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ABSTRACT 

Industry 4.0 has sparked rapid changes in the manufacturing and construction sectors, 

leading to a major shift in how prefab construction machines are designed and 

manufactured in a concurrent engineering environment. Design for X (DFX) is one of the 

most effective methods for implementing in concurrent engineering as a methodical and 

proactive approach to machine design that maximizes total benefits over the entire product 

lifecycle. However, this task is challenging and time-consuming considering the vast 

number of feasible permutations involved. The unresolved challenge is how the 

information contained within Multi-DFX (MDFX) can be organized such that the 

implications of decisions are proactively evaluated and implemented. For this purpose, 

designers require robust decision-making tools for supporting MDFX techniques in 

machine design. Because if applied, they can generate a propagation effect that spans 

multiple life phases. Also, the necessity is growing for a design decision support system to 

guide designers and alert them to what possible consequences they could encounter in the 

downstream life-cycle phases if MDFX is applied. Therefore, to overcome these 

challenging tasks, designers have recently started to utilize innovative searching and 

optimizing methods that can aid them in the MDFX trade-off analysis and in finding the 

optimal utilization plan for design development. To cope with this, a functional 

collaborative DFX scheme mitigated with Stuart Pugh: Total Design Activity Model is 

developed in this research where various DFX techniques are grouped and allocated to 

different phases of the machine development lifecycle. Furthermore, the research 

progressed to analyze the conflict arising from the application of MDFX in a machine 

design problem and automatically resolve the conflict of design experts’ opinion by 
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simulating the MDFX interactions and design decision criteria multi-layers in the 

developed aggregated matrix model. However, for any machine design development 

project, there are specific product design specifications that a designer must attend to 

during the design and aim to satisfy the client needs in the final machine. Therefore, to 

balance the allocation and control the integration of MDFX techniques in each design 

criterion, this research proposed a hybrid multi-objective optimization model based on the 

fuzzy set theory. This model was integrated with an intelligently automated searching 

model that focuses on finding the optimal MDFX utilization solutions. These solutions 

minimize the machine design development cost and time while maximizes its quality. Also, 

this model can analyze these results from a financial perspective by aggregating the 

performance metrics and by accounting for machine design specific constraints.  The 

proposed research materials are applied in various machine design real-world case studies 

to validate their feasibility, applicability, and effectiveness in a dynamic machine 

development environment and in visualizing the optimal trade-offs among MDFX metrics 

while coupling their engineering-financial terms for a better decision-making process 

within the domain of machine design for prefabricated construction.  
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Chapter 1 : Introduction 

1.1 Background and Motivation 

In 2018, Canada records a hike in the residential construction sector where 215,725 housing 

starts were recorded (Statistics Canada). It is expected that the residential construction for 

housing stays close to 200,000 units in 2019 (Housing Market Outlook, Fall 2018). On the 

other hand, commercial construction is expected in 2018 to grow by 6%; this is due to the 

economy shifting to a more automated, autonomous, customized production economy by 

applying Industry 4.0 principles (Oldcastle Business Intelligence). Industry 4.0 is the 

combination of digital processes such as the Internet of Things (IoT), automation, robotics, 

and additive manufacturing (AM) has a significant impact on machine design (ASME). 

Not only do designers required to redesign methodologies, processes, and manufacturing 

to accommodate these new technological advancements, Industry 4.0 targets how they 

design machines for increasingly smart autonomous manufacturing factories. It encourages 

forward-thinking designers to embrace these digital tools and technologies. This allows 

them to design and manufacture higher-quality prefab production construction machines 

more efficiently and react instantaneously to shifting client demands, gaining client loyalty 

and increasing market share.  To support the continuous demand in the Canadian market 

for both residential and commercial construction sectors, panelized construction is 

becoming a cost-effective building option. Compared to the conventional “stick frame” 

construction, panelized construction enables the builders to relocate the framing of housing 

components under-a-roof to an off-site factory production thus securing a controlled and 

high-efficient construction environment. By utilizing the automation technologies in the 

prefab factory-built construction to produce a higher quality housing with a reduction in 
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the site disruptions, weather fluctuations, higher safety, and rapid construction. Li (2016) 

concluded that the construction sector could achieve 30-50% time savings by adapting the 

off-site modern production technologies. However, to gain the full advantages of off-site 

construction, the automated construction machines and supporting processes must 

improve. 

To implement Industry 4.0 principles and improve the competition in the Canadian prefab 

off-site construction sector, effective and proactive design methodologies and tools must 

be utilized by designers while shaping the best-optimized machine design in a dynamic 

concurrent engineering domain. Thus, improving machine quality, lower cost, shorten the 

development cycle time and fulfill customers’ requirements. Understanding the effective 

design tools such as DFX and how it can be implemented in a machine design problem in 

a harmonized way is becoming crucial for designers to know. Furthermore, in concurrent 

engineering machine design, it is crucial to comprehensively evaluate the application of 

MDFX during conceptual and detailed design. But due to a lack of information in the 

design’s early stages, the designer is faced with multiple obstacles that can challenge him 

/her in the evaluation process, such as, for example, when the design information is fuzzy, 

or the designer’s goal is known only imprecisely. The designer should consider the MDFX 

concurrent effects on the machine design over the whole product lifecycle. If the previous 

design decision is faulty, the preceding machine design stages will be significantly 

affected. Hence, implementing an incorrect decision in the design process can lead to cost 

over-expenditure associated with machine remanufacture, redesign, and recall. These 

unpredictable expenses could result in not only machine profit loss but can also threaten 

the successfulness of the commercialization strategy of the machine. Most of today’s DFX 
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techniques (e.g., design manuals, manufacturing guidelines, analysis software, and design 

checklists) examine the product and process machine design in a unilateral approach e.g., 

centered around machine manufacturing or assembly. In order to have a better 

understanding on the main application, advantages, and disadvantages of current 

methods/tools and proposed researched method, a summarized matrix including the most 

up-to-date techniques in machine design were compared as shown in Figure 1.1. Thus, this 

research aims to develop an MDFX multi-stage decision-making framework that can be 

implemented in the prefab production machine design development by non-expert 

designers who aim to seek for an optimized and flawless design plan. The following 

sections provide detailed information related to each of the proposed research motivations.  
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Figure 1.1 Comparison Matrix Between Current and Proposed Methods 
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1.1.1 A collaborative scheme for DFX techniques mitigated with total design activity 

model  

Concurrent engineering which seeks to close the gap between design and manufacturing 

sectors provides an ideal environment for machine development. It is a systematic approach 

to integrate machines holistic concurrent design activities and their related processes. 

Competition arising in the marketplace for newly developed machines is driving 

modifications in the way machine designers develop production machines (Ahmad et al., 

2015). Thus, to boost the efficiency in concurrent machine development, appropriate 

evaluation, and decision analysis tools required to be developed and utilized.  Currently, 

there is no DFX selection tool available to aid the designer in concurrent machine design 

applications. In this research, these challenges are addressed through a comprehensive 

qualitative literature review of DFX techniques with their implementation in Stuart Pugh: 

Total Design Activity Model (Pugh,1991). Various DFX techniques are mapped and 

clustered in a collaborative scheme, interactions and links between them are identified, and 

the relative importance weight of each is calculated. A description of a functional DFX 

scheme is proposed in this research that can aid designers in establishing lean design 

processes for machine development and reveals its potential application in Multi-DFX 

fuzzy multi-criteria decision-support system. 

1.1.2 Simulating the concurrent interdependencies between Multi-DFX Techniques 

in Machine Design Conflict Resolution 

The overall performance of a life-cycle phase under investigation can be improved if Multi-

Design for X (MDFX) technique’s design guidelines are applied concurrently. However, 

the complexity of selecting MDFX techniques at the conceptual and detailed design stages 
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during machine development can increase by uncertain and imprecise knowledge about the 

MDFX interdependencies. For many industrial companies, alleviating the design decision 

complexity at these stages can have a positive impact on the industry’s competitive market. 

Therefore, it becomes crucial to have a robust MDFX tool embedded with conflict 

resolution in valuing potential applications to justify their cohesion. Some limitations on 

the compatibility between MDFX remain a challenge. The unresolved challenge is how the 

information contained within MDFX can be organized such that the implications of design 

decisions are proactively evaluated and implemented. To address this challenge, an 

efficient decision tool for applying MDFX in the conceptual and detailed machine design 

development phases is proposed. In this research, the relative importance of DFXs 

guidelines and the essence of the interactions that arise between them are also studied. 

Also, a matrix model with multi-layers to simulate the interactions between MDFX is 

suggested to resolve the conflict of experts’ opinion and aggregates the decision criteria 

layers into a single output. The proposed decision tool shows its effectiveness in the 

decision-making process by eliminating MDFX negative interactions and aiding the 

designer in shaping the optimal machine design with less development cost and time. 

1.1.3 Hybrid FEAM-TOPSIS decision support model for MDFX techniques 

Machine design development is critical to designers because most of the design decisions 

that can impact the downstream design activities are made in the conceptual and detailed 

design stages. Multi-DFX techniques have been developed over the years to boost up the 

machine design development efficiency and reduce its total cost and time. The dilemma 

addressed in this research is that by applying these techniques concurrently to support 

design decisions, they can generate a propagation effect that spans multiple life phases of 
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the machine and influence their performance. However, selecting MDFX can be difficult 

due to imprecise and ambiguous machine design requirements. MDFX application is 

challenging for two reasons: (1) they have been developed to work independently and with 

a different focus; (2) it is challenging to determine how they complement and correlate 

between each other, in what arrangement, and where they should be implemented. Thus, 

this study proposes a structured hybrid Fuzzy Extent Analysis model (FEAM) aided with 

the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model to 

illustrate the inter-dependencies relations and the interactions among these techniques 

which till date remains absent. The proposed hybrid model is implemented on a real-world 

case study, and the results validated its feasibility, applicability, and effectiveness in a 

machine development process. 

1.1.4 Decision support approach for Multi-DFX trade-off optimization in machine 

design: Hybrid genetic and Pareto optimality algorithm 

Finding optimal Multi-DFX (MDFX) sets is challenging and time-consuming considering 

the vast number of feasible permutations involved (Huang, 1996). To overcome this 

challenging task, designers are required to implement effective searching and optimizing 

methods in conceptual and detailed phases of machine development (Andreasen and 

Olesen, 1993). These emerging methods create an opportunity for the designers in the 

design and manufacturing industry to find an optimal MDFX utilization solutions that 

minimizes machine design development cost and time while it maximizes the quality. A 

practical multi-objective optimization model for MDFX (cost, time, and quality) trade-off 

analysis with robust optimization searching algorithms such as genetic algorithms and 

Pareto optimality is highly crucial in machine design development. 
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Furthermore, the generated search solutions from a financial perspective based on the net 

present value and internal rate of return, as concluded by Bendeković (1993), aggregated 

performance metrics and accounts for machine design specific constraints. Thus, a hybrid 

model is proposed in this research to find and visualize the optimal solutions for MDFX. 

The developments made here provide the designers with an effective hybrid automated 

intelligent searching and optimizing tool that can aid them in selecting the desired 

utilization solutions for MDFX. This is achieved by maximizing the design development 

quality and minimizing the cost and time associated with these options while coupling their 

engineering-financial terms. 

1.2 Research Objectives 

This research is built on the following hypothesis: 

“Implementing the developed MDFX multi-stage decision-making framework in prefab 

production machine design will support designers in selecting the best DFX techniques for 

a particular application, in order to minimize design development cost and time, while 

maximizing the design quality, thereby allowing for accurate design decisions and shaping 

the best optimized design plan.” 

To validate this hypothesis, the following research objectives are investigated and pursued: 

(1) Development of a functional DFX scheme mitigated with Stuart Pugh: Total 

Design Activity Model where various DFX techniques are grouped and allocated 

to different phases of the machine development lifecycle. 

(2) Development of aggregated matrix model to analyze and simulate the conflict 

arising from the application of MDFX in a machine design problem and 
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automatically resolve the conflict of experts’ opinion by simulating the MDFX 

interactions with the decision design criteria multi-layers. 

(3) Development of a generic multi-objective hybrid optimization model to balance the 

allocation and control the integration of MDFX techniques in each design criterion 

with a global goal to reduce the design development time and cost.  

(4) Development of a hybrid robust optimization search model that analyses the MDFX 

searched solutions and generates the optimal trade-off metrics utilization options 

for MDFX. 

1.3 Thesis Organization  

The organization and structure of this thesis are illustrated in Figure 1.2 and consists of six 

chapters. Chapter 1 provides a brief background on the current application of DFX 

techniques in CE machine design and discusses its trade-off existing limitations followed 

by the research motivation and objectives. Chapter 2 presents an extensive qualitative 

literature review on DFX techniques in the product total design activity model and propose 

a collaborative DFX scheme. Chapter 3 describes a simulating tool that can locate and 

resolve the conflict arises from the application of MDFX in a problem context. Chapter 4 

formulate the selection and ranking hybrid model for MDFX based on the fuzzy set theory 

and TOPSIS method. Chapter 5 propose the trade-off analysis model for MDFX 

performance metrics and calculate its relative economic values. Finally, Chapter 6 

summarizes the general conclusions and presents the research contributions, limitations, 

and future research roadmap. 
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Chapter 2 : A collaborative scheme for DFX techniques mitigated with total design 

activity model 1 

2.1 Introduction 

Research conducted by Guangleng and Yuyun (1996) has concluded that the early design 

stages of the machine development process are the most influential determinant of machine 

total cost. By contrast, prototyping, production, manufacturing, and maintenance 

considerations contribute to a higher percentage of the total machine cost. Concurrent 

engineering (CE) aims to exploit opportunities for machine design improvements at each 

phase of the machine lifecycle by integrating machine design and their related process 

development so that the percentage of the redesign is minimized. The success of the 

machine design depends on the accuracy of design decision making. Also, in the early 

phases of machine development, the production cost is minimized when accurate decisions 

are implemented. CE offers the designer the ability to select multiple design decision tools 

spanning all production processes, which can widen the designer's technical overview of 

the machine development stage. However, poor tool selection may lead to deficiencies in 

machine development time, quality, and cost (Ahmad et al., 2014). The main difference 

between traditional and CE is that the latter regard machine development as an integrated, 

systematic, and the concurrent process of continuous improvement. A significant challenge 

of CE is to make correct decisions at the early stages of machine development when 

committed costs are still low, and design information is vague. Therefore, in CE the design 

                                                 
 
1 The manuscript presented as Chapter 2 of this thesis was submitted to the 2019 Modular and Offsite 
Construction Summit, at the time of publication of this thesis. 





  

13 
 
 

link between the design elements and the process. Numerous methods and tools have been 

developed to ease the implementation of CE in machine design. Among these methods is 

Design for X (DFX) techniques, where X stands for a specific life phase (e.g., manufacture, 

assembly) or virtue that the machine should possess (e.g., quality). However, these methods 

are usually not standardized, and in most cases, they have contradicting rules and results 

between them if applied in a design problem. Designers can achieve design goals, explore 

constraints, overcome difficulties, and consider the ramifications of their decisions early in 

the machine lifecycle when DFX techniques are implemented (Ahmad et al., 2014). The 

main DFX functionality accomplished by DFX techniques and their users’ “designers” is 

summarized in Figure 2.3 where the first four functions and the second five functions are 

carried out mainly by designers, although few of these functions are achieved by them to 

some extent. 

 

Figure 2.2 Machine Design Model in CE 
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Figure 2.3 Main DFX functionality 

2.2 Methodology 

CE requires a holistic and systematic view of the machine design development process, so 

DFX techniques should be integrated and applied with a broader perspective and not 

applied in isolation. However, the relationships and interdependencies between DFX 

techniques and their links to the design process have garnered little attention in the 

literature. In this research these challenges are addressed through a review of various 

existing DFX techniques with potential applications at different stages in the total product 

design activity model is conducted. Based on the conducted literature review, the research 

work includes: (1) Mapping and clustering of the DFX methods utilized in Stuart Pugh 

Model, (2) a scheme which describes the interactions, links and interdependencies among 

DFXs tools, and (3) the relative importance weight calculations of different DFX 

techniques to guide/aid designers in selecting the most applicable ones for implementation 

in machine design. 
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2.2.1 Mapping existing DFX techniques 

The various DFX techniques related to this study are presented in this research, and they 

are interrelated to various degrees. Research results are filtered and grouped with the main 

objective of generating a list of the most applicable DFX techniques related to machine 

design development and their characteristics from the literature. DFX techniques can be 

classified and arranged based on their: (1) purpose or goal, (2) scope, (3) character, and (4) 

focus. Figure 2.4 DFX categorization maprepresents the DFX categorization map 

developed during this research to facilitate the literature review findings. 

 

Figure 2.4 DFX categorization map 

The scope of DFX implementation can span the product, system, ecosystem level, or a 

combination thereof (Chiu and Kremer, 2001). The product scope level focuses on the 

machine aspects which is an approach to designing a product such that the product design 

is instantly transitioned into production, manufactured at minimum cost with the highest 

quality (Chiu and Okudan, 2010). Fabricius (1994) proposed a set of general machine 

design guidelines to enhance the link between the design and manufacturing stages using 

a three-dimensional model. Different from the guidelines above, which are metric-based, 

Stoll (1988) described thirteen DFM guidelines that are strategy-based and practice-
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oriented. The system scope level focuses on the integration and manages the degree of 

coordination between different aspects of the machine value chain. The eco-system scope 

level referred to as green design, meanwhile, entails applying machine design engineering 

methodologies with the embodiment of a natural system to promote the effort in reducing 

greenhouse gases emissions. 

Table 2.1 DFX techniques categorization 

 

According to Holt and Barnes (2010), "character" in this context refers to the framework 

of reference that a DFX technique requires: whether the development is centered on a 

certain virtue of the product, or a certain characteristic of the functional system in which it 

is embedded. In this respect, DFX techniques are divided into two groups: those that 

optimize the machine with respect to a virtue (cost, quality, etc.), and those that optimize 

Design For Main Objective Specs. Concpet Detailed Manufacture Sell
Cost (DFC) Minimize lifecycle costs 1,3 3,4,5 3,4,5 1,3,4,5 3 A,B,C X I Unal & Dean (1992)
Manufacturing (DFM) Minimize production costs 1,.3 1,2,3 1,3,4 1,3 A Y I Stoll (1988)
Assembly (DFA) Minimize production costs 3 3,4 3 A Y I Nof et al. (1997)
Manufacturing & Assembly (DFMA) Minimize production costs 1,3 1,3,4 1,3,4 1,3 A Y I Boothroyd (1994)
Variety (DFV) Minimize obstacles for inovation 3 3 3,5 3,5 A X,Y I Martin (1999)
Quality (DFQ) Maximize product quality 1 1,3,4 1,3,4,5 1,3,4,5 3 A X I,E Franceschini & Rossetto (1997)
Six Sigma (DFSS) Minimize variations and defects 1,3 1,3,5 A X,Y I Harry & Schroeder (2000)
Quality Manufacturability (DFQM) Improve product quality 1 1 3 A X,Y I Das et al. (2000)
Reusability (DFRE) Minimize obstacles for inovation 3 3 A X I Cowan & Lucena (1995); Torroja et al. (1997)
Disassembly (DFDA) Minimize environmental impact 1,3 1,3,5 A Y I Zussman et al. (1994); Zhang & Kuo (1996)
Reliability (DFR) Minimize failure percentage 1,5 1,5 A X I Lalli & Packard (1994); Pecht (2007)
Testability (DFT) Minimize failure percentage 1,3,4,5 1,3,4,5 A X I Williams & Parker (1982); Pettichord (2002)
Obsolescence (DFO) Minimize supply chain costs 3 3 A Y I Singh & Sandborn (2006); Sandborn (2013)
Maintainability (DFMAI) Minimize cost of ownership 2 2 A X I Tortorella (2015)
Serviceability (DFSE) Minimize cost of ownership 2 2 A X I Dewhurst (1996)
Robustness (DFRO) Minimize cost of production 1,3 1,3 A X I Yu & Ishii (1998); Knoll & Vogel (2009)
End-Of-Life (DFEL) Minimize environmental impact 1,3 1,3,4 1,3,4 A Y E Allenby & Graedel (1993)
Remanufacture (DFRem) Minimize obstacles for inovation 1,3 1,3 A Y I Hatcher et al. (2011)
Failure Modes (DFMEA) Minimize failure percentage 1,2 1,2,3 A Y I Cutuli et al. (2006)
Material Substitution (DFMS) Maximize resilience 1,3 4 A X I Ljungberg (2005)
Modularity (DFMO) Minimize obstacles for inovation 1,3 3 A X I Erixon (1996)
Affordances  (DFAF) Maximize customer satisfaction 1,3,4 1,3 4 A X I Maier & Fadel (2001)
User Empowerment (DFEM) Maximize customer satisfaction 1,3,4 3,4 A X E Ladner, R. E. (2015)
Lifecycle (DFLC) Minimize lifecycle costs 1 1,3,4 1,3,4 1,3,4 1,3,4 B Y E Chiu & Okusan (2010)
Transportability (DFTR) Minimize supply chain costs 1,3,4 3 B Y E Dowlatshahi (1999)
Mass Customization (DFMC) Minimize obstacles for inovation 1,3,4 4,5 3,4,5 3 B Y E Tseng & Jiao (1998)
Adaptability (DFAD) Minimize obstacles for inovation 1,3,4 B X I Gu et al. (2016)
Lean Six Sigma (DFLSS) Minimize environmental impact 1,3 1,3,5 1,3 B,C Y E Jugulum & Samuel (2010)
Sustainability (DFS) Minimize environmental impact 1 1,3 1,3,4 1,3,4 C X E Bhamra & Lofthouse (2007)
Recyclability (DFREC) Minimize environmental impact 1,3 1,3,5 C Y E Gaustad et al. (2010)
Energy Recovery (DFER) Minimize environmental impact 1,3 C X E Ljungberg (2005) ;Desmet (2015)
Logistics (DFL) Minimize supply chain costs 1 4 4 B Y E Mather (1992)
Network (DFN) Minimize supply chain costs 3 3 3 3 4 B Y E Maltzman et al. (2005)
Supply Chain (DFSC) Minimize supply chain costs 1,5 1,3,5 1,3,5 4 B Y E Lee & Sasser (1995)
Environment (DFE) Minimize environmental impact 1,2,3,4,5 1,2,3,4 1,2,3,4 1,2,3,4 C X E Fiksel & Wapman (1994), O'Shea (2004)

History and Overview of Design for X (DfX) Techniques
DFX Application Stuart Pugh: Total Design Activity Model

References

Classifications: 1= Guidelines, 2= Checklist, 3= Method, 4=Metrics, 5= Math Model
Scope: A= Product, B= System, C= Ecosystem
Character: X= Virtue, Y= Lifecycle
Focus: I= Internal, E= External 

Scop
e Character Focus
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the machine with respect to a lifecycle phase (manufacture, assembly, etc.) (Van Hemel 

and Keldmann, 1996). These are labeled as DFXvirtue and DFXlifephase, respectively. 

Radziwill and Benton (2017) note that DFXvirtue techniques do not represent which 

virtues a machine should have but provide methods to check how well a design satisfies a 

given virtue. DFXlifephase techniques, meanwhile, help in ensuring that the influence of 

the whole machine lifecycle phases on the targeted performance is considered. They also 

explain that the focus is on the degree to which the DFX assimilates the stakeholder's 

requirements and preferences. Externally-focused DFX methods target supply chain needs, 

while internally-focused methods target machine specifications, production process 

requirements, and the type of service. 

DFX methods are categorized into five main groups arranged in increasing level of 

complexity and importance: guidelines, checklists, metrics, mathematical models, and 

methods (Becker and Wits, 2013).  Guidelines provide the guidance and advise required at 

each design phase. Checklists provide a list of items that need a "Yes"/"No" response and 

make judgments to verify designs. Metrics may involve both guidelines and checklists but 

can be presented in quantitative terms. Mathematics models include computational 

equations and scientific formulas that have been validated. Finally, the methods provide 

users with the design of systematic hierarchy structures and implementation procedures. 

Table 2.1 summarizes the clustering and categorization of 36 DFX techniques considered 

in this research based on the proposed methodology. 
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2.2.2 DFX relative importance weight analysis 

The research is focused on two stages from the machine development lifecycle: the 

conceptual and detailed design stages listed under the Stuart Pugh: Total Design Activity 

Model. The reason for selecting this model among the various design methodologies is that 

it covers the entire lifecycle of machine development. A scientific database of contributions 

in the field of DFX and machine design is extracted from various repositories such as "Web 

of Science" and "Science Direct." The assumption is that the greater the number of 

publications focused on a given DFX technique in the field of machine development phase 

is, the higher the influence of that technique is. A CiteSpace II software is used to carry out 

the systematic mapping studies from the scientific database (Chen et al., 2010). It takes the 

input of the selected publication list and gives the systematic bibliographic analysis of 

keywords, citations, and publication. In the below-presented method to evaluate the 

importance weights, the focus is on the number of contributions published during a specific 

time interval for a given DFX technique. The analysis of the resulting data helps to derive 

importance weightings of a given DFX technique relative to other techniques published in 

the same period. For this purpose, the weighted average method is deployed to convert 

these numbers into weightings and to generate a ranked list. A weight is computed by the 

frequency of occurrence in a dataset, where the frequency is the number of publications 

multiplied by the importance weight associated with each period in the dataset from Table 

2.2. The assumption here is that the importance of weight will increase as the period 

progresses toward the present year. This practice allows for more recent publications to 

receive more weight relative to older publications. The weighted average of publications 

is calculated by the following standard equation (2.2.1.1).  
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𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒= 
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑊𝑒𝑖𝑔ℎ𝑡∗𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝛴𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠
  (2.2.1.1)  

where: PDFX = Frequency of publications related to DFX technique in a specific time 

period; n= Total numbers of DFX techniques; i= Lower year interval; j= Higher year 

interval. 

The weighted average of the DFX for a specific time interval is calculated as follows: 

𝑊𝑃𝐷𝐹𝑋 = ∏ 𝑃𝐷𝐹𝑋 𝑥 Importance Weight 
𝑗
𝑖  (2.2.1.2) 

The total weighted average of the DFX for a specific time interval is calculated as follows: 

𝑊𝑃𝐷𝐹𝑋 = ∑ 𝑊𝑃𝐷𝐹𝑋

𝑗
𝑖   (2.2.1.3) 

The percentage relative total weight of a specific DFX with reference to all other DFXs is 

calculated as follows:  

𝑊𝑃𝐷𝐹𝑋 =
𝑊𝑃𝐷𝐹𝑋

∑ 𝑊𝑃𝐷𝐹𝑋
𝑛
𝑖=1

 (2.2.1.4) 

Table 2.2 Importance weight associated with each period 

Importance Weight (0-1) Papers Period (Years) 

0.05 ≤ 1995 
0.075 1996 ≤ Y ≤ 2000 
0.1 2001 ≤ Y ≤ 2005 
0.15 2006 ≤ Y ≤ 2010 
0.225 2011 ≤ Y ≤ 2015 
0.4 Y ≥ 2016 
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Table 2.3 DFX techniques with their relative importance weight index 

 
 
2.3 Results and Discussions 

From Table 2.1 it can be observed that comparably few techniques have been developed 

over the years for the early machine design stages relative to the later stages. This can be 

related to the fact that the physical variables of the machine being designed in the present 

case are still undefined. On the other hand, most of the machine-related DFX techniques 

are focused on the conceptual and detailed design phases, while system-related techniques 

concentrate on detailed design. Moreover, ecosystem-related concepts apply to all five 

design phases. The machine design environmental factor is becoming one of the main 

requirements in the conceptual and detailed design stages, and, because of environmental 

considerations, some machines are redesigned. Also, it can be concluded that the detailed 

methodologies for DFM, DFA, DFQ, and DFV have been proposed, while, for DFS and 

DFSC, there are only applicable guidelines and mathematical models available. The 

Design For                  Time Period Before 1995 1996-2000 2001-2005 2006-2010 2011-2015 After 2016 Total
Wpdfx≤

1995
(2)

1995≤Wpdfx
≤2000

(2)

2001≤Wpdfx
≤2005

(2)

2006≤Wpdfx
≤2010

(2)

2011≤Wpdfx
≤2015

(2)

Wpdfx≥
2016
(2)

Total 
Weight

(3)

% 
Relative 

Total 
Weight

(4)
Cost (DFC) 12 7 14 18 23 8 82 0.60 0.53 1.40 2.70 5.18 3.20 13.6 1.7
Manufacturing (DFM) 53 76 119 205 187 113 753 2.65 5.70 11.90 30.75 42.08 45.20 138.3 17.5
Assembly (DFA) 63 77 71 15 11 2 239 3.15 5.78 7.10 2.25 2.48 0.80 21.6 2.7
Manufacturing & Assembly (DFMA) 0 0 0 3 2 3 8 0.00 0.00 0.00 0.45 0.45 1.20 2.1 0.3
Variety (DFV) 0 0 5 16 13 1 35 0.00 0.00 0.50 2.40 2.93 0.40 6.2 0.8
Quality (DFQ) 25 26 21 30 37 12 151 1.25 1.95 2.10 4.50 8.33 4.80 22.9 2.9
Six Sigma (DFSS) 0 6 39 60 68 15 188 0.00 0.45 3.90 9.00 15.30 6.00 34.7 4.4
Quality Manufacturability (DFQM) 1 2 0 0 0 0 3 0.05 0.15 0.00 0.00 0.00 0.00 0.2 0.0
Reusability (DFRE) 0 3 5 1 2 0 11 0.00 0.23 0.50 0.15 0.45 0.00 1.3 0.2
Disassembly (DFDA) 13 37 52 45 48 32 227 0.65 2.78 5.20 6.75 10.80 12.80 39.0 4.9
Reliability (DFR) 47 32 69 123 176 65 512 2.35 2.40 6.90 18.45 39.60 26.00 95.7 12.1
Testability (DFT) 218 261 228 293 264 101 1365 10.90 19.58 22.80 43.95 59.40 40.40 197.0 24.9
Obsolescence (DFO) 0 0 1 0 3 0 4 0.00 0.00 0.10 0.00 0.68 0.00 0.8 0.1
Maintainability (DFMAI) 17 5 5 7 9 10 53 0.85 0.38 0.50 1.05 2.03 4.00 8.8 1.1
Serviceability (DFSE) 1 1 2 3 2 5 14 0.05 0.08 0.20 0.45 0.45 2.00 3.2 0.4
Robustness (DFRO) 1 3 9 8 18 8 47 0.05 0.23 0.90 1.20 4.05 3.20 9.6 1.2
End-Of-Life (DFEL) 0 2 8 7 5 9 31 0.00 0.15 0.80 1.05 1.13 3.60 6.7 0.8
Remanufacture (DFRem) 0 7 3 2 8 1 21 0.00 0.53 0.30 0.30 1.80 0.40 3.3 0.4
Failure Modes (DFMEA) 1 0 0 0 0 0 1 0.05 0.00 0.00 0.00 0.00 0.00 0.1 0.0
Material Substitution (DFMS) 4 0 1 5 10 3 23 0.20 0.00 0.10 0.75 2.25 1.20 4.5 0.6
Modularity (DFMO) 0 1 6 3 4 1 15 0.00 0.08 0.60 0.45 0.90 0.40 2.4 0.3
Affordances  (DFAF) 0 0 0 0 3 0 3 0.00 0.00 0.00 0.00 0.68 0.00 0.7 0.1
Empowerment (DFEM) 3 1 1 1 2 0 8 0.15 0.08 0.10 0.15 0.45 0.00 0.9 0.1
Lifecycle (DFLC) 0 2 1 3 2 1 9 0.00 0.15 0.10 0.45 0.45 0.40 1.6 0.2
Transportability (DFTR) 1 2 0 0 0 0 3 0.05 0.15 0.00 0.00 0.00 0.00 0.2 0.0
Mass Customization (DFMC) 0 4 6 11 10 2 33 0.00 0.30 0.60 1.65 2.25 0.80 5.6 0.7
Adaptability (DFAD) 1 0 0 5 7 4 17 0.05 0.00 0.00 0.75 1.58 1.60 4.0 0.5
Lean Six Sigma (DFLSS) 0 0 0 1 2 0 3 0.00 0.00 0.00 0.15 0.45 0.00 0.6 0.1
Sustainability (DFS) 2 6 20 35 104 83 250 0.10 0.45 2.00 5.25 23.40 33.20 64.4 8.1
Recyclability (DFREC) 5 4 5 2 2 1 19 0.25 0.30 0.50 0.30 0.45 0.40 2.2 0.3
Energy Recovery (DFER) 0 0 1 1 0 1 3 0.00 0.00 0.10 0.15 0.00 0.40 0.7 0.1
Logistics (DFL) 1 3 1 3 5 1 14 0.05 0.23 0.10 0.45 1.13 0.40 2.4 0.3
Network (DFN) 3 5 8 16 33 11 76 0.15 0.38 0.80 2.40 7.43 4.40 15.6 2.0
Supply Chain (DFSC) 1 0 2 7 9 5 24 0.05 0.00 0.20 1.05 2.03 2.00 5.3 0.7
Environment (DFE) 26 109 153 112 85 39 524 1.30 8.18 15.30 16.80 19.13 15.60 76.3 9.6

Weighted Average CalculationHistorical Distribution of the Research Effort of DfX tools
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generated ranked list, where DFT and DFM have recorded higher levels of importance 

(24.9%, 17.5%) in comparison to DFEL and DFV (0.8%), respectively.  

2.4 Conclusion  

This research summarizes findings based on a comprehensive literature review of various 

DFX techniques in the broad area of machine development. A clustered collaborative 

scheme was proposed housing thirty-six DFX techniques, revealing their links and 

interdependencies across five machine design phases. Moreover, the quantitative research 

on the maturity of DFXs across the years shows that the combined relative importance 

percentage allocated with top-ranked 15 DFXs (e.g., DFT, DFM, DFR, DFE, etc.) is 

94.7%, which signals an increased level of importance and preparedness of these most 

effective, efficient, and versatile DFX techniques for machine design development.  



  

23 
 
 

Chapter 3 : Simulating the concurrent interdependencies between Multi-DFX 

Techniques in Machine Design Conflict Resolution2  

3.1  Introduction 

The implementation of MDFX in concurrent engineering machine design can result in 

contradictory and conflicting conclusions and recommendations for the designer’s design-

making process. Several independent studies have started to investigate and analyze these 

contradicting interactions by using various frameworks developed by Watson that can 

quantify the MDFX usefulness by design phase (Watson et al., 1996). They concluded that 

MDFX, depending on where they are implemented during the machine development 

process, have a varying impact threshold. Whereas Willcox and Sheldon realized that the 

implementation of Design for Assembly methodology is most useful at the conceptual 

stage (WILCOX and Sheldon, 1993). Because the tool component analysis is the main part 

of the methodology, it is preferred during the machine detailed design stage. The DFA 

analysis tool is an unreliable tool to be utilized during the conceptual machine stage 

because the design details required to undergo the analysis are not available at this stage. 

Hence, if the analysis tool is not effective at the conceptual design stage, then the 

alternative will be the benefits that the design guidelines of a specific DFX provide. So, to 

minimize the machine redesign possibilities and reduce the cost/time of this activity, the 

analysis tool should consider the importance of DFX guidelines.  

                                                 
 
2 The manuscript presented as Chapter 3 of this thesis was submitted to the 2019 International 
Symposium on Automation and Robotics in Construction and Mining (ISARC), at the time of 
publication of this thesis. 
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Some research was undertaken to investigate how to tackle the conflicting implementation 

guidelines of MDFX. Thurston suggests a methodology to model the design decision 

results on the interval of a machine life-cycle (Thurston, 1991). A framework was 

developed to facilitate the decision-making process through ranking the design alternatives 

and calculating design trade-offs. In engineering design, it is a powerful analysis tool for 

decision making where multiple criteria and objectives exist. Unfortunately, for most 

applications, this method is very complicated and extensively time-consuming for 

designers in small to medium-sized organizations. If this ranking method is adopted to 

classify the design guidelines, it would be unnecessarily tedious because the model used 

by Thurston is to some extent more complicated to implement than what is required for 

this application. A simpler and faster method for trade-off analysis between MDFX is to 

implement a matrix approach. Meerkamm concludes that if MDFX techniques are to be 

utilized in a problem context, then their design guidelines will often contradict and 

constrain the design output (Meerkamm, 1994). Consequently, as explained by Watson et 

al., finding an optimal solution is becoming a difficult task for designers (Watson, 1996). 

As the design guidelines tend to be the DFX toolbox’s most flexible aspect, they accurately 

indicate the nature of the DFX interactions and links between them and their concurrent 

interdependencies in ultimately finding an optimal design solution. 

It is important to evaluate the application of MDFX in machine design development 

comprehensively. But due to the absence of information in the conceptual machine stage, 

problems and conflicts can arise when MDFX techniques are employed. This is because of 

a lack of information and vague objectives, which interfere with the designer’s ability to 

evaluate design decision alternatives precisely. Decisions that emerge from applying one 
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DFX technique seem to be good for one phase of the machine life cycle but can conflict 

with other life cycle phases. The designer should oversee the concurrent effects of the 

decision-making process in machine design. If the previous decisions are based on 

inaccurate information, the following design stages will be affected significantly. The 

application of MDFX techniques in machine design development requires effective 

decision support systems. Given this, a decision support tool that simulates the concurrent 

interdependencies between MDFX techniques during the conceptual machine design stage 

is proposed in this research. 

3.2 Methodology 

The methodology presented in this section is based on Watson et al.’s model that uses a 

weighted matrix method to exploit the interactions between MDFX (Watson, 1996). The 

matrix method is extended to simulate the concurrent interdependencies between MDFX. 

The model output provides three useful indices. The first one indicates major areas of 

potential conflict occurring between the compared MDFX. The second illustrates how the 

value of a specific guideline is modified when interacting with the competing DFX 

guidelines. And the third is measuring the DFX techniques in terms of time metrics to 

estimate and reliably verify DFX interactions and design decisions comprehensively. 

3.2.1 Procedure of the matrix 

The methodology for assessing and ranking the DFX’s competing design guidelines 

requires six distinct tasks to be undertaken. These tasks are described in the flowchart 

presented in Figure 3.1. 
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The PDS forms a progressive, evolutionary, and extensive written document that evolves 

in consideration of the final machine characteristics. The PDS is then translated into design 

criteria that are followed by the design team, and as such, each design criterion will be 

associated with one or multiple DFX techniques that can satisfy its requirements. By 

adapting the total life-cycle cost/time method developed by Lukasz and Tomasz, the design 

team can successfully estimate each DFX technique’s effect with respect to the other, and 

those values will be an indicator as to how much each DFX can reduce the development 

life-cycle overall cost and time (Lukasz and Tomasz, 2007).  

DFX techniques are weighted with respect to each design criterion to generate an overall 

general normalized importance weight WDFXG with a total value of 1. From that, the time 

required for each design activity TDFXG can be derived under a certain DFX. This weighting 

factor will then be adopted in the general model for conceptual and detailed design stages. 

The weighting in the AHP model must rely on the designer’s experience and intuition. 

WDFXG and TDFXG are calculated using Equation (3.2.2.1) and (3.2.2.2), respectively, as 

follows: 

𝑊𝐷𝐹𝑋 =
𝐶𝑜𝑠𝑡𝑋

𝐶𝑜𝑠𝑡𝑇
  (3.2.2.1) 

where Cost x= The cost of life-cycle area x; CostT= The combined cost of the life-cycle. 

𝑇𝐷𝐹𝑋𝐺 = 𝑊𝐷𝐹𝑋𝐺  𝑥  𝑇𝑡 (3.2.2.2) 

where TDFXG= The allocated time for a specific DFX in days; Tt = The total time for the 

design activity in days. 
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3.2.3 Task 2: Generate tree diagram to classify DFX design guidelines 

In this section, the machine development process is categorized, and the hierarchical level 

of the DFX technique design guidelines is established. Watson, Radcliffe et al. proved that 

if DFX decision analysis tools are utilized during conceptual and detailed machine design 

stages, they could improve the design performance significantly (Watson et al., 1996). 

They also concluded that most DFX techniques fail to give what is expected because they 

merely provide the designer with directions on how and when the design rules can be 

implemented.  

Pugh’s Total Design Activity Model is used to describe the machine development process 

(Pugh, 1991). The model phases are 1) user need; 2) machine specification; 3) conceptual 

design; 4) detail design; 5) manufacture; and 6) and sales. Though design activities might 

not always have to occur concurrently in the sequence outlined by Pugh, his machine 

development model provides a detailed structured procedure of all the stages required. 

Table 3.1 contains some design guidelines examples which are the most applicable for 

machine design development process extracted from the Design for Assembly (DFA) 

methodology (Boothroyd and Dewhurst, 1989). 

Table 3.1 DFA guidelines per design stage 

Specification • Standardize a machine’s style. 
• Establish the machine design specification. 

Concept Design • Reduce the number of parts and components. 
• Eliminate machine features that do not have any tangible value to 

the customer. 
• Standardize a machine’s style. 
• Using new materials and technologies. 
• Rational machine design by modules and product families. 

Detailed Design • Design multi-functional parts. 
• Developing the machine features that facilitate the positioning. 
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• Avoid costly clamping systems. 

Manufacture • Simplicity. 
• Adapted tolerances.  
• Consideration of process-related design guidelines. 

 

The second task in constructing the model is to organize the DFX technique design 

guidelines into a decision tree using a hierarchical structure. Each DFX technique consists 

of primary and secondary design guidelines called design rules and design strategies, 

respectively. The tree diagram consists of three levels where the first level is associated 

with the general DFX tool under study, the second level is associated with DFX design 

rules, and the third level is associated with DFX design strategies. Table 3.2 contains an 

example of the hierarchical tree using the DFA guidelines during the detailed design phase 

(Boothroyd and Dewhurst, 1989). 

Table 3.2 DFA detailed design stage guidelines 

Design Rules Design Strategies 

Reduce the number  
of parts and their types 

Reduce unstandardized fasteners. 
Eliminate parts that function as connectors and 
conduits. 
Design multi-function parts. 
Do not follow piece-part producibility guidelines. 

Eliminate physical 
adjustments 

Reduce the number of physical parts between the 
machine 
input and output functions. 
Relocate critically related part surfaces close together. 
Implement kinematic design procedures and principles. 

Ensure adequate clearance 
and unrestricted vision 

Ensure adequate clearance for hands, tools, and 
subsequent process. 
Ensure that the vision of the operation is not restricted 
or compromised. 

Minimize re-orientations  Minimize the necessity for reorientations during 
and after parts installation. 
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3.2.4 Task 3: Determining the weightings levels of the guidelines 

The third task requires that the DFX technique design rules and strategies be weighted. 

Regarding the weighting levels, they are determined in each phase, which gives the 

designer a general design overview of the machine development process. The design rules 

weighting, WTR, is determined independently, regardless of the design strategies number 

(on a scale of 1 to 10). While the design strategies weighting, WPS, is determined in 

proportion to the design rule it corresponds to on a scale of 1 to 10, such that the total 

weight summation under design rules is equal to 1. The total weight of each design strategy, 

WTS, is calculated using Equation (3.2.4.1) by multiplying the DFX technique overall 

weight, the design rule total weight, and the design strategy proportional weight. Thus, the 

total weight of each design strategy can fluctuate between 0 and 1. While the time required 

for each design strategy, TTS, is calculated in days using Equation (3.2.4.2) by multiplying 

the strategy calculated weight from Equation (3.2.4.1) by the allocated time for the selected 

DFX divided by the summation of strategies weight for the selected design phase. 

WTS= WDFXG x WTR x WPS (3.2.4.1) 

TTS= 𝑇𝐷𝐹𝑋𝐺 𝑥 𝑊𝑇𝑆

∑ 𝑊𝑇𝑆
𝑛
𝑖=0

  where i=0,1,2…. n. (3.2.4.2) 

3.2.5 Task 4: Identifying interactions and links between guidelines 

The fourth task involves determining the interactions and links between the strategies and 

reporting them inside the matrix model. The severity of any conflicts can be measured from 

these interactions. The matrix model can be utilized to compare multiple numbers of 

strategies from MDFX techniques. However, the process of finding each relationship 

between strategies can become tedious and time consuming for MDFX guidelines. It is 
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assumed that not more than four DFX tools and a maximum number of ten strategies per 

phase should be adopted in the model.  

Table 3.3 Strategies comparison values 

R Values Description 
+ 10 Two or more strategies interact positively. 
+5 One strategy supports positively the other in a broader scope. 
0 No interaction occurs between the design strategies. 
-5 One strategy supports negatively the other in a broader scope. 
-10 Two or more strategies interact negatively. 

 

From the matrix model, it is possible to pinpoint any conflict between two strategies to 

alert the designer that special consideration should be in place when dealing with them. 

This is done using the conflict index, CI, which quantifies the severity of the conflict. When 

a negative interaction occurs, the equation to calculate the conflict index is employed. The 

conflict index constant is calculated using Equation (3.2.5.1) as follows: 

CI = WTS x WTS’ x R (3.2.5.1) 

 if CI < -10 then conflict must be examined. 

where WTS’= Total weight of compared strategy; R= The comparison value for the two 

strategies, as shown in Table 3.3. 

3.2.6 Tasks 5 & 6: Generating the ranked list of DFX strategies 

The fifth task involves calculating the overall value (ⱯTS) of a design strategy considering 

strategies weight and their interactions with each other. The main process is based on the 

assumption that each design strategy has a total weighted value (WTS) and interactions with 

other strategies adjust this. The prime factor is a function of the comparison index and the 
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compared guideline weight. By summing the prime value over all the DFX interactions, a 

global scaler is determined. Equations (3.2.6.1) & (3.2.6.2) calculate the overall value (ⱯTS) 

as follows: 

ⱯTS = WTS (1 + δ Ɐ) (3.2.6.1) 

Ɐ𝑇𝑆 =  𝑊𝑇𝑆(1 + ∑
(𝑊

𝑇𝑆′  𝑥 𝑅 𝑥 𝑆 )

100
) (3.2.6.2) 

where  𝑆 =
15

𝑊𝑇𝑆
  𝑖𝑓 𝑊𝑇𝑆’ > 𝑊𝑇𝑆 𝑎𝑛𝑑 𝑅 < 0     (3.2.6.3) 

S=1 else 

where δⱯ=the total prime factor overall strategies and DFX techniques; S= the scaler; 15= 

Number of DFX techniques being researched; 100=scaling factor. 

In Equation (3.2.6.3), the scaler considers the instances when a low weight design strategy 

conflicts with a high weight one. Having determined the total strategy value, a ranked list 

can be configured to be implemented in machine development. Any design strategies that 

have a negative total value should be ignored because if adopted, then it may lead to a life-

cycle performance reduction due to its conflicting correlations with other strategies. After 

generating the ranked list, the redundant design strategies within the competing DFX will 

be removed to save time and to eliminate design repetition. However, if both design 

strategies match each other in the core objective, then the lesser time duration will be 

selected. 
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3.3  Validation Case Study 

In this section, the focus of the case study will revolve around a part of the multi-function 

bridge machine prototype which is the nailing carriage in its conceptual design stage, as 

shown in Figure 3.3 and Figure 3.4. As the carriage at this stage is primarily a research 

tool, it is assumed that there would be a maximum amount of flexibility and testability 

within the variability of the experimental parameters. It also meant that a simple and unique 

machine would be designed. As the carriage will be operating in a large area with extreme 

precision at a controlled speed, it is apparent that the geometry and versatility of the 

carriage are considered as a major design criterion. It is also apparent that because the 

vertical force loads are so small, any part stresses would be negligible. 

 

Figure 3.3 3D model of multi-function bridge prototype 
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From the PDS, the carriage to be designed is to accommodate multiple configurations of 

interchangeable tools, such as a nailer, stapler, and screwdriver.  This operational 

requirement results in the device being partially disassembled and re-assembled after each 

operation and for different sheathing configurations. Regarding parts service life, it is 

expected that no major parts should fail throughout the device’s life. The final requirement 

is that the device is to be designed and manufactured within a very limited budget. The 

detailed technical information of the machine development is excluded from this research 

for patentability and commerciality of the machine. Instead, some of the case study design 

related issues are discussed in broad terms. The timeline to complete the carriage 

conceptual design was 60 calendar days. These days are distributed on all 15 DFX 

techniques in accordance with their global weighting results.   

 

Figure 3.4 Nailer carriage detailed view 
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Figure 3.5 Design for assembly design rules and strategies for the conceptual stage 

 

 

Figure 3.6 Design for disassembly design rules and strategies for the conceptual stage 

This to allocate time for each DFX technique and to study the effect of utilizing the 

proposed methodology in the time management of design activities. 

Table 3.4 DFX global weighting results with their time allocations in the conceptual 
design stage 

Global Weighting Associated with 
DFX in relation to each design 
criterion in Conceptual Design 
Phase 

WDFXG TDFXG 

Design for Cost (DFC) 0.228 13.66 
Design for Manufacturing (DFM) 0.125 7.49 
Design for Assembly (DFA) 0.083 4.96 
Design for Variety (DFV) 0.087 5.20 
Design for Quality (DFQ) 0.087 5.23 
Design for Six Sigma (DFSS) 0.051 3.06 
Design for Disassembly (DFDA) 0.048 2.86 
Design for Reliability (DFR) 0.058 3.51 
Design for Testability (DFT) 0.038 2.29 
Design for Maintainability (DFMAI) 0.033 1.96 
Design for Robustness (DFRO) 0.036 2.14 
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Design for Mass Customization 
(DFMC) 

0.025 1.51 

Design for Sustainability (DFS) 0.044 2.66 
Design for Network (DFN) 0.033 2.00 
Design for Environment (DFE) 0.024 1.46 

 

In this case, 15 DFX techniques fall under the scope of the conceptual design stage with 

their global weighting associated with the PDS that was calculated by adopting the AHP 

model. Table 3.4 summarizes the results where the total summation of all DFX weighting 

is equal to 1 and where each DFX has a time allocation associated with it. In this research, 

two DFX techniques were selected from the list to demonstrate the model functionality: 

Design for Assembly (DFA) and Design for Disassembly (DFDA). The DFA technique 

selected was developed by Boothroyd and Dewhurst (1989). The methodology has been 

refined and upgraded to provide a realistic and reliable design analysis tool with set of 

guidelines that are presented in a structured format. The tool follows the same basic 

procedures to analyze for manual, automatic and robotic assembly with different input data 

tables for the various processes. For this project, the manual assembly method is adequate. 

The designed machine would encounter assembly and re-assembly process on a regular 

basis. This process has a substantial effect on how the design guidelines are interpreted and 

rated. A team of researchers developed the DFDA technique adopted in this case study at 

the Manchester Metropolitan University (Simon et al., 1992; Zhang et al., 1993). The 

developed technique purpose is focused on the disassembling process to facilitate 

reconfiguration. Figure 3.5 and Figure 3.6 contain the list of design rules and strategies for 

conceptual design machine development phases for both DFA and DFDA techniques. 

Since two DFX techniques are being investigated, only one decision matrix for the 

conceptual machine development phase is selected for the demonstration of the comparison 
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and ranking process. Figure 3.7 shows the conceptual design comparison matrix for DFA 

versus DFDA highlighting the guidelines interactions.   

 

Figure 3.7 DFA vs DFDA comparison matrix 

3.4 Results and Discussions 

As highlighted in the matrix shown above in Figure 3.7, two design strategies have 

conflicted, so special consideration must be in place to resolve this conflict before the 

ranking procedure starts. However, the conflict occurs, in this case, is when the designer 

simultaneously attempts to minimize the need for reorientation during assembly while 

attempting to standardize the machine during disassembly. It is assumed that the arising 

conflict could be ignored, subject to further investigation, as the conflict index slightly 

exceeds the threshold value of ten. 
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Table 3.5 summarizes the ranking of the strategies in descending order based on their 

respective total value. After analyzing the results, the designer can eliminate from the 

ranked list the strategies that are repeated or have the same core objective, while the 

strategies with the same ranking order can be implemented concurrently in the design 

process to emphasize their relatively equal importance. 

Table 3.6 summarizes the modifications after the designer has conducted the analysis. If 

both selected DFX techniques were to be applied in standalone mode, then after several 

design iterations they will conflict, which would lead to a machine redesign. The redesign 

process is a costly and time-consuming activity, and by applying this methodology, the 

designer can avoid the pitfall of such activity. 

Table 3.5 DFA vs DFDA strategies ranking list in the conceptual design stage (before 
analyzing) 
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Table 3.6  DFA vs DFDA strategies ranking list in the conceptual design stage (after 
analyzing) 

 

If the designer is to apply DFA with 5 days and DFDA with 3 days independently then the 

total time required for both will be 8 days. However, if they are applied together, the 

redundant design strategies between the two and the conflicted area will be removed and 

adjusted before initiating the design activity. Thus, reducing the total time to 6 days with a 

difference of 2 days. 

Some observations were concluded after applying the matrix model in the case study 

mentioned above such as if the value of the conflict index constant exceeds a value of 

negative ten, then it can be declared that a conflict of substantial consequences has 

occurred, and some considerations are required to resolve it. This conflict can be resolved 

and avoided by implementing some tactics as follows: 

(1) If the conflict index constant is close to ten, then the resulted conflict could be 

ignored and eliminated on the basis that it will create a down weight effect on the 

other design strategies in the ranked list.  
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(2) Develop and integrate a design methodology after examining the conflict-specific 

details to decrease the negative interaction areas between strategies—this is very 

useful in areas where partial conflict has been spotted (CI ≤ -10). 

(3) The matrix model ranking function will eliminate any two design strategies that 

have a large total value difference, and it will eliminate negative values too.  

The weighting procedure of any parameter may sometimes be a subjective process, as two 

different designers may weigh the same guideline differently. This difference comes from 

the usage circumstances, the experience, and interpretation of the designers as to what the 

guideline means. However, these differences will not give the user a misleading result 

because the guidelines are interpreted according to the designer’s understanding.  

3.5 Conclusion 

Engineering design is an iterative process of solution generation and evaluation. It requires 

a designer to take a forward-thinking and a look ahead approach when finalizing a solution. 

In a dynamic environment, a concurrent application of MDFX techniques during the design 

process can be organized into multiple stages in which both evaluation and decision are 

needed. The main theme of this research was to present the need for a tool that can reliably 

estimate and verify the time/benefits of applying MDFX in a harmonized way in machine 

design. As a result, a decision support tool that can aid the designer in the decision-making 

process when MDFX are utilized will be required. The main feature of a design decision 

simulation tool is to enable designers to foresee and explore lifecycle consequences during 

the machine design. Also, to provide a structured workflow specifying how and when 

MDFX techniques can be applied with the ability to quantify the arising conflict that may 
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occur between them. The tool’s fundamental core is based on the information contained 

within the DFX guidelines, which may be classified as either a design strategy or rule so 

their interactions can be examined explicitly. Thus, the generation of a ranked list can be 

integrated in a time-effective and strategic manner, thereby shrinking the machine design 

time by at least 15%. As demonstrated, the MDFX decision tool can be implemented to 

serve as a generative decision system that proactively aids the designer in the decision-

making process. 
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Chapter 4 : Hybrid FEAM-TOPSIS decision support model for MDFX techniques3 

4.1 Introduction 

In the last few years, the residential and non-residential off-site panelized construction in 

the wood manufacturing industry has experienced a rather dramatic transition from manual 

assembly to automatic production line assembly using automated robotic machines. The 

rise of new technologies for manufacturing and the worldwide competition between 

industry sectors are the two main contributors to this evolution in the off-site panelized 

construction manufacturing industry (Ahmad et al., 2014; Malik et al., 2019). The 

evolution has stimulated innovation in these manufacturing industries, causing a major 

shift in how production machines are designed and manufactured. Customers are interested 

in the acquisition of machines that are of high quality, low cost, and superior performance 

in a shorter deployment time. The recent marketplace competition for newer production 

machines is imposing a transformation in the way designers develop and design machines. 

These circumstances generate pressure on companies’ engineering operations to boost the 

overall productivity. Also, Farr (2011) stated that approximate up to 75% of the machine 

lifecycle cost design decisions are decided in the conceptual and detailed design phases. 

One method to fulfill this demand is to increase the efficiency of engineering design 

activities, for example, by using computer-aided technologies (CAX) in machine design. 

Another method is to apply the concurrent engineering (CE) approach to enhance 

coordination amongst machine design development activities. 

                                                 
 
3 The manuscript presented as Chapter 4 of this thesis is ready to be submitted to the Journal of 
Engineering Design.  
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During the 1990s, CE emerged as a leading methodology with the aim to improve designed 

machine quality and reduce design development time and cost by eliminating or resolving 

the problems between product, process, and organization at the early design stages (Gadh, 

1996). In this context, the implementation of the Design for X (DFX) philosophy is the 

best to be applied because DFX is considered a methodological and proactive technique 

for designing machines that focuses on optimizing the benefits over the machine’s 

lifecycle. Thus, it is crucial to comprehensively assess the implementation of Multi-DFX 

(MDFX) techniques in machine design development. Decisions that emerge from the 

application of one DFX technique may have a positive impact on one phase of the product 

lifecycle but can conflict negatively with others making the design’s technical feasibility 

and the machine business profitability evaluation more challenging for designers 

(Meerkamm, 1994). Because multiple DFX techniques operate on different measures for 

machine design (e.g., DFA cuts assembly time, while DFM cuts manufacturing time), it is 

not evident how the designer can judge and compare these diverse metrics. For every 

machine development activity, many design aspects, such as manufacturing, assembly, 

quality, ergonomics, robustness, functionality, and modularity have to be considered by the 

designer (Meerkamm, 1994), which leads the designer to deal with an increasing amount 

of information at the design stage. Thus, it is challenging for the designer to identify the 

relevant information to form a decision when MDFX techniques are utilized. Stober et al. 

(2009) identifies the fundamental requirements that can be key prerequisites for the 

designer to target and focus on during the development process with respect to machine 

development cost and time. Design decision-making tools must be developed to assess the 

designer decisions across the whole machine lifecycle as proposed by Hubka and Eder 
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(1988). Olesen (1992) discuss that performance of lifecycle phases in terms of cost and 

time could be influenced by the designer decisions made at the machine’s early design 

stages. The majority of design decisions have positive and negative consequences on the 

machine development irrespective of whether the designer is knowledgeable or not 

concerning these ramifications (Borg and MacCallum, 1996). As a result, Olesen (1992) 

suggests that instead of focusing only on the machine function, the designer is invited to 

adopt the look-ahead strategy, which focuses on a total life-oriented machine design 

approach, to foresee and examine possible improvements in the designer decisions related 

to total life issues. This means that designers are forced to consider multiple issues, of 

which many of these are outside their domain when dealing with machine development. 

Designers are therefore expected to develop solutions that cater to multiple lifecycle issues 

when MDFX techniques are implemented. 

During the machine development, the designer’s main task is to find and adopt the right 

decision-making method and calculate its related process. In a dynamic design 

environment, a multiple-criteria decision-making system enables the designer to tackle 

complicated design decision problems effectively. A typical multi-stage decision-making 

procedure comprises some milestones, as detailed in Figure 4.1. Peilin et al. (2000) suggest 

that careful evaluation for appropriate design decisions should be conducted at each design 

stage when MDFX techniques are implemented. From a system perspective, MDFX 

application in product design is expressed as a process that is characterized by design-

evaluation-re-design (Li and Ling, 2000; Xu et al., 2007). This evaluation process is 

considered complicated for many reasons: (1) it is crucial to consider all the design criteria 

objectives when designing a machine; however, some of these objectives conflict with one 
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overall focus of this research is to establish a robust decision support system to aid 

designers in their design decision-making activities when MDFX techniques are applied to 

machine design development. The proposed methodology, developed in Microsoft Excel 

(software), is also tailored to model and eliminate the imprecision and linguistic vagueness 

when designers investigate their design decisions. 

4.2 Literature Review 

DFX technology has gone through rapid developments since the earliest research was 

published on the three-leading systematic DFA techniques (Boothroyd and Dewhurst, 

1983). Youssef (1994) stated that hundreds of case studies on DFX techniques 

implementation in machine design have been released, reporting that a significant amount 

of benefit has been realized through their use. Another advancement is the important 

proliferation in the number and nature of developed DFX tools. Holbrook and Sackett 

(1988) listed dozens of research and commercial DFA tools. Huang )1996 (investigated and 

listed a wide variation of DFX tools that cover the whole product lifecycle. Such 

exponential expansion of DFX techniques in both number and nature is a concrete 

indication that interest from industry and academia in DFX is growing. More recent 

progress was made in identifying the need for an essential DFX pattern that can be utilized 

by the designer to clarify how DFX techniques can be implemented in a design problem 

and how they can be altered to create new ones. Andreasen and Olesen (1993) concluded 

that a unified DFX framework would overcome multiple design problems and can aid the 

designers in their quest to optimize the machine design by facilitating the selection process 

of the most applicable DFX techniques for a design problem. Researchers argued that if 
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MDFX tools are applied to reach the overall optimum solution, then the design activities 

could be optimized. However, without a unified framework, the MDFX integration, trade-

off analysis, and their concurrent interface will be challenging for the designer to achieve. 

Various trials have been pursued in the exploration of a generic DFX framework. 

Andreasen and Olesen (1990) have investigated the Theory of Dispositions as an analytical 

and methodological approach for a generic DFX pattern. Another attempt was manifested 

in the formulation of the MFK system, which provides the designer with a workbench for 

MDFX integration (Meerkamm, 1993). 

There are significant changes taking place in today’s world market due to the advancement 

of technologies. Industrial and construction companies are forced to create new machines 

for the off-site panelized fabrication industry; therefore, the necessity for a decision-

making tool that can determine the best optimal solution is becoming of high importance 

for designers (Martinez et al., 2019; Sarfaraz and Jenab, 2012, 2012). Zhao et al. (2003) 

stated that, when designers apply the concurrent machine development process, they will 

be forced to make complex design decisions. However, given the essence of these 

problems, the research emphasis is on developing support decision tools that focus on 

modeling issues (Chang et al., 1993). These tools are utilized by the designer to evaluate 

design decision alternatives and facilitate the decision-making process through the 

assessment of criteria, sub-criteria, preferences, and alternatives that can be classified into 

(1) single-objective decision-making (SODM), (2) multiple criteria decision-making 

(MCDM), and (3) other multiple attribute decision-making (MADM) methods. For this 

research, the MCDM methods identified by Steuer and Na (2003) will be implemented as 

a preferred course of action for the decision-maker. Figure 4.2 represents the heretical 
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structure of the most used MCDM methods in various decision-making areas. In this 

research, the FEAM and TOPSIS are discussed in detail. 

 

Figure 4.2 Hierarchical structure of MCDM methods 

To solve complicated design decision issues, designers usually select the Analytic 

Hierarchy Process (AHP), which is a dynamic MCDM method. Saaty (1980) pinpoints that 

the prominent characteristic of the AHP method is its application limitations such as 

ambiguity and uncertainty of the design expert’s opinion, which can be tracked down to 

the impressiveness of the designer’s judgment. To overcome these problems and to 

improve the uncertainty of the AHP method, several researchers integrate it with the fuzzy 

set theory. Klir and Yuan (1996) reported that Zadeh developed the foundation of the fuzzy 

set theory through eliminating the vagueness and imprecision in designer’s judgment by 

representing the approximate information in mathematical formulas. Thus, the 

unquantifiable and uncertain design information can be integrated into a fuzzy decision 

model.  
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Table 4.1 summarizes the most used types of the fuzzy set theory in design decision 

problem-solving. The fuzzy theory can be differentiated from the AHP method by its 

ability to track the knowledge vagueness when dealing with qualitative and quantitative 

design criteria and in eliminating the designer’s biases and uncertainty when pairwise 

comparison judgments’ precise numerical values are difficult to integrate. The fuzzy set 

theory operation revolves around its logic, arithmetic, mathematical programming, data 

analysis, and graph theory fuzziness. Cheng and Li (1997) resolve the design decision 

selection problem by systematically modeling it in a hierarchical structure and by applying 

the fuzzy set theory concept to analyze it. Basically, fuzzy methods represent the fuzzy 

domain of a problem by using the triangular fuzzy numbers (TFNs) for importance weight 

calculation instead of crisp numbers (Petkovic, 2012). However, the main disadvantage of 

the fuzzy theory is that the decision model input data, expressed by design experts in 

linguistic terms, depends only on the experts’ point of view and technical experience and 

thus it can be associated with subjectivity. Tanaka (1982) and Tan et al. (2007) describe an 

analog approach to calculate the variation of the expert’s judgment degree of confidence 

for quantitative and qualitative pairwise comparison that can be consistent with the fuzzy 

degree, λ, where a perfect consistency is denoted by λ = 1 and deficient inconsistency is 

denoted by λ = 0. Van Laarhoven and Pedrycz (1983) were some of the first researchers to 

implement Fuzzy AHP in a design problem application. They formulated the triangular 

membership functions that can be effective for the criteria and alternatives pairwise 

comparisons. Afterward, Buckley (1985) has expanded the research by determining the 

comparison ratios of the fuzzy priority’s triangular membership functions. Chang (1996) 
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also introduced the fuzzy extent analysis method that maximizes the usage of TFNs and 

eliminates the inconsistency and fuzziness in the input data. 

Table 4.1 Fuzzy set theory types of information 

Groups Information Appearance Process Property Methodology Attitude Solutions 
Linguistic  Verbal Quantitative Adapted Complexity Quantitative Tolerance Adapted  
Fuzzy Fuzzy Dark Replacement Complexity Transition Indulgence Complex  
White Known Bright Old Order Positive Seriousness Unique  
Grey Incomplete Grey Replacement Complexity Transition Tolerance Multiple  
Black Unknown Dark New Chaos Negative Indulgence Null 
 

Fuzzy set theory becomes difficult and complicated to cope with when many pairwise 

comparisons are integrated into the design decision matrix. Thus, TOPSIS method is 

usually employed to aid and facilitate the ranking of alternatives, as concluded by Hwang 

and Yoon (1981). TOPSIS concept is explained by Wang et al. (2009) where they describe 

that the best alternative can be selected by the designer such that it has the shortest distance 

from the positive ideal solution (PIS) and concurrently it has the farthest distance from the 

negative ideal solution (NIS) (Seçme at al., 2009). By definition, PIS is the solution where 

benefits are maximized, but the cost is minimized. While the NIS is the solution where the 

benefits are minimized, but the cost is maximized. Opricovic and Tzeng (2004) stated that 

the TOPSIS method converts the qualitative and quantitative design criteria dimensions 

into non-dimensional ones. The main assumption of this method is that to determine the 

PISs and the NISs of each alternative, each design criteria must have the tendency to 

monotonically increase or decrease its utility function importance weight, which is referred 

later to be the alternative similarity index (or relative closeness coefficient, RCC). The 

RCC is calculated for each alternative by sub-calculating its relative distance to the PIS 

and its remoteness from the NIS using the Euclidean distance approach. TOPSIS method 
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models. Boothroyd et al. (1988) concluded that designers nowadays implement DFX in a 

design problem in the following ways: (1) by cross-functional multidisciplinary design 

teams, (2) by utilizing specialized design manuals that include do’s/don’ts design rules, 

and (3) by applying automated design software. There are advantages and disadvantages 

to each of these methods when it is implemented in a design problem, but none of these 

methods offer a quantitative measure of MDFX trade-off analysis since payoffs and profits 

in a design problem are not easy to model and quantify. However, if MDFX alternatives 

are not assessed accurately, the evaluation process can provide the designer with wrong 

deductions and hence wrong design decisions (Zhao, 2002). Gupta et al. (1994) proposed 

a solution to evaluate MDFX techniques by constructing their multiple critiquing modules 

(e.g., fabrication, assembly, modeling, testing) and calculating their total development cost 

and time. In their proposed method, the model can detect that a DFX is inexpensive to 

implement, but time-consuming, or vice-versa. Maropoulos et al. (2003) also described an 

evaluation model to this problem called AMD architecture, in which MDFX techniques are 

integrated as one and their development cost and time assessment is calculated. The 

generalized framework for MDFX analysis is proposed by Tharakan et al. (2003) which 

enables the designer to select the design criterion that best fits the current design stage and 

its relative DFX technique. Hazelrigg (1996) concluded in his book that the sole goal of 

engineering design in general is to generate profit. The other design objectives are to (1) 

minimize design and manufacturing cost, (2) optimize machine quality, and (3) reduce 

development time. Thus, the main problem in this research was the development of a model 

that can reliably estimate and quantify the metrics of MDFX at the machine conceptual and 

detailed design phases. The function of this model is to provide a systematic procedure for 



  

54 
 
 

the MDFX techniques trade-off analysis specifying their impact from development cost 

and time perspectives when they are applied in a design problem. 

4.3 Problem Description and General Methodology 

Which, when, and where a DFX tool should be used remain the unanswered questions for 

machine designers. The selection of DFX techniques is not solely linked to their 

availability but is linked to the current design problem and the designer’s end goal. The 

importance of the application of MDFX techniques is due to their effectiveness in 

analyzing the design problem from different aspects. In this case, the research problem is 

not which DFX technique to utilize in the design, but rather which DFX technique to begin 

with and in what sequence should it be implemented with reference to other DFX 

techniques. Logically speaking, the DFX tools that are centered around the machine main 

assembly structure should be implemented before those that focus on components and sub-

assemblies (e.g., Boothroyd and Dewhurst (1983)) suggest that DFA should be introduced 

to the design problem followed by DFM). The research gap is narrowed to address the two 

main problems when introducing MDFX techniques in machine design. The first one is the 

design changes that occurs when the designer separately applies a single DFX technique 

within each lifecycle of the machine development. If those changes, generated from the 

application of this single DFX, are applied in the machine design, they may conflict by the 

consecutive DFX techniques changes. The second one occurs when the application of 

MDFX enables the designer to foresee all design problems related to one phase of the 

machine development process at once and then generates a redesign order based on 

suggestions that must be dealt with before even starting the design process. 
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Based on these two problems, the intent of this research is to find and extract the best 

combination of MDFX techniques for a certain design criterion, which remains a major 

challenge for designers as they must examine all MDFX criteria associated with predefined 

weights. Therefore, having a hybrid model to incorporate all design experts’ assessments, 

design criteria, and DFX alternatives into the decision matrix is becoming crucial. The 

model should find the best combination of MDFX techniques without needing to elicit the 

subjective and objective design criteria of the utility function. The hybrid model must also 

resolve the conflict of design experts’ evaluation with respect to each design criterion. The 

main purpose of this research is to develop an intelligent decision process to support the 

integration of MDFX techniques in conceptual and detailed machine design concurrent 

engineering that not only assesses MDFX interactions and inter-dependencies but also 

provides optimized alternatives for designers. The qualitative and quantitative design 

criteria are implemented into an MDFX design decision matrix combining the FEAM and 

TOPSIS methods in an integrated decision support system. These methods unite the MDFX 

aspects and product design specification (PDS) needs for conceptual and detailed machine 

design activities systematically. Also, these methods optimize the trade-off analysis of 

MDFX integration based on development cost and time metrics. The FEAM is employed 

to calculate the PDS qualitative and quantitative criteria weights for MDFX selection 

process. This method is meant to present the linguistically ambiguous and incomplete 

knowledge. Additionally, TOPSIS is used to rank the MDFX alternatives based on overall 

evaluation score. MDFX combinations are generated by implementing a novel hybrid 

approach combining FEAM and TOPSIS. The proposed hybrid approach is a strategic 

decision-making tool providing the optimal combination of MDFX with reference to the 
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4.4 Hybrid FEAM-TOPSIS Model 

The proposed framework composed of three parts: FEAM model, TOPSIS model, and the 

trade-off analysis model, as shown in Figure 4.5. The designer implements FEAM-TOPSIS 

methodology to weigh and rank MDFX alternatives based on experts input during the 

conceptual and detailed machine design phases of development. Trade-off model is then 

applied to search for satisfactory and optimal solutions of MDFX combinations by 

analyzing and optimizing their cost and time metrics. The proposed hybrid approach would 

be a strategic decision-making procedure providing insights for implementing MDFX 

techniques that aid the designer in the machine development process, while resolving 

MDFX conflicts, optimizing their trade-off analysis, and presenting their optimal 

combination with reference to the product development phase and its corresponding PDS. 
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Task 1: Determine PDS set 

Task 2: Using linguistic variables in Table 4.3, obtain the kth design expert’s opinion (𝑒𝑖𝑗
𝑘 ) 

to establish the pairwise comparison between design criterion (DC) (i) and DFX technique 

(j) represented by Equation (4.4.1.1). 

𝑒𝑖𝑗
𝑘 =  {𝐷𝐹𝑋𝑖

𝑒𝑘
→  𝐷𝐹𝑋𝑗  ⋮  𝑖 = 1,2, . . . . . , 𝑛; 𝑗 = 1,2, . . . . . , 𝑚, 𝑘 = 1,2, . . . . 𝐾} (4.4.1.1) 

Task 3: Using Equation (4.4.1.2), multiply the kth design expert’s opinion (𝑒𝑖𝑗
𝑘 ) by its 

corresponding weight based on the number of years of technical experience extracted from 

Table 4.2. 

 𝑒𝑖𝑗
′𝑘 =  𝑒𝑖𝑗

𝑘  𝑥 𝑤𝑥
𝑒 (4.4.1.2) 

where 𝑤𝑥
𝑒 = weight of expert x and ∑𝑤𝑥

𝑒 = 10. 

Table 4.2 Design expert's weight (𝑤𝑥
𝑒) 

Experts Weight (0-10) Expert Design Experience (Years) 
0.8 0 
1.7 5 ≤ Y ≤ 10 
2 10 ≤ Y ≤ 15 

2.5 15 ≤ Y ≤ 20 
3 20 ≤ Y 

 

Task 4: The design experts’ opinions can differ substantially; therefore, the conflict must 

be resolved by using the maximum aggregation function expressed in Equation (4.4.1.3). 

𝐷𝐶 − 𝐷𝐹𝑋𝑎𝑔𝑔
𝑖→𝑗

=  𝑚𝑎𝑥 (𝑒𝑖𝑗
𝑘 ) (4.4.1.3) 

Task 5: Using Table 4.3, convert the linguistic variables (LV) to triangular fuzzy numbers 

(TFNs). 
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Table 4.3 The equivalent of linguistic variables to triangular fuzzy numbers (TFNs) 

Saaty Nine Point Scale Definition of 
Linguistic Term 

Triangular Fuzzy Numbers (TFN) 
Reciprocal 
Intensity of 
Importance 

Intensity of 
Importance 

TFN Scale Reciprocal TFN 
Scale 

1 1 Equally 
Important  
(Eq. Imp.) 

(1,1,1) (1,1,1) 

1/3 3 Weakly 
Important 
 (W. Imp.) 

(2,3,4) (1/4,1/3,1/2) 

1/5 5 Fairly Important 
(F. Imp.) 

(4,5,6) (1/6,1/5,1/4) 

1/7 7 Strongly 
Important  
(S. Imp.) 

(6,7,8) (1/8,1/7,1/6) 

1/9 9 Absolutely 
Important  
(A. Imp.) 

(8,9,10) (1/10,1/9,1/8) 

1/2 2 Intermediate 
values between 

two adjacent 
scales 

(1,2,3) (1/3,1/2,1) 
1/3 4 (3,4,5) (1/5,1/4,1/3) 
1/6 6 (5,6,7) (1/7,1/6,1/5) 
1/8 8 (7,8,9) (1/9,1/8,1/7) 

 

 

4.4.2 Fuzzy extent analysis model (FEAM) 

In this research, a Fuzzy Extent Analysis Model (FEAM) for MDFX techniques selection 

that involves multiple machine design criteria is investigated. The design criteria 

importance weights are determined through design experts’ pairwise comparisons 

subjective judgment. The latter is represented as TFNs that can eliminate the expert’s 

judgment where lack of confidence or ambiguity is noticed. In effect, the FEAM invests in 

the expert’s judgments where more coherence or a high degree of confidence can be 

spotted. Furthermore, the fuzzy synthetic extent analysis method is adopted to determine 

the priority of each decision criterion, alternative, and finally optimize the overall goal. 
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Normally, the fuzzy set theory uses the TFNs to represent the design expert’s assessment 

on alternatives with reference to each criterion. If a certain value resides within the 

triangular fuzzy boundaries, then that value is represented by a membership function. This 

concept facilitates the elimination of the model uncertainty that is sourced to design 

experts’ technical judgments in the pairwise comparison matrix. The fuzzy boundaries are 

defined by three parameters: l is the minimum value, m is the mode value and u is the 

maximum value. The parameters can be expressed using Equation (4.4.2.1) (Chang, 1992; 

Chang, 1996) for extent analysis method on FEAM: 

𝜇𝑍(𝑥) = {

𝑥

𝑚−𝑙
−

𝑙

𝑚−𝑙
, 𝑥 ∈  [𝑙, 𝑚]

𝑥

𝑚−𝑢
−

𝑢

𝑚−𝑢
, 𝑥 ∈  [𝑚, 𝑢]

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (4.4.2.1) 

In this research, the Chang (1996) fuzzy extent analysis method is used. The method states 

the following assumptions: Let X {𝑥1, 𝑥2, 𝑥3, . . . . . . . , 𝑥𝑛}= a DFX design criterion set, and 

G {𝑔1, 𝑔2, 𝑔3, . . . . . . . , 𝑔𝑛} = goal set. Based on Chang’s extent analysis method, each design 

criterion is investigated and the extent analysis method for each alternative/goal is 

performed. The extent analysis values (m) for each design criterion can be expressed by 

𝑀𝑔𝑖
𝑗  for i=1, 2…….,n and j=1,2, ……., m which are TFNs. After defining the signs and 

variables meaning, Chang’s extent analysis model can be further explained in the following 

seven steps: 

Step 1: Develop a fuzzy comparison matrix  

It is challenging for the designer to map qualitative design criteria preferences to numerical 

estimates; therefore, a degree of uncertainty could exist in one or more pairwise 
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comparison values in a FEAM model (Yu, 2002). By using TFNs in the pairwise 

comparisons matrix, a fuzzy design decision matrix  𝐴 =  (𝑎𝑖𝑗)𝑛 𝑥 𝑚 can be derived (Tang 

and Beynon, 2005). Matrix 𝐴 =  (𝑎𝑖𝑗)𝑛 𝑥 𝑚 is initiated by the designer, given that 𝑎𝑖𝑗 =

 (𝑙𝑖𝑗 , 𝑚𝑖𝑗 , 𝑢𝑖𝑗) and 𝑎𝑖𝑗
−1 =  (1/𝑢𝑖𝑗 , 1/𝑚𝑖𝑗 , 1/𝑙𝑖𝑗), Equation (4.4.2.2).  

In this step, the design expert is tasked to express the judgment of one design criterion over 

the another in linguistics terms while focusing on the overall goal. Each fuzzy membership 

function is expressed by three parameters of the symmetric TFN, the low point, mode point, 

and high point over which the membership function is defined. The comparison matrix is 

developed from the user input TFNs as illustrated in Equation (4.4.2.2).  

𝐴 =  (𝑎𝑖𝑗) =  [

(1,1,1)
(𝑙21, 𝑚21, 𝑢21)
(𝑙𝑛1, 𝑚𝑛1, 𝑢𝑛1)

      
(𝑙12, 𝑚12, 𝑢12) ⋯ (𝑙1𝑛, 𝑚1𝑛, 𝑢1𝑛)

⋮ ⋱ ⋮
(𝑙𝑛2, 𝑚𝑛2, 𝑢𝑛2) ⋯ (1,1,1)

]  (4.4.2.2) 

Step 2: Determine fuzzy synthetic extent value 

This can be calculated using Equation (4.4.2.3). 

𝑆𝑐 =  ∑ 𝑍𝑔𝑖
𝑗𝑚

𝑗=1 𝛩[∑ ∑ 𝑍𝑔𝑖
𝑗𝑚

𝑗=1
𝑛
𝑖=1 ]−1      (4.4.2.3) 

where TFNs are denoted by 𝑍𝑐
𝑖  (i=1, 2…, n). The value for ith criterion of ∑ 𝑍𝑐

𝑖𝑛
𝑖=1  is 

calculated by adding the n extent analysis fuzzy values by using fuzzy addition operation 

illustrated in Equation (4.4.2.4). 

∑ 𝑍𝑐
𝑖 =  (∑ 𝑍𝑖1

𝑛
𝑖=1 , ∑ 𝑍𝑖2, ∑ 𝑍𝑖3

𝑛
𝑖=1

𝑛
𝑖=1 )𝑛

𝑖=1  (4.4.2.4) 

Step 3: Calculate the comparative superiority 

The comparative superiority of one TFN over the other is formulated as follows: 
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The degree of probability for a fuzzy number i that is greater than j fuzzy numbers 𝑍𝑖 (i=1, 

2……., j) can be represented by Equation (4.4.2.7). 

𝑉 (𝑍 ≥  𝑍1,𝑍2,. . . . . . , 𝑍𝑘 )  =  𝑉 [ 𝑍 ≥   𝑎𝑛𝑑 . . . . 𝑎𝑛𝑑 (𝑍 ≥  𝑍𝑘)] = 𝑚𝑖𝑛 𝑉 (𝑍 ≥ 𝑍𝑖 ) , 𝑖 =

1,2,3, . . . . . . . 𝑘   (4.4.2.7) 

Assuming that 

𝑑 ( DFX𝐴𝑖 )  =  𝑚𝑖𝑛 𝑉(𝑆𝑖 ≥  𝑆𝑘)] 𝑓𝑜𝑟 𝑘 = 1,2,3, . . . . . . . 𝑛;  𝑘 ≠ 𝑖  (4.4.2.8) 

where DFXA is the DFX alternatives for i selected fuzzy number 

Step 5: For each design criterion, calculate the weight vector and then normalize it  

After that, the weight vector can be calculated by using Equation (4.4.2.9). 

𝑊 ′ =  (𝑑 ′(DFX𝐴1), 𝑑 ′(DFX𝐴2), . . . . . . ., 𝑑 ′(𝐷𝐹𝑋𝐴𝑛))𝑇     (4.4.2.9) 

where 𝐷𝐹𝑋𝐴𝑖  (𝑖 = 1,2, . . . . . . 𝑛) =  𝑎𝑟𝑒 𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 

while the normalized weighted vectors are calculated using Equation (4.4.2.10). 

𝑊 =  (𝑑(𝐷𝐹𝑋𝐴1), 𝑑(DFX𝐴2), . . . . . . . , 𝑑(DFX𝐴𝑛))𝑇 (4.4.2.10) 

Step 6: Multiply normalize values of DFX alternatives and design criteria 

After finding the design criteria and the DFX alternatives normalized weights in step 5, the 

final scores for each DFX alternative are calculated by multiplying each DFX alternative 

weight with its related design criterion. 

Step 7: Determine the best DFX alternative 
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Based on these results, the DFX alternative with the highest final score is presented to the 

designer and a list of MDFX is generated. 

4.4.3 TOPSIS model  

In this study, TOPSIS method was proposed to evaluate the rankings obtained from the 

FEAM model and its procedure is illustrated in Figure 4.5. TOPSIS analyzes a multiple 

criteria decision-making (MCDM) problem as a geometric complex system. The output 

results obtained from FEAM model are imported as input weights in TOPSIS model. The 

TOPSIS model provides the designer with consistent and systematic criteria assessment, 

which can be related to the selection preference of the best DFX alternative that have the 

shortest relative distance from the PIS and the farthest relative distance from NIS. TOPSIS, 

by considering an ideal and a non-ideal solution, the model can help the designer in 

evaluating the MDFX ranking list and in selecting the best combination. Therefore, 

TOPSIS assumes that there are m DFX alternatives and n design criterion where the 

corresponding score of each DFX alternative with respect to each design criterion can be 

determined by following the six-step method as described by Wang et al. (2009) and 

explained below.  

Step 1: Normalize the decision matrix values (Yij) extracted from Table 4.4 are converted 

to normalized values (Nij) using Equation (4.4.3.1): 

𝑁𝑖𝑗 =
𝑌𝑖𝑗

√∑ 𝑌𝑖𝑗
2𝑚

𝑖

 , i=1, 2,…..,m; j=1,2,……n (4.4.3.1) 

Table 4.4 Alternative assessment fuzzy ratings for linguistic variables 

Definition of Linguistic Term Triangular Fuzzy Numbers (TFN) 
Very Poor (VP) (1,1,3) 
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Poor (P) (1,3,5) 
Fair (F) (3,5,7) 

Good (G) (5,7,9) 
Very Good (VG) (7,9,9) 

 

Step 2: Determine the normalized weighted value (𝑣 ij), using Equation (4.4.3.2): 

𝑣𝑖𝑗 = 𝑤𝑗𝑁𝑖𝑗, i=1, 2,…..,m; j=1,2,……n (4.4.3.2) 

where 𝑤𝑗 can be defined as the jth design criterion and ∑ 𝑤𝑗 = 1𝑛
𝑗=1

 

Step 3: Find the PIS denoted as DFXA+ and NIS denoted as DFXA− using Equations 

(4.4.3.3) and (4.4.3.4), where 𝑣𝑖
+ is the maximum values of 𝑣𝑖𝑗 and 𝑣𝑖

− is the minimum 

values of 𝑣𝑖𝑗. 

𝐷𝐹𝑋𝐴+ = {𝑣1
+, … . , 𝑣𝑛

+} =  {(𝑚𝑎𝑥
𝑗

𝑣𝑖𝑗|𝑖 𝜖 𝐼), (𝑚𝑖𝑛
𝑗

𝑣𝑖𝑗|𝑖 𝜖 𝐽} (4.4.3.3) 

𝐷𝐹𝑋𝐴− = {𝑣1
−, … . , 𝑣𝑛

−} =  {(𝑚𝑖𝑛
𝑗

𝑣𝑖𝑗|𝑖 𝜖 𝐽), (𝑚𝑎𝑥
𝑗

𝑣𝑖𝑗|𝑖 𝜖 𝐼} (4.4.3.4) 

where I and J are correlated with the benefit and the cost criteria respectively. 

Step 4: Calculate the PIS (𝐷𝐹𝑋𝑑𝑖
+) using the displacement differentiation function from 

Equation (4.4.3.5). 

𝐷𝐹𝑋𝑑𝑖
+ = {∑ (𝑣𝑖𝑗 − 𝑣𝑗

+)2𝑛
𝑗=1 }

1

2, i=1, 2,…….m. (4.4.3.5) 

While, the NIS (𝐷𝐹𝑋𝑑𝑖
−) distance is given as Equation (4.4.3.6). 

𝐷𝐹𝑋𝑑𝑖
− = {∑ (𝑣𝑖𝑗 − 𝑣𝑗

−)2𝑛
𝑗=1 }

1

2, i = 1, 2,…….m.  (4.4.3.6) 
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Step 5: Calculate the relative closeness coefficient 𝑅𝐶𝐶𝑖 using Equation (4.4.3.7) which is 

the proximal relationship to the DFX alternatives considering the proximity from 

alternative 𝐷𝐹𝑋𝐴𝑖 to DFXA+ and from alternative 𝐷𝐹𝑋𝐴𝑖 to DFXA− simultaneously. 

𝑅𝐶𝐶𝑖 =
𝐷𝐹𝑋𝑑𝑖

−

(𝐷𝐹𝑋𝑑𝑖
++𝐷𝐹𝑋𝑑𝑖

−)
 , i = 1, 2,…….m. (4.4.3.7) 

where 𝑅𝐶𝐶𝑖 stands for the final performance score. 
 
Step 6: Rank the calculated values, then select the PIS and NIS shortest distance which is 

the best solution and select the maximum value of 𝑅𝐶𝐶𝑖. 

If the main objective is to maximize the design criteria, then relative closeness to PIS and 

distance from NIS is preferable. But if the main objective is to minimize design criteria, 

then relative closeness to NIS and distance from PIS is preferable. Figure 4.10 represents 

an illustration of the PIS and NIS. Two DFX alternatives, DFX1 and DFX2, are being 

interpreted with respect to their relative distances from PIS and NIS, respectively. The 

main objective is to minimize design criteria DC1 and DC2. However, alternative DFX2 is 

closer to NIS (𝑑2
−) and farther from PIS (𝑑2

+) than DFX1 (𝑑1
−, 𝑑1

+), DFX2 is better alternative 

over DFX1. 
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level 2, where each product criteria is further declassified in to data criteria; and level 4, 

which consists of the five DFX alternatives that represent the proposed selection model. 

For this case study, fifteen DFX techniques were chosen and distributed on the product 

criteria, as indicated in Table 4.5, which are most relative to the current machine being 

designed, and twenty design experts with various years of design experience were 

interviewed to evaluate the design matrix. The experts’ feedback and opinions were 

registered in a design decision matrix for product criteria, data criteria, and alternatives: 

Table 4.6 represents the comparative judgment of design experts for the product criteria in 

linguistic terms. After that, the linguistic terms are translated to TFNs from Table 4.3 and 

then the weighted average is calculated based on the design experts’ weight from Table 

4.2. Finally, the aggregated fuzzy comparison matrix is constructed for the product criteria 

level and for the end-user data criterion as shown in Table 4.7 and Table 4.8, respectively. 

The same procedure is repeated on the data criteria and alternatives levels. However, for 

the MDFX alternatives, a different fuzzy rating assessment is utilized for the linguistic 

terms, as shown in Table 4.4. 
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Figure 4.11 Automated wood framing machine-v2 CAD model 

From Table 4.9, the calculated fuzzy synthetic extent values of five product criteria are 

extracted from the pairwise comparisons of the design experts’ judgments. After the 

process of normalization, the weight vector of the product criteria, which are end-user, 

material, machine, performance, and process, are calculated using and found to be W= 

(0.184,0.035,0.017,0.394,0.370). The calculated value of the consistency ratio (CR) is 

equal to 0.09 which is less than 0.1. This is an indication that the calcuated weights have a 

high confidence degree. The same calculations procedure is applied to the data criterion 

pairwise comparison matrices and their priority weights can be found in Table 4.10-4.14. 

Table 4.15 summarizes the calculated results of product and data criteria where they are 

ranked. For example, in Table 4.16, the calculated normalized value (nij) for the end-user 

data criterion against its relative set of MDFX alternatives is represented. Then the 

weighted normalized value (𝑣 ij) is calculated as shown in Table 4.17. From  Table 4.18 the 

PIS (DFX+) and NIS (DFX- ) are determined respectively. Next, the ideal solution distance 
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is calculated by using the displacement differentiation function. Finally, the relative 

closeness coefficient to the ideal solution (RRCi) is computed as shown in Table 4.19. 

Repeat the same calculation procedure for other product criteria as shown in Table 4.20-

4.23, where the data criteria are rated against their respective set of MDFX alternatives.  
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Figure 4.12 MDFX selection hierarchical representation 
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Table 4.5 DFX list (Alternatives) implemented in this case study with respect to each 
product criteria 

DFX # Design for Product Criteria 
1 Cost (DFC) A, B, C, D, E 
2 Manufacturing (DFM) B, C, D, E 
3 Assembly (DFA) B, C, D 
4 Variety (DFV) B, E 
5 Quality (DFQ) A 
6 Six Sigma (DFSS) A, E 
7 Disassembly (DFDA) B, C, D 
8 Reliability (DFR) A, B 
9 Testability (DFT) C 
10 Maintainability (DFMAI) A, D 
11 Robustness (DFRO) C, E 
12 End-Of-Life (DFEL) A, D 
13 Sustainability (DFS) D 
14 Network (DFN) B 
15 Environment (DFE) A, E 

 

Table 4.6 Comparative judgments of decision design experts for product criteria using 
linguistic terms 

Product 
Criteria 

The left measure is 
greater 

Neutral The right measure is 
greater 

Product 
Criteria 

A. 
Imp 

S. 
Imp 

F. 
Imp 

W. 
Imp 

Eq. Imp W. 
Imp 

F. 
Imp 

S. 
Imp 

A. 
Imp 

A 4 4  1 2 4  4 1 A 
A 4 4  2 6 3 1   A 
A  2  1 8   3 6 A 
A 1 2 1 4 2 4 1 2 4 A 
B 2 3 2 2   3 3 5 B 
B   2 3 2   5 8 B 
B  3 2 3 4  2 3 3 B 
C 1 2 3 1 3   2 8 B 
C  4 2  1 2 6 5  C 
D 3 4 1 2  2 3 3 2 C 
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Table 4.7 Aggregated fuzzy matrices at the product criteria (P.C) level using TFNs 

   
P.C 

      A      B       C       D        E 

A (1,1,1) (1,1.18,1.41) (1.73,2,2.32) (0.45,0.50,0.5
4) 

(0.58,0.72,0.8
9) 

B (0.81,0.85,0.8
7) 

(1,1,1) (0.62,0.74,0.8
7) 

(0.30,0.35,0.4
1) 

(0.72,0.85,0.9
8) 

C (0.51,0.50,0.4
9) 

(1.37,1.35,1.3
4) 

(1,1,1) (0.55,0.62,0.7
0) 

(0.50,0.59,0.7
1) 

D (1.97,2.02,2.0
7) 

(2.82,2.83,2.8
7) 

(1.62,1.60,1.6
0) 

(1,1,1) (0.85,1.05,1.2
7) 

E (1.37,1.39,1.4
1) 

(1.23,1.18,1.1
5) 

(1.55,1.70,1.8
2) 

(0.99,0.95,0.9
6) 

(1,1,1) 

 

Table 4.8 Aggregated fuzzy matrices at the end-user data criteria level using TFNs 

  A A1 A2 A3 A4 A5 A6 
A1 (1,1,1) (3.2,3.8,4.4

) 
(6.48,7.54,

8.58) 
(5.34,6.29,

7.20) 
(2.13,2.56,

3.01) 
(6.54,7.61,

8.65) 
A2 (0.30,0.26,0.

24) 
(1,1,1) (5.61,6.56,

7.47) 
(5.23,6.03,

6.80) 
(0.96,1.19,

1.48) 
(7.11,8.14,

9.16) 
A3 (0.15,0.13,0.

12) 
(0.18,0.15,

0.13) 
(1,1,1) (0.67,0.80,

0.95) 
(0.32,0.39,

0.47) 
(0.73,0.94,

1.20) 
A4 (0.19,0.16,0.

14) 
(0.19,0.17,

0.15) 
(1.25,1.26,

1.27) 
(1,1,1) (0.51,0.58,

0.67) 
(0.79,0.96,

1.16) 
A5 (0.43,0.39,0.

36) 
(0.85,0.84,

0.82) 
(2.42,2.58,

2.72) 
(1.91,2.13,

2.29) 
(1,1,1) (3.67,4.30,

5.05) 
A6 (0.15,0.13,0.

12) 
(0.14,0.12,

0.11) 
(1.08,1.06,

1.05) 
(1.40,1.46,

1.51) 
(0.25,0.23,

0.28) 
(1,1,1) 

 

Table 4.9 Fuzzy extent analysis model output at the product criteria level 

Product 
Criteria 

Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
A (4.76,5.39,6.17) (0.16,0.19,0.23) 0.46 0.184 
B (3.46,3.79,4.13) (0.11,0.13,0.15) 0.08 0.035 
C (3.92,4.06,4.25) (0.13,0.14,0.16) 0.004 0.017 
D (8.27,8.50,8.80) (0.27,0.30,0.33) 1 0.394 
E (6.13,6.22,6.34) (0.20,0.22,0.23) 0.93 0.370 
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Table 4.10 Fuzzy extent analysis model output at the end-user (A) data criteria level 

A Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
A1 (24.69,28.80,32.85) (0.29,0.38,0.49) 1 0.219 
A2 (20.21,23.19,26.15) (0.24,0.31,0.39) 0.57 0.127 
A3 (3.05,3.41,3.88) (0.03,0.04,0.05) 0.55 0.120 
A4 (3.92,4.12,4.39) (0.04,0.05,0.06) 1 0.215 
A5 (10.29,11.24,12.25) (0.12,0.15,0.18) 0.55 0.121 
A6 (4.02,4.01,4.06) (0.048,0.054,0.061) 0.90 0.143 

 

Table 4.11 Fuzzy extent analysis model output at the materials (B) data criteria level 

B Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
B1 (4.18,4.68,5.27) (0.19,0.231,0.26) 1 0.408 
B2 (3.02,3.31,3.64) (0.14,0.16,0.18) 0.21 0.086 
B3 (3.48,2.92,2.91) (0.16,0.144,0.147) 0.23 0.097 
B4 (9.14,9.35,9.59) (0.42,0.46,0.48) 1 0.410 
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Table 4.12 Fuzzy extent analysis model output at the machine (C) data criteria level 

C Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
C1 (3.61,4.06,4.63) (0.31,0.39,0.48) 0.88 0.296 
C2 (3.80,4.28,4.87) (0.33,0.41,0.51) 1 0.335 
C3 (2.11,2.05,2.02) (0.18,0.19,0.21) 1.09 0.368 

 

Table 4.13 Fuzzy extent analysis model output at the performance (D) data criteria level 

D Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
D1 (5.26,5.95,6.70) (0.17,0.21,0.26) 0.35 0.136 
D2 (5.36,5.97,6.74) (0.17,0.21,0.25) 0.36 0.142 
D3 (5.26,5.74,6.29) (0.17,0.20,0.24) 0.16 0.064 
D4 (3.13,3.27,3.44) (0.10,0.11,0.13) 0.70 0.272 
D5 (7.07,7.36,7.63) (0.23,0.26,0.29) 1 0.385 

 

Table 4.14 Fuzzy extent analysis model output at the process (E) data criteria level 

E Fuzzy Synthetic 
Extent Value 𝑺𝒄 

Weight Vector 
𝑾 ′ 

Min 
Superiority 

Value 
𝒅 ( 𝑨𝒊 ) 

Normalized 
Weight 
Vector 

𝑾 
E1 (2.16,2.40,2.69) (0.21,0.24,0.29) 0.15 0.083 
E2 (2.89,3.05,3.21) (0.28,0.31,0.34) 0.68 0.373 
E3 (4.14,4.29,4.41) (0.40,0.44,0.48) 1 0.544 
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Table 4.15 Final evaluation results summary of data criteria importance weight with its 
relative ranking 

Product 
criteria/Data 

Criteria 

Normalized  
Weight 

Overall  
Weight 

Ranking 
Importance 

End User 0.184 - - 
A1 0.219 0.03942 10 
A2 0.127 0.02286 15 
A3 0.120 0.0216 17 
A4 0.215 0.0387 11 
A5 0.121 0.02178 16 
A6 0.143 0.02574 12 

Materials 0.035 - - 
B1 0.408 0.07344 3 
B2 0.086 0.01548 19 
B3 0.097 0.01746 18 
B4 0.410 0.0738 2 

Machine 0.0017 - - 
C1 0.296 0.05328 8 
C2 0.335 0.0603 7 
C3 0.368 0.06624 6 

Performance 0.394 - - 
D1 0.136 0.02448 14 
D2 0.142 0.02556 13 
D3 0.064 0.01152 21 
D4 0.272 0.04896 9 
D5 0.385 0.0693 4 

Process 0.370 - - 
E1 0.083 0.01494 20 
E2 0.373 0.06714 5 
E3 0.544 0.09792 1 
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Table 4.16 Normalized fuzzy decision matrix between DFX alternatives and end-user 
data criteria (𝑛𝑖𝑗) 

DFX A1 A2 A3 A4 A5 A6 
DFX 1 (0.67,0.90,

0.98) 
(0.49,0.77,
0.96) 

(0.16,0.24,
0.56) 

(0.40,0.66,
1) 

(0.39,0.63,
0.93) 

(0.18,0.29,
0.60) 

DFX 5 (0.68,0.90,
1) 

(0.57,0.78,
1) 

(0.15,0.21,
0.52) 

(0.38,0.62,
0.95) 

(0.36,0.58,
0.89) 

(0.17,0.25,
0.56) 

DFX 6 (0.21,0.41,
0.65) 

(0.21,0.36,
0.65) 

(0.45,0.70,
1) 

(0.46,0.64,
0.98) 

(0.21,0.33,
0.65) 

(0.14,0.20,
0.49) 

DFX 8 (0.31,0.51,
0.75) 

(0.28,0.36,
0.67) 

(0.15,0.18,
0.49) 

(0.15,0.23,
0.55) 

(0.30,0.49,
0.81) 

(0.14,0.18,
0.47) 

DFX 
10 

(0.29,0.44,
0.69) 

(0.28,0.49,
0.78) 

(0.28,0.35,
0.70) 

(0.20,0.30,
0.64) 

(0.48,0.72,
1) 

(0.14,0.16,
0.44) 

DFX 
12 

(0.22,0.29,
0.55) 

(0.22,0.33,
0.64) 

(0.21,0.24,
0.58) 

(0.19,0.23,
0.56) 

(0.39,0.60,
0.91) 

(0.47,0.72,
1) 

DFX 
15 

(0.19,0.35,
0.60) 

(0.20,0.28,
0.58) 

(0.15,0.16,
0.46) 

(0.15,0.19,
0.50) 

(0.15,0.23,
0.53) 

(0.49,0.7,0
.99) 

 

Table 4.17 Weighted normalized fuzzy decision matrix between DFX alternatives and 
end-user data criteria (𝑣𝑖𝑗) 

DFX A1 A2 A3 A4 A5 A6 
End-user (A) Data Criteria Fuzzy weights 

(0.29,0.38,
0.49) 

(0.24,0.31,
0.39) 

(0.03,0.04,
0.05) 

(0.04,0.05,
0.06) 

(0.12,0.15,
0.18) 

(0.048,0.0
54,0.061) 

DFX 1 (0.19,0.34,
0.47) 

(0.11,0.23,
0.37) 

(0.005,0.0
1,0.02) 

(0.01,0.03,
0.06) 

(0.04,0.09,
0.16) 

(0.04,0.01,
0.03) 

DFX 5 (0.19,0.34,
0.49) 

(0.13,0.24,
0.39) 

(0.005,0.0
08,0.002) 

(0.01,0.03,
0.05) 

(0.04,0.08,
0.16) 

(0.08,0.01,
0.03) 

DFX 6 (0.06,0.15,
0.31) 

(0.05,0.11,
0.25) 

(0.013,0.0
28,0.05) 

(0.01,0.03,
0.05) 

(0.02,0.05,
0.11) 

(0.007,0.0
1,0.03) 

DFX 8 (0.09,0.19,
0.36) 

(0.06,0.11,
0.26) 

(0.004,0.0
07,0.02) 

(0.006,0.0
01,0.03) 

(0.03,0.07,
0.14) 

(0.007,0.0
09,0.02) 

DFX10 (0.08,0.16,
0.33) 

(0.06,0.15,
0.30) 

(0.008,0.0
01,0.03) 

(0.008,0.0
01,0.03) 

(0.05,0.10,
0.18) 

(0.007,0.0
08,0.02) 

DFX12 (0.06,0.11,
0.26) 

(0.05,0.10,
0.24) 

(0.006,0.0
01,0.002) 

(0.007,0.0
11,0.03) 

(0.04,0.09,
0.16) 

(0.02,0.03,
0.06) 

DFX15 (0.05,0.13,
0.29) 

(0.04,0.08,
0.22) 

(0.004,0.0
07,0.02) 

(0.006,0.0
09,0.03) 

(0.01,0.03,
0.09) 

(0.02,0.03,
0.06) 
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Table 4.18 Fuzzy positive and negative ideal DFX solution 

Ideal 
Solution 

A1 A2 A3 A4 A5 A6 

DFX+ (0.19,0.3
4,0.49) 

(0.13,0.24,
0.39) 

(0.01,0.02,
0.05) 

(0.01,0.03,
0.06) 

(0.05,0.10,
0.18) 

(0.02,0.03,
0.06) 

DFX- (0.05,0.1
0,0.26) 

(0.04,0.08,
0.22) 

(0.004,0.0
06,0.02) 

(0.006,0.0
09,0.03) 

(0.01,0.03,
0.09) 

(0.006,0.0
08,0.02) 

 

Table 4.19 The related relative closeness coefficient (𝑅𝐶𝐶𝑖) and final DFX alternatives 
ranking for end-user (A) 

DFX 
Alternatives 

𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝑪𝒊 Final Ranking 

DFX 1 0.074 0.417 0.849 2 
DFX 5 0.064 0.422 0.869 1 
DFX 6 0.367 0.122 0.250 5 
DFX 8 0.339 0.148 0.304 4 
DFX 10 0.290 0.199 0.407 3 
DFX 12 0.380 0.110 0.224 6 
DFX 15 0.441 0.046 0.094 7 

 

Table 4.20 The related relative closeness coefficient (𝑅𝐶𝐶𝑖) and final DFX alternatives 
ranking for materials (B) 

DFX 
Alternatives 

𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝑪𝒊 Final Ranking 

DFX 1 0.110 0.432 0.797 1 
DFX 2 0.221 0.320 0.592 2 
DFX 3 0.334 0.206 0.382 4 
DFX 4 0.516 0.021 0.039 7 
DFX 7 0.511 0.026 0.049 6 
DFX 8 0.401 0.135 0.252 5 
DFX 14 0.246 0.292 0.542 3 
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Table 4.21 The related relative closeness coefficient (𝑅𝐶𝐶𝑖) and final DFX alternatives 
ranking for machine (C) 

DFX 
Alternatives 

𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝑪𝒊 Final Ranking 

DFX 1 0.129 0.420 0.765 2 
DFX 2 0.227 0.322 0.587 5 
DFX 3 0.124 0.426 0.775 1 
DFX 7 0.141 0.406 0.743 3 
DFX 9 0.443 0.104 0.190 6 
DFX 11 0.164 0.387 0.703 4 

 

Table 4.22 The related relative closeness coefficient (𝑅𝐶𝐶𝑖) and final DFX alternatives 
ranking for performance (D) 

DFX 
Alternatives 

𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝑪𝒊 Final Ranking 

DFX 1 0.014 0.414 0.967 1 
DFX 2 0.237 0.192 0.448 4 
DFX 3 0.225 0.204 0.477 2 
DFX 7 0.224 0.204 0.476 3 
DFX 9 0.258 0.173 0.402 5 
DFX 11 0.333 0.096 0.224 6 
DFX 13 0.342 0.086 0.201 7 

 

Table 4.23 The related relative closeness coefficient (𝑅𝐶𝐶𝑖) and final DFX alternatives 
ranking for process (E) 

DFX 
Alternatives 

𝒅𝒊
+ 𝒅𝒊

− 𝑹𝑪𝑪𝒊 Final Ranking 

DFX 1 0.107 0.362 0.772 1 
DFX 2 0.343 0.128 0.272 4 
DFX 4 0.435 0.034 0.074 5 
DFX 6 0.326 0.142 0.304 3 
DFX 11 0.177 0.291 0.621 2 

 

After calculating and ranking the MDFX techniques for each product criterion and in order 

to effectively estimate and verify which of these techniques in the detailed design of the 

automated wood framing machine-V2 would be the best fit, the cost/time analysis is 
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pursued. The planned cost and time for the detailed design of the machine were completed 

after the concept design was approved by the designer. The planned design cost is $300,000 

and the planned design time (schedule) is 120 calendar days to finish the machine detailed 

design. The cost and time are distributed equally over the product criteria. However, the 

assumption that the product criteria are equally weighted is wrong and each product 

criterion must be represented using its calculated final weight. Thus, the actual cost and 

time metrics of each product criterion can be concluded and the variance between planned 

and actual metrics can be calculated as shown in Table 4.24. 

Table 4.24 Planned versus actual cost and time allocation per product criterion 

Total Planned Cost $300,000.00 
Total Planned Time 120 days 
Product 
Criteria 

A B C D E 

Planned 
Cost % 

20.0% 20.0% 20.0% 20.0% 20.0% 

Planned 
Time %  

20.0% 20.0% 20.0% 20.0% 20.0% 

Final 
Weight 

0.18 0.04 0.02 0.39 0.37 

Actual Cost 
% 

18.4% 3.5% 1.7% 39.4% 37.0% 

Actual 
Time %  

18.4% 3.5% 1.7% 39.4% 37.0% 

Variance % −1.6% −16.5% −18.3% 19.4% 17.0% 
Actual 
Allocated Cost 

$55,200.00 $10,500.00 $5,100.00 $118,200.00 $111,000.00 

Actual 
Allocated Time 

22.08 4.20 2.04 47.28 44.40 

 

By using the actual allocated cost and time for each product criterion as an input for the 

MDFX trade-off analysis model, the distributed cost and time for each DFX relative to its 

product criterion can be calculated as shown in Table 4.25 to Table 4.29. Each DFX can 
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be represented by its actual cost and time required to complete the machine’s detailed 

design.  

Table 4.25 DFX alternatives projected cost and time allocation for end-user 

Actual Allocated Cost $55,200.00 
Actual Allocated Time 22.08 days 
DFX Alternatives  Cci 

Results 
Normalized 
Cci Results 

Actual Cost 
per DFX 

Actual Time 
per DFX 

DFX 1 0.84 0.28 $15,590.07 6.24 
DFX 5 0.86 0.29 $15,952.27 6.38 
DFX 6 0.26 0.09 $4,760.74 1.90 
DFX 8 0.30 0.10 $5,567.41 2.23 
DFX 10 0.41 0.14 $7,501.30 3.00 
DFX 12 0.22 0.07 $4,124.00 1.65 
DFX 15 0.09 0.03 $1,704.20 0.68 

 

Table 4.26 DFX alternatives projected cost and time allocation for materials 

Actual Allocated Cost $10,500.00 
Actual Allocated Time 4.20 days 
DFX Alternatives Cci 

Results 
Normalized 
Cci Results 

Actual Cost 
per DFX 

Actual Time 
per DFX 

DFX 1 0.80 0.30 $3,157.50 1.26 
DFX 2 0.59 0.22 $2,337.57 0.94 
DFX 3 0.38 0.14 $1,509.79 0.60 
DFX 4 0.04 0.01 $154.84 0.06 
DFX 7 0.05 0.02 $191.90 0.08 
DFX 8 0.25 0.10 $1,004.19 0.40 
DFX 14 0.54 0.20 $2,144.21 0.86 
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Table 4.27 DFX alternatives projected cost and time allocation for machine 

Actual Allocated 
Cost 

$5,100.00 

Actual Allocated 
Time 

2.04 days 

DFX Alternatives Cci 
Results 

Normalized 
Cci Results 

Actual Cost 
per DFX 

Actual Time 
per DFX 

DFX 1 0.76 0.20 $1,037.96 0.42 
DFX 2 0.58 0.16 $794.31 0.32 
DFX 3 0.77 0.21 $1,048.73 0.42 
DFX 7 0.74 0.20 $1,005.26 0.40 
DFX 9 0.19 0.05 $261.60 0.10 
DFX 11 0.70 0.19 $952.14 0.38 

 

Table 4.28 DFX alternatives projected cost and time allocation for performance 

Actual Allocated 
Cost 

$118,200.00 

Actual Allocated 
Time 

47.28 days 

DFX Alternatives Cci 
Results 

Normalized 
Cci Results 

Actual Cost 
per DFX 

Actual Time 
per DFX 

DFX 1 0.97 0.30 $35,840.23 14.34 
DFX 2 0.45 0.14 $16,554.87 6.62 
DFX 3 0.48 0.15 $17,653.04 7.06 
DFX 7 0.48 0.15 $17,640.84 7.06 
DFX 10 0.40 0.13 $14,835.21 5.93 
DFX 12 0.22 0.07 $8,240.53 3.30 
DFX 13 0.20 0.06 $7,435.28 2.97 
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Table 4.29 DFX alternatives projected cost and time allocation for process 

Actual Allocated 
Cost 

$111,000.00 

Actual Allocated 
Time 

44.40 days 

DFX Alternatives Cci 
Results 

Normalized 
Cci Results 

Actual Cost 
per DFX 

Actual Time 
per DFX 

DFX 1 0.77 0.38 $41,924.68 16.77 
DFX 2 0.27 0.13 $14,807.28 5.92 
DFX 4 0.07 0.04 $4,012.49 1.60 
DFX 6 0.31 0.15 $16,666.42 6.67 
DFX 11 0.62 0.30 $33,589.13 13.44 

 

4.6 Results and Discussions 

In this study, the proposed fuzzy extent analysis model based on Chang’s method [48] 

suggests that product criterion D has the highest importance weight between the other four 

product criteria. Product criterion E is the second largest one followed by and criterion A. 

The results of this model are compared with the results of other fuzzy set theory methods. 

The results comparison summary of the product criteria level is shown in Table 4.30. As 

concluded in Table 4.30, the results of the proposed method are close to some extent to that 

of the other fuzzy methods. Chang’s method results show that the importance weight of 

product criterion B is larger than that of C. Although the other methods calculation 

procedures are different from the proposed one, the results are very similar regarding the 

first three product criteria. The advantages of the hybrid decision support system compared 

to the other methods are: (1) a weight can be allocated to each design expert based on the 

number of years of experience; (2) it uses basic mathematical formulas to calculate the 

importance weights; (3) it incorporates an effective and easy scale to compare factors; and 
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(4) design experts can easily relate the linguistic terms to the TFNs scale in order to 

establish the design decision comparison matrix. 

Table 4.30 Comparison of fuzzy set theory methods on the product criteria level 

Method Weight  
of A 

Weight  
of B 

Weight  
of C 

Weight  
of D 

Weight  
of E 

Ranking 

AHP  
(1980) 

0.19 0.14 0.15 0.30 0.23 D>E>A>
C>B 

Buckley’
s (1985) 

(0.15,0.1
8,0.22) 

(0.12,0.14,
0.16) 

(0.13,0.14,
0.16) 

(0.27,0.30,
0.33) 

(0.22,0.23,
0.25) 

D>E>A>
C>B 

Chang’s 
(1996) 

0.184 0.035 0.017 0.394 0.370 D>E>A>
B>C 

 

By comparing the relative closeness coefficient (RRCi) values of the product criteria 

against its MDFX set of alternatives, multiple observations can be made. On the end-user 

level, DFC and DFQ represent 57% of the final rating, while DFEL and DFE represent 

11% of the final rating, as shown in  Figure 4.13. On the other hand, DFC and DFM 

correspond to 52% of the final rating, while DFV and DFDA correspond to 4% of the final 

rating on the materials level, as shown in Figure 4.13. As concluded from Figure 4.13, 

DFC, DFA, DFDA, and DFRO each represent approximately 20% from the final rating on 

the machine level. This can be translated to mean that each of these DFXs is of equal 

importance in the detailed machine design with respect to the machine product criteria. 

However, as indicated in Figure 4.13, only DFM, DFA, and DFDA are of equal importance 

on the performance product criteria level and each represents approximately 15% of the 

final rating, as seen in Figure 4.13. On the process level, DFC and DFRO combined to 

form 68% of the final rating; therefore, the techniques can be considered of high 

importance when applied in the machine detailed design. 
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Figure 4.13 The final ranking of end-user 

product criteria alternatives 

 
Figure 4.14 The final ranking of materials 

product criteria alternatives 

 

 
Figure 4.15 The final ranking of machine 

product criteria alternatives 

 

 
Figure 4.16 The final ranking of 

performance product criteria alternatives 

 

 
Figure 4.17 The final ranking of process product criteria alternatives 
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From Table 4.31, the cumulative RRCi for MDFX alternatives with their respective ranking 

is summarized for all the product criteria combined. It shows that DFC, DFM, and DFA 

are the most important DFX techniques to be utilized in detailed machine design, whereas 

the DFT, DFV, and DFE are the least important DFX techniques to be utilized in detailed 

machine design. 

Table 4.31 Commutative RCCi for MDFX with their respective ranking on all product 
criteria level. 

DFX Alternatives ∑𝑹𝑪𝑪𝒊 Final Ranking 
DFX 1 4.145 1 
DFX 2 1.894 2 
DFX 3 1.629 3 
DFX 4 0.113 14 
DFX 5 0.865 6 
DFX 6 0.565 8 
DFX 7 1.264 5 
DFX 8 0.555 9 
DFX 9 0.193 13 
DFX 10 0.807 7 
DFX 11 1.319 4 
DFX 12 0.446 11 
DFX 13 0.201 12 
DFX 14 0.541 10 
DFX 15 0.092 15 

 

Table 4.32 summarizes the actual cost and time required for each DFX to be utilized in the 

machine detailed design. As shown in Table 4.32, DFC has the highest cost to be utilized 

in the design of $97,550 and the highest time to be completed of 39 calendar days. On the 

other hand, DFEL has the lowest cost of $261 and the associated time can be negligible. 

The main observation that can be derived from Table 4.32 and Table 4.32 is that the ranking 

of DFX changes after the trade-off analysis model is implemented. For example, in Table 

4.31 the top three DFX techniques were DFC, DFA, and DFM, whereas, in Table 4.32, this 
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result partially changed to DFC, DFM, and DFRO. This can be traced back to the 

importance of MDFX trade-off analysis in machine design to support the designer’s 

decisions and to evaluate the impact of MDFX techniques on machine design development 

cost and schedule. 

Table 4.32 MDFX ranking based on actual cost and time combining all product criteria 

Combined DFX Alternatives for 
All Product Criteria 

Actual 
Allocated Cost 

Per DFX ($) 

Actual 
Allocated 
Time Per 

DFX (days) 

Ranking 
based on 
cost and 

time 
priority 

Cost (DFC) DFX 1 $97,550.45 39 1 
Manufacturing 
(DFM) 

DFX 2 $34,494.03 14 3 

Assembly 
(DFA) 

DFX 3 $20,211.57 8 6 

Variety (DFV) DFX 4 $4,167.33 2 12 
Quality (DFQ) DFX 5 $15,952.27 6 8 
Six Sigma 
(DFSS) 

DFX 6 $21,427.17 9 5 

Disassembly 
(DFDA) 

DFX 7 $18,837.99 8 7 

Reliability 
(DFR) 

DFX 8 $6,571.60 3 11 

Testability 
(DFT) 

DFX 9 $261.60 0 15 

Maintainability 
(DFMAI) 

DFX 10 $22,336.51 9 4 

Robustness 
(DFRO) 

DFX 11 $34,541.26 14 2 

End-Of-Life 
(DFEL) 

DFX 12 $12,364.54 5 9 

Sustainability 
(DFS) 

DFX 13 $7,435.28 3 10 

Network 
(DFN) 

DFX 14 $2,144.21 1 13 

Environment 
(DFE) 

DFX 15 $1,704.20 1 14 
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In Figure 4.18, the optimized MDFX are represented with their cost and time metrics. It 

can be observed that DFC alone represents 32.5% of design cost and time when 

implemented in machine design, followed by DFM and DFRO, where each represents 

11.5%. The DFT has the lowest optimization percentage of 0.1% followed by DFE with 

0.6%. This result aids the designer in understanding and estimating the effect of applying 

MDFX in machine detailed design. By integrating MDFX in the machine development, the 

designer is able to utilize, optimize, and visualize their respective trade-offs before design 

development commence, leading to accurate forecast and reaching the design development 

planned cost and time. 

 

Figure 4.18 Optimized MDFX cost and time 

4.7 Conclusion  

A decisive decision support system has been proposed for integrating MDFX with PDS. In 

this research, a hybrid FEAM-TOPSIS model together with trade-off analysis model was 

implemented using conflict resolution, TFNs, and ranking methods to evaluate MDFX 
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combinations. The hybrid model employs the fuzzy extent analysis method (FEAM) to 

calculate the importance weights of the PDS and to identify the best MDFX combinations 

while taking in to consideration the weights for experts, product criteria, data criteria, and 

MDFX alternatives. This model aids the designer in the selection of optimal MDFX 

alternatives based on the design criteria on the judgment of design experts. However, the 

disadvantage of this model is that the input data depends on the design experts’ opinions 

and technical experience, and thus involves subjectivity and some biases. The evaluation 

of MDFX alternatives usually requires specified technical knowledge besides the design 

experience; however, design experts may display some bias in the judgments when 

providing a ranking preference of one design criterion over the another. For that reason, 

the TOPSIS model is the chosen method for the ranking of MDFX alternatives in terms of 

their total scoring. The importance of the criteria is evaluated by design experts, and the 

uncertainty of their assessment is considered in the fuzzy analysis model. Also, the experts’ 

degree of confidence may be computed through the distribution of fuzzy numbers utilized 

for the pairwise comparison ratios in the proposed model. The proposed MDFX model 

based on trade-off analysis ensures the integration of design experts’ assessment and 

evaluation in a decision-making system. Cost and time are utilized to compare MDFX 

alternatives so that lifecycle cost can be reduced. The weighing of the financial and 

economic impact of all MDFX selection design decisions provides a benchmark that can 

assists the designer in making decisions to best benefit the machine development. The 

hybrid model can be implemented in diverse range of machine design by adjusting the 

design experts’ values, the structure of the problem’s hierarchy, and their related design 

attributes. The conclusion from the case study is that DFC, DFM, and DFRO are the first 
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three important DFX techniques for machine design with 55.5% of importance and 

cost/time optimization, while DFT, DFE, and DFN rank as last priorities among these 

techniques with 1.4%. Moreover, the performance (D) and the process (E) rank as the first 

two product criterion for these DFXs with 76% of importance. 

The impetus for developing the hybrid decision support model was to ease the MDFX 

selection process by improving the designers’ decision-making processes. The proposed 

decision support system model can evaluate and rank MDFX alternatives comprehensively 

using design weighted means absolute difference values. It provides benefits by improving 

design capability in terms of enabling designers to evaluate MDFX alternatives with 

interrelated design criteria. Also, it provides the designers with an automated decision 

support tool to aid them in capturing the features of different DFX techniques in conceptual 

and detailed machine design stages. The hybrid decision support system model also 

provides designers with a fuzzy relation point of view compared to the traditional 

performance evaluation model for dealing with imprecision and uncertainty. Finally, it 

enables designers to better interpret the whole evaluation process and provides a more 

precise, systematic, and effective decision support tool. 
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Chapter 5 : Hybrid Decision support approach for Multi-DFX trade-off 

optimization in machine design: Hybrid genetic and Pareto optimality algorithm4 

5.1 Introduction 

Designers tend to express the design decision optimality problem as a single objective 

function approach that requires continues optimization to maximize the overall machine 

lifecycle. However, this approach cannot guarantee that the designer can control multiple 

design decision variables where their formulation is based various design decision 

optimality criteria (Ahmad et al., 2014; Malik et al., 2019). Hence, multi-objective 

optimization design decision problems can be formed where the designer can determine 

the Multi-DFX (MDFX) techniques trade-off optima that represent the combined impact 

of these techniques on design decision activities. Bendeković (1993) proposes a framework 

featuring the Net Present Value (NPV) and Internal Rate of Return (IRR) concepts to 

measure the effectiveness of a set of design decisions through evaluating their financial 

parameters in terms of time. In design decision-making optimization, the pertinent 

measures of MDFX excellence are not the only criteria that control the problem constraints. 

In many cases, design decision objective functions are expressed based on a single criterion 

(e.g., machine weight), which does not correspond to the designer’s notion of applying 

MDFX in machine design development. Thus, the impression of MDFX excellence is more 

holistic and includes the designer vision throughout the entire lifecycle of the machine from 

design to operation including performance measures. The designer’s notion of the machine 

                                                 
 
4  The manuscript presented in Chapter 5 of this thesis is ready to be submitted to the International 
Journal of Production Economics. 
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design development excellence would be composed of multiple qualitative and quantitative 

criteria in most cases including adaptivity, versatility, reliability, safety, acquisition terms, 

intangible and subjective design functionality expectations, etc. Therefore, a design 

decision support system (DDSS) framework is required to model the excellence of MDFX 

in the objective functions and generates a list of best fit MDFX techniques that maximize 

the machine overall lifecycle performance related to the designer’s design conditions. This 

can be formulated as best-compromise multi-objective value-based optimization function 

where all equivalent economic values of partial objectives are represented as described in 

this research. 

Many real-world design decision problems involve concurrent optimization of multiple 

incommensurable and conflicting objectives where no single optimal solution exists. But 

instead there is a set of various alternative solutions that are optimal when all design 

decision objectives are investigated making them superior solutions in the search space 

where no other solutions can match them. These solutions are known as Pareto-optimality 

solutions. To illustrate the power and importance of this approach in a brief example, 

consider the design of a pick and place robot clamping system. An optimal design solution 

for a designer might be to minizine the total cost of the clamping system while maximizing 

the system overall performance metrics. However, these objectives are generally from a 

designer’s perspective conflicting to each other: one designer may achieve the high-

performance objective but on the expense of high cost while other designers may fulfill the 

low-cost objective but on the expense of reducing performance metrics. But none of these 

solutions can be considered to be superior to the other solutions in the search space if 

designers do not implement the preference information methodology (e.g., a ranking 
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Little research has been conducted in the field of optimizing and utilizing MDFX 

techniques in machine design development. Few optimization models were developed by 

researchers such as linear programming and goal programming. However, none of them 

adapt GAs toward the problem. These models, as shown in Figure 5.3 can be grouped based 

on their optimization objectives into MDFX trade-off models that aim to: (1) minimize 

design cost by adopting MDFX (Gatzen et al., 2013); (2) optimize cost and time Design 

for X (DFX) trade-off analysis (Lukasz and Tomasz, 2007); and (3) minimize cost and/or 

time DFX metrics (Wulan and Deng, 2000). While the above-listed research studies have 

established the basic concept of optimizing MDFX in design development, there have been 

no reported studies related to multi-objective trade-off models for optimizing MDFX 

metrics such as cost (C), time (T), and quality (Q). Therefore, the purpose of this study is 

to develop the DDSS framework for selecting the optimal MDFX solutions for machine 

design development based upon the product design specifications (PDS) qualitative and 

quantitative criteria while optimizing the MDFX trade-off metrics. The genetic algorithm 

and Pareto optimality are combined in a hybrid search engine to generate the MDFX 

optimized solutions based on the fitness functions where design development cost and time 

is minimized, and design development quality is maximized. After that, these solutions are 

evaluated from an economic perspective by calculating their NPV and IRR values based 

on the design problem parameters. 
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formulates the overall economic benefits of the decision-based-design (DBD) framework 

discussed by Hazelrigg (1998). However, the design decision problem utility functions 

formulation is still a topic for ongoing research. Michalek et al. (2006) proposed the 

framework for the overall utility function that coordinate, combine, and balance the 

machine design, manufacture and market problems. The design decision problem modeling 

and optimization of the objective functions receives little attention in MDFX research. 

Vucina et al. (2010) multi-criteria decision-making financial analysis model is described 

where the machine operational expenses and investment terms are embedded as main 

elements in the design decision objective functions during the conceptual and detailed 

machine development. Otto and Antonsson (1991) proposed an overall design preferences 

framework where trade-offs analysis and MDFX design strategies are investigated. A 

similar framework for flexible decision support system was also proposed by Olewnik and 

Lewis (2006). An elaboration of cost/performance trade-off analysis and optimization that 

can be adapted in the aircraft design decision feasibility evaluation was discussed by 

several researchers (Markish and Willcox, 2003; Harris, 2002). This reveals the importance 

of the trade-off analysis in the design decision-making process. Peoples and Willcox (2006) 

compared the performance versus the value-based design decisions by measuring the NPV 

metrics and by adopting the probabilistic and deterministic concepts to account for risk and 

uncertainty in the decision- making process. The NPV was also utilized as a design 

decision-making tool in the hydropower station conceptual design to maximize the return 

profits (Elíasson, 2000). Also, Georgiopoulos et al. (2002) described the model in which 

the expected value of NPV denoted by “the objective function” was calculated for an 
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automotive design firm based on machine design variables and taking into account the 

trade-off metrics uncertainty. 

DDSS are effective analytical models that aid designers in product cost estimation; hence, 

improved designer judgments at different levels of the design development estimation 

process  ) Kingsman and De Souza, 1997). They developed cost estimation model 

incorporating expert rules in the machines manufacturing companies that adapt make-to-

order (MTO) systems which focus on customer needs and emphasize the application of 

design cost estimation rules. In this research and to incorporate the design experts’ 

technical experience, AI philosophy is adopted to represent the designer’s knowledge as 

input to the design decision-making model.  Shehab and Abdalla (2002) proposed a 

knowledge-based cost estimation model for machines in the early design development 

stages. Similarly, Luong and Spedding (1999) described a knowledge-based model that 

integrate cost estimation into process planning. Thus, to represent DDSS more effectively 

and to eliminate the uncertainty in the trade-off heuristic data, designers are encouraged to 

represent the MDFX design decision-making problem by taking advantage of the expert 

system (ES) in the optimization algorithm.  

Evolutionary algorithms are considered the best fit for solving multiple conflicting 

objectives in design design-making MDFX optimization problems (Kinnear et al., 1999). 

Since 1985, researchers developed various evolutionary methodologies to solve multi-

objective optimization problems by concurrently searching for multiple solutions sets in a 

single run. One branch of evolutionary algorithms is genetic algorithms. The latter is 

superior searching algorithms that can be adapted in a variety of optimization mechanism 
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where the survival-of-the-fittest strategy and genetic operators abstracted from nature are 

combined (Goldberg, 1989). The early discovery of GAs was made by Holland in the 1960s 

and further described in detail by Goldberg (Feng et al., 1997). Nowadays, GAs is applied 

in many engineering fields especially in machine design optimization problems 

(Michalewicz, 1996; Osman et al., 2006). Srinivas and Deb (1994) concluded that GAs are 

efficient and powerful searching algorithms that require a little information about the 

optimization problem which grants them the superiority over other optimization methods 

which lack features such as continuity, linearity, derivatives, etc. Also, GAs is an effective 

analytic tool mitigated with stochastic search technique that is applied to solve complicated 

and large problems using evolutionary and genetic principles (2007). Lee and Kim (2007) 

concluded that GAs, which follows the principles of evolution, demonstrates great potential 

in combinatorial optimization and this can be achieved when better chromosomes trade 

their properties with next genes in the generation and this is improved progressively over 

computational time (Li et al., 1998). As any other optimization method, GAs have some 

disadvantages that can be summarized by several researchers (Preechakul and Kheawhom, 

2009; Zhang et al., 2009) in their papers, where they list some drawbacks such as initial 

parent’s populations are generated randomly, the optimal solution is not guaranteed, and 

search efficiency becomes low after each mutation process. In his book, Goldberg (1989) 

described the main GAs theory where a randomly evolved population of certain species 

will begin to adapt to its environment after many generations in a well-known concept of 

the survival of the fittest. In the genetic game, the winner of applying different parameters 

is the optimal solution. These parameters are genes of chromosomes represented by binary 

strings where the better chromosome is the nearest one the optimal solution. Each solution 



  

103 
 
 

is represented by a single chromosome which can be better or worse in the initial 

population. This population represents a part of the problem solution space defined as a 

search space where each feasible solution can be related to a distinct chromosome that is 

randomly chosen to form the initial parent populations. Next, solutions are selected based 

on their competitiveness rate through intensive computations measured by an objective 

fitness function. To simulate the continues process of offspring generations, best parent 

chromosomes mate to produce the best child or offspring genes that replace the least fit 

members in the parent population. Man et al. (1997) proposed some hints when users select 

the number of populations. After that, the genetic algorithm continues its searching process 

by applying the next stages such as such as selection, crossover, and mutation sequentially 

to acquire the new generation which is expected to be better in quality than its previous. 

The process mentioned above keeps evolving in which better solution take over unfit 

solution until the termination criteria are met and the final solution is generated. Figure 5.4 

illustrates the main flowchart of the universal GAs operations. 

In general, any multi-objective GA framework must have five main components 

(Goldberg, 1989): 

(1) a genetic representation of solutions to the problem, 

(2) initial population of solutions, 

(3) an evaluation fitness function to rate solutions,  

(4) reproduction genetic operators and definition of the GA parameters (max 

population size, string size, crossover probabilities, termination set point, etc.), 
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the user must specify the type of crossover operation required such as multi-point, single-

point, uniform, half uniform, cut and slice, etc. In this research, the single-point crossover 

operation type is implemented with the probability of crossover (Pc) where two 

chromosomes break out from the randomly selected point and trade their information with 

the exchanged chromosomes. This will result in two chromosomes where the initial one 

referred as parent chromosome and the second one resulted from the exchange referred as 

offspring chromosome as illustrated in Figure 5.5. If Pc=0, then crossover operation will 

not occur and thus offspring’s traits will be like that of parents. As mentioned before, 

mutation is the successive operation in GAs, where a gene is replaced with a randomly 

selected binary number (RN) between (0, 1) and within the limits of the parameter (Gen, 

and Cheng, 2000). User inputs the mutation probability (Pm) constant which creates the 

mutation process only if it is less than RN. The crossover and mutation operations are 

followed by evaluation step, in which solutions are validated against the user’s expectations 

and selection criteria. At last, the algorithm terminates itself by activating one of the sets 

of conditions as described below: 

(1) Terminate the algorithm after a max number of generations is reached;  

(2) No significant improvement in the objective function output; 

(3) Objective function reached a predetermined value.  
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where x is the decision vector, PS is the parameter space, y is the objective vector, OS is 

the objective space, (𝑓1(𝑥), 𝑓2(𝑥), … … , 𝑓𝑜(𝑥)) are the o objective functions, 

(𝑥1, 𝑥2,……., 𝑥𝑛) are the n optimization parameters, and PS,OS ∈ 𝑅𝑛 is the solution space. 

All decision vectors (x) that are assigned to objective vectors where no slight improvement 

can be noticed without degradation of one of them are referred to as the MOOP solutions 

set. The previously mentioned vectors are known to be the Pareto optimality vectors. 

Mathematically, Pareto optimality concept can be explained as follows: Assume a 

maximization problem with two decision vectors x,y ∈ PS. Then, x is said to dominate over 

y or x > y iff 

∀𝑖 ∈ {1,2, … . . , 𝑛}: 𝑓𝑖(𝑥) ≥  𝑓𝑖(𝑦) 

∃𝑗 ∈  {1,2, … . . , 𝑛}: 𝑓𝑗(𝑥) >  𝑓𝑗(𝑦) 

Moreover, in this study x is considered to overcome y (x ≥ y) iff x > y or 𝑓𝑖(𝑥) =  𝑓𝑖(𝑦). 

All decision vectors (x) that are not dominated by any other ones of a given solution set are 

referred to as non-dominated points. The non-dominated decision vectors within the search 

space are referred to as Pareto optimal and together they form the Pareto-optimal set or 

Pareto-optimal front. The below interpretations regarding Pareto-optimal front are 

extracted from Ringuest and Rinks (1987); Laumanns et al., 2002. 

Interpretation 1 (feasible solution): A feasible solution is one that satisfies all optimization 

problem constraints, known as, the set of all x that satisfy x ∈ S which frame the feasible 

space.  
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Interpretation 2 (Pareto optimal solution): x∗ is considered to be a Pareto optimal solution 

of MOOP if no another feasible x exists such that, 𝑓𝑖(𝑥) ≤  𝑓𝑖(𝑥∗) for all i = 1, 2, . . . , n 

and 𝑓𝑜(𝑥) ≠  𝑓𝑜(𝑥∗) for a min of one objective function fo. 

To optimize the multiple objectives from the MDFX trade-off model concurrently, a Pareto 

front (PF) approach is implemented in this research. PF can be different from traditional 

optimization methods by its tendency to eliminate conflicts between MDFX trade-off 

objectives (T, C, Q). In this research, an optimization model is described to optimize 

MDFX trade-off analysis between three main objective functions (C, T, Q) under different 

scenarios. Juan et al. (2006) concluded that Pareto optimality concept is the best to utilize 

in this problem if mixed with GAs. The main concept behind PF is that no solution is 

known to be totally dominated over the other solutions in all performance measurements 

aspects because these solutions have a higher probability to be in the next generation due 

to their relatively high fitness values. Laumanns et al. (2002) describes that as population 

evolution progress, its Pareto optimal zone converges. The solutions within the search 

space that cannot improve their vector components simultaneously are donated as non-

dominated solutions. Figure 5.6 illustrates the acceptable Pareto optimal solutions. In 

literature, there are several methods approaches to rank and select the Multi-Objective 

Genetic Algorithms (MOGAs) such as Aggregating functions, Population-based, and 

Pareto-based. Furthermore, Coello et al. (2007) stated that extensive research has been 

undertaken in the past few years for the Pareto-based MOGAs (e.g., VEGA model 

proposed by Schaffer and Grefenstette (1985), PAES model proposed by Knowles and 

Corne (2000) and SPEA model proposed by Zitzler and Thiele (1999) etc.. 
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5.4 Proposed Hybrid Genetic and Pareto Optimality Algorithm 

In this section, an intelligent hybrid algorithm combining GA and Pareto concepts to solve 

the MDFX selection problem based on trade-off analysis followed by financial evaluation 

for the solution set based on NPV/IRR concepts is developed. For each chromosome of the 

GA algorithm, three objective functions are required to be evaluated, and the Pareto 

optimality selecting approach is utilized to evaluate different combinations of the three 

evaluated objective functions. The DDSS proposed flowchart for the MDFX trade-off 

analysis model is represented in Figure 5.8 and will be further explained in the next 

sections. 

The main procedure for the hybrid model that is used in this research can be summarized 

below: 

(1) Defining GAs parameters: Pc, Pm, and RN. 

(2) Randomly initializing and generating the initial parent population composed of DFX 

techniques and design criteria. 

(3) Evaluating the multi-objective fitness functions for each chromosome (DFX) based 

on T, C, and Q performance metrics. 

(4) Grouping and sorting solution sets then ranking them based on the Pareto non-

dominated selecting approach to form the initial chromosomes mating pool. 

(5) Initiating the crossover operation mechanism for each pair of chromosomes with Pc. 

(6) Initiating the mutation operation mechanism for each chromosome with Pm. 

(7) The current population is replaced by the solution mating pool. 
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5.4.1 Phase 1: GA algorithm model formation 

The data structure of a genetic algorithm that represents the problem solution in coding 

space is composed of chromosomes which can be further broken-down to multiple genes 

each representing a variable. The content of the chromosome is exchanged with the value 

of the variable. In order to represent the appropriate structured design of the chromosome, 

the proposed approach is considered. Where each chromosome consists of a sequence of i 

sub chromosome (i is the number of PDS) and a matching set of m sub-chromosome (m is 

the number of DFX). All chromosomes are randomly generated such that their total 

summation is equal to ∑ 𝐶𝑖𝑚
𝑚
𝑚=1  for each sub-chromosome i. Therefore, the generated 

chromosomes are randomly extracted illustrated in Figure 5.9, such that:  

x11 + x11 + …..+x1m= DC1 ;  

x21 + x21 + …..+x2m= DC2 ; 

xi1 + xi2 + …..+xim= DCm . 

where, 

DC = design criterion. 
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Step 4: All generated solutions that are not marked ‘dominated’ are tagged as non-

dominated solutions. 

Step 5: Generate a list of non-dominated final solutions. 

In GAs, the reproduction or selection stage of chromosomes can be related to the survival 

of the fittest meaning that the chromosomes with the high value relative to the objective 

function are preserved and propagate from generation to another in the search for an 

optimal utilization solution. The main function of the selection operator is to maintain and 

improve the population quality by enabling the highest value chromosomes to mate and 

get cloned into the next generation. Selection directs the algorithm search operation to 

discover more regions with high-quality chromosomes in the search space. Laumanns et 

al. (2002) and Osman, et al. (2006) proposed a random-weighted method to generate a 

random search direction towards PF. Assume that the designer would like to maximize an 

objective function (o), then the weighted objective sum can be represented in Equation 

(5.4.1.2). 

𝑓(𝑟) =  𝑤1𝑓1(𝑟) + ⋯ + 𝑤𝑜𝑓𝑜(𝑟) =  ∑ 𝑤𝑖𝑓𝑖(𝑟)𝑜
𝑖=1   (5.4.1.2) 

where r= a string (i.e. individual), f(r)= combined fitness functions, fi(r)= ith objective 

function, and {𝑤𝑖|  ∑ 𝑤𝑖 = 1𝑜
𝑖=1 } = constant weight for fi(r). 

In this research, the roulette wheel selection mechanism in the reproduction operation is 

utilized (Goldberg, 1989). This method is based on the probability value of variable 

selection which is proportional to the population individual over total fitness ratio. This 

ratio is calculated using Equation (5.4.1.3). 
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𝑃(𝑟) =
𝑓(𝑟)−𝑓𝑚𝑖𝑛(Φ)

∑ {𝑓(𝑟)−𝑓𝑚𝑖𝑛(Φ)}𝑥∈Φ
 (5.4.1.3) 

Where, 

P(r)=is the selection probability of a string r in a population 𝜱 and 𝑓𝑚𝑖𝑛(Φ) =

𝑀𝑖𝑛 {𝑓(𝑟)| 𝑟 ∈ Φ} . 

Unlike other searching techniques, GAs follows a searching protocol where the parameters 

are coded, and the transition rules are probabilistic. In the beginning, designers define the 

main four GA parameters: (1) Crossover probability parameter (Pc); (2) Mutation 

probability parameter (Pm); (3) Population size parameter (Psize); (4) Maximum number of 

generations (Tmax). In this research, the arithmetic crossover mechanism is implemented, 

and the application of a crossover operation is limited to its Pc. If Pc is too small then the 

searching efficiency will be low; however, if Pc is too big then the structure destruction of 

a high-quality solution will be inevitable. The main objective of the crossover stage in GA 

is to trade information and properties between dual parents’ chromosomes in order to 

produce dual child chromosomes for the next population set. In this research, a modified 

uniform crossover with Pc = 0.5 (Pc value is generally between 0.5 and 0.8, Goldberg 

(1989)) is used in either parents’ populations. Usually, the mutation operator value is 

variable because the process of replacing one genotype by another one is random. The 

process starts with the selection of random gene from ith sub-chromosome set and then 

replaced by a random integer within the interval [0, DCi] such that the sum of all genes in 

the same set is equal to the ith DFX ∑ 𝐺𝑒𝑛𝑒𝑖𝑚 = 𝐷𝐶𝑖
𝑚
𝑚=1  . Pm is considered an important 

factor in the process of extending population diversity. If Pm is too low then the induction 

of new gene will not be possible; however, if Pm is too high then the genetic evolution 
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decayed into local random search. In this research, a modified uniform mutation with Pm = 

0.02 (Pm value is generally between 0.001 and 0.1, Goldberg (1989)) is utilized. The 

efficiency and quality of the generated solution is directly linked with the parameter Psize. 

If Psize is too low then there are not enough sample and useful results cannot be concluded; 

however, if Psize is too high then searching computation time will exceed its limit. In this 

research, Psize = 50 (Pm value is generally between 10 and 100, Goldberg (1989)) is 

considered and Tmax= 500. 

First, the model initiates the GAs searching and optimizing operation after GA parameters 

(defined above) are defined by the user. The machine design development parameters 

include: (1) upper and lower bonds (constraints) of fitness functions; (2) design 

development completion desired duration; (3) design development quality and cost cut-

threshold values; and (4) available DFX techniques for each design criteria and their 

expected impact on the design development quality, time, and cost. Note that the string size 

is equal to the total number of design criteria included in the analysis of MDFX. After that, 

the GA algorithm starts in generating random solutions DFXs=1 to S DFXs for the initial 

population PP1 in the first generation (gs=1). These solutions represent an initial MDFX 

utilization set that can be allocated to each design criterion in the PDS. Then this set is 

further evolved to output the optimal MDFX utilization set for each design criterion in the 

PDS where the trade-off among MDFX cost, time, and quality metrics are optimized. 

5.4.2 Phase 2: Multi-objective optimization fitness function 

In this section, the model development stage is explained to formulate an intelligent, 

automated, and robust MDFX optimization trade-off model that supports advanced cost-
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(1) DFX method (m), which indicates the different DFX techniques available; (2) 

designers’ allocation (d), which represents designers’ team based on their relative technical 

expertise per DFX; and (3) design time threshold (Tth), which represents allowable design 

time per DFX as shown in Figure 5.10. The proposed model mixes these decision variables 

(m, d, Tth) into a prime decision variable referred to as MDFX utilization (n), as illustrated 

in Figure 5.10. However, designers are faced by two major obstacles if they want to utilize 

this model in searching for the optimal MDFX utilization set which are: (1) how much is 

the computational time for this model; (2) the vast possible sets of MDFX make the 

solution space large (Nl) to search in. Thus, to overcome these challenges, the model 

dictates three objective functions to execute the evaluation process of MDFX trade-off 

metrics in machine design development. In this research, the formulation of a simplified 

design development total cost (TCDD) is proposed to optimize the MDFX decision-support 

hybrid model, which considers only the design costs and neglects some variables of the 

economic analysis model as shown later. The main purpose here is to effectively evaluate 

the cost, time, and quality metrics of each feasible solution DFXs in generation gs in order 

to determine the fitness of the MDFX solution. This fitness determines the chromosome 

likelihood of survival and probability of reproduction for each solution in following 

generations. The fitness functions (C, T, Q) for each solution is described below.  

Step 1: Calculate the total design development cost (𝑇𝐶𝑔𝑠
𝑠 ) for solution (s) in generation set 

(gs) where gs = generation set from gs=1 to Gs, which consists of design costs as shown in 

Equation (5.4.2.1). 

Minimize total design development cost: 
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𝑇𝐶𝐷𝐷 = ∑ 𝑇𝐶𝑖
𝑚𝑚

𝑚=0 = [∑ (𝐷𝑅𝑖
𝑚 𝑥 𝑇𝑅𝑖

𝑚𝑙
𝑖=1 )  −  (𝑇𝑅𝑖

𝑚 −  𝑇𝐷𝑡ℎ)𝐶𝐼  𝑖𝑓 (𝑇𝑅𝑖
𝑚 <

𝑇𝐷𝑡ℎ) 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 (𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒)  + (𝑇𝑅𝑖
𝑚 −  𝑇𝐷𝑡ℎ)𝐶𝑃 𝑖𝑓 (𝑇𝑅𝑖

𝑚 >

𝑇𝐷𝑡ℎ)𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 (𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠)] (5.4.2.1) 

where 𝑇𝑅𝑖
𝑚= required development time in days of a design criterion (i) using DFX method 

(m); 𝐷𝑅𝑖
𝑚= daily cost rate for designer in $/day of DFX method for a design criterion. Also, 

𝑇𝑅𝑖
𝑚 is the total development time of a design criterion under DFX method while TDth, CI, 

and CP, are denoted as the total design time threshold, incentive value, and penalty value, 

respectively and they are user-defined constants. Therefore, to determine if the selected 

chromosome is the best fit, it fitness value must be smaller then other chromosomes in the 

same set where the smaller value represent less design development total cost. 

Step 2: Calculate design development time (𝑇𝑇𝑔𝑠
𝑠 ) for solution (s) in generation set (gs), 

which is the summation of the total design development time of all MDFX assigned to the 

generated solution as represented in Equation (5.4.2.2). 

Minimize total design development time: 

𝑇𝑇𝐷𝐷 = ∑ 𝑇𝑇𝑖
𝑚𝑙

𝑖=1  (5.4.2.2) 

where 𝑇𝑇𝑖
𝑚=duration of design criterion (i) using DFX method (m). 

Step 3: Calculate design development quality (𝑇𝑄𝑔𝑠
𝑠 ) for solution (s) in generation set (gs) 

as shown in Equation (5.4.2.3) using the weighted approach method. 

Maximize total design development quality: 
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𝑇𝑄𝐷𝐷 = ∑ 𝑇𝑄𝑖
𝑚𝑚

𝑚=1 = ∑ 𝑤𝑣𝑖
𝑙
𝑖=1 ∑ max

𝑒
𝑤𝑚,𝑒

𝑚
𝑚=1 𝑥 𝐴𝑄𝑚,𝑒 =

∑ 𝑤𝑒 𝑥 𝑤𝑖,𝑒  ∑ max
𝑒

𝑤𝑚,𝑒
𝑚
𝑚=1 𝑥 𝐴𝑄𝑚,𝑒 𝑒

𝑒=1  (5.4.2.3) 

where we =weight of design expert (e) based on the number of years of technical experience 

as shown in Table 5.1, wi,e=weight of design criterion (i) by design expert compared to 

other design criterion in the PDS, wvi =product weighted value of we and wi,e , wm,e=max 

weight of DFX method (m) by design expert relative to other DFXs, and AQm,e = design 

experts averaged quality percentage with respect to DFX method relative to its 

effectiveness in reducing machine design lifecycle when using MDFX utilization (n).  

Table 5.1 Design expert's weight (we) 

Experts Weight (0-1) Expert Design Experience (Years) 
0.2 5 ≤ Y ≤ 10 
0.3 10 ≤ Y ≤ 15 
0.5 15 ≤ Y ≤ 20 

 

5.4.3 Phase 3: MDFX population generation based on Pareto-GA concept 

Based on the hybridization between GAs and Pareto optimality, the model can solve and 

optimize the C, T, and Q performance metrics of MDFX trade-off analysis. Consider that 

many feasible solutions points are located and plotted graphically on the visualization 

graph to form the final trade-off curve as shown in Figure 5.11. After plotting the initial 

versus the final trade-off curve, the algorithm can calculate using Equations (5.4.3.1, 

5.4.3.2, and 5.4.3.3) the following: minimum distance (dmin) between the curve segments 

and parent points, the fitness values (fi), and the selection probability (Ps) for each (x,y,z) 

point in the parent population set (Goldberg, 1989). 

𝑓𝑖 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛  𝑃𝑠 =
𝑓𝑖

∑ 𝑓𝑖
𝑛
𝑖=1

  (5.4.3.1) 
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Whereas, the time fitness function must be constrained over the design development time 

target (𝑇𝐷𝑡) of the designer's decision and the design development time threshold (𝑇𝐷𝑡ℎ) 

determined by the system, as shown in Equation (5.4.3.5). 

𝑇𝐷𝑡ℎ ≤ 𝑇𝑇𝐷𝐷 ≤ 𝑇𝐷𝑡 (5.4.3.5) 

While, the quality fitness function must be constrained over the design development 

averaged quality (𝐴𝑄𝑚,𝑒) of the designer's decision and the design development quality 

threshold (𝑄𝑡ℎ) determined by the system, as shown in Equation (5.4.3.6). 

𝐴𝑄𝑚,𝑒 ≤ 𝑇𝑄𝐷𝐷 ≤ 𝑄𝑡ℎ (5.4.3.6) 

There are three types of the population that are considered in each generation: (1) parent 

population; (2) child population; and (3) combined population. For each generation set (gs), 

two-parent populations (PPgs) are mated together to produce a child population (CPgs). 

Child population will then present new solutions set by reordering and randomly allocating 

fractions of the generated solutions from the parent population. After that, the newly 

formed child population is mitigated with the parent population to form an expanded 

solution set for current generation referred to as combined population (Ngs). The traits of 

the combined population are compared, and a list of best-fit solutions is generated and 

forwarded to the next iteration as a parent population (Laumanns et al., 2002). 

The computational procedure of GA can be described in six steps (Mitchell, 1998; El-

Rayes and Kandil, 2005).  

Step 1: Determine the Pareto optimal rank and calculate the crowding distance for each 

solution (DFXs =1 to DFXs S) by grouping and ranking the solutions from the parent 
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These solutions are passed on to the consecutive generation so that the loss of their good 

qualities can be avoided (Laumanns et al., 2002). 

Step 4: Repeat Step 2 by determining the Pareto optimal rank and calculating the crowding 

distance for each solution (DFXs =1 to 2S DFXs) of the latest combined population.  

Step 5: Using the niched comparison rule, the algorithm sorts the new generated combined 

population. This rule helps in selecting the solutions that have a higher Pareto optimal rank 

and in sorting up the solutions with the same rank. Finally, it selects the solutions with 

larger crowding distances. 

Step 6: Retain the top DFXs solutions to form the new parent population (PPgs+1) of the 

next generation then repeat Step 1. 

This iterative computation of the second and third steps of the algorithm progress until the 

algorithm reaches its termination set point. In this research, the termination set point is the 

max predetermined number of generations. 

5.4.4 Phase 4: MDFX solutions economic analysis 

In this research, the economic analysis model is developed based on MDFX trade-off total 

impact valuation as implemented in feasibility assessments and selection (Bendeković, 

1993). The economic analysis of the generated solutions provides the designer by the 

MDFX aggregated metrics where all economic variables are considered in the decision-

making process over the total lifecycle performance of the machine and where designer 

subjective judgment is eliminated. Therefore, the system adopts the NPV/IRR concept 
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developed by Vucina et al. (2010) to highlight the economic value of implementing MDFX 

in the machine design development.  

The design development net profit or loss (Ps) of each solution for a successive time period 

(k) can be expressed as in Equation (5.4.4.1). 

𝑃𝑠(𝑘) = 𝐼(𝑘) − 𝐴(𝑘) − 𝑇𝐶𝑠(𝑘) − 𝐹(𝑘) − 𝑇(𝑘)  (5.4.4.1) 

where I can be denoted as the design initial total allocated budget, A the corresponding 

amortization rate, TCs the total cost of design development solution, F the design financial 

expenses, and T the relatives taxes. The design development net economic flows (Es), 

which presents an integral measure of the design decision economic value relative to the 

solution, can be calculated by using Equation (5.4.4.2). 

𝐸𝑠(𝑘) = 𝐼(𝑘) − 𝐼𝑁(𝑘) − 𝑇𝐶𝑠(𝑘) − 𝑇(𝑘) (5.4.4.2) 

where IN is the incremental investment into design activities. The net economic flows are 

related to the net financial (profit or loss) flows excluding the financial properties (such as 

F) and some net economic flow properties that may have a neutral impact in altering the 

economic potential of a specific solution. Alternatively, Equation (5.4.4.1 and 5.4.4.2) can 

be combined in Equation (5.4.4.3) to facilitate the economic analysis in this study. 

𝐸𝑠(𝑘) = 𝑃𝑠(𝑘) + 𝐴(𝑘) − 𝐼𝑁(𝑘) (5.4.4.3) 

The NPV computation rule is illustrated in Equation (5.4.4.4). 

𝑁𝑃𝑉 = ∑
𝐸𝑠(𝑘)

(1+𝑅)𝑘
𝑘
𝑘=𝑜   (5.4.4.4) 
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where R denoted as the discount rate and k the number of successive time periods. The IRR 

indicator is the rate of discounting (R*) that if applied, it turns the NPV value (Equation 

(5.4.4.4) to zero, which is computed iteratively in Equation (5.4.4.5). 

𝐼𝑅𝑅 = 𝑅∗  ⇒ 𝑁𝑃𝑉(𝑅∗) = ∑
𝐸𝑠(𝑘)

(1+𝑅∗)𝑘
𝑛
𝑘=𝑜 = 0 (5.4.4.5) 

The NPV interpretation is as whether the MDFX solution is good or bad to be applied in 

the machine design development. If NPV>0 then the cost of design spent in the early stages 

of the machine development will return its value in the future at later stages; therefore, it 

is a good solution. Contrary to NPV>0, NPV<0 is considered a bad solution and designers 

should be aware of implementing it since it will create conflicts and negative profit in the 

future. While NPV=0 can be interpreted as there is no difference in the value of the design 

cost spent now and the profit generated later.  

The proposed hybrid decision support model uses the economic analysis as the last 

checkpoint for the generated solutions, Equations (5.4.4.4 and 5.4.4.5) imply that the 

design decision model depends on several parameters other than technical design variables. 

This can be related to the interactive relation between the designer and the financial 

environment (e.g., design development lifespan, discounting rate, taxation schemes, etc.)  

that can affect the optimization model. In general, to apply the NPV/IRR as a cost indicator 

towards the economic analysis of design decision, a unified cost objective function must 

be derived taking into consideration all the economic factors. Where the designer can 

oversee if the decision is economically trustworthy by measuring its optimality value with 

reference to C, T, and Q objective functions. Therefore, by combining Equations (5.4.3. 
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and 5.4.4.4), a resultant NPV/IRR objective function is formulated as shown in Equation 

(5.4.4.6). 

𝑚𝑖𝑛{𝑁𝑃𝑉𝑇𝐶𝑠
} = 𝑚𝑖𝑛 {−𝐼 + 𝐼𝑁(0) + ∑

𝑇𝐶𝐷𝐷

(1+𝑅)𝑘
𝑘
𝑘=1 } (5.4.4.6) 

The main assumptions in Equation (5.4.4.6) for this research are as follows: 

(1) no relative taxes and amortization terms are considered  

(2) I(k)= the initial budget allocated for the design development   

(3) IN(0)=investment, typically cost of design development usually between 0.05 and 0.2 

from the solution total design cost. 

where TCs=total cost of design development solution. 

5.5 Case Study 

A preliminary analysis is performed to select and input the GA parameters values as shown 

in Table 5.1. Accordingly, a population size of 50 and a max number of generations of 500 

are found suitable for this case study in order to better compromise between computational 

time and solutions diversity from the literature study. The proposed optimization model is 

implemented in the conceptual design of the mass timber automated processing center 

machine, as shown in Figure 5.13, to illustrate and demonstrate its capabilities and 

accuracy. Here, the designer main objective, before starting the machine conceptual design, 

is to select the best fit MDFX techniques that can be utilized against the design criteria 

with minimum design development cost and time but with maximum quality. For this 

purpose, twenty design experts are interviewed, and their results are grouped based on their 

number of years of design experience in to three groups A, B, and C. In each group, the 
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sets and maintain the balance between MDFX trade-off performance metrics (cost, time, 

and quality). The daily incentive amount and the daily penalties amount of this case study 

are considered to be 100 $/day and 50 $/day respectively. While the expected lifespan (k) 

of the design decisions is 5 years, the design investment factor is 0.05, and the discounting 

rate is 0.2. The initial budget for the design development (I) was estimated to be $7000. 

The proposed GA-Pareto procedure is coded in the macro language of Solver, which is a 

Microsoft® Excel add-in program, that utilizes the evolutionary solving method analysis. 

The program is designed to find an optimal (maximum or minimum) value for multiple 

objective formulas or fitness functions subject to its constraints. The program adjusts the 

values in the decision variable cells to satisfy the limits on cost, time, and quality threshold 

constraints. After that, it produces the result that the designer requires for the objective 

function to make an informative decision. The use of Solver facilitates the implementation 

process since the search and optimization engine GA algorithms are built-in functions and 

are not programmed independently. The initial matrix for MDFX utilization options is 

created as shown in Table 5.1. The matrix first results regarding DFX trade-off 

performance metrics was listed in Table 5.1 where total design development cost, time, 

and quality for each DFX utilization option is calculated with relative to its design criterion. 

After running the hybrid engine, the search results come back as shown in Table 5.1 where 

the MDFX utilization solution was {1,6,5,4,3,2}. Meaning that if this solution was 

implemented by the designer in the machine design development towards the design 

criteria set, the cost of the design development will be $6,900 with a duration of 30 days 

and quality of 61.73 %.  However, the solution may not be the optimal one on the lifespan 

of the machine. Therefore, the solution is analyzed from an economic perspective based on 
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NPV/IRR financial concept to establish a money value understanding protocol to the 

designer to implement in the MDFX decision-making process as shown in Table 5.1. The 

IRR best compromise value is when NPV is equal to 0, for the first MDFX utilization 

option this was achieved at 0.7255%. The solution with the least NPV is the best solution 

that the designer should consider when maximizing the design decision value over the 

machine design development lifespan. 

Table 5.2 GA case study initial parameters 

Parameter Value 
r 5 
Pc 0.5 
Pm 0.02 
RN 0,1 
Psize 50 
Tmax 500 
LCmin $6,000 
LCmax $10,000 
TDt 28 days 

 

Table 5.3 Design experts’ details 

Design Experts 
Group Data 

Design Experts 
Group A 

Design Experts 
Group B 

Design Experts 
Group C 

Weight of design 
expert (we) 

0.5 0.2 0.3 

Designer daily cost 
rate in $/day (DR) 

200 300 400 

Required Design 
Time (RDT) 

5 10 15 

 

Table 5.4 Design criteria weights with respect to each design expert 

 Design criterion weight with respect to each design 
expert Wi,e 

Weighted 
Value 
(wvi) 

We x Wi,e 
Design 

Creation (i) 
Design Experts 

Group A 
Design Experts 

Group B 
Design Experts 

Group C 
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1 0.4 0.2 0.4 0.340 
2 0.3 0.4 0.4 0.350 
3 0.2 0.4 0.4 0.300 
4 0.65 0.4 0.4 0.525 
5 0.15 0.4 0.4 0.275 
6 0.05 0.4 0.4 0.225 

 

Table 5.5 Design for methods parent chromosomes 

Pa
re

nt
 

C
hr

om
os

om
es

 # Design for method (m) 
1  Cost 
2 Assembly 
3 Manufacturing 
4 Maintainability 
5 Quality 
6 Robustness 

 

Table 5.6 Design criteria parent chromosomes 

Pa
re

nt
 

C
hr

om
os

om
es

 # Design Criteria (i) 
1 Product Cost 
2 Functionality 
3 Robustness 
4 Assembly 
5 Modularity 
6 Reliability 

 

Table 5.7 DFX utilization options 

 Design 
Experts 

Group -A 

Design  
Experts 

Group -B 

Design 
Experts 

Group -C 

 

i m d Effort 
(%) 

TDth Qth TRDT DR 
$/day 

wm,e Qm,e wm,e Qm,e wm,e Qm,e wvi twm,e AQm,e 
 

1 1 A  100 8 95 5 $200  0.30 85 0.15 95 0.11 97 0.34 0.30 92 
2 B  100 10 90 10 $300  0.15 90 0.20 85 0.28 95 0.28 90 
3 C  100 12 85 15 $400  0.27 90 0.21 80 0.05 85 0.27 85 
4 A,B  50,50 14 80 7.5 $250  0.12 80 0.17 85 0.08 75 0.18 80 
5 A,C  50,50 16 75 12.5 $300  0.05 70 0.12 80 0.20 75 0.20 75 
6 B,C  50,50 18 70 15 $350  0.11 80 0.14 70 0.28 65 0.28 72 

2 1 B  100 10 90 10 $300  0.15 90 0.20 85 0.28 95 0.35 0.28 90 
2 C  100 12 85 15 $400  0.27 90 0.21 80 0.05 85 0.27 85 
3 A,B  50,50 14 80 7.5 $250  0.12 80 0.17 85 0.08 75 0.18 80 
4 A,C  50,50 16 75 12.5 $300  0.05 70 0.12 80 0.20 75 0.20 75 
5 B,C  50,50 18 70 15 $350  0.11 80 0.14 70 0.28 65 0.28 72 
6 A 100 8 95 5 $200  0.30 85 0.15 95 0.11 97 0.30 92 
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3 1 C  100 12 85 15 $400  0.33 80 0.24 85 0.07 75 0.30 0.33 80 
2 A,B  50,50 14 80 7.5 $250  0.18 70 0.20 80 0.10 75 0.21 75 
3 A,C  50,50 16 75 12.5 $300  0.11 80 0.15 70 0.22 65 0.22 72 
4 B,C  50,50 18 70 15 $350  0.17 85 0.17 95 0.30 97 0.30 92 
6 A  100 8 95 5 $200  0.21 90 0.23 80 0.30 85 0.30 85 

4 1 A,B  50,50 14 80 7.5 $250  0.18 70 0.20 80 0.10 75 0.52 0.21 75 
2 A,C  50,50 16 75 12.5 $300  0.11 80 0.15 70 0.22 65 0.22 72 
3 B,C  50,50 18 70 15 $350  0.17 85 0.17 95 0.30 97 0.30 92 
5 A 100 8 95 5 $200  0.21 90 0.23 80 0.30 85 0.30 85 
6 B  100 10 90 10 $300  0.33 80 0.24 85 0.07 75 0.33 80 

5 1 A,C  50,50 16 75 12.5 $300  0.15 80 0.22 70 0.28 65 0.27 0.28 72 
2 B,C  50,50 18 70 15 $350  0.21 85 0.24 95 0.36 97 0.36 92 
3 A 100 8 95 5 $200  0.40 85 0.25 95 0.19 97 0.41 92 
6 B 100 10 90 10 $300  0.22 70 0.27 80 0.16 75 0.28 75 

6 1 B,C  50,50 18 70 15 $350  0.19 85 0.20 95 0.35 97 0.22 0.36 92 
3 A 100 8 95 5 $200  0.23 90 0.26 80 0.35 85 0.36 85 
4 B 100 10 90 10 $300  0.35 80 0.27 85 0.12 75 0.36 80 
5 C  100 12 85 15 $400  0.20 70 0.24 80 0.15 75 0.24 75 

 

Table 5.8 DFX trade-off metrics values 

i m 𝑻𝑪𝒊
𝒎 

 ($) 
𝑻𝑻𝒊

𝒎 
(days) 

𝑻𝑸𝒊
𝒎 

(%) 
1 1  $1,150  5 9.42 

2  $3,000  10 8.57 
3  $6,300  15 7.80 
4  $2,200  7.5 4.76 
5  $3,925  12.5 5.10 
6  $5,400  15 6.82 

2 1  $3,000  10 8.57 
2  $6,300  15 7.80 
3  $2,200  7.5 4.76 
4  $3,925  12.5 5.10 
5  $5,400  15 6.82 
6  $1,150  5 9.42 

3 1  $6,300  15 8.98 
2  $2,200  7.5 5.23 
3  $3,925  12.5 5.41 
4  $5,400  15 9.48 
6  $1,150  5 8.73 

4 1  $2,200  7.5 5.23 
2  $3,925  12.5 5.41 
3  $5,400  15 9.48 
5  $1,150  5 8.73 
6  $3,000  10 8.98 

5 1  $3,925  12.5 6.88 
2  $5,400  15 11.38 
3  $1,150  5 12.71 
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6  $3,000  10 7.08 
6 1  $5,400  15 11.22 

3  $1,150  5 10.33 
4  $3,000  10 9.72 
5  $6,300  15 6.22 

 

Table 5.9 DFX selection sample based on fitness functions 

i Selected 
m 

Min TCDD  
($) 

Min TTDD  
(days) 

Max TQDD 
(%) 

1 1 $1,150 5 9.42 
2 6  $1,150  5 9.42 
3 6 $1,150 5 9.48 
4 5 $1,150 5 9.48 
5 3 $1,150 5 12.71 
6 3 $1,150 5 11.22 

∑Trade-off Metrics  $6,900 30 61.73 
 

Table 5.10 Solutions NPV and IRR economic values 

IRR Solutions NPV  
1 2 3 4 5 6 

0%  $245.00   $303.86   $2,807.27   $1,403.56   $824.28   $4,517.76  
5% -$1,248.67  -$1,201.94   $785.35  -$328.96  -$788.82   $2,143.20  
10% -$2,370.64  -$2,333.03  -$733.42  -$1,630.35  -$2,000.50   $359.54  
15% -$3,224.48  -$3,193.81  -$1,889.23  -$2,620.73  -$2,922.60  -$997.86  
20% -$3,882.04  -$3,856.71  -$2,779.35  -$3,383.45  -$3,632.75  -$2,043.22  
25% -$4,394.01  -$4,372.84  -$3,472.37  -$3,977.28  -$4,185.64  -$2,857.12  
30% -$4,796.63  -$4,778.73  -$4,017.38  -$4,444.28  -$4,620.46  -$3,497.18  
35% -$5,116.21  -$5,100.90  -$4,449.98  -$4,814.97  -$4,965.59  -$4,005.23  
40% -$5,372.05  -$5,358.83  -$4,796.31  -$5,111.72  -$5,241.89  -$4,411.96  
45% -$5,578.51  -$5,566.96  -$5,075.79  -$5,351.20  -$5,464.86  -$4,740.19  
50% -$5,746.36  -$5,736.17  -$5,302.99  -$5,545.89  -$5,646.12  -$5,007.02  
55% -$5,883.76  -$5,874.69  -$5,488.99  -$5,705.26  -$5,794.51  -$5,225.45  
60% -$5,996.96  -$5,988.82  -$5,642.23  -$5,836.57  -$5,916.77  -$5,405.42  
65% -$6,090.80  -$6,083.42  -$5,769.26  -$5,945.41  -$6,018.11  -$5,554.60  
70% -$6,169.04  -$6,162.28  -$5,875.16  -$6,036.15  -$6,102.59  -$5,678.97  
75% -$6,234.60  -$6,228.39  -$5,963.91  -$6,112.21  -$6,173.41  -$5,783.21  
80% -$6,289.84  -$6,284.07  -$6,038.68  -$6,176.27  -$6,233.06  -$5,871.02  
85% -$6,336.59  -$6,331.20  -$6,101.96  -$6,230.50  -$6,283.54  -$5,945.34  
90% -$6,376.34  -$6,371.27  -$6,155.77  -$6,276.60  -$6,326.47  -$6,008.53  
95% -$6,410.28  -$6,405.49  -$6,201.71  -$6,315.97  -$6,363.12  -$6,062.48  

100% -$6,439.38  -$6,434.82  -$6,241.10  -$6,349.72  -$6,394.55  -$6,108.74  
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5.6 Results and Discussions 

The developed MDFX hybrid model was implemented in the mass timber automated 

processing center and was used to navigate and search the possible solution large space. 

By adopting the Pareto optimality concept, the model was successful in reducing 

significantly the solutions large space and this was achieved by precluding the Pareto 

dominated solutions in the successive iterations of the GA parent population. The output 

of the hybrid engine generates 310 Pareto optimal non-dominated solutions for this case 

study where each solution signifies a possible optimal MDFX utilization solution for each 

of the six-design criterion in the PDS set. Accordingly, it presents to the designer a unique 

combination and optimal allocation of trade-off performance metrics. Table 5.1  shows a 

sample result of these solutions and summarize their cost, time, and quality impact on 

machine design development. It is noticed from Table 5.1 that solutions #1,2,3,4, and 5 

could be considered as optimal solutions for this case study since their total design cost 

$6,900, $6,956, $9,340, $8,003, and $7,452 respectively, is between the lower and upper 

defined cost constraints. But, if the designer wants to emphasize on the design target time 

constraint, which is defined as 28 days or less, then the possible solutions, in this case, will 

be #2, 3, and 4. Finally, by choosing the highest quality percentage between the remaining 

solutions, the designer concludes that solution #3 is the optimal solution with the quality 

of 77%.  

Table 5.11 MDFX pareto optimal utilization nondominated solutions with their trade-off 
metrics 

Solution (s) MDFX utilization 
options (n) 

TCs  
($) 

TTs  
(days) 

 TQs 
(%) 

1 {1,6,6,5,3,3}  $6,900.00  30.00 61.73 
2 {1,5,3,4,2,6}  $6,956.06  27.58 60.88 
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3 {2,3,1,2,3,4}  $9,340.26  27.82 77.17 
4 {2,5,1,3,2,1}  $8,003.39  26.37 66.02 
5 {1,1,3,2,2,1}  $7,451.70  28.19 63.88 
6 {1,4,2,5,1,3} $10,969.30  25.16 81.46 

 

 

Figure 5.14 MDFX solutions cost-time-quality trade-off surface 

 

The generated final list of Pareto optimal non-dominated solutions is plotted on a fitted 

visualizing surface to present the relation between MDFX trade-off performance metrics 

as illustrated in Figure 5.18. This graphical tool can be used by designers to visualize and 

evaluate the impact of various MDFX utilization solutions on machine design 

development. Besides, these trade-off performance metrics can also be represented in 2D 

slices where the trade-offs performance metrics between two design development 

objectives at a time are illustrated as shown in Figure 5.15, Figure 5.16, and Figure 5.17. 
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Figure 5.15 Cost-time DFX trade-off analysis with respect to each design criterion 

 

Figure 5.16 Cost-quality DFX trade-off analysis with respect to each design criterion 
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Figure 5.17 Time-quality DFX trade-off analysis with respect to each design criterion 

From the previous discussion, the optimal solution was #3 but if the NPV/IRR economic 

model results were analyzed, then the conclusion will be altered. As observed in Figure 

5.18, solution #2 has the second least NPV/IRR ratio from start to finish with values of 

$303 and -$6435 respectively. The optimum solution, if only the economic analysis results 

were taken into consideration during the decision-making process, will be solution #1. 

However, if cost, time, and quality constraints are applied, then this solution will change 

from #1 to #2 where it satisfies the optimization model objective functions, constraints, 

and least NPV/IRR ratio. 
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5.7 Conclusion 

A multi-objective optimization hybrid model was developed in this research to support the 

cost-time-quality trade-off analysis of MDFX. It is designed and structured to search for 

optimal MDFX utilization solutions to minimize machine design development cost and 

time while maximizing its quality. The main process of proposed model can be broken-

down in to four parts: (1) GA algorithm model formation part where all primary decision 

variables and  objective functions are incorporated; (2) multi-objective optimization part 

where MDFX performance metrics are optimized based on the fitness functions; (3) 

population generation based on Pareto-GA concept part that implements a multi-objective 

GA parameters for MDFX utilization solutions to facilitate the simultaneous trade-off 

metrics optimization operation of MDFX; (4) economic analysis part to assess the 

generated solutions from a financial perspective. A real machine design development case 

study is presented and analyzed to illustrate the effectiveness of the hybrid model and 

demonstrate its capabilities in developing optimal trade-offs among MDFX cost, time, and 

quality with some limitation in handing higher-dimensional problems. The proposed model 

proved to be useful to designers in machine design development activities. The economic 

analysis model leads to couple the engineering–financial fields  and decision-making 

process. This is also adaptable with the optimization decision support system and the 

results interpretation are made based on the integral economic perspective of design for 

excellence and Pareto optimality; therefore, the application of NPV/IRR concept as best-

compromise analytical formulations can be shown as pragmatic measures in this problem. 

Also, to the proposed hybrid approach for solving MDFX optimization problem, there are 

two important characteristic features need to be highlighted. First, the introduction of a 
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new chromosome’s structure which can represent all possible non-dominated feasible 

solutions. Also, in order to preserve the feasibility and traits of the chromosome, a criterion 

was developed. Based on this criterion, the GAs crossover and mutation operations were 

modified and implemented to generate a higher set of feasible chromosomes. Secondly, the 

hybrid engine is an iterative multi-objective GA algorithm with the ability to avoid an 

overwhelming number of solutions by utilizing the Pareto optimality concept which can 

retain the best fit solutions and update them iteratively during the searching operation. 

Moreover, to help the designer extracts the best compromise solution from a finite set of 

alternatives an economic model is adopted featuring NPV/IRR financial concepts in the 

decision-making process. 

The superiority and applicability of the hybrid GA-Pareto concept in machine design 

development has been proven in this research. Furthermore, the implementation of GA-

Pareto model in integration with Microsoft® Excel Solver Add-in program has been 

proven to be effective to be used in the machine design development problem and in 

decision-making process. While large MDFX utilization problem still require large 

computational time, series and continuous packages of improvements in the GA procedure. 

The developed model provides a practical decision-making tool which utilized by designers 

to implement MDFX in machine design development. 
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Chapter 6 : Conclusion 

6.1 General Conclusion 

Engineering design is an iterative process of solution generation and evaluation. It requires 

a designer to take a forward-thinking and a look ahead approach when finalizing a solution. 

In a dynamic environment, a concurrent application of MDFX techniques during the design 

process can be organized into multiple stages in which both evaluation and decision are 

needed. The main theme of this research was to present the need for a tool that can reliably 

estimate and verify the time/benefits of applying MDFX in a harmonized way in machine 

design. As a result, a decision support tool that can aid the designer in the decision-making 

process when MDFX are utilized will be required.  

In this research, a collaborative DFX scheme was developed based on a comprehensive 

literature review of various DFX tools in the broad area of machine development. The 

scheme proposed contains thirty-six DFX techniques where their links and 

interdependencies across five machine design phases are revealed. Moreover, the 

quantitative research on the maturity of DFXs across the years shows that the combined 

relative importance percentage allocated with top-ranked DFX techniques which signal an 

increased level of preparedness of these most effective, efficient, and versatile DFX tools 

for machine design deployment. Also, in this research, a design decision simulation tool 

was developed to enable designers to foresee and explore lifecycle consequences during 

the machine design. It provides a structured workflow specifying how and when MDFX 

techniques can be applied with the ability to quantify the arising conflict that may occur 

between them. The tool’s fundamental core is based on the information contained within 

the DFX guidelines, which may be classified as either a design strategy or rule, so their 
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interactions can be examined explicitly. Thus, the generation of a ranked list can be 

integrated in a time-effective and strategic manner, thereby shrinking the machine design 

time. 

Furthermore, the research was directed to develop a decisive decision support system for 

integrating MDFX with PDS. This was achieved by a hybrid FEAM-TOPSIS model 

embedded with trade-off analysis model using conflict resolution, TFNs, and ranking 

methods to evaluate MDFX combinations. The proposed MDFX model based on trade-off 

analysis ensures the integration of design experts’ assessment and evaluation in a decision-

making system. Cost and time are utilized to compare MDFX alternatives so that lifecycle 

cost can be reduced. The weighing of the financial and economic impact of all MDFX 

selection design decisions provides a benchmark that can assist the designer in making 

decisions to best benefit the machine development. 

Also, the research targets the development of a multi-objective optimization model to 

support the cost-time-quality trade-off analysis of MDFX. It is designed and structured to 

search for optimal MDFX utilization solutions to minimize machine design development 

cost and time while maximizing its quality. The optimization model is developed by 

utilizing the GAs-Pareto optimality methods. Also, the hybrid model was integrated with 

the economic analysis model; thus, leading to the coupling of the engineering–financial 

fields and the decision-making process. This is also adaptable with the application of 

NPV/IRR concept as best-compromise analytical formulations can be shown as pragmatic 

measures to help the designer extracts the best compromise solution from a finite set of 
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alternatives. The developed models provide practical decision-making tools which can be 

utilized by designers to implement MDFX in machine design development. 

6.2 Research Contributions 

The contributions of this research can be summarized as follows: 

(1) Development of a structured DFX scheme that can be applied in Stuart Pugh model. 

This scheme can aid the designer in selecting and allocating DFX techniques for 

different phases of machine design development (Objective 1). 

(2) Design decision simulation tool that can reliably estimate and verify the 

time/benefits of the application of MDFX in a harmonized way in machine design. 

Also, it resolves the conflict arising between MDFX by analyzing their 

interdependencies and simulating their interactions. It enables designers to foresee 

and explore lifecycle consequences during the machine design and serve as a 

strategic time-effective tool for the application of MDFX (Objective 2). 

(3) A hybrid decision support model that features the integration of MDFX with PDS, 

evaluate and rank MDFX alternatives with interrelated design criteria, and achieve 

the desired reduction of design development cost and time over the whole machine 

lifecycle (Objective 3). 

(4) A hybrid multi-objective optimization model that can search for optimal MDFX 

utilization plans to minimize machine design development time and cost while 

maximizing its quality (Objective 4). 
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6.3 Research Limitations 

This research is subject to the following limitations: 

(1) The functional scheme is limited to thirty-six DFX techniques distributed on the 

machine lifecycle phases related to Stuart Pugh model and subject to the proposed 

relative weighting system. 

(2) The methodology behind the MDFX conflict resolution is only focused on the 

conceptual and detailed design development phases of the machine with a maximum 

number of DFX techniques equal to 15. Also, the analysis function in the model is 

limited to four DFX tools and a maximum number of ten strategies per phase. 

(3) The hybrid decision support model is relatively depending on the design experts’ 

values and assessment criteria which can have some degree subjectivity, bias, 

imprecision and uncertainty. Also, the structure of the problem’s hierarchy and the 

design attributes are closely inter-related.  

(4) In the hybrid multi-objective optimization model, the proposed algorithm has high 

tendency in performing a random search which requires longer computational 

processing time for large MDFX optimization problems. One solution to that is to 

code the search GA-Pareto procedure using a faster high-performance programming 

language other than the VBA programming language (e.g., Java, Python, C++, etc.).  

(5)  For both hybrid models, the analyzed sample of the data is limited to 20 design 

experts and the fuzzy ranking system. 
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6.4 Future Research 

Future research can be oriented and focused on the upgradable options for these models 

and the possible extensions to this study as represented in Figure 6.1, including the 

following: 

(1) Development efforts should be focused on bridging both scheme normative issues, 

concerned with the design decision-making theoretical logic, and descriptive 

issues, concerned with its practicalities together. Also, future research should be 

directed toward validating the proposed DFX scheme in other engineering domains, 

to widen and promote the applicability of DFX techniques. 

(2) Extend the applicability of the decision tool in the DFX trade-off analysis with 

respect to cost and quality to provide a better understanding of client needs while 

controlling the machine lifecycle. Moreover, the future development of this 

methodology will be required to cover the other phases of the machine lifecycle 

(e.g., embodiment design, manufacturing, and sales).  

(3) Explore how to reform the gaps between each criterion and its relative MDFX 

combination by applying the Interactive Network Relationship Map (INRM) 

methodology and recording the relationships complexity factor. The INRM could 

be used not only to search for the most crucial criterion for the single DFX, but also 

to calculate and asses the relationships and intercorrelation variables between them. 

The hybrid decision support model is relatively depending on the design experts’ 

values and assessment criteria which can have some degree of subjectivity, bias, 
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imprecision and uncertainty. Moreover, the structure of the problem’s hierarchy 

and the design attributes are closely inter-related. 

(4) The Integration of the hybrid model with a design cost estimating system with 

historical database could provide a more realistic market evaluation of the cost, 

time, and quality associated with each DFX method. Also, the model can be altered 

to implement the dependency feature that enables the user to activate the crushing 

decision option to execute the design development in a faster time. Moreover, some 

formulation rectifications could be done on the basic GAs algorithm to boost up the 

computational procedure execution searching time in similar optimization 

problems. 

(5) Development of a web-based centralized intelligent automated computerized 

design development decision-making environment for MDFX optimization 

problems to support designers during the conceptual and detailed machine design 

stages and by taking the machine lifecycle into consideration. 

(6) For both hybrid models, a larger sample of data (> 20) must be collected to 

accurately verify the model effectiveness and these models must be extended to 

target different machines for different sectors other than prefab construction 

machines. Design an expert system database to capture the learned lessons from 

previous projects. 
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Appendix-A 

A-1 Design experts interview questions 

 

Name:       Date/Time:    
    

Location:       Specialty:    

 

1- As an expert in design and manufacturing sector, what two phases of a product life cycle are the 
most important in your opinion: 
 
A- Customer Needs/Specifications 
B- Concept Design 
C- Detailed Design 
D- Manufacture 
E- Sell 
 
2- Select the top 10 Deign for X (DFX) techniques that are beneficial in your opinion for any  
product development regardless of which phase is the product life cycle at: 
 
A- Design for Cost (DFC) 
B- Design for Manufacturing (DFM) 
C- Design for Assembly (DFA) 
D- Design for Manufacturing & Assembly (DFMA) 
E- Design for Variety (DFV) 
F- Design for Quality (DFQ) 
G- Design for Six Sigma (DFSS) 
H- Design for Testability (DFT) 
I- Design for Obsolescence (DFO) 
J- Design for Reusability (DFRE) 
K- Design for Disassembly (DFDA) 
L- Design for Reliability (DFR) 
M- Design for Environment (DFE) 
N- Design for Sustainability (DFS) 
O- Design for Network (DFN) 
P- Design for Robustness (DFRO) 
Q- Design for Maintainability (DFMAI) 
R- Design for End-Of-Life (DFEL) 
S- Design for Supply Chain (DFSC) 
T- Design for Recyclability (DFREC) 
U- Design for Remanufacture (DFRem) 
V- Design for Modularity (DFMO) 
W- Design for Affordances (DFAF) 
 
3- The product design specifications (PDS) is an evolutionary, comprehensive written document, 
which must evolve to match the characteristics of the final product. Poor PDS leads to poor design that  
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will fail in the market.  Good PDS does not guarantee good design but make the goal more attainable.   
PDS set the design in context, which is a comprehensive set of constrains. Select the top 10 from each 
design stage. 

 

 

4- By implementing a pairwise comparisons method we will be able to rank a specific product 
criterion and its importance with respect to other criterions. Put a check mark where the interaction between 
these criteria is the best fit. 

C
on

ce
pt

 D
es

ig
n 

C
ri

te
ri

on
Product Cost
Specifications
Manuals
Standards
Maintenance
Disposal
Reliability
Availability
Fabrication
Logistics
Assembly
Modularity
Testing & 
Commissioning
Weight
Safety
Ergonomics
Product Life Cycle
Size
Aesthetics
Laws & Regulations
Robustness 

D
et

ai
le

d 
D

es
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n 
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ri
te

ri
on

Product Cost
Specifications
Manuals
Standards
Maintenance
Disposal
Reuse
Reliability
Availability
Fabrication
Logistics
Assembly
Modularity
Testing & 
Commissioning
Weight
Safety
Product Life Cycle
Size
Laws & Regulations
Robustness 
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5- Rate the Design for X in a pairwise comparison on a nine-point scale (1 to 9) as per the below 
table. Note: Disregard the shaded area. 

 

 
6- Each DFX technique consist of a number of high-level design guidelines, called design rules. Each 
rule contains a set of low-level design guidelines, called design strategies. In conceptual and detailed design 
stages, weight the below two DFX techniques (DFA and DFDA) design rules from (1 to 10) with 10 the 
highest. 

Absolutely
Important
(9, 9, 9)

Strongly
Important
(6, 7, 8)

Fairly
Important
(4, 5, 6)

Weakly
Important
(2, 3, 4)

Criterion
Equally

Important
(1, 1, 1)

Criterion
Weakly

Important
(2, 3, 4)

Fairly
Important

(4, 5, 6)

Strongly
Important
(6, 7, 8)

Absolutely
Important
(9, 9, 9)

Product Cost Specifications
Product Cost Maintenance
Product Cost Reliability
Product Cost Assembly/Disassembly
Product Cost Weight/Size
Product Cost Safety/Ergonomics
Specifications Maintenance
Specifications Reliability
Specifications Assembly/Disassembly
Specifications Weight/Size
Specifications Safety/Ergonomics
Maintenance Reliability
Maintenance Assembly/Disassembly
Maintenance Weight/Size
Maintenance Safety/Ergonomics

Reliability Assembly/Disassembly
Reliability Weight/Size
Reliability Safety/Ergonomics

Assembly/Disassembly Weight/Size
Assembly/Disassembly Safety/Ergonomics

Weight/Size Safety/Ergonomics

Rating
1
3
5
7
9

2,4,6,8

Description
Equally preferred
Moderately preferred
Strongly preferred
Very strongly preferred
Extremely strongly preferred
Between two numbers above

Design for Cost (DFC) Manufacturing (DFM) Assembly (DFA) Robustness (DFRO) Quality (DFQ) Sustainability (DFS) Reliability (DFR) Testability (DFT)
Cost (DFC) 1
Manufacturing (DFM) 1
Assembly (DFA) 1
Robustness (DFRO) 1
Quality (DFQ) 1
Sustainability (DFS) 1
Reliability (DFR) 1
Testability (DFT) 1
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7- In conceptual and detailed design stages, assign a C value to each cross between two strategies. 
This to determine and gauge whether any number of strategies from any number of DFX techniques have 
conflicted so severely. 
 

 
 

 

Weight
 (1 to 10)

1- Minimize the number of parts (Types & Count)
2- Increase product modularity
3- Ensure base part design
4- Aim for sequential assembly design
5- Minimize the need for reorientations during assembly

1- Improve the products structure for disassembly

2- Improve the disassembly planning

Conceptual Design

DF
A

DF
DA

Weight
 (1 to 10)

1- Minimize the number of parts (Types & Count)
2- Aim for the elimination of adjusments and parts asymmetry
3- Elimnate tangling, jamming
4- Design parts to be self-aligning and self-locating
5- Reduce number of fastening products
6- Ensure adequate access and unrestricted vision
7- Execute one-way assembly methodology
1- Improve the product structure for disassembly.
2- Improve access and vision for disassembly.
3- Improve disassembly planning.
4- Material compatibility.
5- Implementing component design rules.
6- Design and selection of connectors.
7- Maximize end of life value of the product.

Detailed Design

DF
A

DF
DA

Interpretations

- 10

Strategies interact very positively
One strategy tends to support the other in a broad sense
No form of interacation exists between the strategies

- 5 Some conflict exists as to the direction the design should take
The strategies are almost completely contradictory in nature

+ 10
+ 5
0

C Values
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A-2 Design expert’s participants list 

Experts Weight (0-10) Expert Design 
Experience (Years) 

Number of design 
experts interviewed 

0.8 0 2 

1.7 5 ≤ Y ≤ 10 4 

2 10 ≤ Y ≤ 15 3 

2.5 15 ≤ Y ≤ 20 4 
 

 

 

 

 

 

Conceptual Design

D
FD

A
 S

tr
at

eg
ie

s

Subdivide the 
product into 
manageable 

subassemblies

Minimize the 
number of 

components 
and 

subassemblies

Standardize the 
products style

Avoid long 
disassembly 

paths

DFA Strategies
Minimize the number of parts and levels of assembly
Minimize the number of components and subassemblies
Reduce product complexity
Eliminate any product features that do not add value to the customer
Design mult-function parts
Design products from modular subassemblies so that
modules can be scheduled, built and tested independently
Standardize by common components, processes and methods to reduce costs across the whole system

Detailed Design

D
FD

A
 S

tr
at

eg
ie

s

Subdivide the 
whole 

assembly into 
manageable 

subassemblie

Minimize the 
number of 

connections 
between 

subassemblies

Minimize the 
number of 

components 
and 

subassemblies

Standardize 
the products 

style

Make sure 
that 

components 
are accessible

Reduce the 
number of 
changes in 
direction 

required in a 
removal 

operation

Avoid long 
disassembly 

paths

Subassemblies 
that are 

difficult to 
disassemble 
should be 

made of the 
same or 

compatible 
material

DFA Strategies
Reduce the number of parts between the input and output function
Move critically related surfaces close together to facilitate tolerance 
control
Follow kinematic design principles
Eliminate or minimize the need for repositioning an assembly once it is 
fixtured
Ensure adequate clearance for hands, tools, and subsequent processes
Ensure that vision of the process is not restricted or compromised.
Design simple assembly operations: parts can be assembled only one way; 
if misassembled, subsequent parts cannot be added
Minimize motion distance, within practical limits, to reduce motion time 
and improve accuracy
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A-3 Design expert’s data collection for FEAM 

 

 

 

 

 

 

 

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
End-User (A) 4 4 4 4 4 4 0 0 0 1 1 1 2 2 2 4 4 4 0 0 0 4 4 4 1 1 1 Materials (B) 20
End-User (A) 4 4 4 4 4 4 0 0 0 2 2 2 6 6 6 3 3 3 1 1 1 0 0 0 0 0 0 Machine (C) 20
End-User (A) 0 0 0 2 2 2 0 0 0 1 1 1 8 8 8 0 0 0 0 0 0 3 3 3 6 6 6 Performance (D) 20
End-User (A) 1 1 1 2 2 2 1 1 1 4 4 4 1 1 1 4 4 4 1 1 1 2 2 2 4 4 4 Process  (E) 20
Materials (B) 2 2 2 3 3 3 2 2 2 2 2 2 0 0 0 0 0 0 3 3 3 3 3 3 5 5 5 Machine (C) 20
Materials (B) 0 0 0 0 0 0 2 2 2 3 3 3 2 2 2 0 0 0 0 0 0 5 5 5 8 8 8 Performance (D) 20
Materials (B) 0 0 0 3 3 3 2 2 2 3 3 3 4 4 4 0 0 0 2 2 2 3 3 3 3 3 3 Process  (E) 20
Machine (C) 1 1 1 2 2 2 3 3 3 1 1 1 3 3 3 0 0 0 0 0 0 2 2 2 8 8 8 Performance (D) 20

Machine (C) 0 0 0 4 4 4 2 2 2 0 0 0 1 1 1 2 2 2 6 6 6 5 5 5 0 0 0 Process  (E) 20
Performance (D) 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 0 2 2 3 3 3 3 3 3 2 2 2 Process  (E) 20

Product Criteria- Fuzzy Numbers in Comparison Matrices

Product Criteria Product CriteriaA. Imp.
(8,9,10)

S. Imp.
(6,7,8)

F. Imp.
(4,5,6)

Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4)

W. Imp. F. Imp.

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8)

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
A1 8 8 8 3 3 3 2 2 2 3 3 3 2 2 2 0 0 0 2 2 2 0 0 0 0 0 0 A2 20 0.050
A1 12 12 12 5 5 5 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A3 20 0.050
A1 10 10 10 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A4 20 0.050
A1 6 6 6 5 5 5 1 1 1 3 3 3 0 0 0 0 0 0 2 2 2 3 3 3 0 0 0 A5 20 0.050
A1 14 14 14 2 2 2 3 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A6 20 0.050
A2 12 12 12 3 3 3 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A3 20 0.050
A2 11 11 11 3 3 3 3 3 3 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 A4 20 0.050
A2 0 0 0 2 2 2 5 5 5 3 3 3 2 2 2 3 3 3 4 4 4 1 1 1 0 0 0 A5 20 0.050
A2 16 16 16 1 1 1 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A6 20 0.050

A3 0 0 0 0 0 0 5 5 5 2 2 2 4 4 4 2 2 2 3 3 3 4 4 4 0 0 0 A4 20 0.050
A3 0 0 0 0 0 0 3 3 3 2 2 2 1 1 1 3 3 3 0 0 0 6 6 6 5 5 5 A5 20 0.050
A3 0 0 0 0 0 0 6 6 6 4 4 4 0 0 0 3 3 3 5 5 5 2 2 2 0 0 0 A6 20 0.050
A4 0 0 0 2 2 2 4 4 4 0 0 0 3 3 3 0 0 0 4 4 4 3 3 3 4 4 4 A5 20 0.050
A4 0 0 0 0 0 0 5 5 5 3 3 3 4 4 4 2 2 2 5 5 5 1 1 1 0 0 0 A6 20 0.050
A5 8 8 8 6 6 6 2 2 2 0 0 0 1 1 1 3 3 3 0 0 0 0 0 0 0 0 0 A6 20 0.050

Integration 
Power

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8)

W. Imp. F. Imp.Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4)

F. Imp.
(4,5,6)

Data Criteria A- Fuzzy Numbers in Comparison Matrices

Product 
Criteria

Product 
Criteria

A. Imp.
(8,9,10)

S. Imp.
(6,7,8)

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
B1 4 4 4 4 4 4 0 0 0 1 1 1 2 2 2 4 4 4 0 0 0 4 4 4 1 1 1 B2 20 0.050
B1 4 4 4 4 4 4 0 0 0 2 2 2 6 6 6 3 3 3 1 1 1 0 0 0 0 0 0 B3 20 0.050
B1 0 0 0 2 2 2 0 0 0 1 1 1 8 8 8 0 0 0 0 0 0 3 3 3 6 6 6 B4 20 0.050
B2 1 1 1 2 2 2 1 1 1 4 4 4 1 1 1 4 4 4 1 1 1 2 2 2 4 4 4 B3 20 0.050
B2 2 2 2 3 3 3 2 2 2 2 2 2 0 0 0 0 0 0 3 3 3 3 3 3 5 5 5 B4 20 0.050
B3 0 0 0 0 0 0 2 2 2 3 3 3 2 2 2 0 0 0 0 0 0 5 5 5 8 8 8 B4 20 0.050

Data Criteria B- Fuzzy Numbers in Comparison Matrices

Product 
Criteria

Product 
Criteria

A. Imp.
(8,9,10)

S. Imp.
(6,7,8)

F. Imp.
(4,5,6)

Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4)

W. Imp. F. Imp.

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8)

Integration 
Power

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
C1 4 4 4 2 2 2 2 2 2 1 1 1 4 4 4 2 2 2 0 0 0 3 3 3 2 2 2 C2 20 0.050
C1 6 6 6 3 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 2 2 2 0 0 0 C3 20 0.050
C2 7 7 7 2 2 2 2 2 2 3 3 3 0 0 0 4 4 4 2 2 2 0 0 0 0 0 0 C3 20 0.050

Integration 
Power

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8)

W. Imp. F. Imp.Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4)

Data Criteria C- Fuzzy Numbers in Comparison Matrices

Product 
Criteria

Product 
Criteria

A. Imp.
(8,9,10)

S. Imp.
(6,7,8)

F. Imp.
(4,5,6)

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
D1 2 2 2 4 4 4 2 2 2 0 0 0 4 4 4 0 0 0 2 2 2 2 2 2 4 4 4 D2 20
D1 3 3 3 2 2 2 0 0 0 1 1 1 2 2 2 3 3 3 0 0 0 3 3 3 6 6 6 D3 20
D1 8 8 8 3 3 3 0 0 0 3 3 3 3 3 3 0 0 0 3 3 3 0 0 0 0 0 0 D4 20
D1 0 0 0 2 2 2 3 3 3 0 0 0 0 0 0 2 2 2 4 4 4 6 6 6 3 3 3 D5 20
D2 6 6 6 3 3 3 0 0 0 2 2 2 1 1 1 3 3 3 0 0 0 3 3 3 2 2 2 D3 20
D2 8 8 8 2 2 2 1 1 1 0 0 0 0 0 0 4 4 4 3 3 3 2 2 2 0 0 0 D4 20
D2 4 4 4 0 0 0 0 0 0 3 3 3 4 4 4 0 0 0 5 5 5 4 4 4 0 0 0 D5 20
D3 5 5 5 3 3 3 2 2 2 1 1 1 0 0 0 3 3 3 4 4 4 2 2 2 0 0 0 D4 20

D3 0 0 0 4 4 4 4 4 4 0 0 0 3 3 3 2 2 2 0 0 0 4 4 4 3 3 3 D5 20
D4 0 0 0 0 0 0 6 6 6 2 2 2 0 0 0 3 3 3 2 2 2 5 5 5 2 2 2 D5 20

Data Criteria D-Fuzzy Numbers in Comparison Matrices

Product 
Criteria

Product 
Criteria

A. Imp.
(8,9,10)

S. Imp.
(6,7,8)

F. Imp.
(4,5,6)

Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4)

W. Imp. F. Imp.

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8)

8 9 10 6 7 8 4 5 6 2 3 4 1 1 1 0.25 0.33 0.50 0.17 0.20 0.25 0.13 0.14 0.17 0.10 0.11 0.13
E1 2 2 2 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 0 0 0 4 4 4 3 3 3 E2 20 0.050
E1 0 0 0 4 4 4 0 0 0 3 3 3 0 0 0 2 2 2 4 4 4 6 6 6 1 1 1 E3 20 0.050
E2 0 0 0 2 2 2 5 5 5 1 1 1 3 3 3 0 0 0 5 5 5 2 2 2 2 2 2 E3 20 0.050

Data Criteira E- Fuzzy Numbers in Comparison Matrices

Product 
Criteria

Product 
Criteria

A. Imp.
(8,9,10)

S. Imp.
(6,7,8)

F. Imp.
(4,5,6)

Eq. Imp.
(1,1,1)

W. Imp.
(2,3,4) (1/8,1/7,1/6) (1/10,1/9,1/8)

W. Imp. F. Imp.
Integration 

Power

The left measure is greater The right measure is greaterNeutral
Total 

number of 
design 
experts

S. Imp. A. Imp.
(1/4,1/3,1/2) (1/6,1/5,1/4)
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A-4 Design expert’s data collection for TOSIS model (End-user DFX Alternatives) 
 
 

 
 

 
 

 
 

DFX Design for
1 Cost (DFC)
2 Manufacturing 
3 Assembly (DFA)
4 Variety (DFV)
5 Quality (DFQ)
6 Six Sigma (DFSS)
7 Disassembly 
8 Reliability (DFR)
9 Testability (DFT)

10 Maintainability 
11 Robustness 
12 End-Of-Life (DFEL)
13 Sustainability (DFS)
14 Network (DFN)
15 Environment (DFE)

Legend

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 0 0 0 0 0 0 2 2 2 4 4 4 14 14 14 A1 20 0.050
DFX5 0 0 0 0 0 0 0 0 0 8 8 8 12 12 12 A1 20 0.050
DFX6 2 2 2 8 8 8 7 7 7 3 3 3 0 0 0 A1 20 0.050
DFX8 2 2 2 4 4 4 5 5 5 7 7 7 2 2 2 A1 20 0.050
DFX10 4 4 4 3 3 3 5 5 5 6 6 6 2 2 2 A1 20 0.050
DFX12 9 9 9 2 2 2 4 4 4 2 2 2 3 3 3 A1 20 0.050
DFX15 4 4 4 8 8 8 5 5 5 3 3 3 0 0 0 A1 20 0.050

Integration 
Power

Total 
number of 

design 
experts

Fuzzy Numbers in Comparison Matrices

DFX Data 
Criteria

VP
(1,1,3)

P
(1,3,5)

F
(3,5,7)

VG
(7,9,9)

G
(5,7,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 1 1 1 4 4 4 2 2 2 3 3 3 10 10 10 A2 20 0.050
DFX5 2 2 2 0 0 0 4 4 4 6 6 6 8 8 8 A2 20 0.050
DFX6 6 6 6 8 8 8 2 2 2 1 1 1 3 3 3 A2 20 0.050
DFX8 9 9 9 2 2 2 1 1 1 4 4 4 4 4 4 A2 20 0.050
DFX10 3 3 3 6 6 6 5 5 5 6 6 6 0 0 0 A2 20 0.050
DFX12 8 8 8 5 5 5 2 2 2 5 5 5 0 0 0 A2 20 0.050
DFX15 10 10 10 4 4 4 3 3 3 3 3 3 0 0 0 A2 20 0.050

(5,7,9) (7,9,9)
DFX Data 

CriteriaVP P F G VG

Fuzzy Numbers in Comparison Matrices

(1,1,3) (1,3,5) (3,5,7)

Total 
number of 

design 
experts

Integration 
Power
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A-5 Design expert’s data collection for TOSIS model (Materials DFX Alternatives) 
 

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 A3 20 0.050
DFX5 14 14 14 5 5 5 1 1 1 0 0 0 0 0 0 A3 20 0.050
DFX6 2 2 2 3 3 3 6 6 6 5 5 5 4 4 4 A3 20 0.050
DFX8 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 A3 20 0.050
DFX10 10 10 10 0 0 0 6 6 6 4 4 4 0 0 0 A3 20 0.050
DFX12 14 14 14 0 0 0 4 4 4 2 2 2 0 0 0 A3 20 0.050
DFX15 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 A3 20 0.050

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 4 4 4 6 6 6 8 8 8 0 0 0 A4 20 0.050
DFX5 3 3 3 5 5 5 3 3 3 7 7 7 2 2 2 A4 20 0.050
DFX6 4 4 4 0 0 0 8 8 8 6 6 6 2 2 2 A4 20 0.050
DFX8 12 12 12 8 8 8 0 0 0 0 0 0 0 0 0 A4 20 0.050
DFX10 10 10 10 6 6 6 2 2 2 2 2 2 0 0 0 A4 20 0.050
DFX12 14 14 14 2 2 2 4 4 4 0 0 0 0 0 0 A4 20 0.050
DFX15 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 A4 20 0.050

(5,7,9) (7,9,9)

Total 
number of 

design 
experts

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices

(1,1,3) (1,3,5) (3,5,7)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 4 4 4 5 5 5 7 7 7 2 2 2 A5 20 0.050
DFX5 3 3 3 5 5 5 2 2 2 8 8 8 2 2 2 A5 20 0.050
DFX6 8 8 8 6 6 6 3 3 3 2 2 2 1 1 1 A5 20 0.050
DFX8 4 4 4 4 4 4 7 7 7 5 5 5 0 0 0 A5 20 0.050
DFX10 2 2 2 2 2 2 4 4 4 8 8 8 4 4 4 A5 20 0.050
DFX12 3 3 3 3 3 3 5 5 5 7 7 7 2 2 2 A5 20 0.050
DFX15 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 A5 20 0.050

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 9 9 9 7 7 7 4 4 4 0 0 0 0 0 0 A6 20 0.050
DFX5 11 11 11 6 6 6 3 3 3 0 0 0 0 0 0 A6 20 0.050
DFX6 14 14 14 6 6 6 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX8 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX10 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX12 2 2 2 3 3 3 3 3 3 7 7 7 5 5 5 A6 20 0.050
DFX15 3 3 3 2 2 2 2 2 2 8 8 8 5 5 5 A6 20 0.050

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts

Integration 
PowerDFX

Data 
Criteria

VP P F G VG
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9)
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A-6 Design expert’s data collection for TOSIS model (Machine DFX Alternatives) 
 

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 3 3 3 4 4 4 8 8 8 3 3 3 B1 20 0.050
DFX 2 4 4 4 5 5 5 8 8 8 2 2 2 1 1 1 B1 20 0.050
DFX 3 8 8 8 6 6 6 3 3 3 2 2 2 1 1 1 B1 20 0.050
DFX 4 14 14 14 5 5 5 1 1 1 0 0 0 0 0 0 B1 20 0.050
DFX 7 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 B1 20 0.050
DFX 8 1 1 1 1 1 1 4 4 4 5 5 5 9 9 9 B1 20 0.050
DFX 14 12 12 12 8 8 8 0 0 0 0 0 0 0 0 0 B1 20 0.050

Integration 
Power

Total 
number of 

design 
experts

Fuzzy Numbers in Comparison Matrices

DFX Data 
Criteria

VP
(1,1,3)

P
(1,3,5)

F
(3,5,7)

VG
(7,9,9)

G
(5,7,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 4 4 4 11 11 11 3 3 3 0 0 0 B2 20 0.050
DFX 2 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 B2 20 0.050
DFX 3 15 15 15 5 5 5 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX 4 17 17 17 3 3 3 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX 7 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX 8 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX 14 10 10 10 2 2 2 4 4 4 4 4 4 0 0 0 B2 20 0.050

VG
(5,7,9) (7,9,9)

Fuzzy Numbers in Comparison Matrices

(1,1,3) (1,3,5) (3,5,7)

Total 
number of 

design 
experts

Integration 
PowerDFX Data 

CriteriaVP P F G

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 0 0 0 3 3 3 2 2 2 8 8 8 7 7 7 B3 20 0.050
DFX 2 0 0 0 0 0 0 6 6 6 4 4 4 10 10 10 B3 20 0.050
DFX 3 0 0 0 2 2 2 4 4 4 8 8 8 6 6 6 B3 20 0.050
DFX 4 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 B3 20 0.050
DFX 7 10 10 10 4 4 4 4 4 4 2 2 2 0 0 0 B3 20 0.050
DFX 8 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 B3 20 0.050
DFX 14 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 B3 20 0.050

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 4 4 4 8 8 8 6 6 6 0 0 0 B4 20 0.050
DFX 2 2 2 2 8 8 8 5 5 5 3 3 3 2 2 2 B4 20 0.050
DFX 3 8 8 8 4 4 4 6 6 6 2 2 2 0 0 0 B4 20 0.050
DFX 4 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX 7 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX 8 19 19 19 1 1 1 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX 14 1 1 1 3 3 3 5 5 5 6 6 6 5 5 5 B4 20 0.050

(5,7,9) (7,9,9)

Total 
number of 

design 
experts

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices

(1,1,3) (1,3,5) (3,5,7)
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A-7 Design expert’s data collection for TOSIS model (Performance DFX Alternatives) 
 

 

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 4 4 4 5 5 5 4 4 4 5 5 5 C1 20 0.050
DFX 2 3 3 3 2 2 2 8 8 8 6 6 6 1 1 1 C1 20 0.050
DFX 3 0 0 0 2 2 2 2 2 2 6 6 6 10 10 10 C1 20 0.050
DFX 7 0 0 0 0 0 0 4 4 4 8 8 8 8 8 8 C1 20 0.050
DFX 9 10 10 10 4 4 4 6 6 6 0 0 0 0 0 0 C1 20 0.050
DFX 11 0 0 0 2 2 2 4 4 4 6 6 6 8 8 8 C1 20 0.050

Integration 
Power

Total 
number of 

design 
experts

Fuzzy Numbers in Comparison Matrices

DFX Data 
Criteria

VP
(1,1,3)

P
(1,3,5)

F
(3,5,7)

VG
(7,9,9)

G
(5,7,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 0 0 0 0 0 0 6 6 6 8 8 8 6 6 6 C2 20 0.050
DFX 2 0 0 0 2 2 2 5 5 5 6 6 6 7 7 7 C2 20 0.050
DFX 3 0 0 0 3 3 3 2 2 2 7 7 7 8 8 8 C2 20 0.050
DFX 7 1 1 1 2 2 2 4 4 4 5 5 5 8 8 8 C2 20 0.050
DFX 9 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 C2 20 0.050
DFX 11 0 0 0 3 3 3 8 8 8 4 4 4 5 5 5 C2 20 0.050

(1,1,3) (1,3,5) (3,5,7)

Total 
number of 

design 
experts

Integration 
PowerData 

CriteriaVP P F G VG
(5,7,9)

Fuzzy Numbers in Comparison Matrices

DFX
(7,9,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 0 0 0 4 4 4 8 8 8 6 6 6 2 2 2 C3 20 0.050
DFX 2 8 8 8 7 7 7 5 5 5 0 0 0 0 0 0 C3 20 0.050
DFX 3 10 10 10 5 5 5 3 3 3 2 2 2 0 0 0 C3 20 0.050
DFX 7 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 C3 20 0.050
DFX 9 0 0 0 1 1 1 6 6 6 5 5 5 8 8 8 C3 20 0.050
DFX 11 6 6 6 8 8 8 4 4 4 2 2 2 0 0 0 C3 20 0.050

(3,5,7) (5,7,9) (7,9,9)

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 3 3 3 8 8 8 7 7 7 0 0 0 D1 20 0.050
DFX 2 3 3 3 5 5 5 6 6 6 6 6 6 0 0 0 D1 20 0.050
DFX 3 4 4 4 6 6 6 7 7 7 3 3 3 0 0 0 D1 20 0.050
DFX 7 2 2 2 4 4 4 5 5 5 6 6 6 3 3 3 D1 20 0.050
DFX 10 1 1 1 8 8 8 2 2 2 5 5 5 4 4 4 D1 20 0.050
DFX 12 10 10 10 8 8 8 2 2 2 0 0 0 0 0 0 D1 20 0.050
DFX 13 14 14 14 6 6 6 0 0 0 0 0 0 0 0 0 D1 20 0.050

Fuzzy Numbers in Comparison Matrices

DFX Data 
Criteria

VP
(1,1,3)

P
(1,3,5)

F
(3,5,7)

VG
(7,9,9)

Integration 
PowerG

(5,7,9)

Total 
number of 

design 
experts
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A-8 Design expert’s data collection for TOSIS model (Process DFX Alternatives) 

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 4 4 4 4 4 4 5 5 5 5 5 5 D2 20 0.050
DFX 2 12 12 12 5 5 5 3 3 3 0 0 0 0 0 0 D2 20 0.050
DFX 3 10 10 10 6 6 6 4 4 4 0 0 0 0 0 0 D2 20 0.050
DFX 7 14 14 14 2 2 2 4 4 4 0 0 0 0 0 0 D2 20 0.050
DFX 10 12 12 12 4 4 4 2 2 2 2 2 2 0 0 0 D2 20 0.050
DFX 12 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 D2 20 0.050
DFX 13 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 D2 20 0.050

DFX Data 
CriteriaVP P F G VG

(5,7,9) (7,9,9)

Integration 
Power

Fuzzy Numbers in Comparison Matrices

(1,1,3)

Total 
number of 

design 
experts(1,3,5) (3,5,7)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 4 4 4 5 5 5 6 6 6 3 3 3 D3 20 0.050
DFX 2 12 12 12 4 4 4 4 4 4 0 0 0 0 0 0 D3 20 0.050
DFX 3 10 10 10 4 4 4 4 4 4 2 2 2 0 0 0 D3 20 0.050
DFX 7 8 8 8 6 6 6 3 3 3 3 3 3 0 0 0 D3 20 0.050
DFX 10 7 7 7 5 5 5 8 8 8 0 0 0 0 0 0 D3 20 0.050
DFX 12 15 15 15 5 5 5 0 0 0 0 0 0 0 0 0 D3 20 0.050
DFX 13 17 17 17 3 3 3 0 0 0 0 0 0 0 0 0 D3 20 0.050

(3,5,7) (5,7,9) (7,9,9)

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 4 4 4 5 5 5 8 8 8 3 3 3 0 0 0 D4 20 0.050
DFX 2 5 5 5 6 6 6 9 9 9 0 0 0 0 0 0 D4 20 0.050
DFX 3 2 2 2 7 7 7 7 7 7 4 4 4 0 0 0 D4 20 0.050
DFX 7 3 3 3 5 5 5 12 12 12 0 0 0 0 0 0 D4 20 0.050
DFX 10 8 8 8 8 8 8 4 4 4 0 0 0 0 0 0 D4 20 0.050
DFX 12 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 D4 20 0.050
DFX 13 14 14 14 6 6 6 0 0 0 0 0 0 0 0 0 D4 20 0.050

Total 
number of 

design 
experts

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices

(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 D5 20 0.050
DFX 2 4 4 4 2 2 2 6 6 6 8 8 8 0 0 0 D5 20 0.050
DFX 3 3 3 3 5 5 5 5 5 5 7 7 7 0 0 0 D5 20 0.050
DFX 7 5 5 5 6 6 6 6 6 6 3 3 3 0 0 0 D5 20 0.050
DFX 10 6 6 6 8 8 8 4 4 4 2 2 2 0 0 0 D5 20 0.050
DFX 12 2 2 2 4 4 4 3 3 3 8 8 8 3 3 3 D5 20 0.050
DFX 13 2 2 2 3 3 3 4 4 4 6 6 6 5 5 5 D5 20 0.050

(3,5,7) (5,7,9) (7,9,9)

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5)



  

169 
 
 

 

 

 

A-9 Data collection main trends  

 

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 8 8 8 4 4 4 6 6 6 2 2 2 0 0 0 E1 20 0.050
DFX 2 12 12 12 6 6 6 2 2 2 0 0 0 0 0 0 E1 20 0.050
DFX 4 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 E1 20 0.050
DFX 6 18 18 18 2 2 2 0 0 0 0 0 0 0 0 0 E1 20 0.050
DFX 11 10 10 10 8 8 8 2 2 2 0 0 0 0 0 0 E1 20 0.050

Fuzzy Numbers in Comparison Matrices

DFX Data 
Criteria

VP
(1,1,3)

P
(1,3,5)

F
(3,5,7)

VG
(7,9,9)

G
(5,7,9)

Integration 
Power

Total 
number of 

design 
experts

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 3 3 3 6 6 6 8 8 8 3 3 3 0 0 0 E2 20 0.050
DFX 2 8 8 8 8 8 8 4 4 4 0 0 0 0 0 0 E2 20 0.050
DFX 4 12 12 12 4 4 4 4 4 4 0 0 0 0 0 0 E2 20 0.050
DFX 6 2 2 2 3 3 3 5 5 5 6 6 6 4 4 4 E2 20 0.050
DFX 11 14 14 14 6 6 6 0 0 0 0 0 0 0 0 0 E2 20 0.050

Fuzzy Numbers in Comparison Matrices

DFX
(7,9,9)(1,1,3) (1,3,5) (3,5,7)

Total 
number of 

design 
experts

Integration 
PowerData 

CriteriaVP P F G VG
(5,7,9)

1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX 1 2 2 2 1 1 1 6 6 6 5 5 5 6 6 6 E3 20 0.050
DFX 2 6 6 6 8 8 8 4 4 4 2 2 2 0 0 0 E3 20 0.050
DFX 4 13 13 13 7 7 7 0 0 0 0 0 0 0 0 0 E3 20 0.050
DFX 6 16 16 16 4 4 4 0 0 0 0 0 0 0 0 0 E3 20 0.050
DFX 11 0 0 0 2 2 2 4 4 4 6 6 6 8 8 8 E3 20 0.050

(3,5,7) (5,7,9) (7,9,9)

Integration 
PowerDFX

Data 
Criteria

VP P F G VG

Fuzzy Numbers in Comparison Matrices
Total 

number of 
design 
experts(1,1,3) (1,3,5)





10 3 3 2 2 1 2 3 0 1 0 0 2 1 1 0
12 2 3 3 2 0 0 0 2 0 2 2 2 1 1 1
11 5 2 2 0 1 2 3 0 1 2 0 0 1 1 1
14 3 2 1 2 1 1 2 1 1 2 1 1 1 1 1
17 5 3 3 2 1 0 3 2 1 0 0 0 0 1 0
20 4 3 1 2 1 2 0 2 0 1 1 1 1 1 1
3 3 3 3 2 1 0 0 2 1 2 2 2 0 0 0
5 4 3 3 2 0 0 0 2 0 2 0 2 1 1 1
9 3 4 3 2 1 0 0 2 1 2 2 0 0 1 0
2 4 3 2 1 1 2 1 0 1 1 1 1 1 1 1
6 4 3 0 0 1 2 3 2 1 0 2 0 1 1 1

15 4 3 2 1 0 0 3 0 0 1 2 2 1 1 1
16 4 4 0 0 1 2 0 2 1 2 2 2 0 0 1
1 5 2 3 2 0 1 2 1 0 2 1 0 0 1 1
4 5 2 2 1 0 2 3 2 0 2 1 1 0 0 0
7 5 2 2 1 1 2 0 1 0 2 0 2 1 1 1
8 3 3 2 1 0 1 2 1 0 1 2 2 1 1 1

13 1 4 2 0 0 2 0 2 1 2 2 2 1 1 1
18 2 4 2 2 1 0 3 0 0 2 2 2 1 0 0
19 5 4 0 1 1 1 2 1 1 1 1 1 1 1 0
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From the design experts’ ratings on DFX alternatives, it is apparent that the level of 

importance and ranking of DFX techniques has changed dramatically. For example, the 

conclusion derived from objective 1 state that design for testability was ranked first and 

design for manufacturing was ranked second among the top-ranked 15 DFX techniques. 

However, in objective 3 conclusion, some variations can be noticed.  Where design for 

testability is ranked last and design for manufacturing remain in the second rank between 

the 15 DFX techniques. The results variation between objectives 1 and 3 can be linked to 

the increasing knowledge gap between research and industry design experts.  

A-10 Data collection Analysis 
  
Since the number of samples are less than 30, then the t-distribution tables and equations 
are used to analysis the extracted data. 

Description Values Equation 

Normally 
distributed data 

- - 

Experts interviewed 
(sample) 

N=20 - 

Confidence of 
interval 

95% - 

Sample Mean μ = 26.94 ± 2.09= [24.85, 29.03] 
μ =  

∑ 𝑋𝑁
𝑖=1

𝑁
 

Sample Standard 
Deviation 

7.76 
𝜎 =  √

(𝑋𝑖 − μ )2

𝑁
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Sample Variance 60.36 [39.71, 102.71] 
𝑆2 =

1

𝑁 − 1
∑(

𝑁

𝑖=1

𝑋𝑖 − 𝜇 )2 
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A-11 Second case study for objective 2 
 
This case study is related to objective 2 section where the nailer carriage is the main subject 
of this case study in its detailed design stage. Two DFX techniques (DFA and DFDA) are 
investigated and the results are shown in the later sections. 

 

 

 

 

Product 
Development Phase Design Rules W DFXG W TR Design Strategies W PS W TS T TS

1- Attempt to design symmetrical parts to avoid need for extra orienting 
devices or motions. 0.35 0.27 0.44

2- Test each part's need for existence as a separate component. 0.1 0.08 0.13
3- Eliminate parts that act as conduits and connectors. 0.2 0.15 0.25
4- Design mult-function parts. 0.35 0.27 0.44
1- Reduce the number of parts between the input and output function. 0.6 0.26 0.43
2- Move critically related surfaces close together to facilitate tolerance 
control. 0.1 0.04 0.07

3-Follow kinematic design principles. 0.2 0.09 0.14
4- Eliminate or minimize the need for repositioning an assembly once it is 
fixtured. 0.1 0.04 0.07

1- A void projections, holes or slots that will cause tangling with other 
parts when placed in bulk, bin or feeder. 0.5 0.11 0.18

2- Provide features to prevent jamming, such as nesting. 0.5 0.11 0.18
1- Design parts with built in alignment. 0.4 0.18 0.29
2- Avoid parts that require special grasping tools. 0.2 0.09 0.14
3- Eliminate or minimize the number of electrical and
mechanical adjustments. 0.3 0.13 0.22

4- Facilitate assembly operations by providing chamfers or
tapers to help guide and position fasteners. 0.1 0.04 0.07

1- Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.6 0.26 0.43
2- Eliminate separate fasteners. 0.4 0.18 0.29
1- Ensure adequate clearance for hands, tools, and subsequent processes. 0.3 0.26 0.43
2- Ensure that vision of the process is not restricted or compromised. 0.7 0.62 1.01
1- Design simple assembly operations: parts can be assembled only one 
way; if misassembled, subsequent parts cannot be added. 0.5 0.39 0.63

2- Minimize motion distance, within practical limits, to reduce motion time 
and improve accuracy. 0.5 0.39 0.63

DFA Design rules and strategy weights by product development phase     

7- Execute one-way assembly methodology. 7

D
et

ai
le

d 
D
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ig

n

1- Minimize the number of parts (Types & Count).

4

2- Aim for the elimination of adjusments and parts asymmetry. 4

3- Elimnate tangling, jamming. 2

4- Design parts to be self-aligning and self-locating. 4

0.11

5- Reduce number of fastening products.

6- Ensure adequate access and unrestricted vision. 8

7

Product 
Development Phase Design Rules W DFXG W TR Design Strategies W PS W TS T TS

1- Subdivide the whole assembly into manageable subassemblies. 0.25 0.13 0.60
2- Minimize the number of connections between subassemblies. 0.35 0.18 0.83
3- Minimize the number of components and subassemblies. 0.4 0.20 0.95
4-Standardize the products style. 0 0.00 0.00

2- Improve access and vision for disassembly. 2 1- Make sure that components are accessible. 1 0.10 0.48
1- Reduce the number of changes in direction required in a removal 
operation. 0.3 0.05 0.21

2- Avoid long disassembly paths. 0.7 0.11 0.50

4- Material compatibility. 0 1- Subassemblies that are difficult to disassemble should be made of the 
same or compatible material. 1 0.00 0.00

1- Integrate components with the same material and avoid the combination 
of different materials. 0.4 0.02 0.10

2- Mark materials permanently to assist sorting. 0.3 0.02 0.07
3- Design in predetermined fracture points that allow rapid removal of 
components. 0.3 0.02 0.07

1- Make connectors of a compatible material to avoid the need for 
disassembly. 0 0.00 0.00

2- Minimize the type and number of connection forms. 0.35 0.18 0.83
3- Select easy to disassemble connectors. 0.25 0.13 0.60
4- Use connectors with fracture points for difficult situations. 0 0.00 0.00
5- Ensure connectors can be removed with standard tools. 0.4 0.20 0.95
1- Standardize components. 0.4 0.02 0.10
2- Design for long life and reuse. 0.6 0.03 0.14

DFDA Design rules and strategy weights by product development phase     

D
et

ai
le

d 
D

es
ig

n

1- Improve the product structure for disassembly. 10

3- Improve disassembly planning. 3

5- Implementing component design rules. 1

6- Design and selection of connectors. 10

7- Maximize end of life value of the product. 1

0.05
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DFA Strategies W TS 0.13 0.18 0.20 0.00 0.10 0.05 0.11 0.00 0.02 0.02 0.02 0.00 0.18 0.13 0.00 0.20 0.02 0.03
Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0.27 0 0 5 10 0 0 5 5 -5 0 0 5 5 0 0 0 5 0 0.008   0.27   4
Test each part's need for existence as a separate component. 0.08 0 -5 -10 0 0 5 5 10 0 5 0 0 0 10 0 0 0 0 0.003-   0.08   25
Eliminate parts that act as conduits and connectors. 0.15 0 0 0 -5 0 0 0 5 5 10 0 0 0 0 0 0 0 0 0.001   0.15   15
Design mult-function parts. 0.27 0 0 0 0 0 0 0 -5 0 0 0 0 10 0 0 0 5 0 0.006   0.27   5
Reduce the number of parts between the input and output function. 0.26 0 0 0 0 -10 0 0 0 0 0 5 0 0 0 5 0 0 0 0.003-   0.26   7
Move critically related surfaces close together to facilitate tolerance control. 0.04 0 0 0 0 0 0 0 0 -5 0 0 10 0 0 0 10 0 5 0.007   0.04   28
Follow kinematic design principles. 0.09 10 0 0 5 0 10 0 0 0 0 5 0 0 -5 0 0 -5 0 0.004   0.09   23
Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.04 0 0 10 0 5 0 -10 0 0 5 -5 0 5 0 0 0 10 0 0.008   0.04   27
A void projections, holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.11 -5 5 0 0 0 0 0 0 0 10 0 5 0 0 5 0 0 0 0.001   0.11   19
Provide features to prevent jamming, such as nesting. 0.11 5 0 -5 0 0 -5 0 -10 0 -10 0 0 0 0 10 0 5 0 0.002-   0.11   20
Design parts with built in alignment. 0.18 5 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0.010   0.18   11
Avoid parts that require special grasping tools. 0.09 0 0 0 0 0 0 0 0 0 10 0 5 0 10 0 -5 -10 5 0.001   0.09   24
Eliminate or minimize the number of electrical andmechanical adjustments. 0.13 5 0 0 0 0 0 10 0 -10 0 0 0 0 0 0 0 0 0 0.005   0.13   16
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.04 0 0 0 0 0 5 5 5 0 5 5 -5 0 -5 5 0 0 5 0.001   0.04   29
Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.26 -10 0 0 0 0 0 0 -5 0 0 0 0 0 0 0 0 0 0 0.004-   0.26   8
Eliminate separate fasteners. 0.18 5 0 -5 0 -5 0 0 0 0 10 0 0 0 0 0 0 0 0 0.002-   0.18   14
Ensure adequate clearance for hands, tools, and subsequent processes. 0.26 5 5 0 -5 0 0 -10 0 0 0 0 0 0 0 0 0 0 0 0.002   0.26   6
Ensure that vision of the process is not restricted or compromised. 0.62 0 5 0 5 0 5 0 0 5 0 0 5 0 0 5 0 0 10 0.005   0.62   1
Design simple assembly operations: parts can be assembled only one way; if misassembled, subsequent parts cannot be 
added. 0.39 5 0 5 0 10 0 0 0 0 0 0 0 0 -10 0 0 -5 0 0.004   0.39   2

Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 0.39 0 0 0 10 0 0 0 0 0 5 5 5 0 0 0 0 0 -5 -       0.39   3
0.01 0.02 0.01 0.03 0.00 0.01 0.00 0.00-      0.00      0.02 0.01 0.03 0.01 0.01- 0.02 -   0.00 0.02 δV

17 12 9 35 22 26 21 35 31 33 34 35 13 18 35 10 32 30

0.02 0.03 -   0.18 0.12 -   0.20 0.11 -        0.02      0.02 0.02 Vtot0.13 0.18 0.20 -   

Ranking

0.10 0.05 

DFA and DFDA Strategies in Detailed Design Stage Ranking List Summary (Before Analysis) ⱯTS Ranked List T TS

Select easy to disassemble connectors. 0.62 1 0.44
A void projections, holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.39 2 0.13
Provide features to prevent jamming, such as nesting. 0.39 3 0.25
Ensure that vision of the process is not restricted or compromised. 0.27 4 0.44

Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0.27 5 0.43
Subdivide the whole assembly into manageable subassemblies. 0.26 6 0.07
Design mult-function parts. 0.26 7 0.14
Eliminate parts that act as conduits and connectors. 0.26 8 0.07
Follow kinematic design principles. 0.20 9 0.18
 Subassemblies that are difficult to disassemble should be made of the same or compatible material. 0.20 10 0.18
Design parts with built in alignment. 0.18 11 0.29
Make sure that components are accessible. 0.18 12 0.14
Mark materials permanently to assist sorting. 0.18 13 0.22
Eliminate or minimize the number of electrical andmechanical adjustments. 0.18 14 0.07
Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 0.15 15 0.43
Minimize the type and number of connection forms. 0.13 16 0.29
Avoid long disassembly paths. 0.13 17 0.43
Design in predetermined fracture points that allow rapid removal of components. 0.12 18 1.01
Minimize the number of components and subassemblies. 0.11 19 0.63
Ensure connectors can be removed with standard tools. 0.11 20 0.63
Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.11 21 0.60
Test each part's need for existence as a separate component. 0.10 22 0.83
Reduce the number of parts between the input and output function. 0.09 23 0.95
Minimize the number of connections between subassemblies. 0.09 24 0.00
Design simple assembly operations: parts can be assembled only one way; if misassembled, subsequent parts cannot be added. 0.08 25 0.48
Reduce the number of changes in direction required in a removal operation 0.05 26 0.21
Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.04 27 0.50
Ensure adequate clearance for hands, tools, and subsequent processes. 0.04 28 0.00
Eliminate separate fasteners. 0.04 29 0.10
Use connectors with fracture points for difficult situations. 0.03 30 0.07
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.02 31 0.07
Make connectors of a compatible material to avoid the need for disassembly. 0.02 32 0.00
Design for long life and reuse. 0.02 33 0.83
Integrate components with the same material and avoid the combination of different materials. 0.02 34 0.60
Avoid parts that require special grasping tools. 0.00 35 0.00
Move critically related surfaces close together to facilitate tolerance control. 0.00 35 0.95
Standardize components. 0.00 35 0.10
Standardize the products style. 0.00 35 0.14
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In the detailed design phase of objective 2 case study, if the designer is to apply DFA with 

7 days and DFDA with 7 days independently then the total time required for both will be 

14 days. However, if they are applied together, the redundant design strategies between the 

two and the conflicted area will be removed and adjusted before initiating the design 

activity. Thus, reducing the total time to 13 days with a difference of 1 days. The strategies 

elimination process is conducted based on the following: 

1- From the aggregated matrix between DFX techniques shows a CI ≤ -10, then 

conflict occurs, and special considerations must be in place before design process 

can be initiated.  

2- Strategies with same ranking number must be eliminated if its core objective can 

be found in other strategies. 

DFA and DFDA Strategies in Detailed Design Stage Ranking List Summary (After Analysis) ⱯTS Ranked List
Select easy to disassemble connectors. 0.619 1
Avoid projections, holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.387 2
Provide features to prevent jamming, such as nesting. 0.385 3
Ensure that vision of the process is not restricted or compromised. 0.272 4
Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0.271 5
Subdivide the whole assembly into manageable subassemblies. 0.264 6
Design mult-function parts. 0.263 7
Eliminate parts that act as conduits and connectors. 0.263 8
Follow kinematic design principles. 0.202 9
Subassemblies that are difficult to disassemble should be made of the same or compatible material. 0.200 10
Design parts with built in alignment. 0.178 11
Mark materials permanently to assist sorting. 0.177 12
Eliminate or minimize the number of electrical and mechanical adjustments. 0.176 13
Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 0.154 14
Minimize the type and number of connection forms. 0.133 15
Avoid long disassembly paths. 0.127 16
Design in predetermined fracture points that allow rapid removal of components. 0.124 17
Ensure connectors can be removed with standard tools. 0.110 18
Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.105 19
Test each part's need for existence as a separate component. 0.100 20
Reduce the number of parts between the input and output function. 0.088 21
Design simple assembly operations: parts can be assembled only one way; if misassembled, subsequent parts cannot be added. 0.077 22
Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.044 23
Ensure adequate clearance for hands, tools, and subsequent processes. 0.044 24
Use connectors with fracture points for difficult situations. 0.031 25
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.020 26
Make connectors of a compatible material to avoid the need for disassembly. 0.020 27
Design for long life and reuse. 0.015 28
Integrate components with the same material and avoid the combination of different materials. 0.015 29
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3- Strategies with an overall value (ⱯTS) equal to zero must be eliminated from the 

ranked list. 

 


