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Abstract 

With over 100 million synthetic chemicals and over 1 million biologically-derived compounds 

known to humans, chemists face significant challenges trying to identify or characterize them. In 

addition to this large collection of known compounds, analytical chemists, natural product 

chemists, pharmacologists, toxicologists, are frequently confronted with the challenge of unknown 

substances. These may arise as a result of biotic, abiotic or spontaneous chemical reactions. Gas 

chromatography mass spectrometry (GC-MS) is frequently used to identify many of these known 

and unknown compounds. Key to compound identification via GC-MS, is the accurate and reliable 

measurement of retention times (which are typically normalized to a retention index or RI) and 

electron impact mass spectra (EI-MS). Once RIs and EI-MS have been measured it is possible to 

compare these values to reference RI and EI-MS tables or libraries to identify the known/unknown 

compound. However, this process can be time consuming, labor-intensive and error-prone. 

Moreover, existing libraries of RI and EI-MS data are often inadequate, covering <1% of known 

compounds and, by definition, no unknown compounds. This makes the compound identification 

task by GC-MS quite daunting. Computational techniques, particularly those involving machine 

learning, can enhance the compound ID process by predicting RI and EI-MS data using only text 

representations of chemical structures. Among known ML methods, the most promising results for 

RI and EI-MS prediction have been achieved using different variants of graph neural networks 

(GNN). In the case of RI prediction, most RI predictors are not public. Furthermore, they neither 

incorporate GC column phases nor derivatization type information. This severely limits their 

utility. In the case of EI-MS predictors, they tend to suffer from either a lack of peak annotations 
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or inaccurate peak intensity prediction. In this thesis, I will first describe my efforts to develop a 

GNN-based, freely available webserver for RI prediction, called RIpred (https://ripred.ca) that 

rapidly and accurately predicts GC Kováts retention indices using SMILES strings as the only 

chemical structure input. RIpred, performs RI prediction for three different stationary GC phases 

for both trimethylsilyl (TMS) derivatized and underivatized (base compound) compounds. The best 

performing RIpred model, when tested on hold-out test sets from all stationary phases, achieved a 

mean absolute percentage error (MAPE) within 3%. Secondly, I will also describe my efforts to 

develop a GNN-based EI-MS predictor (EI-MSpred) that accepts SMILES strings and generates 

an EI-MS spectrum. This predictor, which was based on a previously published model called 

NEIMS, utilizes a molecular ion intensity predictor (MIIP) and a peak annotation program (called 

PeakAnnotator), to improve its performance. EI-MSpred, when tested on a hold-out test set 

comprising ~2000 molecules from the NIST23 library, achieved a spectral matching score dot 

product score of 0.621. In terms of spectral annotation correctness and spectral annotation 

coverage, EI-MSpred significantly outperformed other existing EI-MS predictors, achieving an 

average correctness of 91% and an average coverage of 94%, on two held out test sets containing 

six common compounds and five random NIST23 compounds respectively. Finally, I present 

evidence showing the effectiveness of combining RIpred and EI-MSpred (i.e., EI-RIpred together) 

to aid in compound identification by simulating three GC-MS compound identification 

experiments.  

https://ripred.ca/
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Glossary 

Derivatization Derivatization is a chemical modification technique that is typically done to change 

the properties of a given analyte or class of analytes for better separation (via chromatography), 

lowere boiling points (for gas chromatography) and better ionization efficiency. 

Electron Ionization Electron ionization is an ionization method in which energetic electrons 

interact with solid or gas phase atoms or molecules to produce ions. 

Electro-spray Ionization Electrospray ionization is a technique used in mass spectrometry to 

produce ions by spraying molecules dissolved in a liquid through a small hollow needle to which 

a high voltage is applied. This process creates an aerosol of charged ions. 

Fragmentation Fragmentation is a term used to describe the dissociation or break-up of 

energetically unstable molecular ions formed from passing molecules through a collision cell 

containing inert gas molecules or exposing them to high energy electron bombardment. 

Gas Chromatography Gas chromatography is a technique used in analytical chemistry for 

separating and analyzing compounds in the gas phase. It is ideal for characterizing compounds that 

are volatile or which have low boiling points. 

InChI The International Chemical Identifier is a textual identifier for chemical substances, 

designed to provide a standard way to encode molecular information and to facilitate search in 

databases and web. 

InChIkey InChIKey is a fixed-length format strong hashed (SHA-256 algorithm) key that is 

directly derived from InChI. 

Mass Spectrometry Mass spectrometry is an analytical technique that is used to measure the mass-

to-charge ratio of ions. Accurate measurement of the mass-to-charge ratio of compounds/ions or 

compound/ion fragments is often sufficient to determine their structures. 

Mobile Phase The mobile phase is either a liquid or gas, which is passed through a 

chromatographic column. The mobile phase dissolves the analytes in mixtures and is used to push 

the analytes past the stationary phase to induce differntial analyte interactions and analyte 

separation.  
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Polarizability Polarizability is a measure of how easily an electron cloud can be distorted by an 

electric field. Typically the electron cloud will belong to an atom, a molecule or an ion. 

Polarizability provides an indication of how a molecule will interact electrostatically with another 

molecule. 

Retention Index Kovats retention index (or retention index) is used to convert retention times into 

system-independent retention time constants in gas chromatography. 

Retention Time Retention time is the time that a solute or analyte spends in a chromatographic 

column while it is being separated from other analytes. The retention time is a characteristic of 

both the column properties, the column length, the  carrier gas or carrier liquid and the analyte's 

physicochemical properties. 

SMILES The simplified molecular-input line-entry system (SMILES) is a specification in the form 

of a line notation for describing the structure of chemical species using short ASCII strings. 

Sylilation Silylation involves the replacement of an acidic hydrogen (or an active hydrogen) on 

the compound with an alkylsilyl group. This is a form of chemical derivatization that helps in 

making compounds that are generally less polar, more volatile, and exhibit increased thermal 

stability. 

Stationary Phase This is the solid phase in chromatography which does not move with the sample. 

The stationary phase can be composed of specially designed beads (in liquid chromatography) or 

specially designed surfaces (in gas chromatography). The stationary phase interacts with the 

analytes being seprated and slows their passage through the column. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

The world is full of chemicals. To date, more than 100 million synthetic chemicals have been 

prepared or described by humans [1].  In addition to these synthetic compounds, there are more 

than 1 million biologically-derived compounds or natural products, of which about half have 

already been described [2]. One of the central challenges with preparing, isolating, finding, or 

characterizing a chemical is determining its structure. Chemical structure determination is routinely 

done in the field of synthetic organic chemistry. But in these cases, the chemist has a pretty good 

idea of what they are attempting to make.  The task of chemical structure determination is often 

much more challenging for analytical chemists where there is little advanced knowledge about 

what the chemicals are, or what their structures may be. For instance, natural products chemists 

spend their careers isolating and determining the structures of previously unknown or potentially 

medically important plant, bacterial or animal-derived chemicals [3] . Likewise, pharmacologists 

must spend a good portion of their time characterizing or determining the structures of previously 

unknown or unexpected drug metabolites [4]. Toxicologists must do the same for poisonous 

compounds or hazardous substances.  Environmental chemists must also devote considerable effort 

to identifying unknown chemicals released into the environment. Many of these environmental 

chemicals are chemical by-products transformed into something almost unrecognizable by abiotic 

and biotic environmental reactions. Researchers in metabolomics must also spend a good deal of 

time attempting to identify or determine the structure of novel or previously unidentified 

metabolites coming from plants, animals, microbes, foods, drugs, cosmetics, water, or soil.  
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Determining the structure of a chemical can be done through several different approaches.  

For instance, compounds can be crystallized and their 3D structures determined by X-ray 

crystallography.  To date, more than 1 million compounds have had their structures determined by 

X-ray crystallography and deposited into The Cambridge Structure Database (CSD) [5]. X-ray 

crystallography is particularly appealing for structure determination as it allows one to directly 

determine the atomic coordinates of molecules. Nuclear Magnetic Resonance (NMR) spectroscopy 

is another method that has been used to determine the structures of millions of compounds, 

however, NMR structure determination uses indirect measures concerning functional groups and 

various forms of chemical inference to permit structure determination. In this regard, NMR 

structure determination is a bit like solving a jigsaw puzzle where different pieces of the puzzle 

must fit together to generate a chemical structure that is consistent with all the pieces of NMR 

evidence. Mass spectrometry (MS) is another approach that is used for chemical structure 

determination and, like NMR, it requires that users must solve a chemical jigsaw puzzle by piecing 

suspected molecular fragments together to create a complete compound. Unlike NMR, MS also 

allows one to determine the molecular weight and the molecular formula of a chemical.  This 

information can be invaluable in determining a molecular structure. 

Structure determination by NMR and MS (or a combination of the two) has become the 

norm in modern chemistry. However, it can often take weeks or months (sometimes even years) to 

determine the structure of a compound, especially if it is rare or unstable. Indeed, structure 

determination is considered one of the main bottlenecks in nearly every field of analytical 

chemistry – from metabolomics to environmental chemistry to natural product chemistry to 

pharmacology.  In other words, structure determination is a “hard” problem.  But it is also a 
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problem that can be solved or partially solved through computational techniques such as machine 

learning (ML) or artificial intelligence (AI). In fact, one of the very first applications of AI was the 

development of a program, called DENDRAL, to determine the structure of unknown chemicals 

using mass spectrometry [6]. DENDRAL led to the development of many related programs such 

as CONGEN [7] and MOLGEN [8] to generate feasible chemical structures to help solve the 

unknown structure problem. While DENDRAL did not “solve” the unknown structure problem, it 

has led to many other attempts to help determine chemical structures and has spawned a whole new 

field of computational chemistry called Computer Aided Structure Elucidation or CASE [9, 10, 11, 

12]. It is because of the importance of structure determination to nearly all fields of chemistry and 

because of the recent developments in deep learning that I decided to explore the use of newer ML 

methods to help advance the field of CASE. In particular, the focus of this document is on 

developing ML techniques to improve the way in which unknown chemical structures can be 

determined via a technique called gas chromatography-mass spectrometry (GC-MS).   

To introduce the subject, I will use this first chapter to provide some background on mass 

spectrometry. I will then discuss the principles of chromatography and then focus on describing 

the principles of GC-MS and the operation of the GC-MS instrument. Next, I will describe how 

compounds are commonly identified by GC-MS and highlight some of the limitations of existing 

methods.  I will also highlight the need for being able to predict certain properties of GC-MS data 

(namely the retention index or RI and the mass spectra) using known or hypothesized structures.  I 

will then review some of the methods that have been previously used to predict RI and GC-MS 

spectra from textual or graphical representations of chemical structures. Finally, I will describe the 

central hypothesis underlying my thesis and outline my thesis objectives.  
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1.2 Mass Spectrometry 

Mass spectrometry (MS) is a technique for measuring the mass-to-charge ratio (also called m/z) of 

ions. MS is particularly useful for measuring the molecular weight of molecules. Because of its 

ability to measure molecular weights using very small amounts of material, MS is widely used in 

many areas of analytical chemistry to determine the identity of organic molecules. To perform an 

MS experiment, a compound must first be ionized and then accelerated through either a magnetic 

or electric field (under a strong vacuum) where the ion’s speed or transit time can be accurately 

measured. MS, as a technique, was originally developed by Sir Joseph John Thomson in 1919 as a 

method for measuring the mass of the electron [13, 14]. However, after JJ Thomson’s success, the 

concept of MS measurements was soon applied to many other areas of physics and chemistry 

including the measurement of the mass of elemental isotopes for the periodic table [15]. Later, this 

work was extended to measuring the molecular weight of organic molecules as a means to confirm 

their identity. The first commercial mass spectrometer was constructed in 1943 by the Consolidated 

Engineering Corporation. By the 1960s, MS had become a standard analytical tool in many 

chemical laboratories [16]. 

Key to the operation of any MS instrument is the ionization process. This involves the 

conversion of a neutral molecule into a charged (positive or negative) ion. Many types of ionization 

methods exist, including electron impact or simply electron ionization (EI), electrospray ionization 

(ESI), and matrix-assisted laser desorption ionization (MALDI).  EI is a “hard” ionization method 

in which highly energetic electrons interact with gas phase molecules to produce ions [17]. EI leads 

to extensive molecular fragmentation, which can be helpful for the structure determination of 
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unknown compounds. EI was one of the first ionization techniques developed for MS and continues 

to be widely used in gas chromatography mass spectrometry (GC-MS). On the other hand, ESI and 

MALDI are considered “soft” ionization methods and they generally lead to modest or negligible 

molecular fragmentation [18]. ESI involves spraying a liquid containing the sample of interest 

through a high voltage outlet into a vacuum.  This leads to molecular ions being formed (along 

with smaller ionic fragments) as the droplets evaporate [19]. ESI is widely used in liquid 

chromatography mass spectrometry (LC-MS). MALDI is quite different from either EI or ESI as 

it involves ionizing solid samples.  MALDI requires that one mix the sample of interest with light-

absorbing material (called a matrix) and place it on a plate. Once plated, a pulsed laser is used to 

irradiate the solidified sample, triggering the desorption and vaporization of the sample from matrix 

material [20]. This heated vaporization of the chemical leads to ionization.   

After a sample has been ionized it is usually passed through a high vacuum system via a 

series of strong electric or magnetic fields.  This part of the MS instrument is called the “mass 

analyzer”. The mass analyzer is responsible for separating the ions created by the ionizer or 

ionization process.  The mass analyzer may consist of special arrangements of multiply charged 

rods (called quadrupoles or Q’s) or carefully designed ion traps, large magnets, or miniature 

cyclotrons [21].  In some cases, the ions in the mass analyzer may be manipulated and further 

fragmented by passing them through gases such as helium, oxygen, hydrogen, or methane in a 

device called a “collision cell”.  The use of a collision cell, or collision induced dissociation (CID), 

is the principle of operation behind tandem mass spectrometers (MS/MS) or triple quadrupole mass 

spectrometers (QqQ). Collision cells or CID allow the “hard” fragmentation of ions that had 

previously been generated by “soft” ionization methods (such as ESI or MALDI).  
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After the ions have been separated in the mass analyzer, they are passed on to an ion 

detector, which usually consists of devices known as electron multipliers (EM), Faraday cups, 

photomultiplier conversion dynodes (PMCDs) or array detectors [22] . The readout from the ion 

detector is what is called the mass spectrum. A mass spectrum of a pure compound is usually 

represented as a plot with the x-axis defining the mass-to-charge (m/z) ratio of dissociated ions 

from the analyzed samples and the y-axis defining the relative intensity (number of ions hitting the 

detector) of each of these dissociated ions (Figure 1.1). Figure 1.1a illustrates a “stylized” EI-MS 

spectrum of benzene (as obtained on a GC-MS instrument), while Figure 1.1b illustrates the ESI-

MS spectrum of the same compound obtained via an ESI-MS instrument.  As shown in Figure 1.1a,  

 
Figure 1.1 A histogram representation of an a) EI-MS and b) ESI-MS spectrum of benzene. 

 

the EI method produces many ion fragments with differing m/z values and differing intensities.  As 

shown in Figure 1.1b, the ESI method produces just one ion fragment corresponding to the 

molecular weight of benzene with an added hydrogen ion. 
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1.3 Chromatography 

Most samples used in mass spectrometry are not pure compounds. Rather, they are often mixtures 

consisting of dozens of other compounds, including impurities or chemically similar compounds. 

The standard method for separating chemicals in mixtures is through a technique called 

chromatography. Chromatography is a laboratory technique for separating mixtures into their pure 

components. The mixture can be dissolved in either a gas or liquid (called the mobile phase), which 

is passed through a system (a column or a thin tube) on which a material called the stationary phase 

is fixed.  Chromatography takes advantage of the fact that different constituents of a given mixture 

will tend to have different affinities for the stationary phase. This will lead to some components of 

the mixture being retained for different lengths of time depending on their interactions with the 

stationary phase. This causes the components to separate as they move down the column or the 

tube. Strictly speaking, in chromatography, separation is based on the differential partitioning 

between the mobile and the stationary phases. Depending on the physical states (gaseous or liquid) 

of the mobile phase, chromatography techniques can be divided into two forms: gas 

chromatography (GC) and liquid chromatography (LC). 

GC uses gases such as He or N2 as the mobile phase and it typically requires heating both 

the sample and the column to high temperatures (150-300 ℃). GC is typically used to separate and 

identify lower molecular weight volatile compounds, such as essential oils and fragrances, 

pharmaceuticals and recreational drugs, toxins, air samples, etc. [23]. On the other hand, LC is 

conducted at room temperature using liquids such as water, methanol, or acetonitrile as the mobile 

phase.  LC is most suitable for analyzing non-volatile, high molecular weight compounds such as 
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lipids, peptides, steroids, and polycyclic compounds [24]. One of the most common LC methods 

is high-performance liquid chromatography (HPLC) where the analyzed sample is pushed by a 

liquid at high pressure through a column containing very small particles decorated with an 

absorbent material (the stationary phase) [25] . Based on the polarity of the mobile and stationary 

phase, HPLC can be divided into two categories, a polar version called hydrophilic interaction 

liquid chromatography (HILIC) and a non-polar version called reversed phase liquid 

chromatography (RPLC) [26]. With HILIC the stationary phase is more polar in nature than its 

mobile phase, while the reverse is true for RPLC methods. 

1.4 GC-MS Background 

As the subject of my thesis is on GC-MS and not LC-MS, I will focus the remainder of this 

introduction on describing the GC-MS technique, the EI-MS method and GC-MS systems in more 

detail. A standard GC-MS system consists of a sample injector through which samples are injected 

into a capillary tube or column that is between 10 and 20 m in length. The mixture to be analyzed 

in a GC-MS system is first evaporated or dissolved into a gas carrier (e.g. He or N2) known as the 

mobile phase. The gas mobile phase carries the mixture through the column lined with a thermally 

stable, hydrophobic polymer adsorbed to the column interior. More specifically, the stationary 

phase in most GC columns is a microscopic layer of viscous liquid on a surface of solid particles 

on an inert solid support. The most commonly used stationary phase in GC analysis is a semi 

standard non-polar (SSNP) phase [27] which is a mixture of 5% diphenyl - 95% dimethyl 

polysiloxane (also known as DB-5). Two less frequently used stationary phases are standard non-
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polar (SNP) and standard polar (SP) phases, which use 100% dimethylpolysiloxane (also known 

as DB-1) and carbowax-polyethylene glycol respectively.  

As seen in Figure 1.2, a GC-MS system consists of an oven that is used to heat the column 

and to ramp up or maintain high temperatures.  It also consists of an injection port to inject the 

liquid or gas sample, a controller unit to control the flow of the carrier gas and a mass spectrometer 

with an electron ionizer, a mass analyzer (usually a single quadrupole) and an ion detector to collect 

the MS spectra of the various fragments of the analyzed sample. 

 
 

Figure 1.2: Block diagram of a gas-chromatography mass spectrometer (GC-MS). 

 

Compounds with high volatility, high thermal stability, and high absorption rates are generally the 

best types of compounds for GC-MS analysis. This means that high molecular weight biopolymers 

such as proteins or nucleic acids are unsuitable for analysis by GC. In order to extend the range of 

suitable compounds for GC-MS, chemists often apply chemical derivatization techniques that 
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involve the attachment of non-polar, bulky functional groups such as trimethylsilyl (TMS), tert-

butyl-dimethylsilyl (TBDMS) or methoxime (Me-OX), onto the polar functional groups such as -

NH, -OH, -SH, often found on organic molecules. This chemical derivatization process improves 

the stability of many compounds by lowering their boiling point and increasing their volatility. An 

example of how a steroid molecule can be derivatized with TMS and methoxamine is shown below 

(Figure 1.3).  

 
Figure 1.3: Derivatization of androsterone with TMSI and methoxyamine to make the compound 

more GC-amenable. 

As noted earlier, with both GC and LC separations, different components in a mixture will 

travel at different speeds through a column. This means they will elute from the column at different 

times. The time at which a given component elutes from a column is specified as the retention time 

or RT [28]. An example of a GC chromatogram from a complex mixture (urine) is shown in Figure 

1.4 (image adapted from [29]). This illustrates where peaks (corresponding to compounds) come 

off the GC column at different retention times. 
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Figure 1.4: Chromatogram of urine analyzed with Gas Chromatography Mass Spectrometry 

(GC-MS). 

Retention times are usually given in seconds or minutes. However, the RT for GC system 

can vary considerably due to differences in column types, film thickness, column length, column 

width, carrier gas velocity, and pressure. Hence, in GC, the RTs are converted into system-

independent constants called retention indices (RI). The RI is usually expressed as a normalized 

RT ratio of the compound using its equation for calculating an RI value is given in Eq. 1. 

Converting RTs to RI’s in GC-MS standardizes the separation time between different analytical 

laboratories and different analytical systems and the use of published RI tables for thousands of 

known chemicals has become extremely useful for the GC community in identifying chemicals. 

In GC-MS, the RI can be calculated either in an isothermal or a non-isothermal setting. 

When a constant heating rate is implemented during the entire analysis, it is called the isothermal 

analysis. RIs calculated in this way are known as isothermal Kováts retention indices [30]. The 

equation for calculating the Kováts isothermal retention index is shown below (Eq. 1) where n 

represents the number of carbon atoms in the reference standard (typically alkanes or fatty acid 
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methyl esters) and Tx represents the retention time of the sample. Finally, the adjacently eluting 

components’ RTs can be substituted into the equation to get the sample’s RI (or normalized RT). 

𝑅𝐼𝑥 = 100n + 100 [log(𝑇𝑥) − log(𝑇𝑛)] /[log(𝑇𝑛+1) − log(𝑇𝑛)]                 Eq.1 

 

When temperature variation exists during the analysis it is called the non-isothermal 

analysis (yielding temperature-programmed Kováts retention indices). It is more difficult to predict 

non-isothermal RIs because of the underlying complexities associated with non-isothermal 

analyses. While the RI approach is intended to standardize retention time reporting, RI values can 

vary significantly within the isothermal and non-isothermal settings, within different stationary 

phases and with the addition of various numbers of derivatization adducts such as TMS, TBDMS, 

and Me-OX groups.  

As noted earlier, GC-MS uses EI to ionize molecules. In electron–ionization mass 

spectrometry (EI-MS), the molecular samples exiting the GC column are ionized by a high-energy 

electron beam of 70 eV. The high energy electrons from the beam strike the molecule and remove 

a single electron from it. One very basic illustration of this reaction can be represented by the 

electron ionization of methanol: 

CH3OH + e- → [CH3OH] .+ + 2e- 

In EI-MS, the excess of energy that is not utilized due to the removal of a single electron contributes 

to a phenomenon known as fragmentation. As a result, methanol will also undergo various bond 

cleavages, each of which can be shown in the following reactions: 
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[CH3OH] .+ → CH3O
  + + H . 

[CH3OH] .+ → CH2O + + H2 

[CH3OH] .+ → CH3 
+ + . OH 

These ions, each of which have a different mass or m/z value, will pass through the mass analyzer 

and detector yielding the following EI-MS spectrum (Figure 1.5) 

 
Figure 1.5: A histogram representation of an EI-MS mass spectrum of methanol. 

Note that the detector in an EI setting is only sensitive toward the positively charged ions 

and disregards the presence of any neutral or radical molecules. The EI-MS mass spectrum of 

methanol shown in Figure 1.5 shows a number of peaks at different m/z positions.  The one with 

the largest intensity is known as the parent peak or the base peak (m/z 31 corresponding to CH3O
+ 

fragment), and all the intensities of all other peaks are represented as a percentage (relative 

abundance) of the base peak. Another important peak in any mass spectrum, which usually does 
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not undergo any fragmentation, is the molecular ion peak and it is often referred to as the M+ ion 

(m/z 32 position corresponding to [CH3OH] .+). In EI-MS it is sometimes possible to have an almost 

invisible molecular ion peak for some compounds. These often include molecules such as alcohols, 

esters, highly branched molecules, etc.  In these cases, special rules including the nitrogen rule 

(discussed in section 3.2.1 of chapter 3) can be used to identify the M+ ion. Different peaks in an 

EI-MS or GC-MS spectrum can use the molecular ion M+ to reference other fragments in the 

spectrum by denoting them as M-1, M-2,.…., M-n, etc. peaks. In this annotation, the n represents 

the difference in the m/z value between the M+ ion and the fragment in question. Due to the 

presence of moderately high abundance isotopic components (such as, H2 or C13) in an EI-MS 

spectrum, it is also possible to have M+1, M+2,…., and M+n peaks. Generally, the value of n in 

such a case does not go beyond 4.   

The presence of different functional groups (e.g. alcohols, aldehydes, ketones, alkanes, 

amines, carboxylic acids, esters, ethers, etc.) in a compound will lead to certain characteristic 

fragmentation patterns. These fragmentation patterns [31] arise through various fragmentation 

mechanisms, and analysis of these mechanisms can provide a route to determine the structure of 

unknown compounds. Some of the fragmentation mechanisms or reactions that have been 

identified over the past 50 years include events such as single or multiple cleavages of odd or even 

ions followed by rearrangement (which helps in stabilizing the compounds) [32], alpha-cleavage 

(mostly observed in aromatic ketones) [33], McLafferty rearrangements (mostly observed in 

aldehydes, ketones, carboxylic acids, esters, amides, etc.) [34], and retro-Diels-Alder reactions [35] 

(specifically observed in rings).  Examples of these kinds of reactions are shown in Figure 1.6. 
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Figure 1.6: Different fragmentation mechanisms observed in EI-MS. a) Rearrangement reaction 

showing a loss of water from butanol. b) Alpha-cleavage occurring in an aromatic ketone to 

produce a benzyl radical. c) A ketone undergoing a McLafferty re-arrangement. d) Cyclic alkene 

undergoing a retro-Diels-Alder fragmentation reaction. 

In analyzing an EI-MS spectrum or in determining the structure of a compound with a given 

EI-MS spectrum, knowledge of the naturally occurring isotopes and their ratio distributions can 

play an important role. Specifically, in an EI-MS spectrum, those compounds containing isotopes 

will have the same fragment ions in multiple peak positions but with different intensities reflecting 
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their relative abundances in nature. For example, in Figure 1.7, the analyte has a peak in the M+2 

position with a peak height approximately 1/4th of that of the M+ ion’s peak. These two peak 

positions refer to the same fragment ion but they differ in their intensity values. This suggests the 

presence of chlorine (35Cl and 37Cl) within the analyzed sample. A similar trend is also observed 

for compounds containing isotopes of C, N, O, S, Br, I, etc. (Figure 1.8 and Figure 1.9). 

 

Figure 1.7: EI-MS mass spectrum for a compound (ethyl chloride) containing chlorine. 
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Figure 1.8: EI-MS mass spectrum for a compound (bromoethane) containing bromine. 

 

 
Figure 1.9: EI-MS mass spectrum for a compound (2-propanethiol) containing sulphur. 

 

1.5 Compound Identification via GC-MS 

As an analytical technique, GC-MS is widely used for compound identification and quantification. 

This is because the EI-MS spectra generated can provide a great deal of structural information 

about the constituent fragments and functional groups of a given molecule.  Likewise, the retention 
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index can also reveal the orthogonal structure of the molecule and help distinguish between two 

candidate structures. The other reason why GC-MS is so widely used in compound identification 

is because it has become highly standardized.  All EI-MS spectra are collected using the exact same 

collision energy (70 eV) and nearly all GC retention data are converted to the same standardized 

Kovats RIs.  This standardization means that large tables and databases of known compounds with 

known EI-MS spectra and known RI values can be used to identify individual compounds in 

mixtures by visually comparing the tabulated EI-MS spectra or tabulated RIs with the measured 

EI-MS spectra or measured RIs.  The US National Institute of Standards and Technology (NIST) 

has compiled large databases consisting of 306,869 compounds with 320,704 EI-MS spectra and 

447,285 Kovats experimental RIs. This is called the NIST20 database [36]. NIST has also 

developed software such as the Automated Mass Spectral Deconvolution and Identification System 

(AMDIS) [37], that allows users to compare their experimentally collected EI-MS spectra with the 

NIST database EI-MS spectra using different similarity functions such as the cosine similarity 

score (Eq. 2) or spectral entropy functions (Eq. 3) [38].  

                      cos(𝜃) =  
𝐀.𝐁

‖ 𝐀 ‖ ‖ 𝐁‖ 
=  

∑  𝐴𝑖 𝐵𝑖
𝑛
𝑖=1  

√∑ 𝐴𝑖
2𝑛
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                                        Eq. 2 

where, Ai and Bi are components of vector A and B respectively.  

          𝑆ℎ𝑎𝑛𝑛𝑜𝑛′𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆ℎ𝐸𝑛) =  ∑ 𝑃𝑓 log (
1

𝑃𝑓
)𝑓                                  Eq. 3 

where, ShEn is measured by a relational parameter that vary linearly with the logarithm of the 

number of possibilities f.  
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An example of how a compound can be identified using the AMDIS software and the cosine 

similarity function is shown in Figures 1.10-1.13. Prior to sending a raw chromatogram to the NIST 

library search, a mass spectra file is loaded using the AMDIS user interface. Once the 

chromatogram is loaded in the top, the software displays the corresponding mass spectra at the 

bottom (Figure 1.10). The spectra then goes through deconvolution (manually done by the user) 

(Figure 1.11) and sent to the NIST library search. This automatically opens the NIST MS program 

to display the result. Components of the query spectrum are shown at the top and the results are 

shown at the bottom (Figure 1.12). In this example, the AMDIS/NIST library search proposes the 

compound “Hexacosane” as the top hit. The white spectrum represents the deconvoluted 

background subtracted spectrum and the uncorrected spectrum is represented in black. 

 
Figure 1.10: An example showing compound identification using AMDIS and NIST library 

search program (chromatogram loaded on top, corresponding mass spectra in the bottom). 
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Figure 1.11: An example showing compound identification using AMDIS and NIST library 

search program (manually performed deconvolution). 

 

 
Figure 1.12: An example showing compound identification using AMDIS and NIST library 

search program (“Hexacosane” as the top hit from the library search). 
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Figure 1.13: An example showing compound identification using AMDIS and NIST library 

search program (library search with customized settings). 

One can select and inspect each of the peaks of the chromatogram one by one, and then search the 

NIST database to get matched results. The AMDIS user interface also allows users to perform 

library searches with customized settings (Figure 1.13) which can be further re-analyzed to get new 

results. 

As large as the NIST20 database is, it does not cover the full set of compounds known to 

exist.  In particular, more than 120 million compounds (with known structures) have been reported 

in PubChem [39]. With NIST20 having data for just 306,869 compounds, this reference library 

covers just 0.2% of all known chemical compounds. Given the very sparse coverage available for 

experimental RI values and experimental EI-MS spectra, and given the large number of chemical 

structures that are known (and even more that are unknown), there is obviously a huge gap in our 

ability to identify compound. Many have argued that the best way to fill this gap is to develop 

methods that can predict RI values and EI-MS spectra using known or hypothesized chemical 
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structures as input. As a result, computational derivation or prediction of RI values and EI-MS data 

have become two important areas of research in GC-MS. 

1.6 Prediction of RI 

There has been a significant body of research aimed at predicting the RI of a molecule using only 

its structure (or hypothesized structure) as a starting point. These approaches use both statistical 

and machine learning (ML) techniques. Most are based on the observation that RI is dependent on 

the size of the molecule and its boiling point.  Generally larger molecules with higher boiling points 

have longer retention times or higher RIs. Among the traditional statistical approaches, the most 

common ones have used data that can be easily measured including a measure of the number of 

heavy atoms. One approach, called the quasi-length of the carbon chain [40], essentially estimates 

the number of carbon atoms and how long the equivalent carbon chain would be to estimate RIs. 

This approach achieved a correlation between predicted and observed RIs of 0.9968 for 

approximately 100 polycyclic aromatic hydrocarbon (PAH) compounds that it was tested on.  A 

second approach used the number of atom numbers, functional groups and substituents of a 

molecule to estimate the RI [41]. This approach reported a mean absolute percentage error (MAPE) 

of less than 3% for a group of compounds including acids, alcohols, amines, acid esters, aldehydes, 

ketones, ethers, aromatic hydrocarbons, alicyclics, and heterocyclics that it was tested on.  Other 

approaches use the number of saturated hydrocarbons [42] to estimate RIs. This approach was 

tested on 43 alkyl and 48 cycloparaffins compounds and the mean absolute error (MAE) achieved 

for this approach was within ±1 index units. Still other groups have used thermodynamic 

approaches [43, 44, 45], to predict RI values. One thermodynamic method used a three-parameter 
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model for predicting retention times for alcohols and ketones. This approach was used to predict 

RI for three different GC stationary phases and achieved a root mean squared error (RMSE) of 5.5s 

across all compounds, phases and temperature ranges. When tested across only alcohols, the RMSE 

value was even lower (2.79s for alcohols). However, RI prediction using thermodynamic 

approaches largely depends on the experimental measurements of multiple thermodynamic 

properties, which obviously limits their application towards generalized RI prediction. 

Physicochemical descriptors such as predicted boiling point, volatility, dipole moment, Henry 

coefficient, molar refraction, and saturated vapor pressure have also been used to predict RIs from 

structure [46]. This physico-chemical approach used forward and backward regression techniques, 

and achieved correlation coefficients greater than 0.9996 across all stationary phases. Other studies 

on RI have shown that molecular properties also have an effect on RI. These include properties 

such as electronic polarizability, ionization potential, diamagnetic susceptibility, electron density, 

resonant energy of the electron system of adsorbates, physical properties of adsorbates, such as the 

heat and energy of formation, surface tension, density, viscosity, the heat of crystallization, 

evaporation, and combustion, and molar volume [43]. However, these properties are difficult to 

predict or estimate and can only be computed for small batches of compounds or their molecular 

fragments. As a result, these physicochemical approaches are not considered suitable for RI 

determination or prediction [47].  

More recently, computational chemists have moved away from statistical, heuristic or 

simple regression methods for predicting RI values. One early study of note employed multiple 

linear regression (MLR), and artificial neural networks (ANN) [48] to perform RI prediction. ANN 

turned out to perform the best in this comparative study with lower standard error (SE) rates (SE 
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using the ANN: 10.479 vs. SE using MLR: 50.473) and higher correlations (ANN: 0.999 vs. MLR: 

0.972) for the group of compounds it was tested on for prediction. Since then, many other ML-

based techniques such as genetic algorithms [49], support vector regression (SVR) methods [50] 

with parameter optimization, random forest and gradient boosting regressors [51] predicted RIs 

using chemical descriptors. 

While the correlation coefficients and estimated errors calculated from the above-

mentioned studies are definitely encouraging, they were not sufficiently accurate to have a real 

impact on compound identification.  Moreover, these approaches were often limited to working 

only for a specific GC stationary phase setting, only for certain functional groups [52, 53, 54, 55, 

56, 57], or only for certain chemical classes [47, 49], with very small training sets. To get around 

the limitation of training data size, a very recent study [58] reported RI predictions for TMS 

derivatized compounds using a training set of 1410 TMS metabolites from the Golm Metabolome 

Database (GMD). This predictor employed SVM linear regression to predict RI values of TMS 

derivatized compounds yielding impressively low error rates (median absolute error [MAE] of 

37.13 RI units and a median absolute percentage error (MAPE) of 1.95%). Much larger training 

sets from NIST have also been used in some very recent approaches to predict RI values [27, 40, 

53, 55, 59]. These models typically outperform all previous predictors by taking advantage of the 

power of deep learning techniques such as convolutional neural networks (CNNs) or graph neural 

networks (GNNs) and very large data sets. These authors report mean absolute errors as low as 23 

units and mean absolute percentage errors (MAPE) as low as 1.32%.  This kind of performance 

appears to be sufficiently promising as to be used in direct GC-MS compound identification.   
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The highly accurate RI predictors discussed above provide impressively accurate results 

but are developed for commercial purposes only. This limits their accessibility, and it is why I 

believe it is important to make an open-source or open-access version of the RI predictor available 

to the GC-MS community. Such a resource would help researchers conduct large scale RI 

predictions in an effective manner. It is also notable that the highly accurate commercial RI 

predictors discussed above do not allow users to predict RI values for derivatized compounds or 

for different kinds of GC stationary phases. Ideally an open RI predictor should support the full 

range and scope of GC-MS RI predictions. Furthermore, such a predictor should use some of the 

excellent recent machine and deep learning techniques and ideas already used by the commercial 

tools along with some adaptation and parameter tuning. The large GC-MS RI training set available 

from the NIST 20 data set could potentially be used to train the predictor. As the NIST 20 dataset 

seems to cover compounds spanning nearly the entire chemical space, it may be possible to create 

separate training set partitions to handle derivatized and underivatized compounds as well as 

training sets for the three different GC stationary phases. This concept would mean such a predictor 

would have to employ six separate predictors. Making this open access predictor into webserver 

and making it freely available to the GC-MS community could be a game-changing development.   

1.7 Prediction of EI-MS Spectra 

The prediction of EI-MS spectra using only chemical structures, such as those generated via 

SMILES (simplified molecular-input line-entry system) has proven to be very challenging. Three 

approaches have been pursued 1) rule-based techniques, 2) quantum chemical calculations, and 3) 

machine learning strategies. Rules or heuristic rules for predicting EI-MS spectra are almost as old 



26 

 

as the field of GC-MS itself. Examples include the alpha-cleavage rules [33], McLafferty 

rearrangement rules [34], and retro-Diels-Alder reaction rules [35]. Other efforts have also been 

undertaken to discover more reaction rules. For example, Weissberg and Dagan analyzed 200,000 

entries from the NIST 2005 database and were able to extract additional fragment cleavage rules 

[60]. However, the number of rules derived so far are quite limited and are clearly not sufficient to 

cover all the cleavage reactions seen for most molecules. More recently efforts have been directed 

at using quantum chemical calculation methods (called QCEIMS) to predict EI-MS spectra from 

first principles using only chemical structures as input [61, 62]. These methods are surprisingly 

accurate and been used to calculate EI-MS spectra for TMS-derivatized compounds [63] as well as 

for environmental pollutants such halogenated organics, organophosphorus flame retardants, 

disinfection byproducts, etc. [64]. However, the main bottleneck for QCEIMS is its enormous 

computing costs and long running time, with most runs for a single molecule taking multiple days 

on high-end computers.  

Given their obvious limitations, both the rule-based methods and quantum computation 

methods are not feasible for large-scale EI-MS calculations. As a result, many researchers are now 

looking to machine learning as a faster, more comprehensive route to predicting EI-MS spectra 

from structure. One of the first methods to employ machine learning in EI-MS prediction was called 

CFM-EI which stands for Competitive Fragmentation Modeling for compound IDentification 

using Electron Ionization [65]. CFM-ID EI, also known as CFM-EI is extensively used in the GC-

MS community due to its noteworthy performance in both the EI-MS spectrum prediction and 

metabolite identification tasks. The CFM-EI method uses a probabilistic model to predict the 

probability of breaking molecular bonds under hard ionization EI-MS conditions and reports to 
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perform better than full enumeration bar-coded spectra in standard spectrum prediction tasks [66]. 

The good recall and dot product scores reported for CFM-EI against observed spectra indicate how 

well this model explains fragmentation events and performs EI-MS spectrum prediction. This tool 

also outperforms other fragment predictive tools (models mostly generating bar-code spectra only) 

such as MetFrag [67], MOLGEN-MS [68] and Mass Frontier [69] in metabolite identification 

tasks. However, CFM-EI doesn’t do particularly well in these tasks when predictions are generated 

for compounds covering isotope variants, silylated compounds, ethers, and organic oxygen 

compounds. Performance assessments of CFM-EI involving comparisons with replicate EI-MS 

spectra also suggest that a considerable gap still exists between experimental and the predicted 

spectra. Recently, several other machine learning predictors [70, 71, 72] have been described which 

claim to have better performance than the CFM-EI, showing higher recall values and faster run 

times, both in library matching and spectral prediction. Typically, these newer ML methods employ 

artificial neural networks and GNNs to make their EI-MS predictions. However, unlike CFM-EI, 

these newer ML predictors only generate EI-MS “images” (m/z values and their relative intensities) 

without annotation of individual fragment ions. This limits their utility in compound identification. 

As a result, CFM-EI, with its unique ability to annotate EI-MS spectra still has a considerable 

following in the GC-MS community.  

One general observation is that the current CFM-EI predictor was trained on a relatively 

small dataset that did not cover compounds from the entire chemical space. Indeed, CFM-EI’s 

performance drops significantly when non-conventional compounds are analyzed. This suggests 

that CFM-EI could be improved by training specific EI-MS models for specific classes of 

compounds. Furthermore, by retraining CFM-EI on a more complete set of EI-MS data (for 
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instance, the full NIST20 database) and through the use of sophisticated model architecture for 

training (particularly GNNs and their variants), it may be possible to make EI-MS predictors with 

both high quality spectral prediction features as well as peak annotation capabilities.  

1.8 Putting it All Together 

If fast, high-quality predictions for RI values and EI-MS spectra could be generated using only 

rendered structure data (such as SMILES strings) then it should be possible to create a large in 

silico library of compounds with their (predicted) EI-MS spectra and RI values. Such a reference 

library would open the door to performing rapid compound identification by comparing between 

observed EI-MS spectra or RI values and the predicted EI-MS or RI data in this in silico library.  

This reference library could be designed to contain not only RI values and EI-MS data from the 

100+ million known structures, it could also contain the same data for de novo predicted structures 

or hypothesized structures, such as those generated by CONGEN, MOLGEN or BioTransformer. 

Ideally when using such a reference library, EI-MS spectral matching would be done first and then 

the ranked output from this EI-MS matching could be further be refined by applying filters such as 

matches to retention index values. In other words, RI prediction and EI-MS prediction if combined 

together would aid in unknown compound identification.  

1.9 Hypothesis and Research Objectives 

Based on the previously reviewed information and concepts, I hypothesize that it should be possible 

to use advanced machine learning techniques and large, publicly available datasets to rapidly and 

accurately predict RI and EI-MS data using only SMILES strings as input. I further hypothesize 
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that the use of these techniques will lead to among the most accurate RI and EI-MS predictors ever 

developed and that they could greatly improve the power of GC-MS in compound identification. 

To prove or disprove this hypothesis I will pursue three specific objectives: 

1) Using the National Institute of Standards and Technology (NIST) 2020 database on 

measured RIs (derived from multiple column types and multiple TMIS derivatives) I will employ 

feature mining and machine learning regression techniques to develop a model to predict RI values 

from submitted SMILES strings.  I will compare this learned RI model and its predictions with the 

predictions reported by other groups using the same testing and validation set to prove its accuracy.  

2) Using the National Institute of Standards and Technology (NIST) 2020 database on 

measured EI-MS spectra I will employ feature mining and machine learning regression techniques 

to develop a model to predict EI-MS spectra using only SMILES strings as input.  I will compare 

this learned EI-MS model and its predictions with the predictions reported by other groups using 

the same testing and validation set to assess its accuracy.  

3) I will make these resources publicly available through the deployment and maintenance 

of user-friendly webservers to ensure maximal impact for the GC-MS community 
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Chapter 2: Accurate Prediction of Isothermal Gas 

Chromatographic Kováts Retention Indices1 

2.1 Introduction 

Gas chromatography (GC) is a technique that can be used to separate mixtures of liquid, gaseous, 

semi-volatile and even non-volatile components. GC is usually carried out at high temperatures 

and analytes are separated based on their boiling points and their interactions with the GC column’s 

stationary phase. The amount of time a compound spends on a GC column is called the retention 

time (RT) [30]. However, the RT of a compound can vary with the GC column type, length, 

diameter, film thickness as well as the GC instrument’s void volume, carrier gas velocity, and 

pressure. While a parameter called “specific retention volume” was historically used to make 

retention data independent of these variables [47], most modern GC-MS laboratories convert RTs 

into system-independent constants called retention indices (RI). RIs, which normalize the RTs of 

compounds with its adjacently eluting n-alkanes [73], allow retention values measured by different 

analytical laboratories under varying GC conditions to be compared. It should also be noted that 

RT comparisons across laboratories can also be achieved using techniques such as retention 

projection [74] and retention locking [75]. However, our focus here is on RI calculation. Two 

techniques used to calculate RIs during analysis include isothermal methods, which maintain 

constant temperature (known as Kováts RIs [76]), and non-isothermal methods, which vary the 

                                                

1 A slightly modified version of this chapter was published in the Journal of Chromatgraphy A 2023 Aug 

30:1705:464176 
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temperature (known as temperature programmed Kováts RIs). While isothermal and non-

isothermal RI values of a given compound vary considerably, non-isothermal RIs can be converted 

to isothermal RI values using simple empirical models. RI values also vary significantly with 

different GC stationary phases. For instance, polar compounds have long RTs on polar columns 

and shorter RTs on non-polar columns. The most common stationary phase used in GC analysis is 

a semi standard non-polar (SSNP) phase [27], which usually contains DB-5, a polysiloxane-based 

co-polymer consisting of 5 % diphenyl and 95 % dimethyl polysiloxane. The SSNP can separate a 

range of chemicals from alkanes, amines, phenols, fatty acids, methyl esters, and even volatile 

compounds. Other common stationary phases include Standard non-polar (SNP) and Standard 

Polar (SP) using DB-1-100% dimethylpolysiloxane and carbowax -polyethylene glycol, 

respectively.  

Experimental RI data for thousands of underivatized (volatile compounds that do not need 

chemical modification) and derivatized compounds (less volatile compounds that are chemically 

modified via silylation to enhance volatility) can be found in reference libraries maintained by the 

National Institute of Standards and Technology (NIST) [36] and the National Institutes of Health 

(NIH) via PubChem [39]. However, these experimentally measured RI libraries cover only a 

fraction of the millions of known, expected and suspected compounds. The lack of experimentally 

collected reference RI data for most GC-MS detectable compounds limits their reliable 

identification. As manual collection and measurement of RI data is both time-consuming and 

expensive, methods to accurately predict the RIs of compounds (based on their structure) has been 

pursued for decades [49, 53, 56, 58-59, 77, 78, 79]. 
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 RI values (with the exception of RIs for the polar stationary phase) depend on molecular 

size and measured boiling points. This information was incorporated into the first RI predictors. 

One of the first RI predictors estimated RIs using the quasi-length of the carbon chain and the 

pseudo-conjugated system surface of polycyclic aromatic hydrocarbons (PAHs) as measures of 

molecule size [40]. While this approach achieved a high linear regression coefficient for 100 PAHs, 

it was not transferrable to other types of molecules. A second approach used empirical counting of 

atom numbers, functional groups, and substituents to estimate RIs for hundreds of compounds of 

several chemical classes in both non-polar and polar column [41]. Although this method achieved 

RI error rates of < 3%, it was not applicable to derivatized compounds. A later approach used the 

number of saturated hydrocarbons (determined by graphical methods) and linear regression 

analysis to estimate RIs for saturated hydrocarbons [42]. This study predicted RIs for 43 alkyl and 

48 cycloparaffins compounds with reported errors ±1 index units. This approach was also limited 

in its scope and number of compounds to which it could be applied.  

In addition to traditional statistical or regression methods, other RI predictors have used 

measured experimental properties to predict RIs. One class of predictors uses an additive 

thermodynamic (AT) approach [43-44, 80]. One notable AT method used a three-parameter model 

to predict RTs for alcohols and ketones for three different GC stationary phases. When tested across 

all compounds, phases and temperature ranges, this predictor achieved a low root mean squared 

error (RMSE). However, as AT approaches measure multiple thermodynamic properties, this limits 

their application to generalized RI prediction. Measured physicochemical descriptors such as the 

boiling point, volatility, dipole moment, Henry coefficient, molar refraction, and saturated vapor 

pressure have also been used to predict RIs [46]. This pseudo-experimental approach used forward 
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and backward regression techniques and achieved high correlation coefficients across all stationary 

phases. Other studies measured even more physicochemical descriptors and also reported 

impressive results [81]. However, these physicochemical methods are impractical for general RI 

prediction due to the high number of experimental parameters that must be collected.  

The success of RI predictive methods that used thermodynamic and physicochemical data 

led researchers to explore RI prediction based on predicted topological, thermodynamic and 

physicochemical data [82, 83, 84]. The development of more sophisticated machine learning (ML) 

regression methods over the past decade has led to even more accurate and more sophisticated 

methods for RI prediction. Indeed, an early ML study compared how traditional multiple linear 

regression (MLR), traditional partial least squares (PLS) and an artificial neural network (ANN) 

predicted RIs and showed that the ANN performed best [78].  Since then, other ML-based 

approaches to RI prediction have appeared. Most use predicted chemical descriptors of the 

structures [85-86], which are then fed as features in various ML algorithms [48, 50, 54, 86, 87, 89, 

90] including support vector regression (SVR), random forest regression (RFR) and gradient 

boosting regression (GBR) and many other ML techniques. Unfortunately, many studies used small 

training sets and were limited to a specific GC stationary phase setting or were built for specific 

functional groups [50, 53, 54, 88] or chemical classes of molecules [48, 77, 89, 90]. This greatly 

reduces their utility and general applicability.  

Recently, several groups have expanded their testing and training data sets and used more 

advanced ML regression models to make more generalized RI predictors. Most of these [53, 56, 

58, 59, 79] have used large GC-RI training sets from NIST (139,498 compounds) or PubChem’s 

collection of experimental RI values and exploited ANN regression methods and their variants such 
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as Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs). These newer 

models effectively outperformed all prior RI predictors with very low mean absolute errors (MAEs 

– 23 RI units) and very low mean absolute percentage error (MAPE – 1.32%) [49].  

Unfortunately, many highly accurate RI predictors are closed source and/or only available 

commercially. Moreover, they do not allow users to predict RI values for derivatized compounds 

or RI values for different stationary phases. To address these shortcomings, we developed an RI 

predictor called RIpred, a software program that supports the full range of RI predictions that GC-

MS users commonly need. RIpred exploits several key features of the NIST RI prediction model, 

first described by Qu et al. [79]. However, RIpred uses a different set of molecular graphs, different 

kinds of atom-level features and predicts RI values for both underivatized and trimethylsilyl (TMS) 

and/or tert-butyldimethylsilyl (TBDMS) derivatized compounds for all three stationary GC phases. 

RIpred was extensively trained and tested on a wide range of experimentally measured RI data and 

yielded RI results equal to or better than those published elsewhere [48, 49, 50, 53, 56, 59, 79, 89, 

90]. The RIpred model was then incorporated into a user-friendly webserver that allows users to 

submit any structure and obtain one (for underivatized) or more (for derivatized) RI predictions. 

RIpred also houses predicted RI values for >5 million compounds that can be instantly retrieved or 

downloaded.  The next sections describe how RIpred was developed, trained and tested and how it 

can be used by anyone to predict RI values.  

2.2 Data and methodology 

2.2.1 Retention index data sets 
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Our primary data source was the RI library from the official NIST 17 and NIST 20 releases [8, 38]. 

The updated dataset from NIST 20 consists of 447,285 Kováts and LeeRI values for 139,498 

compounds. To maximize the size of the training set, we merged the NIST 17 and NIST 20 GC-

MS Kováts RI data. To clean and standardize the data, we removed the Lee RI values along with 

any entries containing duplicate compounds. As a result, ~26,000 Kováts RI values from NIST 20 

were added to the NIST 17 dataset, yielding a final Kováts RI dataset consisting of 122,042 entries 

for 105,075 unique compounds. This included 72,093 base (underivatized) compounds and 49,949 

derivatized compounds (Table 2.1). This dataset contains experimental Kováts RI values for three  

 
Table 2.1: Summary of number of data types in the NIST datasets before and after data cleaning. 
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stationary phases (SSNP, SNP and SP) for all 122,042 entries along with their structure (consisting 

of 2D representation of the molecule). The data also contains other metadata including compound 

names, InChI keys, masses, formula, predicted RI values (present only in NIST 20 for the SSNP 

phase [91]), instrument details, etc. For training purposes, we needed all structures expressed as a 

simplified molecular-input line-entry system (SMILES) string. As the NIST 17 and NIST 20 

software did not allow us to retrieve chemical structures as SMILES or SDF files, we used the NIH 

Cactus service [92] and the PubChempy python [93] application programming interface (API) to 

convert the InChI keys to isomeric SMILES. This conversion was not successful in all cases, and 

~4,000 RI values along with their associated structures were unable to be processed. Further 

manual analysis and checking was performed to ensure that the correct SMILES strings were 

generated for different stereoisomers of the same compound and for different-sized derivatives of 

these compounds (with one or more additions of TMS derivatives: i.e. 1 TMS, 2 TMS, etc.). This 

manual checking step removed ~750 compounds. To ensure the structural validity of all SMILES 

representations, we also converted them into valid molecular objects (MOL files) using RDKit [94] 

and discarded those entries (~4,700) where no mol file could be generated. We also removed 

compounds having molecular mass >900 Da from the dataset (~3,500), as heavier compounds are 

not generally analyzed by conventional GC instruments. In addition to ensuring the structural 

integrity of our dataset, we also made sure that it provided reasonable values of RIs in the three 

stationary phases. We discarded compounds with an RI <200 units and >4000 units (~2,000 

compounds) as reasonable RI values for most conventional GC-MS instruments and most 

conventional compounds are between 200-4000 units. We also manually investigated questionable 

RI values during the data cleaning process which led to the removal of approximately 850 



37 

 

compounds. The final “clean” dataset, where ~16,000 entries were removed (13%), consisted of 

105,420 experimental Kovats RI values from 56,229 underivatized (13% removed) and 49,190 

derivatized (0.63% removed) structures (Table 2.1). The final number of associated structures for 

three different stationary GC phases included 32,798 underivatized and 36,186 derivatized 

structures having SSNP RI values, along with 15,594 underivatized structures and 9,916 

derivatized structures having SNP RI values as well as 7,837 underivatized structures and 3,088 

derivatized structures having SP RI values. More details regarding these distributions are provided 

in Table 2.1. 

2.2.2 Graph neural network methods 

To develop our RI predictor, we drew inspiration from the GNN-based RI predictor described by 

Qu et al. [79] while implementing a number of our own modifications. The GNN predictor 

described by Qu et al. made improvements to the open-source GNN model defined by the MatErial 

Graph Network (MEGNet) framework [95]. While the predictor described in [79] and the MEGNet 

framework used TensorFlow [96], Keras APIs, and RDKit, we developed RIpred using a tensor-

optimized library called PyTorch [97].  For atom-level feature extraction, we also used RDKit 

functions. The use of PyTorch along with SMILES strings led to the development of a GNN that 

used a somewhat different workflow, a different set of atom/molecular features and a different 

approach to using molecular graphs than the GNN developed by Qu et al. [79]. 
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Figure 2.1: Overview of the RIpred predictor workflow.  Both the training and testing phases of 

the RIpred predictor are illustrated here. During the training phase, multiple batches of SMILES 

representations from the molecular structures of each dataset were converted into molecular 

graphs. Each of these molecular graphs were further used to compute the shortest distance paths. 

Atom-level features were extracted using both the molecular graph representations and shortest 

path distances utilizing RDKit. Six predictors were trained individually in the same way and 

embedded in the webserver. The RIPred web server accepts SMILES representations of the 

molecular structure (underivatized or derivatized), the derivatization type and the stationary 

phase information for predicting the RI values. The AUTOSILATOR derivatization script and 

the ChemBL program are used to generate the derivatized forms of the user-submitted molecule. 

 

The overall workflow for RIpred’s GNN is illustrated in Figure 2.1. RIpred accepts a 

SMILES string corresponding to the query structure. The SMILES string is then directly converted 

into a molecular graph where the nodes and edges of the graph represent atoms and connections 

between the atoms, respectively. Using RDKit, a number of atom-level features are then extracted 

from the molecular graph including a number of atomic (node-level) features and a number of path 

features, related to the edges. The atomic feature set for RIpred is a combination of 64 one-hot 
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coded features representing 62 types of common atomic symbols (such as C, N, S, O, F, etc.), plus 

one feature for any unknown elements and the other feature as a default wildcard or dummy 

symbol. Formal charge calculation can suggest potential polarizability. As a result, we included 

five types of valid formal charges ranging from neutral, positive and negative charges [0, ±1, ±2] 

in our atomic feature set. This property is calculated based on the assigned charges for each atom 

within a molecule. We also included seven explicit and six implicit valences in this feature set. 

Additionally, our atom feature set also includes a path feature related to the neighboring nodes of 

any given node, up to a maximum of 10 neighboring atoms. Beyond the atomic features, we also 

encoded path features for any two given nodes of each molecule by computing the shortest path 

between them. The maximum path length we considered between any pair of nodes was three. For 

any pair of nodes, the path feature set is a combination of 31 one-hot coded features. This is 

computed as a concatenation of the model's maximum path length and the total number of bond 

features in that particular path, bond conjugacy and bond ring appearance (denoting the presence 

of a ring between two neighboring nodes) for that path and the ring membership (denoting whether 

the nodes in a path are in aromatic rings) between the nodes in a path. Six types of bonds are used 

to compute these bond features. The atom or node level features that are computed for any two 

nodes in a graph are fed into the input layer of the network by a linear transformation. In addition, 

the RIpred GNN model also computes atom attention scores both in the hidden layers (with five 

hidden layers each of the layers having 160 hidden units) and the output layer. The new atom 

embeddings which are computed afterwards are particularly helpful in generating output values 

from the final layer of the network. The RIpred GNN model code and scripts were adapted and 

modified from the Python source code of a publicly available GitHub GNN repository [98].  
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 All the parameters used to train the RIpred models are listed in Table 2.2. Except for a few 

parameters (e.g. batch size), all other parameters were kept constant in these models. When one of 

our models generated an initially acceptable level of performance, we conducted k-fold cross 

validation (with k=10) to test the reliability of that model and calculated the MAE and MAPE with 

means and standard deviations of MAEs for all 10 cross-validation runs. This k-fold cross 

validation was applied to obtain less biased or less optimistic estimates of the test errors. To 

conduct the k-fold cross validation, we divided the available datasets from all stationary phases 

into k folds and trained the model k times. In each of these k evaluations, we used k-1 folds of data 

for training and the remaining fold for testing the models. As we used a GNN to train our models, 

in each of these k evaluations, we captured both the training versus validation errors (generated 

from the internal validation/development set used during model optimization/tuning) over different 

epochs to select the best trained models. Later, the best trained models were used to report the k 

(=10) fold cross validation training and testing errors. The best trained model from these 10 runs 

was selected by looking at a single run in the cross-validation set that produced similar MAE values 

with that of the mean MAEs from all 10 evaluation runs. In this way, multiple rounds of training, 

testing and selection led to the identification of the six best models for three stationary phases, 

covering both underivatized and derivatized forms. These top models were trained for up to 3,000 

epochs. Early stopping was used to help efficiently identify the most promising models.  For our 

GNN models, the early stopping was defined by a patience parameter, which was varied (20, 100, 

150, and 200 times) to capture the most effective training model. In the next step, we used these 

top six models to evaluate the six respective hold-out test sets and report their errors and overall 
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Table 2.2: Parameters and their values used in our RIpred model. 

 

predictive performance. All six RI prediction models were then incorporated into the RIpred 

webserver.  

2.2.3 Dataset Distribution 

Prior to training, we separated the derivatized and underivatized compounds into three datasets 

using the three kinds of stationary phase information from the combined NIST data set. This gave 

rise to a total of six different datasets. As mentioned above, we conducted k-fold cross-validation 

to get an unbiased estimate of the test errors.  The number of data points used for training, validating 
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and testing each of the stationary phases within each of these k-folds is shown in Table 2.3. It is 

important to note that the validation set defined here is the development set that is used solely for  

 
Table 2.3: Number of data points used for training, validating and evaluating the underivatized 

and derivatized compounds with RIpred. 

the GNN model optimization/tuning while training the model each of the k times. The split within 

each of these sets was done in such a way that the same proportion of similar compounds (in terms 

of elemental ratios, ClassyFire [99] chemical class and superclass) were used in training, validating, 

and testing the data (see Table 2.4, 2.5, and 2.6). We also made sure that the exact mass vs. number 

of rotatable bonds vs. RI and exact mass vs. LogP (octanol-water partition co-efficient) vs. RI for 

these sets of compounds were similar (see Figure 2.2). In order to ensure distinct derivatized 

datasets for all three stationary phases, we separated the derivatized compounds by their common 

chemical names, or by using a SMILES arbitrary target specification (SMARTS) string search for 

derivatized functional groups within each SMILES string.  The functional/derivatization groups 



43 

 

 
Table 2.4: Percentage distribution of molecules by ClassyFire class for the RIpred training, 

validation and hold-out sets. 
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Table 2.5: Percentage distribution of molecules by ClassyFire superclass for the RIpred 

training, validation and hold out sets. 
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Table 2.6: Percentage distribution of molecules by ClassyFire superclass for the RIpred training, 

validation and hold out sets. 
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Figure 2.2: Molecular distribution for datasets by exact mass-rotatable bonds versus retention 

indices and exact mass-LogP versus retention indices for training and hold-out tests of a, c, e) 

underivatized and b, d, f) derivatized semi-standard non-polar (SSNP) datasets (a, b), standard 

non-polar (SNP) datasets (c, d) and standard polar (SP) datasets (e, f). 
 

 

that we considered included TMS, TBDMS, triethylsilyl (TES), tert-butyldiphenylsilyl (TBDPS), 

esters, heptafluorobutyric acid anhydride (HFBA), methoxime (MO), pentafluoropropionic acid 

anhydride (PFPA), vinyldimethylsilyl (VDMS), and 4,4-dimethyloxazoline (DMOX). The 

distribution of derivatized compounds within a randomly selected subset of the combined NIST 17  
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Figure 2.3: Computer-generated (in silico) derivatized GC-amenable compounds. a) Distribution 

of derivatized products found in the NIST 17 and NIST 20 RID datasets, indicating that TMS 

and TBDMS are the most commonly used derivatives in the SSNP, SNP and SP subgroups. b) 

Structures of underivatized dopamine and dopamine derivatized with 1 TMS and 1 TBDMS 

using the AUTOSILATOR script. c) Five TMS derivatized structures (isomers of each other) of 

a compound having three aromatic rings. These isomers have different complexity scores 

because of differences in their spatial arrangements. Compounds with complexity scores >5 

(inside red boxes) were discarded. 

and NIST 20 data is shown in Figure 2.3a. As seen from this figure, the vast majority (>95%) of 

compounds within these datasets were derivatized with TMS and TBDMS. As a result, we 

generated computer (in silico) derivatized GC-amenable compounds using only TMS and TBDMS 

and only used these two types of derivatives to train and test our RIpred models. Therefore, the 

RIpred web server only supports RI prediction for TMS and/or TBDMS derivatives. 
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2.2.4 Development of the RIpred Server 

The RIpred webserver serves as the front-end for performing or running the six predictive RIpred 

models described above. Users must provide a valid chemical structure, select the GC stationary 

phase type (SSNP, SNP or SP) and select the derivatization type (No derivatization, TMS, TBDMS 

or a combination of TMS and TBDMS). Users can paste a single SMILES string or draw a single 

chemical structure into the JChem applet window (from ChemAxon) [100]. The average prediction 

takes 2.5 milliseconds (ms). The RIpred server uses standardized web frameworks and caching 

systems developed in our lab to make the website more user friendly and responsive. In particular, 

the frontend of RIpred has been implemented as a RESTful web service using the JRuby on Rails 

framework. Ruby on Rails is a web development system that employs a concept called a Model-

View-Controller (MVC). In the MVC framework, models respond and interact with the data, views 

create the interface to show and interact with the data, and controllers connect the user to the views. 

This framework has allowed us to rapidly develop, prototype and test all of RIpred’s web modules 

and page views. Many of the utilities are borrowed from a large collection of Ruby gems previously 

developed for the HMDB [101]. This framework is particularly robust and code can be reused in 

different functions or changed easily to accommodate future feature expansion or abrupt changes 

in design. This allowed us to liberally borrow code and functions from other webservers developed 

in our lab [102, 103, 104, 105]. 

2.2.5 Generation of Derivatized Structures for the RIpred Server 

To make the RIpred webserver as user-friendly as possible, we developed a separate software 

package to automatically generate derivatized structures for RI prediction. With this package, users 
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only need to provide the SMILES string or structure of the underivatized (base) compound and the 

derivatization reagent (limited to TMS and TBDMS). To generate structures for all possible 

derivatized products for each query compound, the computational derivatization script (called 

AUTOSILATOR) appends the TMS and/or TBDMS functional group (based on user input 

‘derivatization type’) in chemically appropriate positions. The script uses individual derivatization 

rules for silylating compounds having functional groups such as acids, thiols, ketones, aldehydes, 

amines, etc. The script also automatically generates derivatized structure names that are formatted 

as “base_compound_name, n TMS/TBDMS”, where n represents the total number of TMS or 

TBDMS groups attached to the base molecule.  

To ensure chemical viability, two filtering steps are used to remove any incorrect or 

offending structures. First, the software evaluates the molecular weights (MW) of the generated 

compounds and only keeps those with MW <900 Da. This is the maximum MW typically 

measurable by most commercial GC-MS instruments. Second, all compounds are passed through 

ChemBL [106] to assess the validity and feasibility of the computationally generated derivative 

structures. The ChemBL program is a bond/stereochemical evaluation program that is able to 

automatically identify issues with chemical structures such as mol-InChI stereo mismatches or 

improper placement of atoms and functional groups in invalid positions. ChemBL uses this 

information to assign a complexity value (0 to 9, 0 being the score for no issue and 9 being the 

score with lots of issues) for each structure. For our program, any generated compounds with a 

ChemBL complexity score of greater than 5 are discarded.  

An example of how this filtering step is performed is shown in Figure 2.3b. Here the base 

molecule (dopamine) undergoes a silylation reaction with n TMS and TBDMS groups (the addition 
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of n=1 is shown). With an increasing number of n, our computational derivatization script would 

add n TMS or TBDMS groups to each available functional group. This addition can give rise to 

the generation of some derivatives which would be chemically unfeasible and invalid. We used the 

complexity score generated by the ChemBL program to accept or discard those compounds. One 

example is shown in Figure 2.3c, where the 5 TMS isomers of a compound having three aromatic 

rings are seen to have different complexity scores because of differences in their spatial 

arrangements. The generated structures inside the red block would be discarded due to their high 

complexity scores (>5) while the others would proceed to RIpred’s Kováts RI prediction. All valid, 

computational TMS and TBDMS derivatives and their RI predicted results will be displayed in the 

web server as per the user’s request. 

2.3 Results and discussion 

2.3.1 Mismatched Experimental RIs in the NIST 17 and 20 Datasets 

Discovered with RIpred-alpha 

During the training process, we discovered that a number of compounds in the NIST 17 and NIST 

20 datasets had questionable experimental RI values. To mitigate the speculation, we compared the 

predicted RI values generated using an initial version of our model (RIpred-alpha) with the 

experimental values collected from the NIST databases. Our error analysis from this predicted 

versus experimental RI plot helped us identify a number of significant outliers. Each of these 

outliers was further analyzed (manually) to make sure that they were not false leads but rather true 



52 

 

outliers. In particular, we manually investigated the reported RI values of each of these suspected 

compounds in the same stationary phase with their related compounds by looking at the progressive  

 
Figure 2.4: Questionable retention indices (RI) and questionable nomenclature of compounds within the 

NIST 17 and NIST 20 datasets. a) Structures of benzoyl isocyanate, b) ethyl S-2-dimethylaminoethyl 

propylphosphonothiolate and related compounds showing experimental RIs and those predicted using 

the Qu et al. predictor and our naïve RIpred model. c) Misnamed tetrahydrocannabinol and misnamed 

1,3,7-trimethylxanthine and their TMS derivatives with similar experimental RIs. 

 

RI trend. For example, the predicted RI for benzoyl isocyanate generated by RIpred-alpha was 

1244.99 (Figure 2.4a) which was closer to the experimental RIs of many of its related compounds: 
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benzoyl methide - 1066, benzohydroxamic acid -1406 or benzoic acid isoamyl ester-1439 in the 

same SSNP phase. However, the experimental RI in the SSNP phase for benzoyl isocyanate was 

reported by NIST to be much higher, 2329. Similarly, a much smaller experimental RI was also 

reported for ethyl S-2-dimethylaminoethyl propylphosphonothiolate with respect to its related 

compounds (Figure 2.4b) in the same phase.  

Looking only at the progressive RI trend, it was not always possible to detect outliers and 

thus in many cases, we also compared the predicted RI values derived by the RIpred-alpha in the 

SSNP phase and the Qu et al. RI predictor [79]. Many suspect compounds had slight differences 

(<5%) in their RIs predicted by RIpred-alpha and the Qu et al. predictor but exhibited large 

differences in experimental values reported in the NIST databases. For example, the predicted RIs 

for oxirane-carboxaldehyde were quite low (~630) and differed by just 3.6% for the Qu et al. 

predictor (620) and RIpred-alpha (643.27) (Figure 2.5a). However, the NIST reported experimental 

RI for oxirane-carboxaldehyde was much higher, 1339. Likewise, the experimental RI values for 

related compounds in the same stationary phase were 2 to 3-times smaller than the NIST listed 

experimental value for oxirane-carboxaldehyde. Indeed, the experimental RIs for the related 

compounds were closer to the predicted RIs (RIpred-alpha and the Qu et al. predictor): oxirane - 

404, methyloxirane - 435, ethyloxirane - 571, chlormethyloxirane – 725, oxiranecarboxylic acid, 

3-methyl, 3-phenyl-, ethyl ester - 1529 or 3-methyl-3-(4-methyl-3-

pentenyl)oxiranecarboxaldehyde - 1234. Another example is the much larger experimental RI  
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Figure 2.5: Compounds with mismatched experimental (Exp.) retention indices (RI). a) 

Suspected compound oxirane-carboxaldehyde and compounds with similar structures in the 

semi-standard non-polar phase. b) Suspected compound 2-benzyl-N-cyclopentyl-1,5,2-

dithiazepane-3-carboxamide 1,1-dioxide and compounds with similar structures in the semi-

standard non-polar phase. 

being reported for 2-benzyl-N-cyclopentyl-1,5,2-dithiazepane-3-carboxamide 1,1-dioxide relative 

to its related compounds (Figure 2.5b) in the SSNP phase.  

 As noted earlier, we combined the NIST 17 with the NIST 20 datasets together and removed 

any entries containing duplicate compounds. As a result, ~26,000 compounds were newly added 
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from the NIST 20. Prior to training the final models for RIpred, we explored the intersection 

between these two sets in an effort to identify mismatched SSNP experimental RI values for any 

compounds. An example with mismatched experimental RIs compared to our predicted RIs and 

those from the Qu et al. predictor is 1-hexyn-3-ol,3,5-dimethyl (Figure 2.6a). All such mismatched 

experimental RI values were removed from our consolidated dataset. However, it is important to 

note that these compounds (with their incorrect RI values) still exist in the NIST 20 RI library, as 

well as the NIST official website, and the PubChem official website.  

 
Figure 2.6: Compounds with mismatched experimental (Exp.) retention indices (RI) in the three 

different phases. a) Suspected compound- 1-hexyn-3-ol,3,5-dimethyl and compounds with 

similar structures in the semi-standard non-polar phase. b) Suspected compound benzthiazide 

and compounds with similar structures in the standard non-polar phase. c) Suspected compound 

2,3-dimethyl-1,4-pentadiene and compounds with similar structures in standard polar phase. 
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As the Qu et al. predictions are not available for SNP and SP stationary phases, it proved 

to be somewhat more difficult to discover (and correct) any mismatched experimental RIs for these 

stationary phase types. In the end, we manually discovered mismatched experimental RIs by 

comparing the reported RI values of their isomers or related substructures. In some cases, our early 

RI model (RIpred-alpha) for the SNP and SP phases helped to identify candidate compounds that 

could potentially be outliers. A few examples of compounds with mismatched RI values for SNP 

and SP phases include benzthiazide and 2,3-dimethyl-1,4-pentadiene (Figure 2.6b and c, 

respectively). Follow-up assessments with published data or comparisons to the data for 

structurally related variants were used to determine the source of the error and to perform any 

necessary corrections. 

 We also identified several compounds in the NIST 20 RI library with discrepancies in their 

names and/or reported structure. For example, compounds such as “tetrahydrocannabinol, TMS” 

and “caffeine, TMS” (or 1,3,7-trimethylxanthine, TMS) (Figure 2.4c), appeared to be incorrectly 

named as they had the same RI as the underivatized base compounds (tetrahydrocannabinol and 

caffeine). As indicated, the names suggest that Si (in the form of TMS) should be present in the 

structures. However, Si was absent from the reported structures as well as the reported formula 

within the library.  

Overall, we manually corrected erroneous SMILES strings, structures and Kováts RI values 

whenever a clear justification was possible. If there was contradictory evidence, we completely 

discarded these compounds from our training sets. Approximately 1000 compounds were identified 

and manually investigated during this data “cleaning” process. This led to the removal of ~850 



57 

 

compounds from all RI datasets and all individual training/testing folds. Thus, extensive data 

cleaning was necessary to assemble a reliable RI set for training and testing. 

2.3.2 Training, Validating, and Testing RIpred Models 

As mentioned above, during the training process, we implemented an early stopping module in the 

GNN learning scripts. As a result, our model design and performance was able to quickly reach an 

optimization point where no further improvement could be made (Figure 2.7). The best models  

 
Figure 2.7: Plot of the change in the mean absolute error versus the training epoch of the 

underivatized and derivatized datasets. a, c, e) The underivatized and b, d, f) derivatized plots of 

the semi-standard non-polar (SSNP- a, b), the standard non-polar (SNP- c, d) and the standard 

polar (SP- e, f). The best models were saved after the MAE stabilized for each given training 

dataset. All models used an early stopping patience parameter of 200 epochs. 
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Figure 2. 8: Comparison of experimental versus model-predicted Kováts RIs from hold-out test 

sets. a, c, e) show the underivatized while b, d, f) show derivatized compounds in the semi-

standard non polar phase (SSNP), standard non polar phase (SNP) and standard polar phase 

(SP) test sets, respectively. The total number of molecules assessed in the SSNP, SNP and SP 

phases are 3619, 993 and 310, respectively. 
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were typically generated after higher numbers of epochs for the two SSNP datasets (2540 epochs 

for underivatized and 2330 for the derivatized dataset) compared to much fewer epochs for the SP-

underivatized (596) and the SP-derivatized (1175) and both SNP datasets (946 epochs for 

underivatized and 914 for the derivatized dataset). These epoch differences were likely due to the 

different sizes of the training sets.   

  After the training runs were completed, we used the best-trained models generated from 

each stationary phase (including both underivatized and derivatized splits) to evaluate the 

respective held-out test sets. All the MAEs and MAPEs from this evaluation are reported in Figure 

2.8. The plots in Figure 2.8 suggest that all the MAPEs are within 3% except for RI’s predicted for 

the underivatized standard polar phase. Similarly, all MAEs are within 73 RI units of the 

experimentally measured values. Moreover, the correlation indices (R2) for all the predicted versus 

experimental points were all above 0.94 (SSNP (derivatized): R2 = 0.9976; SSNP (underivatized): 

R2 = 0.995; SNP (derivatized): R2 = 0.9927, SNP (underivatized): R2 = 0.9807; SP (derivatized): 

R2 = 0.9859, SP (underivatized): R2 = 0.9475). 

The MAEs reported from the 10-fold cross validation process for both the underivatized 

and derivatized testing sets of the SSNP, the SNP and SP (Table 2.7) were within 50 RI units with 

respect to the best model trained reported in Figure 2.8. However, there was a slightly higher MAE 

reported for the SP dataset. This suggests that all six of our RI models are relatively unbiased and 

are expected to provide very comparable performance when used to make predictions for both  

 



60 

 

 
Table 2.7: Statistics showing the mean and standard deviation of RIpred’s MAEs (in RI units) 

from the 10-fold cross validation of each of the six RI datasets. 

previously seen and newly unseen data. The MAEs for all training sets were slightly lower than the 

MAEs reported for the held-out testing sets.  

As seen in Figure 2.7, the training vs validation MAEs reported over the training period 

(measured in epochs) indicate a rapid decrease in this error metric. This indicates a potential trend 

towards overfitting. However, the mean and the standard deviation of the MAEs reported from the 

10-fold cross-validation for the held-out test sets indicates we achieved robust model performance 

that resulted in almost no overfitting. Moreover, we made a direct comparison of our RIpred model 

with the Qu et al. RI predictor on two held-out test sets consisting of 3281 underivatized and 3619 

derivatized molecules with RIs recorded in the SSNP phase. The performance reported by RIpred 
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is almost identical to the Qu et al. RI predictor when the model is compared for the derivatized 

compounds in the SSNP phase (with an MAPE of <1% and an MAE of 16.57 units by RIpred vs 

MAPE of <1% and MAE of 16.84 by the Qu et al. RI predictor). However, the performance was 

slightly worse for underivatized compounds in the same phase (with an MAPE of 1.62% and an 

MAE of 29.55 units by RIpred vs MAPE of 1.23% and an MAE of 29.55 units by the Qu et al. RI 

predictor). The performance scores using the Qu et al. RI predictor are shown in Table 2.8. Since 

these models were trained on large datasets (containing tens of thousands of instances) for extended  

 
Table 2.8: Comparison between Qu et al. RI predictor and our RIpred model on held-out test sets 

from underivatized and derivatized compounds in the SSNP phase. Performance is presented in 

terms of MAE (RI units), MAPE and R2. 

periods with varying epochs, it should be possible for these models to generalize the predictability 

very well. However, we observed an inconsistent performance with the two different datasets 

mentioned above. This unusual behavior can be explained by the absence of sufficient training 

instances in our underivatized SSNP dataset. For example, the predicted RI for a hold-out test set 

compound water (H2O) was quite low (~71.35) for the RIpred predictor in the SSNP phase but was 

close to the experimental value (317) for the Qu et al. RI predictor (309) (Figure 2.9). Moreover,  
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Figure 2.9: Compounds with deviation in predicted retention indices (RI) by the NIST 20 AI 

and RIpred in the SSNP phase for water (H2O) and compounds containing hydrogen bonded 

with other elements (H2S, AsH3, HCl). 

 

the experimental RI values for compounds where hydrogen is bonded with other elements to form 

distinct chemical compounds, such as hydrogen chloride (HCl), hydrogen sulfide (H2S), hydrogen 

arsenide (AsH3) etc. are absent in the NIST 20 database. This explains the lack of such examples 

in our training set. Furthermore, practically all the NIST 20 compounds are tagged with the Qu et 

al. predicted RI values without any indication as to whether or not those compounds were included 

in their training set. If these compounds were used by Qu et al. in the training set, then their results 

would naturally be better. Additionally, our RIpred model performed similarly when compared 

with the 10-fold cross-validated test MAE produced by the Qu et al. RI predictor in the SSNP phase 

for underivatized compounds (RIpred MAE of 30.92 units (see Table 2.7) versus the NIST 20 RI 

predictor’s MAE of 28.09 units, as reported in [79]).  

We also compared the performance of RIpred with the DeepReI [53] and the Matyushin et 

al. [59] tools. DeepReI described a SSNP tool built with convolutional layers. However, despite 
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repeated efforts to load or install the program we were unable to generate any prediction results. 

On the other hand, we were able to successfully install and run the SSNP, SNP and SP RI prediction 

models described by Matyushin et al. Our RIpred outperformed the Matyushin et al. SSNP model 

both for the derivatized and underivatized sets of compounds (RIpred MAE of 16.57-29.55 units 

(see Table 2.9) and MAPE of <2% versus the Matyushin et al. predictor’s MAE of 20.74-54.09 

units and MAPE of 0.95-2.7%). We found no noticeable difference between our RIpred model 

when it was compared against their SNP model. Interestingly, the averaged SP model of Matyushin 

et al. slightly outperformed RIpred both in the underivatized and derivatized sets of compounds. It 

is important to note that in performing this comparison, we had to remove many compounds from  

 
Table 2.9: Comparison between Matyushin et al., 2021 predictor and our RIpred model on held-

out test sets from underivatized and derivatized compounds in the SSNP, SNP and SP phases. 

Performance is presented in terms of MAE (RI units), MAPE and R2. 
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the hold-out test set as the Matyushin et al. model (unlike RIPred) could not handle compounds 

containing Pb, As, Sn, etc. 

2.3.3 Validation on the GolmDB Dataset 

The other validation test involved assessing the performance of RIpred against a large hold-out set 

of independently collected RI values and against an RI predictor specifically trained on these data. 

The Golm Metabolome database (GDB) is an open-source GC-MS metabolome reference library 

used for metabolite profiling of biologically active metabolites. In a very recent study [58], an RI 

predictor that used support vector machine (SVM) linear regression was developed for TMS-

derivatized compounds from the GDB. The model was trained using 1410 (1159 instances after 

data cleaning) derivatized compounds. The study also reports the performance of the SVM 

predictor using a 10-fold-cross-validation method. To compare RIpred with this SVM predictor 

and the experimental RI data in GDB, we manually collected a subset of these derivatized 

compounds (917 in total) and their reported RI values (in the same stationary phase) from the GDB 

website [107]. The RI values in this website were tagged with the TMS compound names and 

 
Table 2.10: Comparison between SVM-Linear and RIpred in terms of model performance for a 

subset of TMS metabolites. 

 

InChIs. However, these InChIs represented only the base (underivatized) form of these metabolites. 

We used our computational derivatization script (called AUTOSILATOR) to generate appropriate 
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TMS compounds as well as PubChemPy to retrieve appropriate SMILES for all 917 compounds. 

As seen in Table 2.10, the SVM linear regression predictor and our RIpred predictor performed 

equivalently (with the SVM predictor having an R2 of 0.954 and RIpred having an R2 of 0.945). 

Additionally, we show a scatter plot of the RIpred predicted RI’s versus the experimental RI’s (see 

Figure 2.10) to compare between RIpred’s values and the reported experimental values by GolmDB 

in terms of Median Average Error (MdAE) and Median Average Percentage Error (MdAPE). 

Again, the agreement is excellent. 

 
Figure 2.10: Comparison between predicted RI values by RIpred and reported experimental 

values by GolmDB in terms of Median Average Error (MdAE) and Median Average Percentage 

Error (MdAPE). (The error distribution for this comparison is shown in Appendix A).   

2.3.4 RIpred Prediction of Human Metabolome Database (HMDB) 

Compounds 
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Having confirmed through multiple independent tests that RIpred is robust and exhibits comparable 

or better accuracy for RI prediction as the best RI predictors for both underivatized and derivatized 

compounds, we decided to apply RIpred to predict the RIs of a large set of commonly measured or 

detected compounds in metabolomics studies. In particular, we chose to apply RIpred to all GC-

MS “amenable” compounds within the latest release of the human metabolome database -- HMDB 

5.0 [101]. The total number of GC-amenable compounds in HMDB 5.0 with MW <900 Da. was 

57,648 (of 220,000 total compounds). We used AUTOSILATOR to generate TMS and TBDMS 

derivatives with varied numbers of silyl groups (e.g. 1 TMS, 2TMS, 1 TBDMS, 5 TBDMS, etc.) 

of these HMDB compounds. This generated a list of 1.5 million derivatized compounds with all of 

them having MW’s <900 Da. All these GC-amenable derivatized compounds for the three different 

stationary phases (4,744,611) were passed through the RIpred derivatized predictor to generate 

Kováts RI values. All the above mentioned GC-amenable underivatized compounds (57,648) were 

also passed through RIpred’s underivatized predictors for each of the three different stationary 

phases. The total number of RI predictions generated in this way by RIpred was 5,067,714. All 

these compounds were tagged with an HMDB identifier (base compound), given appropriate names 

(for the derivatized products), assigned their stationary phase information, and their 2D structures 

(MOL and SDF files) were generated. The resulting RI data was then placed in both the HMDB 

and the RIpred web server. 

2.3.5 The RIpred Webserver 

The RIpred (Version 1.0) webserver is available at https://ripred.ca. Two options are currently 

available on the site: 1) Kováts RI prediction of a single compound of interest or 2) browsing 

https://ripred.ca/
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RIpred’s library of RI predictions (containing 1.7 million predictions of roughly 200,000 

compounds).  To perform a prediction, a user can either draw their desired structure into the JChem 

viewer (a ChemAxon applet) or paste the SMILES string of their compound into the JChem viewer 

(which automatically generates the structure image). After entering the structure, the user must 

select the stationary phase (available through a pull-down menu) and the derivatization reaction 

(none, TMS, TBDMS, or a combination of both). All of these options are selectable from a pull-

down menu. The predicted Kováts RI values for the desired compound is then shown in three 

separate windows, illustrating each type of requested derivatization. These predicted values are 

also presented as SMILES strings (original SMILES and SMILES generated using 

AUTOSILATOR) along with a button to generate and view their 3D structures using JSmol. All 

these prediction results (including compound names, SMILES strings, predicted RI values, GC 

column/stationary phases, derivatization types and the SDF files corresponding to the molecules) 

can be downloaded using the “Download” button located on the top of the prediction results. In 

addition to the RI prediction function, users can also browse RIpred’s collection of RI predictions 

for 100s of thousands of molecules. The Browse function displays a table of all compounds in the 

RIpred database with 10 different sortable columns (RIpred ID, compound name, number of TMS 

derivatives, number of TBDMS derivatives, molecular formula, molecular weight and the 

predicted RI for SSNP, SNP and SP phases). The Browse function also allows users to search 

compounds via text matches and to filter the displayed compounds by the number of TMS 

derivatives, the number of TBDMS derivatives, molecular weight range, SSNP RI range, SNP RI 
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Figure 2.11: RIpred web server screenshots illustrating different server options.  a) A screenshot of 

the RIpred web server homepage showing both the predict and browse options for users. b) and c) 

screenshots of the RI input forms, which provide users with the option to select one of the three 

stationary phases (or GC column) and the type of derivatization (No derivatization, TMS, TBDMS 

or a combination of TMS and TBDMS). In this figure, 1-methylhistidine is shown as an example 

(SMILES string pasted in the ChemAxon applet). 

 

 

range and SP RI range. Once filtered, users can download the selected compounds (and related 

data) as a CSV (comma separated value) file. While the compounds presented in the current version 

of the database are mostly from the HMDB, it is expected that this browser will expand to include 

other classes of compounds (natural products, drugs, contaminants, flavor compounds, etc.) in the 

near future. The general functionalities of the webserver are depicted through Figure 2.11 and 

Figure 2.12. 
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Figure 2.12: Operational workflow of the RIpred webserver when a user enters 1-methylhistidine 

as an input. a) shows that the server has successfully completed the predictions. b, c, d) show the 

three output panels for three types of predicted Kovats’ RI values. e, f) show the browse page 

and the individual RIpred-Card page for 1-methylhistidine. 

 

2.4 Conclusion 

We have described the development, training, testing and release of a webserver version of a 

publicly available tool (RIpred) for the prediction of Kováts RIs. RIpred is capable of accepting 

SMILES data as input and generating RIs for three common GC stationary phases (SSNP, SNP 

and SP) for both underivatized and TMS and TBDMS-derivatized compounds. The predictors 
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embedded in the RIpred webserver were trained using GNN models and employ molecular and 

atomic features generated via RDKit. The training data consisted of NIST 17 and NIST 20 RI data 

that contained both SMILES and the experimentally measured RI values. We have found that 

RIpred performs as well, or nearly as well as some of the best existing RI predictors, including the 

Qu et al. RI predictor [79]. However, unlike other high-performing RI predictors, our RIpred tool 

is freely available. Its main advantages lie in its ability to separately predict RIs for compounds in 

SSNP, SNP and SP stationary phases and to automatically generate silylated (TMS and TBDMS) 

compounds for subsequent RI prediction.  

To further enhance the RIpred’s accuracy, there are several improvements that could be 

made. In particular, larger training datasets could certainly improve the accuracy of the SP and 

SNP predictions. Likewise, greater support for multiple compound submissions would certainly 

make the RIpred web server more broadly useful. In particular, we are currently developing an API 

that should enable users to process large batches of compounds and to generate all possible 

stationary forms and all valid GC-amenable derivatives. Similarly, expanding the number of 

compounds in RIpred’s database and expanding the tools to search or select RI values or 

compounds from this database will also make the tool more generally useful.  Finally, our intention 

is to integrate RIpred with a new and more accurate EI-MS spectral predictor via CFM-EI [65]. 

This integrated webserver would allow users to submit both experimental EI-MS data and RI data 

to identify potential candidate matches to the predicted RI and predicted EI-MS data. 
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Chapter 3: Prediction of Electron-Ionization Mass Spectra 

(EI-MS) by Leveraging Composite Graph Neural Networks 

(GNN) and a Support Vector Regressor (SVR) 

3.1 Introduction 

Gas chromatography mass spectrometry (GC-MS) is one of the most common analytical methods 

used to separate, identify and quantify small molecules in various mixtures and matrices [108]. In 

GC-MS, the chemical components of mixture are often chemically derivatized, then separated by 

a GC column, then the molecules are ionized and fragmented and then the molecular fragments are 

measured by an MS instrument to determine the mass-to-charge ratio of these chemical fragments.  

Generally, two types of ionization methods are used in GC-MS: electron impact ionization (EI) – 

the oldest and most common method, and chemical ionization (CI) – a newer but less frequently 

used method [109]. EI is a “hard” ionization technique that generates many fragment ions, while 

CI is a “soft” ionization technique that generates fewer fragment ions and keeps the molecular ion 

(M+) intact. The selection of a particular ionization method can have a significant effect on the 

types of compounds that can be analyzed and the kind of structural information that can be acquired 

by GC-MS. For example, EI-MS is particularly useful for ionizing volatile and lower molecular 

weight compounds (MW<600 Da). The ionization conditions in EI-MS are often so harsh that the 

molecular ion does not survive, making it difficult to determine the molecular weight of the parent 

compound [110]. On the other hand, CI [111], being a softer ionization technique, typically leaves 
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the molecular ion intact, thereby generating simpler (albeit structurally less informative) MS 

spectra.  

In EI-MS, electrons are generated through thermionic emission by electrically heating a 

wire filament. The electrons are accelerated to 70 eV whereupon they collide with the analyte 

molecule, removing an electron and converting the molecule to a positive ion with an odd number 

of electrons. Due to the high energy of the 70 eV electrons in EI-MS, several other bond 

dissociation or rearrangement reactions also occur, leading to the creation of second-generation 

product ions. It is these fragment ions or product ions, both their m/z values and intensities that can 

provide structural insights about the parent molecule. Indeed EI-MS spectra can serve as unique 

molecular or spectral “fingerprints”. These molecular fingerprints, in conjunction with other 

information such as retention times (or indices), can be used to identify or determine the structure 

of numerous small molecules [112].  

While a small number of very skilled individuals can interpret EI-MS spectra and even 

identify compounds de novo, compound identification by EI-MS is most commonly done by 

comparing the measured EI-MS spectrum of an “unknown” compound from a mixture to an EI-

MS spectral library of thousands of pure compounds. There are a number of well-known spectral 

libraries containing experimentally collected EI-MS spectra of pure compounds.  These include the 

National Institute of Standards and Technology (NIST) mass spectral library [91], the Wiley 

Registry of Mass Spectral Data [113], the MassBank (North America, United Kingdom, and Japan) 

spectral libraries [114, 115, 116], and the Spectral Database for Organic Compounds (SDBS) [117]. 

This queried EI-MS spectrum is compared against the library EI-MS spectra using many well-

known spectral similarity functions such as match factors [118-119], dot products, Pearson 
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correlation coefficients, Euclidean distance, cosine similarity and spectral entropy [120] to identify 

the best spectral match or matches. These EI-MS libraries collectively contain approximately 

600,000 reference EI-MS spectra from about 350,000 different compounds. However, many of the 

compounds in EI-MS libraries are multiply silylated or methoxime derivatives of the same 

compound, meaning that fewer than 100,000 parent or “source” compounds have EI-MS spectra 

available.  Given that the number of known chemical compounds is >150 million [121], and the 

number of chemical (silyl, acyl, alkyl) derivatives possible for each of these compounds, it is clear 

that the number of experimentally measured EI-MS spectra is only a tiny fraction of what is needed 

to perform library-based compound identification.  Furthermore, given the time and cost to prepare 

and collect experimental EI-MS spectra of pure compounds, it is unlikely that this enormous gap 

between known EI-MS spectra and known compounds will ever be filled.   

It is because of the lack of experimental reference EI-MS spectra that more GC-MS 

researchers are turning to computational approaches to interpreting, analyzing or predicting EI-MS 

spectra. For instance, software tools such as GenForm [122], MolGenMS [123], and MS-FINDER 

[124], have been developed to support MS-based structure elucidation by outputting annotated MS 

fragments and/or their corresponding formulae. But the inputs to these tools often require high-

resolution MS data, which is not readily available for EI-MS. More recently, a quantum chemical 

approach, called QCEIMS [61-62] has appeared that uses quantum mechanics to predict EI-MS 

fragmentation patterns from parent compounds. This method has shown impressive results for a 

wide range of compounds, including TMS-derivatized molecules. However, the limitation of 

QCEIMS lies in the fact that it requires enormous amounts of time (days per spectrum) and 

computing resources. Meaning that large predicted spectral libraries cannot be generated. Other 



74 

 

types of EI-MS fragmentation predictors have been developed that use smart combinatorial or 

machine learning approaches, such as MetFrag [125] and CFM-EI [65]. Unlike QCEIMS, these 

are very fast and they use the structure of an input molecule to predict the EI-MS fragmentation 

probabilities, the EI spectra and the structures/formulae of the fragments.  The ability to rapidly 

predict EI-MS spectra from structure opens the door to creating massive EI-MS spectral libraries 

for compound identification. In a number of tests, CFM-EI [65] showed significantly better 

performance than other MS fragment predictive tools such as MetFrag [125], MOLGEN-MS, and 

Mass Frontier [69]. Other recently developed tools such as NEIMS [70] and RASSP [126] make 

use of deep learning architectures (Graph Neural Networks and their variants) to predict EI-MS 

spectra. These predictors achieve better accuracy (in terms of Jaccard scores and dot product 

scores) than CFM-EI but they cannot annotate the generated EI-MS peaks with formulae or 

structures as done by CFM-EI. Interestingly, recent developments in the field of ESI-MS/MS 

prediction have shown that including fragment formulae with the spectral data (m/z values and 

peak intensity) as part of the MS spectral training data set consistently yields excellent predictive 

performance [127, 128, 129]. Likewise, training ESI-MS/MS predictors on specific classes of 

molecules (rather than on combined sets of diverse molecules) has also been shown to improve 

their performance. This suggests the same concepts could be used to improve the performance of 

EI-MS prediction.  

 Here we describe the development of two types of improved machine-learned EI-MS 

predictors – both of which make use of some of the observed strengths and weaknesses of other 

EI-MS predictors. The first predictor (called EI-MS gamma) combines the deep learning concepts 

developed for NEIMS spectral modeling and the fragmentation prediction of CFM-EI. We later 
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combine EI-MS gamma with a molecular intensity predictor (MIIP) and an EI-MS peak annotation 

method (called PeakAnnotator) that uses formula generation similar to MolGen and peak 

annotation methods developed for CFM-EI. We show that the spectral prediction quality and peak 

annotation coverage across CFM-EI significantly improve when EI-MS peak prediction and peak 

annotation are combined, however, this combination is still unable to exceed EI-MS peak 

prediction results of NEIMS and RASSP. Using PeakAnnotator, we also show that it is possible to 

comprehensively annotate both predicted and observed EI-MS spectra with their molecular 

formulae. These annotated EI-MS spectra can then be used as training data to possibly implement 

a more robust EI-MS predictor that employs GNN methods.  The second EI-MS predictor (called 

Adjusted NEIMS with PA and MIIP) uses NEIMS spectra predictions and then makes an 

adjustment in its peak prediction outputs by verifying and validating the peaks with the help of PA 

and MIIP. The Adjusted NEIMS with PA and MIIP predictor is shown to perform equivalently in 

terms of dot product score (0.621 vs. Original NEIMS: 0.62), and better, in terms of spectral 

annotation correctness (91% vs. NEIMS: 0% vs. RASSP: 0% vs. CFMID: 53%) when it is 

compared against other EI-MS predictors including CFM-EI, NEIMS, RASSP, EI-MS beta, and 

EI-MS gamma. When the PeakAnnotator program was evaluated for spectral annotation coverage, 

it achieved an average annotation coverage of 94% (vs. Adjusted NEIMS with PA and MIIP: 79.6% 

vs. CFMID-EI: 86%).    

3.2 Data and methodology 

3.2.1 Generation of the EI-MS dataset 
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The development of machine learning models to predict EI-MS spectra requires training data 

consisting of chemical structures and their known EI-MS spectra. Our training data source was the 

mass spectral library consisting of EI-MS spectra from 306,870 parent and derivatized compounds 

from the NIST 20 database [36]. The NIST 20 database includes compound names, the 

corresponding InChI keys (structure) along with their experimentally measured reference EI-MS 

data, including all mass-to-charge data (m/z) and relative peak intensities.  For training purposes, 

we needed all NIST 20 structures expressed as a simplified molecular-input line-entry system 

(SMILES) format. These SMILES strings were then converted to molecular object (MOL) files via 

RDKit [94]. We used the NIH cactus service [92] and the PubChempy python [93] application 

programming interface (API) to perform the InChI key conversion to isomeric SMILES. 

Unfortunately, this conversion was not successful in all cases. In particularly, many of the NIST 

InChI keys were not present in NIH cactus service nor the PubChempy API and secondly, RDKit 

[94] could not generate valid molecular object (MOL) files for a large number of compounds. As 

a result, 45,163 NIST entries could not be fully processed and so they were removed from the 

training data set. Because most conventional GC-MS instruments are not able to reliably measure 

large molecules, we also removed compounds having molecular mass >900 Da from the dataset, 

(approximately 143 structures). In addition to ensuring the structural integrity of our dataset, we 

also made sure that it provided reasonable values of MS peak intensities (positive peak intensities 

and no peak intensity above 100%) and the presence of appropriate fragmentation patterns for well-

known functional groups found in the associated compound. Details of these fragmentation patterns 

can be found in Table 3.1. Apart from some well-known functional groups, this table also 

represents some of the significantly occurring peaks (rather than all possible fragmentation 
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corresponding to aliphatic and aromatic TMS and TBDMS alcohols, carboxylic acids, amines, 

sugars, steroids, thiols, phosphates, etc.) for the trimethylsilyl (TMS) and tert-butyldimethylsilyl 

(TBDMS) groups. We included this check with the help of an in-house python script.  This filter 

led to the removal of another 322 compounds that appeared to have inconsistent or highly 

questionable EI-MS spectra. Interestingly some NIST 20 data files had long lists of unformatted or 

variably formatted meta-data such as instrument type, compound synonyms, proprietary 

statements, etc. integrated with the EI peak data. This made automated extraction of the EI-MS 

peak data nearly impossible. As a result, another 4,375 such entries were discarded. After this 

filtering and data cleaning process was complete, our final EI-MS training dataset consisted of 

254,367 compounds (see Table 3.2) containing the names, InChI keys, molecular weights, 

molecular formulas, SMILES strings, and corresponding EI-MS peak lists (m/z values and 

normalized intensities) in a comma-separated values (*.csv) file format. Machine learned models 

need to be validated using a holdout or test data set. These data sets consist of samples that were 

never seen during the training/testing process. To assemble our holdout set, we extracted ~2,500 

NIST 20 compounds with high-quality EI-MS spectra (as per the data and spectral filtering criteria 

applied above) representing various chemical classes including alkenes (362), alkynes (350), 

aldehydes (100), ketones (354), esters (352), silylated molecules (178), and low molecular weight 

(<150 Da) compounds (345), to be used as a holdout test set in order to evaluate our EI-MS 

predictor. In total, the EI-MS holdout data set consisted of 2,041 compounds containing the names, 

InChI keys, molecular weights, chemical formulas, SMILES strings, and corresponding EI-MS 

peaks (m/z values and normalized intensities) in a comma-separated values (*.csv) file format. 

Once the held out test set from different classes of compound was separated, we took the entire  
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Table 3.1: EI-MS fragmentation patterns observed in various functional groups. 

 

training set to create sub-training sets of different chemical classes in order to create specialized 

predictors (as opposed to the comprehensively big generalized model discussed in further sections). 

In particular, these training sets consisted of small batches of alkenes (10,000), silylated molecules 

(9,000), alkynes (3400), aldehydes (1867), ketones (2,400), and esters (10,000). It is to be noted 

that, the number of aldehydes in both the held out test set and the sub-training set was small because 

of the spectral filtering (to comply with reasonable fragment peaks) applied above. Finally, we 

consolidated another held out test set of 2,008 brand new molecules from the recent NIST 23 EI-

MS release. All these compounds in the sub training sets and held out test sets passed tests for 

normality, indicating they follow a gaussian distribution. 



82 

 

 
Table 3.2: Summary of pre-processing and cleaning process of the NIST EI data 

3.2.2 Implementation and Testing of Different “Peak-Only” EI-MS Prediction 

Models 
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Three different versions of “peak-only” EI-MS predictors were developed and tested: EI-MS alpha, 

EI-MS beta and EI-MS gamma. Each used unannotated EI-MS data (described in Section 3.2.1) to 

train, test or evaluate their performance. Two of these models (beta and gamma) were also 

supplemented with predictors for molecular ion intensity and peak formula annotators.  Details 

regarding their development and testing, as well as the development of the molecular ion intensity 

predictor and peak formula annotator are provided below. 

3.2.3 Development and Testing of EI-MS alpha 

The first EI-MS predictor (EI-MS alpha) we developed was based on a Graph Neural Network 

(GNN) model similar to the one described for NEIMS [70].  We also drew inspiration and borrowed 

code from our in-house built GNN-based retention index (RI) predictor described in the previous 

chapter. Specifically, using the code from our earlier GNN RI predictor we made some minor 

modifications to the data input and output formats, added several more compound feature attributes 

and implemented a different loss function. EI-MS alpha was implemented and written in python 

using the tensor-optimized library, PyTorch [97].  For atom-level feature extraction, we also used 

RDKit functions.  

EI-MS alpha is designed to accept a SMILES string corresponding to the query structure 

for which the user wishes to predict the EI-MS spectra. The SMILES string is then directly 

converted into a molecular graph where the nodes and edges of the graph represent atoms and bond 

connections between the atoms, respectively. Using RDKit, MOL objects were generated on the 

fly using the SMILES string as input.  From these MOL objects, a number of atom-level features 

are then extracted from the molecular graph, including atomic (node-level) features and path (or 
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bond) features, related to the graph edges. The atomic feature set for the EI-MS predictor is a 

combination of 64 one-hot coded features representing 62 types of common elements in the 

periodic table (such as C, N, S, O, F, etc.), plus one feature for any unknown elements and one 

other being used as a default wildcard or dummy symbol. Atomic features also included five types 

of valid formal charges ranging from neutral, positive, and negative charges [0, ±1, ±2] and seven 

explicit and six implicit valences. Additionally, our atom feature set also included a path feature 

related to the neighboring nodes (atoms) of any given node (atom), up to a maximum of 4 

neighboring atoms. In addition to atom features, we also encoded path features for any two given 

nodes (atoms) of each molecule by computing the shortest path between them. The maximum path 

length we considered between any pair of nodes (atoms) was three. For any pair of nodes or atoms, 

the path feature set is a combination of 31 one-hot coded features and was computed as a 

concatenation of the model's maximum path length, the total number of bond features in that 

particular path, bond conjugacy, bond ring appearance (denoting the presence of a ring between 

two neighboring nodes) for that path and the ring membership (denoting whether the nodes in a 

path are in a ring, which is specifically applicable to aromatic structures) between the nodes in a 

path.  

Six types of bonds were used to compute these bond features. The atom or node-level 

features that were computed for any two nodes in a graph were then fed into the input layer of the 

GNN by a linear transformation. In addition, this EI-MS predictor also computed atom attention 

scores both in the hidden layers (with five hidden layers each of the layers having 160 hidden units) 

and the output layers. The new atom embeddings were computed afterwards which helped in 

generating output values from the final layer of the network. The output of this network is a 1000-
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dimensional predicted relative intensity value, each of which represents a particular m/z position 

with 1 Da resolution in the EI-MS spectra. 

   EI-MS alpha was trained and validated on the entire EI-MS data set described in section 

3.2.1. Specifically, we divided the data set into three groups: 1) training, 2) validation, and 3) 

testing sets using a ratio of 80:10:10. This corresponded to 203,493 training spectra, 25,430 

validation spectra and 25,430 test spectra. Analyzing the prediction results from EI-MS alpha 

revealed an unexpected trend. We observed that this predictor performed particularly well at low 

m/z values (typically below 130 Da) while the quality of the predictions in the higher m/z regions 

(>130 Da) was disappointingly poor. This qualitative observation was later quantitatively 

confirmed by calculating the average dot product scores on a sliding window of m/z values ranging 

from 80 Da to 160 Da for various compound classes. We found that there was an optimal cut-off 

of 130 Da where the predicted EI-MS spectra generated by EI-MS alpha were best.  This process 

is depicted graphically in Figure 3.1. 
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Figure 3.1: Average dot product score on a sliding window ranging from MW of 80 to 160 Da. 

to select the spectral set cut-off. 

 

 The performance of EI-MS alpha was assessed on the hold-out set of 2,041 EI-MS spectra 

derived from the NIST 20 data set, covering multiple compound classes or categories (described 

in Section 3.2.1). The performance was further assessed on the consolidated NIST 23 set of 2,008 

brand new compounds as well. The quality of spectral prediction was assessed using the dot product 

similarity coefficient [118], a metric that is commonly used to report the similarity between an 

experimental and predicted spectrum by mass spectrometry software. The dot product similarity 

coefficient is calculated using the following equation: 
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    Eq.1 

where Iq and Il  are two m/z intensity vectors representing the predicted spectrum and experimental 

spectrum respectively. At any m/z position k, mk and Ik represent that position’s mass to charge 

ratio and intensity. The highest indices of Iq and Il, having non-zero values, are represented by Mq 

and Ml and Mmax represents the maximum between Mq and Ml.  

3.2.4 Development and Testing of EI-MS-beta 

The results from EI-MS alpha led us to modify our training process and training data set and to 

implement a second version of the program, which we called EI-MS beta. Specifically, we decided 

to separate our entire EI-MS data set into two spectra data sets, namely a high m/z (>130 Da) and 

low m/z (130 Da) data set. Specifically, the low m/z spectra set was created by stripping off all 

EI-MS peaks above 130 Da while the high m/z spectra set was created by stripping off all EI-MS 

peaks 130 Da. This peak removal process was performed for all compound spectra in the training 

data set. This peak-reformatting process led to the removal of approximately 7,532 structures (and 

their corresponding EI-data) in the high m/z spectra set (as these compounds had no peaks above 

130 Da). Interestingly, during the peak removal process, in spite of having molecular weights of 

more than 130 Da, 1355 compounds actually had all of their EI-MS peaks filtered out. As a result, 

we eliminated these structures and their EI data from the high m/z spectra set. Ultimately, the final 

dataset for the low m/z and high m/z spectra sets consisted of a total of 254,367 and 245,460 

compounds respectively. The results of the data pre-processing and cleaning process are shown in 

Table 3.2.  
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 For both for low m/z and high m/z spectra datasets, we further divided them into three 

groups: 1) training, 2) validation, and 3) testing sets using a ratio of 80:10:10. For the high m/z 

spectra that corresponded to 196,368 training spectra, 24,546 validation spectra and 24,546 testing 

spectra.  For the low m/z spectra that corresponded to 203,493 training spectra, 25,436 validation 

spectra and 25,436 testing spectra. It is important to note that, the validation set defined here was 

used solely for the GNN model optimization/tuning. The partitioning within each of these three 

sets was done in such a way that the same proportion of similar compounds (in terms of elemental 

ratios, functional groups, ClassyFire [99] chemical class, and superclass) existed in the training, 

validation, and testing data sets.  

 All the parameters used to train the EI-MS beta predictor using the low m/z spectra set and 

the high m/z spectra set are listed in Table 3.3. Except for a few parameters (e.g. batch size), all 

other parameters were constant in these models. Both these models were trained for up to 700 and 

500 epochs respectively. Early stopping was used to help efficiently identify the most promising 

models. During these epochs, we tracked the training versus validation errors (generated from the 

internal validation/development set during the model optimization/tuning) to select the best-trained 

models. For our GNN, the early stopping was defined by a patience parameter, which was varied 

(100, 200,  
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Table 3.3: Parameters and their values used to develop the EI-MS beta predictor. 

 

300, 400, and 500 times) to capture the most effective training model. The loss function that was 

used in the GNN architecture is defined by 

𝐿(𝐼, 𝐼) = ∑ (
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   Eq. 2 

where I and I-hat represent the ground truth and predicted spectrum respectively, and M(x) is the 

mass of the given molecule.  In the last step, we combined both of these best-trained models from 
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the low m/z spectra predictor and high m/z predictor to obtain a combined predictor (called EI-MS 

beta).  The performance of EI-MS beta was assessed on the hold-out set of 2,041 EI-MS spectra 

derived from the NIST 20 data set, covering multiple compound classes or categories (described 

in Section 2.1) as well as the brand new NIST 23 set of 2,008 compounds.  The quality of spectral 

prediction was assessed using the dot product similarity coefficient as described in Section 3.2.3. 

3.2.5 Development and Testing of EI-MS-gamma 

The results from testing EI-MS beta (a pure GNN model) on both the hold-out and training sets 

suggested that the high m/z spectral predictor was under-performing compared to the low m/z EI-

MS spectral predictor. It was also observed that the performance for CFM-EI [65] for high m/z 

values was generally quite good while its performance was relatively poor for low m/z values. 

Therefore, a third EI-MS predictor based on combining the low m/z (130 Da) EI-MS spectral 

predictor that uses the GNN model described above with the high m/z portion (>130 Da) of CFM-

EI that uses a probabilistic graphical model [65] was created. This hybrid EI-MS predictor simply 

used the low m/z EI-MS model for peaks with m/z values 130 Da and the CFM-EI model for 

peaks with m/z values >130 Da. No further training or optimization was done on this predictor 

(called EI-MS gamma). The performance of EI-MS gamma was assessed on the hold-out set of 

2,041 EI-MS spectra derived from the NIST 20 data set, covering multiple compound classes or 

categories (described in Section 2.1) as well as the NIST 23 set of brand new compounds consisting 

of 2,008 compounds.  The quality of spectral prediction was assessed using the dot product 

similarity coefficient as described in Section 3.2.3. 

3.2.6 Development of the EI-MS Molecular Ion Intensity Predictor (MIIP) 
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Analysis of the EI-MS spectra predicted by both EI-MS alpha and EI-MS beta showed that the 

intensity and/or presence of the molecular ion (M+) was poorly predicted.  Given the importance 

of the molecular ion for EI-MS data in identifying molecules or determining molecular structures 

we decided to explore whether ML methods could be used to improve the quality of the molecular 

ion prediction.  In order to develop a molecular ion intensity predictor, we utilize the relative 

intensities of the molecular ions for all the spectra from the full EI-MS training set (see section 

3.2.1). As a result, we prepared a molecular ion training set consisting of the structure information 

(InChI key, SMILES strings), m/z positions of the molecular ions, and their corresponding relative 

intensities for 253,367 compounds. Because of the high computational cost of the training 

algorithm, not all 253,367 examples were actually used (or even necessary) to generate a final, high 

performing model. Specifically, we tested the amount of CPU time and memory it took to train the 

model using an initial training set of 25,000 structure-ion pairs and gradually increased the training 

size by 25,000 examples each time. In the end, a subset of 100,000 structures and their molecular 

ion pairs was used in our final model. This number provided sufficient examples for training and 

achieved the desired level of accuracy. Later, MIIP was assessed only on the molecular ion- 

intensity pairs derived from the hold-out set of 2,041 EI-MS spectra from the NIST 20 database, 

covering multiple compound classes or categories (described in Section 3.2.1). 

We chose to learn molecular ion intensity values by converting structures into compact 

representations based on Morgan Fingerprints [130]. This is because Morgan Fingerprints can 

encode important chemical information such as the size and type of the molecule, the composition 

of the underlying atoms and their three-dimensional arrangement within the molecules, all of which  
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Figure 3.2: Morgan fingerprint process explained a) Given a molecule, the output morgan 

fingerprint is a string of 0s and 1s b) Each atom in a given molecule is assigned a unique identifier 

c) Identifiers of each atom are updated iteratively up to a given radius specified by the 

fingerprinting algorithm. 

are very much related to the ionization efficiency of the molecular ion [131], and its corresponding 

intensity.  

When a smaller subset of fingerprint bits are used to represent two different molecular 

structures, it is possible to generate same set of fingerprints for both molecules. This occurs due to 

a phenomenon called bit collisions. Therefore, to reduce bit collisions, we generated all 2048 bits 

of Morgan fingerprints with a radius of four for all these molecules. The process of fingerprinting 

is depicted in Figure 3.2 for a molecule paracetamol, where it first breaks down into a smaller 

fragment and generates the hashed identifier from there. As shown in Figure 3.2b, it starts by 

assigning a unique identifier to each atom and iteratively updates the identifiers based on the 

adjacent atom levels (see Figure 3.2c). Once the fingerprints are generated, we utilized a Support  
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Table 3.4: Parameters and their values used in the molecular ion intensity predictor using SVR. 

 

Vector Regressor (SVR) [132] to predict each molecule’s molecular ion intensity. While 

developing this regressive model, we varied the regularization parameter C (with values = 0.1, 1, 

10, 100, and 1000) and the epsilon value  (with values = 0.0001, 0.01, 0.2, 0.5, 1, and 5), which 

were later optimally selected with the help of 5-fold cross validation. The selected optimal set of 

parameter values along with the description of each type of parameter are shown in Table 3.4. The 

error metric used for the molecular ion predictor was the mean absolute error (MAE). It is to be 

noted that SVR allows leveraging of kernels and projects the input set of features to a higher 

dimensional space. While this property can be particularly useful to model the non-linear 

relationship between our features and the target output (molecular weight vs. molecular ion relative 

intensity as seen in Figure 3.3), it also has the drawback of requiring considerable computer 
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resources. The molecular ion intensity predictor developed in this process was then combined with 

EI-MS beta and EI-MS gamma (described in Section 3.2.4 and 3.2.5) to generate improved versions  

 
Figure 3.3: Plot showing correlation between the molecular weight and the molecular ion relative 

intensities for the molecules present in our dataset. 

of EI-MS beta and gamma (called EI-MS delta and EI-MS epsilon, respectively). This is illustrated 

in Figure 3.4.  The performance of both the enhanced EI-MS delta and EI-MS epsilon was assessed 

on the hold-out set of 2,041 EI-MS spectra from the NIST20 database, covering multiple compound 

classes or categories (described in Section 3.2.1) as well as on 2,008 brand new compounds from 

the NIST 23 database. The quality of spectral prediction was assessed using the dot product 

similarity coefficient as described in Section 3.2.3. 

3.2.7 Computational annotation of EI-MS peaks – PeakAnnotator (PA) 
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In order to aid the interpretation of the EI-MS spectral peaks of both experimentally measured and 

computationally predicted EI-MS spectra, it is important to annotate peaks with either subformulae  

 
Figure 3.4: Overview of the EI-MS predictors (beta, gamma, delta and epsilon). 

 

or substructures. CFM-EI [65] is able to perform peak annotations of EI-MS spectra for about 50% 

of observed peaks.  The NEIMS program [70], unfortunately, does not perform any annotations. 

Likewise, the predictors described above (EI-MS alpha and EI-MS beta) which have a similar 

architecture to NEIMS, also did not perform peak annotations. To address this shortcoming, we 

developed a python script to automate the peak annotation process of EI-MS spectra.  This program 

(called PeakAnnotator) can annotate peaks from predicted EI-MS spectra (generated by EI-MS 

beta or EI-MS gamma) as well as peaks from experimentally acquired EI-MS spectra.  Given the 

low resolution of most EI-MS spectra (~1 Da resolution) it is easy to imagine that many possible 

molecular formulae can generate the same mass or m/z value. To reduce the redundancy and to 
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eliminate mislabeling of peaks, the PeakAnnotator script takes into consideration a number of basic 

properties of formula generation, given a molecule’s mass (in this case, all the predicted m/z values 

in a spectrum) and elemental composition (i.e. the formula of the parent molecule). The program 

combinatorially generates all possible subformulae for each of the observed (or predicted) m/z 

values, which are further constrained to a smaller number of possibilities using rules such as the 

nitrogen rule [133], the senior rule [134], and the degree of unsaturation [135]. We also combine a 

knowledgebase of frequently known EI-MS peak patterns for particular functional groups and 

structures (as described in Table 3.1) to further refine the formula generation process. 

PeakAnnotator also removes every peak from each cluster of peaks within a given EI-MS spectrum 

where the peak’s relative intensity is less than 1 percent of the maximum cluster peak. This is done 

to get rid of unnecessary annotations or peaks arising from 13C isotope peaks or spectrometer noise. 

PeakAnnotator also include rules for handling and annotating other high abundance isotopic 

elements such as Cl, Br, I, etc.. To further improve the formula generation process, PeakAnnotator 

combines the subformulae and substructures generated from CFM-EI’s fragmentation module to 

once again narrow down the potential formula possibilities. Finally, if there are any remaining 

peaks for which an appropriate peak annotation cannot by suggested by PeakAnnotator, the 

algorithm will automatically add or remove hydrogens (up to four) to nearby confirmed 

subformulae to annotate the remaining peaks. The PeakAnnotator was integrated with EI-MS beta 

and EI-MS gamma (described in Section 3.2.4 and 3.2.5) to generate more comprehensive versions 

of EI-MS beta and gamma. 

3.2.8 Development and Testing of Adjusted NEIMS with MIIP and PA 
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The “peak only” predictors (EI-MS gamma, delta and epsilon) when compared with NEIMS and 

RASSP [126] predictors on the hold-out test set from NIST 20, suggested that both NEIMS and 

RASSP still outperform these developed predictors with NEIMS providing the highest dot product 

score. However, both these high performing predictors lack in generating any peak annotation. On 

the other hand, the PA program can not only provide subformulae annotations for the predicted 

peaks, rather it can also be used to verify and edit (when needed) the generated peaks from the 

NEIMS program. Therefore, a finalized predictor utilizing the benefits of NEIMS, PeakAnnotator 

(PA) program and the Molecular Ion Intensity Predictor (MIIP) can be suggested. We name this as 

Adjusted NEIMS with MIIP and PA. No further training or optimization to the original NEIMS 

program was done while incorporating it in this adjusted predictor. The performance of this 

adjusted predictor was assessed only on a brand new compound test set from NIST23 consisting 

of 2,008 compounds. The quality of spectral prediction was assessed using the dot product 

similarity coefficient as described in Section 3.2.3. 

3.3 Results and Discussion 

3.3.1 Performance of “Peak Only” EI-MS Prediction Models 

A total of six different “peak-only” EI-MS spectra prediction models were generated and evaluated.  

These included 1) a naïve GNN version that was trained on the complete NIST 20 EI-MS data set 

(EI-MS alpha); 2) a more refined version that uses different GNN models to predict EI-MS spectra 

for high m/z regions (>130 Da) and low m/z regions (130 Da), called EI-MS beta; 3) a version 
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that uses a GNN model to predict EI-MS spectra for low m/z regions (130 Da) and CFM-EI to 

predict EI-MS spectra for high m/z regions (>130 Da), called EI-MS gamma; 4) EI-MS beta with  

 
Figure 3.5: Plot of the change in the mean absolute error versus the training epoch for the low 

m/z spectra set GNN and high m/z spectra set GNN. 

 

the molecular ion predictor added 5) EI-MS gamma with the molecular ion predictor added and 6) 

Incorporating NEIMS with PeakAnnotator and molecular ion intensity predictor, called the 

Adjusted NEIMS with PA and MIIP. Recall that in developing EI-MS beta we used two EI-MS 

spectra data sets (high and low m/z values) to learn EI-MS spectra prediction via a GNN. The high 

m/z spectra set models, trained for up to 500 epochs, proved to be difficult to train and 

computationally time-consuming to run, whereas the low m/z spectra set model reached its optimal 

state fairly quickly (due to the inherently more rapid computations) within 700 epochs. The 

performance plot (training vs. validation error) of the best set of models derived from the EI-MS 

beta low m/z spectra and EI-MS beta high m/z spectra set are shown in Figure 3.5 (partial plots are 

shown for clarity). Both these models show a rapid decrease in the error metric in the first 50-70 
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epochs but this flattened out in later iterations. The best performing GNN models (for both low and 

high m/z spectra sets) were then combined to create EI-MS beta.   

 

 
Figure 3.6: Performance plot showing the experimental and predicted molecular ion relative 

intensities by the SVR model. 

On the other hand, EI-MS gamma combined the GNN predictor for low m/z values 

(obtained from EI-MS beta) with the probabilistic graphical model predictor (CFM-EI) to high m/z 
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values. Both EI-MS beta and EI-MS gamma were evaluated with and without the molecular ion 

predictor. The molecular ion predictor is an SVR model designed to predict relative intensities of 

the molecular ion observed in EI-MS spectra.  We used a cross-validated (5-fold), carefully tuned 

set of hyper parameters to train and evaluate the model. The best performing model (assessed on a 

holdout set of 2,041 NIST 20 EI-MS spectra) achieved a mean absolute error (MAE) of 35.47 units 

and an R2 value between observed and predicted ion intensity of 0.9074 (See Figure 3.6). It can be 

seen from this figure that the EI-MS beta predictor predicted lower intensity values near the bottom 

of the plot. This can be explained by the fact that molecular ion relative intensities for certain 

compounds with specific functional groups are always absent. Additionally, the predictor is unable 

to generate correct relative intensities for some high intense molecular ions specifically from the 

aldehyde and ester sets of molecules (see rightmost data points in Figure 3.6). 

All six models created here were, along with the CFM-EI model (developed in 2016), 

evaluated using the holdout set of 2,041 EI-MS spectra from the NIST 20 set (described in Section 

3.2.1) and a NIST 23 test set consisting of 2,008 compounds. The dot product similarity coefficient 

was employed to measure the spectral match quality for each predicted vs. observed EI-MS 

spectrum. Additionally, the average of the dot product scores from each class of molecules in the 

holdout set was calculated for each of the six models and reported in Table 3.5. As seen from this 

table that EI-MS beta consistently performs better than CFM-EI and EI-MS alpha, except for three 

cases.  These include the small molecule set (EI-MS beta: 0.363 vs. CFM-EI: 0.372 vs. EI-MS 

alpha: 0.463), the silylated data set (EI-MS beta: 0.28 vs. CFM-ID 2.0: 0.36 vs. EI-MS alpha: 

0.202), and the ester set (EI-MS beta: 0.303 vs. CFM-EI: 0.215 vs. EI-MS alpha: 0.41). It is also 

evident that EI-MS gamma, which combined the GNN model with CFM-EI gave a significant boost 
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in performance for nearly all test molecules and classes (except for the ester and aldehyde classes). 

It is also clear that a significant boost in performance occurs when the molecular ion intensity 

predictor is integrated into both EI-MS beta and EI-MS gamma (see two rightmost columns). In 

other words, by combining the low m/z spectra GNN model with CFM-EI (for the high m/z data) 

and the molecular ion intensity prediction provided higher predictive performance (in terms of dot 

product scores) for all the molecule groups except for the aldehydes and esters. 

 
Table 3.5: Dot product similarity scores to represent the spectral match quality between predicted 

and observed EI-MS spectrum for both the held out test sets derived from NIST20 and NIST23 

and pair wise t-test results between the adjacent models. Note that underlined entries indicate 

that the dot product scores (between the two listed models) are not statistically significant. 

 It is surprising to see that the best performing GNN developed models for predicting EI-

MS spectra for aldehydes is EI-MS delta, with a dot product score of 0.533 and for esters it is EI-
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MS alpha, with a dot product score of 0.41, respectively. Overall, when we look across all 

compounds and all compound classes our best performing model (EI-MS gamma with the 

molecular ion predictor) has a dot product score that is on average ~24 percent better than CFM-

EI. Likewise, the best performing aldehyde and ester prediction models exhibit an improvement in 

their dot product of around 34 and 58 percent respectively over CFM-EI. This suggests that we 

could use different EI-MS prediction models for different chemical classes to generate optimal EI-

MS spectra. In other words, by using a program such as ClassyFire [99] to parse and classify 

compounds it would be possible to send different molecules to different EI-MS predictors to 

produce optimal results. We also incorporated the results of paired t-tests comparing successive 

EI-MS models. It is evident from the table that there are significant difference between the EI-MS 

Alpha and CFM-EI model (with p<0.0001), while the EI-MS Gamma, Delta and Epsilon models 

led to modestly significant successive improvements (with p=0.0041-0.0169). The NEIMS model 

clearly performed better than both EI-MS Epsilon and RASSP (with p<=0.0001) while the 

Adjusted NEIMS with PA and MIIP (EI-MSpred) model shows a modestly significant 

improvement over the regular NEIMS model (with p=0.0493). 

3.3.2 Analysis of Individual EI-MS results for “Peak Only” EI-MS Prediction 

Models 

While bulk comparisons with large numbers of spectra are informative, it is also useful to look at 

individual spectra to better appreciate and assess the performance improvements in more detail.  

Therefore we assessed the performance of our Peak-only EI-MS predictors by analyzing the EI-

MS spectra of selected individual molecules from our test set (see Figures 3.7-3.10). These 
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mirrored EI-MS spectral graphs display NIST-reported EI-MS spectra at the top and predicted EI-

MS results at the bottom. The predicted EI-MS are generated from the above-mentioned best 

performing models along with the current state-of-the-art CFM-EI model. The box in the top-right 

corner of each graph displays the dot product scores. This score is highlighted only when a 

particular model achieves the best possible dot product score. If we look at a low molecular weight 

compound (acetic acid, (ethylthio)-, ethyl ester) as an example (Figure 3.7a), we can see that the 

peak at m/z position 47 was correctly predicted in EI-MS alpha, beta and gamma (Figure 3.7b, c 

and d) but not for CFM-EI (Figure 3.7a). Likewise, the dot product score went up by 33 percent 

(CFM-EI model: 0.43 vs. EI-MS-gamma model: 0.59). A similar trend is also observed for an ester 

(adipic acid, heptadecyl 2-methylbutyl ester) (Figure 3.8) where the peak to 129 (with maximum 

relative intensity) was perfectly predicted in these models (Figure 3.8b, c and d) but were not 

predicted in CFM-EI (Figure 3.8a). Other examples included here show the predicted EI-MS 

spectra from an aldehyde (octanal, 2-(phenylmethylene)-) and a silylated molecule 

(styryltrimethylsilane) (Figure 3.9 and Figure 3.10), where both the predictors outperformed the 

previous CFM-EI predictor.  For the aldehyde the dot product scores for the CFM-EI model: 0.47 

vs. EI-MS beta: 0.61 vs. EI-MS gamma: 0.56. For the silyated molecule, the CFM-EI achieves: 

0.34 vs. EI-MS beta: 0.35 vs. EI-MS gamma: 0.37). Overall, these examples nicely illustrate how 

the improvements to overall spectral prediction accuracy through these hybrid GNN+SVM models 

translate to more meaningful and informative EI-MS spectra. 

3.3.3 Comparison of “Peak Only” EI-MS Prediction Models with Newer EI-

MS Predictors 
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For many years CFM-EI was the “gold standard” for EI-MS spectral prediction.  In 2019 the 

NEIMS program was published [70] and the authors claimed that it exhibited comparable 

performance and much faster calculation times than CFM-EI. Earlier in 2023 a new program called 

RASSP appeared that appeared to offer substantially better performance than both CFM-EI and 

NEIMS. The code to run this program has just become available in the last two months (after this 

project was nearly completed). Given these developments, we thought it would be important to 

compare the performance of our newly developed “Peak-only” predictors with these new predictors 

(RASSP and NEIMS) using the same hold-out data sets.  Table 3.5 compares the prediction results 

of NEIMS and RAASP with our best performing peaks-only model (EI-MS gamma + molecular 

ion predictor) using the same holdout data set of 2,041 EI-MS spectra derived from NIST 20.  The 

average dot product score is provided in the table for each of the chemical classes or categories. As 

seen from this table, NEIMS outperforms all our newly developed “Peak-only” predictors, 

including the recently published RASSP predictor, in terms of dot product scores for all chemical 

classes or categories (with the exception of aldehydes and low-molecular weight (<150 Da.) 

compound sets, where RASSP have shown significantly better results). It is also evident from the 

table that, both NEIMS and RASSP are not specialized for EI-MS prediction of derivatized or 

silylated molecules (dot product scores of EI-MS epsilon: 0.43 vs. NEIMS: 0.41 vs. RASSP: unable 

to process any silylated compounds). Finally, we also evaluated all these models using a set of 

2,008 brand new molecules from NIST 23. It is to be noted that, NIST 23 consists of ~50,000 

additional GC-MS spectra from the previous release (NIST 20) and none of these aforementioned 

models were trained, validated or tested on the set of brand new compounds from NIST 23. For the 

sake of unbiased evaluation, it was necessary for us to evaluate all the models on these new set of  
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Figure 3.7: Plot showing the EI-MS ground truth vs. predicted spectra using various modules for 

a molecule ((ethylthio)-acetic acid, ethyl ester) in the Ester set. 
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Figure 3.8: Plot showing the EI-MS ground truth vs. predicted spectra using various modules for 

a molecule (adipic acid, heptadecyl 2-methylbutyl ester) in the Ester set. 
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Figure 3.9: Plot showing the EI-MS ground truth vs. predicted spectra using various modules for 

a molecule (2-(phenylmethylene)-octanal) in the Aldehyde set. 
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Figure 3.10: Plot showing the EI-MS ground truth vs. predicted spectra using various modules 

for a molecule (styryltrimethylsilane) in the silylated set. 
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compounds. As presumed, the dot product scores of all the models using the NIST 23 set were 

similar (with the exception of NEIMS having slightly reduced dot product score) to their weighted 

average dot product scores (reported in the second last row of Table 3.5) from different classes or 

categories.  

3.3.4 Comparison of “Peak Only” EI-MS Prediction Models with the Adjusted 

NEIMS with PA and MIIP 

As seen from the above results, none of the developed “peak-only” predictors were able to compete 

with NEIMS in terms of EI-MS spectra prediction. However, these predictors provided several 

advantages which was incorporated with the original NEIMS program to achieve better 

performance with subformulae annotation for each predicted peaks. We assessed the performance 

of this finalized predictor, called the Adjusted NEIMS with MIIP and PA (called EI-MSpred), on 

a set containing six common compounds (methanol, hexane, 3-methyl pentane, benzene, toluene, 

and nitrobenzene) and the NIST 23 compounds. We observed that making such an adjustment to 

the NEIMS program can even improve the performance of NEIMS. When tested on the six 

common compound set we achieved an average dot product score of 0.555 (vs. original NEIMS 

with common compound set: 0.517). When tested with the NIST 23 test set, we observed a slight 

but statistically insignificant improvement over the original NEIMS program (dot product score of 

original NEIMS: 0.62 vs. Adjusted NEIMS with PA and MIIP: 0.621 shown in Table 3.5). This 

finalized predictor (EI-MSpred) is used throughout the rest of this document to make EI-MS 

predictions.     

3.3.5 Performance of PeakAnnotator 
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Figure 3.11: Mirror plot showing the observed peak annotations and peaks annotated by CFM-EI 

for a compound (benzene). 

 

Early MS spectral predictors such as CFM-ID, CFM-EI, MagMA and MetFrag used machine-

learned or combinatorial methods to generate possible fragmentation structures. This virtual 

fragmentation process helped to rationalize the actual fragmentation process and also allowed MS 

peaks in both predicted and experimentally collected MS spectra to be annotated.  However, not 

all peaks in EI-MS or MS/MS spectra can be rationalized with structures or fragments generated 

by these prediction programs.  For instance, only 20-25% of the peaks in a given EI-MS spectrum 

(for the compound “benzene”) can be annotated by CFM-EI (see Figure 3.11). Furthermore, many 

of these peaks are often “hallucinatory” and do not exist in real spectra. PeakAnnotator was 

developed to help overcome the limited peak coverage of CFM-EI and the complete lack of peak 

annotation by EI-MS prediction programs such as NEIMS. The PeakAnnotator algorithm 
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combinatorially determines peak formulae by calculating what combinations of atoms (consistent 

with the molecular formula of the parent compound of interest) can yield positively charged and 

chemically viable structures. It also incorporates other rules regarding valency, the nitrogen rule 

[113], the senior rule [134], and rules regarding the degree of allowed unsaturation [135] to 

determine viable molecular formulae. PeakAnnotator also uses a hand-built knowledgebase of 

frequently known EI-MS peak patterns for well-known functional groups and structures (Table 

3.1) to further refine the formula generation process.  

To assess the performance of PeakAnnotator we selected six EI-MS spectra from 

compounds (mentioned in section 3.3.4) that have been extensively annotated via experimental 

studies, vetted by experts in GC-MS and theoretically confirmed by QCEIMS [61-62].  The 

compounds are methanol, hexane, 3-methylpentane, benzene, toluene, and nitrobenzene. These 

expert-driven molecular formula annotations along with the observed m/zs and intensities are 

shown in Tables 3.6-3.11 (columns one to three).  PeakAnnotator (PA), combined with the original 

NEIMS and the molecular ion intensity predictor (MIIP) program, also known as EI-MSpred (or 

Adjusted NEIMS with PA and MIIP (EI-MSpred)), was used to annotate the unlabeled EI-MS 

peaks for these molecules using the experimentally observed EI-MS spectra. The molecular 

formula annotations generated via EI-MSpred and those generated via experts/QCEIMS are also 

shown in Tables 3.6-3.11). Several of these reference annotations suggest the existence of a 13C 

isotope, which are labelled by “*” within the original formula (Table 3.7-3.10). The annotation is 

tagged with either of these four notations with an “x” representing a peak that is correctly predicted 

and correctly annotated , “-” representing a peak that is not predicted and not assigned, while “x 

but incorrect” represents a peak that is predicted but the annotation assignment was wrong.  
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Table 3.6: Annotation correctness using EI-MSpred and CFM-EI for the compound methanol. 

 
Table 3.7: Annotation correctness using EI-MSpred and CFM-EI for the compound hexane. 
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Table 3.8: Annotation correctness using EI-MSpred and CFM-EI for the compound 3-

methylpentane. 

 
Table 3.9: Annotation correctness using EI-MSpred and CFM-EI for the compound benzene. 
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Table 3.10: Annotation correctness using EI-MSpred and CFM-EI for the compound toluene. 

 
Table 3.11: Annotation correctness using EI-MSpred and CFM-EI for the compound 

nitrobenzene. 

 

annotation representing no annotation found. This suggests that the PeakAnnotator program is only 

able to annotate a predicted peak with non-zero intensity. Inspecting these tables, it is apparent that 

EI-MSpred (based on PeakAnnotator program) correctly identifies 91% of the peaks with the 
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correct peak formula. On the other hand, annotating the same spectra through CFM-EI we see that 

only a fraction of these peaks are annotated and even fewer of these are correctly annotated (53%).  

 
Table 3.12: Annotation coverage using five randomly selected compounds from NIST23. 

In a second trial were compared the annotation coverage (as opposed to annotation 

correctness) with five randomly chosen experimentally collected GC-MS spectra selected from our 

NIST 23 holdout set.  Specifically, we ran CFM-EI, NEIMS and PeakAnnotator on all five spectra 

and measured the fraction of peaks that were given annotations (chemical formulae or structures).  

The results are given in Table 3.12.  As can be seen in this table, PeakAnnotator achieved an 

average level of peak annotation coverage approaching 93.7%, while the level of peak annotation 

coverage for CFM-EI was 86%, for the Adjusted NEIMS with PA and MIIP (EI-MSpred) it was 

79.6%, and for both NEIMS and RASSP it was 0%. 



116 

 

 
Figure 3.12: Annotation process showing the molecule 2-propenal,3-(2-methoxyphenyl)- and its 

peak subformulae.  

 

In a third example to illustrate the utility of PeakAnnotator (with no EI-MS predictor 

combination), we show how a molecule (3-(2-methoxyphenyl)-2-propenal) can have its predicted 

EI-MS spectrum annotated by PeakAnnotator (see Figure 3.12) and subsequently corrected. As 

seen in the previous examples of a real EI-MS spectra, all the annotated chemical formulae in all 

the clusters of peaks should follow a particular sequence of elemental composition, which is 

generally observed in this figure. The exception is the predicted formula (C9H4O) at m/z = 128. 

This is an incorrect prediction firstly because the chemical formula does not match well with the 

chemical formulae of the adjacent peaks (C8H2O2, C8H3O2, etc.). Secondly, the only other formula 

that could possibly match this molecular weight is a neutral molecule C8O2, which is chemically 
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impossible (and obviously not a positively charged ion). Therefore, we would conclude that this 

peak should not be observed in the experimentally observed EI-MS spectrum. This leads to the 

conclusion that this is an erroneous peak generated by the NEIMS prediction program. If we look 

at the actual EI-MS spectrum for 3-(2-methoxyphenyl)-2-propenal, we see this peak at m/z=128 is 

not present. Therefore, by using PeakAnnotator as a check on predicted EI-MS spectra we can 

effectively edit the predicted spectra and improve the prediction performance. 

3.4 Conclusion 

The prediction of EI-MS spectra using various computational techniques has seen tremendous 

advancements over the past 10 years. This is because there is growing quantity of high-quality EI-

MS data with which to train, and substantial improvements in the computational methods – 

particularly with regard to deep learning to accurately predict EI-MS spectra. Until recently, the 

“gold standard” for EI-MS spectral prediction was the program known as CFM-EI. This program 

uses probabilistic graphical models (PGMs) to predict compound fragmentation patterns and 

probabilities. While CFM-EI provides useful structural information and annotation for predicted 

EI-MS spectra, it is not particularly fast nor is sufficiently comprehensive in its peak annotation 

coverage. This work describes the development and refinement of several deep-learning models 

aimed at improving both the accuracy and speed of EI-MS prediction. By making use of a blended 

approach that uses a GNN for low m/z spectral prediction, a PGM for high m/z prediction, an SVM 

to predict the molecular ion and a combinatorial method for peak annotation (that also uses CFM-

EI) we were able to create a tool called EI-MS epsilon (or EI-MSE) that outperforms CFM-EI by 

20-25% in terms spectral prediction as measured by the dot product score.  We also found that 
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different models performed better for different classes of compounds, suggesting that the creation 

of compound-class specific models could boost the performance even further.   

At the same time, we also made adjustment to the original NEIMS program by appending 

our developed PeakAnnotator and molecular ion intensity predictor (MIIP) programs (or EI-

MSpred). Comparisons of EI-MSpred to other recent EI-MS prediction programs showed that it 

was much better than CFM-EI, but was worse than both NEIMS and RASSP in terms of dot product 

score. However, EI-MSE program was able to accurately annotate approximately 94% of the peaks 

that it predicted, which is substantially better than CFM-EI (at 86%), NEIMS (at 0%) and RASSP 

(0%). Comparison of the EI-MSpred with other models showed that it was better than all other 

models including the RASSP model and showed slight improvement over the original NEIMS 

model. 

Using PeakAnnotator on the EI-MSpred predicted EI-MS spectra allowed >99% of the 

predicted EI-MS peaks to be annotated. Furthermore, by judiciously applying PeakAnnotator to 

predicted EI-MS spectra, we showed that it was possible to further improve the quality of the 

predictions. We believe that the EI-MS tools described here (EI-MSE and EI-MSpred) could be 

used in conjunction with retention index prediction tools, such as RIpred [136], to greatly facilitate 

compound identification by GC-MS.  Indeed, the predictive performance of these two techniques 

(EI-MS prediction and RI prediction) suggests that GC-MS may be far more predictable and far 

more amenable to in silco or computer-based compound identification than LC-MS.  

All of the EI-MS predictors (EI-MS alpha, beta and gamma, delta and epsilon, EI-MSpred) 

are available on GitHub (https://github.com/Afia-Anjum/ei_ms_pred) along with the molecular ion 

https://github.com/Afia-Anjum/ei_ms_pred
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predictor (MIIP) and the PeakAnnotator. Also, PeakAnnotator to tag new training set is included. 

Directions for their download and installation are provided on the GitHub page. 
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Chapter 4: Conclusion and Future Directions 

4.1 Thesis Overview 

Gas chromatography mass spectrometry (GC-MS) uses a combination of gas-phase-based 

separation with electron impact mass spectrometry (EI-MS) to characterize and identify volatile 

and semi-volatile compounds. Relative to other forms of mass spectrometry, such as liquid 

chromatography mass spectrometry (LC-MS) or direct injection mass spectrometry (DI-MS), GC-

MS is highly standardized and very reproducible. This makes it a very effective analytical 

technique for detecting and quantifying compounds (also called analytes) from complex mixtures. 

The output of a GC-MS experiment typically produces two measurable parameters for each 

detected feature or analyte: a retention time (normalized to a retention index or RI) and an EI-MS 

spectrum. The RI value corresponds to the relative amount of time it takes for the analyte to travel 

through the column while the EI-MS spectrum captures information about the atomic composition 

and molecular structure of the analyte.  The RI is largely determined by the size, boiling point and 

hydrophobicity of the analyte, while the EI-MS spectrum is determined by the molecular structures 

of the molecule. Large databases consisting of tens of thousands of experimentally measured RIs 

and experimentally measured EI-MS spectra have already been created [36, 113, 114, 115, 116, 

117]. These databases allow researchers to compare their own GC-MS data (RI and/or EI-MS 

spectra) against these reference GC-MS databases and identify potential matches. However, RI 

comparisons with, or without, EI-MS spectral comparisons rarely produce perfect matches. 

Furthermore, these comparisons can be very manually intensive, are often slow, tedious and prone 

to error and can be subject to various complications. For instance, multiple compounds with the 
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same RI can have very different molecular weights and completely different EI-MS spectra (Figure 

4.1). Similarly, it is possible for two stereoisomers (i.e., compounds having same molecular 

formulas and molecular weights but differing in the spatial orientation of functional groups) to 

have nearly identical EI-MS spectra but very different RI values (Figure 4.2).  

 
Figure 4.1: EI-MS spectra of four compounds a)10-methyldodec-2-en-4-olide , b) 4-methyl-

heptadecane, c) [1,1’-biphenyl]-4-amine, and d) N,N-dibutyl-3-fluoro-benzamide which share 

the same RI values but which have completely different structures, totally different molecular 

weights and entirely different EI-MS spectra. 

 

Therefore, attempting to identify a compound from its RI data alone or its EI-MS data alone can 

be fraught with error.  That’s why GC-MS identification invariably requires matching both RI 

and EI-MS data together.  Unfortunately, only a tiny fraction of known chemicals (and certainly  
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Figure 4.2: EI-MS of the two stereoisomers a) 2,3’,4’,5-tetrachloro-1,1’-biphenyl, and b) 

2,3,4’,5-tetracholoro-1,1’-biphenyl having the same molecular formula, weights and EI-MS 

spectra but different RI values within the same stationary phase. 

no unknown compounds) have their RI values or EI-MS spectra deposited in these reference 

databases. This limited coverage makes the identification of many well-known compounds 

difficult, and the identification of all unknown compounds, completely impossible via spectral 

database comparison. However, if the RI values and/or EI-MS spectra of a compound could be 

accurately predicted from a compound’s known structure (or even a hypothesized structure), then 

compound identification via GC-MS could be greatly improved and the chemical coverage of GC-

MS greatly increased. It is this challenge of developing accurate methods to predict RI and EI-MS 

spectra that defined the two main objectives of my thesis. As described in the previous two chapters 

(Chapters 2 and 3), I believe I have nearly succeeded.  In the next section, I will use several toy 

problems to mimic a typical GC-MS metabolomics analysis and then describe the effectiveness of 

my developed RI and EI-MS predictors for compound identification.  



123 

 

4.2 Combining RI and EI-MS Predictions To Identify Compounds 

Via GC-MS 

In this section, I will demonstrate how predicted GC-MS data including RI and EI-MS data 

predicted via my predictors, can aid in compound identification. For this example, I have chosen 

three compounds from the HMDB (the human metabolome database) where experimental GC-MS 

data has been already collected. Their reported RI values, as measured in semi-standard non polar 

(SSNP) column, and EI-MS data using a single quadrupole MS instrument with 70 eV collision 

energy along with the actual compound structures are listed in Table 4.1 and Figures 4.3a, b, and 

c. To simulate an actual compound identification task, we will pretend that these compounds are 

“unknowns” (i.e. we do not know their structures) and will use their experimentally reported GC-

MS data to perform the compound identification task in a simulated metabolomics experiment. To 

perform the compound identification task, we first utilized the RI search module from my RIpred 

server (Chapter 2) to generate a list of potential matching compound structures. Recall that the 

RIpred server’s backend is populated with predicted RI values for all 250,000 HMDB compounds 

in various stationary phases and derivatization types (amounting to >5 million RI values). As an 

input to the search module, for all the three unknown samples, we provided the reported RI values, 

the column information (semi-standard non-polar stationary phase) and set an RI tolerance of 2%, 

along with a mass tolerance of 3 Da. assuming the highest m/z in the EI-MS was the parent ion 

mass of the unknown samples. This search against the HMDB generated a list of 131, 150, and 79 

matching entries, respectively, for the unknown samples 1, 2, and 3.  To further reduce this list of 

potential candidates, we utilized our best performing EI-MS predictor (reported in chapter 3 - the 
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Adjusted NEIMS with Peak Annotator and Molecular Ion Intensity Predictor or EI-MSpred) to 

predict the EI-MS spectra of the 350 HMDB hits for these three unknowns. Here, I report the top 

five hits for each of the three queries sorted on the basis of the dot product score (Tables 4.2, 4.3, 

and 4.4) between the measured and predicted EI-MS spectra. Mirror plots of the top scoring hits 

between the measured and predicted EI-MS spectra for each of the three “unknowns” are shown in 

Figure 4.4a, b, and c.  

 
Table 4.1: Measured retention indices of the three unknown samples in the SSNP phase. 

 
Figure 4.3: EI-MS spectra of the three unknown compounds. 
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Table 4.2: Top five queried hits sorted on the basis of dot product score for “Unknown Sample 

1 (Dopamine, 4TMS)”. 
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Table 4. 3: Top five queried hits sorted on the basis of dot product score for “Unknown Sample 

2 (L-glutamic acid diethyl ester)”. 
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Table 4.4: Top five queried hits sorted on the basis of dot product score for “Unknown Sample 

3 (20alpha-Dihydroprogesterone)”. 
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Figure 4.4: Mirror plots of the tops scoring hits between the measured and predicted EI-MS 

spectra corresponding to a) unknown sample 1, b) unknown sample 2, and c) unknown sample 

3. 

 

As seen from these tables and figures, the dot product scores corresponding to the best hits 

for these three samples are 0.64, 0.76, and 0.86 respectively. Unknown samples 2 and 3 match 
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correctly to the actual compounds “Glutamic acid diethyl ester” and “20-alpha-

Dihydroprogesterone”, however, sample 1 matches to the compound “p-Octopamine, 

4TMS,isomer#1”, which is a diastereomer of the actual compound “Dopamine, 4TMS,isomer#1” 

(with second best hit and dot product score for dopamine, 4TMS: 0.60 v.s. dot product score for 

Octopamine,4TMS: 0.64). This “modest failure” for sample 1 arose because mass spectral analysis 

is not able to make the distinction between stereoisomers. Given this fact, one would reasonably 

have had to propose two possible structures for sample 1 (Dopamine, 4TMS,isomer#1 and 

Octopamine, 4TMS,isomer#1). Additionally, even though the spectra dot products were not found 

to be the optimal (incase of octapine-dopamine example), the experimental and predicted RI values 

would perfectly allow us to distinguish between these two compounds (sample 1 measured RI: 

2063 v.s. predicted RI: 2063.81 in the SSNP phase). Overall, these results show quite nicely how 

the predicted RI values and the predicted EI-MS spectra generated via my predictors can be used 

– in combination – to identify unknown compounds. 

4.3 Summary and Assessment 

This thesis spanned a total of four chapters. In chapter 1, I provided a brief review of different 

chromatography or chromatographic separation techniques. I specifically focused on explaining 

the principles of gas chromatography and the general concepts behind GC-MS. I introduced and 

explained a number of terms or concepts such as electron ionization (EI), retention time (RT), 

retention indices (RI), chemical derivatization, and chemical/mass fragmentation techniques, etc. 

Additionally, in chapter 1, I described in detail the standard route for compound identification via 

GC-MS analysis using reference library methods, by exploiting the AMDIS and NIST library 
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search modules. After explaining how compounds are identified via GC-MS, I noted some of the 

key limitations of library-based methods. Specifically, I noted that the total number of experimental 

RI values and EI-MS spectra in these libraries are quite limited and that they do not allow the 

identification of the vast majority of known compounds and that they certainly cannot be used to 

identify unknown or hypothesized compounds. I therefore proposed that this problem could be 

addressed by developing methods that could accurately predict RI values and EI-MS spectra from 

chemical structure data (i.e., SMILES strings or MOL files). Specifically, I hypothesized that 

machine learning could be used to develop two predictors: RIpred (for retention index prediction) 

and EIMSpred (for EI-MS prediction). I also hypothesized that that it would be possible to 

automate the GC-MS compound identification process by combining these predictors together (if 

they were sufficiently accurate), to mimic the AMDIS/NIST compound ID process. Finally, I 

hypothesized that these developed predictors could be used to create a large in silico library of 

known (and predicted) compounds containing their predicted RI values and predicted EI-MS 

spectra and that such a library would most certainly aid in the compound identification of both 

knowns and unknowns.    

To test this hypothesis, as described in Chapter 2, I first conduct a background analysis of 

all available RI predictors and evaluated their strengths and weaknesses. I soon realized that the RI 

prediction process might benefit from the incorporation of chemical derivatization information and 

from column stationary phase information. This is because, a compound undergoing chemical 

derivatization (via TMS or TBDMS) will exhibit distinct retention time changes due to the change 

in its polarity, volatility, solubility and thermal stability. Similarly, a compound’s interaction with 

a particular type of stationary phase or GC-column type will affect its retention time and retention 
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index. As a result, I hypothesized that making specialized a set of specific RI predictors with six 

different training datasets (derivatized, underivatized (base form), X three stationary phases) 

selected from the NIST 20 library would improve the RI predictor’s performance. I then developed 

a program that used RDKit and other sets of cheminformatics programs to convert chemical 

SMILES strings into molecular graphs and extract various molecular features. These molecular 

graphs (along with the accompanying RI information and selected molecular features) were then 

used as training data for a set of graph neural network (GNN) models for RI prediction. The best 

performing models for each of the six datasets were selected through training, testing, and 

optimizing based 10-fold cross validation methods. All these specialized RI predictors along with 

a program called “autosilylator” (to perform in silico TMS or TBDMS derivatization) were then 

embedded within a more comprehensive RI prediction pipeline and presented as a webserver called 

RIpred.  Comparisons were conducted against RIpred and other statistical, heuristic or ML-based 

RI predictors and it was found that RIpred matched or outperformed nearly all of them in terms of 

accuracy and comprehensiveness. In particular, the performance of RIpred was similar (mean 

absolute percentage error (MAPE): within 3% and mean absolute error (MAE): <73 RI units) to 

the performance of the NIST 20 AI predictor – which is the gold standard.   Furthermore, RIpred 

distinguished itself as being the first RI prediction tool made available as a free web server, the 

first tool to perform automated silylation and the first to handle multiple stationary phases. 

Likewise, latest release of the HMDB (HMDB 5.0) also contains RIpred generated RI predictions 

for ~5 million compounds. The work describing RIpred and its comparative performance was 

published as a paper in the Journal of Chromatography A in 2023 [136]. 
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In Chapter 3 of this thesis, I turned to the problem of predicting EI-MS spectra. I 

hypothesized that several advancements could be made to improve the quality of EI-MS spectral 

predictions generated by other state-of-the-art models such as CFMID, NEIMS, and RASSP. As a 

part of this study, I utilized the NIST 20 EI-MS data as my training, validation and testing set and 

used GNNs to generate several of my own predictors such as EI-MS alpha, beta, gamma, delta, and 

epsilon. As done with my RI-prediction program, I utilized RDKit and other cheminformatics 

programs to convert chemical SMILES strings into molecular graphs and extract molecular features 

that could be used to predict EI-MS spectra. These molecular graphs, molecular features and EI-

MS spectral data were fed into a variety of GNNs to train a model. Optimization with a carefully 

selected EI-MS spectral validation set and an early stopping protocol helped in selecting the best 

GNN models. While my own EI-MS predictors outperformed CFM-EI, they did not outperform 

NEIMS or RASSP. In terms of dot product score, the results were CFM-EI (the original program 

developed by Felicity Allen): 0.32 vs. EI-MS alpha: 0.41 vs. EI-MS beta: 0.42 vs. EI-MS gamma: 

0.37 vs. EI-MS delta: 0.45 vs. EI-MS epsilon:  0.38 vs. vs. NEIMS: 0.62 vs. RASSP: 0.56 on a 

dataset containing ~2000 EI-MS spectra from the NIST 23 database. I also found that incorporation 

of a molecular ion intensity predictor (MIIP) and a peak annotation (PA) program could improve 

the EI-MS spectral prediction results. Specifically, I tested this idea with a set of six common 

compounds and the previous NIST 23 held out test set. Indeed, a notable increase in the 

performance was seen for the six common compounds (Adjusted NEIMS with PA and MIIP: 0.555 

vs. Original NEIMS: 0.517). However, more extensive testing on the NIST 23 test did not reveal a 

significant improvement (Adjusted NEIMS with PA and MIIP: 0.621 vs. Original NEIMS: 0.62). 

However, in terms of spectral annotation correctness, we did achieve an average correctness of 
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91% with the Adjusted NEIMS with PA and MIIP (called EI-MSpred), while the annotation 

correctness for NEIMS, RASSP and CFM-EI on the same data sets were 0%, 0%, and 53 % 

respectively. In other words, the inclusion of my MIIP and PA programs as part of the NEIMS 

program appeared to not only improve the NEIMS performance, but also produced annotated EI-

MS spectra – which is something that the NEIMS program was not capable of doing. In the end, I 

developed a hybrid program called “Adjusted NEIMS with MIIP and PA”, which is now known as 

EI-MSpred.    

As I noted in Chapter 2 and 3, I faced several challenges creating the RI and EI-MS 

predictors. One noteworthy challenge for the RI prediction task was the need to clean, carefully 

curate and consolidate the training sets for RI values. This is because many of the RI values in the 

training as well as the validation and testing sets, were incorrectly reported. In some cases, RI value 

mix ups between various stationary phases and derivatization process were present. Careful 

cleaning of all these datasets required many weeks of tedious effort and careful crosschecking. 

While the issues of data quality for EI-MS prediction were not as much of a concern as they were 

for the RI prediction, other challenges were present.  It turned out that the modeling of compound 

fragmentation patterns was computationally much more difficult and that published methods for 

MS prediction had insufficient detail for me to properly replicate their results.  I tried many 

alternative strategies and explored many heuristic fixes (such as separating light weight molecules 

from heavyweight molecules, creating annotated EI-MS spectra, developing molecular ion 

intensity predictors) that achieved partial success. Indeed, embedding the two additional programs, 

MIIP (molecular ion intensity predictor) and PA (PeakAnnotator), enhanced the overall quality of 

the EI-MS spectra prediction.    
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In Chapter 4, I wanted to demonstrate how the combination of RI prediction and EI-MS 

prediction could be used to facilitate compound identification in a “mock” metabolomics GC-MS 

experiment. To carry out the process, I selected three known compounds found in the human 

metabolome (in the HMDB) and used their experimentally reported EI-MS and RI data, assuming 

that they are “unknown” compounds. I used the estimated molecular ion m/z value and reported RI 

data as input for RIpred to narrow the list of candidates down to 350 compounds (from 250,000). 

I then predicted the EI-MS data using EI-MSpred and calculated the dot product scores against the 

reported EI-MS data for the three compounds. My result indicates that all three unknown samples 

can be identified with top spectral matching scores.  

4.4 Contributions 

Following is a recapitulation of the main contributions of this thesis: 

 Development of updated and corrected Kovats RI libraries for >100,000 compounds for various 

settings and column standards. 

 Development of a program called autosilylator that can generate all possible (ten to hundreds) 

silylation (TMS and TBDMS to be specific) for GC amenable compounds. 

 Development of a RI predictor (RIpred) that predicts RI values for various column settings, 

derivatization type, and tolerances (mass, RI), etc. 

 Development of a publicly available webserver (RIpred) for RI prediction which includes a 

database compound search module based on user inputs of m/z values and RI values. 

 Development of an offline version of RIpred to predict RI values for all GC amenable 

compounds in HMDB 5.0.  
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 Development of multiple EI-MS predictors (EI-alpha, EI-beta, EI-gamma, EI-delta, EI-epsilon, 

etc.) to predict EI-MS spectra that consistently outperform CFM-EI.     

 Development of a molecular ion intensity predictor that accurately predicts the intensity of the 

parent ion (molecular ion) peak in EI-MS spectra given the input structure. This MII predictor 

improved the performance of all EI-MS predictors. 

 Development of Peak Annotator program that can accurately annotate EI-MS spectral with the 

molecular formulas. This PA program can be used to “clean up” EI-MS predictions and appears 

to improve the performance of EI-MS predictors.  

 Development of a hybrid EI-MS predictor – called “Adjusted NEIMS with PA and MIIP” or 

EI-MSpred for short to perform accurate, annotated EI-MS prediction 

 Demonstration that the combination of RIpred and EI-MSpred can be used to accurately 

identify compounds from a hypothetical GC-MS metabolomics experiment. 

4.5 Future Work 

As previously stated, my retention index predictor (RIpred) was fully completed. It has been 

thoroughly tested, published in a highly respected journal and performs as well as can be expected. 

However, my work with EI-MS prediction was not as complete. In particular, I did not 

independently develop a novel, superior-performing EI-MS predictor using ML methods. While 

my versions were better than CFM-EI, newly developed programs such as NEIMS and RASSP 

still outperformed what I could do.  However, I did succeed in creating a hybrid program, called 

Adjusted NEIMS with PA and MIIP” or EI-MSpred for short, which uses the previously published 

NEIMS predictor [70] to generate spectral predictions and two programs I developed (PA and 
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MIIP) to annotate the spectra and modestly improve the accuracy of the spectra predictions. 

Unfortunately, I did not succeed in converting EI-MSpred into a webserver and did not publish a 

description of the EI-MSpred program in a scientific journal.  This would be something that I would 

hope to complete in the near future. 

I also believe it should be possible to improve NEIMS or to develop a separate, high 

performing EI-MS predictor that would perform at least as well as NEIMS by creating a training 

set of EI-MS spectra where all peaks have been annotated with molecular formulas using my Peak 

Annotator program. As noted earlier, my PA program is able to annotate nearly all (>99%) peaks 

in the experimentally collected EI-MS spectra (such as those in the NIST 23 database). These 

annotated EI-MS spectra can give rise to a tuple of three attributes (m/z, intensity, subformula) for 

each peak in the EI-MS spectra. I believe this annotated data could be quite useful for training an 

EI-MS predictor using a graph neural network. I also believe that the extra information contained 

in the molecular formula information could improve the quality of the EI-MS predictor and create 

an EI-MS predictor that also annotates peaks with formulas or even molecular fragment structures.   

Another potential future project that arises naturally from this work would be the development of 

a webserver or a computational pipeline to support combined RI + EI-MS analysis and compound 

identification. Currently RIpred only predicts RI data and only identifies compounds based on their 

molecular ion mass and RI values.  The proposed EI-MSpred webserver would only predict EI-MS 

spectra and only identify compounds based on their EI-MS data.  However, I believe the proposed 

EI-MSpred webserver could be easily modified to not only predict EI-MS data, but that it could 

combine input RI data (and utilize calls to the RIpred server) to perform integrated compound 

identification.  Furthermore, both the RIpred and EI-MSpred predictors could be used to generate 
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RI and EI-MS prediction results for all the GC-MS compatible compounds in compound databases 

such as HMDB, FooDB, MiMeDB, DrugBank, etc. The creation of in silico spectral/RI libraries 

for all known compounds and even many hypothetical compounds (such as those generated by 

BioTransfomer [137]), could open many doors for rapid, automated compound identification. 

Certainly, if all these aforementioned plans could be completed, I believe that GC-MS could 

achieve a new level of importance and a new threshold in utility for compound identification – 

especially in fields such as metabolomics, exposomics, environmental or pollution monitoring and 

drug testing. 
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Appendix A: Additional Figure 

 
Figure A. 1: Distribution of errors between and experimentally measured (GolmDB) and 

predicted RI values (from RIpred). As seen from this graph the distribution is quite Gaussian 

in nature. 


