A decision support framework for concurrent multi-DF X implementation to optimize the

machine design process

by

Anas Itani

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in
Construction Engineering and Management

Department of Civil and Environmental Engineering
University of Alberta

© Anas Itani, 2019



ABSTRACT

Industry 4.0 has sparked rapid changes in the manufacturing and construction sectors,
leading to a major shift in how prefab construction machines are designed and
manufactured in a concurrent engineering environment. Design for X (DFX) is one of the
most effective methods for implementing in concurrent engineering as a methodical and
proactive approach to machine design that maximizes total benefits over the entire product
lifecycle. However, this task is challenging and time-consuming considering the vast
number of feasible permutations involved. The unresolved challenge is how the
information contained within Multi-DFX (MDFX) can be organized such that the
implications of decisions are proactively evaluated and implemented. For this purpose,
designers require robust decision-making tools for supporting MDFX techniques in
machine design. Because if applied, they can generate a propagation effect that spans
multiple life phases. Also, the necessity is growing for a design decision support system to
guide designers and alert them to what possible consequences they could encounter in the
downstream life-cycle phases if MDFX is applied. Therefore, to overcome these
challenging tasks, designers have recently started to utilize innovative searching and
optimizing methods that can aid them in the MDFX trade-off analysis and in finding the
optimal utilization plan for design development. To cope with this, a functional
collaborative DFX scheme mitigated with Stuart Pugh: Total Design Activity Model is
developed in this research where various DFX techniques are grouped and allocated to
different phases of the machine development lifecycle. Furthermore, the research
progressed to analyze the conflict arising from the application of MDFX in a machine

design problem and automatically resolve the conflict of design experts’ opinion by
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simulating the MDFX interactions and design decision criteria multi-layers in the
developed aggregated matrix model. However, for any machine design development
project, there are specific product design specifications that a designer must attend to
during the design and aim to satisfy the client needs in the final machine. Therefore, to
balance the allocation and control the integration of MDFX techniques in each design
criterion, this research proposed a hybrid multi-objective optimization model based on the
fuzzy set theory. This model was integrated with an intelligently automated searching
model that focuses on finding the optimal MDFX utilization solutions. These solutions
minimize the machine design development cost and time while maximizes its quality. Also,
this model can analyze these results from a financial perspective by aggregating the
performance metrics and by accounting for machine design specific constraints. The
proposed research materials are applied in various machine design real-world case studies
to validate their feasibility, applicability, and effectiveness in a dynamic machine
development environment and in visualizing the optimal trade-offs among MDFX metrics
while coupling their engineering-financial terms for a better decision-making process

within the domain of machine design for prefabricated construction.
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Chapter 1 : Introduction

1.1 Background and Motivation

In 2018, Canada records a hike in the residential construction sector where 215,725 housing
starts were recorded (Statistics Canada). It is expected that the residential construction for
housing stays close to 200,000 units in 2019 (Housing Market Outlook, Fall 2018). On the
other hand, commercial construction is expected in 2018 to grow by 6%; this is due to the
economy shifting to a more automated, autonomous, customized production economy by
applying Industry 4.0 principles (Oldcastle Business Intelligence). Industry 4.0 is the
combination of digital processes such as the Internet of Things (IoT), automation, robotics,
and additive manufacturing (AM) has a significant impact on machine design (ASME).
Not only do designers required to redesign methodologies, processes, and manufacturing
to accommodate these new technological advancements, Industry 4.0 targets how they
design machines for increasingly smart autonomous manufacturing factories. It encourages
forward-thinking designers to embrace these digital tools and technologies. This allows
them to design and manufacture higher-quality prefab production construction machines
more efficiently and react instantaneously to shifting client demands, gaining client loyalty
and increasing market share. To support the continuous demand in the Canadian market
for both residential and commercial construction sectors, panelized construction is
becoming a cost-effective building option. Compared to the conventional “stick frame”
construction, panelized construction enables the builders to relocate the framing of housing
components under-a-roof to an off-site factory production thus securing a controlled and
high-efficient construction environment. By utilizing the automation technologies in the

prefab factory-built construction to produce a higher quality housing with a reduction in
1



the site disruptions, weather fluctuations, higher safety, and rapid construction. Li (2016)
concluded that the construction sector could achieve 30-50% time savings by adapting the
off-site modern production technologies. However, to gain the full advantages of off-site
construction, the automated construction machines and supporting processes must
improve.

To implement Industry 4.0 principles and improve the competition in the Canadian prefab
off-site construction sector, effective and proactive design methodologies and tools must
be utilized by designers while shaping the best-optimized machine design in a dynamic
concurrent engineering domain. Thus, improving machine quality, lower cost, shorten the
development cycle time and fulfill customers’ requirements. Understanding the effective
design tools such as DFX and how it can be implemented in a machine design problem in
a harmonized way is becoming crucial for designers to know. Furthermore, in concurrent
engineering machine design, it is crucial to comprehensively evaluate the application of
MDFX during conceptual and detailed design. But due to a lack of information in the
design’s early stages, the designer is faced with multiple obstacles that can challenge him
/her in the evaluation process, such as, for example, when the design information is fuzzy,
or the designer’s goal is known only imprecisely. The designer should consider the MDFX
concurrent effects on the machine design over the whole product lifecycle. If the previous
design decision is faulty, the preceding machine design stages will be significantly
affected. Hence, implementing an incorrect decision in the design process can lead to cost
over-expenditure associated with machine remanufacture, redesign, and recall. These
unpredictable expenses could result in not only machine profit loss but can also threaten

the successfulness of the commercialization strategy of the machine. Most of today’s DFX
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techniques (e.g., design manuals, manufacturing guidelines, analysis software, and design
checklists) examine the product and process machine design in a unilateral approach e.g.,
centered around machine manufacturing or assembly. In order to have a better
understanding on the main application, advantages, and disadvantages of current
methods/tools and proposed researched method, a summarized matrix including the most
up-to-date techniques in machine design were compared as shown in Figure 1.1. Thus, this
research aims to develop an MDFX multi-stage decision-making framework that can be
implemented in the prefab production machine design development by non-expert
designers who aim to seek for an optimized and flawless design plan. The following

sections provide detailed information related to each of the proposed research motivations.
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Figure 1.1 Comparison Matrix Between Current and Proposed Methods
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1.1.1 A collaborative scheme for DFX techniques mitigated with total design activity
model

Concurrent engineering which seeks to close the gap between design and manufacturing
sectors provides an ideal environment for machine development. It is a systematic approach
to integrate machines holistic concurrent design activities and their related processes.
Competition arising in the marketplace for newly developed machines is driving
modifications in the way machine designers develop production machines (Ahmad et al.,
2015). Thus, to boost the efficiency in concurrent machine development, appropriate
evaluation, and decision analysis tools required to be developed and utilized. Currently,
there is no DFX selection tool available to aid the designer in concurrent machine design
applications. In this research, these challenges are addressed through a comprehensive
qualitative literature review of DFX techniques with their implementation in Stuart Pugh:
Total Design Activity Model (Pugh,1991). Various DFX techniques are mapped and
clustered in a collaborative scheme, interactions and links between them are identified, and
the relative importance weight of each is calculated. A description of a functional DFX
scheme is proposed in this research that can aid designers in establishing lean design
processes for machine development and reveals its potential application in Multi-DFX

fuzzy multi-criteria decision-support system.

1.1.2 Simulating the concurrent interdependencies between Multi-DFX Techniques
in Machine Design Conflict Resolution

The overall performance of a life-cycle phase under investigation can be improved if Multi-
Design for X (MDFX) technique’s design guidelines are applied concurrently. However,

the complexity of selecting MDFX techniques at the conceptual and detailed design stages
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during machine development can increase by uncertain and imprecise knowledge about the
MDFX interdependencies. For many industrial companies, alleviating the design decision
complexity at these stages can have a positive impact on the industry’s competitive market.
Therefore, it becomes crucial to have a robust MDFX tool embedded with conflict
resolution in valuing potential applications to justify their cohesion. Some limitations on
the compatibility between MDFX remain a challenge. The unresolved challenge is how the
information contained within MDFX can be organized such that the implications of design
decisions are proactively evaluated and implemented. To address this challenge, an
efficient decision tool for applying MDFX in the conceptual and detailed machine design
development phases is proposed. In this research, the relative importance of DFXs
guidelines and the essence of the interactions that arise between them are also studied.
Also, a matrix model with multi-layers to simulate the interactions between MDFX is
suggested to resolve the conflict of experts’ opinion and aggregates the decision criteria
layers into a single output. The proposed decision tool shows its effectiveness in the
decision-making process by eliminating MDFX negative interactions and aiding the

designer in shaping the optimal machine design with less development cost and time.

1.1.3 Hybrid FEAM-TOPSIS decision support model for MDFX techniques

Machine design development is critical to designers because most of the design decisions
that can impact the downstream design activities are made in the conceptual and detailed
design stages. Multi-DFX techniques have been developed over the years to boost up the
machine design development efficiency and reduce its total cost and time. The dilemma
addressed in this research is that by applying these techniques concurrently to support

design decisions, they can generate a propagation effect that spans multiple life phases of
6



the machine and influence their performance. However, selecting MDFX can be difficult
due to imprecise and ambiguous machine design requirements. MDFX application is
challenging for two reasons: (1) they have been developed to work independently and with
a different focus; (2) it is challenging to determine how they complement and correlate
between each other, in what arrangement, and where they should be implemented. Thus,
this study proposes a structured hybrid Fuzzy Extent Analysis model (FEAM) aided with
the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model to
illustrate the inter-dependencies relations and the interactions among these techniques
which till date remains absent. The proposed hybrid model is implemented on a real-world
case study, and the results validated its feasibility, applicability, and effectiveness in a

machine development process.

1.1.4 Decision support approach for Multi-DFX trade-off optimization in machine
design: Hybrid genetic and Pareto optimality algorithm

Finding optimal Multi-DFX (MDFX) sets is challenging and time-consuming considering
the vast number of feasible permutations involved (Huang, 1996). To overcome this
challenging task, designers are required to implement effective searching and optimizing
methods in conceptual and detailed phases of machine development (Andreasen and
Olesen, 1993). These emerging methods create an opportunity for the designers in the
design and manufacturing industry to find an optimal MDFX utilization solutions that
minimizes machine design development cost and time while it maximizes the quality. A
practical multi-objective optimization model for MDFX (cost, time, and quality) trade-off
analysis with robust optimization searching algorithms such as genetic algorithms and

Pareto optimality is highly crucial in machine design development.
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Furthermore, the generated search solutions from a financial perspective based on the net
present value and internal rate of return, as concluded by Bendekovi¢ (1993), aggregated
performance metrics and accounts for machine design specific constraints. Thus, a hybrid
model is proposed in this research to find and visualize the optimal solutions for MDFX.
The developments made here provide the designers with an effective hybrid automated
intelligent searching and optimizing tool that can aid them in selecting the desired
utilization solutions for MDFX. This is achieved by maximizing the design development
quality and minimizing the cost and time associated with these options while coupling their

engineering-financial terms.

1.2 Research Objectives

This research is built on the following hypothesis:

“Implementing the developed MDFX multi-stage decision-making framework in prefab
production machine design will support designers in selecting the best DFX techniques for
a particular application, in order to minimize design development cost and time, while
maximizing the design quality, thereby allowing for accurate design decisions and shaping

’

the best optimized design plan.’

To validate this hypothesis, the following research objectives are investigated and pursued:

(1) Development of a functional DFX scheme mitigated with Stuart Pugh: Total
Design Activity Model where various DFX techniques are grouped and allocated

to different phases of the machine development lifecycle.

(2) Development of aggregated matrix model to analyze and simulate the conflict

arising from the application of MDFX in a machine design problem and
8



automatically resolve the conflict of experts’ opinion by simulating the MDFX

interactions with the decision design criteria multi-layers.

(3) Development of a generic multi-objective hybrid optimization model to balance the
allocation and control the integration of MDFX techniques in each design criterion

with a global goal to reduce the design development time and cost.

(4) Development of a hybrid robust optimization search model that analyses the MDFX
searched solutions and generates the optimal trade-off metrics utilization options

for MDFX.

1.3 Thesis Organization

The organization and structure of this thesis are illustrated in Figure 1.2 and consists of six
chapters. Chapter 1 provides a brief background on the current application of DFX
techniques in CE machine design and discusses its trade-off existing limitations followed
by the research motivation and objectives. Chapter 2 presents an extensive qualitative
literature review on DFX techniques in the product total design activity model and propose
a collaborative DFX scheme. Chapter 3 describes a simulating tool that can locate and
resolve the conflict arises from the application of MDFX in a problem context. Chapter 4
formulate the selection and ranking hybrid model for MDFX based on the fuzzy set theory
and TOPSIS method. Chapter 5 propose the trade-off analysis model for MDFX
performance metrics and calculate its relative economic values. Finally, Chapter 6
summarizes the general conclusions and presents the research contributions, limitations,

and future research roadmap.



Research Chapters
Gap Background

Research
Objectives

Qualitative Literatire
Review
Chapters Collective

Stuart Pugh Conclusion

Relative Importance
Model

Weight Analysis Research

Limitations

Chapter
6

DFX Design
—__ Research

Contributions

DFX Scheme DEX Design

Chapter
3
DEX Rankingwrt Future Research
Road Map
Importance Factor
MDFX Conflict Resolution
Matrix Model
Design Experts
Tnpuis Using LV MDFX Alternatives
Ranking Using TOPSIS
Chapter Method
MDEX Alternatives Weighting / 4
Using Fuzzy Extent Analysis Method MDFX selection
hierarchical structure
Fuzzy-TOPSIS Hybrid Model Gd Procedure
Selection and Ranking of MDFX /

MDFX Time-Cost-Quality
Fitness Functions

Chapter
5

NPV/IRR
Economic Analysis

Pareto Optimality
Concept

GA-Pareto Hybrid Model
MDFX Utilization Optimization and
Trade-off Analysis with Economic Perspective

Figure 1.2 Thesis Organization Data Flow Diagram

10



Chapter 2 : A collaborative scheme for DFX techniques mitigated with total design
activity model !

2.1 Introduction

Research conducted by Guangleng and Yuyun (1996) has concluded that the early design
stages of the machine development process are the most influential determinant of machine
total cost. By contrast, prototyping, production, manufacturing, and maintenance
considerations contribute to a higher percentage of the total machine cost. Concurrent
engineering (CE) aims to exploit opportunities for machine design improvements at each
phase of the machine lifecycle by integrating machine design and their related process
development so that the percentage of the redesign is minimized. The success of the
machine design depends on the accuracy of design decision making. Also, in the early
phases of machine development, the production cost is minimized when accurate decisions
are implemented. CE offers the designer the ability to select multiple design decision tools
spanning all production processes, which can widen the designer's technical overview of
the machine development stage. However, poor tool selection may lead to deficiencies in
machine development time, quality, and cost (Ahmad et al., 2014). The main difference
between traditional and CE is that the latter regard machine development as an integrated,
systematic, and the concurrent process of continuous improvement. A significant challenge
of CE is to make correct decisions at the early stages of machine development when

committed costs are still low, and design information is vague. Therefore, in CE the design

! The manuscript presented as Chapter 2 of this thesis was submitted to the 2019 Modular and Offsite
Construction Summit, at the time of publication of this thesis.
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activities costs are higher in the early stages of machine development. However, compared
with traditional sequential engineering, development times are shorter, and thus the total
cost is lower. Figure 2.1 Machine Development Stages illustrates the cost impact of CE, as
explained by Veryzer (2005), of the machine value of design throughout each product
development stage. Although the shortcomings of traditional sequential engineering and
the advantages of CE in machine development are well established in the literature, though,
as discussed by Fujimoto and Clark (1991) and by Clausing (1993), the transformation
from a problem-prone sequential engineering paradigm to a problem-free CE environment

remains a challenge.
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Figure 2.1 Machine Development Stages

The general purpose of implementing CE as explained by Guangleng and Yuyun (1996) in
the machine design development is to improve quality, reduce cost and cycle time, and
increase flexibility, productivity, and efficiency. It is intended to stimulate designers to
consider all elements of the machine lifecycle in the early stages of the design. Figure 2.2

Machine Design Model in CE represents the machine design model in CE and explain the
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link between the design elements and the process. Numerous methods and tools have been
developed to ease the implementation of CE in machine design. Among these methods is
Design for X (DFX) techniques, where X stands for a specific life phase (e.g., manufacture,
assembly) or virtue that the machine should possess (e.g., quality). However, these methods
are usually not standardized, and in most cases, they have contradicting rules and results
between them if applied in a design problem. Designers can achieve design goals, explore
constraints, overcome difficulties, and consider the ramifications of their decisions early in
the machine lifecycle when DFX techniques are implemented (Ahmad et al., 2014). The
main DFX functionality accomplished by DFX techniques and their users’ “designers” is
summarized in Figure 2.3 where the first four functions and the second five functions are
carried out mainly by designers, although few of these functions are achieved by them to

some extent.
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Figure 2.2 Machine Design Model in CE
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Figure 2.3 Main DFX functionality

2.2 Methodology

CE requires a holistic and systematic view of the machine design development process, so
DFX techniques should be integrated and applied with a broader perspective and not
applied in isolation. However, the relationships and interdependencies between DFX
techniques and their links to the design process have garnered little attention in the
literature. In this research these challenges are addressed through a review of various
existing DFX techniques with potential applications at different stages in the total product
design activity model is conducted. Based on the conducted literature review, the research
work includes: (1) Mapping and clustering of the DFX methods utilized in Stuart Pugh
Model, (2) a scheme which describes the interactions, links and interdependencies among
DFXs tools, and (3) the relative importance weight calculations of different DFX
techniques to guide/aid designers in selecting the most applicable ones for implementation

in machine design.
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2.2.1 Mapping existing DFX techniques

The various DFX techniques related to this study are presented in this research, and they
are interrelated to various degrees. Research results are filtered and grouped with the main
objective of generating a list of the most applicable DFX techniques related to machine
design development and their characteristics from the literature. DFX techniques can be
classified and arranged based on their: (1) purpose or goal, (2) scope, (3) character, and (4)
focus. Figure 2.4 DFX categorization maprepresents the DFX categorization map

developed during this research to facilitate the literature review findings.

DEX Technique DFX

. Eco-
et
Chaﬂder Le“el
[ 1 [ 1 [ 1 [ 1 [ 1 [

Internal ‘

Focus Level Internal External Internal External Internal External External External Internal External

Internal ‘

Figure 2.4 DFX categorization map

The scope of DFX implementation can span the product, system, ecosystem level, or a
combination thereof (Chiu and Kremer, 2001). The product scope level focuses on the
machine aspects which is an approach to designing a product such that the product design
is instantly transitioned into production, manufactured at minimum cost with the highest
quality (Chiu and Okudan, 2010). Fabricius (1994) proposed a set of general machine
design guidelines to enhance the link between the design and manufacturing stages using
a three-dimensional model. Different from the guidelines above, which are metric-based,

Stoll (1988) described thirteen DFM guidelines that are strategy-based and practice-
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oriented. The system scope level focuses on the integration and manages the degree of
coordination between different aspects of the machine value chain. The eco-system scope
level referred to as green design, meanwhile, entails applying machine design engineering
methodologies with the embodiment of a natural system to promote the effort in reducing

greenhouse gases emissions.

Table 2.1 DFX techniques categorization

History and Overview of Design for X (DfX) Techniques
DFX A Stuart Pugh: Total Design Activity Model Scop Ch Focus| Ref
Design For Main Objective Specs. |Concpet |Detailed| Manuf: Sell e
Cost (DFC) Minimize lifecycle costs 1,3 34,5 34,5 1,3.4,5 3 |AB,C| X I [Unal & Dean (1992)
Manufacturing (DFM) Minimize production costs 1,3 1,23 1,3.4 1,3 A Y 1 |Stoll (1988)
Assembly (DFA) Minimize production costs 3 34 3 A Y I [Nofetal. (1997)
Manufacturing & Assembly (DFMA) |Minimize production costs 1,3 1,34 1,34 1,3 A Y 1 |Boothroyd (1994)
Variety (DFV) Minimize obstacles for inovation 3 3 3,5 3,5 A XY 1 |Martin (1999)
Quality (DFQ) Maximize product quality 1 1,34 1,3.4,5 1,3,4,5 3 A X LE |Fr hini & Rossetto (1997)
Six Sigma (DFSS) Minimize variations and defects 1,3 13,5 A XY 1 |Harry & Schroeder (2000)
Quality Manufacturability (DFQM) _|Improve product quality 1 1 3 A XY 1 |Das et al. (2000)
Reusability (DFRE) Minimize obstacles for inovation 3 3 A X I |Cowan & Lucena (1995); Torroja et al. (1997)
Disassembly (DFDA) Minimize environmental impact 1,3 1,3,5 A Y I _|Zussman et al. (1994); Zhang & Kuo (1996)
Reliability (DFR) Minimize failure percentage 1,5 1,5 A X 1 [Lalli & Packard (1994); Pecht (2007)
Testability (DFT) Minimize failure percentage 1,345 1,345 A X 1 |Williams & Parker (1982); Pettichord (2002)
Obsolescence (DFO) Minimize supply chain costs 3 3 A Y I |Singh & Sandborn (2006); Sandborn (2013)
Maintainability (DFMAI) Minimize cost of ownership 2 2 A X I_|Tortorella (2015)
Serviceability (DFSE) Minimize cost of ownership 2 2 A X 1 |Dewhurst (1996)
Robustness (DFRO) Minimize cost of production 1,3 1,3 A X I |Yu & Ishii (1998); Knoll & Vogel (2009)
End-Of-Life (DFEL) Minimize environmental impact 1,3 1,34 1,34 A Y E _|Allenby & Graedel (1993)
Remanufacture (DFRem) Minimize obstacles for inovation 1,3 1,3 A Y I [Hatcheretal. (2011)
Failure Modes (DFMEA) Minimize failure percentage 1,2 1,23 A Y 1 |Cutuli et al. (2006)
Material Substitution (DFMS) Maximize 1,3 4 A X I |Ljungberg (2005)
Modularity (DFMO) Minimize obstacles for inovation 1,3 3 A X 1 |Erixon (1996)
Affordances (DFAF) Maximize customer satisfaction 1,34 1,3 4 A X 1 |Maier & Fadel (2001)
User Empowerment (DFEM) Maximize customer satisfaction 1,3.4 34 A X E [Ladner, R. E. (2015)
Lifecycle (DFLC) Minimize lifecycle costs 1 1,34 1,34 1,34 1,34 B Y E__|Chiu & Okusan (2010)
Transportability (DFTR) Minimize supply chain costs 1,34 3 B Y E [Dowlatshahi (1999)
Mass Customization (DFMC) Minimize obstacles for inovation 1,3.4 4,5 345 3 B Y E |Tseng & Jiao (1998)
Adaptability (DFAD) Minimize obstacles for inovation 134 B X I |Guetal. (2016)
Lean Six Sigma (DFLSS) Minimize environmental impact 1,3 13,5 13 B,C Y E _|Jugulum & Samuel (2010)
inability (DFS) Minimize environmental impact 1 1.3 134 1,34 C X E _|Bhamra & Lofthouse (2007)
Recyclability (DFREC) Minimize environmental impact 13 13,5 C Y E [Gaustad et al. (2010)
Energy Recovery (DFER) Minimize environmental impact 1,3 C X E _[Ljungberg (2005) ;Desmet (2015)
Logistics (DFL) Minimize supply chain costs 1 4 4 B Y E__[Mather (1992)
Network (DFN) Minimize supply chain costs 3 3 3 3 4 B Y E [Maltzman et al. (2005)
Supply Chain (DFSC) Minimize supply chain costs 1,5 13,5 1,3,5 4 B Y E [Lee & Sasser (1995)
Environment (DFE) Minimize environmental impact  (1,234,5| 1,234 [ 1,234 1234 C X E _|Fiksel & Wapman (1994), O'Shea (2004)
Classifications: 1= Guidelines, 2= Checklist, 3= Method, 4=Metrics, 5= Math Model
Scope: A= Product, B= System, C= Ecosystem
Character: X= Virtue, Y= Lifecycle
Focus: I= Internal, E= External

According to Holt and Barnes (2010), "character" in this context refers to the framework
of reference that a DFX technique requires: whether the development is centered on a
certain virtue of the product, or a certain characteristic of the functional system in which it
is embedded. In this respect, DFX techniques are divided into two groups: those that

optimize the machine with respect to a virtue (cost, quality, etc.), and those that optimize
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the machine with respect to a lifecycle phase (manufacture, assembly, etc.) (Van Hemel
and Keldmann, 1996). These are labeled as DFXvirtue and DFXlifephase, respectively.
Radziwill and Benton (2017) note that DFXvirtue techniques do not represent which
virtues a machine should have but provide methods to check how well a design satisfies a
given virtue. DFXlifephase techniques, meanwhile, help in ensuring that the influence of
the whole machine lifecycle phases on the targeted performance is considered. They also
explain that the focus is on the degree to which the DFX assimilates the stakeholder's
requirements and preferences. Externally-focused DFX methods target supply chain needs,
while internally-focused methods target machine specifications, production process

requirements, and the type of service.

DFX methods are categorized into five main groups arranged in increasing level of
complexity and importance: guidelines, checklists, metrics, mathematical models, and
methods (Becker and Wits, 2013). Guidelines provide the guidance and advise required at
each design phase. Checklists provide a list of items that need a "Yes"/"No" response and
make judgments to verify designs. Metrics may involve both guidelines and checklists but
can be presented in quantitative terms. Mathematics models include computational
equations and scientific formulas that have been validated. Finally, the methods provide
users with the design of systematic hierarchy structures and implementation procedures.
Table 2.1 summarizes the clustering and categorization of 36 DFX techniques considered

in this research based on the proposed methodology.
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2.2.2 DFX relative importance weight analysis

The research is focused on two stages from the machine development lifecycle: the
conceptual and detailed design stages listed under the Stuart Pugh: Total Design Activity
Model. The reason for selecting this model among the various design methodologies is that
it covers the entire lifecycle of machine development. A scientific database of contributions
in the field of DFX and machine design is extracted from various repositories such as "Web
of Science" and "Science Direct." The assumption is that the greater the number of
publications focused on a given DFX technique in the field of machine development phase
is, the higher the influence of that technique is. A CiteSpace II software is used to carry out
the systematic mapping studies from the scientific database (Chen et al., 2010). It takes the
input of the selected publication list and gives the systematic bibliographic analysis of
keywords, citations, and publication. In the below-presented method to evaluate the
importance weights, the focus is on the number of contributions published during a specific
time interval for a given DFX technique. The analysis of the resulting data helps to derive
importance weightings of a given DFX technique relative to other techniques published in
the same period. For this purpose, the weighted average method is deployed to convert
these numbers into weightings and to generate a ranked list. A weight is computed by the
frequency of occurrence in a dataset, where the frequency is the number of publications
multiplied by the importance weight associated with each period in the dataset from Table
2.2. The assumption here is that the importance of weight will increase as the period
progresses toward the present year. This practice allows for more recent publications to
receive more weight relative to older publications. The weighted average of publications

is calculated by the following standard equation (2.2.1.1).
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Importance Weight*Frequency

Weighted Average= (2.2.1.1)

XZFrequencies

where: Pprx = Frequency of publications related to DFX technique in a specific time
period; n= Total numbers of DFX techniques; i= Lower year interval; j= Higher year

interval.

The weighted average of the DFX for a specific time interval is calculated as follows:
Woprx = H{ Pprx x Importance Weight (2.2.1.2)
The total weighted average of the DFX for a specific time interval is calculated as follows:
Weprx = Z{ W, ek (2.2.1.3)

The percentage relative total weight of a specific DFX with reference to all other DFXs is

calculated as follows:

Weprx = o PDEX (2.2.1.4)

n
i=1 WpPDFx

Table 2.2 Importance weight associated with each period

Importance Weight (0-1) Papers Period (Years)
0.05 <1995

0.075 1996 <Y <2000

0.1 2001 <Y <2005

0.15 2006 <Y <2010
0.225 2011 <Y <2015

0.4 Y >2016
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Table 2.3 DFX techniques with their relative importance weight index

Historical Distribution of the Research Effort of DfX tools Weighted Average Calculation
%
Wpdfx<|1995<Wpdfx|2001<Wpdfx|2006<Wpdfx|2011<Wpdfx Wpdfx>| Total |Relative
Design For Time Period|Before 1995|1996-2000|2001-2005|2006-2010 | 2011-2015 | After 2016| Total| 1995 <2000 <2005 <2010 <2015 2016 |Weight| Total
2 2 2 @ @) @) (3) | Weight

)
Cost (DFC) 12 7 14 18 23 8 82 0.60 0.53 1.40 2.70 5.18 3.20 13.6 1.7
|\ ing (DFM) 53 76 119 205 187 113 753 | 2.65 5.70 11.90 30.75 42.08 4520 | 1383 | 175
Assembly (DFA) 63 77 71 15 11 2 239 | 3.15 5.78 7.10 225 248 0.80 216 2.7
M ing & Assembly (DFMA) 0 0 0 3 2 3 8 0.00 0.00 0.00 0.45 0.45 1.20 2.1 0.3
Variety (DFV) 0 0 5 16 13 1 35 0.00 0.00 0.50 2.40 2.93 0.40 6.2 0.8
Quality (DFQ) 25 26 21 30 37 12 151 1.25 1.95 2.10 4.50 8.33 4.80 229 29
Six Sigma (DFSS) 0 6 39 60 68 15 188 | 0.00 0.45 3.90 9.00 15.30 6.00 34.7 4.4
Quality ability (DFQM) 1 2 0 0 0 0 3 0.05 0.15 0.00 0.00 0.00 0.00 0.2 0.0
Reusability (DFRE) 0 3 5 1 2 0 11 0.00 0.23 0.50 0.15 0.45 0.00 1.3 0.2
Disassembly (DFDA) 13 37 52 45 48 32 227 | 0.65 2.78 5.20 6.75 10.80 12.80 39.0 49
Reliability (DFR) 47 32 69 123 176 65 512 | 235 2.40 6.90 18.45 39.60 26.00 | 957 12.1
Testability (DFT) 218 261 228 293 264 101 1365| 10.90 19.58 22.80 43.95 59.40 40.40 | 197.0 249
Obsolescence (DFO) 0 0 1 0 3 0 4 0.00 0.00 0.10 0.00 0.68 0.00 0.8 0.1
Maintainability (DFMAI) 17 5 5 7 9 10 53 | 085 0.38 0.50 1.05 2.03 4.00 8.8 1.1
Serviceability (DFSE) 1 1 2 3 2 5 14 | 0.05 0.08 0.20 0.45 0.45 2.00 32 04
Robustness (DFRO) 1 3 9 8 18 8 47 0.05 0.23 0.90 1.20 4.05 3.20 9.6 1.2
End-Of-Life (DFEL) 0 2 8 7 5 9 31 0.00 0.15 0.80 1.05 1.13 3.60 6.7 0.8
R (DFRem) 0 7 3 2 8 1 21 0.00 0.53 0.30 0.30 1.80 0.40 33 0.4
Failure Modes (DFMEA) 1 0 0 0 0 0 1 0.05 0.00 0.00 0.00 0.00 0.00 0.1 0.0
Material Substitution (DFMS) 4 0 1 5 10 3 23 | 020 0.00 0.10 0.75 225 1.20 45 0.6
Modularity (DFMO) 0 1 6 3 4 1 15 | 0.00 0.08 0.60 0.45 0.90 040 2.4 0.3
Afford: (DFAF) 0 0 0 0 3 0 3 0.00 0.00 0.00 0.00 0.68 0.00 0.7 0.1
Empowerment (DFEM) 3 1 1 1 2 0 8 0.15 0.08 0.10 0.15 0.45 0.00 0.9 0.1
Lifecycle (DFLC) 0 2 1 3 2 1 9 0.00 0.15 0.10 0.45 0.45 0.40 1.6 0.2
Transportability (DFTR) 1 2 0 0 0 0 3 0.05 0.15 0.00 0.00 0.00 0.00 0.2 0.0
Mass Ci ization (DFMC) 0 4 6 11 10 2 33 | 0.00 0.30 0.60 1.65 225 0.80 5.6 0.7
ity (DFAD) 1 0 0 S 7 4 17 0.05 0.00 0.00 0.75 1.58 1.60 4.0 0.5
Lean Six Sigma (DFLSS) 0 0 0 1 2 0 3 0.00 0.00 0.00 0.15 0.45 0.00 0.6 0.1
Sustainability (DFS) 2 6 20 35 104 83 250 | 0.10 0.45 2.00 5.25 23.40 3320 | 644 8.1
Recyclability (DFREC) 5 4 5 2 2 1 19 0.25 0.30 0.50 0.30 0.45 0.40 22 0.3
Energy Recovery (DFER) 0 0 1 1 0 1 3 0.00 0.00 0.10 0.15 0.00 0.40 0.7 0.1
Logistics (DFL) 1 3 1 3 5 1 14 | 0.05 0.23 0.10 0.45 113 0.40 2.4 0.3
Network (DFN) 3 5 8 16 33 11 76 | 0.15 0.38 0.80 240 743 4.40 15.6 20
Supply Chain (DFSC) 1 0 2 7 9 24 0.05 0.00 0.20 1.05 2.03 2.00 53 0.7
Environment (DFE) 26 109 153 112 85 39 524 1.30 8.18 15.30 16.80 19.13 15.60 76.3 9.6

2.3  Results and Discussions

From Table 2.1 it can be observed that comparably few techniques have been developed
over the years for the early machine design stages relative to the later stages. This can be
related to the fact that the physical variables of the machine being designed in the present
case are still undefined. On the other hand, most of the machine-related DFX techniques
are focused on the conceptual and detailed design phases, while system-related techniques
concentrate on detailed design. Moreover, ecosystem-related concepts apply to all five
design phases. The machine design environmental factor is becoming one of the main
requirements in the conceptual and detailed design stages, and, because of environmental
considerations, some machines are redesigned. Also, it can be concluded that the detailed
methodologies for DFM, DFA, DFQ, and DFV have been proposed, while, for DFS and

DFSC, there are only applicable guidelines and mathematical models available. The
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proposed categorization describes and specify the different structures type in a DFX
technique; however, it fails to explicitly express which design activities should be
addressed first and which of the techniques nor their implementation order so that they

fulfill the machine design intent.
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DFT DFM DFR DFE DFDA DFSS DFQ DFA DFN DFC DFRO DFMAI DFEL DFV

Figure 2.5 DFXs relative importance weight distribution percentage

In this research, a relative importance weight index is proposed to indicate the amount of
effort spent by the researchers on a given DFX technique. In the left pane of Table 2.3, the
number of published papers for each DFX technique in 5-year increments is tabulated.
From the resultant table, it can be concluded that the interest rises for Assembly in 1996-
2000. Then, Environment emerges as a vital DFX technique for the 2001-2005 interval.
After 2005, Testability and Manufacturing garner increasing attention. Furthermore, the
focus of research work is found to shift from the product scope to the system and then
ecosystem after 1995. Also, a misleading conclusion could be drawn from the matrix if a

weighting system is not implemented for the published papers. Figure 2.5 represents the
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generated ranked list, where DFT and DFM have recorded higher levels of importance

(24.9%, 17.5%) in comparison to DFEL and DFV (0.8%), respectively.

2.4  Conclusion

This research summarizes findings based on a comprehensive literature review of various
DFX techniques in the broad area of machine development. A clustered collaborative
scheme was proposed housing thirty-six DFX techniques, revealing their links and
interdependencies across five machine design phases. Moreover, the quantitative research
on the maturity of DFXs across the years shows that the combined relative importance
percentage allocated with top-ranked 15 DFXs (e.g., DFT, DFM, DFR, DFE, etc.) is
94.7%, which signals an increased level of importance and preparedness of these most

effective, efficient, and versatile DFX techniques for machine design development.
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Chapter 3 : Simulating the concurrent interdependencies between Multi-DFX
Techniques in Machine Design Conflict Resolution?

3.1 Introduction

The implementation of MDFX in concurrent engineering machine design can result in
contradictory and conflicting conclusions and recommendations for the designer’s design-
making process. Several independent studies have started to investigate and analyze these
contradicting interactions by using various frameworks developed by Watson that can
quantify the MDFX usefulness by design phase (Watson et al., 1996). They concluded that
MDFX, depending on where they are implemented during the machine development
process, have a varying impact threshold. Whereas Willcox and Sheldon realized that the
implementation of Design for Assembly methodology is most useful at the conceptual
stage (WILCOX and Sheldon, 1993). Because the tool component analysis is the main part
of the methodology, it is preferred during the machine detailed design stage. The DFA
analysis tool is an unreliable tool to be utilized during the conceptual machine stage
because the design details required to undergo the analysis are not available at this stage.
Hence, if the analysis tool is not effective at the conceptual design stage, then the
alternative will be the benefits that the design guidelines of a specific DFX provide. So, to
minimize the machine redesign possibilities and reduce the cost/time of this activity, the

analysis tool should consider the importance of DFX guidelines.

2 The manuscript presented as Chapter 3 of this thesis was submitted to the 2019 International
Symposium on Automation and Robotics in Construction and Mining (ISARC), at the time of
publication of this thesis.
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Some research was undertaken to investigate how to tackle the conflicting implementation
guidelines of MDFX. Thurston suggests a methodology to model the design decision
results on the interval of a machine life-cycle (Thurston, 1991). A framework was
developed to facilitate the decision-making process through ranking the design alternatives
and calculating design trade-offs. In engineering design, it is a powerful analysis tool for
decision making where multiple criteria and objectives exist. Unfortunately, for most
applications, this method is very complicated and extensively time-consuming for
designers in small to medium-sized organizations. If this ranking method is adopted to
classify the design guidelines, it would be unnecessarily tedious because the model used
by Thurston is to some extent more complicated to implement than what is required for
this application. A simpler and faster method for trade-off analysis between MDFX is to
implement a matrix approach. Meerkamm concludes that if MDFX techniques are to be
utilized in a problem context, then their design guidelines will often contradict and
constrain the design output (Meerkamm, 1994). Consequently, as explained by Watson et
al., finding an optimal solution is becoming a difficult task for designers (Watson, 1996).
As the design guidelines tend to be the DFX toolbox’s most flexible aspect, they accurately
indicate the nature of the DFX interactions and links between them and their concurrent

interdependencies in ultimately finding an optimal design solution.

It is important to evaluate the application of MDFX in machine design development
comprehensively. But due to the absence of information in the conceptual machine stage,
problems and conflicts can arise when MDFX techniques are employed. This is because of
a lack of information and vague objectives, which interfere with the designer’s ability to

evaluate design decision alternatives precisely. Decisions that emerge from applying one
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DFX technique seem to be good for one phase of the machine life cycle but can conflict
with other life cycle phases. The designer should oversee the concurrent effects of the
decision-making process in machine design. If the previous decisions are based on
inaccurate information, the following design stages will be affected significantly. The
application of MDFX techniques in machine design development requires effective
decision support systems. Given this, a decision support tool that simulates the concurrent
interdependencies between MDFX techniques during the conceptual machine design stage

is proposed in this research.

3.2 Methodology

The methodology presented in this section is based on Watson et al.’s model that uses a
weighted matrix method to exploit the interactions between MDFX (Watson, 1996). The
matrix method is extended to simulate the concurrent interdependencies between MDFX.
The model output provides three useful indices. The first one indicates major areas of
potential conflict occurring between the compared MDFX. The second illustrates how the
value of a specific guideline is modified when interacting with the competing DFX
guidelines. And the third is measuring the DFX techniques in terms of time metrics to

estimate and reliably verify DFX interactions and design decisions comprehensively.

3.2.1 Procedure of the matrix
The methodology for assessing and ranking the DFX’s competing design guidelines
requires six distinct tasks to be undertaken. These tasks are described in the flowchart

presented in Figure 3.1.
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Figure 3.1 Multi-DFX techniques matrix model flow chart

3.2.2 Task 1: Determine DFX overall weight using the analytical hierarchy process
(AHP) method

The first task involves selecting and calculating the overall relative importance (weight) of
the chosen DFX techniques. This can be achieved by calculating the weight of each DFX

technique separately with respect to the design criteria, and then by combining them in an
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AHP model developed by Saaty to determine their relative importance in machine
conceptual and detailed design stages (Saaty, 2008). In general, the relative importance of
a DFX technique varies as to where and when it can be applied during the machine
development process (Ahmad et al., 2014). He concludes that the area where a DFX
technique can be utilized is defined by company and customer requirements, production
capabilities, and industry orientations, in addition to other considerations. The product
design specification (PDS) must be formulated at the beginning of the project based on the
statement of needs before any design activity, as shown in Figure 3.2. Thus, it acts as the
governor for the total design activity model, because it revolves around the boundaries of

each design stage for any machine.
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Figure 3.2 Product design specification (PDS)
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The PDS forms a progressive, evolutionary, and extensive written document that evolves
in consideration of the final machine characteristics. The PDS is then translated into design
criteria that are followed by the design team, and as such, each design criterion will be
associated with one or multiple DFX techniques that can satisfy its requirements. By
adapting the total life-cycle cost/time method developed by Lukasz and Tomasz, the design
team can successfully estimate each DFX technique’s effect with respect to the other, and
those values will be an indicator as to how much each DFX can reduce the development

life-cycle overall cost and time (Lukasz and Tomasz, 2007).

DFX techniques are weighted with respect to each design criterion to generate an overall
general normalized importance weight Wprxc with a total value of 1. From that, the time
required for each design activity Tprxc can be derived under a certain DFX. This weighting
factor will then be adopted in the general model for conceptual and detailed design stages.
The weighting in the AHP model must rely on the designer’s experience and intuition.
Wprxc and Torxc are calculated using Equation (3.2.2.1) and (3.2.2.2), respectively, as

follows:

Costy
Costr

(3.2.2.1)

Whrx =

where Cost = The cost of life-cycle area x; Costr= The combined cost of the life-cycle.

Tprxe = Wprxe x Tt (3.2.2.2)

where Tprxc= The allocated time for a specific DFX in days; 7: = The total time for the

design activity in days.
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3.2.3 Task 2: Generate tree diagram to classify DFX design guidelines

In this section, the machine development process is categorized, and the hierarchical level
of the DFX technique design guidelines is established. Watson, Radcliffe et al. proved that
if DFX decision analysis tools are utilized during conceptual and detailed machine design
stages, they could improve the design performance significantly (Watson et al., 1996).
They also concluded that most DFX techniques fail to give what is expected because they
merely provide the designer with directions on how and when the design rules can be

implemented.

Pugh’s Total Design Activity Model is used to describe the machine development process
(Pugh, 1991). The model phases are 1) user need; 2) machine specification; 3) conceptual
design; 4) detail design; 5) manufacture; and 6) and sales. Though design activities might
not always have to occur concurrently in the sequence outlined by Pugh, his machine
development model provides a detailed structured procedure of all the stages required.
Table 3.1 contains some design guidelines examples which are the most applicable for
machine design development process extracted from the Design for Assembly (DFA)

methodology (Boothroyd and Dewhurst, 1989).

Table 3.1 DFA guidelines per design stage

Specification » Standardize a machine’s style.

* Establish the machine design specification.
Concept Design  * Reduce the number of parts and components.

* Eliminate machine features that do not have any tangible value to

the customer.

* Standardize a machine’s style.

* Using new materials and technologies.

* Rational machine design by modules and product families.
Detailed Design  * Design multi-functional parts.

* Developing the machine features that facilitate the positioning.
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* Avoid costly clamping systems.

Manufacture * Simplicity.
* Adapted tolerances.
* Consideration of process-related design guidelines.

The second task in constructing the model is to organize the DFX technique design
guidelines into a decision tree using a hierarchical structure. Each DFX technique consists
of primary and secondary design guidelines called design rules and design strategies,
respectively. The tree diagram consists of three levels where the first level is associated
with the general DFX tool under study, the second level is associated with DFX design
rules, and the third level is associated with DFX design strategies. Table 3.2 contains an
example of the hierarchical tree using the DFA guidelines during the detailed design phase

(Boothroyd and Dewhurst, 1989).

Table 3.2 DFA detailed design stage guidelines

Design Rules Design Strategies

Reduce the number Reduce unstandardized fasteners.

of parts and their types Eliminate parts that function as connectors and
conduits.

Design multi-function parts.
Do not follow piece-part producibility guidelines.

Eliminate physical Reduce the number of physical parts between the
adjustments machine
input and output functions.
Relocate critically related part surfaces close together.
Implement kinematic design procedures and principles.

Ensure adequate clearance  Ensure adequate clearance for hands, tools, and

and unrestricted vision subsequent process.
Ensure that the vision of the operation is not restricted
or compromised.

Minimize re-orientations Minimize the necessity for reorientations during
and after parts installation.
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3.2.4 Task 3: Determining the weightings levels of the guidelines

The third task requires that the DFX technique design rules and strategies be weighted.
Regarding the weighting levels, they are determined in each phase, which gives the
designer a general design overview of the machine development process. The design rules
weighting, WrR, is determined independently, regardless of the design strategies number
(on a scale of 1 to 10). While the design strategies weighting, Wps, is determined in
proportion to the design rule it corresponds to on a scale of 1 to 10, such that the total
weight summation under design rules is equal to 1. The total weight of each design strategy,
Wrs, is calculated using Equation (3.2.4.1) by multiplying the DFX technique overall
weight, the design rule total weight, and the design strategy proportional weight. Thus, the
total weight of each design strategy can fluctuate between 0 and 1. While the time required
for each design strategy, Trs, is calculated in days using Equation (3.2.4.2) by multiplying
the strategy calculated weight from Equation (3.2.4.1) by the allocated time for the selected

DFX divided by the summation of strategies weight for the selected design phase.

Wrs= Wprxc x Wrr x Wps (3.2.4.1)
Trs= REXCXWTS yopore i=0,1,2.... . (3.2.4.2)
i=oWTs

3.2.5 Task 4: Identifying interactions and links between guidelines

The fourth task involves determining the interactions and links between the strategies and
reporting them inside the matrix model. The severity of any conflicts can be measured from
these interactions. The matrix model can be utilized to compare multiple numbers of
strategies from MDFX techniques. However, the process of finding each relationship

between strategies can become tedious and time consuming for MDFX guidelines. It is
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assumed that not more than four DFX tools and a maximum number of ten strategies per

phase should be adopted in the model.

Table 3.3 Strategies comparison values

R Values Description

+10 Two or more strategies interact positively.
+5 One strategy supports positively the other in a broader scope.
0 No interaction occurs between the design strategies.
-5 One strategy supports negatively the other in a broader scope.
-10 Two or more strategies interact negatively.

From the matrix model, it is possible to pinpoint any conflict between two strategies to
alert the designer that special consideration should be in place when dealing with them.
This is done using the conflict index, CI, which quantifies the severity of the conflict. When
a negative interaction occurs, the equation to calculate the conflict index is employed. The

conflict index constant is calculated using Equation (3.2.5.1) as follows:

Cl=Wrsx Wrs'x R (3.2.5.1)

if CI <-10 then conflict must be examined.

where Wrs= Total weight of compared strategy; R= The comparison value for the two

strategies, as shown in Table 3.3.

3.2.6 Tasks 5 & 6: Generating the ranked list of DFX strategies

The fifth task involves calculating the overall value (V1s) of a design strategy considering
strategies weight and their interactions with each other. The main process is based on the
assumption that each design strategy has a total weighted value (Wrs) and interactions with

other strategies adjust this. The prime factor is a function of the comparison index and the
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compared guideline weight. By summing the prime value over all the DFX interactions, a
global scaler is determined. Equations (3.2.6.1) & (3.2.6.2) calculate the overall value (Vrs)

as follows:

Vis=Wis (1 +J V) (3.2.6.1)

(Wpgr xRxXS)

Ves = Wrs(1+ X 100 )

(3.2.6.2)
where § = =2 if Wyg > Wysand R <0 (3.2.6.3)
TS

S=1 else

where o F=the total prime factor overall strategies and DFX techniques; S= the scaler; 15=

Number of DFX techniques being researched; 100=scaling factor.

In Equation (3.2.6.3), the scaler considers the instances when a low weight design strategy
conflicts with a high weight one. Having determined the total strategy value, a ranked list
can be configured to be implemented in machine development. Any design strategies that
have a negative total value should be ignored because if adopted, then it may lead to a life-
cycle performance reduction due to its conflicting correlations with other strategies. After
generating the ranked list, the redundant design strategies within the competing DFX will
be removed to save time and to eliminate design repetition. However, if both design
strategies match each other in the core objective, then the lesser time duration will be

selected.
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3.3 Validation Case Study

In this section, the focus of the case study will revolve around a part of the multi-function
bridge machine prototype which is the nailing carriage in its conceptual design stage, as
shown in Figure 3.3 and Figure 3.4. As the carriage at this stage is primarily a research
tool, it is assumed that there would be a maximum amount of flexibility and testability
within the variability of the experimental parameters. It also meant that a simple and unique
machine would be designed. As the carriage will be operating in a large area with extreme
precision at a controlled speed, it is apparent that the geometry and versatility of the
carriage are considered as a major design criterion. It is also apparent that because the

vertical force loads are so small, any part stresses would be negligible.

Figure 3.3 3D model of multi-function bridge prototype



From the PDS, the carriage to be designed is to accommodate multiple configurations of
interchangeable tools, such as a nailer, stapler, and screwdriver. This operational
requirement results in the device being partially disassembled and re-assembled after each
operation and for different sheathing configurations. Regarding parts service life, it is
expected that no major parts should fail throughout the device’s life. The final requirement
is that the device is to be designed and manufactured within a very limited budget. The
detailed technical information of the machine development is excluded from this research
for patentability and commerciality of the machine. Instead, some of the case study design
related issues are discussed in broad terms. The timeline to complete the carriage
conceptual design was 60 calendar days. These days are distributed on all 15 DFX

techniques in accordance with their global weighting results.

Figure 3.4 Nailer carriage detailed view
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DFA Design rules and strategy weights by product development phase
Product
Development Design Rules Wore Wi Design Strategies W Wi Tre
Phase
1- Minimize the mmber of parts and levels of assembly 0.3 0.24 0.39
2- Minimize the number of and sul bli 03 0.24 039
1- Minimize the number of parts (Types & Count). 10 3- Reduce product complexil 02 0.16 0.26
4- Eliminate any product features that do not add value to the customer. 0.1 0.08 0.13
5- Design mult-function parts. 0.1 0.08 0.13
. 1- Design products from modular subassemblies so that ot oz o~
k] modules can be scheduled. built and tested independently. - o
7 2- Increase product modularity. 8 -
& 2- Standardize by conmon components, processes and methods toreduce | | 03
g 008 costs across the whole system
g 1- The product must has a suitable base part on which the rest of the i N
z 0.6 0.48 0.78
~ 3- Ensure base part design. o [Reenibly can be buil
N 2- Maximize process yields between base and at each workstation for the 04 032 052
whole assembly system. o o
1- Design the product to be built up in layers. 04 0.26 042
4- Aim for sequential assembly design, 8 2- Components can be added from above and located positively. 0.4 0.26 0.42
3- Reduce the tendency to move during subsequent motions or steps. 02 0.13 0.21
5- Minimize the need for reorientations during assembly. | | 2 1- Minimize the need for reorientations during assembly. 1 0.16 026

Figure 3.5 Design for assembly design rules and strategies for the conceptual stage

DFDA Design rules and strategy weights by product development phase
Product
Development Design Rules Worve L™ Design Strategies Wy Wi Trs
Phase
- 1- Subdivide the product info manageable sub: bli 0.5 0.5 119
E‘ 5 1- Improve the products structure for disassembly. 005 10 2- Minimize the number of comp and sub bli 0.5 0.25 119
28 - 3- Standardize the products style. ] 0.00 0.00
~ 2- Improve the disassembly planning. 2 1- A void long disassembly paths. 1 0.10 048

Figure 3.6 Design for disassembly design rules and strategies for the conceptual stage

This to allocate time for each DFX technique and to study the effect of utilizing the

proposed methodology in the time management of design activities.

Table 3.4 DFX global weighting results with their time allocations in the conceptual
design stage

Global Weighting Associated with Wprxe Tprxe
DFX in relation to each design

criterion in Conceptual Design

Phase

Design for Cost (DFC) 0.228 13.66
Design for Manufacturing (DFM) 0.125 7.49
Design for Assembly (DFA) 0.083 4.96
Design for Variety (DFV) 0.087 5.20
Design for Quality (DFQ) 0.087 5.23
Design for Six Sigma (DFSS) 0.051 3.06
Design for Disassembly (DFDA) 0.048 2.86
Design for Reliability (DFR) 0.058 3.51
Design for Testability (DFT) 0.038 2.29
Design for Maintainability (DFMAI) 0.033 1.96
Design for Robustness (DFRO) 0.036 2.14
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Design for Mass Customization 0.025 1.51
(DFMC)

Design for Sustainability (DFS) 0.044 2.66
Design for Network (DFN) 0.033 2.00
Design for Environment (DFE) 0.024 1.46

In this case, 15 DFX techniques fall under the scope of the conceptual design stage with
their global weighting associated with the PDS that was calculated by adopting the AHP
model. Table 3.4 summarizes the results where the total summation of all DFX weighting
is equal to 1 and where each DFX has a time allocation associated with it. In this research,
two DFX techniques were selected from the list to demonstrate the model functionality:
Design for Assembly (DFA) and Design for Disassembly (DFDA). The DFA technique
selected was developed by Boothroyd and Dewhurst (1989). The methodology has been
refined and upgraded to provide a realistic and reliable design analysis tool with set of
guidelines that are presented in a structured format. The tool follows the same basic
procedures to analyze for manual, automatic and robotic assembly with different input data
tables for the various processes. For this project, the manual assembly method is adequate.
The designed machine would encounter assembly and re-assembly process on a regular
basis. This process has a substantial effect on how the design guidelines are interpreted and
rated. A team of researchers developed the DFDA technique adopted in this case study at
the Manchester Metropolitan University (Simon et al., 1992; Zhang et al., 1993). The
developed technique purpose is focused on the disassembling process to facilitate
reconfiguration. Figure 3.5 and Figure 3.6 contain the list of design rules and strategies for
conceptual design machine development phases for both DFA and DFDA techniques.
Since two DFX techniques are being investigated, only one decision matrix for the

conceptual machine development phase is selected for the demonstration of the comparison
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and ranking process. Figure 3.7 shows the conceptual design comparison matrix for DFA

versus DFDA highlighting the guidelines interactions.

£

e .

= =]

Conceptual Design & £
- 5 2
5 35
DFA Strategies Wrg 0.25 0.25
Minimize the number of parts and levels of assembly. 0.24 5 10 0.0375 0.25 9
Minimize the number of components and subassemblies. 0.24 5 10 0.0375 0.25
Reduce product complexity. 0.16 0 0 - 0.16 11
Eliminate any product features that do not add value to the 0.08 16
customer 0.08 0 0 0 0 i
Design mult-function parts 0.08 0 0 0 5 0.0050 0.08 15
Design products from modular subassemblies so that 0.0250 0.26 5
modules can be scheduled, built and tested independently. 0.26 10 0 0 0 | |
Standardize by common components, processes and methods to 038 2
reduce costs across the whole system. 0.38 0 0 0 )
The product must has a suitable base part on which the rest of the 0.45 1
assembly can be built. 0.48 0 0 0 i
Maximize process yields between base and at each workstation for 0.0050 032 3
the whole assembly system. 0.32 0 0 0 5
Design the product to be built up in lavers. 0.26 5 0 0 5 0.0175 0.26 7
Components can be added from above and located positively. 0.26 0 0 0 5 0.0050 0.26 8
Reduce the tendency to move during subsequent motions or steps. 0.13 0 0 0 5 0.0050 0.13 13
Minimize the need for reorientations during assembly. 0.16 0 0 0 - 0.16 11
0.0624 0.0480 |- oF
0.27 0.26 - 0.11 VT
4 6 17 14 Ranking

Figure 3.7 DFA vs DFDA comparison matrix

3.4 Results and Discussions

As highlighted in the matrix shown above in Figure 3.7, two design strategies have
conflicted, so special consideration must be in place to resolve this conflict before the
ranking procedure starts. However, the conflict occurs, in this case, is when the designer
simultaneously attempts to minimize the need for reorientation during assembly while
attempting to standardize the machine during disassembly. It is assumed that the arising
conflict could be ignored, subject to further investigation, as the conflict index slightly

exceeds the threshold value of ten.
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Table 3.5 summarizes the ranking of the strategies in descending order based on their
respective total value. After analyzing the results, the designer can eliminate from the
ranked list the strategies that are repeated or have the same core objective, while the
strategies with the same ranking order can be implemented concurrently in the design

process to emphasize their relatively equal importance.

Table 3.6 summarizes the modifications after the designer has conducted the analysis. If
both selected DFX techniques were to be applied in standalone mode, then after several
design iterations they will conflict, which would lead to a machine redesign. The redesign
process is a costly and time-consuming activity, and by applying this methodology, the

designer can avoid the pitfall of such activity.

Table 3.5 DFA vs DFDA strategies ranking list in the conceptual design stage (before
analyzing)

DFA and DFDA Strategies in Conceptual Design Stage Ranking List Summary V7rs [Ranked Listl Trs
The product must has a suitable base part on which the rest of the assembly can be built. 0.48 1 0.78
Standardize by common components, processes and methods to reduce costs across the whole system. 0.38 2 0.63
Maximize process yields between base and at each workstation for the whole assembly system. 0.32 3 0.52
Design products from modular subassemblies so thatmodules can be scheduled, built and tested independently 0.26 5 0.42
Design the product to be built up in layers. 0.26 7 0.42
Compenents can be added from above and located positively. 0.26 8 0.42
Subdivide the product into manageable subassemblies. 0.25 4 1.19
Minimize the number of components and subassemblies. 0.25 6 0.39
Minimize the number of parts and levels of assembly. 0.24 9 0.39
Minimize the number of components and subassemblies. 0.24 9 1.19
Reduce product complexity. 0.16 " 0.26
Minimize the need for reorientations during assembly. 0.16 " 0.26
Reduce the tendency to move during subsequent motions or steps. 0.13 13 0.21
Avoid long disassembly paths. 0.10 14 0.48
Design mult-function parts. 0.08 15 0.13
Eliminate any product features that do not add value to the customer. 0.08 16 0.13
Standardize the products style. 0.00 17 0.00
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Table 3.6 DFA vs DFDA strategies ranking list in the conceptual design stage (after
analyzing)

DFA and DFDA Strategies in Conceptual Design Stage Ranking List Summary Vg | Ranked List| Ty
The product must has a suitable base part on which the rest of the assembly can be built. 0.48 1 0.78
Standardize by common components, processes and methods to reduce costs across the whole system. 0.38 2 0.63
Maximize process yields between base and at each workstation for the whole assembly system. 0.32 3 0.52
Design products from modular subassemblies so thatmodules can be scheduled, built and tested independently. 0.26 4 0.42
Design the product to be built up in layers. 0.26 5 0.42|
Components can be added from above and located positively. 0.26 6 0.42
Subdivide the product into manageable subassemblies. 0.25 7 1.19
Minimize the number of components and subassemblies. 0.25 8 0.39
Minimize the number of parts and levels of assembly. 0.24 9 0.39
Reduce product complexity. 0.16 10 0.26
Minimize the need for reorientations during assembly. 0.16 10 0.26
Reduce the tendency to move during subsequent motions or steps. 0.13 12 0.21
Avoid long disassembly paths. 0.10 13 0.48
Design mult-function parts. 0.08 14 0.13
Eliminate any product features that do not add value to the customer. 0.08 15 0.13

If the designer is to apply DFA with 5 days and DFDA with 3 days independently then the
total time required for both will be 8 days. However, if they are applied together, the
redundant design strategies between the two and the conflicted area will be removed and
adjusted before initiating the design activity. Thus, reducing the total time to 6 days with a

difference of 2 days.

Some observations were concluded after applying the matrix model in the case study
mentioned above such as if the value of the conflict index constant exceeds a value of
negative ten, then it can be declared that a conflict of substantial consequences has
occurred, and some considerations are required to resolve it. This conflict can be resolved

and avoided by implementing some tactics as follows:

(1) If the conflict index constant is close to ten, then the resulted conflict could be
ignored and eliminated on the basis that it will create a down weight effect on the

other design strategies in the ranked list.
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(2) Develop and integrate a design methodology after examining the conflict-specific
details to decrease the negative interaction areas between strategies—this is very

useful in areas where partial conflict has been spotted (CI < -10).

(3) The matrix model ranking function will eliminate any two design strategies that

have a large total value difference, and it will eliminate negative values too.

The weighting procedure of any parameter may sometimes be a subjective process, as two
different designers may weigh the same guideline differently. This difference comes from
the usage circumstances, the experience, and interpretation of the designers as to what the
guideline means. However, these differences will not give the user a misleading result

because the guidelines are interpreted according to the designer’s understanding.

3.5 Conclusion

Engineering design is an iterative process of solution generation and evaluation. It requires
a designer to take a forward-thinking and a look ahead approach when finalizing a solution.
In a dynamic environment, a concurrent application of MDFX techniques during the design
process can be organized into multiple stages in which both evaluation and decision are
needed. The main theme of this research was to present the need for a tool that can reliably
estimate and verify the time/benefits of applying MDFX in a harmonized way in machine
design. As a result, a decision support tool that can aid the designer in the decision-making
process when MDFX are utilized will be required. The main feature of a design decision
simulation tool is to enable designers to foresee and explore lifecycle consequences during
the machine design. Also, to provide a structured workflow specifying how and when

MDFX techniques can be applied with the ability to quantify the arising conflict that may

41



occur between them. The tool’s fundamental core is based on the information contained
within the DFX guidelines, which may be classified as either a design strategy or rule so
their interactions can be examined explicitly. Thus, the generation of a ranked list can be
integrated in a time-effective and strategic manner, thereby shrinking the machine design
time by at least 15%. As demonstrated, the MDFX decision tool can be implemented to
serve as a generative decision system that proactively aids the designer in the decision-

making process.
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Chapter 4 : Hybrid FEAM-TOPSIS decision support model for MDFX techniques?

4.1 Introduction

In the last few years, the residential and non-residential off-site panelized construction in
the wood manufacturing industry has experienced a rather dramatic transition from manual
assembly to automatic production line assembly using automated robotic machines. The
rise of new technologies for manufacturing and the worldwide competition between
industry sectors are the two main contributors to this evolution in the off-site panelized
construction manufacturing industry (Ahmad et al., 2014; Malik et al., 2019). The
evolution has stimulated innovation in these manufacturing industries, causing a major
shift in how production machines are designed and manufactured. Customers are interested
in the acquisition of machines that are of high quality, low cost, and superior performance
in a shorter deployment time. The recent marketplace competition for newer production
machines is imposing a transformation in the way designers develop and design machines.
These circumstances generate pressure on companies’ engineering operations to boost the
overall productivity. Also, Farr (2011) stated that approximate up to 75% of the machine
lifecycle cost design decisions are decided in the conceptual and detailed design phases.
One method to fulfill this demand is to increase the efficiency of engineering design
activities, for example, by using computer-aided technologies (CAX) in machine design.
Another method is to apply the concurrent engineering (CE) approach to enhance

coordination amongst machine design development activities.

3 The manuscript presented as Chapter 4 of this thesis is ready to be submitted to the Journal of
Engineering Design.
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During the 1990s, CE emerged as a leading methodology with the aim to improve designed
machine quality and reduce design development time and cost by eliminating or resolving
the problems between product, process, and organization at the early design stages (Gadh,
1996). In this context, the implementation of the Design for X (DFX) philosophy is the
best to be applied because DFX is considered a methodological and proactive technique
for designing machines that focuses on optimizing the benefits over the machine’s
lifecycle. Thus, it is crucial to comprehensively assess the implementation of Multi-DFX
(MDFX) techniques in machine design development. Decisions that emerge from the
application of one DFX technique may have a positive impact on one phase of the product
lifecycle but can conflict negatively with others making the design’s technical feasibility
and the machine business profitability evaluation more challenging for designers
(Meerkamm, 1994). Because multiple DFX techniques operate on different measures for
machine design (e.g., DFA cuts assembly time, while DFM cuts manufacturing time), it is
not evident how the designer can judge and compare these diverse metrics. For every
machine development activity, many design aspects, such as manufacturing, assembly,
quality, ergonomics, robustness, functionality, and modularity have to be considered by the
designer (Meerkamm, 1994), which leads the designer to deal with an increasing amount
of information at the design stage. Thus, it is challenging for the designer to identify the
relevant information to form a decision when MDFX techniques are utilized. Stober et al.
(2009) identifies the fundamental requirements that can be key prerequisites for the
designer to target and focus on during the development process with respect to machine
development cost and time. Design decision-making tools must be developed to assess the

designer decisions across the whole machine lifecycle as proposed by Hubka and Eder
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(1988). Olesen (1992) discuss that performance of lifecycle phases in terms of cost and
time could be influenced by the designer decisions made at the machine’s early design
stages. The majority of design decisions have positive and negative consequences on the
machine development irrespective of whether the designer is knowledgeable or not
concerning these ramifications (Borg and MacCallum, 1996). As a result, Olesen (1992)
suggests that instead of focusing only on the machine function, the designer is invited to
adopt the look-ahead strategy, which focuses on a total life-oriented machine design
approach, to foresee and examine possible improvements in the designer decisions related
to total life issues. This means that designers are forced to consider multiple issues, of
which many of these are outside their domain when dealing with machine development.
Designers are therefore expected to develop solutions that cater to multiple lifecycle issues

when MDFX techniques are implemented.

During the machine development, the designer’s main task is to find and adopt the right
decision-making method and calculate its related process. In a dynamic design
environment, a multiple-criteria decision-making system enables the designer to tackle
complicated design decision problems effectively. A typical multi-stage decision-making
procedure comprises some milestones, as detailed in Figure 4.1. Peilin et al. (2000) suggest
that careful evaluation for appropriate design decisions should be conducted at each design
stage when MDFX techniques are implemented. From a system perspective, MDFX
application in product design is expressed as a process that is characterized by design-
evaluation-re-design (Li and Ling, 2000; Xu et al., 2007). This evaluation process is
considered complicated for many reasons: (1) it is crucial to consider all the design criteria

objectives when designing a machine; however, some of these objectives conflict with one
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another, such as material quality versus material cost, or mass production versus
customization, (2) it is difficult for the designer to quantify and weigh the design objectives
in the machine early design stages due to the absence of information or ambiguous
objectives, and (3) the designer’s inclination towards being subjective makes the evaluation

process more complex.

Initiation Identification Appraisal Assessment Decision

Figure 4.1 Generic multi-stage decision-making support system stages

To cope with this, fuzzy set theory can be implemented to assess and select MDFX
alternatives. However, Haque et al. (2000) stated that the information available for the
designer in the machine design early stages is most likely to be unreliable and fuzzy. With
this said, the design decision problem is now difficult to characterize and structure when
CE methodology is implemented. A design decision-making process can be organized into
several stages in which both evaluation and decision are required. In this research, Fuzzy
Extent Analysis Model (FEAM) aided with Technique for Order Performance by Similarity
to Ideal Solution (TOPSIS) is used to evaluate systematically the MDFX alternatives and
facilitate decision making. With a comprehensive evaluation hybrid model based on FEAM
and TOPSIS, a decision support framework is proposed in this study to facilitate the multi-
stage decision making application for MDFX in conceptual and detailed machine design
development stages. The model generates satisfactory solutions of MDFX combinations

by optimizing their trade-off performance measures (Cost, Time) can be derived. The
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overall focus of this research is to establish a robust decision support system to aid
designers in their design decision-making activities when MDFX techniques are applied to
machine design development. The proposed methodology, developed in Microsoft Excel
(software), is also tailored to model and eliminate the imprecision and linguistic vagueness

when designers investigate their design decisions.

4.2 Literature Review

DFX technology has gone through rapid developments since the earliest research was
published on the three-leading systematic DFA techniques (Boothroyd and Dewhurst,
1983). Youssef (1994) stated that hundreds of case studies on DFX techniques
implementation in machine design have been released, reporting that a significant amount
of benefit has been realized through their use. Another advancement is the important
proliferation in the number and nature of developed DFX tools. Holbrook and Sackett
(1988) listed dozens of research and commercial DFA tools. Huang )1996 (investigated and
listed a wide variation of DFX tools that cover the whole product lifecycle. Such
exponential expansion of DFX techniques in both number and nature is a concrete
indication that interest from industry and academia in DFX is growing. More recent
progress was made in identifying the need for an essential DFX pattern that can be utilized
by the designer to clarify how DFX techniques can be implemented in a design problem
and how they can be altered to create new ones. Andreasen and Olesen (1993) concluded
that a unified DFX framework would overcome multiple design problems and can aid the
designers in their quest to optimize the machine design by facilitating the selection process

of the most applicable DFX techniques for a design problem. Researchers argued that if
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MDFX tools are applied to reach the overall optimum solution, then the design activities
could be optimized. However, without a unified framework, the MDFX integration, trade-
off analysis, and their concurrent interface will be challenging for the designer to achieve.
Various trials have been pursued in the exploration of a generic DFX framework.
Andreasen and Olesen (1990) have investigated the Theory of Dispositions as an analytical
and methodological approach for a generic DFX pattern. Another attempt was manifested
in the formulation of the MFK system, which provides the designer with a workbench for

MDFX integration (Meerkamm, 1993).

There are significant changes taking place in today’s world market due to the advancement
of technologies. Industrial and construction companies are forced to create new machines
for the off-site panelized fabrication industry; therefore, the necessity for a decision-
making tool that can determine the best optimal solution is becoming of high importance
for designers (Martinez et al., 2019; Sarfaraz and Jenab, 2012, 2012). Zhao et al. (2003)
stated that, when designers apply the concurrent machine development process, they will
be forced to make complex design decisions. However, given the essence of these
problems, the research emphasis is on developing support decision tools that focus on
modeling issues (Chang et al., 1993). These tools are utilized by the designer to evaluate
design decision alternatives and facilitate the decision-making process through the
assessment of criteria, sub-criteria, preferences, and alternatives that can be classified into
(1) single-objective decision-making (SODM), (2) multiple criteria decision-making
(MCDM), and (3) other multiple attribute decision-making (MADM) methods. For this
research, the MCDM methods identified by Steuer and Na (2003) will be implemented as

a preferred course of action for the decision-maker. Figure 4.2 represents the heretical
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structure of the most used MCDM methods in various decision-making areas. In this

research, the FEAM and TOPSIS are discussed in detail.

MCDM
Methods

AHP ANP TOPSIS Grey Theory SAW VIKOR PROMETHEE ELECTRE

t L . t . t . PROMETHEE ELECTRE
Fuzzy AHP Fuzzy ANP Fuzzy TOPSIS Fuzzy VIKOR I — I

PROMETHEE || | ELECTRE
II I

ELECTRE
111

ELECTRE
v

Figure 4.2 Hierarchical structure of MCDM methods

To solve complicated design decision issues, designers usually select the Analytic
Hierarchy Process (AHP), which is a dynamic MCDM method. Saaty (1980) pinpoints that
the prominent characteristic of the AHP method is its application limitations such as
ambiguity and uncertainty of the design expert’s opinion, which can be tracked down to
the impressiveness of the designer’s judgment. To overcome these problems and to
improve the uncertainty of the AHP method, several researchers integrate it with the fuzzy
set theory. Klir and Yuan (1996) reported that Zadeh developed the foundation of the fuzzy
set theory through eliminating the vagueness and imprecision in designer’s judgment by
representing the approximate information in mathematical formulas. Thus, the
unquantifiable and uncertain design information can be integrated into a fuzzy decision

model.
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Table 4.1 summarizes the most used types of the fuzzy set theory in design decision
problem-solving. The fuzzy theory can be differentiated from the AHP method by its
ability to track the knowledge vagueness when dealing with qualitative and quantitative
design criteria and in eliminating the designer’s biases and uncertainty when pairwise
comparison judgments’ precise numerical values are difficult to integrate. The fuzzy set
theory operation revolves around its logic, arithmetic, mathematical programming, data
analysis, and graph theory fuzziness. Cheng and Li (1997) resolve the design decision
selection problem by systematically modeling it in a hierarchical structure and by applying
the fuzzy set theory concept to analyze it. Basically, fuzzy methods represent the fuzzy
domain of a problem by using the triangular fuzzy numbers (TFNs) for importance weight
calculation instead of crisp numbers (Petkovic, 2012). However, the main disadvantage of
the fuzzy theory is that the decision model input data, expressed by design experts in
linguistic terms, depends only on the experts’ point of view and technical experience and
thus it can be associated with subjectivity. Tanaka (1982) and Tan et al. (2007) describe an
analog approach to calculate the variation of the expert’s judgment degree of confidence
for quantitative and qualitative pairwise comparison that can be consistent with the fuzzy
degree, A, where a perfect consistency is denoted by A = 1 and deficient inconsistency is
denoted by A = 0. Van Laarhoven and Pedrycz (1983) were some of the first researchers to
implement Fuzzy AHP in a design problem application. They formulated the triangular
membership functions that can be effective for the criteria and alternatives pairwise
comparisons. Afterward, Buckley (1985) has expanded the research by determining the

comparison ratios of the fuzzy priority’s triangular membership functions. Chang (1996)

50



also introduced the fuzzy extent analysis method that maximizes the usage of TFNs and

eliminates the inconsistency and fuzziness in the input data.

Table 4.1 Fuzzy set theory types of information

Groups Information Appearance Process Property Methodology Attitude Solutions
Linguistic Verbal Quantitative  Adapted Complexity Quantitative Tolerance Adapted
Fuzzy Fuzzy Dark Replacement Complexity Transition Indulgence  Complex
White Known Bright Old Order Positive Seriousness  Unique
Grey Incomplete Grey Replacement Complexity Transition Tolerance Multiple
Black Unknown Dark New Chaos Negative Indulgence  Null

Fuzzy set theory becomes difficult and complicated to cope with when many pairwise
comparisons are integrated into the design decision matrix. Thus, TOPSIS method is
usually employed to aid and facilitate the ranking of alternatives, as concluded by Hwang
and Yoon (1981). TOPSIS concept is explained by Wang et al. (2009) where they describe
that the best alternative can be selected by the designer such that it has the shortest distance
from the positive ideal solution (PIS) and concurrently it has the farthest distance from the
negative ideal solution (NIS) (Se¢me at al., 2009). By definition, PIS is the solution where
benefits are maximized, but the cost is minimized. While the NIS is the solution where the
benefits are minimized, but the cost is maximized. Opricovic and Tzeng (2004) stated that
the TOPSIS method converts the qualitative and quantitative design criteria dimensions
into non-dimensional ones. The main assumption of this method is that to determine the
PISs and the NISs of each alternative, each design criteria must have the tendency to
monotonically increase or decrease its utility function importance weight, which is referred
later to be the alternative similarity index (or relative closeness coefficient, RCC). The
RCC is calculated for each alternative by sub-calculating its relative distance to the PIS

and its remoteness from the NIS using the Euclidean distance approach. TOPSIS method
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provides the designer with the alternatives order preference by computing their relative
RCC values. After that, the alternative that has the maximum RCC value is considered the
optimal alternative because it takes in to account the similarity to the PIS as well as the
NIS. A proposed machine decision hierarchical structure featuring Fuzzy-TOPSIS, where

the goal, product criteria, data criteria and the available DFX alternatives are represented

in Figure 4.3.
Level-2 Product | pCr-1 PCr-2 PCr-3 PCr-4 PCr-i
Criteria
Level-3 Data DCr-1-1, DCr-2-1, DCr-3-1, DCr-3-1, DCr-i-1,
. . DCr-1-2 DCr-2-2 DCr-3-2 DCr-3-2 DCr-i-2
Criteria ’ ’ ’ ’ ’
DCr-1-3, DCr-2-3, DCr-3-3, DCr-3-3, DCr-i-3,
"l", lll.o’ llll-, se e l, eevney
DCr-1-j. || DCr-2-j. | | DCr-3-j. | | DCr-3-j. DCr-i-j.
Level-4 DFX
. DFX-1 DFX-2 DFX-3 DFX-n
Alternatives

Figure 4.3 Proposed Fuzzy-TOPSIS machine DFX decision hierarchy

In the past years, DFX techniques have undergone an intensive investigation by
researchers; therefore, many methods and application tools were developed to support the

implementation of these techniques from basic checklists to complex mathematical
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models. Boothroyd et al. (1988) concluded that designers nowadays implement DFX in a
design problem in the following ways: (1) by cross-functional multidisciplinary design
teams, (2) by utilizing specialized design manuals that include do’s/don’ts design rules,
and (3) by applying automated design software. There are advantages and disadvantages
to each of these methods when it is implemented in a design problem, but none of these
methods offer a quantitative measure of MDFX trade-off analysis since payoffs and profits
in a design problem are not easy to model and quantify. However, if MDFX alternatives
are not assessed accurately, the evaluation process can provide the designer with wrong
deductions and hence wrong design decisions (Zhao, 2002). Gupta et al. (1994) proposed
a solution to evaluate MDFX techniques by constructing their multiple critiquing modules
(e.g., fabrication, assembly, modeling, testing) and calculating their total development cost
and time. In their proposed method, the model can detect that a DFX is inexpensive to
implement, but time-consuming, or vice-versa. Maropoulos et al. (2003) also described an
evaluation model to this problem called AMD architecture, in which MDFX techniques are
integrated as one and their development cost and time assessment is calculated. The
generalized framework for MDFX analysis is proposed by Tharakan et al. (2003) which
enables the designer to select the design criterion that best fits the current design stage and
its relative DFX technique. Hazelrigg (1996) concluded in his book that the sole goal of
engineering design in general is to generate profit. The other design objectives are to (1)
minimize design and manufacturing cost, (2) optimize machine quality, and (3) reduce
development time. Thus, the main problem in this research was the development of a model
that can reliably estimate and quantify the metrics of MDFX at the machine conceptual and

detailed design phases. The function of this model is to provide a systematic procedure for
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the MDFX techniques trade-off analysis specifying their impact from development cost

and time perspectives when they are applied in a design problem.

4.3 Problem Description and General Methodology

Which, when, and where a DFX tool should be used remain the unanswered questions for
machine designers. The selection of DFX techniques is not solely linked to their
availability but is linked to the current design problem and the designer’s end goal. The
importance of the application of MDFX techniques is due to their effectiveness in
analyzing the design problem from different aspects. In this case, the research problem is
not which DFX technique to utilize in the design, but rather which DFX technique to begin
with and in what sequence should it be implemented with reference to other DFX
techniques. Logically speaking, the DFX tools that are centered around the machine main
assembly structure should be implemented before those that focus on components and sub-
assemblies (e.g., Boothroyd and Dewhurst (1983)) suggest that DFA should be introduced
to the design problem followed by DFM). The research gap is narrowed to address the two
main problems when introducing MDFX techniques in machine design. The first one is the
design changes that occurs when the designer separately applies a single DFX technique
within each lifecycle of the machine development. If those changes, generated from the
application of this single DFX, are applied in the machine design, they may conflict by the
consecutive DFX techniques changes. The second one occurs when the application of
MDFX enables the designer to foresee all design problems related to one phase of the
machine development process at once and then generates a redesign order based on

suggestions that must be dealt with before even starting the design process.
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Based on these two problems, the intent of this research is to find and extract the best
combination of MDFX techniques for a certain design criterion, which remains a major
challenge for designers as they must examine all MDFX criteria associated with predefined
weights. Therefore, having a hybrid model to incorporate all design experts’ assessments,
design criteria, and DFX alternatives into the decision matrix is becoming crucial. The
model should find the best combination of MDFX techniques without needing to elicit the
subjective and objective design criteria of the utility function. The hybrid model must also
resolve the conflict of design experts’ evaluation with respect to each design criterion. The
main purpose of this research is to develop an intelligent decision process to support the
integration of MDFX techniques in conceptual and detailed machine design concurrent
engineering that not only assesses MDFX interactions and inter-dependencies but also
provides optimized alternatives for designers. The qualitative and quantitative design
criteria are implemented into an MDFX design decision matrix combining the FEAM and
TOPSIS methods in an integrated decision support system. These methods unite the MDFX
aspects and product design specification (PDS) needs for conceptual and detailed machine
design activities systematically. Also, these methods optimize the trade-off analysis of
MDFX integration based on development cost and time metrics. The FEAM is employed
to calculate the PDS qualitative and quantitative criteria weights for MDFX selection
process. This method is meant to present the linguistically ambiguous and incomplete
knowledge. Additionally, TOPSIS is used to rank the MDFX alternatives based on overall
evaluation score. MDFX combinations are generated by implementing a novel hybrid
approach combining FEAM and TOPSIS. The proposed hybrid approach is a strategic
decision-making tool providing the optimal combination of MDFX with reference to the
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design criterion taking into consideration the trade-offs performance metrics covering the
machine’s whole lifecycle. In this research, a machine development multi-stage decision-
making support system framework is proposed, as illustrated in Figure 4.4 and explained
in section 4.4. The focus of this research is on the conceptual and detailed design stage of
the machine development, specifically on the MDFX hybrid engine, and trade-off analysis

which is illustrated in section 4.4.
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4.4 Hybrid FEAM-TOPSIS Model

The proposed framework composed of three parts: FEAM model, TOPSIS model, and the
trade-off analysis model, as shown in Figure 4.5. The designer implements FEAM-TOPSIS
methodology to weigh and rank MDFX alternatives based on experts input during the
conceptual and detailed machine design phases of development. Trade-off model is then
applied to search for satisfactory and optimal solutions of MDFX combinations by
analyzing and optimizing their cost and time metrics. The proposed hybrid approach would
be a strategic decision-making procedure providing insights for implementing MDFX
techniques that aid the designer in the machine development process, while resolving
MDFX conflicts, optimizing their trade-off analysis, and presenting their optimal

combination with reference to the product development phase and its corresponding PDS.
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Figure 4.5 Architecture process diagram of the hybrid model

The aim of this study is to develop a design decision support framework for selecting the
most applicable MDFX combination for conceptual and detailed machine design activities
based on the qualitative and quantitative design criteria under cost and time factors. The
FEAM-TOPSIS evaluation model, which is a combination of the fuzzy extent analysis
method and TOPSIS method, is proposed to evaluate the MDFX alternatives and to

represents the design experts’ preferences. The evaluation model is described in Figure 4.5
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and explained in sections 4.4.2 and 4.4.3. Each model has a distinctive set of steps to be

executed and performed simultaneously.

4.4.1 Preliminary screening and decision maker’s assessment

To establish the preliminary screening process and expert assessment weighted scores, a
structured MDFX selection process model based on PDS or design criteria arise proposed
and illustrated in Figure 4.6. The model registers all design experts’ assessments and
ratings into a final design decision matrix. In order to resolve the conflict of design experts’
opinions with respect to each design criterion, a specific equation need to be derived. A
design expert x has the weight represented by wer which is related to the designer
experience and skill levels listed in Table 4.2. In this study, the weights are the years of

technical experience in machine design and manufacturing for each design expert.
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Design
Criterion-1

Design
Criterion-2

L MDFX Hybrid Model

1
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Figure 4.6 MDFX selection process structure
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Task 1: Determine PDS set

Task 2: Using linguistic variables in Table 4.3, obtain the £ design expert’s opinion (eikj)
to establish the pairwise comparison between design criterion (DC) (i) and DFX technique

() represented by Equation (4.4.1.1).

el = (DFX; 5 DFX; i i=12,....,mj=12,......mk=12,....K} (4.4.1.1)

Task 3: Using Equation (4.4.1.2), multiply the k™ design expert’s opinion (ei"j) by its
corresponding weight based on the number of years of technical experience extracted from

Table 4.2.

elf = efsxwg (44.1.2)
where w¢ = weight of expert x and Ywg = 10.

Table 4.2 Design expert's weight (wy)

Experts Weight (0-10) Expert Design Experience (Years)
0.8 0
1.7 5£Y<I10
2 10<Y<15
2.5 15<Y<20
3 20<Y

Task 4: The design experts’ opinions can differ substantially; therefore, the conflict must

be resolved by using the maximum aggregation function expressed in Equation (4.4.1.3).

DC — DFX,,, = max (ef5) (4.4.1.3)

Task 5: Using Table 4.3, convert the linguistic variables (LV) to triangular fuzzy numbers

(TFNG).
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Table 4.3 The equivalent of linguistic variables to triangular fuzzy numbers (TFNs)

Saaty Nine Point Scale Definition of Triangular Fuzzy Numbers (TFN)

Reciprocal Intensity of Linguistic Term TFN Scale Reciprocal TFN
Intensity of Importance Scale
Importance
1 1 Equally (1,1,1) (1,1,1)
Important
(Eq. Imp.)
1/3 3 Weakly (2,3,4) (1/4,1/3,1/2)
Important
(W. Imp.)
1/5 5 Fairly Important (4,5,6) (1/6,1/5,1/4)
(F. Imp.)
1/7 7 Strongly (6,7,8) (1/8,1/7,1/6)
Important
(S. Imp.)
1/9 9 Absolutely (8,9,10) (1/10,1/9,1/8)
Important
(A. Imp.)
172 2 Intermediate (1,2,3) (1/3,1/2,1)
1/3 4 values between (3.4,5) (1/5,1/4,1/3)
1/6 6 two adjacent (5,6,7) (1/7,1/6,1/5)
1/8 8 scales (7,8,9) (1/9,1/8,1/7)

4.4.2 Fuzzy extent analysis model (FEAM)

In this research, a Fuzzy Extent Analysis Model (FEAM) for MDFX techniques selection
that involves multiple machine design criteria is investigated. The design criteria
importance weights are determined through design experts’ pairwise comparisons
subjective judgment. The latter is represented as TFNs that can eliminate the expert’s
judgment where lack of confidence or ambiguity is noticed. In effect, the FEAM invests in
the expert’s judgments where more coherence or a high degree of confidence can be
spotted. Furthermore, the fuzzy synthetic extent analysis method is adopted to determine

the priority of each decision criterion, alternative, and finally optimize the overall goal.
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The implementation steps are detailed in Figure 4.7 (explained later in details). In the
simplified FEAM method, TFNs are used to register the design experts’ judgments as

represented in Figure 4.8.

Step 1 Step 2
Develop fuzzy Calculate fuzzy Step 3 _
comparison metrics synthetic extent value Determm_e the o
for each criterion comparative superiority
Step 6 Step 5 . Step 4
Multiply normalize Calculate weight vector Select the mini
lues of alternatives and normalize it for etect the minimum
values ot L value of superiority
and criteria each criterion
Step 7
Determine the best
alternative

Figure 4.7 FEAM Approach Flow Map

Uz(x)
A
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1 Imp. Imp. Imp. Imp. Imp.
0.5
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0 1 3 5 7 9

Figure 4.8 Membership Functions Evaluation Scores
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Normally, the fuzzy set theory uses the TFNs to represent the design expert’s assessment
on alternatives with reference to each criterion. If a certain value resides within the
triangular fuzzy boundaries, then that value is represented by a membership function. This
concept facilitates the elimination of the model uncertainty that is sourced to design
experts’ technical judgments in the pairwise comparison matrix. The fuzzy boundaries are
defined by three parameters: / is the minimum value, m is the mode value and u is the
maximum value. The parameters can be expressed using Equation (4.4.2.1) (Chang, 1992;

Chang, 1996) for extent analysis method on FEAM:

x l

———x € [[,m]
m-—1 m-—1
Uz (x) =<4 _*_ _ X x € [m, u] (4.4.2.1)
m-u m-u
0, otherwise

In this research, the Chang (1996) fuzzy extent analysis method is used. The method states
the following assumptions: Let X {x1, x5, X3,....... , Xn}= a DFX design criterion set, and
G{91, 92, 93 -vve--- , 9n} = goal set. Based on Chang’s extent analysis method, each design
criterion is investigated and the extent analysis method for each alternative/goal is

performed. The extent analysis values (m) for each design criterion can be expressed by
Méi for i=1, 2....... nand j=1,2, ....... , m which are TFNs. After defining the signs and

variables meaning, Chang’s extent analysis model can be further explained in the following

seven steps:
Step 1: Develop a fuzzy comparison matrix

It is challenging for the designer to map qualitative design criteria preferences to numerical
estimates; therefore, a degree of uncertainty could exist in one or more pairwise
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comparison values in a FEAM model (Yu, 2002). By using TFNs in the pairwise
comparisons matrix, a fuzzy design decision matrix A = (@;;)n x m can be derived (Tang
and Beynon, 2005). Matrix A = (a;j)n xm 1s initiated by the designer, given that a;; =

(lij,mij,uij) and ai_jl = (1/U,U, 1/‘ml-j, 1/[11), Equation (4422)

In this step, the design expert is tasked to express the judgment of one design criterion over
the another in linguistics terms while focusing on the overall goal. Each fuzzy membership
function is expressed by three parameters of the symmetric TFN, the low point, mode point,
and high point over which the membership function is defined. The comparison matrix is

developed from the user input TFNs as illustrated in Equation (4.4.2.2).

(11,1 (b2 My ug2) - (b Min, Uin)
A= (a;) = |21, M1, Uz1) : :
(lnlrmnlrunl) (anJngJunZ) (1;1;1)

(44.2.2)
Step 2: Determine fuzzy synthetic extent value
This can be calculated using Equation (4.4.2.3).

j= j=

Se =20t Zéi O[Xi=1 X 1Zéi]_1 (4.4.2.3)

where TFNs are denoted by Z! (i=1, 2..., n). The value for i criterion of ¥, Z! is
calculated by adding the n extent analysis fuzzy values by using fuzzy addition operation

illustrated in Equation (4.4.2.4).
12t = Qi1 Zin, X1 Zip Xien Zis) (4.4.2.4)
Step 3: Calculate the comparative superiority

The comparative superiority of one TFN over the other is formulated as follows:
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To find the DFX degree of possibility, two TFNs Z; = (I3, my,uy) and Z, = (l,,m,,u,)
are selected. The DFX degree of possibility declares that Z, > Z; as described in

Equations (4.4.2.5) and (4.4.2.6).

V(Z; 2 Zy) = sup[min (llz1 (X)’ﬂzz )] (4.4.2.5)
and can be equivalently expressed as explained by Chang (1992) as follows:

1, ifmy=2my

[ >
V(Z, = 7)) = hgt ([Z1 N Zy] = iz, (d) = 0, ifl=u (4.4.2.6)

li—u .
L= ,otherwise
(ma—uy) — (m1—-1y)

where d denoted as the ordinate of D which is Z1 and Z2 intersection point (refer to Figure

4.9).

V(Zy 2 Zy) A

L, myl, d Upymy Uy

Figure 4.9 The intersection point between Z1 and Z2

Step 4. Select the superiority minimum value
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The degree of probability for a fuzzy number i that is greater than j fuzzy numbers Z; (i=1,

2 , j) can be represented by Equation (4.4.2.7).

V(Z=2Z2Z;,...... Zy) =VI[Z= and....and (Z = Z)|=minV (Z =2 Z;),i =
1,2,3,....... k (4.4.2.7)
Assuming that

d (DFXA;) = minV(S; = S¢)] fork=123,....... n k+i (4.4.2.8)

where DFXA is the DFX alternatives for i selected fuzzy number

Step 5: For each design criterion, calculate the weight vector and then normalize it

After that, the weight vector can be calculated by using Equation (4.4.2.9).

W' = (d'(DFXA,),d '(DFXA,),....... , d'(DFXA )T (4.4.2.9)
where DFXA; (i=1,2,...... n) = are n elements.

while the normalized weighted vectors are calculated using Equation (4.4.2.10).

W = (d(DFXA,),d(DFXA,),....... ,d(DFXA, )T (4.4.2.10)
Step 6. Multiply normalize values of DFX alternatives and design criteria

After finding the design criteria and the DFX alternatives normalized weights in step 5, the
final scores for each DFX alternative are calculated by multiplying each DFX alternative

weight with its related design criterion.

Step 7: Determine the best DFX alternative
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Based on these results, the DFX alternative with the highest final score is presented to the

designer and a list of MDFX is generated.

4.4.3 TOPSIS model

In this study, TOPSIS method was proposed to evaluate the rankings obtained from the
FEAM model and its procedure is illustrated in Figure 4.5. TOPSIS analyzes a multiple
criteria decision-making (MCDM) problem as a geometric complex system. The output
results obtained from FEAM model are imported as input weights in TOPSIS model. The
TOPSIS model provides the designer with consistent and systematic criteria assessment,
which can be related to the selection preference of the best DFX alternative that have the
shortest relative distance from the PIS and the farthest relative distance from NIS. TOPSIS,
by considering an ideal and a non-ideal solution, the model can help the designer in
evaluating the MDFX ranking list and in selecting the best combination. Therefore,
TOPSIS assumes that there are m DFX alternatives and n design criterion where the
corresponding score of each DFX alternative with respect to each design criterion can be
determined by following the six-step method as described by Wang et al. (2009) and

explained below.

Step 1: Normalize the decision matrix values (Yj) extracted from Table 4.4 are converted

to normalized values (/) using Equation (4.4.3.1):

N:: =

Yij
iy - )
my2
,’Ei Y

Table 4.4 Alternative assessment fuzzy ratings for linguistic variables

i=1,2, com; j=1,2, . (4.43.1)

Definition of Linguistic Term Triangular Fuzzy Numbers (TFN)
Very Poor (VP) (1,1,3)
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Poor (P) (1,3,5)

Fair (F) (3,5,7)
Good (G) (5,7,9)
Very Good (VG) (7,9,9)

Step 2: Determine the normalized weighted value (v jj), using Equation (4.4.3.2):

vij = W]Nl]’ izl, 2, ..... ,m,‘j=1,2, ...... n (4432)

where w; can be defined as the j” design criterion and Yi=awj =1

Step 3: Find the PIS denoted as DFXA" and NIS denoted as DFXA™ using Equations

(4.4.3.3) and (4.4.3.4), where v;" is the maximum values of v; ; and v; is the minimum

values of v;;.

DFXA* = {vf,....,vf} = {(max vijli € I), (minv;|i e]} (4.4.3.3)
J J

DFXA™ ={vi,...,v5} = {(min vijli €)), (max vjlie I} (4.43.4)
J J

where / and J are correlated with the benefit and the cost criteria respectively.

Step 4. Calculate the PIS (DFXd;") using the displacement differentiation function from

Equation (4.4.3.5).
1
DFXdf = {37 (vi; — v, i=1,2,....... m. (4.4.3.5)
While, the NIS (DFXd;") distance is given as Equation (4.4.3.6).
1
DFXd; = {¥7_ (v —v; )P, i=1,2,....... m. (4.4.3.6)
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Step 5: Calculate the relative closeness coefficient RCC; using Equation (4.4.3.7) which is
the proximal relationship to the DFX alternatives considering the proximity from

alternative DFXA; to DFXA" and from alternative DFXA; to DFXA™~ simultaneously.

DFXd] .
FxaF+orxasy 1,2,....... m. (4.43.7)

RCCl =

where RCC; stands for the final performance score.
Step 6: Rank the calculated values, then select the PIS and NIS shortest distance which is

the best solution and select the maximum value of RCC;.

If the main objective is to maximize the design criteria, then relative closeness to PIS and
distance from NIS is preferable. But if the main objective is to minimize design criteria,
then relative closeness to NIS and distance from PIS is preferable. Figure 4.10 represents
an illustration of the PIS and NIS. Two DFX alternatives, DFX; and DFX>, are being
interpreted with respect to their relative distances from PIS and NIS, respectively. The
main objective is to minimize design criteria DCi and DC2. However, alternative DFX2 is
closer to NIS (d3 ) and farther from PIS (d3) than DFXi (d7, df ), DFX2 is better alternative

over DFX.
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Figure 4.10 Illustrations of the notion of the ideal (PIS) and anti-ideal solutions (NIS)

4.5 Case Study

The objective of this section, as explained before, is to investigate the ranking and selection
of MDFX combination in detailed machine design and optimizing their trade-off metrics.
The proposed hybrid FEAM -TOPSIS model is implemented in the detailed design of
automated wood framing machine-V2 for wood off-site prefabrication construction
industry, as shown in Figure 4.11. The purpose of this machine is to fabricate wood wall
frames of various dimensions that can later be used in construction projects. Before
proceeding to the detailed design phase, the MDFX selection hierarchical structure for this
case study, as represented in Figure 4.12, is formed from three levels: level 1 is the goal,
which is represented by a ranked list of MDFX combinations for each design criterion;
level 2 is the product criteria, which is composed of five sections (end-user (A), materials

(B), machine (C), performance (D), and process (E)); level 3, which is a sub-section of
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level 2, where each product criteria is further declassified in to data criteria; and level 4,
which consists of the five DFX alternatives that represent the proposed selection model.
For this case study, fifteen DFX techniques were chosen and distributed on the product
criteria, as indicated in Table 4.5, which are most relative to the current machine being
designed, and twenty design experts with various years of design experience were
interviewed to evaluate the design matrix. The experts’ feedback and opinions were
registered in a design decision matrix for product criteria, data criteria, and alternatives:
Table 4.6 represents the comparative judgment of design experts for the product criteria in
linguistic terms. After that, the linguistic terms are translated to TFNs from Table 4.3 and
then the weighted average is calculated based on the design experts’ weight from Table
4.2. Finally, the aggregated fuzzy comparison matrix is constructed for the product criteria
level and for the end-user data criterion as shown in Table 4.7 and Table 4.8, respectively.
The same procedure is repeated on the data criteria and alternatives levels. However, for
the MDFX alternatives, a different fuzzy rating assessment is utilized for the linguistic

terms, as shown in Table 4.4.
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Figure 4.11 Automated wood framing machine-v2 CAD model

From Table 4.9, the calculated fuzzy synthetic extent values of five product criteria are
extracted from the pairwise comparisons of the design experts’ judgments. After the
process of normalization, the weight vector of the product criteria, which are end-user,
material, machine, performance, and process, are calculated using and found to be W=
(0.184,0.035,0.017,0.394,0.370). The calculated value of the consistency ratio (CR) is
equal to 0.09 which is less than 0.1. This is an indication that the calcuated weights have a
high confidence degree. The same calculations procedure is applied to the data criterion
pairwise comparison matrices and their priority weights can be found in Table 4.10-4.14.
Table 4.15 summarizes the calculated results of product and data criteria where they are
ranked. For example, in Table 4.16, the calculated normalized value (n;;) for the end-user
data criterion against its relative set of MDFX alternatives is represented. Then the
weighted normalized value (v ) is calculated as shown in Table 4.17. From Table 4.18 the

PIS (DFX") and NIS (DFX") are determined respectively. Next, the ideal solution distance
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is calculated by using the displacement differentiation function. Finally, the relative
closeness coefficient to the ideal solution (RRC:) is computed as shown in Table 4.19.
Repeat the same calculation procedure for other product criteria as shown in Table 4.20-

4.23, where the data criteria are rated against their respective set of MDFX alternatives.

73



7 DFXs

7 DFXs
6 DFXs
7 DFXs
5 DFXs

Level-4

S
&
=
£
=
=

i ———————

’
I = \
1 A= —_— .a 1
“ < 8 < F 3 s i
i 5 = s g 2 o E
1 @® .m £ & 8 O
“ U_ ) _.m m < [

=1 @ 1
“ z : = £ & SE
1 <3 5| = “
1 -W = H
1 By
al.... IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -
- Tz )
I 4 !
i 50 |
—J. ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| mllll\

Figure 4.12 MDFX selection hierarchical representation
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Table 4.5 DFX list (Alternatives) implemented in this case study with respect to each
product criteria

DFX # Design for Product Criteria
1 Cost (DFC) A,B,C,D,E
2 Manufacturing (DFM) B,C,D,E

3 Assembly (DFA) B,C,D

4 Variety (DFV) B,E

5 Quality (DFQ) A

6 Six Sigma (DFSS) A E

7 Disassembly (DFDA) B,C,D

8 Reliability (DFR) A, B

9 Testability (DFT) C

10 Maintainability (DFMAI) A,D

11 Robustness (DFRO) C,E

12 End-Of-Life (DFEL) A,D

13 Sustainability (DFS) D

14 Network (DFN) B

15 Environment (DFE) ALE

Table 4.6 Comparative judgments of decision design experts for product criteria using
linguistic terms

Product The left measure is Neutral  The right measureis  Product
Criteria greater greater Criteria
A. S. F. W. Eq.Imp W. F. S. A.

Imp Imp Imp Imp Imp Imp Imp Imp
A 4 4 1 2 4 4 1 A
A 4 4 2 6 3 1 A
A 2 1 8 3 6 A
A 1 2 1 4 2 4 1 2 4 A
B 3 2 2 3 5 B
B 2 3 2 5 8 B
B 3 2 3 4 2 3 3 B
C 1 2 3 1 3 2 8 B
C 4 2 1 2 6 5 C
D 3 4 1 2 2 3 3 2 C
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Table 4.7 Aggregated fuzzy matrices at the product criteria (P.C) level using TFNs

A B C D E

P.C

A (1,1,1) (1,1.18,1.41)  (1.73,22.32)  (0.45,0.50,0.5 (0.58,0.72,0.8

4) 9)

B (0.81,0.85,0.8 (1,1,1) (0.62,0.74,0.8  (0.30,0.35,0.4 (0.72,0.85,0.9
7) 7) 1) 8)

C (0.51,0.50,04 (1.37,1.35,1.3 (1,1,1) (0.55,0.62,0.7  (0.50,0.59,0.7
9) 4) 0) 1)

D (1.97,2.022.0 (2.82,2.832.8 (1.62,1.60,1.6 (1,1,1) (0.85,1.05,1.2
7) 7) 0) 7)

E (1.37,139,1.4 (1.23,1.18,1.1 (1.55,1.70,1.8 (0.99,0.95,0.9 (1,1,1)
1) 5) 2) 6)

Table 4.8 Aggregated fuzzy matrices at the end-user data criteria level using TFNs

A Al A2 A3 A4 AS A6
Al (1,1,1) (3.2,3.8,44 (6.48,7.54, (5.34,6.29, (2.13,2.56, (6.54,7.61,
) 8.58) 7.20) 3.01) 8.65)
A2 (0.30,0.26,0. (1,1,1) (5.61,6.56, (5.23,6.03, (0.96,1.19, (7.11,8.14,
24) 7.47) 6.80) 1.48) 9.16)
A3 (0.15,0.13,0. (0.18,0.15, (1,1,1) (0.67,0.80, (0.32,0.39, (0.73,0.94,
12) 0.13) 0.95) 0.47) 1.20)
A4 (0.19,0.16,0. (0.19,0.17, (1.25,1.26, (1,1,1) (0.51,0.58,  (0.79,0.96,
14) 0.15) 1.27) 0.67) 1.16)
A5 (0.43,0.39,0. (0.85,0.84, (2.42,2.58, (1.91,2.13, (1,1,1) (3.67,4.30,
36) 0.82) 2.72) 2.29) 5.05)
A6 (0.15,0.13,0. (0.14,0.12, (1.08,1.06, (1.40,1.46, (0.25,0.23, (1,1,1)
12) 0.11) 1.05) 1.51) 0.28)
Table 4.9 Fuzzy extent analysis model output at the product criteria level
Product Fuzzy Synthetic ~ Weight Vector Min Normalized
Criteria Extent Value S, w' Superiority Weight
Value Vector
d(A4;) w
A (4.76,5.39,6.17)  (0.16,0.19,0.23) 0.46 0.184
B (3.46,3.79,4.13)  (0.11,0.13,0.15) 0.08 0.035
C (3.92,4.06,4.25)  (0.13,0.14,0.16) 0.004 0.017
D (8.27,8.50,8.80)  (0.27,0.30,0.33) 1 0.394
E (6.13,6.22,6.34)  (0.20,0.22,0.23) 0.93 0.370
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Table 4.10 Fuzzy extent analysis model output at the end-user (A) data criteria level

A Fuzzy Synthetic Weight Vector Min Normalized
Extent Value S, w' Superiority Weight
Value Vector
d(A4;) w
Al (24.69,28.80,32.85)  (0.29,0.38,0.49) 1 0.219
A2 (20.21,23.19,26.15)  (0.24,0.31,0.39) 0.57 0.127
A3 (3.05,3.41,3.88) (0.03,0.04,0.05) 0.55 0.120
A4 (3.92,4.12,4.39) (0.04,0.05,0.06) 1 0.215
AS (10.29,11.24,12.25)  (0.12,0.15,0.18) 0.55 0.121
A6 (4.02,4.01,4.06)  (0.048,0.054,0.061) 0.90 0.143

Table 4.11 Fuzzy extent analysis model output at the materials (B) data criteria level

B Fuzzy Synthetic Weight Vector Min Normalized
Extent Value S, w' Superiority Weight

Value Vector
d(A;) w

B1 (4.18,4.68,5.27) (0.19,0.231,0.26) 1 0.408

B2 (3.02,3.31,3.64) (0.14,0.16,0.18) 0.21 0.086

B3 (3.48,2.92,291)  (0.16,0.144,0.147) 0.23 0.097

B4 (9.14,9.35,9.59) (0.42,0.46,0.48) 1 0.410
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Table 4.12 Fuzzy extent analysis model output at the machine (C) data criteria level

C Fuzzy Synthetic Weight Vector Min Normalized
Extent Value S, w' Superiority Weight
Value Vector
d(A4;) 14
C1 (3.61,4.06,4.63) (0.31,0.39,0.48) 0.88 0.296
C2 (3.80,4.28,4.87) (0.33,0.41,0.51) 1 0.335
C3 (2.11,2.05,2.02) (0.18,0.19,0.21) 1.09 0.368

Table 4.13 Fuzzy extent analysis model output at the performance (D) data criteria level

D Fuzzy Synthetic Weight Vector Min Normalized
Extent Value S, w' Superiority Weight

Value Vector
d(A4;) 14

D1 (5.26,5.95,6.70) (0.17,0.21,0.26) 0.35 0.136

D2 (5.36,5.97,6.74) (0.17,0.21,0.25) 0.36 0.142

D3 (5.26,5.74,6.29) (0.17,0.20,0.24) 0.16 0.064

D4 (3.13,3.27,3.44) (0.10,0.11,0.13) 0.70 0.272

DS (7.07,7.36,7.63) (0.23,0.26,0.29) 1 0.385

Table 4.14 Fuzzy extent analysis model output at the process (E) data criteria level

E Fuzzy Synthetic Weight Vector Min Normalized
Extent Value S, w' Superiority Weight
Value Vector
d(A4;) 14
El (2.16,2.40,2.69) (0.21,0.24,0.29) 0.15 0.083
E2 (2.89,3.05,3.21) (0.28,0.31,0.34) 0.68 0.373
E3 (4.14,4.29,4.41) (0.40,0.44,0.48) 1 0.544
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Table 4.15 Final evaluation results summary of data criteria importance weight with its

relative ranking

Product Normalized Overall Ranking
criteria/Data Weight Weight Importance
Criteria
End User 0.184 - -
Al 0.219 0.03942 10
A2 0.127 0.02286 15
A3 0.120 0.0216 17
A4 0.215 0.0387 11
AS 0.121 0.02178 16
A6 0.143 0.02574 12
Materials 0.035 - -
B1 0.408 0.07344 3
B2 0.086 0.01548 19
B3 0.097 0.01746 18
B4 0.410 0.0738 2
Machine 0.0017 - -
C1 0.296 0.05328 8
C2 0.335 0.0603 7
C3 0.368 0.06624 6
Performance 0.394 - -
D1 0.136 0.02448 14
D2 0.142 0.02556 13
D3 0.064 0.01152 21
D4 0.272 0.04896 9
D5 0.385 0.0693 4
Process 0.370 - -
E1l 0.083 0.01494 20
E2 0.373 0.06714 5
E3 0.544 0.09792 1
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Table 4.16 Normalized fuzzy decision matrix between DFX alternatives and end-user
data criteria (n;;)

DFX Al A2 A3 A4 A5 A6
DFX1 (0.67,0.90, (0.49,0.77, (0.16,0.24, (0.40,0.66, (0.39,0.63, (0.18,0.29,
0.98) 0.96) 0.56) 1) 0.93) 0.60)
DFX5 (0.68,0.90, (0.57,0.78, (0.15,0.21, (0.38,0.62, (0.36,0.58, (0.17,0.25,
1) 1) 0.52) 0.95) 0.89) 0.56)
DFX 6 (0.21,041, (0.21,0.36, (0.45,0.70, (0.46,0.64, (0.21,0.33, (0.14,0.20,
0.65) 0.65) 1) 0.98) 0.65) 0.49)
DFX8 (0.31,0.51, (0.28,0.36, (0.15,0.18, (0.15,0.23, (0.30,0.49, (0.14,0.18,
0.75) 0.67) 0.49) 0.55) 0.81) 0.47)
DFX  (0.29,0.44, (0.28,0.49, (0.28,0.35, (0.20,0.30, (0.48,0.72, (0.14,0.16,
10 0.69) 0.78) 0.70) 0.64) 1) 0.44)
DFX  (0.22,029, (0.22,0.33, (0.21,0.24, (0.19,0.23, (0.39,0.60, (0.47,0.72,
12 0.55) 0.64) 0.58) 0.56) 0.91) 1)
DFX  (0.19,0.35, (0.20,0.28, (0.15,0.16, (0.15,0.19, (0.15,0.23, (0.49,0.7,0
15  0.60) 0.58) 0.46) 0.50) 0.53) .99)

Table 4.17 Weighted normalized fuzzy decision matrix between DFX alternatives and
end-user data criteria (v;;)

DFX Al A2 A3 A4 AS A6
End-user (A) Data Criteria Fuzzy weights
(0.29,0.38, (0.24,0.31, (0.03,0.04, (0.04,0.05, (0.12,0.15, (0.048,0.0
0.49) 0.39) 0.05) 0.06) 0.18) 54,0.061)
DFX1 (0.19,0.34, (0.11,0.23, (0.005,0.0 (0.01,0.03, (0.04,0.09, (0.04,0.01,
0.47) 0.37) 1,0.02) 0.06) 0.16) 0.03)
DFX5 (0.19,0.34, (0.13,0.24, (0.005,0.0 (0.01,0.03, (0.04,0.08, (0.08,0.01,
0.49) 0.39) 08,0.002)  0.05) 0.16) 0.03)
DFX 6 (0.06,0.15, (0.05,0.11, (0.013,0.0 (0.01,0.03, (0.02,0.05, (0.007,0.0
0.31) 0.25) 28,0.05) 0.05) 0.11) 1,0.03)
DFX8 (0.09,0.19, (0.06,0.11, (0.004,0.0 (0.006,0.0 (0.03,0.07, (0.007,0.0
0.36) 0.26) 07,0.02) 01,0.03) 0.14) 09,0.02)
DFX10 (0.08,0.16, (0.06,0.15, (0.008,0.0 (0.008,0.0 (0.05,0.10, (0.007,0.0
0.33) 0.30) 01,0.03) 01,0.03) 0.18) 08,0.02)
DFX12 (0.06,0.11, (0.05,0.10, (0.006,0.0 (0.007,0.0 (0.04,0.09, (0.02,0.03,
0.26) 0.24) 01,0.002) 11,0.03) 0.16) 0.06)
DFX15 (0.05,0.13, (0.04,0.08, (0.004,0.0 (0.006,0.0 (0.01,0.03, (0.02,0.03,
0.29) 0.22) 07,0.02) 09,0.03) 0.09) 0.06)
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Table 4.18 Fuzzy positive and negative ideal DFX solution

Ideal Al A2 A3 A6
Solution
DFX*  (0.19,0.3 (0.13,0.24, (0.01,0.02, (0.01,0.03, (0.05,0.10, (0.02,0.03,
4,0.49) 0.39) 0.05) 0.18) 0.06)
DFX" (0.05,0.1 (0.04,0.08, (0.004,0.0 (0.006,0.0 (0.01,0.03, (0.006,0.0
0,0.26) 0.22) 06,0.02) 0.09) 08,0.02)

Table 4.19 The related relative closeness coefficient (RCC;) and final DFX alternatives
ranking for end-user (A)

DFX d; d; RCC; Final Ranking
Alternatives
DFX 1 0.074 0.417 0.849 2
DFX 5 0.064 0.422 0.869 1
DFX 6 0.367 0.122 0.250 5
DFX 8 0.339 0.148 0.304 4
DFX 10 0.290 0.199 0.407 3
DFX 12 0.380 0.110 0.224 6
DFX 15 0.441 0.046 0.094 7

Table 4.20 The related relative closeness coefficient (RCC;) and final DFX alternatives
ranking for materials (B)

DFX d} d; RCC; Final Ranking
Alternatives
DFX 1 0.110 0.432 0.797 1
DFX 2 0.221 0.320 0.592 2
DFX 3 0.334 0.206 0.382 4
DFX 4 0.516 0.021 0.039 7
DFX 7 0.511 0.026 0.049 6
DFX 8 0.401 0.135 0.252 5
DFX 14 0.246 0.292 0.542 3
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Table 4.21 The related relative closeness coefficient (RCC;) and final DFX alternatives
ranking for machine (C)

DFX d;f d; RCC; Final Ranking
Alternatives
DFX 1 0.129 0.420 0.765 2
DFX 2 0.227 0.322 0.587 5
DFX 3 0.124 0.426 0.775 1
DFX 7 0.141 0.406 0.743 3
DFX 9 0.443 0.104 0.190 6
DFX 11 0.164 0.387 0.703 4

Table 4.22 The related relative closeness coefficient (RCC;) and final DFX alternatives
ranking for performance (D)

DFX df d; RCC; Final Ranking
Alternatives
DFX 1 0.014 0.414 0.967 1
DFX 2 0.237 0.192 0.448 4
DFX 3 0.225 0.204 0.477 2
DFX 7 0.224 0.204 0.476 3
DFX 9 0.258 0.173 0.402 5
DFX 11 0.333 0.096 0.224 6
DFX 13 0.342 0.086 0.201 7

Table 4.23 The related relative closeness coefficient (RCC;) and final DFX alternatives
ranking for process (E)

DFX d} d; RCC; Final Ranking
Alternatives
DFX 1 0.107 0.362 0.772 1
DFX 2 0.343 0.128 0.272 4
DFX 4 0.435 0.034 0.074 5
DFX 6 0.326 0.142 0.304 3
DFX 11 0.177 0.291 0.621 2

After calculating and ranking the MDFX techniques for each product criterion and in order
to effectively estimate and verify which of these techniques in the detailed design of the

automated wood framing machine-V2 would be the best fit, the cost/time analysis is
82



pursued. The planned cost and time for the detailed design of the machine were completed
after the concept design was approved by the designer. The planned design cost is $300,000
and the planned design time (schedule) is 120 calendar days to finish the machine detailed
design. The cost and time are distributed equally over the product criteria. However, the
assumption that the product criteria are equally weighted is wrong and each product
criterion must be represented using its calculated final weight. Thus, the actual cost and
time metrics of each product criterion can be concluded and the variance between planned

and actual metrics can be calculated as shown in Table 4.24.

Table 4.24 Planned versus actual cost and time allocation per product criterion

Total Planned Cost $300,000.00

Total Planned Time 120 days

Product A B C D E
Criteria

Planned 20.0% 20.0% 20.0% 20.0% 20.0%
Cost %

Planned 20.0% 20.0% 20.0% 20.0% 20.0%
Time %

Final 0.18 0.04 0.02 0.39 0.37
Weight

Actual Cost 18.4% 3.5% 1.7% 39.4% 37.0%
%

Actual 18.4% 3.5% 1.7% 39.4% 37.0%
Time %

Variance % —1.6% -16.5% —18.3% 19.4% 17.0%
Actual $55,200.00 $10,500.00  $5,100.00 $118,200.00 $111,000.00
Allocated Cost

Actual 22.08 4.20 2.04 47.28 44.40

Allocated Time

By using the actual allocated cost and time for each product criterion as an input for the
MDFX trade-off analysis model, the distributed cost and time for each DFX relative to its

product criterion can be calculated as shown in Table 4.25 to Table 4.29. Each DFX can
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be represented by its actual cost and time required to complete the machine’s detailed

design.

Table 4.25 DFX alternatives projected cost and time allocation for end-user

Actual Allocated Cost  $55,200.00
Actual Allocated Time 22.08 days

DFX Alternatives Cci Normalized Actual Cost Actual Time
Results  Cci Results per DFX per DFX
DFX 1 0.84 0.28 $15,590.07 6.24
DFX 5 0.86 0.29 $15,952.27 6.38
DFX 6 0.26 0.09 $4,760.74 1.90
DFX 8 0.30 0.10 $5,567.41 2.23
DFX 10 0.41 0.14 $7,501.30 3.00
DFX 12 0.22 0.07 $4,124.00 1.65
DFX 15 0.09 0.03 $1,704.20 0.68

Table 4.26 DFX alternatives projected cost and time allocation for materials

Actual Allocated Cost $10,500.00
Actual Allocated Time 4.20 days

DFX Alternatives Ceci Normalized Actual Cost Actual Time
Results  Cci Results per DFX per DFX
DFX 1 0.80 0.30 $3,157.50 1.26
DFX 2 0.59 0.22 $2,337.57 0.94
DFX 3 0.38 0.14 $1,509.79 0.60
DFX 4 0.04 0.01 $154.84 0.06
DFX 7 0.05 0.02 $191.90 0.08
DFX 8 0.25 0.10 $1,004.19 0.40
DFX 14 0.54 0.20 $2,144.21 0.86
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Table 4.27 DFX alternatives projected cost and time allocation for machine

Actual Allocated $5,100.00

Cost

Actual Allocated 2.04 days

Time

DFX Alternatives Ceci Normalized Actual Cost Actual Time
Results  Cci Results per DFX per DFX

DFX 1 0.76 0.20 $1,037.96 0.42

DFX 2 0.58 0.16 $794.31 0.32

DFX 3 0.77 0.21 $1,048.73 0.42

DFX 7 0.74 0.20 $1,005.26 0.40

DFX 9 0.19 0.05 $261.60 0.10

DFX 11 0.70 0.19 $952.14 0.38

Table 4.28 DFX alternatives projected cost and time allocation for performance

Actual Allocated $118,200.00

Cost

Actual Allocated 47.28 days

Time

DFX Alternatives Cci Normalized Actual Cost Actual Time
Results  Cci Results per DFX per DFX

DFX 1 0.97 0.30 $35,840.23 14.34

DFX 2 0.45 0.14 $16,554.87 6.62

DFX 3 0.48 0.15 $17,653.04 7.06

DFX 7 0.48 0.15 $17,640.84 7.06

DFX 10 0.40 0.13 $14,835.21 5.93

DFX 12 0.22 0.07 $8,240.53 3.30

DFX 13 0.20 0.06 $7,435.28 2.97

&5



Table 4.29 DFX alternatives projected cost and time allocation for process

Actual Allocated $111,000.00

Cost

Actual Allocated 44.40 days

Time

DFX Alternatives Ceci Normalized Actual Cost Actual Time
Results  Cci Results per DFX per DFX

DFX 1 0.77 0.38 $41,924.68 16.77

DFX 2 0.27 0.13 $14,807.28 5.92

DFX 4 0.07 0.04 $4,012.49 1.60

DFX 6 0.31 0.15 $16,666.42 6.67

DFX 11 0.62 0.30 $33,589.13 13.44

4.6 Results and Discussions

In this study, the proposed fuzzy extent analysis model based on Chang’s method [48]
suggests that product criterion D has the highest importance weight between the other four
product criteria. Product criterion E is the second largest one followed by and criterion A.
The results of this model are compared with the results of other fuzzy set theory methods.
The results comparison summary of the product criteria level is shown in Table 4.30. As
concluded in Table 4.30, the results of the proposed method are close to some extent to that
of the other fuzzy methods. Chang’s method results show that the importance weight of
product criterion B is larger than that of C. Although the other methods calculation
procedures are different from the proposed one, the results are very similar regarding the
first three product criteria. The advantages of the hybrid decision support system compared
to the other methods are: (1) a weight can be allocated to each design expert based on the
number of years of experience; (2) it uses basic mathematical formulas to calculate the

importance weights; (3) it incorporates an effective and easy scale to compare factors; and
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(4) design experts can easily relate the linguistic terms to the TFNs scale in order to

establish the design decision comparison matrix.

Table 4.30 Comparison of fuzzy set theory methods on the product criteria level

Method Weight Weight Weight Weight Weight  Ranking

of A of B of C of D of E
AHP 0.19 0.14 0.15 0.30 0.23 D>E>A>
(1980) C>B
Buckley’ (0.15,0.1 (0.12,0.14, (0.13,0.14, (0.27,0.30, (0.22,0.23, D>E>A>
s (1985) 8,0.22) 0.16) 0.16) 0.33) 0.25) C>B
Chang’s 0.184 0.035 0.017 0.394 0.370 D>E>A>
(1996) B>C

By comparing the relative closeness coefficient (RRCi) values of the product criteria
against its MDFX set of alternatives, multiple observations can be made. On the end-user
level, DFC and DFQ represent 57% of the final rating, while DFEL and DFE represent
11% of the final rating, as shown in Figure 4.13. On the other hand, DFC and DFM
correspond to 52% of the final rating, while DFV and DFDA correspond to 4% of the final
rating on the materials level, as shown in Figure 4.13. As concluded from Figure 4.13,
DFC, DFA, DFDA, and DFRO each represent approximately 20% from the final rating on
the machine level. This can be translated to mean that each of these DFXs is of equal
importance in the detailed machine design with respect to the machine product criteria.
However, as indicated in Figure 4.13, only DFM, DFA, and DFDA are of equal importance
on the performance product criteria level and each represents approximately 15% of the
final rating, as seen in Figure 4.13. On the process level, DFC and DFRO combined to
form 68% of the final rating; therefore, the techniques can be considered of high

importance when applied in the machine detailed design.
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From Table 4.31, the cumulative RRC; for MDFX alternatives with their respective ranking
is summarized for all the product criteria combined. It shows that DFC, DFM, and DFA
are the most important DFX techniques to be utilized in detailed machine design, whereas
the DFT, DFV, and DFE are the least important DFX techniques to be utilized in detailed

machine design.

Table 4.31 Commutative RCC; for MDFX with their respective ranking on all product
criteria level.

DFX Alternatives YRCC; Final Ranking
DFX1 4.145 1
DFX 2 1.894 2
DFX 3 1.629 3
DFX 4 0.113 14
DFX'5 0.865 6
DFX 6 0.565 8
DFX 7 1.264 5
DFX 8 0.555 9
DFX 9 0.193 13
DFX 10 0.807 7
DFX 11 1.319 4
DFX 12 0.446 11
DFX 13 0.201 12
DFX 14 0.541 10
DFX 15 0.092 15

Table 4.32 summarizes the actual cost and time required for each DFX to be utilized in the
machine detailed design. As shown in Table 4.32, DFC has the highest cost to be utilized
in the design of $97,550 and the highest time to be completed of 39 calendar days. On the
other hand, DFEL has the lowest cost of $261 and the associated time can be negligible.
The main observation that can be derived from Table 4.32 and Table 4.32 is that the ranking
of DFX changes after the trade-off analysis model is implemented. For example, in Table

4.31 the top three DFX techniques were DFC, DFA, and DFM, whereas, in Table 4.32, this
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result partially changed to DFC, DFM, and DFRO. This can be traced back to the
importance of MDFX trade-off analysis in machine design to support the designer’s
decisions and to evaluate the impact of MDFX techniques on machine design development

cost and schedule.

Table 4.32 MDFX ranking based on actual cost and time combining all product criteria

Combined DFX Alternatives for Actual Actual Ranking

All Product Criteria Allocated Cost Allocated based on
Per DFX (§) Time Per cost and

DFX (days) time
priority

Cost (DFC) DFX 1 $97,550.45 39 1

Manufacturing DFX 2 $34,494.03 14 3

(DFM)

Assembly DFX 3 $20,211.57 8 6

(DFA)

Variety (DFV) DFX4 $4,167.33 2 12

Quality (DFQ) DFX5 $15,952.27 6 8

Six Sigma DFX 6 $21,427.17 9 5

(DFSS)

Disassembly DFX 7 $18,837.99 8 7

(DFDA)

Reliability DFX 8 $6,571.60 3 11

(DFR)

Testability DFX 9 $261.60 0 15

(DFT)

Maintainability DFX 10 $22,336.51 9 4

(DFMAI)

Robustness DFX 11 $34,541.26 14 2

(DFRO)

End-Of-Life DFX 12 $12,364.54 5 9

(DFEL)

Sustainability = DFX 13 $7,435.28 3 10

(DES)

Network DFX 14 $2,144.21 1 13

(DFN)

Environment DFX 15 $1,704.20 1 14

(DFE)
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In Figure 4.18, the optimized MDFX are represented with their cost and time metrics. It
can be observed that DFC alone represents 32.5% of design cost and time when
implemented in machine design, followed by DFM and DFRO, where each represents
11.5%. The DFT has the lowest optimization percentage of 0.1% followed by DFE with
0.6%. This result aids the designer in understanding and estimating the effect of applying
MDFX in machine detailed design. By integrating MDFX in the machine development, the
designer is able to utilize, optimize, and visualize their respective trade-offs before design
development commence, leading to accurate forecast and reaching the design development

planned cost and time.
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Figure 4.18 Optimized MDFX cost and time

4.7  Conclusion
A decisive decision support system has been proposed for integrating MDFX with PDS. In
this research, a hybrid FEAM-TOPSIS model together with trade-off analysis model was

implemented using conflict resolution, TFNs, and ranking methods to evaluate MDFX
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combinations. The hybrid model employs the fuzzy extent analysis method (FEAM) to
calculate the importance weights of the PDS and to identify the best MDFX combinations
while taking in to consideration the weights for experts, product criteria, data criteria, and
MDFX alternatives. This model aids the designer in the selection of optimal MDFX
alternatives based on the design criteria on the judgment of design experts. However, the
disadvantage of this model is that the input data depends on the design experts’ opinions
and technical experience, and thus involves subjectivity and some biases. The evaluation
of MDFX alternatives usually requires specified technical knowledge besides the design
experience; however, design experts may display some bias in the judgments when
providing a ranking preference of one design criterion over the another. For that reason,
the TOPSIS model is the chosen method for the ranking of MDFX alternatives in terms of
their total scoring. The importance of the criteria is evaluated by design experts, and the
uncertainty of their assessment is considered in the fuzzy analysis model. Also, the experts’
degree of confidence may be computed through the distribution of fuzzy numbers utilized
for the pairwise comparison ratios in the proposed model. The proposed MDFX model
based on trade-off analysis ensures the integration of design experts’ assessment and
evaluation in a decision-making system. Cost and time are utilized to compare MDFX
alternatives so that lifecycle cost can be reduced. The weighing of the financial and
economic impact of all MDFX selection design decisions provides a benchmark that can
assists the designer in making decisions to best benefit the machine development. The
hybrid model can be implemented in diverse range of machine design by adjusting the
design experts’ values, the structure of the problem’s hierarchy, and their related design
attributes. The conclusion from the case study is that DFC, DFM, and DFRO are the first
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three important DFX techniques for machine design with 55.5% of importance and
cost/time optimization, while DFT, DFE, and DFN rank as last priorities among these
techniques with 1.4%. Moreover, the performance (D) and the process (E) rank as the first

two product criterion for these DFXs with 76% of importance.

The impetus for developing the hybrid decision support model was to ease the MDFX
selection process by improving the designers’ decision-making processes. The proposed
decision support system model can evaluate and rank MDFX alternatives comprehensively
using design weighted means absolute difference values. It provides benefits by improving
design capability in terms of enabling designers to evaluate MDFX alternatives with
interrelated design criteria. Also, it provides the designers with an automated decision
support tool to aid them in capturing the features of different DFX techniques in conceptual
and detailed machine design stages. The hybrid decision support system model also
provides designers with a fuzzy relation point of view compared to the traditional
performance evaluation model for dealing with imprecision and uncertainty. Finally, it
enables designers to better interpret the whole evaluation process and provides a more

precise, systematic, and effective decision support tool.
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Chapter 5 : Hybrid Decision support approach for Multi-DFX trade-off

optimization in machine design: Hybrid genetic and Pareto optimality algorithm*

5.1 Introduction

Designers tend to express the design decision optimality problem as a single objective
function approach that requires continues optimization to maximize the overall machine
lifecycle. However, this approach cannot guarantee that the designer can control multiple
design decision variables where their formulation is based various design decision
optimality criteria (Ahmad et al., 2014; Malik et al., 2019). Hence, multi-objective
optimization design decision problems can be formed where the designer can determine
the Multi-DFX (MDFX) techniques trade-off optima that represent the combined impact
of these techniques on design decision activities. Bendekovi¢ (1993) proposes a framework
featuring the Net Present Value (NPV) and Internal Rate of Return (IRR) concepts to
measure the effectiveness of a set of design decisions through evaluating their financial
parameters in terms of time. In design decision-making optimization, the pertinent
measures of MDFX excellence are not the only criteria that control the problem constraints.
In many cases, design decision objective functions are expressed based on a single criterion
(e.g., machine weight), which does not correspond to the designer’s notion of applying
MDFX in machine design development. Thus, the impression of MDFX excellence is more
holistic and includes the designer vision throughout the entire lifecycle of the machine from

design to operation including performance measures. The designer’s notion of the machine

4 The manuscript presented in Chapter 5 of this thesis is ready to be submitted to the International
Journal of Production Economics.

94



design development excellence would be composed of multiple qualitative and quantitative
criteria in most cases including adaptivity, versatility, reliability, safety, acquisition terms,
intangible and subjective design functionality expectations, etc. Therefore, a design
decision support system (DDSS) framework is required to model the excellence of MDFX
in the objective functions and generates a list of best fit MDFX techniques that maximize
the machine overall lifecycle performance related to the designer’s design conditions. This
can be formulated as best-compromise multi-objective value-based optimization function
where all equivalent economic values of partial objectives are represented as described in

this research.

Many real-world design decision problems involve concurrent optimization of multiple
incommensurable and conflicting objectives where no single optimal solution exists. But
instead there is a set of various alternative solutions that are optimal when all design
decision objectives are investigated making them superior solutions in the search space
where no other solutions can match them. These solutions are known as Pareto-optimality
solutions. To illustrate the power and importance of this approach in a brief example,
consider the design of a pick and place robot clamping system. An optimal design solution
for a designer might be to minizine the total cost of the clamping system while maximizing
the system overall performance metrics. However, these objectives are generally from a
designer’s perspective conflicting to each other: one designer may achieve the high-
performance objective but on the expense of high cost while other designers may fulfill the
low-cost objective but on the expense of reducing performance metrics. But none of these
solutions can be considered to be superior to the other solutions in the search space if

designers do not implement the preference information methodology (e.g., a ranking
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system of the design decision objectives). Thus, a design decision tool that can aid the
designer in exploring and assessing the design space for Pareto-optimality solutions will
reduce search time and present the best set of solutions that can optimize MDFX trade-off

metrics (e.g., Cost, Time, and Quality, as shown in Figure 5.1) at the same time.

Time
(Timely)
Trade-Off
Decision
System
Cost Quality
(Profitability) (Preferability)

Figure 5.1 MDFX cost-time-quality trade-off pillars

Since the early 1970s, mathematical programming models and heuristic methods have been
adapted as two main categories in solution finding (Feng et al., 1997), as shown in Figure
5.2 . Feng et al. (1997); Li and Love (1997) have developed various models of these
categories and have compared their performance in multi-objective optimization problems.
However, there are main disadvantages for both categories. The mathematical
programming models’ disadvantages are well-known in their arithmetic complexity, time-
consuming computational nature, and small-size optimization problems applicability (Feng

etal., 1997; Liand Love, 1997). On the other hand, they summarized the heuristic methods
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disadvantages by statin their disability in providing optimum solutions for the optimization
problem and in their mathematical representations’ deficiency. With modern advances in
the artificial intelligence (AI) and computer technology research fields (Martinez et al.,
2019), superior genetic algorithms (GAs) has emerged as the best optimization techniques
for a design decision problem (Goldberg, 1989). GAs find the optimal solution of a design
development problem through simulating natural evolution random search methodology
and adopting the mechanisms of best fittest survival (Mitchell, 1998). Li and Love) 1997(;
Goldberg (1989) reported the GAs methodology robustness and how they can search and
locate the best optimal solution for a design decision problem efficiently. However, Feng
et al. (1997); Li and Love (1997) discussed that the main disadvantage of adopting GAs is
that they are time-consuming in searching for the best solution. Thus, in this study, some
modifications are applied to the original GA methodology to reduce search computational

time and to optimize MDFX trade-off metrics.

 Easy to apply, provide acceptable solutions, utilized in large
scale problems.

Heuristic Methods  Lack of mathematical representations, no optimal solution,

variables are represented in linear relationship form instead

of discrete one.

* Possibility of optimal solution.

+ Difficult to represent the problem in mathematical
formulas and adapted in small scale problems.

Mathematical
Programming Methods

« Robust optimization algorithm, problem variables are
represented in discrete relationship form, and can be

Genetic Algorithms utilized in large scale problems.

* Time consuming search, optimal solution can vary from
one random search to other.

Figure 5.2 Existing optimization methods for MDFX trade-off
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Little research has been conducted in the field of optimizing and utilizing MDFX
techniques in machine design development. Few optimization models were developed by
researchers such as linear programming and goal programming. However, none of them
adapt GAs toward the problem. These models, as shown in Figure 5.3 can be grouped based
on their optimization objectives into MDFX trade-off models that aim to: (1) minimize
design cost by adopting MDFX (Gatzen et al., 2013); (2) optimize cost and time Design
for X (DFX) trade-off analysis (Lukasz and Tomasz, 2007); and (3) minimize cost and/or
time DFX metrics (Wulan and Deng, 2000). While the above-listed research studies have
established the basic concept of optimizing MDFX in design development, there have been
no reported studies related to multi-objective trade-off models for optimizing MDFX
metrics such as cost (C), time (T), and quality (Q). Therefore, the purpose of this study is
to develop the DDSS framework for selecting the optimal MDFX solutions for machine
design development based upon the product design specifications (PDS) qualitative and
quantitative criteria while optimizing the MDFX trade-off metrics. The genetic algorithm
and Pareto optimality are combined in a hybrid search engine to generate the MDFX
optimized solutions based on the fitness functions where design development cost and time
is minimized, and design development quality is maximized. After that, these solutions are
evaluated from an economic perspective by calculating their NPV and IRR values based

on the design problem parameters.
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Figure 5.3 MDFX trade-off analysis model’s progression evolution over time

5.2 Literature Review

In general, the more experience gained by the designer in the application of MDFX
techniques, the earlier the conceptual and detailed design decision can be made and the
higher the impact on overall life-cycle cost. Anderson (2000) and Coello (1999) discussed
the complex and challenging problem in design decision making when trying to optimize
constrained multiple objectives. The designer usually analyzes the optimized design
decisions in terms of economic benefits over the entire machine lifecycle phases, and this
is done by applying the concept of NPV and IRR aggerate metrics (Bendekovi¢, 1993;
Behrens and Hawranek, 1991). Significant research effort during the recent years was
dedicated to the integration of business objectives early in the machine design stages.
Saitou et al. (2005) established a survey of optimization techniques that can be
implemented towards machine development problems, more specifically in excellence
criteria (e.g., weight versus cost). Several researchers (Gu et al., 2002; Marston and
Mistree, 1998; Wassenaar and Chen, 2001) have combined the engineering-related PDS

and market-related attributes of machine design into a single excellence criterion that
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formulates the overall economic benefits of the decision-based-design (DBD) framework
discussed by Hazelrigg (1998). However, the design decision problem utility functions
formulation is still a topic for ongoing research. Michalek et al. (2006) proposed the
framework for the overall utility function that coordinate, combine, and balance the
machine design, manufacture and market problems. The design decision problem modeling
and optimization of the objective functions receives little attention in MDFX research.
Vucina et al. (2010) multi-criteria decision-making financial analysis model is described
where the machine operational expenses and investment terms are embedded as main
elements in the design decision objective functions during the conceptual and detailed
machine development. Otto and Antonsson (1991) proposed an overall design preferences
framework where trade-offs analysis and MDFX design strategies are investigated. A
similar framework for flexible decision support system was also proposed by Olewnik and
Lewis (2006). An elaboration of cost/performance trade-off analysis and optimization that
can be adapted in the aircraft design decision feasibility evaluation was discussed by
several researchers (Markish and Willcox, 2003; Harris, 2002). This reveals the importance
of the trade-off analysis in the design decision-making process. Peoples and Willcox (2006)
compared the performance versus the value-based design decisions by measuring the NPV
metrics and by adopting the probabilistic and deterministic concepts to account for risk and
uncertainty in the decision- making process. The NPV was also utilized as a design
decision-making tool in the hydropower station conceptual design to maximize the return
profits (Eliasson, 2000). Also, Georgiopoulos et al. (2002) described the model in which

the expected value of NPV denoted by “the objective function” was calculated for an
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automotive design firm based on machine design variables and taking into account the

trade-off metrics uncertainty.

DDSS are effective analytical models that aid designers in product cost estimation; hence,
improved designer judgments at different levels of the design development estimation
process) Kingsman and De Souza, 1997). They developed cost estimation model
incorporating expert rules in the machines manufacturing companies that adapt make-to-
order (MTO) systems which focus on customer needs and emphasize the application of
design cost estimation rules. In this research and to incorporate the design experts’
technical experience, Al philosophy is adopted to represent the designer’s knowledge as
input to the design decision-making model. Shehab and Abdalla (2002) proposed a
knowledge-based cost estimation model for machines in the early design development
stages. Similarly, Luong and Spedding (1999) described a knowledge-based model that
integrate cost estimation into process planning. Thus, to represent DDSS more effectively
and to eliminate the uncertainty in the trade-off heuristic data, designers are encouraged to
represent the MDFX design decision-making problem by taking advantage of the expert

system (ES) in the optimization algorithm.

Evolutionary algorithms are considered the best fit for solving multiple conflicting
objectives in design design-making MDFX optimization problems (Kinnear et al., 1999).
Since 1985, researchers developed various evolutionary methodologies to solve multi-
objective optimization problems by concurrently searching for multiple solutions sets in a
single run. One branch of evolutionary algorithms is genetic algorithms. The latter is

superior searching algorithms that can be adapted in a variety of optimization mechanism
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where the survival-of-the-fittest strategy and genetic operators abstracted from nature are
combined (Goldberg, 1989). The early discovery of GAs was made by Holland in the 1960s
and further described in detail by Goldberg (Feng et al., 1997). Nowadays, GAs is applied
in many engineering fields especially in machine design optimization problems
(Michalewicz, 1996; Osman et al., 2006). Srinivas and Deb (1994) concluded that GAs are
efficient and powerful searching algorithms that require a little information about the
optimization problem which grants them the superiority over other optimization methods
which lack features such as continuity, linearity, derivatives, etc. Also, GAs is an effective
analytic tool mitigated with stochastic search technique that is applied to solve complicated
and large problems using evolutionary and genetic principles (2007). Lee and Kim (2007)
concluded that GAs, which follows the principles of evolution, demonstrates great potential
in combinatorial optimization and this can be achieved when better chromosomes trade
their properties with next genes in the generation and this is improved progressively over
computational time (Li et al., 1998). As any other optimization method, GAs have some
disadvantages that can be summarized by several researchers (Preechakul and Kheawhom,
2009; Zhang et al., 2009) in their papers, where they list some drawbacks such as initial
parent’s populations are generated randomly, the optimal solution is not guaranteed, and
search efficiency becomes low after each mutation process. In his book, Goldberg (1989)
described the main GAs theory where a randomly evolved population of certain species
will begin to adapt to its environment after many generations in a well-known concept of
the survival of the fittest. In the genetic game, the winner of applying different parameters
is the optimal solution. These parameters are genes of chromosomes represented by binary

strings where the better chromosome is the nearest one the optimal solution. Each solution
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is represented by a single chromosome which can be better or worse in the initial
population. This population represents a part of the problem solution space defined as a
search space where each feasible solution can be related to a distinct chromosome that is
randomly chosen to form the initial parent populations. Next, solutions are selected based
on their competitiveness rate through intensive computations measured by an objective
fitness function. To simulate the continues process of offspring generations, best parent
chromosomes mate to produce the best child or offspring genes that replace the least fit
members in the parent population. Man et al. (1997) proposed some hints when users select
the number of populations. After that, the genetic algorithm continues its searching process
by applying the next stages such as such as selection, crossover, and mutation sequentially
to acquire the new generation which is expected to be better in quality than its previous.
The process mentioned above keeps evolving in which better solution take over unfit
solution until the termination criteria are met and the final solution is generated. Figure 5.4

illustrates the main flowchart of the universal GAs operations.

In general, any multi-objective GA framework must have five main components

(Goldberg, 1989):

(1) a genetic representation of solutions to the problem,

(2) initial population of solutions,

(3) an evaluation fitness function to rate solutions,

(4) reproduction genetic operators and definition of the GA parameters (max

population size, string size, crossover probabilities, termination set point, etc.),
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(5) a method to continuously update the latest Pareto solutions.

Population _Cl | 0 | 0 | 0 | i ‘ Gene
Initialization |
CZ|1|1|1|1 |1‘Chmmosome
Fit;less C3|1|0‘1‘0‘1|
Assignment
C4| 1 | 1 | 0|1 |0| Population
/—‘ﬁ

Selection

|

Crossover

!

Mutation

AN —

Y
Survivor
Selection
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Return Best
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Figure 5.4 Genetic algorithm universal structure

New chromosomes are generated for the solution by implementing the crossover and
mutation mechanisms. During the crossover operation, the genetic patrimony of each
parent chromosome is mitigated followed by a random mutation. The new gene or
chromosome, which can be referred to as child or offspring, exchange superior
characteristics from the parent chromosome then its survival probability increases, and it
is pushed forward to the next iteration. This process continues over the search running time
until the algorithm hits the termination criteria and the solution will be considered the
optimal solution due to its relative closeness. It is crucial in crossover operation to mate

the parent’s chromosomes pairs to generate child genes. Therefore, to accomplish this task,
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the user must specify the type of crossover operation required such as multi-point, single-
point, uniform, half uniform, cut and slice, etc. In this research, the single-point crossover
operation type is implemented with the probability of crossover (Pc) where two
chromosomes break out from the randomly selected point and trade their information with
the exchanged chromosomes. This will result in two chromosomes where the initial one
referred as parent chromosome and the second one resulted from the exchange referred as
offspring chromosome as illustrated in Figure 5.5. If Pc=0, then crossover operation will
not occur and thus offspring’s traits will be like that of parents. As mentioned before,
mutation is the successive operation in GAs, where a gene is replaced with a randomly
selected binary number (RN) between (0, 1) and within the limits of the parameter (Gen,
and Cheng, 2000). User inputs the mutation probability (Pn) constant which creates the
mutation process only if it is less than RN. The crossover and mutation operations are
followed by evaluation step, in which solutions are validated against the user’s expectations
and selection criteria. At last, the algorithm terminates itself by activating one of the sets

of conditions as described below:

(1) Terminate the algorithm after a max number of generations is reached;

(2) No significant improvement in the objective function output;

(3) Objective function reached a predetermined value.
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Figure 5.5 GA crossover operation

GAs optimization model starts its process by randomly generating genes from the parent
population, but this takes place after GA parameters are defined, chromosome structure is
formed, and fitness functions are set up. Population size (Psize) is the number of
chromosomes in a solution set which is an important constant that influences the solution
processing time and the optimum solution itself. In norm, the larger Psize, the larger the
processing time and the probability of finding the optimal solution. Usually, the user
specifies Psize Which is an input to the GAs model and where each chromosome is evaluated

against the fitness function.

A general multi-objective optimization problem (MOOP) can be defined as a vector
function that connects m decision variables to o objectives as formulated in Equation

(5.2.1) (Fonseca and Fleming, 1995; Steuer, 1986).

MOOP:Min/Max F(y) = (fi(x), f2(3), e e, fo (X)) (5.2.1)

Such that x=(X1, X3 ..., Xn) € PS

y:(ylr y2,.......) yn) € OS
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where x is the decision vector, PS is the parameter space, y is the objective vector, OS is
the objective space, (f;(x), f2(%), . ... ,fo(x)) are the o objective functions,

X1, X , X,,) are the n optimization parameters, and PS,0S € R™ is the solution space.
1 X2,....... n p p p

All decision vectors (x) that are assigned to objective vectors where no slight improvement
can be noticed without degradation of one of them are referred to as the MOOP solutions
set. The previously mentioned vectors are known to be the Pareto optimality vectors.
Mathematically, Pareto optimality concept can be explained as follows: Assume a
maximization problem with two decision vectors x,y € PS. Then, x is said to dominate over

yorx>yiff
Vie{1,2,....,n}:fi(x) = f;(y)
3j € {12,....,n}: f;(x) > f;(¥)

Moreover, in this study x is considered to overcome y (x > y) iff x > y or f;(x) = f;(y).
All decision vectors (x) that are not dominated by any other ones of a given solution set are
referred to as non-dominated points. The non-dominated decision vectors within the search
space are referred to as Pareto optimal and together they form the Pareto-optimal set or
Pareto-optimal front. The below interpretations regarding Pareto-optimal front are

extracted from Ringuest and Rinks (1987); Laumanns et al., 2002.

Interpretation 1 (feasible solution): A feasible solution is one that satisfies all optimization
problem constraints, known as, the set of all x that satisfy x € .S which frame the feasible

space.
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Interpretation 2 (Pareto optimal solution): x* is considered to be a Pareto optimal solution
of MOOP if no another feasible x exists such that, f;(x) < fi(x*) foralli=1,2,...,n

and f,(x) # f,(x*) for a min of one objective function fo.

To optimize the multiple objectives from the MDFX trade-off model concurrently, a Pareto
front (PF) approach is implemented in this research. PF can be different from traditional
optimization methods by its tendency to eliminate conflicts between MDFX trade-off
objectives (T, C, Q). In this research, an optimization model is described to optimize
MDFX trade-off analysis between three main objective functions (C, T, Q) under different
scenarios. Juan et al. (2006) concluded that Pareto optimality concept is the best to utilize
in this problem if mixed with GAs. The main concept behind PF is that no solution is
known to be totally dominated over the other solutions in all performance measurements
aspects because these solutions have a higher probability to be in the next generation due
to their relatively high fitness values. Laumanns et al. (2002) describes that as population
evolution progress, its Pareto optimal zone converges. The solutions within the search
space that cannot improve their vector components simultaneously are donated as non-
dominated solutions. Figure 5.6 illustrates the acceptable Pareto optimal solutions. In
literature, there are several methods approaches to rank and select the Multi-Objective
Genetic Algorithms (MOGAs) such as Aggregating functions, Population-based, and
Pareto-based. Furthermore, Coello et al. (2007) stated that extensive research has been
undertaken in the past few years for the Pareto-based MOGAs (e.g., VEGA model
proposed by Schaffer and Grefenstette (1985), PAES model proposed by Knowles and

Corne (2000) and SPEA model proposed by Zitzler and Thiele (1999) etc..
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Figure 5.6 Illustration of Pareto optimally concept

5.3 Problem Description

To solve the MDFX decision-making problem with i design criteria and m DFX methods,
the matrix-based (i x m) requires large space memory and more computational time during
the evolution process to generate the optimal solutions. For this purpose, GAs is
implemented with Pareto optimality concept in a hybrid model to generate the best fit
MDFX techniques that pass the trade-off fitness functions evaluation and deemed to be
non-dominated solutions represented as PF. Chromosomes structure was altered to
preserve the feasibility of crossover and mutation operations in the proposed iterative
process. Moreover, to eliminate the large solution space, the GAs is constrained by a finite-
sized solution boundary. Thus, the main objective of this research is to propose an MDFX
trade-off optimization model based on the hybridization concept of GAs and PF which in
return supports the machine design development by reducing time and cost metrics while
increasing the quality performance metrics as illustrated in Figure 5.7. This model will aid
designers in the machine design industry sector in: (1) generating optimal MDFX

utilization solutions that optimize the trade-off metrics; (2) financial evaluation of the
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generated solution set based on NPV and IRR concepts; and (3) representing the trade-off

metrics in a visualized graphical form to support designers in the evaluation process of

multiple utilization solutions on machine development.
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5.4 Proposed Hybrid Genetic and Pareto Optimality Algorithm

In this section, an intelligent hybrid algorithm combining GA and Pareto concepts to solve

the MDFX selection problem based on trade-off analysis followed by financial evaluation

for the solution set based on NPV/IRR concepts is developed. For each chromosome of the

GA algorithm, three objective functions are required to be evaluated, and the Pareto

optimality selecting approach is utilized to evaluate different combinations of the three

evaluated objective functions. The DDSS proposed flowchart for the MDFX trade-off

analysis model is represented in Figure 5.8 and will be further explained in the next

sections.

The main procedure for the hybrid model that is used in this research can be summarized

below:

(1) Defining GAs parameters: Pc, Pm, and RN.

(2) Randomly initializing and generating the initial parent population composed of DFX
techniques and design criteria.

(3) Evaluating the multi-objective fitness functions for each chromosome (DFX) based
on T, C, and Q performance metrics.

(4) Grouping and sorting solution sets then ranking them based on the Pareto non-
dominated selecting approach to form the initial chromosomes mating pool.

(5) Initiating the crossover operation mechanism for each pair of chromosomes with Pc.

(6) Initiating the mutation operation mechanism for each chromosome with Pm.

(7)  The current population is replaced by the solution mating pool.
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(8) Designer evaluates the solutions based on the objective function.

(9) Ifthe termination criterion is reached, then finish. Otherwise, go to step 5 and repeat.

(10) After the final solution set is generated, financial evolution takes place and NPV/IRR

metrics are calculated for each solution in the final set.
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Reject the MDFX
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Figure 5.8 Proposed DDSS flowchart to MDFX trade-off analysis
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5.4.1 Phase 1: GA algorithm model formation

The data structure of a genetic algorithm that represents the problem solution in coding
space is composed of chromosomes which can be further broken-down to multiple genes
each representing a variable. The content of the chromosome is exchanged with the value
of the variable. In order to represent the appropriate structured design of the chromosome,
the proposed approach is considered. Where each chromosome consists of a sequence of i
sub chromosome (i is the number of PDS) and a matching set of m sub-chromosome (m is
the number of DFX). All chromosomes are randomly generated such that their total
summation is equal to Y,»'_; C;,, for each sub-chromosome i. Therefore, the generated

chromosomes are randomly extracted illustrated in Figure 5.9, such that:

X1+ xu+ ...+ xXim=DCr

X21 +x21+ ... +xXom=DC2;

Xil + Xi2+ ..... ¥ Xim=DCnm.

where,

DC = design criterion.
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Cir| Ciz| Cru Sub-Chromosome 1

C5;| Caa| Csyl Sub-Chromosome 2

Ci; | Ciz| €| Sub-Chromosome im

Figure 5.9 Illustration of MDFX chromosome’s representation

All generated chromosome are feasible solutions and the chromosome length is = m x i as

represented in (5.4.1.1).
i=1 Xm=1Cim = X{=1 DC; =Xh=1 DF X, (54.1.1)

A standard population size Psize= N can be evaluated based on non-dominated Pareto
concept where a set of parent population chromosomes having o (o > 1) objective function
values. Steuer (1986) described the procedure of the Pareto algorithm in five steps that can

determine the non-dominated set of the solution as follows:
Step 0: Start with i = 1.

Step I: Forallm=1,2,... Nand m # i, compare the generated solutions x’ and x" for

domination.
Step 2: If for any m, x' is dominated by x™, mark x' as ‘dominated’.

Step 3: 1f i = N is reached, then all other solutions in the set are acceptable, return to Step

4, else increment i by one and begin again from Step 1.
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Step 4: All generated solutions that are not marked ‘dominated’ are tagged as non-

dominated solutions.
Step 5: Generate a list of non-dominated final solutions.

In GAs, the reproduction or selection stage of chromosomes can be related to the survival
of the fittest meaning that the chromosomes with the high value relative to the objective
function are preserved and propagate from generation to another in the search for an
optimal utilization solution. The main function of the selection operator is to maintain and
improve the population quality by enabling the highest value chromosomes to mate and
get cloned into the next generation. Selection directs the algorithm search operation to
discover more regions with high-quality chromosomes in the search space. Laumanns et
al. (2002) and Osman, et al. (2006) proposed a random-weighted method to generate a
random search direction towards PF. Assume that the designer would like to maximize an
objective function (o), then the weighted objective sum can be represented in Equation

(5.4.1.2).

f@) = wifi(r) + -+ wofo(r) = X, wifi(r) (54.1.2)

where = a string (i.e. individual), f{r)= combined fitness functions, fi(r)= i"" objective

function, and {w;| Y.7_; w; = 1} = constant weight for fi(r).

In this research, the roulette wheel selection mechanism in the reproduction operation is
utilized (Goldberg, 1989). This method is based on the probability value of variable
selection which is proportional to the population individual over total fitness ratio. This

ratio is calculated using Equation (5.4.1.3).
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_ F (@)= fmin(P)
P(r) = Yxealf ()~ fmin(®)} (5.4.1.3)

Where,

P(r)=is the selection probability of a string r in a population @ and f,;,(P) =

Min {f(r)|r € ®}.

Unlike other searching techniques, GAs follows a searching protocol where the parameters
are coded, and the transition rules are probabilistic. In the beginning, designers define the
main four GA parameters: (1) Crossover probability parameter (Pc); (2) Mutation
probability parameter (Pn); (3) Population size parameter (Psize); (4) Maximum number of
generations (7max). In this research, the arithmetic crossover mechanism is implemented,
and the application of a crossover operation is limited to its Pec. If Pc is too small then the
searching efficiency will be low; however, if Pc is too big then the structure destruction of
a high-quality solution will be inevitable. The main objective of the crossover stage in GA
is to trade information and properties between dual parents’ chromosomes in order to
produce dual child chromosomes for the next population set. In this research, a modified
uniform crossover with Pc = 0.5 (P value is generally between 0.5 and 0.8, Goldberg
(1989)) is used in either parents’ populations. Usually, the mutation operator value is
variable because the process of replacing one genotype by another one is random. The
process starts with the selection of random gene from i sub-chromosome set and then
replaced by a random integer within the interval [0, DC;] such that the sum of all genes in
the same set is equal to the /" DFX Y™ _, Gene;,, = DC; . Pn is considered an important
factor in the process of extending population diversity. If Pn is too low then the induction

of new gene will not be possible; however, if Pn is too high then the genetic evolution
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decayed into local random search. In this research, a modified uniform mutation with Pn =
0.02 (Pm value is generally between 0.001 and 0.1, Goldberg (1989)) is utilized. The
efficiency and quality of the generated solution is directly linked with the parameter Psize.
If Psize 1s too low then there are not enough sample and useful results cannot be concluded;
however, if Psize is too high then searching computation time will exceed its limit. In this
research, Psize = 50 (Pm value is generally between 10 and 100, Goldberg (1989)) is

considered and Tnax= 500.

First, the model initiates the GAs searching and optimizing operation after GA parameters
(defined above) are defined by the user. The machine design development parameters
include: (1) upper and lower bonds (constraints) of fitness functions; (2) design
development completion desired duration; (3) design development quality and cost cut-
threshold values; and (4) available DFX techniques for each design criteria and their
expected impact on the design development quality, time, and cost. Note that the string size
is equal to the total number of design criteria included in the analysis of MDFX. After that,
the GA algorithm starts in generating random solutions DFX=1 to S DFX; for the initial
population PP; in the first generation (gs=1). These solutions represent an initial MDFX
utilization set that can be allocated to each design criterion in the PDS. Then this set is
further evolved to output the optimal MDFX utilization set for each design criterion in the

PDS where the trade-off among MDFX cost, time, and quality metrics are optimized.

5.4.2 Phase 2: Multi-objective optimization fitness function
In this section, the model development stage is explained to formulate an intelligent,

automated, and robust MDFX optimization trade-off model that supports advanced cost-
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time-quality performance metrics analysis. The robust optimization model is structured to
cover the following main objectives: (1) Identifying the primary decision variables in the
MDFX utilization problem; and (2) formulating the MDFX trade-off objectives into fitness

functions to optimize the cost, time, and quality metrics.
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Design
Quality
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(¢=1to 0)

DFX
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Time
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(t=1to T)
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Design
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Figure 5.10 MDFX trade-off metrics optimization model

The proposed model is designed to include all the previous determined decision variables

that may affect the machine design development cost, time, or quality. These variables are:
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(1) DFX method (m), which indicates the different DFX techniques available; (2)
designers’ allocation (d), which represents designers’ team based on their relative technical
expertise per DFX; and (3) design time threshold (77), which represents allowable design
time per DFX as shown in Figure 5.10. The proposed model mixes these decision variables
(m, d, Tw) into a prime decision variable referred to as MDFX utilization (n), as illustrated
in Figure 5.10. However, designers are faced by two major obstacles if they want to utilize
this model in searching for the optimal MDFX utilization set which are: (1) how much is
the computational time for this model; (2) the vast possible sets of MDFX make the
solution space large (V') to search in. Thus, to overcome these challenges, the model
dictates three objective functions to execute the evaluation process of MDFX trade-off
metrics in machine design development. In this research, the formulation of a simplified
design development total cost (7Cpp) is proposed to optimize the MDFX decision-support
hybrid model, which considers only the design costs and neglects some variables of the
economic analysis model as shown later. The main purpose here is to effectively evaluate
the cost, time, and quality metrics of each feasible solution DFX; in generation gs in order
to determine the fitness of the MDFX solution. This fitness determines the chromosome
likelihood of survival and probability of reproduction for each solution in following

generations. The fitness functions (C, T, Q) for each solution is described below.

Step 1: Calculate the total design development cost (T'Cg) for solution (s) in generation set

(gs) where gs = generation set from gs=1 to Gs, which consists of design costs as shown in

Equation (5.4.2.1).
Minimize total design development cost:
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TCop = Y=o TC" = [iza (DRI x TR™) — (TR{" — TD)C; if (TR" <
TD,y) Otherwise 0 (Incentive) + (TR]™ — TDy,)Cp if (TR™ >

TD,,)Otherwise 0 (Penalties)] (5.4.2.1)

where TR[™=required development time in days of a design criterion (i) using DFX method
(m); DR™= daily cost rate for designer in $/day of DFX method for a design criterion. Also,
TR" is the total development time of a design criterion under DFX method while 7D, Ci,
and Cp, are denoted as the total design time threshold, incentive value, and penalty value,
respectively and they are user-defined constants. Therefore, to determine if the selected
chromosome is the best fit, it fitness value must be smaller then other chromosomes in the

same set where the smaller value represent less design development total cost.

Step 2: Calculate design development time (TTy) for solution (s) in generation set (gs),
which is the summation of the total design development time of all MDFX assigned to the

generated solution as represented in Equation (5.4.2.2).

Minimize total design development time:

TTpp = Xiey TT" (5.4.2.2)
where TT/™=duration of design criterion (i) using DFX method (m).

Step 3: Calculate design development quality (TQgs) for solution (s) in generation set (gs)

as shown in Equation (5.4.2.3) using the weighted approach method.

Maximize total design development quality:
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_ _ v _
TQpp = Xm=1TQ[" = XicaWv; Xy meax WieX AQme =

Zgzl We X Wie Zm=1 mgx Wine X AQm,e (5-4~2-3)

where w. =weight of design expert (e) based on the number of years of technical experience
as shown in Table 5.1, wi.=weight of design criterion (i) by design expert compared to
other design criterion in the PDS, wv; =product weighted value of we and wie , wm.=max
weight of DFX method (m) by design expert relative to other DFXs, and AQm. = design
experts averaged quality percentage with respect to DFX method relative to its

effectiveness in reducing machine design lifecycle when using MDFX utilization (»).

Table 5.1 Design expert's weight (we)

Experts Weight (0-1) Expert Design Experience (Years)
0.2 55Y<10
0.3 10<Y<15
0.5 15<Y<20

5.4.3 Phase 3: MDFX population generation based on Pareto-GA concept

Based on the hybridization between GAs and Pareto optimality, the model can solve and
optimize the C, T, and Q performance metrics of MDFX trade-off analysis. Consider that
many feasible solutions points are located and plotted graphically on the visualization
graph to form the final trade-off curve as shown in Figure 5.11. After plotting the initial
versus the final trade-off curve, the algorithm can calculate using Equations (5.4.3.1,
5.4.3.2, and 5.4.3.3) the following: minimum distance (dmin) between the curve segments
and parent points, the fitness values (f7), and the selection probability (Ps) for each (X,y,z)

point in the parent population set (Goldberg, 1989).

fi
fi = dmax — Amin Ps = ZTlfz (5.4.3.1)
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dmax = \/(Ti - Tn)z + (Ci - Cn)z + (Ql - Qn)z (5-4~3'2)

Ainin = J(Ti -T)?+ (¢ — C,-)2 +(Q; - Q,-)2 (5.4.3.3)

Where diax is the maximum dwin in the generation. The closer the distance to the tradeoff

curve, the more fit the chromosome will be.

Cost(8)
4

Pareto Optimal
Set

» Time (Days)

-—--- Final Time/Cost/Quality
trade-off curve

Initial Time/Cost/Quality
trade-off curve

Figure 5.11 Pareto set for multi-objective optimization

The only difference of fitness function between cost, time, and quality priorities is the
limitation function. The cost fitness function is constrained under the design development

cost range of designers’ decision, which can be represented in Equation (5.4.3.4).

LCin < TCpp < LCpax (5.4.3.4)

Where LChmin, LCmax are lower and upper boundaries of cost, respectively.
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Whereas, the time fitness function must be constrained over the design development time
target (TD,) of the designer's decision and the design development time threshold (T Dyy,)

determined by the system, as shown in Equation (5.4.3.5).
TDy, < TTpp < TD; (5.4.3.5)

While, the quality fitness function must be constrained over the design development
averaged quality (AQ,, ) of the designer's decision and the design development quality

threshold (Q;;) determined by the system, as shown in Equation (5.4.3.6).

AQme <TQpp < Q¢ (5.4.3.6)

There are three types of the population that are considered in each generation: (1) parent
population; (2) child population; and (3) combined population. For each generation set (gs),
two-parent populations (PPgs) are mated together to produce a child population (CPygs).
Child population will then present new solutions set by reordering and randomly allocating
fractions of the generated solutions from the parent population. After that, the newly
formed child population is mitigated with the parent population to form an expanded
solution set for current generation referred to as combined population (Ngs). The traits of
the combined population are compared, and a list of best-fit solutions is generated and

forwarded to the next iteration as a parent population (Laumanns et al., 2002).

The computational procedure of GA can be described in six steps (Mitchell, 1998; El-

Rayes and Kandil, 2005).

Step 1: Determine the Pareto optimal rank and calculate the crowding distance for each
solution (DFXs =1 to DFX; S) by grouping and ranking the solutions from the parent
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population according to their PF dominance on other solutions, where the best-fit solution
can be tagged ‘dominated’ if it shows its superiority over other solutions considering all

optimization functions simultaneously.

Step 2: Create new child population using the basic GA operations of selection, crossover,
and mutation. The purpose of the selection operation is to selects the chromosomes that
will pass the reproduction process, by distinguishing the chromosomes that have higher
optimal ranks and larger crowding distances. While, the crossover operation at a randomly
predetermined point switch each pair of the selected chromosomes and exchange the
variables embedded in its strings, resulting in two new chromosomes as illustrated in
Figure 5.5 and described in Figure 5.12. Finally, the mutation operation changes randomly
one of the variables values in the coded string to trigger deviation and to eliminate the

existence of the premature convergence to the local optima (Golberg, 1989).

-Select randomly 2 parents P, and P..
-Select randomly 2 integers 7 and i’ such that i<’ <N
-Select randomly 2 integers » and #’ such that n<N and n’<N.

-The child chromosome C, receives the same v
designation as parent P, parent for all crossover
operations between row (i,n) and row (i’, n”).

-The remaining assignments for C,1is extracted from P,
Same procedure can be applied on C,.

-Calculate the cost, time, quality MDFX trade-off
metrics of each child chromosome.

Figure 5.12 GA crossover operation algorithm

Step 3: Child population and parent population are combined to generate a new combined

population of size 25 DFX;s which acts as a vessel for the selected elite best-fit solutions.
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These solutions are passed on to the consecutive generation so that the loss of their good

qualities can be avoided (Laumanns et al., 2002).

Step 4: Repeat Step 2 by determining the Pareto optimal rank and calculating the crowding

distance for each solution (DFX; =1 to 25 DFX;) of the latest combined population.

Step 5. Using the niched comparison rule, the algorithm sorts the new generated combined
population. This rule helps in selecting the solutions that have a higher Pareto optimal rank
and in sorting up the solutions with the same rank. Finally, it selects the solutions with

larger crowding distances.

Step 6: Retain the top DFX; solutions to form the new parent population (PPgs+1) of the

next generation then repeat Step 1.

This iterative computation of the second and third steps of the algorithm progress until the
algorithm reaches its termination set point. In this research, the termination set point is the

max predetermined number of generations.

5.4.4 Phase 4: MDFX solutions economic analysis

In this research, the economic analysis model is developed based on MDFX trade-off total
impact valuation as implemented in feasibility assessments and selection (Bendekovi¢,
1993). The economic analysis of the generated solutions provides the designer by the
MDFX aggregated metrics where all economic variables are considered in the decision-
making process over the total lifecycle performance of the machine and where designer

subjective judgment is eliminated. Therefore, the system adopts the NPV/IRR concept
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developed by Vucina et al. (2010) to highlight the economic value of implementing MDFX

in the machine design development.

The design development net profit or loss (Ps) of each solution for a successive time period

(k) can be expressed as in Equation (5.4.4.1).
P,(k) = 1(k) — A(k) —TC,(k) — F(k) — T(k) (5.44.1)

where / can be denoted as the design initial total allocated budget, A4 the corresponding
amortization rate, 7Cs the total cost of design development solution, F the design financial
expenses, and 7 the relatives taxes. The design development net economic flows (Es),
which presents an integral measure of the design decision economic value relative to the

solution, can be calculated by using Equation (5.4.4.2).
Es(k) =1(k) —IN(k) —TC,(k) — T(k) (5.44.2)

where IN is the incremental investment into design activities. The net economic flows are
related to the net financial (profit or loss) flows excluding the financial properties (such as
F) and some net economic flow properties that may have a neutral impact in altering the
economic potential of a specific solution. Alternatively, Equation (5.4.4.1 and 5.4.4.2) can

be combined in Equation (5.4.4.3) to facilitate the economic analysis in this study.
Es(k) = B(k) + A(k) — IN(k) (5.4.4.3)

The NPV computation rule is illustrated in Equation (5.4.4.4).

Es(K)
NPV = Yo ont (5.4.4.4)
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where R denoted as the discount rate and & the number of successive time periods. The IRR
indicator is the rate of discounting (R”) that if applied, it turns the NPV value (Equation

(5.4.4.4) to zero, which is computed iteratively in Equation (5.4.4.5).

o o~ _vn _Es(K)
IRR = R* = NPV(R") = X-o 7 ipyr =

(5.4.4.5)

The NPV interpretation is as whether the MDFX solution is good or bad to be applied in
the machine design development. If NPV>0 then the cost of design spent in the early stages
of the machine development will return its value in the future at later stages; therefore, it
is a good solution. Contrary to NPV>0, NPV<0 is considered a bad solution and designers
should be aware of implementing it since it will create conflicts and negative profit in the
future. While NPV=0 can be interpreted as there is no difference in the value of the design

cost spent now and the profit generated later.

The proposed hybrid decision support model uses the economic analysis as the last
checkpoint for the generated solutions, Equations (5.4.4.4 and 5.4.4.5) imply that the
design decision model depends on several parameters other than technical design variables.
This can be related to the interactive relation between the designer and the financial
environment (e.g., design development lifespan, discounting rate, taxation schemes, etc.)
that can affect the optimization model. In general, to apply the NPV/IRR as a cost indicator
towards the economic analysis of design decision, a unified cost objective function must
be derived taking into consideration all the economic factors. Where the designer can
oversee if the decision is economically trustworthy by measuring its optimality value with

reference to C, T, and Q objective functions. Therefore, by combining Equations (5.4.3.
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and 5.4.4.4), a resultant NPV/IRR objective function is formulated as shown in Equation

(5.4.4.6).

min{NPVy¢ } = min {—1 + IN(0) + yk_, Fcep } (5.4.4.6)

(1+R)k
The main assumptions in Equation (5.4.4.6) for this research are as follows:
(1) no relative taxes and amortization terms are considered
(2)  I(k)= the initial budget allocated for the design development

(3) IN(0)=investment, typically cost of design development usually between 0.05 and 0.2

from the solution total design cost.
where 7TCs=total cost of design development solution.

5.5 Case Study

A preliminary analysis is performed to select and input the GA parameters values as shown
in Table 5.1. Accordingly, a population size of 50 and a max number of generations of 500
are found suitable for this case study in order to better compromise between computational
time and solutions diversity from the literature study. The proposed optimization model is
implemented in the conceptual design of the mass timber automated processing center
machine, as shown in Figure 5.13, to illustrate and demonstrate its capabilities and
accuracy. Here, the designer main objective, before starting the machine conceptual design,
is to select the best fit MDFX techniques that can be utilized against the design criteria
with minimum design development cost and time but with maximum quality. For this
purpose, twenty design experts are interviewed, and their results are grouped based on their

number of years of design experience in to three groups A, B, and C. In each group, the
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answers from the experts interviewed are combined and the average results are selected as
input data for the hybrid engine model as shown in Table 5.1 and Table 5.1. The case study
consists of six design criterions, which forms the case study PDS, and six DFX methods
under investigation. Each design criterion has several possible utilization solutions that can

be used towards it (refer Table 5.1 and Table 5.1).

Figure 5.13 Mass timber automated processing center

For this case study, the preliminary estimation is an average of 4.4 MDFX utilization
options to implement for each of the six design criterions in the conceptual machine design
as shown in Table 5.1, which results in more than 1.2 billion (i.e., 3.2'%) possible MDFX
combinations that can be implemented in machine design development. Each of these
possible MDFX utilization solutions sets have a unique impact on machine design
development; however, the main challenge in this study is how effective can the hybrid

model search this large space of feasible solutions in order to find the optimal solutions
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sets and maintain the balance between MDFX trade-off performance metrics (cost, time,
and quality). The daily incentive amount and the daily penalties amount of this case study
are considered to be 100 $/day and 50 $/day respectively. While the expected lifespan (k)
of the design decisions is 5 years, the design investment factor is 0.05, and the discounting

rate is 0.2. The initial budget for the design development (/) was estimated to be $7000.

The proposed GA-Pareto procedure is coded in the macro language of Solver, which is a
Microsoft® Excel add-in program, that utilizes the evolutionary solving method analysis.
The program is designed to find an optimal (maximum or minimum) value for multiple
objective formulas or fitness functions subject to its constraints. The program adjusts the
values in the decision variable cells to satisfy the limits on cost, time, and quality threshold
constraints. After that, it produces the result that the designer requires for the objective
function to make an informative decision. The use of Solver facilitates the implementation
process since the search and optimization engine GA algorithms are built-in functions and
are not programmed independently. The initial matrix for MDFX utilization options is
created as shown in Table 5.1. The matrix first results regarding DFX trade-off
performance metrics was listed in Table 5.1 where total design development cost, time,
and quality for each DFX utilization option is calculated with relative to its design criterion.
After running the hybrid engine, the search results come back as shown in Table 5.1 where
the MDFX utilization solution was {1,6,5,4,3,2}. Meaning that if this solution was
implemented by the designer in the machine design development towards the design
criteria set, the cost of the design development will be $6,900 with a duration of 30 days
and quality of 61.73 %. However, the solution may not be the optimal one on the lifespan

of the machine. Therefore, the solution is analyzed from an economic perspective based on
130



NPV/IRR financial concept to establish a money value understanding protocol to the
designer to implement in the MDFX decision-making process as shown in Table 5.1. The
IRR best compromise value is when NPV is equal to 0, for the first MDFX utilization
option this was achieved at 0.7255%. The solution with the least NPV is the best solution
that the designer should consider when maximizing the design decision value over the

machine design development lifespan.

Table 5.2 GA case study initial parameters

Parameter Value
r 5

Pe 0.5

P 0.02
RN 0,1

Psize 50

Tmax 500
LCrax $10,000
TD; 28 days

Table 5.3 Design experts’ details

Design Experts  Design Experts Design Experts Design Experts

Group Data Group A Group B Group C
Weight of design 0.5 0.2 0.3
expert (we)

Designer daily cost 200 300 400
rate in $/day (DR)

Required  Design 5 10 15
Time (Rp7)

Table 5.4 Design criteria weights with respect to each design expert

Design criterion weight with respect to each design  Weighted

expert Wie Value
Design Design Experts Design Experts Design Experts (wvi)
Creation (i) Group A Group B Group C We x Wi,
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1 0.4 0.2 0.4 0.340
2 0.3 0.4 0.4 0.350
3 0.2 0.4 0.4 0.300
4 0.65 0.4 0.4 0.525
5 0.15 0.4 0.4 0.275
6 0.05 0.4 0.4 0.225
Table 5.5 Design for methods parent chromosomes
# Design for method (m)
wn
g 1 Cost
-] 2 Assembly
-5 .
= g 3 Manufacturing
A 2 4 Maintainability
® 5 Quality
6 Robustness
Table 5.6 Design criteria parent chromosomes
# Design Criteria (i)
wn
g 1 Product Cost
=9 2 Functionality
w
= g 3 Robustness
a~ S 4 Assembly
5 5 Modularity
6 Reliability
Table 5.7 DFX utilization options
Design Design Design
Experts Experts Experts
Group -A Group -B Group -C
i m d Effort TDw Qs TRpr DR Wne Ome  Wme Ome  Wme Ome Wi Wme AQm,e
(%) $/day
1 1 A 100 8 95 5 $200 030 85 045 95 011 97 034 030 92
2 B 100 10 9 10  $300 015 90 020 8 028 95 028 90
3 C 100 12 8 15  $400 027 90 021 80  0.05 85 027 85
4 AB 5050 14 8 75 $250 012 80 017 8 008 75 0.18 80
5 AC 5050 16 75 125 $300 005 70 012 80 020 75 020 75
6 BC 5050 18 70 15  $350 0.1 80 0.4 70 028 65 028 72
2 1 B 100 10 90 10  $300 0.5 90 020 8 028 95 035 028 90
2 C 100 12 8 15  $400 027 90 021 80 005 85 027 85
3 AB 5050 14 80 7.5  $250 012 80 017 85 008 75 0.18 80
4 AC 5050 16 75 125 $300 005 70 012 80 020 75 020 75
5 BC 5050 18 70 15  $350 0.1 80 0.4 70 028 65 028 72
6 A 100 8 95 5 $200 030 85 015 95 0.1 97 030 92
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3 1 C 100 12 8 15 $400 033 80 024 8 007 75 030 033 80
2 AB 5050 14 80 75  $250 0.8 70 020 8 0.0 75 021 75
3 AC 5050 16 75 125 $300 0.1 80 015 70 022 65 022 72
4 BC 5050 18 70 15 $350 0.7 85 017 95 030 97 030 92
6 A 100 8 95 5 $200 021 90 023 80 030 85 030 85

4 1 AB 5050 14 8 75  $250 0.8 70 020 8 010 75 052 021 75
2 AC 5050 16 75 125 $300 0.1 80 015 70 022 65 022 72
3 BC 5050 18 70 15 $350 0.7 85 017 95 030 97 030 92
5 A 100 8 95 5 $200 021 90 023 80 030 85 030 85
6 B 100 10 9 10 $300 033 80 024 8 007 75 033 80

5 1 AC 5050 16 75 125 $300 0.5 80 022 70 028 65 027 028 72
2 BC 5050 18 70 15 $350 021 85 024 95 036 97 036 92
3 A 100 8 95 5 $200 040 85 025 95 0.9 97 041 92
6 B 100 10 90 10 $300 022 70 027 80  0.16 75 028 75

6 1 BC 5050 18 70 15 $350 0.19 85 020 95 035 97 022 036 92
3 A 100 8 95 5 $200 023 90 026 80 035 85 036 85
4 B 100 10 9 10 $300 035 80 027 8 0.2 75 036 80
5 C 100 12 8 15 $400 020 70 024 80 0.5 75 024 75

Table 5.8 DFX trade-off metrics values
i m TCch T TQ!
&) (days) (%)
1 1 $1,150 5 9.42
2 $3,000 10 8.57
3 $6,300 15 7.80
4 $2,200 7.5 4.76
5 $3,925 12.5 5.10
6 $5,400 15 6.82
2 1 $3,000 10 8.57
2 $6,300 15 7.80
3 $2,200 7.5 476
4 $3,925 12.5 5.10
5 $5,400 15 6.82
6 $1,150 5 9.42
3 1 $6,300 15 8.98
2 $2,200 7.5 5.23
3 $3,925 12.5 5.41
4 $5,400 15 9.48
6 $1,150 5 8.73
4 1 $2,200 7.5 5.23
2 $3,925 12.5 5.41
3 $5,400 15 9.48
5 $1,150 5 8.73
6 $3,000 10 8.98
5 1 $3,925 12.5 6.88
2 $5,400 15 11.38
3 $1,150 5 12.71
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6 $3,000 10 7.08
6 1 $5,400 15 11.22
3 $1,150 5 10.33
4 $3,000 10 9.72
5 $6,300 15 6.22
Table 5.9 DFX selection sample based on fitness functions
i Selected Min TCpp Min TTpp Max TQpp
m (&) (days) (%)
1 1 $1,150 5 9.42
2 6 $1,150 5 9.42
3 6 $1,150 5 9.48
4 5 $1,150 5 9.48
5 3 $1,150 5 12.71
6 3 $1,150 5 11.22
> Trade-off Metrics $6,900 30 61.73
Table 5.10 Solutions NPV and IRR economic values
IRR Solutions NPV
1 2 3 4 5 6
0% $245.00 $303.86 $2,807.27 $1,403.56 $824.28 $4,517.76
5% -$1,248.67 -$1,201.94 $785.35 -$328.96 -$788.82 $2,143.20
10% -$2,370.64 -$2,333.03 -$733.42 -$1,630.35 -$2,000.50 $359.54
15% -$3,224.48 -$3,193.81 -$1,889.23 -$2,620.73 -$2,922.60 -$997.86
20% -$3,882.04 -$3,856.71 -$2,779.35 -$3,383.45 -$3,632.75 -$2,043.22
25% -$4,394.01 -$4,372.84 -$3,472.37  -$3,977.28 -$4,185.64  -$2,857.12
30% -$4,796.63 -$4,778.73 -$4,017.38 -$4,444.28 -$4,620.46  -$3,497.18
35% -$5,116.21 -$5,100.90 -$4,449.98 -$4,814.97  -$4,965.59 -$4,005.23
40% -$5,372.05 -$5,358.83 -$4,796.31 -$5,111.72 -$5,241.89 -$4,411.96
45% -$5,578.51 -$5,566.96 -$5,075.79  -$5,351.20  -$5,464.86  -$4,740.19
50% -$5,746.36 -$5,736.17 -$5,302.99  -$5,545.89  -$5,646.12 -$5,007.02
55% -$5,883.76 -$5,874.69 -$5,488.99  -$5,705.26  -$5,794.51 -$5,225.45
60% -$5,996.96 -$5,988.82 -$5,642.23 -$5,836.57  -$5,916.77 -$5,405.42
65% -$6,090.80 -$6,083.42 -$5,769.26  -$5,945.41 -$6,018.11 -$5,554.60
70% -$6,169.04 -$6,162.28 -$5,875.16  -$6,036.15 -$6,102.59 -$5,678.97
75% -$6,234.60 -$6,228.39 -$5,963.91 -$6,112.21 -$6,173.41 -$5,783.21
80% -$6,289.84 -$6,284.07 -$6,038.68 -$6,176.27  -$6,233.06  -$5,871.02
85% -$6,336.59 -$6,331.20 -$6,101.96  -$6,230.50  -$6,283.54  -$5,945.34
90% -$6,376.34 -$6,371.27 -$6,155.77  -$6,276.60  -$6,326.47 -$6,008.53
95% -$6,410.28 -$6,405.49 -$6,201.71 -$6,315.97  -$6,363.12 -$6,062.48
100% -$6,439.38 -$6,434.82 -$6,241.10  -$6,349.72 -$6,394.55 -$6,108.74
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5.6 Results and Discussions

The developed MDFX hybrid model was implemented in the mass timber automated
processing center and was used to navigate and search the possible solution large space.
By adopting the Pareto optimality concept, the model was successful in reducing
significantly the solutions large space and this was achieved by precluding the Pareto
dominated solutions in the successive iterations of the GA parent population. The output
of the hybrid engine generates 310 Pareto optimal non-dominated solutions for this case
study where each solution signifies a possible optimal MDFX utilization solution for each
of the six-design criterion in the PDS set. Accordingly, it presents to the designer a unique
combination and optimal allocation of trade-off performance metrics. Table 5.1 shows a
sample result of these solutions and summarize their cost, time, and quality impact on
machine design development. It is noticed from Table 5.1 that solutions #1,2,3,4, and 5
could be considered as optimal solutions for this case study since their total design cost
$6,900, $6,956, $9,340, $8,003, and $7,452 respectively, is between the lower and upper
defined cost constraints. But, if the designer wants to emphasize on the design target time
constraint, which is defined as 28 days or less, then the possible solutions, in this case, will
be #2, 3, and 4. Finally, by choosing the highest quality percentage between the remaining
solutions, the designer concludes that solution #3 is the optimal solution with the quality

of 77%.

Table 5.11 MDFX pareto optimal utilization nondominated solutions with their trade-off
metrics

Solution (s) MDFX utilization TC; TT; TQs
options (n) (&) (days) (%)

1 {1,6,6,5,3,3} $6,900.00 30.00 61.73

2 {1,5,3,4,2,6} $6,956.06 27.58 60.88
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3 23,1,2,3,4) $9,340.26 27.82 77.17
4 {2,5,1,3,2,1} $8,003.39 26.37 66.02
5 1,1,3,2,2,1} $7,451.70 28.19 63.88
6 {1,4,2,5,1,3} $10,969.30 25.16 81.46
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Figure 5.14 MDFX solutions cost-time-quality trade-off surface

The generated final list of Pareto optimal non-dominated solutions is plotted on a fitted
visualizing surface to present the relation between MDFX trade-off performance metrics
as illustrated in Figure 5.18. This graphical tool can be used by designers to visualize and
evaluate the impact of various MDFX utilization solutions on machine design
development. Besides, these trade-off performance metrics can also be represented in 2D
slices where the trade-offs performance metrics between two design development

objectives at a time are illustrated as shown in Figure 5.15, Figure 5.16, and Figure 5.17.
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Figure 5.16 Cost-quality DFX trade-off analysis with respect to each design criterion
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Figure 5.17 Time-quality DFX trade-off analysis with respect to each design criterion

From the previous discussion, the optimal solution was #3 but if the NPV/IRR economic
model results were analyzed, then the conclusion will be altered. As observed in Figure
5.18, solution #2 has the second least NPV/IRR ratio from start to finish with values of
$303 and -$6435 respectively. The optimum solution, if only the economic analysis results
were taken into consideration during the decision-making process, will be solution #I.
However, if cost, time, and quality constraints are applied, then this solution will change
from #1 to #2 where it satisfies the optimization model objective functions, constraints,

and least NPV/IRR ratio.
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Figure 5.18 MDFX solutions NPV/IRR profile

The proposed optimization hybrid model outcome has been proven and demonstrated that

it has several unique characteristics as follows:
(1) The model considers discrete cost-time-quality relationships within design criterions.

(2) GAs s efficient algorithm in finding optimal solutions by searching in a partial chunk

of the total solution search space.

(3) The hybrid optimization engine takes into consideration the designer input such as
machine design development target duration, upper and lower cost, daily incentive,
and daily penalties into its formulation and uses total design development cost, time,
and quality as the objective functions to optimize MDFX trade-off performance

metrics.

(4) The hybrid model accounts for the economic analysis of the hybrid model output to
aid the designer in the decision-making process and to present a money value for the

solution over the machine design lifespan.
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5.7 Conclusion

A multi-objective optimization hybrid model was developed in this research to support the
cost-time-quality trade-off analysis of MDFX. It is designed and structured to search for
optimal MDFX utilization solutions to minimize machine design development cost and
time while maximizing its quality. The main process of proposed model can be broken-
down in to four parts: (1) GA algorithm model formation part where all primary decision
variables and objective functions are incorporated; (2) multi-objective optimization part
where MDFX performance metrics are optimized based on the fitness functions; (3)
population generation based on Pareto-GA concept part that implements a multi-objective
GA parameters for MDFX utilization solutions to facilitate the simultaneous trade-off
metrics optimization operation of MDFX; (4) economic analysis part to assess the
generated solutions from a financial perspective. A real machine design development case
study is presented and analyzed to illustrate the effectiveness of the hybrid model and
demonstrate its capabilities in developing optimal trade-offs among MDFX cost, time, and
quality with some limitation in handing higher-dimensional problems. The proposed model
proved to be useful to designers in machine design development activities. The economic
analysis model leads to couple the engineering—financial fields and decision-making
process. This is also adaptable with the optimization decision support system and the
results interpretation are made based on the integral economic perspective of design for
excellence and Pareto optimality; therefore, the application of NPV/IRR concept as best-

compromise analytical formulations can be shown as pragmatic measures in this problem.

Also, to the proposed hybrid approach for solving MDFX optimization problem, there are

two important characteristic features need to be highlighted. First, the introduction of a
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new chromosome’s structure which can represent all possible non-dominated feasible
solutions. Also, in order to preserve the feasibility and traits of the chromosome, a criterion
was developed. Based on this criterion, the GAs crossover and mutation operations were
modified and implemented to generate a higher set of feasible chromosomes. Secondly, the
hybrid engine is an iterative multi-objective GA algorithm with the ability to avoid an
overwhelming number of solutions by utilizing the Pareto optimality concept which can
retain the best fit solutions and update them iteratively during the searching operation.
Moreover, to help the designer extracts the best compromise solution from a finite set of
alternatives an economic model is adopted featuring NPV/IRR financial concepts in the

decision-making process.

The superiority and applicability of the hybrid GA-Pareto concept in machine design
development has been proven in this research. Furthermore, the implementation of GA-
Pareto model in integration with Microsoft® Excel Solver Add-in program has been
proven to be effective to be used in the machine design development problem and in
decision-making process. While large MDFX utilization problem still require large
computational time, series and continuous packages of improvements in the GA procedure.
The developed model provides a practical decision-making tool which utilized by designers

to implement MDFX in machine design development.
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Chapter 6 : Conclusion

6.1 General Conclusion

Engineering design is an iterative process of solution generation and evaluation. It requires
a designer to take a forward-thinking and a look ahead approach when finalizing a solution.
In a dynamic environment, a concurrent application of MDFX techniques during the design
process can be organized into multiple stages in which both evaluation and decision are
needed. The main theme of this research was to present the need for a tool that can reliably
estimate and verify the time/benefits of applying MDFX in a harmonized way in machine
design. As a result, a decision support tool that can aid the designer in the decision-making

process when MDFX are utilized will be required.

In this research, a collaborative DFX scheme was developed based on a comprehensive
literature review of various DFX tools in the broad area of machine development. The
scheme proposed contains thirty-six DFX techniques where their links and
interdependencies across five machine design phases are revealed. Moreover, the
quantitative research on the maturity of DFXs across the years shows that the combined
relative importance percentage allocated with top-ranked DFX techniques which signal an
increased level of preparedness of these most effective, efficient, and versatile DFX tools
for machine design deployment. Also, in this research, a design decision simulation tool
was developed to enable designers to foresee and explore lifecycle consequences during
the machine design. It provides a structured workflow specifying how and when MDFX
techniques can be applied with the ability to quantify the arising conflict that may occur
between them. The tool’s fundamental core is based on the information contained within

the DFX guidelines, which may be classified as either a design strategy or rule, so their
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interactions can be examined explicitly. Thus, the generation of a ranked list can be
integrated in a time-effective and strategic manner, thereby shrinking the machine design

time.

Furthermore, the research was directed to develop a decisive decision support system for
integrating MDFX with PDS. This was achieved by a hybrid FEAM-TOPSIS model
embedded with trade-off analysis model using conflict resolution, TFNs, and ranking
methods to evaluate MDFX combinations. The proposed MDFX model based on trade-off
analysis ensures the integration of design experts’ assessment and evaluation in a decision-
making system. Cost and time are utilized to compare MDFX alternatives so that lifecycle
cost can be reduced. The weighing of the financial and economic impact of all MDFX
selection design decisions provides a benchmark that can assist the designer in making

decisions to best benefit the machine development.

Also, the research targets the development of a multi-objective optimization model to
support the cost-time-quality trade-off analysis of MDFX. It is designed and structured to
search for optimal MDFX utilization solutions to minimize machine design development
cost and time while maximizing its quality. The optimization model is developed by
utilizing the GAs-Pareto optimality methods. Also, the hybrid model was integrated with
the economic analysis model; thus, leading to the coupling of the engineering—financial
fields and the decision-making process. This is also adaptable with the application of
NPV/IRR concept as best-compromise analytical formulations can be shown as pragmatic

measures to help the designer extracts the best compromise solution from a finite set of
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alternatives. The developed models provide practical decision-making tools which can be

utilized by designers to implement MDFX in machine design development.

6.2

Research Contributions

The contributions of this research can be summarized as follows:

(1

2

3)

“4)

Development of a structured DFX scheme that can be applied in Stuart Pugh model.
This scheme can aid the designer in selecting and allocating DFX techniques for

different phases of machine design development (Objective 1).

Design decision simulation tool that can reliably estimate and verify the
time/benefits of the application of MDFX in a harmonized way in machine design.
Also, it resolves the conflict arising between MDFX by analyzing their
interdependencies and simulating their interactions. It enables designers to foresee
and explore lifecycle consequences during the machine design and serve as a

strategic time-effective tool for the application of MDFX (Objective 2).

A hybrid decision support model that features the integration of MDFX with PDS,
evaluate and rank MDFX alternatives with interrelated design criteria, and achieve
the desired reduction of design development cost and time over the whole machine

lifecycle (Objective 3).

A hybrid multi-objective optimization model that can search for optimal MDFX
utilization plans to minimize machine design development time and cost while

maximizing its quality (Objective 4).
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6.3

Research Limitations

This research is subject to the following limitations:

(1)

2

3)

“4)

)

The functional scheme is limited to thirty-six DFX techniques distributed on the
machine lifecycle phases related to Stuart Pugh model and subject to the proposed

relative weighting system.

The methodology behind the MDFX conflict resolution is only focused on the
conceptual and detailed design development phases of the machine with a maximum
number of DFX techniques equal to 15. Also, the analysis function in the model is

limited to four DFX tools and a maximum number of ten strategies per phase.

The hybrid decision support model is relatively depending on the design experts’
values and assessment criteria which can have some degree subjectivity, bias,
imprecision and uncertainty. Also, the structure of the problem’s hierarchy and the

design attributes are closely inter-related.

In the hybrid multi-objective optimization model, the proposed algorithm has high
tendency in performing a random search which requires longer computational
processing time for large MDFX optimization problems. One solution to that is to
code the search GA-Pareto procedure using a faster high-performance programming

language other than the VBA programming language (e.g., Java, Python, C++, etc.).

For both hybrid models, the analyzed sample of the data is limited to 20 design

experts and the fuzzy ranking system.
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6.4

Future Research

Future research can be oriented and focused on the upgradable options for these models

and the possible extensions to this study as represented in Figure 6.1, including the

following:

(1

2

3)

Development efforts should be focused on bridging both scheme normative issues,
concerned with the design decision-making theoretical logic, and descriptive
issues, concerned with its practicalities together. Also, future research should be
directed toward validating the proposed DFX scheme in other engineering domains,

to widen and promote the applicability of DFX techniques.

Extend the applicability of the decision tool in the DFX trade-off analysis with
respect to cost and quality to provide a better understanding of client needs while
controlling the machine lifecycle. Moreover, the future development of this
methodology will be required to cover the other phases of the machine lifecycle

(e.g., embodiment design, manufacturing, and sales).

Explore how to reform the gaps between each criterion and its relative MDFX
combination by applying the Interactive Network Relationship Map (INRM)
methodology and recording the relationships complexity factor. The INRM could
be used not only to search for the most crucial criterion for the single DFX, but also
to calculate and asses the relationships and intercorrelation variables between them.
The hybrid decision support model is relatively depending on the design experts’

values and assessment criteria which can have some degree of subjectivity, bias,
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imprecision and uncertainty. Moreover, the structure of the problem’s hierarchy

and the design attributes are closely inter-related.

(4) The Integration of the hybrid model with a design cost estimating system with
historical database could provide a more realistic market evaluation of the cost,
time, and quality associated with each DFX method. Also, the model can be altered
to implement the dependency feature that enables the user to activate the crushing
decision option to execute the design development in a faster time. Moreover, some
formulation rectifications could be done on the basic GAs algorithm to boost up the
computational procedure execution searching time in similar optimization

problems.

(5) Development of a web-based centralized intelligent automated computerized
design development decision-making environment for MDFX optimization
problems to support designers during the conceptual and detailed machine design

stages and by taking the machine lifecycle into consideration.

(6) For both hybrid models, a larger sample of data (> 20) must be collected to
accurately verify the model effectiveness and these models must be extended to
target different machines for different sectors other than prefab construction
machines. Design an expert system database to capture the learned lessons from

previous projects.

147



Conflict Resolution

Selection & Ranking

DFX Scheme

*Bridge scheme normative
issues with its descriptive
issues.

*Validate the scheme in
other engineering domains.

*Extend the model to cover
cost and quality analysis.
*Validate the model in
other phases of lifecycle.
*Reduce the model
limitations

Future Research 1

Future Research 2

*Reduce criterions gap by
drafting the Interactive Network
Relationship Map (INRM).
*Measure the relationships and
intercorrelation variables.
*Eliminate the dependency on
design experts inputs if possible.

Future Research 3

Process Configuration/

“Coordination

Task order , Task Delivery

Analysis Configuration

Web-based centralized
intelligent automated

\ digitalized system for
\\[nultiple designers.

*Integration with design cost
estimation system with historical
data.

*Rectifications of some elements
in the GAs.

*Activate the dependency feature
to crash decision options for faster
development.

Combine all the modules of the
MDEFX framework in a network
web-based centralized intelligent
automated computerized system
for multiple designers.

Future Research 4

Trade-off Utilization Optimization

Future Research 5

Figure 6.1 Future work road map
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Appendix-A

A-1  Design experts interview questions

Name: Date/Time:
Location: Specialty:
1- As an expert in design and manufacturing sector, what two phases of a product life cycle are the

most important in your opinion:

A- Customer Needs/Specifications

B- Concept Design

C- Detailed Design

D- Manufacture

E- Sell

2- Select the top 10 Deign for X (DFX) techniques that are beneficial in your opinion for any

product development regardless of which phase is the product life cycle at:

A- Design for Cost (DFC)

B- Design for Manufacturing (DFM)
C- Design for Assembly (DFA)

D- Design for Manufacturing & Assembly (DFMA)
E- Design for Variety (DFV)

F- Design for Quality (DFQ)

G- Design for Six Sigma (DFSS)

H- Design for Testability (DFT)

I- Design for Obsolescence (DFO)

J- Design for Reusability (DFRE)

K- Design for Disassembly (DFDA)

L- Design for Reliability (DFR)

M- Design for Environment (DFE)

N- Design for Sustainability (DFS)

O- Design for Network (DFN)

P- Design for Robustness (DFRO)

Q- Design for Maintainability (DFMAI)
R- Design for End-Of-Life (DFEL)

S- Design for Supply Chain (DFSC)

T- Design for Recyclability (DFREC)
U- Design for Remanufacture (DFRem)
V- Design for Modularity (DFMO)

W- Design for Affordances (DFAF)

3- The product design specifications (PDS) is an evolutionary, comprehensive written document,
which must evolve to match the characteristics of the final product. Poor PDS leads to poor design that
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will fail in the market. Good PDS does not guarantee good design but make the goal more attainable.
PDS set the design in context, which is a comprehensive set of constrains. Select the top 10 from each
design stage.

( Product Cost Y [ Product Cost
Specifications Specifications
Manuals Manuals
= =
©  Standards &  Standards
© . o .
S Maintenance [ Maintenance
P . <P .
~N Disposal <=  Disposal
© pu( o
M= Reliability M= Reuse
o Auvailability o Reliability
£, Fabrication Sp  Availability
‘@ Logistics ‘@ Fabrication
S Assembly S Logistics
- Modularity = Assembly
Q. Testing & 5 Modularity
8 Commissioning T—d Testing &
= Weight i} Commissioning
< Safety 4 Weight
@) _ =]
Ergonomics Safety
Product Life Cycle | Product Life Cycle
Size > Size
Aesthetics Laws & Regulations
Laws & Regulations Robustness
Robustness
| | J/
4- By implementing a pairwise comparisons method we will be able to rank a specific product

criterion and its importance with respect to other criterions. Put a check mark where the interaction between
these criteria is the best fit.

159



Absolutely| Strongly | Fairly | Weakly Equally Weakly Fairly | Strongly |Absolutely
Important | Important | Important | Important Criterion Important Criterion Important | Important | Important | Important
9,9,9 | 6,7,8) | 45,6) | (2,3,4) 1,1,1) 23,4 | 45,6) | 6,7,8 | (9,99
Product Cost Specifications
Product Cost Maintenance

Product Cost Reliability
Product Cost Assembly/Disassembly
Product Cost Weight/Size
Product Cost Safety/Ergonomics
Specifications Maintenance
Specifications Reliability
Specifications Assembly/Disassembly
Specifications Weight/Size
Specifications Safety/Ergonomics
Maintenance Reliability
Maintenance Assembly/Disassembly
Maintenance Weight/Size
Maintenance Safety/Ergonomics
Reliability Assembly/Disassembly
Reliability Weight/Size
Reliability Safety/Ergonomics
Assembly/Disassembly Weight/Size
Assembly/Disassembly Safety/Ergonomics
Weight/Size Safety/Ergonomics
5- Rate the Design for X in a pairwise comparison on a nine-point scale (1 to 9) as per the below

table. Note: Disregard the shaded area.

Rating [Description

1 Equally preferred

3 Moderately preferred

5 Strongly preferred

7 Very strongly preferred

9 Extremely strongly preferred
2,4,6,8 |Between two numbers above

[Cost (DFC)[Manufacturing (DFM)[ Assembly (DFA)| Rok (DFRO)[Quality (DFQ)[ Sustainability (DFS)| Reliability (DFR)] Testability (DFT)

Design for
Cost (DFC)
Manufacturing (DF'
Assembly (DFA)
Robustness (DFRO)
Quality (DFQ)
bility (DFS)
Reliability (DFR)

Testability (DFT)

6- Each DFX technique consist of a number of high-level design guidelines, called design rules. Each
rule contains a set of low-level design guidelines, called design strategies. In conceptual and detailed design
stages, weight the below two DFX techniques (DFA and DFDA) design rules from (1 to 10) with 10 the
highest.
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Weight

tual Desi
Conceptual Design (1 to 10)

1- Minimize the number of parts (Types & Count)

2- Increase product modularity

DFA

3- Ensure base part design

4- Aim for sequential assembly design

5- Minimize the need for reorientations during assembly

1- Improve the products structure for disassembly

DFDA

2- Improve the disassembly planning

Weight

Detailed Design (1 to 10)

1- Minimize the number of parts (Types & Count)

2- Aim for the elimination of adjusments and parts asymmetry

3- Elimnate tangling, jamming

DFA

4- Design parts to be self-aligning and self-locating

5- Reduce number of fastening products

6- Ensure adequate access and unrestricted vision

7- Execute one-way assembly methodology

1- Improve the product structure for disassembly.

2- Improve access and vision for disassembly.

3- Improve disassembly planning.

4- Material compatibility.

DFDA

5- Implementing component design rules.

6- Design and selection of connectors.

7- Maximize end of life value of the product.

7- In conceptual and detailed design stages, assign a C value to each cross between two strategies.
This to determine and gauge whether any number of strategies from any number of DFX techniques have
conflicted so severely.

C Values Interpretations
+10 Strategies interact very positively
+5 One strategy tends to support the other in a broad sense
0 No form of interacation exists between the strategies
-5 Some conflict exists as to the direction the design should take
-10 The strategies are almost completely contradictory in nature
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z
3
B L Minimize the
& | Subdivide the .
= _ number of X Avoid long
C tual Desi & | product into components Standardize the disassembly
onceptua esign : manageable and products style aths
2 | subassemblies . P
ls subassemblies
DFA Strategies
Minimize the number of parts and levels of assembly
Minimize the number of components and subassemblies
Reduce product complexity
Eliminate any product features that do not add value to the customer
Design mult-function parts
Design products from modular subassemblies so that
modules can be scheduled, built and tested independently
Standardize by common components, processes and methods to reduce costs across the whole system
Subassemblies
8 Reduce the that are
® Subdivide the | Minimize the | Minimize the Make sur number of difficult to
K whole number of | numberof | Standardize z'meaf“ € | changesin | Avoidlong | disassemble
Detailed Design & | assembly into | connections | components | the products direction | disassembly | should be
components o
< manageable between and style . required in a paths made of the
a N . are accessible iy
= removal same or
a operation compatible
material

DFA Strategies
Reduce the number of parts between the input and output function
Move critically related surfaces close together to facilitate tolerance
control
Follow kinematic design principles
Eliminate or minimize the need for repositioning an assembly once it is
fixtured
Ensure adequate clearance for hands, tools, and subsequent processes
Ensure that vision of the process is not restricted or compromised.
Design simple assembly operations: parts can be assembled only one way;
if misassembled, subsequent parts cannot be added
Minimize motion distance, within practical limits, to reduce motion time
and improve accuracy

A-2  Design expert’s participants list

Experts Weight (0-10) Expert Design Number of design
Experience (Years) experts interviewed

0.8 0 2

1.7 5€Y<10 4

2 10<Y<15 3

2.5 15<Y<20 4
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A-3  Design expert’s data collection for FEAM

Product Criteria- Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater nu;l:;l of
Product Criteria A. Tmp. S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Imp. A. Tmp. Product Criteria |  design
8.9.10) 6.7.8 4,5.6) (2.3.4) (L1 (1/4,1/3,1/2) (1/6,1/5,1/4) (1/8.1/7,1/6) (1/10,1/9,1/8) experts
819 10 6 7 8 4 S 6 2 3 4 1 1 11025/0.33/0.50{0.17]0.200.25]0.13]0.14]0.17]0.10]0.11]0.13
End-User (A) 4 [ 4 4 4 4 4 0 0 0 1 1 1 21202 4 4 4 0 0 0 4 4 4 1 1 1 Materials (B) 20
End-User (A) 4 | 4 4 4 4 4 0 0 0 2 2 2 6166 3 3 3 1 1 1 0 0 0 0 0 0 Machine (C) 20
End-User (A) 00 0 2 2 2 0 0 0 1 1 1 81818 0 0 0 0 0 0 3 3 3 6 6 6 | Performance (D) 20
End-User (A) 1 1 1 2 2 2 1 1 1 4 4 4 1 1 1 4 4 4 1 1 1 2 2 2 4 4 4 Process (E) 20
Materials (B) 2 |2 2 3 3 3 2 2 2 2 2 2 01010 0 0 0 3 3 3 3 3 3 5 5 5 Machine (C) 20
Materials (B) 00 0 0 0 0 2 2 2 3 3 3 21202 0 0 0 0 0 0 5 5 5 8 8 8 | Performance (D) 20
Materials (B) 010 0 3 3 3 2 2 2 3 3 3 41414 0 0 0 2 2 2 3 3 3 3 3 3 Process (E) 20
Machine (C) 1 1 1 2 2 2 3 3 3 1 1 1 31313 0 0 0 0 0 0 2 2 2 8 8 8 | Performance (D) 20
Machine (C) 00 0 4 4 4 2 2 2 0 0 0 1 1 1 2 2 2 6 6 6 5 5 5 0 0 0 Process (E) 20
Performance (D) | 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 0 2 2 3 3 3 3 3 3 2 2 2 Process (E) 20
Data Criteria A- Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater Total
Product Product numb.er of | Integration
Criteria A. Imp. S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Imp. A. Imp. Criteria design Power
8.9.10) (6,7.8 4.5,6) 234 (1,11 (1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8) experts
8 9 10 6 7 8 4 5 6 2 3 4 1 1 110.25]0.33]0.50)0.17]0.20]0.25]0.13]0.14{0.17|0.10{0.11 ] 0.13
Al 8 8 8 3 3 3 2 2 2 3 3 3 21212 0 0 0 2 2 2 0 0 0 0 0 0 A2 20 0.050
Al 12 |12 12 5 5 5 2 2 2 1 1 1 0]01]0 0 0 0 0 0 0 0 0 0 0 0 0 A3 20 0.050
Al 10 10| 10 4 1414 3 3 3 2 2 2 1j1j1{o 0 0 0 0 0 0 0 0 0 0 0 A4 20 0.050
Al 6 16 6 5155 1 1 1 3 3 3 J]0j0jJoOo]oO 0 0 2 2 2 3 3 3 0 0 0 A5 20 0.050
Al 14 [ 14| 14 2 2 2 3 3 3 1 1 1 0]01]0 0 0 0 0 0 0 0 0 0 0 0 0 A6 20 0.050
A2 12 [12] 12 3 3 3 2 2 2 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A3 20 0.050
A2 11|11 11 3 3 3 3 3 3 1 1 1 212]2 0 0 0 0 0 0 0 0 0 0 0 0 A4 20 0.050
A2 0 0 0 2 2 2 5 5 5 3 3 3 21212 3 3 3 4 4 4 1 1 1 0 0 0 AS 20 0.050
A2 16 | 16| 16 1 1 1 3 3 3 0 0 0 0]01]0 0 0 0 0 0 0 0 0 0 0 0 0 A6 20 0.050
A3 010 0 0j]0]o0 5 5 5 2 2 2 |4]4]4]2 2 2 3 3 3 4 4 4 0 0 0 A4 20 0.050
A3 010 0 0]0]o0 3 3 3 2 2 2 S I O O O 3 3 0 0 0 6 6 6 5 5 5 A5 20 0.050
A3 010 0 0]0]o0 6 6 6 | 4 4 4 ]0J0JO0] 3 3 3 5 5 5 2 2 2 0 0 0 A6 20 0.050
A4 0 0 0 2 2 2 4 4 4 0 0 0 31313 0 0 0 4 4 4 3 3 3 4 4 4 AS 20 0.050
A4 0 0 0 0 0 0 5 5 5 3 3 3 41414 2 2 2 5 5 5 1 1 1 0 0 0 A6 20 0.050
A5 8 8 8 6 6 6 2 2 2 0 0 0 1 1 1 3 3 3 0 0 0 0 0 0 0 0 0 A6 20 0.050
Data Criteria B- Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater Tulz\? .
Product Product number of | Integration
N A. Imp. S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Imp. A. Imp. - design Power
Criteria 8.9.10) (6.7.8 (4,5.6) (23.4) (LL1) (1/4,1/3,1/2) (1/6,1/5,1/4) WB/7.16) | (1/10.1/9.178) | M8 | oyperts
8 191 10 6 17|81 4 5 6 2 3 4 | 1] 1]11]025/033]050[0.17/0.20/0.250.13/0.14/0.170.10]0.11]0.13
Bl 4 4 4 4 4 4 0 0 0 1 1 1 21212 4 4 4 0 0 0 4 4 4 1 1 1 B2 20 0.050
Bl 4 4 4 4 4 4 0 0 0 2 2 2 61616 3 3 3 1 1 1 0 0 0 0 0 0 B3 20 0.050
B1 0 0 0 2 2 2 0 0 0 1 1 1 81818 0 0 0 0 0 0 3 3 3 6 6 6 B4 20 0.050
B2 1 1 1 2 2 2 1 1 1 4 4 4 1 1 1 4 4 4 1 1 1 2 2 2 4 4 4 B3 20 0.050
B2 2 2 2 3 3 3 2 2 2 2 2 2 01010 0 0 0 3 3 3 3 3 3 5 5 5 B4 20 0.050
B3 0 0 0 0 0 0 2 2 2 3 3 3 21212 0 0 0 0 0 0 5 5 5 8 8 8 B4 20 0.050
Data Criteria C- Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater Total .
Product _ Product number of | Integration
Criteria A. Imp. S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Imp. A. Imp. Criteria design Power
8.9.10) (6,78 4,5.6) (234) 11,1 (1/4,1/3,172) (1/6,1/5,1/4) (1/8.1/7.1/6) (1/10,1/9.1/8) experts
8 9 10 6 7 8 4 5 6 2 3 4 1 1 11025]0.33/0.50(0.17]0.20]0.25[0.13{0.14|0.17[0.10|0.11 | 0.13
C1 4 4 4 2 2 2 2 2 2 1 1 1 4144 2 2 2 0 0 0 3 3 3 2 2 2 C2 20 0.050
Cl1 6 6 6 3 3 3 3 3 3 0 0 0 0010 3 3 3 3 3 3 2 2 2 0 0 0 C3 20 0.050
2 7 7 7 2 2 2 2 2 2 3 3 3 0]01]0 4 4 4 2 2 2 0 0 0 0 0 0 Cc3 20 0.050
Data Criteria D-Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater nur—l;n‘lzt:rl of
Produet ™ - S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Tmp. Actmp. | PN esion
Criteria 8.9.10) (6.7.8 (4.5.6) (2.34) (1L WAL | W6ls1A) | (81716 | (1101/9,158) | S| e
8 |9 10 6 7 8 4 5 6 2 3 4 1 {1 ]11]025/0.33]0.50]0.170.20|0.25]0.13|0.14]0.17]0.10 | 0.11 | 0.13
D1 2 |12 2 4 4 4 2 2 2 0 0 0 |4]414] 0 0 0 2 2 2 2 2 2 4 4 4 D2 20
D1 313 3 2 2 2 0 0 0 1 1 1 212123 3 3 0 0 0 3 3 3 6 6 6 D3 20
DI 8 | 8 8 3 3 3 0 0 0 3 3 3 3131310 0 0 3 3 3 0 0 0 0 0 0 D4 20
D1 010 0 2 2 2 3 3 3 0 0 0 0ojo0jo0| 2 2 2 4 4 4 6 6 6 3 3 3 D5 20
D2 6 |6 6 3 3 3 0 0 0 2 2 2 {11 3 3 3 0 0 0 3 3 3 2 2 2 D3 20
D2 8 | 8 8 2 2 2 1 1 1 0 0 0 0[0]O0]| 4 4 4 3 3 3 2 2 2 0 0 0 D4 20
D2 4 |4 4 0 0 0 0 0 0 3 3 3 4141410 0 0 S S S 4 4 4 0 0 0 D5 20
D3 515 5 3 3 3 2 2 2 1 1 1 0j0]0][3 3 3 4 4 4 2 2 2 0 0 0 D4 20
D3 010 0 4 4 4 4 4 4 0 0 0 313|132 2 2 0 0 0 4 4 4 3 3 3 DS 20
D4 010 0 0 0 0 6 6 6 2 2 2 ojojo|3 3 3 2 2 2 5 5 5 2 2 2 D5 20
Data Criteira E- Fuzzy Numbers in Comparison Matrices
The left measure is greater Neutral The right measure is greater Total
Product ; Product numb‘er of | Integration
Criteria A. Imp. S. Imp. F. Imp. W. Imp. Eq. Imp. W. Imp. F. Imp. S. Imp. A. Imp. Criteria design Power
8,9.10) (6,7.8 (4.5.6) 234 L1l (1/4,1/3,1/2) (1/6,1/5,1/4) (1/8,1/7,1/6) (1/10,1/9,1/8) experts
8 9 10 6 7 8 4 5 6 2 3 4 1 1 11025]0.33/0.50(0.17]0.20]0.25[0.13|0.14|0.17[0.10|0.11 | 0.13
El 2 2 2 3 3 3 1 1 1 2 2 2 21212 3 3 3 0 0 0 4 4 4 3 3 3 E2 20 0.050
El 0 0 0 4 4 4 0 0 0 3 3 3 0010 2 2 2 4 4 4 6 6 6 1 1 1 E3 20 0.050
E2 0 0 0 2 2 2 5 5 5 1 1 1 31313 0 0 0 5 5 5 2 2 2 2 2 2 E3 20 0.050




A-4

Design expert’s data collection for TOSIS model (End-user DFX Alternatives)
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Fuzzy Numbers in Comparison Matrices

Total
Data number of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5 (3,5,7) (5,7,9) (7,9.9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 0 | O 0 0 0 0 2 2 2 4 4 4 14 | 14 | 14 Al 20 0.050
DFX5 | 0 | O 0 0 0 0 0 0 0 8 8 8 12 | 12 | 12 Al 20 0.050
DFX6 | 2 | 2 2 8 8 8 7 7 7 3 3 3 0 0 0 Al 20 0.050
DFX8 | 2 | 2 2 4 4 4 5 5 5 7 7 7 2 2 2 Al 20 0.050
DFX10 | 4 4 4 3 3 3 5 5 5 6 6 6 2 2 2 Al 20 0.050
DFX12 | 9 9 9 2 2 2 4 4 4 2 2 2 3 3 3 Al 20 0.050
DFX15| 4 | 4 4 8 8 8 5 5 5 3 3 3 0 0 0 Al 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numb.er of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9

DFX1 1 1 1 4 4 4 2 2 2 3 3 3 10 10 10 A2 20 0.050
DFX5 | 2 | 2 2 0 0 0 4 4 4 6 6 6 8 8 8 A2 20 0.050
DFX6 | 6 | 6 6 8 8 8 2 2 2 1 1 1 3 3 3 A2 20 0.050
DFXS8 9 9 9 2 2 2 1 1 1 4 4 4 4 4 4 A2 20 0.050
DFX10 | 3 | 3 3 6 6 6 5 5 5 6 6 6 0 0 0 A2 20 0.050
DFX12 | 8 | 8 8 5 5 5 2 2 2 5 5 5 0 0 0 A2 20 0.050
DFX15| 10 | 10| 10 4 4 4 3 3 3 3 3 3 0 0 0 A2 20 0.050
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Fuzzy Numbers in Comparison Matrices
Total
Data numb‘er of | Integration
DFX VP P F G VG T design Power
(1,1,3) (1,3,5) (35.7) (5,7.9) (7.9.9) Criteria | oxperts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 12 | 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 A3 20 0.050
DFX5 | 14 | 14| 14 5 5 5 1 1 1 0 0 0 0 0 0 A3 20 0.050
DFX6 | 2 2 2 3 3 3 6 6 6 5 5 5 4 4 4 A3 20 0.050
DFX8 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 A3 20 0.050
DFX10| 10 | 10| 10 0 0 0 6 6 6 4 4 4 0 0 0 A3 20 0.050
DFX12 | 14 | 14| 14 0 0 0 4 4 4 2 2 2 0 0 0 A3 20 0.050
DFX15 | 18 | 18 18 2 2 2 0 0 0 0 0 0 0 0 0 A3 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numb.er of | Integration
DFX VP P F G VG o design Power
(1,1,3) (1,3,5) (3,57 (,7,9) (7,9.9) Criteria | perts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 4 4 4 6 6 6 8 8 8 0 0 0 A4 20 0.050
DFX5 3 3 3 5 5 5 3 3 3 7 7 7 2 2 2 A4 20 0.050
DFX6 | 4 4 4 0 0 0 8 8 8 6 6 6 2 2 2 A4 20 0.050
DFX8 | 12 | 12 12 8 8 8 0 0 0 0 0 0 0 0 0 A4 20 0.050
DFX10| 10 | 10| 10 6 6 6 2 2 2 2 2 2 0 0 0 A4 20 0.050
DFX12 | 14 | 14| 14 2 2 2 4 4 4 0 0 0 0 0 0 A4 20 0.050
DFX15 | 16 | 16 16 4 4 4 0 0 0 0 0 0 0 0 0 A4 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numbér of | Integration
DFX VP P F G VG o design Power
(1,1,3) (1,3,5) (3,57 (5,79 (7,9.9) Criteria | - perts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 4 4 4 5 5 5 7 7 7 2 2 2 AS 20 0.050
DFXS 3 3 3 5 5 5 2 2 2 8 8 8 2 2 2 AS 20 0.050
DFX6 8 8 8 6 6 6 3 3 3 2 2 2 1 1 1 A5 20 0.050
DFX8 | 4 4 4 4 4 4 7 7 7 5 5 5 0 0 0 AS 20 0.050
DFX10 | 2 2 2 2 2 2 4 4 4 8 8 8 4 4 4 AS 20 0.050
DFX12 | 3 3 3 3 3 3 5 5 5 7 7 7 2 2 2 AS 20 0.050
DFX15| 12 | 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 A5 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data number of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9.9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 9 9 9 7 7 7 4 4 4 0 0 0 0 0 0 A6 20 0.050
DFXS | 11 | 11 11 6 6 6 3 3 3 0 0 0 0 0 0 A6 20 0.050
DFX6 | 14 | 14| 14 6 6 6 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX8 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX10 | 18 | 18 18 2 2 2 0 0 0 0 0 0 0 0 0 A6 20 0.050
DFX12 | 2 2 2 3 3 3 3 3 3 7 7 7 5 5 5 A6 20 0.050
DFX15| 3 3 3 2 2 2 2 2 2 8 8 8 5 5 5 A6 20 0.050
A-5  Design expert’s data collection for TOSIS model (Materials DFX Alternatives)
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Fuzzy Numbers in Comparison Matrices

Total
Data numb.er of | Integration
DFX VP P F G VG . design Power
(1,1,3) (1,3,5) (3,5.7) (5,7.9) (7,9.9) Criteria | - perts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 3 3 3 4 4 4 8 8 8 3 3 3 B1 20 0.050
DFX2 | 4 4 4 5 5 5 8 8 8 2 2 2 1 1 1 B1 20 0.050
DFX3 | 8 8 8 6 6 6 3 3 3 2 2 2 1 1 1 B1 20 0.050
DFX4 | 14 | 14 14 5 5 5 1 1 1 0 0 0 0 0 0 B1 20 0.050
DFX7 | 18 | 18] 18 2 2 2 0 0 0 0 0 0 0 0 0 B1 20 0.050
DFX8 | 1 1 1 1 1 1 4 4 4 5 5 5 9 9 9 B1 20 0.050
DFX14| 12 | 12| 12 8 8 8 0 0 0 0 0 0 0 0 0 B1 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
number of | Integration
Data .
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 2 2 4 4 4 11 11 11 3 3 3 0 0 0 B2 20 0.050
DFX2 | 12 | 12 12 6 6 6 2 2 2 0 0 0 0 0 0 B2 20 0.050
DFX3 | 15 | 15 15 5 5 5 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX4 | 17 | 17| 17 3 3 3 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX7 | 18 | 18| 18 2 2 2 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFXS8 | 18 | 18] 18 2 2 2 0 0 0 0 0 0 0 0 0 B2 20 0.050
DFX14| 10 | 10| 10 2 2 2 4 4 4 4 4 4 0 0 0 B2 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numbgr of | Integration
DFX VP P F G VG o design Power
(1,1,3) (1,3.5) (35.7) (5.7.9) (7.9.9) Criteria | oxperts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 0O 0 0 3 3 3 2 2 2 8 8 8 7 7 7 B3 20 0.050
DFX2 | 0 0 0 0 0 0 6 6 6 4 4 4 10 10 10 B3 20 0.050
DFX3 | 0 0 0 2 2 2 4 4 4 8 8 8 6 6 6 B3 20 0.050
DFX4 | 12 [ 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 B3 20 0.050
DFX7 | 10 | 10 10 4 4 4 4 4 4 2 2 2 0 0 0 B3 20 0.050
DFX8 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 B3 20 0.050
DFX14| 12 | 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 B3 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numb.er of | Integration
DFX VP P F G VG T design Power
(1,1,3) (1,3,5) (35.7) (5,7.9) (7.9.9) Criteria | oxperts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 2 2 4 4 4 8 8 8 6 6 6 0 0 0 B4 20 0.050
DFX2 | 2 2 2 8 8 8 5 5 5 3 3 3 2 2 2 B4 20 0.050
DFX3 | 8 8 8 4 4 4 6 6 6 2 2 2 0 0 0 B4 20 0.050
DFX4 | 18 | 18 18 2 2 2 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX7 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX8 | 19 [ 19| 19 1 1 1 0 0 0 0 0 0 0 0 0 B4 20 0.050
DFX14| 1 1 1 3 3 3 5 5 5 6 6 6 5 5 5 B4 20 0.050
A-6  Design expert’s data collection for TOSIS model (Machine DFX Alternatives)
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Fuzzy Numbers in Comparison Matrices
Total
Data numbér of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3.,5,7) (5,7,9) (7.9.9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 2 2 2 4 4 4 5 5 5 4 4 4 5 5 5 C1 20 0.050
DFX2 | 3 | 3 3 2 | 2] 2 8 8 8 6 6 6 1 1 1 C1 20 0.050
DFX3| 0 | 0 0 2 | 2] 2 2 2 2 6 6 6 10 | 10 | 10 C1 20 0.050
DFX7 ]| 0 | 0 0 0] 0 0 4 4 4 8 8 8 8 8 8 C1 20 0.050
DFX9 | 10 [ 10| 10 4 141 4 6 6 6 0 0 0 0 0 0 C1 20 0.050
DFX11| 0 | O 0 2 | 2] 2 4 4 4 6 6 6 8 8 8 C1 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
number of | Integration
Data .
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) 3.,5,7) (5,7,9) (7,9.9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1| 0 | 0 0 010 0 6 6 6 8 8 8 6 6 6 C2 20 0.050
DFX2 | 0 | O 0 2 1 2] 2 5 5 5 6 6 6 7 7 7 C2 20 0.050
DFX3| 0 | 0 0 3 3 3 2 2 2 7 7 7 8 8 8 C2 20 0.050
DFX7 | 1 1 1 2 | 2] 2 4 4 4 5 5 5 8 8 8 C2 20 0.050
DFX9 | 12 [ 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 C2 20 0.050
DFX11| 0 | O 0 3 3 3 8 8 8 4 4 4 5 5 5 (67] 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data number of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1| 0 | O 0 4 1 41 4 8 8 8 6 6 6 2 2 2 C3 20 0.050
DFX2 | 8 | 8 8 7 7 7 5 5 5 0 0 0 0 0 0 C3 20 0.050
DFX3 | 10 [ 10| 10 5 5 5 3 3 3 2 2 2 0 0 0 C3 20 0.050
DFX7 | 12 | 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 C3 20 0.050
DFX9 | 0 | O 0 1 1 1 6 6 6 5 5 5 8 8 8 C3 20 0.050
DFX11| 6 6 6 8 8 8 4 4 4 2 2 2 0 0 0 C3 20 0.050
A-7  Design expert’s data collection for TOSIS model (Performance DFX Alternatives)
Fuzzy Numbers in Comparison Matrices
Total
Data numb‘er of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5 (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 | 2 2 3 3 3 8 8 8 7 7 7 0 0 0 D1 20 0.050
DFX2 | 3 | 3 3 5 5 5 6 6 6 6 6 6 0 0 0 D1 20 0.050
DFX3 | 4 | 4 4 6 6 6 7 7 7 3 3 3 0 0 0 D1 20 0.050
DFX7 | 2 | 2 2 4 141 4 5 5 5 6 6 6 3 3 3 D1 20 0.050
DFX10| 1 1 1 8 8 8 2 2 2 5 5 5 4 4 4 D1 20 0.050
DFX12| 10 | 10 10 8 8 8 2 2 2 0 0 0 0 0 0 D1 20 0.050
DFX13| 14 | 14| 14 6 6 6 0 0 0 0 0 0 0 0 0 D1 20 0.050
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Fuzzy Numbers in Comparison Matrices
Total
number of | Integration
Data .
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3.,5,7) (5,7,9) (7,9,9) experts
1|1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1| 2 | 2 2 4 1 41 4 4 4 4 5 5 5 5 5 5 D2 20 0.050
DFX2 | 12 | 12 12 5 5 5 3 3 3 0 0 0 0 0 0 D2 20 0.050
DFX3 | 10 | 10| 10 6 | 6|6 4 4 4 0 0 0 0 0 0 D2 20 0.050
DFX7 | 14 | 14| 14 2 | 2] 2 4 4 4 0 0 0 0 0 0 D2 20 0.050
DFX10| 12 | 12| 12 4 141 4 2 2 2 2 2 2 0 0 0 D2 20 0.050
DFX12| 16 | 16 16 4 4 4 0 0 0 0 0 0 0 0 0 D2 20 0.050
DFX13| 18 | 18 18 2 2 2 0 0 0 0 0 0 0 0 0 D2 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data number of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 2 2 4 4 4 5 5 5 6 6 6 3 3 3 D3 20 0.050
DFX2 | 12 | 12| 12 4 141 4 4 4 4 0 0 0 0 0 0 D3 20 0.050
DFX3 | 10 [ 10| 10 4 141 4 4 4 4 2 2 2 0 0 0 D3 20 0.050
DFX7| 8 | 8 8 6 1 6|6 3 3 3 3 3 3 0 0 0 D3 20 0.050
DFX10| 7 | 7 7 5 5 5 8 8 8 0 0 0 0 0 0 D3 20 0.050
DFX12| 15 | 15| 15 5 5 5 0 0 0 0 0 0 0 0 0 D3 20 0.050
DFX13| 17 | 17| 17 3 3 3 0 0 0 0 0 0 0 0 0 D3 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numbér of | Integration
DFX VP P F G VG o design Power
(1,1,3) (1,3.5) (35.7) (5.7.9) (7.9.9) Criteria | oxperts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 4 4 4 5 5 5 8 8 8 3 3 3 0 0 0 D4 20 0.050
DFX2 | 5 | 5 5 6 1 6|6 9 9 9 0 0 0 0 0 0 D4 20 0.050
DFX3 | 2 |2 2 71717 7 7 7 4 4 4 0 0 0 D4 20 0.050
DFX7| 3 | 3 3 5 5 5 112 12 [12] 0 0 0 0 0 0 D4 20 0.050
DFX10| 8 | 8 8 8 8 | 8 4 4 4 0 0 0 0 0 0 D4 20 0.050
DFX12| 18 | 18 | 18 2 | 2] 2 0 0 0 0 0 0 0 0 0 D4 20 0.050
DFX13| 14 | 14| 14 6 | 6|6 0 0 0 0 0 0 0 0 0 D4 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data numb.er of | Integration
DFX VP P F G VG o design Power
(1,1,3) (1,3,5) (35.7) (5.7.9) (7.9.9) Criteria | o perts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 | 2 2 3 3 3 5 5 5 5 5 5 5 5 5 D5 20 0.050
DFX2 | 4 | 4 4 2 | 2] 2 6 6 6 8 8 8 0 0 0 D5 20 0.050
DFX3 | 3 3 3 5 5 5 5 5 5 7 7 7 0 0 0 D5 20 0.050
DFX7| 5 | 5 5 6 | 6|6 6 6 6 3 3 3 0 0 0 D5 20 0.050
DFX10| 6 | 6 6 8 8 | 8 4 4 4 2 2 2 0 0 0 D5 20 0.050
DFX12| 2 | 2 2 4 1 41 4 3 3 3 8 8 8 3 3 3 D5 20 0.050
DFX13| 2 2 2 3 3 3 4 4 4 6 6 6 5 5 5 DS 20 0.050
A-8  Design expert’s data collection for TOSIS model (Process DFX Alternatives)
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Fuzzy Numbers in Comparison Matrices
Total
Data number of | Integration
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5 (3,5,7) (5,7,9) (7,9,9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 8 | 8 8 4 4 4 6 6 6 2 2 2 0 0 0 E1l 20 0.050
DFX2 | 12 | 12| 12 6 6 6 2 2 2 0 0 0 0 0 0 E1 20 0.050
DFX4 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 El 20 0.050
DFX6 | 18 | 18| 18 2 2 2 0 0 0 0 0 0 0 0 0 E1 20 0.050
DFX11]| 10 | 10 10 8 8 8 2 2 2 0 0 0 0 0 0 El 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
number of | Integration
Data .
DFX VP P F G VG Criteria design Power
(1,1,3) (1,3,5) (3,5,7) (5,7,9) (7,9.9) experts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 3 | 3 3 6 6 6 8 8 8 3 3 3 0 0 0 E2 20 0.050
DFX2 | 8 | 8 8 8 8 8 4 4 4 0 0 0 0 0 0 E2 20 0.050
DFX4 | 12 | 12| 12 4 4 4 4 4 4 0 0 0 0 0 0 E2 20 0.050
DFX6 | 2 2 2 3 3 3 5 5 5 6 6 6 4 4 4 E2 20 0.050
DFX11| 14 | 14| 14 6 6 6 0 0 0 0 0 0 0 0 0 E2 20 0.050
Fuzzy Numbers in Comparison Matrices
Total
Data number of | Integration
DFX VP P F G VG L design Power
(1,1,3) (1,3.5) (35.7) (5.7.9) (7.9.9) Critetia | oxperts
1 1 3 1 3 5 3 5 7 5 7 9 7 9 9
DFX1 | 2 2 2 1 1 1 6 6 6 5 5 5 6 6 6 E3 20 0.050
DFX2 | 6 | 6 6 8 8 8 4 4 4 2 2 2 0 0 0 E3 20 0.050
DFX4 | 13 | 13| 13 7 7 7 0 0 0 0 0 0 0 0 0 E3 20 0.050
DFX6 | 16 | 16| 16 4 4 4 0 0 0 0 0 0 0 0 0 E3 20 0.050
DFX11| 0 0 0 2 2 2 4 4 4 6 6 6 8 8 8 E3 20 0.050
A-9  Data collection main trends
Design Experts Distribution
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Design Experts Inputs on DFX Alternatives for Data Criteria Al

DFX1 DFX5 DFX6 DFX8

Al
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DFX10 DFX12 DFX15
EVP uP oF 0G nVG

Design Experts Input on Product Criteira-A

Al Al Al A2 A2 A2 A2 A3 A3 A3 A4 A4 AS

A Imp. ®wS.Imp. #F.Imp. “W.Imp. "Eq.Imp. ®"W.Imp. ®F Imp. ®S.Imp. ®A. Imp.
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Design Experts Inputs on Product Criteria

1]

End-User (A) End-User (A) End-User (A) End-User (A) Materials (B) Materials (B) Materials (B) Machi
mA Imp. ®=S.Imp. =F.Imp. =W.Imp. =Eq.Imp. sW.Imp. =mF Imp. =S .Imp. mA. Imp.
Experience .
Years Designer| DFX1 |DFX2|DFX3|DFX4|DFX5|DFX6|DFX7|DFX8|DFX9 DFX 10|DFX 11|DFX 12|DFX 13|DFX 14|DFX 15
0 10 3 3 2 2 1 2 3 0 1 0 0 2 1 1 0
0 12 2 3 3 2 0 0 0 2 0 2 2 2 1 1 1
5<Y=10 11 5 2 2 0 1 2 3 0 1 2 0 0 1 1 1
55Y<10 14 3 2 1 2 1 1 2 1 1 2 1 1 1 1 1
5<Y<10 17 5 3 3 2 1 0 3 2 1 0 0 0 0 1 0
5<Y=10 20 4 3 1 2 1 2 0 2 0 1 1 1 1 1 1
10<Y<15 3 3 3 3 2 1 0 0 2 1 2 2 2 0 0 0
10<Y<15 5 4 3 3 2 0 0 0 2 0 2 0 2 1 1 1
10<sY<15 9 3 4 3 2 1 0 0 2 1 2 2 0 0 1 0
15<Y=<20 2 4 3 2 1 1 2 1 0 1 1 1 1 1 1 1
15<Y <20 6 4 3 0 0 1 2 3 2 1 0 2 0 1 1 1
15<Y<20 15 4 3 2 1 0 0 3 0 0 1 2 2 1 1 1
15<Y<20 16 4 4 0 0 1 2 0 2 1 2 2 2 0 0 1
20<Y 1 5 2 3 2 0 1 2 1 0 2 1 0 0 1 1
20<Y 4 5 2 2 1 0 2 3 2 0 2 1 1 0 0 0
20<Y 7 5 2 2 1 1 2 0 1 0 2 0 2 1 1 1
20<Y 8 3 3 2 1 0 1 2 1 0 1 2 2 1 1 1
20=<Y 13 1 4 2 0 0 2 0 2 1 2 2 2 1 1 1
20<Y 18 2 4 2 2 1 0 3 0 0 2 2 2 1 0 0
20<Y 19 5 4 0 1 1 1 2 1 1 1 1 1 1 1 0
Design Experts Ratings on DFX Alternatives
) m5<Y<10 #10<Y<15 015<Y<20 m20<Y
50%
45%

40%

35%

FX 1

DFX2 DFX3

DFX4 DFX3S DFX6

DFX 7

il

DFX8 DFX9% DFX10 DFX11 DFX 12 DFX 13 DFX 14 DFX 15
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From the design experts’ ratings on DFX alternatives, it is apparent that the level of
importance and ranking of DFX techniques has changed dramatically. For example, the
conclusion derived from objective 1 state that design for testability was ranked first and
design for manufacturing was ranked second among the top-ranked 15 DFX techniques.
However, in objective 3 conclusion, some variations can be noticed. Where design for
testability is ranked last and design for manufacturing remain in the second rank between
the 15 DFX techniques. The results variation between objectives 1 and 3 can be linked to

the increasing knowledge gap between research and industry design experts.

A-10 Data collection Analysis

Since the number of samples are less than 30, then the t-distribution tables and equations
are used to analysis the extracted data.

Description Values Equation

Normally - -
distributed data

Experts interviewed | N=20 -
(sample)

Confidence of 95% -

interval
Sample Mean n=26.94 £2.09=[24.85, 29.03] _ T X
" N
Sample Standard 7.76 2
Deviation o = Xi—w)
N
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Sample Variance

60.36 [39.71, 102.71]

1
2 2
§2= =g ) (K= m)
=1
Percentiles of the t(;_,/;) 45 distribution
(values of t such that 100(1 — a/2)% of
the distribution is less than t) a
3 S Area = 3
Xt ta-a/2)n-1) /
n
t

df o600 o700 to.800 £0.000 to.050 o075 o990 tog0s
1 0.3249 0.7265 1.3764 3.0777 6.3138 12.7062 31.8205 63.6567
2 0.2887 0.6172 1.0607 1.8856 29200 4.3027 6.9646 9.9248
3 0.2767 0.5844 0.9785 1.6377 2.3534 3.1824 45407 5.8409
4 0.2707 0.5686 0.9410 1.5332 2.1318 2.7764 3.7469 4.6041
5 0.2672 0.5594 0.9195 14759 2.0150 2.5706 3.3649 4.0321
6 0.2648 0.5534 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074
7 0.2632 0.5491 0.8960 1.4149 1.8946 23646 29980 3.4995
8 0.2619 0.5459 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554
9 0.2610 0.5435 0.8834 1.3830 1.8331 2.2622 28214 3.2498
10 0.2602 0.5415 0.8791 13722 1.8125 2.2281 2.7638 3.1693
11 0.2596 0.5399 0.8755 13634 1.7959 2.2010 27181 3.1058
12 0.2590 0.5386 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545
13 0.2586 0.5375 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123
14 0.2582 0.5366 0.8681 13450 17613 2.1448 26245 29768
15 0.2579 0.5357 0.8662 1.3406 1.7531 21314 2.6025 2.9467
16 0.2576 0.5350 0.8647 13368 1.7459 2.1199 2.5835 2.9208
17 0.2573 0.5344 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982
18 0.2571 0.5338 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784
19 0.2569 0.5333 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609
20 0.2567 0.5329 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453
21 0.2566 0.5325 0.8591 13232 1.7207 2.0796 25176 2.8314
22 0.2564 0.5321 0.8583 1.3212 1.7171 2.0739 2.5083 2.8188
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A-11 Second case study for objective 2

This case study is related to objective 2 section where the nailer carriage is the main subject
of this case study in its detailed design stage. Two DFX techniques (DFA and DFDA) are
investigated and the results are shown in the later sections.

DFA Design rules and strategy weights by product phase
Product N , . .

Development Phase Design Rules Worxe Wik Design Strategies W s Wis Ty
1- Attempt to design symmetrical parts to avoid need for extra orienting 035 027 044
devices or motions.

1- Minimize the number of parts (Types & Count). 7 2- Test each part's need for existence as a separate 0.1 0.08 0.13
3- Eliminate parts that act as conduits and 0.2 0.15 0.25
4- Design mult-function parts. 035 027 044
1- Reduce the number of parts between the input and output function. 0.6 0.26 0.43
Zm:vlux;\]s critically related surfaces close together to facilitate tolerance o1 0.04 0.07
2- Aim for th f and parts asymmetry. 4 -
im forthe ° and parts asy 3-Follow kinematic design principles. 02 0.09 0.14
4- Eliminate or minimize the need for repositioning an assembly once it is o1 0.04 0.07
fixtured.
5 1- A void projections, holes or slots that will cause tangling with other 05 o1l 018
Z 3- Elimnate tangling, jamming. 2 parts when placed in bulk, bin or feeder. i . i
= o1 2- Provide features to prevent jamming, such as nesting. 0.5 0.11 0.18
2 . 1- Design parts with built in alignment 04 0.18 029
g 2- Avoid parts that require special grasping tools. 0.2 0.09 0.14
4- Design parts to be self-aligning and self-locating, 4 | Bliminate or minimize the number of electrical and 03| o013 0.22
4- Facilitate assembly operations by providing chamfers or o1 0.04 0.07
tapers to help guide and position fasteners.
o 1- Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.6 026 043
5- Reduce number of fastening products. 4 -
cduce number of fastening products 2- Eliminate separate fasteners. 04 0.18 029
5. Ensure adequate access and unrestricted vision s 1- Ensure adequate clearance for hands, tools, and processes. | 03 026 043
@ - - o 2- Ensure that vision of the process is not restricted or i 0.7 0.62 1.01
1- De>{g1 simple assembly operations: parts can be assembled only one 05 039 0.63
way: if parts cannot be added.
7- Execute one-way assembly methodology. 7 By e ——
2- Minimize motion distance, within practical limits, to reduce motion time
05 039 0.63
and improve accuracy.
DFDA Design rules and strategy weights by product development phase
Product
i Wor W ign S i W, w. T
Development Phase Design Rules bIXG ™ Design Strategies rs s 75
1- Subdivide the whole assembly into 0.25 0.13 0.60
1- Improve the product structure for disassembly. 10 2- Minimize the number of between 035 018 083
P P v 3 Minimize the number of and 04 0.20 0.95
4 the products style 0 0.00 0.00
2- Improve access and vision for 2 1- Make sure that are accessible. 1 0.10 048
1- Reduce the number of changes in direction required in a removal
" 03 0.05 021
3- Improve disassembly planning. 3 operation.
2- Avoid long paths. 0.7 0.11 050
- 4 Material compatibily. o 1- Subassemblies that are difficult to disassemble should be made of the ) 0.00 0.00
2 ’ same or material,
& 1- Integrate components with the same material and avoid the combination
. 0.4 0.02 0.10
E 0.05 of different materials.
% 5- Implementing component design rules 1 2- Mark materials t0 assist sorting. 03 0.02 0.07
£ —— - - .
& 3- Design in predetermined fracture points that allow rapid removal of 03 0.02 0.07
1- Make connectors of a compatible material to avoid the need for o 0.00 0.00
2-Mi the 1 d number of forms. 0.35 0.18 0.83
- Desiensnd eecton ofcomectors. 1o M he s and b o oms, o] ols [ on
4- Use with fracture points for difficult situations. 0 0.00 0.00
5- Ensure can be removed with standard tools. 04 0.20 095
. . 1- 04 0.02 0.10
7- Maximize end of life value of the product 1 2 Dosign for long ifs sad cousa 05 00 L
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3 B T |
El £ S e = |2
z 2 |5 = |2 |¢ = |§
I g 2 |EE |1 £ |z |3 ElE
ERERE g5 TE |2 E1E IS (R |z |3
£ 12 |2 |2 g |s 25 |§ o |le |3 |8 |E |%
U218 (2 |s |2 |3 |2 |35 |8 s |22 |5 |E |& |E
e DR O|E 5 |2 lE |2 |E |82 (5% |z |E|E|E|F |E |E
Detailed Design 205 |2 18 |7 |§ |2 |2 |58 |2 T OIZEIELE |2 |2 | H
< |4 (3 |3 |§ |2 [2.|2 |27 |® 2 3gl82E |2 |2 |® 2
215 |5 |5 |2 |& |35[2 |72 |z g |22/2%2 |8 |€ |% g
212 |2 |2 |8 |E |5%5|8 |22 |5 EOIEEISE|Z |4 |2 |8 |2 |e
2 12 |5 |5 |2 |5 |2E|2 |£35 |2 2 (8324|182 |F |g |2 |Z
2 12012 02 |2 |E2|E |z2 |22 3315512 |5 |z |2 |2 |=
2bl28285 | |2215 2% |£:% 23332 |e |8 |2 |8 |E
£212 v |5 335 |ZE |53 EE12512 |2 1518 | |7
521221388 |2 |2%|2 |52 |8 S2lES|T |7 (245 (S |5
TE|ISEIREIE |5 |T2|8 |83 |28 SEIES|R |8 |EEIS | |€
S2E20235 |7 |35 |fz |Ef 5353 S 1B B |5
4727|230 |> |2E[2 |9F |Ez SE|lZ£ 2 |5F|5E|F |2
DFA Strategies Wis 0.3 | 0.8 000|010 [0.05] 0.1 000 | 002 0.02 | 000 0.13 000 ] 0.20 | 0.02 | 0.03
Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0270 [0 0[5 s o[ sTsTolol ol s o[ ooms] o] 4
[Test each part’s need for existence as a separate component. 008 | 0 5 s o [oTolw ol o] o] o] o003 oos| 25
[Etiminate parts that act as conduits and connectors. 015 | 0 0o ool ofloTol ol o] o] ooor] ois] 15
Design mult-function pars. 027 | 0 0o 0 [oJwloTol ol s o[ ome] 02] s
Reduce the number of parts between the input and output function. 026 | 0 0o s{olololsTol oo ooms] o7
[Move criticlly related surfaces close together to facilitate tolerance control. 004 | 0 0o o [l ofloTolw] o] s [ 0007] 004 28
[Follow kinematic design principles 009 =A== 0004 009] 23
|Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.04 0 [ s 1o ol o[ o] ooos| 00|27
A void projections. holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.11 s{olo[ s ol ol o] ooor| onf19
Provide features to prevent jamming, such as nesting. 0.11 0 [oTofw[ o5 o] oo02fon|2
Design parts with bult in alignment. 0.18 0o 10 [ 0010] oas] 11
| Avoid pars that require special grasping tools. 0.09 510 5 [ 0001 009] 24
Eliminate or minimize the number of electrical adjustments 0.13 0 0 [ oo0s[ 03] 16
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.04 0 5 0.001] 0.04] 29
Reduce number of rivets, screws, bols, special-purpose fasteners. 0.26 0 0 [-o0004] 026] 8
Eliminate separate fasteners. 0.18 0 0 [-0002] o8] 14
Ensure adequate clearance for hands, tools, and subsequent processes. 0.26 0 0 | o0n2] 026] 6
Ensure that vision of the process is not restricted or i 0.62 0 10 [ 000s] 062] 1
Design simple assembly operations: parts can be assembled only one way; if misassembled, subsequent parts cannot be 03 oo0t] 039] 2
added slolsfojwlofol o 0 o
[Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 039 oflofolwlololo] 0 [ - o] 3
0.01] 0021 0.01 [ 003 000001 ] 000]- 0.00] 0.00] 002 0.02] oV
013)018] 020 - | 010|005 |011| - 002]002(002| - [018]012[ - |020] 002|003 Viot|
17 [ o [ [nlawlals 31 [ [ 34 [ a5 [ 13 [us[ 35 [ 10 [ 3 [30 Ranking]
DFA and DFDA Strategies in Detailed Design Stage Ranking List Summary (Before Analysis) -| Vs || RankedList -| Trs
Select easy to disassemble connectors. 0.62 1 0.44
A void projections, holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.39 2 0.13
Provide features to prevent jamming, such as nesting. 0.39 3 0.25
Ensure that vision of the process is not restricted or compromised. 0.27 4 0.44
Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0.27 5 0.43
Subdivide the whole assembly into r ble sub nblies. 0.26 6 0.07
Design mult-function parts. 0.26 7 0.14
Eliminate parts that act as conduits and connectors. 0.26 8 0.07
Follow kinematic design principles. 0.20 9 0.18
Subassemblies that are difficult to disassemble should be made of the same or compatible material. 0.20 10 0.18
Design parts with built in alignment. 0.18 11 0.29
Make sure that components are accessible. 0.18 12 0.14
Mark materials permanently to assist sorting. 0.18 13 0.22
Eliminate or minimize the number of electrical andmechanical adjustments. 0.18 14 0.07
Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 0.15 15 0.43
Minimize the type and number of connection forms. 0.13 16 0.29
Avoid long disassembly paths. 0.13 17 0.43
Design in predetermined fracture points that allow rapid removal of components. 0.12 18 1.01
Minimize the number of components and subassemblies. 0.11 19 0.63
Ensure connectors can be removed with standard tools. 0.11 20 0.63
Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.11 21 0.60
Test each part's need for existence as a separate component. 0.10 22 0.83
Reduce the number of parts between the input and output function. 0.09 23 0.95
Minimize the number of connections between subassemblies. 0.09 24 0.00
Design simple assembly operations: parts can be assembled only one way; if mi bled, subsequent parts cannot be added. 0.08 25 0.48
Reduce the number of changes in direction required in a removal operation 0.05 26 0.21
Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.04 27 0.50
Ensure adequate clearance for hands, tools, and subsequent processes. 0.04 28 0.00
Eliminate separate fasteners. 0.04 29 0.10
Use connectors with fracture points for difficult situations. 0.03 30 0.07
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.02 31 0.07
Make connectors of a compatible material to avoid the need for disassembly. 0.02 32 0.00
Design for long life and reuse. 0.02 33 0.83
Integrate components with the same material and avoid the combination of different materials. 0.02 34 0.60
Avoid parts that require special grasping tools. 0.00 35 0.00
Move critically related surfaces close together to facilitate tolerance control. 0.00 35 0.95
Standardize components. 0.00 35 0.10
Standardize the products style. 0.00 35 0.14
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DFA and DFDA Strategies in Detailed Design Stage Ranking List Summary (After Analysis) Vrs -| Ranked List|-
Select easy to disassemble connectors. 0.619 1
Avoid projections, holes or slots that will cause tangling with other parts when placed in bulk, bin or feeder. 0.387 2
Provide features to prevent jamming, such as nesting. 0.385 3
Ensure that vision of the process is not restricted or compromised. 0.272 4
Attempt to design symmetrical parts to avoid need for extra orienting devices or motions. 0.271 5
Subdivide the whole assembly into manageable subassemblies. 0.264 6
Design mult-function parts. 0.263 7
Eliminate parts that act as conduits and connectors. 0.263 8
Follow kinematic design principles. 0.202 9
Subassemblies that are difficult to disassemble should be made of the same or compatible material. 0.200 10
Design parts with built in alignment. 0.178 11
Mark materials permanently to assist sorting. 0.177 12
Eliminate or minimize the number of electrical and mechanical adjustments. 0.176 13
Minimize motion distance, within practical limits, to reduce motion time and improve accuracy. 0.154 14
Minimize the type and number of connection forms. 0.133 15
Avoid long disassembly paths. 0.127 16
Design in predetermined fracture points that allow rapid removal of components. 0.124 17
Ensure connectors can be removed with standard tools. 0.110 18
Eliminate or minimize the need for repositioning an assembly once it is fixtured. 0.105 19
Test each part's need for existence as a separate component. 0.100 20
Reduce the number of parts between the input and output function. 0.088 21
Design simple assembly operations: parts can be assembled only one way; if misassembled, subsequent parts cannot be added. 0.077 22
Reduce number of rivets, screws, bolts, special-purpose fasteners. 0.044 23
Ensure adequate clearance for hands, tools, and subsequent processes. 0.044 24
Use connectors with fracture points for difficult situations. 0.031 25
Facilitate assembly operations by providing chamfers or tapers to help guide and position fasteners. 0.020 26
Make connectors of a compatible material to avoid the need for disassembly. 0.020 27
Design for long life and reuse. 0.015 28
Integrate components with the same material and avoid the combination of different materials. 0.015 29

In the detailed design phase of objective 2 case study, if the designer is to apply DFA with

7 days and DFDA with 7 days independently then the total time required for both will be

14 days. However, if they are applied together, the redundant design strategies between the

two and the conflicted area will be removed and adjusted before initiating the design

activity. Thus, reducing the total time to 13 days with a difference of 1 days. The strategies

elimination process is conducted based on the following:

1- From the aggregated matrix between DFX techniques shows a CI < -10, then

conflict occurs, and special considerations must be in place before design process

can be initiated.

2- Strategies with same ranking number must be eliminated if its core objective can

be found in other strategies.
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3- Strategies with an overall value (Vrs) equal to zero must be eliminated from the

ranked list.
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