result of this type is the Croke-Kleiner warped product splitting theorem [6].

In this section we will go over Splitting theorems that apply to a manifold with disjoint

boundary components, as well as a connected boundary. The proofs shown in this section

work almost identically to Sakurai’s papers [28] and [29] despite allowing a non-gradient

vector field.

In the following, we denote by ∂
∂t

a vector field orthogonal to level sets of distance

functions from a surface. Specifically, it is a velocity vector field along an element of a

congruence of geodesics leaving a surface orthogonally.

Figure 2: A manifold with boundary N , curves in ∂
∂t
, and a level set Mt of ρN

4.1 Two Boundary Components

Theorem 4.1. Let M be a complete manifold-with-boundary, with boundary components N1

and N2, at least one of which is compact. Suppose that there is an m ∈ (0,∞) and an

X such that RicmX(M) ≥ −(n − 1)δ for δ ∈ {0, 1}. Suppose that the Bakry-Émery mean

curvature of N1 is ≤ −
√︁

(n− 1)(n+m− 1)δ and of N2 is ≤
√︁

(n− 1)(n+m− 1)δ. Then

M is isometric to N1× [0, ℓ] with the metric gM = dt2+ e2cδtg1 where g1 is the metric on N1,

c :=
√︂

n−1
n+m−1

, and RicmX♯(g1) ≥ −mc2δ where X♯ denotes the restriction of X to TN1. For

δ = 0, the splitting is a Riemannian product and the projection of X along ∂
∂t

vanishes. For

δ = 1, the splitting is that of a warped product and the projection of X along ∂
∂t

is constant,

namely g(X, ∂
∂t
) = mc.
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Proof. Let D = dM(N1, N2), and define the distance functions ρNi
(p) := dM(p,Ni) for i ∈

{1, 2}. Let F := ρN1 + ρN2 , and let ˜︁Ω be the subset of intM containing neither cut points

nor shadow points for either N1 or N2 (a shadow point p is one for which the minimizing

curve from one boundary component to p touches the other boundary component en route).

As stated in [6], F is smooth on ˜︁Ω. Then ∆XF = ∆XρN1 +∆XρN2 ≤ 0 by Lemma 3.5, since

the ∆XρNi
are the X-mean curvatures HX of level sets of the functions ρNi

, i ∈ {1, 2}. But
if F achieves a minimum of F = D on ˜︁Ω, then by the maximum principle F is constant on

the interior of M , and then ∆XF = 0 so

∆XρN1 = −∆XρN2 = (−1)i
√︁

(n− 1)(n+m− 1)δ (4.1)

for i ∈ {1, 2}.
We can now write HX := ∆XρN1 = −

√︁
(n− 1)(n+m− 1)δ and invoke the equality

statement in Lemma 3.5. Then the tracefree part of Hess ρN1 must vanish and

RicmX(∇ρN1 ,∇ρN1) = −(n− 1)δ (4.2)

Since Hess ρN1 is scalar, the level sets of ρN1 are umbilic in M . That is, for any q in a

level set Mt of ρ = t, Hess ρN1 determines the second fundamental form, and by dropping an

index we get the shape operator Sq,t which is scalar in that for all x ∈ TqMt, Sq,tx = a(q)x

where a :M ↦→ R is a scalar function.

As a consequence the second fundamental form is just a multiple of the metric at each

point,

IIq(x, y) = gM(Sq,tx, y) = a(q)gM(x, y) (4.3)

In particular, II(v, v) = a(q) for any unit vector v, so the surface bends in the same way in all

directions at q, and the trace of II is (n− 1)a(q), which is equal to the logarithmic derivative

of the area element function
√︁

det(h) by the first variation of area formula. The twisted

product splitting follows; for any p ∈ N , let γp(t) be the geodesic leaving N1 orthogonally.

The metric is

gM = dt2 + Φ2(p, t)gN1 (4.4)

where Φ(p, t) = e
1

n−1
a(γp(t)). The lemma also yields that√︃

m

n+m− 1
∆XρN1 +

√︃
n+m− 1

m
X(ρN1) = 0 (4.5)

This means that gM(X,∇ρN1) = mδ
√︂

n−1
n+m−1

. Then with H := ∆ρN1 we can compute the
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value of the mean curvature,

H = ∆XρN1 + g(X,∇ρN1)

= HX + g(X,∇ρN1)

= −
√︁

(n− 1)(n+m− 1)δ +m

√︃
n− 1

n+m− 1
δ

= − (n− 1)3/2δ√
n+m− 1

= − (n− 1)cδ

(4.6)

Integrating the mean curvature along a geodesic γp leaving N1 orthogonally, we obtain

that for all points the function is a sum of a function of t and a function of p

a(γp(t)) = −(n− 1)cδt+ C(p) (4.7)

where C :M ↦→ R is a constant of integration at each point. Thus,

Φ2(p, t) = e−2cδte
2

n−1
C(p) (4.8)

is separated into a product of functions depending on t and p, so the metric on M splits as

a warped product

ds2 = dt2 + e−2cδt(e
2

n−1
C(p)g1) (4.9)

for t ∈ [0, ℓ]. Without loss of generality, we can let C(p) = 0 since e
2

n−1
C(p)g1 is another

metric on N1, so the splitting holds just as well.

Finally, by assumption, for any k > 0 and any unit vector v in the same tangent space

as ∇ρN1 we have that

−(n− 1)δ ≤ RicmX(kv + ϵ∇ρN1 , kv + ϵ∇ρN1) (4.10)

for ϵ = ±1. Expanding this product and using that RicmX(∇ρN1 ,∇ρN1) = −(n − 1)δ, we

obtain that

0 ≤ ±2kRicmX(v,∇ρN1) + k2RicmX(v, v) ≤ ±2kRicmX(v,∇ρN1) + k2 |RicmX(v, v)| (4.11)

and dividing through by one factor of k > 0, we may now write this as

−k|RicmX(v, v)| ≤ 2RicmX(v,∇ρN1) ≤ k|RicmX(v, v)| (4.12)
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Then k ↘ 0 implies that RicmX(v,∇ρN1) = 0 for all v, so RicmX is block-diagonal (meaning

its matrix representation in a coordinate system containing ∂
∂t

is block diagonal) and the

condition on RicmX descends to the restriction of RicmX to the orthogonal complement of ∂
∂t
.

When δ = 0, we obtain RicmX(g1) ≥ 0. When δ = 1, a brief calculation using O’Neill’s

formula shows that the restriction of RicmX to TN1 equals RicmX♯(g1) − (n − 1)c2g1. Indeed,

the formula says that for any x, y ∈ TpN1,

RicmX(gM)(x, y) = RicmX♯(gM)(x, y)

= RicmX♯(g1)(x, y)−
n− 1

e−ct
Hess e−ct(x, y)

= RicmX♯(g1)(x, y)− (n− 1)c2g1(x, y)

(4.13)

and then by assumption,

RicmX♯(g1)− (n− 1)c2 ≥ −(n− 1)

RicmX♯(g1) ≥ (n− 1)

(︃
−m

n+m− 1

)︃ (4.14)

Combining these cases and using c2 = n−1
n+m−1

, we obtain that RicmX♯(g1) ≥ −mc2δ.

The proofs in Section 3 do not permit m to be negative, however the splitting theorem

carries through for negative and infinite m.

Theorem 4.2. Let M be a complete manifold-with-boundary, with boundary components N1

and N2, at least one of which is compact. Suppose that RicmX(M) ≥ 0 where m ∈ [−∞, 1−n).
Further suppose that the Bakry-Émery mean curvatures of N1 and of N2 are each ≤ 0. Then

M is isometric to the Riemannian product N1 × [0, ℓ] with the metric ds2 = dt2 + g1 where

g1 is the metric on N1, and RicmX♯(g1) ≥ 0. The projection of X along ∂
∂t

vanishes.

Proof. The first paragraph of the proof of Theorem 4.1 carries over to this situation, while

invoking Lemma 3.6 or Lemma 3.7 in place of Lemma 3.5 and concluding that

∆XρN1 = −∆XρN2 = 0 (4.15)

Then, as above, we have that HX = 0 at both boundaries and by the equality part of Lemma

3.6 or 3.7 we have that RicmX(∇XρN1 ,∇XρN1) = 0, tf II = 0, and g(∇XρN1 , X) = 0 as well.

Thus the level sets of ρN1 are totally geodesic, so the metric splits as a product, and X

is tangent to the level sets of ρN1 . Then, as above, the curvature condition descends to

RicmX(g1) ≥ 0.
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4.2 Compact connected boundary

As with the original Croke-Kleiner theorem, an extension of this result produces a warped

product splitting for manifoldsM with a boundary consisting of a single connected component

N = ∂M and which have an asymptotic end. First we modify the necessary lemmata.

Let νp be the inner unit normal at a point p ∈ N = ∂M . Let ϕδ(t) be the unique solution

of the Jacobi problem ϕ′′(t)− δϕ(t) = 0, ϕ(0) = 1, ϕ′(0) = δ ∈ {0, 1}. Also, define

s(t, p) :=
⃓⃓⃓
det
(︁
D exp⊥

p

)︁
tνp

⃓⃓⃓
(4.16)

to be the absolute value of the Jacobian determinant of the linearization about tνp ∈ T⊥N

of the normal exponential map exp⊥
p at p ∈ N . Next, for each p ∈ N , let γp : [0, τp) : t ↦→

exp⊥
p (tνp) be the unique geodesic with initial conditions γp(0) = p, γ̇p = νp, and with domain

[0, T ) where we define the focal radius τp ∈ (0,∞] by τp := sup{t | t = dist(p, γp(t))}. Define

fp(t) =

t∫︂
0

g(X(s), γ̇p(s))ds (4.17)

Finally, for p ∈ N define

sX(t, p) = e−fp(t) s(t, p) (4.18)

In consequence, then

HX(t) =
s′X(t, p)

sX(t, p)
=

s′(t, p)

s(t, p)
− f ′

p(t) (4.19)

These definitions are very abstract upon first glance. Intuitively, s is the area element

orthogonal to a pencil of geodesics. That is, just as explained in the paragraphs following

Definition 3.4, this measures the area of a small surface as it moves outwards from the

boundary. At t = 0, its value is s(0, p) = 1. The equality with HX(t) comes from (3.10).

Figure 3: s measures an infinitesimal area normalized to start at 1

40



sX(t) represents the Bakry-Émery weighted version of this area element, and ϕδ(t) rep-

resents the mean curvature of the ‘model space’ at a distance t from the surface. By model

space, we mean a space which is characterized by constant sectional curvature equal to δ for

each t, which gives a mean curvature of ϕδ(t) on the level sets.

We are going to use Jacobi fields in the following section, but given a geodesic there are

many Jacobi fields one can define. Thus, we define a specific type of Jacobi field that has

initial conditions that will be useful when dealing with a geodesic leaving a surface. A Jacobi

field Y along γp is called an N-Jacobi field if

Y (0) ∈ TpN

(∇γ̇Y )(0)+Sνp(Y (0)) ∈ T⊥
p N

(4.20)

An N -Jacobi field is essentially just a Jacobi field which begins tangent to the surface

and leaves with a behavior determined by the curvature at the initial point.

We will need the following standard comparison result for the index form, defined af-

terwards, for N -Jacobi fields. The index form can be thought of as a measure of how the

sectional curvature determined by two vector fields along a geodesic differs from the prod-

uct of the vector fields. The key is that N -Jacobi fields will minimize the index form given

some initial condition. Throughout the rest of this section, we denote by V ′(t) the covariant

derivative along γ̇ of a vector field V defined along γ, V ′(t) = (∇γ̇V )(t) which gives another

vector field along γ.

Lemma 4.3. For a fixed p ∈ N , let b ∈ (0,∞] and let γp : [0, b) ↦→ M be a geodesic issuing

orthogonally from N with no focal point on [0, t0] ⊂ [0, b). Then for every smooth vector field

V along γp there is a unique N-Jacobi field J along γp with V (t0) = J(t0) such that

IN(J, J) ≤ IN(V, V ) (4.21)

where for smooth vector fields V and W along γp and t ∈ [0, b) the index form IN is

IN(V,W ) :=

t0∫︂
0

[︁
g(V ′(s),W ′(s))− g(Rm(V (s), γ̇p(s))γ̇p,W (s))

]︁
ds

+ g(SνpV (0),W (0))

(4.22)

Further, equality in (4.21) holds if and only if J ≡ V .

The index form comparison lemma is a standard result in Riemannian geometry, but this

modification is less common. For the proof, see [27, Lemma 2.10 – Chapter III.2].
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We can now prove the mean curvature estimates required for the connected boundary

case. These estimates use different curvature conditions than were used in the previous

subsections, and we need to use Jacobi field and index form arguments to obtain them.

Lemma 4.4 (Mean curvature comparison, finite m > 0). Let M be a complete non-compact

n-dimensional manifold-with-boundary with a compact smooth boundary N . Suppose that

RicmX(M) ≥ −(n+m−1)δ for some m ∈ (0,∞), δ ∈ {0, 1}, and that the Bakry-Émery mean

curvature with respect to the inward pointing normal is HX ≤ −(n+m− 1)δ. Let γp be the

geodesic issuing orthogonally from N at p. Then for sX as in equations (4.16)– (4.19),

s′X(t, p)

sX(t, p)
≤ −(n+m− 1)δ (4.23)

Proof. Choose an orthonormal basis {ei}n−1
i=1 for TpN . Let the Ei be parallel vector fields

along γp obeying Ei(0) = ei. Let t0 ∈ (0, τp) be arbitrary. Let Yt0,i(t) be the unique N -Jacobi

field along γp with initial conditions Yt0,i(t0) = Ei(t0) and Y
′
t0,i

(t0) = SνpYt0,i(t0). Then define

rt0(t) := ∥Yt0,1(t) ∧ · · · ∧ Yt0,n−1(t)∥ (4.24)

for t ∈ (0, τp), which may be thought of as the volume element of the (n − 1)-flat (in other

words, the n− 1 dimensional Euclidean space) defined along γp by the Jacobi fields. This is

in fact just another way to write s, with rt0 scaled to take the value 1 at t = t0. Then we

have the following standard calculation,

r′t0(t0) =
n−1∑︂
i=1

g(Yt0,i(t0), Y
′
t0,i

(t0))

=
n−1∑︂
i=1

[︄ t0∫︂
0

(︁
g(Yt0,i(t), Y

′
t0,i

(t))
)︁′
dt+ g(Yt0,i(0), Y

′
t0,i

(0))

]︄

=
n−1∑︂
i=1

[︄ t0∫︂
0

(︁
g(Y ′

t0,i
(t), Y ′

t0,i
(t)) + g(Yt0,i(t), Y

′′
t0,i

(t))
)︁
dt+ g(Yt0,i(0), Y

′
t0,i

(0))

]︄

=
n−1∑︂
i=1

[︄ t0∫︂
0

[︁
g(Y ′

t0,i
(t), Y ′

t0,i
(t))− g(Yt0,i(t),Rm(Yt0,i(t), γ̇p(t))γ̇p(t))

]︁
dt

+ g(SνpYt0,i(0), Yt0,i(0))

]︄

=
n−1∑︂
i=1

IN(Yt0,i(t0), Yt0,i(t0))

(4.25)
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where we used that

rt0(t0) = ∥E1(t0) ∧ ... ∧ En−1(t0)∥ = 1 (4.26)

and thus the time derivative of rt0 at t = t0 can replace the logarithmic derivative

s′(t0)

s(t0)
=

r′t0(t0)

rt0(t0)
= r′t0(t0) (4.27)

If Wi(t) :=
ϕδ(t)
ϕδ(t0)

Ei(t), then Wi(t0) = Ei(t0) = Yt0,i(t0) and so by Lemma 4.3 we have

r′t0(t0) =
n−1∑︂
i=1

IN(Yt0,i, Yt0,i) ≤
n−1∑︂
i=1

IN(Wi,Wi) (4.28)

Then

s′X(t0, p)

sX(t0, p)
= r′(t0, p)− f ′

p(t0)

≤
n−1∑︂
i=1

IN(Wi,Wi)− f ′
p(t0)

=
n−1∑︂
i=1

t∫︂
0

[︁
g(W ′

i (s),W
′
i (s))− g(Rm(Wi(s), γ̇p(s))γ̇p,Wi(s))

]︁
ds

+
n−1∑︂
i=1

g(SνpWi(0),Wi(0))− f ′
p(t0)

=

t0∫︂
0

[︄
(n− 1)

(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

− Ric(γ̇p(t), γ̇p(t))

(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt

+Hp

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− f ′
p(t0)

=

t0∫︂
0

[︄
(n+m− 1)

(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

− RicmX(γ̇p(t), γ̇p(t))

(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt

−
t0∫︂
0

[︄
m

(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

−
(︃
f ′′
p (t)−

f ′
p
2(t)

m

)︃(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt

+ (HX)p

(︃
ϕδ(0)

ϕδ(t0)

)︃2

+ f ′
p(0)

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− f ′
p(t0)

(4.29)
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where we used in intermediate steps that Wi(t) = ϕδ(t)
ϕδ(t0)

Ei(t) and E ′
i(t) = 0, so W ′

i (t) =
ϕ′δ(t)

ϕδ(t0)
Ei(t). Since RicmX ≥ −(n + m − 1)δ and HX ≤ −(n + m − 1)δ, we can combine and

simplify a number of terms from the last equality of (4.29),

t0∫︂
0

[︄
(n+m− 1)

(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

− RicmX(γ̇p(t), γ̇p(t))

(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt+ (HX)p

(︃
ϕδ(0)

ϕδ(t0)

)︃2

≤ (n+m− 1)

⎛⎝ t0∫︂
0

[︄(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

+ δ

(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt−

(︃
ϕδ(0)

ϕδ(t0)

)︃2

δ

⎞⎠
=

(n+m− 1)

ϕ2
δ(t0)

(︃
ϕ′
δ(t)ϕδ(t)

⃓⃓⃓t0
0
− ϕ2

δ(0)δ

)︃
= (n+m− 1)

(︃
ϕ′
δ(t0)

ϕδ(t0)
− 2δ

)︃
(4.30)

where we used that ϕδ is a solution of the Jacobi equation ϕ′′
δ − δϕδ = 0 with ϕδ(0) = 1 and

ϕ′
δ(0) = δ, and we integrated by parts. Next, we can rewrite the second derivative of fx term

in the second line of the last equality in (4.29), namely

t0∫︂
0

f ′′
p (t)

(︃
ϕδ(t)

ϕδ(t0)

)︃2

dt = f ′
p(t0)− f ′

p(0)

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− 2

t0∫︂
0

f ′
p(t)

ϕδ(t)ϕ
′
δ(t)

ϕ2
δ(t0)

dt (4.31)

Then the entire second line of (4.29) becomes

−
t0∫︂
0

[︄
m

(︃
ϕ′
δ(t)

ϕδ(t0)

)︃2

−
(︃
f ′′
p (t)−

f ′
p(t)

2

m

)︃(︃
ϕδ(t)

ϕδ(t0)

)︃2
]︄
dt

= − 1

ϕ2
δ(t0)

t0∫︂
0

[︃
m (ϕ′

δ(t))
2
+ 2f ′

p(t)ϕδ(t)ϕ
′
δ(t) +

f ′
p(t)

2

m
(ϕ′

δ(t))
2

]︃2
dt

+ f ′
p(t0)− f ′

p(0)

(︃
ϕδ(0)

ϕδ(t0)

)︃2

= − 1

ϕ2
δ(t0)

t0∫︂
0

(︃√
mϕ′

δ(t) +
f ′
p(t)√
m
ϕδ(t)

)︃2

dt+ f ′
p(t0)− f ′

p(0)

(︃
ϕδ(0)

ϕδ(t0)

)︃2

(4.32)

Using (4.30) and (4.32), then (4.29) becomes

s′X(t0, x)

sX(t0, x)
≤ (n+m− 1)

(︃
ϕ′
δ(t0)

ϕδ(t0)
− 2δ

)︃
− 1

ϕ2
δ(t0)

t0∫︂
0

(︃√
mϕ′

δ(t) +
f ′
p(t)√
m
ϕδ(t)

)︃2

dt (4.33)

44



Finally, using ϕ′′
δ − δϕδ = 0 and the conditions ϕδ(0) = 1, ϕ′

δ(0) = δ we see that if δ = 1

then ϕδ(t) ≡ ϕ1(t) = et, whence
ϕ′δ(t0)

ϕδ(t0)
= 1. If instead δ = 0, then ϕδ(t) ≡ ϕ0(t) = 1 so

ϕ′
0(0) = 0. Combining the cases, we have

ϕ′δ(t0)

ϕδ(t0)
= δ. Then (4.33) reduces to the result

(4.23).

If we were only interested in the δ = 0 case, the proof could be considerably shortened.

When δ = 0, the solution of the boundary value problem for ϕδ(t) = ϕ0(t) is simply ϕ0(t) = 0

and the penultimate iteration of the right-hand side in (4.29) gives the inequality

s′X(t0, p)

sX(t0, p)
= −

t0∫︂
0

Ric(γ̇p(t), γ̇p(t))dt+Hp

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− f ′
p(t0)

=

t0∫︂
0

[︃
f ′′
p (t)−

1

m

(︁
f ′
p(t)
)︁2]︃

dt+Hp

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− f ′
p(t0)

= − 1

m

t0∫︂
0

(︁
f ′
p(t)
)︁2
dt+ (HX)p

(︃
ϕδ(0)

ϕδ(t0)

)︃2

− f ′
p(0)

≤ − 1

m

t0∫︂
0

(︁
f ′
p(t)
)︁2
dt

(4.34)

The m→ ∞ limit suggests the following, which is easily proven.

Lemma 4.5 (Mean curvature comparison, m = ∞). Let M have compact boundary N and

let γp, sX be as in Lemma 4.4. If Ric∞X ≥ 0 and HX ≤ 0 then

s′X(t, p) ≤ 0 (4.35)

along γp.

Proof. Repeat the derivation in (4.34), setting Ric∞X (γ̇, γ̇) = Ric(γ̇, γ̇) + f ′′
p ≥ 0 at the

beginning.

The comparison in Lemma 4.4 requires initial conditions for a congruence issuing orthog-

onally from a surface. To study the single boundary component case, we will also need a

lemma with initial conditions for a congruence issuing from a point p in the interior of M .

Let ρp be the distance function from p, and for any x ∈ TpM with |x| = 1, define

˜︁s(t, x) := ⃓⃓det (︁D expp
)︁
tx

⃓⃓
˜︁sX(t, x) := e−fx(t)˜︁s(t, x) (4.36)
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up to the focal radius τp, where

fx(t) =

t∫︂
0

g(X(s), γ̇x(s))ds (4.37)

and γx is the geodesic with initial conditions γx(0) = p and γ̇x(0) = x. Like definition (4.16),˜︁s measures the area element of surface dragged along by a pencil of geodesics as it emanates

outwards from the point.

Define ˜︁ϕδ to be the unique solution to the Jacobi equation ˜︁ϕ′′
δ(t)− δ˜︁ϕδ(t) = 0 with initial

conditions ˜︁ϕ(0) = 0 and ˜︁ϕ′(0) = 1, so in particular ˜︁ϕ0(t) = t and ˜︁ϕ1(t) = sinh t. The

derivation (4.29) holds in the same way here, except that the initial condition ˜︁ϕ(0) = 0

eliminates two of the terms. We are left with

˜︁s′X(t0, x)˜︁sX(t0, x) ≤
t0∫︂
0

⎡⎣(n+m− 1)

(︄ ˜︁ϕ′
δ(t)˜︁ϕδ(t0)

)︄2

− RicmX(γ̇x(t), γ̇x(t))

(︄ ˜︁ϕδ(t)˜︁ϕδ(t0)
)︄2
⎤⎦ dt

−
t0∫︂
0

⎡⎣m(︄ ˜︁ϕ′
δ(t)˜︁ϕδ(t0)

)︄2

−
(︃
f ′′
x (t)−

f ′
x
2(t)

m

)︃(︄ ˜︁ϕδ(t)˜︁ϕδ(t0)
)︄2
⎤⎦ dt− f ′

x(t0)

(4.38)

Combining the first two terms as in (4.30) and using (4.32) (with ˜︁ϕδ replacing ϕδ), we get

˜︁s′X(t0, x)˜︁sX(t0, x) ≤ (n+m− 1)˜︁ϕ2
δ(t0)

⎡⎣ t0∫︂
0

(︂
−˜︁ϕδ(t)˜︁ϕ′′

δ(t) +
˜︁ϕδ(t)2δ)︂ dt+ ˜︁ϕ′

δ(t)
˜︁ϕδ(t)⃓⃓⃓t0

0

⎤⎦
− 1˜︁ϕ2

δ(t0)

t0∫︂
0

(︃√
m˜︁ϕ′

δ(t) +
f ′
x(t)√
m
˜︁ϕδ(t))︃2

dt− f ′
x(0)

(︄ ˜︁ϕδ(0)˜︁ϕδ(t0)
)︄2

(4.39)

Now we use that ˜︁ϕ′′
δ(t)− δ˜︁ϕδ = 0 with ˜︁ϕδ(0) = 0 and ˜︁ϕ′

δ(0) = 1 to obtain

˜︁s′X(t0, x)˜︁sX(t0, x) ≤ (n+m− 1)
˜︁ϕ′
δ(t0)˜︁ϕδ(t0) =

⎧⎨⎩(n+m− 1)/t0, δ = 0

(n+m− 1) coth t0, δ = 1
(4.40)

where to evaluate
˜︁ϕ′δ(t0)˜︁ϕδ(t0) we use that ˜︁ϕ0(t) = t and ˜︁ϕ1(t) = sinh t as observed in the line

preceding equation (4.38).
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Lemma 4.6. Let M be a complete n-dimensional manifold, and suppose that RicmX(M) ≥
−(m+ n− 1)δ for m ∈ (0,∞). Then we have for p ∈M and a unit vector x ∈ TpM ,

∆Xρp(γx(t)) ≤

⎧⎨⎩(n+m− 1)/t, δ = 0,

(n+m− 1) coth t δ = 1
(4.41)

Proof. Use equation (4.40) and observe that the drift Laplacian of the distance ρp is the

logarithmic derivative of ˜︁sX ; that is, ∆Xρp =
˜︁s′X(t)˜︁sX(t)

.

If δ = 0 and m = ∞, then ˜︁ϕδ = t. Thus (4.38) is replaced by

˜︁s′X(t0, x)˜︁sX(t0, x) ≤
t0∫︂
0

[︄
(n− 1)

(︄ ˜︁ϕ′
δ(t)˜︁ϕδ(t0)

)︄2

− Ric∞X (γ̇x(t), γ̇x(t))

(︄ ˜︁ϕδ(t)˜︁ϕδ(t0)
)︄2

+ f ′′
x (t)

(︄ ˜︁ϕ′
δ(t)˜︁ϕδ(t0)

)︄2]︄
dt− f ′

x(t0)

=

t0∫︂
0

[︄
(n− 1)

t20
− Ric∞X (γ̇x(t), γ̇x(t))

(︃
t

t0

)︃2

+ f ′′
x (t)

(︃
t

t0

)︃2
]︄
dt− f ′

x(t0)

=
(n− 1)

t0
+

1

t20

t0∫︂
0

f ′′
x (t)t

2dt− f ′
x(t0) =

(n− 1)

t0
− 2

t20

t0∫︂
0

f ′
x(t)tdt

=
(n− 1)

t0
− 2

t20

t0∫︂
0

g(X(t), γ̇(t))tdt

(4.42)

If |X| → 0 along γ(t) as t→ ∞ then we obtain that ˜︁s′X(t0,x)˜︁sX(t0,x)
≤ 0 in the limit as t0 → ∞.

Lemma 4.7 ([31] Lemma 3.4). Let M have connected compact boundary N and suppose

that RicmX ≥ 0 for m ∈ (−∞, 1 − n) and for all p ∈ N such that the focal radius τp = ∞,

g(X(t), γ̇(t)) · t → 0 along γp. Then −∆Xb
γp ≤ 0 (defined in equation (4.46)) for all such

p ∈ N .

Proof. The proof of this comes from Wylie’s Lemma 3.2 in [31], which in our setting is the

following inequality. Let γ be a geodesic leaving N orthogonally with no focal point, p, q ∈M

lie on γ, and let t0 = ρNq. Then

(∆Xρp)(q) ≤
n− 1

e

(︄
2

n−1

t0∫︁
0

g(γ̇,X)ds

)︄
ρp(q)+t0∫︁
t0

e

(︄
−2
n−1

t∫︁
0

g(γ̇,X)ds

)︄
dt

(4.43)
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Then since g(γ̇, X) · t→ 0, the integral term in the denominator

ργ(r)(q)+t0∫︂
t0

e

(︄
−2
n−1

t∫︁
0

g(γ̇,X)ds

)︄
dt (4.44)

goes to infinity as r → ∞. Hence −∆Xb
γp ≤ 0.

With these estimates, we are ready prove the single boundary splitting theorem.

Theorem 4.8. Let M be a complete non-compact n-dimensional manifold-with-boundary

with a compact smooth boundary N . Then we have

• Let m ∈ [−∞, 1 − n) ∪ (0,∞), RicmX(M) ≥ 0, HX ≤ 0. In the case that m = ∞,

suppose |X| → 0 along geodesics γp for p ∈ N such that τp = ∞, and in the case that

m ∈ (−∞, 1−n), g(X, γ̇p) · t→ 0. Then M is isometric to N × [0,∞) with the metric

ds2 = dt2 + g1 where g1 is the metric on N and the projection of X along ∂
∂t

vanishes

(recall that Ric−∞
X = Ric∞X ).

• If m ∈ (0,∞), RicmX(M) ≥ −(n+m− 1) and HX ≤ −(n+m− 1), then M is isometric

to N× [0,∞) with the metric ds2 = dt2+e2tg1. The splitting is that of a warped product

and the projection of X along ∂
∂t

is constant, namely g(X, ∂
∂t
) = m.

The proof is identical to the original one of [6], except that the Laplacian ∆ is replaced

by ∆X when computing mean curvatures of level sets of distance functions, and of course

our signs and conventions differ from those of [6]. For the reader’s convenience, we provide

the details.

Proof. First suppose m ∈ (0,∞), and δ = 1 or 0. As usual, we have the distance function

ρN(p) = dM(p,N), and by Lemma 4.4, ∆XρN ≤ −(n+m− 1)δ. Consider the set

Ω := {p ∈ N | τp = ∞} (4.45)

for τp the conjugate radius at p ∈ N . Then Ω is non-empty because M is complete and

non-compact, and Ω is closed in N by continuity of τ .

We claim that it is also open in N . Choose p0 ∈ Ω, then by definition of τp0 , we can

construct a ray γp0 that leaves p0 orthogonally and has no focal point. Let U ⊂ M be the

set of all the points that lie in a geodesic γq0 for some q0 ∈ Ω. For q ∈ U , let

bγp0 (q) := lim
t→∞

{t− d(q, γp0(t))} (4.46)
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be the Busemann function associated to γp0 , and let υq be an asymptote, which is an accu-

mulation curve of a sequence of unit speed segments joining q ∈M to γp0(t) as t→ ∞.

Figure 4: An asymptote υq of γp0 and Busemann function values

Then υq : [0,∞) ↦→ M is a ray satisfying bγp0 (υq(t)) = bγp0 (υq(0)) + t for all t ∈ [0,∞).

Now, for any x, y ∈ M we have bγ(x) ≤ d(x, y) + bγ(y), with equality if and only if there

is an asymptote starting at x which passes through y (for these facts see for example [24, p

286]). We claim that the Busemann functions satisfy −∆Xb
γp0 ≤ (n+m− 1)δ weakly on U .

Define the Busemann support functions b
γp0
t (p) = bγp0 (q) + t− d(p, υq(t)). Then

b
γp0
t (p) ≤ bγp0 (p)− bγp0 (υq(t)) + t+ bγp0 (q) = bγp0 (p) (4.47)

so b
γp0
t (p) is a support function for bγp0 (p) whose level sets are smooth near υq(0) = q.

Then by Lemma 4.6, we have

−∆Xb
γp0
t (p) = ∆Xd(p, υq(t)) ≤ (n+m− 1)

˜︁ϕ′
δ(t)˜︁ϕδ(t) → (n+m− 1)δ as t→ ∞ (4.48)

Finally, define F = ρN − bγ. Combining (4.48) with the fact that ∆XρN ≤ −(n+m−1)δ

and that F achieves its minimum of 0, it follows from the maximum principle that ρN−bγ = 0

on U , which shows Ω is open in N , and the result now follows identically to the proof of

Theorem 4.1.

If m = ∞ or m ∈ (−∞, 1 − n), we proceed in the same fashion, instead making use of

Lemma 3.6 and equation (4.42) or Lemmata 3.7 and 4.7 respectively.
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5 Conclusions and Future Research

We have shown a number of modifications of classic results involving Ricci curvature bounds

to a Bakry-Émery setting. These structure results can be laid out in a progressive manor as

we loosen the curvature conditions, so we will list them here. LetM be a manifold admitting

a C1 vector field X. Then if

• M has at least two embedded hypersurfaces N1 and N2 at least one of which is compact,

– m > 0 and RicmX > 0, we get Theorem 3.1 generalizing [6].

– m > 0 and RicmX ≥ 0, we get Theorem 4.1. This result and the next are generaliza-

tions of theorems in [28] and [29], and it is proven with only minor modifications

of the proofs in those papers.

– m ∈ [−∞, 1− n) and RicmX ≥ 0, we get Theorem 4.2.

• M has one compact embedded hypersurface N , and

– m > 0 and RicmX > 0, we get Corollary 3.8.

– m > 0, RicmX ≥ 0, and M is compact, we get Theorem 3.9, generalizing [4].

– m > 0, RicmX ≥ −(n + m − 1), and M is compact, we get Theorem 3.10, again

proven with only minor modifications to the theorems in [28] and [29].

– N = ∂M and either m > 0 and RicmX ≥ −(n+m−1) or m ∈ [−∞, 1−n)∪ (0,∞)

and RicmX ≥ 0, we get Theorem 4.8.

Note that in the list, we leave out some of the conditions required for the result to order

them by their condition on the Ricci curvature.

There are many more results with Ricci curvature bounds that could have useful Bakry-

Émery analogues. The current success in updating theorems from Ricci bounds to Bakry-

Émery bounds suggests there may be a general way to show equivalence of such results.

A standard question of the field is whether there is a manifold which admits no metric of

positive Ricci curvature, but does admit a metric of positive Bakry-Émery Ricci curvature.

This would allow one to prove theorems about Bakry-Émery lower bounds that have no bare

Ricci analogue. For manifolds with boundary, the exact statement of the problem follows.

Problem 5.1. Let m > 0, δ ∈ {0, 1}, and let (M, gm) be a finite dimensional manifold-

with-boundary admitting a smooth vector field X such that the Bakry-Émery Ricci curvature

satisfies the bound RicmX(g) ≥ −(n+m− 1)δgm, and the X-mean curvature on the boundary

satisfies HX ≤ −(n+m−1)δ. Then there is a metric g0 onM such that Ric(g0) ≥ −(n−1)δg0

and H ≤ −(n− 1)δ on the boundary.
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Showing that the manifold admits a different metric satisfying a curvature bound is a weaker

result than showing the same metric must obey that condition. One may still be able to

generalize results about the topology of the space, but a splitting theorem for example gives

both a topological splitting, and splitting of the metric.

In the meantime, we can point out another couple of notable examples of theorems that

are waiting to be proven like the others in this paper. First, note that unlike the splitting

theorems, the Frankel type theorem and related corollaries were not shown in the case of

m < 1− n. The precise statement of our Frankel type theorem with a negative m follows.

Conjecture 5.2. Let Mn be a Riemannian manifold that admits m ∈ (−∞, 1−n) and a C1

vector field X such that the Bakry-Émery Ricci curvature obeys RicmX > 0. Let N1 and N2 be

closed Bakry-Émery X-minimal hypersurfaces in M . Then N1 and N2 intersect.

For positive m, the theorem does not require any bound on X. It may be the case that

it does not work in the m < 1− n case unless one finds appropriate conditions to control X.

After proving conjecture 5.2, one would immediately get a negativem version of Corollary

3.8 as well. Further, it is expected that using the negative m mean curvature comparison

Lemmata 3.6 and 3.7, some versions of Theorems 3.9 and 3.10 are attainable.

In a recent article, Lai [12] showed a different structure result for a manifold with a

boundary isometric to a product involving a sphere. It is very likely that this can be proven

in the Bakry-Émery setting as well. It may be that slightly modified bounds on the curvature

are needed. If everything works as expected, method of proof is going to be to stick close to

[12], but this time using the eigenvalue estimate theorem from [15, Theorem 3].

Conjecture 5.3. Let Mn be a smooth compact manifold with boundary N , and let f be a

smooth function and m > 0. Suppose that

• Ricmf ≥ (n+m− 1)g for m ∈ (0,∞).

• N is isometric to Sk−1(sin θ)× ( ˜︁N, g ˜︁N) where θ ∈ (0, π
2
) and ˜︁N is an n−k dimensional

closed manifold.

• The second fundamental form h on N satisfies h(w,w) ≥ cot θ |w|2 > 0 for all w

tangent to Sk−1.

• Hf ≤ (n+m− k) tan θ + (1−m− k) cot θ ≤ 0.

where Sk−1(sin θ) is the k−1 sphere of radius sin(θ). ThenM is isometric to the double warped

product dr2 + sin2(r)gSk−1 + cos2(r)
cos2(θ)

g ˜︁N for r ∈ [0, θ], and necessarily Ricmf | ˜︁N ≥ n+m−k−1
cos2 θ

g ˜︁N in

the case that n− k ≥ 2.
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In particular if k = 2, n = 3, ˜︁N = S1, and θ = π
4
, this result says that a manifold

with some curvature conditions and a boundary isometric to the Clifford torus must be the

hemisphere. Such a result could be useful as it allows one to ‘glue’ a standard hemisphere

onto the manifold at the boundary, forming a complete spherical manifold without boundary,

and proceed using other structure results on closed manifolds.

The interest in these results generally depends on how they can be applied to problems

in physics or other areas of mathematics. As mentioned in the introduction, one of the ways

these results could be useful in physics is in the the study of black holes. Roughly speaking,

in relativity, space is modeled as a Riemannian manifold hence the applicability of results in

this paper. Spacetime however is a pseudo-Riemannian manifold with a Lorentzian signature,

which means the metric is no longer positive definite. The Bakry-Émery Ricci curvature is

still an important tensor to study, which means there are plenty more generalizations of

theorems to be proven in the Lorentzian setting as well.
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1983/84, volume 1123 of Lecture Notes in Math., Springer, Berlin (1985) p177–206

[2] S Chang, M Gursky, and P Yang, Conformal invariants associated to a measure Proc.

Natl. Acad. Sci. USA, 103(8) (2006) p2535–2540.

[3] J Cheeger and D Gromoll, The splitting theorem for manifolds of non-negative curvature,

J Differential Geometry 6 (1971) p119–128.

[4] J Choe and A Fraser, Mean curvature in manifolds with Ricci curvature bounded from

below, Canad Math Bull 46 (2003) p130–139.

[5] H Choi and R Schoen, The space of minimal embeddings of a surface into a three-

dimensional manifold of positive Ricci curvature, Invent Math 81 (1985) p387–394.

[6] CB Croke and B Kleiner, A warped product splitting theorem, Duke Math J 67 (1992)

p571–574.

[7] M do Carmo, Riemannian Geometry, Birkhäuser Boston (1992).
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