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Abstract

Model predictive control (MFC) is a paradigm tha t emerged in the late 1970’s, and has 

developed considerably over the last two decades. The two versions which appear to have 

had the most acceptability are one derived by Clarke et al. [24] and is called GPC for 

generalized predictive control, and secondly tha t derived by Cutler and Ramaker [30] called 

DMC for dynamic matrix control.

M ultirate systems are common in industry, especially in chemical process control. The 

synthesis and analysis of GPC for single-rate systems has drawn considerable attention 

since the 1980’s. On the other hand multirate GPC, practically useful as it may be, has 

not received much attention. Most of the research in the multirate control area deals with 

the time-varying nature of multirate systems ([54, 99]) and hence makes the design and 

analysis more complex. The use of the lifting technique as introduced by Kranc [50] allows 

one to convert multirate systems into single-rate and linear time-invariant (LTI) equivalent 

systems. However, its use also presents a challenge in the synthesis problem: the lifted 

controllers should satisfy certain causality constraint. The main purposes of this thesis are:

1. To develop GPC controllers for multirate systems, taking into account the causality 

design condition.

2. To develop a sampled-data GPC scheme for multirate systems so tha t the continuous

time closed-loop performance is optimized, and the inter-sample behavior is improved.

3. To perform robust stability analysis of a general class of multirate MPC controllers in 

the presence of model-plant mismatch (MPM). Note tha t GPC belongs to the MPC 

class of controllers which are all model based algorithms.

The thesis focuses on the synthesis and analysis of GPC for multirate systems, as well as 

the more general and special case of multirate systems such as non-uniformly sampled sys

tems and fast-control, slow-sampling, dual-rate systems. In addition to these, related topics 

such as the multirate digital redesign problem and the continuous time delay estimation
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problem are also investigated in this study.
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C hapter 1

Introduction

1.1 A historic perspective o f M PC

Model predictive control, or MPC in short, emerged in the late seventies, when its early 

versions appeared in industry. For example, Richalet et al. suggested Model Predictive 

Heuristic Control (MPHC) (later known as Model Algorithmic Control (MAC)) in [87, 

88]; and Culter and Ramaker proposed Dynamic M atrix Control (DMC) in [30]. Other 

well known variations of MPC were developed independently in the adaptive control area, 

such as Predictor-Based Self-Tuning Control by Peterka [77], Extended Horizon Adaptive 

Control (EHAC) by Ydstie [115], Extended Prediction Self Adaptive Control (EPSAC) by 

De Keyser et al. [31], and Generalized Predictive Control (GPC) by Clarke et al. [24, 25]. 

A comprehensive survey of all these predictive methods developed during the eighties can 

be found in the work by Garcia et al. [35].

Traditionally, MPC is derived in the transfer function framework. There have also been 

efforts to formulate MPC in the state-space framework because of the following advantages: 

(i) it permits the use of well-known state-space techniques, (ii) it makes possible the ex

tension to more complex systems such as MIMO systems and those with disturbances and 

noise, although the state estimation arises as a new problem. Articles dealing with the 

state-space based M PC include: Navratil et al. [72] (1988), Li et al. [60] (1989), Ricker 

[90] (1990), Lee et al. [54] (1992), Ordys and Clarke [75] (1993), Lee et al. [55] (1994), 

Scattolini and Schiavoni [99] (1995), and Ling and Lim [61] (1996).

M ultirate MPC is now one of the most popular and effective techniques in the process 

control area due to its capability to handle practical issues, such as future reference signals, 

noise and disturbances, constraints on manipulated variables which are very common in 

industry. All MPC strategies only differ in the following factors:

•  The prediction model;

1
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•  The objective function and techniques for handling constraints;

•  Methods to obtain the control law.

When these elements take various alternatives, different control algorithms arise; and the 

version which appears to have had the most acceptability in the academic domain is GPC 

as derived by Clarke et al. [24, 25] in 1987. Hence the MPC technique in the form of GPC 

will be the main subject of study in this thesis.

The main philosophy of MPC is to compute the future control sequence based on an 

explicit model of the process by minimizing certain performance index over a finite horizon. 

In the implementation phase, only the first element of the calculated sequence is applied 

to the real process at each step. For the next step, the whole procedure is repeated. This 

receding horizon strategy is difficult to theoretically analyze for properties such as stability 

and robustness. The reason is th a t the majority of stability results are limited to the 

infinite horizon case and there is a lack of a theory relating the receding horizon strategy 

to the closed-loop behavior and design parameters. However, promising results on these 

fundamental issues have been proposed beginning with the early nineties. Among them, 

methods such as CRHPC (Constrained Receding Horizon Predictive Control) by Clarke and 

Scattolini [28], SIORHC (Stabilizing I/O  Receding Horizon Control) by Mosca et al. [70], 

and stable GPC by Kouvaritakis et al. [49] have been proposed to guarantee closed-loop 

stability. The results by Campo and Morari [15], Rawlings and Muske [86], Rossiter and 

Kouvaritakis [93], Allwright [3], and Zheng and Morari [117] have been obtained to tackle 

the problem of stability of constrained receding horizon controllers. Recently, using linear 

matrix inequality (LMI) (Boyd et al. [13]), robust constrained model predictive control was 

developed by Kothare et al. [48]; and stability and robustness analysis of finite receding 

horizon control was carried out by Primbs and Nevistic [78, 79].

1.2 M otivation

Multirate systems are abundant in industry, especially in the chemical process industry, 

mostly due to sensor and actuator speed and sampled time constraints; for example, in a 

distillation column, the composition variable is measured at a slower rate than the rate at 

which the manipulated or other variables can be adjusted or measured. This is typically 

some flow or temperature signal. So it is of great importance to study MPC for multirate 

sampled-data systems where the sampled outputs and the control inputs have different 

sampling periods. This thesis is focused on a detailed study of multirate GPC problems.

2
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The main difficulty in studying multirate systems is the fact th a t they are in general 

time-varying, and hence complicating the synthesis and analysis problems for such systems, 

see, for example, the work on multirate MPC by Lee et al. [54] and Scattolini et al. 

[99]. To get around this difficulty or any difficulty arising from this, we adopt a powerful 

tool called the lifting technique. The idea of lifting was first introduced in the switch 

decomposition method proposed by Kranc [50] in 1957; this was later further developed 

into the widely used lifting technique for dealing with multirate systems by Khargonekar 

et al. [47]. Simultaneously treating two signals with different sampling rates, the lifting 

technique converts a multirate system into a single-rate system which has more inputs 

and outputs, but is time-invariant. Thus the usual linear techniques for time-invariant 

systems become formally applicable to the lifted systems. Methods similar to lifting have 

been introduced in early work on multirate M PC /G PC  problems. For example, Scattolini 

presented a stochastic generalized minimum variance (GMV) self-tuner for MIMO multirate 

systems [98] in 1988; Carini et al. developed a multirate adaptive self-tuning controller for 

MIMO systems by extending the GPC method [16] in 1990, and Ling and Lim [61] presented 

a state-space GPC in a least squares framework for both state feedback control and state 

estimation.

Although lifting can result in an equivalent time-invariant model for the original time- 

varying multirate system, thus making design and analysis much easier, it introduces a 

hard design constraint owing to causality [19]. This is a new feature in studying multirate 

systems; and it remains an open or unsolved problem in multirate M PC /G PC  design. As 

such, the main thrust of this research is to propose an optimal solution to tackle the causality 

problem in the GPC framework for multirate systems.

It is stressed here tha t techniques similar to lifting have been applied in [98], [16], and 

[61]; however, the causality constraint has never been explicitly handled there. References 

[98] and [16] only dealt with systems where the output sampling period is an integer mul

tiple of the control input period; and it will be shown in later chapters tha t the causality 

constraint is automatically satisfied for such systems due to  its special sampling-updating 

strategy. Reference [61] gave a solution in a periodic (lifted) form; but it did not consider 

the causality constraint in the design. Thus, how to find causal solutions to the general 

multirate systems is still an open problem in M PC /G PC  design.

3
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1.3 Scope o f the thesis

In this thesis, we mainly study GPC problems for multirate sampled-data (SD) systems. 

Consider a sampled-data system in Figure 1.1, where P  is the continuous-time process; S

u ( t )u[k] y( t ) yikl

Figure 1.1: A sampled-data system

and H  are the sampler and hold devices, representing A /D  and D /A  conversions, respec

tively. According to different settings for S  and H, we have:

• single-rate SD systems, where both S  and H  have the same periods for sampling and 

updating.

•  multirate SD systems, where S  and H  operate a t different periods. More specifically, 

for a r-input s-output system P, the i-th channel of y, y{ is sampled with period n{h 

(i = 1, • • ■, s) and the j- th  channel of u, Uj is through the zero-order hold operation 

adjusted with period m jh  (j — 1, • • ■, r). Here n; and mj are all integers and h is the 

so-called base period.

•  dual-rate SD systems, where only two different periods are involved in the sampled- 

data system shown in Figure 1.1. In our research, we are interested in a fast-control, 

slow-sampling dual-rate case, where the control updating rates are an integer multiple 

of the output sampling rates, i.e., m i =  m 2 =  • • • =  mr =  1, n\ =  «2 =  ■ • ■ =  ns > 1.

•  non-uniformly sampled systems, where S  and H  adopt more general sampling and up

dating strategies, say, those instants are non-uniformly spaced within a larger interval 

[0,T). This T  can be a finite number and is known as the frame period] it can also 

be infinity. Later in this thesis, when we mention a non-uniformly sampled system, 

we refer to the former case, i.e., the whole sampling and updating scheme is repeated 

every period T.

All such sampled-data systems are related to each other, as shown in Figure 1.2; and they 

will be handled later in this thesis.

GPC belongs to class of discrete controllers where two common design approaches are 

used [20]. One is the indirect design by discretizing the original sampled-data systems first 

and then design in discrete time; another is the design for the sampled-data systems directly. 

Using the powerful tool of lifting for multirate systems, three types of problems are studied:

4
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Figure 1.2: Different sampled-data systems

•  Design optimal, causal indirect GPC controllers for multirate SD systems.

•  Design optimal, direct GPC controllers for multirate SD systems.

•  Study stability robustness of closed-loop systems with multirate GPC controllers when 

there is model-plant mismatch.

The indirect design problem includes: (i) studying modeling issues for the multirate 

SD systems from continuous time to the lifted discrete time, (ii) taking into account the 

causality constraint in the design of the lifted controllers and deriving a causal, optimal 

solution, and (iii) implementation of the designed controller.

The direct design problem can be split into three distinct tasks: (i) analysis of the associ

ated GPC problem by considering the inter-sample behavior, (ii) formulating the multirate 

GPC problem and deriving an explicit solution, and (iii) application of the designed con

troller and the comparison of the closed-loop performance under SD controllers with tha t 

under pure discrete time controllers.

The robust stability problem involves: (i) setting up the stage for the analysis in the 

polynomial domain, (ii) using suitable tools to analyze the closed-loop stability robustness 

of multirate GPC controllers when there is model-plant mismatch, and (iii) concluding on 

how closed-loop robust stability is related with the multirate strategy.

1.4 Research objectives

More specifically, the research objectives of this thesis are:

Issues w ith  respect to  m ultirate sam pled-data system s

1. The issue of modeling multirate systems from continuous time to the lifted discrete 

time.

5
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Since non-uniformly sampled systems adopt the most general multirate strategy, all 

the results on non-uniformly sampled systems are also guaranteed to work on uni

formly sampled, i.e., multirate systems. Using the lifting technique, we will derive a 

state-space model for the non-uniformly sampled system in discrete time, based on the 

continuous-time model. Our interest here are the conditions under which the lifted 

models are controllable and observable, if the original continuous-time systems are 

controllable and observable.

2. The issue of time delay identification for a continuous process in the multirate SD 

setting by the knowledge of the interactor matrix of the lifted system.

W ith the tool of lifting, an LTI lifted discrete model can be derived for a multirate 

sampled-data system based on the knowledge of the continuous process, the input 

control rate and the output sampling rate. However, this continuous model is usually 

unknown in practice. On the contrary, interactor matrices [113, 39] of lifted models 

could be obtained from multirate input-output data  by using certain existing algo

rithms [92, 76]. Assuming the interactor matrix of a lifted model already exists, we will 

reveal the relationship between this interactor matrix and the unknown continuous 

time delay.

D evelopm ent o f causal and optim al G PC  controllers for m ultirate sam pled-data  

system s

1. Use of the indirect design method.

The causality constraint presents a challenging problem in the GPC design for the 

lifted systems. Bearing in mind this constraint, we will put forward a solution to the 

GPC problem for the most general multirate system, i.e., the non-uniformly sampled 

systems, by grouping output samples appropriately in the polynomial domain. To our 

best knowledge, this is the first effort to propose an optimal GPC solution using lifted 

models.

2. Use of the direct design method.

MPC is a class of algorithms based on discrete-time models and performance indices. 

However, discrete-time control algorithms in fact are operating with A /D  and D /A  

converters in a continuous-time environment. Poor inter-sample behavior may arise 

due to the fact tha t the design is based on performance solely at the sampling instants.
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To improve inter-sample performance, we will design multirate GPC controllers di

rectly based on a continuous-time performance criterion.

A nalysis o f  th e  lifted  controllers for m ultirate system s

1. Robust stability of the dual-rate GPC controllers in the presence of model-plant mis

match.

For a model-based control scheme such as GPC, it is im portant to analyze the stability 

robustness of the closed-loop system when there exists model-plant mismatch. In 

this thesis, we will carry out the analysis in the frequency domain by obtaining a 

polynomial domain solution to the dual-rate GPC problem. We also intend to find 

some conditions on the stability robustness of multirate closed-loop systems.

2. Study of the multirate discretization of analog controllers.

Digital control design is often accomplished by discretizing existing analog controllers 

in the single-rate setting. For multirate systems, this discretization becomes a poten

tially im portant method. In this work, we will study the discretization error between 

the real analog controller and its approximation in the frequency domain.

1.5 About the thesis

1 .5 .1  O u tlin e  o f  th e  th e s is

This thesis mainly extends the M PC /G PC  design methods from the single-rate setting 

to multirate settings by using the lifting technique, and handles the so-called causality 

constraint in the extension. It also incorporates some results on non-uniformly/multirate 

sampled systems, such as the modeling from the continuous time to the lifted discrete time, 

the identification of the continuous time delay via interactor matrices of lifted models, and 

the multirate discretization of analog controllers.

The thesis is organized as follows. As an introduction to  the widely-used GPC algo

rithm, Chapter 2 gives a general review for GPC in a single-rate setting; and describes its 

three main elements in details: (i) the prediction model (ii) the objective function and (iii) 

derivation of the control law.

Chapter 3 presents an optimal and causal GPC solution to the non-uniformly sampled 

system and contains two parts. In the first part, the non-uniformly sampling and updating 

strategy is introduced, and a lifted discrete model for the non-uniformly sampled system is 

derived from the continuous-time model. The causality structure for the feedthrough terms
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in the lifted controllers is studied, and a sufficient condition is proposed for the lifted models 

to preserve observability and controllability. In the second part, a new GPC algorithm for 

non-uniformly sampled systems is obtained, which results in causal optimal controllers and 

works effectively in a simulation example.

Chapter 4 deals with the direct sampled-data GPC design for a special case of multirate 

systems, the dual-rate systems. The GPC problem is formulated as a sampled-data problem 

with the performance index expressed in terms of continuous-time signals to capture the 

inter-sample behavior. Design procedures are summarized and an explicit solution is given. 

Its advantage over the indirect GPC design is emphasized by an example.

As a model-based predictive control scheme, the natural question th a t arises is: how do 

dual-rate GPC controllers affect robust stability of closed-loop systems in the presence of 

model-plant mismatch? Such analysis will be carried out in Chapter 5. Using certain tools, 

it is concluded tha t if the input control rate is fixed, the robustness of the dual-rate GPC 

algorithm can be improved as the sampling ratio decreases.

In Chapter 6, two interesting issues on multirate systems are studied. One is the mul

tirate discretization of analog controllers. Discussion related to this issue and the results 

of interest are considered in the frequency domain. The other is the continuous time de

lay identification problem, and some results show tha t there exists relationship between 

continuous time delays and interactor matrices of lifted models.

The significant contributions of this thesis are outlined in Chapter 7 and future research 

directions are indicated.

Since this thesis is written in a paper format, some degree of overlap could not be 

avoided. For example, the original GPC proposed by Clarke et al. [24] in 1987 is mentioned 

more than once.

1 .5 .2  N o ta tio n

In this thesis, sampled-data systems are studied and both continuous and discrete time 

signals are involved. Referring to Figure 1.1, the following notation is used throughout 

the thesis: continuous-time signals evolve over time t (real valued), closed by the round 

brackets, e.g., u(t); discrete-time signals evolve over time k (integer valued), closed by the 

square brackets, e.g., u[k]. This convention applies to signals in a sampled-data system, 

e.g., u[k] is u(t) sampled at the k-th sampling instant.

For figures representing multirate sampled-data systems, we use continuous arrows for 

the continuous-time signals and dotted arrows for discrete-time signals; when two sam-
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pling rates exist in discrete time, we use high-frequency dots for fast-rate signals and low- 

frequency dots for slow-rate signals.

When the lifting technique is applied to multirate systems, all the lifted models and the 

lifted signals will be underlined, if no confusion arises.

Models in this thesis may be represented in both transfer function and state-space 

framework. If no confusion arises, a polynomial in the transfer function will be denoted as, 

for example, a(q~1), with q~l as the backward shift operator. The forward shift, backward 

shift and the difference operators are defined as follows:

qy[k\ = y[k +  1], (1.1)

q~l y[k] =  y [ k -  1], (1.2)

Ay[k] =  (1 -  q~l )y[k} -  y[k] -  y[k -  1], (1.3)
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C hapter 2

R eview  of Single-Rate GPC

Generalized predictive control (GPC) was proposed by Clarke, Mohtadi and Tuffs [24, 

25] in 1987. It uses ideas from Generalized Minimum Variance (GMV) [22] and is with 

“general” purpose for the stable control of different types of practical systems, especially 

those systems with problems such as (i) non-minimum-phase (ii) unstable (iii) unknown or 

variable dead-time and (iv) unknown dynamic order. Due to  its advantages, GPC has been 

successfully implemented in many industry applications during the past decades. For these 

achievements, one can refer to papers such as [9] by Beaumont et al., [26] by Clarke, and 

[74] by Camacho et al,  just to name a few.

The GPC research literature is by now large. For example, to develop GPC in the state- 

space domain, efforts have been made by Albertos and Ortega [1], Zhu et al. [118], Morari 

and Lee [69], and Ordys and Clarke [75]. To overcome the drawbacks of the discrete-time 

formulation, continuous-time GPC was presented by Demircioglu and Gawthrop [32], and 

sampled-data GPC was developed by Masuda et al. [62]. To obtain better robust properties 

in the case of time-delay systems, a different predictor in GPC was used by Normey et 

al. [73, 74]. To guarantee closed-loop stability, a series of work on constrained receding- 

horizon predictive control (CHGPC) and stable generalized predictive control (SGPC) have 

been reported by Clarke and Scattolini [28], Kouvaritakis et al. [49], and Rossiter and 

Kouvaritakis [93]. Systematic studies on GPC problems also exist. Bitmead et al. [11] 

analyzed the inherent characteristics of all the MPC algorithms (especially the GPC) from 

the point of view of Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian 

(LQG) control theory. Camacho and Bordons [14] presented the most recent contributions 

on implementation issues of MPC (mainly on GPC) for the industry community.

As a member in the class of MPC controllers, GPC has many ideas in common with 

the other MPC controllers; for example, it also possesses three elements: the prediction
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model, the objective performance cost function and the way to obtain the control law. In 

the remaining of this chapter, these elements will be discussed in detail, showing the general 

procedure to obtain the control law, and its characteristics.

2.1 Prediction model

A prediction model is the corner stone of M PC /G PC  controllers. Based on the model, 

prediction of the future output signals is forecasted. Thus the prediction model should be 

able to fully capture the process dynamics.

GPC has been developed in both the polynomial and the state-space domains, thus 

models can take different forms for different purposes. Here we introduce four models 

which we will use to derive our multirate GPC algorithms in the next several chapters.

1. C A R IM A  m odel

The model used in the GPC method of Clarke et al. [24, 25] is given in the following 

CARIMA (Controlled Auto-Regressive and Integrated Moving Average) form:

a(q~l )y[k] = b{q-1)q~du[k -  1] +  c(q~1) ^ - ,  (2.1)

where u and y are the input and output signals, respectively; e is a zero mean white noise; d 

is the dead-time of the system; a, b and c are polynomials with a and c monic; A =  1 — q~l 

is the difference operator.

Note here:

• By including an integrator, an offset-free steady state control could be achieved for 

systems represented by model (2.1).

• The disturbance term in model (2.1) is given by a white noise e colored by c/A . 

Normally the polynomial c is considered to be 1.

•  Later in this thesis, we will include the dead-time term q~d into the polynomial 6(g_1) 

for the reason of simplicity.

•  Usually c is used to model the disturbance signal and hence improve disturbance 

rejection; or, in some cases, to enhance robustness of the closed loop [27, 12, 8]. 

However, the design of c is not systematic in general and only a few basic guidelines 

have been given [63, 68, 91, 116].
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A CARIMA model for an n-output, ra-input multivariable process can be expressed as:

A(g_1)j/W =  B(q~1)u[k -  1] +  C(r t f ,  (2.2)

where A (q~ 1) and C (g_1) are n X n monic polynomial matrices and B(g-1 ) is an n x m  

polynomial matrix. If a transfer matrix of a multivariable process, say, G (g-1 ) is given, 

a m atrix fraction description (MFD) of the multivariable process, i.e., A {q~l ) and B(g~1) 

can be obtained by certain methods. The most simple way of accomplishing this task is 

by making A (q _1) a diagonal matrix with its diagonal elements equal to the least common 

multipliers of the denominators of the corresponding row of G (g_1). M atrix B (g-1 ) is then 

equal to B(g_1) =  A (q~ 1)G(q~1)q. For more details, refer to [14].

2. Transfer function m odel

The SGPC by Kouvaritakis et al. [49, 93] employed a transfer function model, which 

uses the concept of transfer function G — bja  and has a form as follows:

a{q~x)y[k] =  b(q~l )u[k], (2.3)

with a , b polynomials, and u, y the input and output signals.

In practical, this transfer function model can be considered as the rearrangement of 

CARIMA model in (2.1). Rewrite (2.1) as follows (for simplicity, we will omit q~x in the 

polynomials if no confusion arises):

(aA) y[k]' A u[k — 1]
+  e[k],

we see tha t c acts to filter the input-output data  and hence to remove the high frequency 

noises.

Define two filtered variables:

m = hM, Au>[k _ u  = M*-n
c c

and two new polynomials:

a' = aA, b' =  bq~d~1,

we obtain

a'y'[k] =  b' Au'[k] +  e[k]. (2.4)

Note th a t e is a white noise with zero mean, so the predictions of future output signals of 

model (2.3) and model (2.4) should have the same forms. For industrial applications, GPC 

algorithm are normally derived by using this transfer function model [94, 95], for the reason
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tha t models are usually identified from the filtered input-output data. The predicted signal 

y' obtained this way has to be filtered by c(g-1 ) in order to get the real prediction y.

3. State-space m odel

A simple state-space model without consideration of disturbances was used by Masuda 

et al. [62]. This model has the following representation:

x[k + 1] =  Ax[k] +  Bulk] 
y[k\ =  Cx[k\, (2.5)

where x is the state, and A, B,  and C  are the system, input and output matrices, re

spectively. Compared with the transfer function expression, the state-space representation 

is capable of handling multivariable or MIMO systems in a very straightforward manner; 

however, the issue of state estimation arises.

4. A state-space equivalent o f  C A R IM A  m odel

A state-space equivalence of the CARIMA model in (2.1) has been shown in [75] by 

Ordys and Clarke. It is described as follows:

u[k], the increment of control signal Au[k] appears, and correspondingly, one of the eigen-

matrices A, B,  C, F  and the polynomials in (2.1). If the absolute values of the eigenvalues 

of the matrix (A — FC)  are less than one, then the state estimation can be given by the 

steady-state Kalman filter:

2.2 O bjective function

Based on a specified prediction model, cost functions in M PC /G PC  controllers are mini-

x[k +  1] =  Ax[k] +  BAu[k\  +  Fe[k\ 
y[k] = Cx[k\ + e[k). (2 .6)

Compared with (2.5), the integral action is included in (2.6). In place of the control signal

values of the m atrix A  equals to one. Note tha t there exists explicit relations between the

x[k -j- 1] =  (A — FC)x[k] +  BAu[k]  +  Fy[k]. (2.7)

mized to obtain the control law. The aim of GPC is to  minimize a partially constrained 

quadratic optimal control criterion, which is in terms of the incremental inputs and outputs 

of the plant. This cost function is:

J[k] = E < s lj] {v[k + j] ~ ™[k + j]}

13

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



Nu I
+ J 2X \ j ] {A u[k  + j - l ] } 2 \ ,

subject to Au[k + j] =  0, j  = N u, N u + 1, ■ ■ ■, N 2, (2.8)

where Ni  and N 2 are the minimum and maximum prediction horizons and N u is the control 

horizon; u and y are the input and output signals; w is the reference signal for the system to 

track; S[j] and X\j] are the weighting sequences for the tracking error and the incremental 

control signal. The expectation in (2.8) indicates tha t the future control sequence are 

calculated by data  available up to and including time k, and presuming the stochastic 

disturbance model. Thus the design of GPC is in fact a standard finite horizon optimal 

control problem.

Note the following:

•  The minimum cost horizon Ni  can always be taken as 1. In cases tha t the dead-time 

of the plant is already known as at least d sample intervals, this N\  can be chosen as 

d or more to minimize the computation. In this thesis, we always set Ni — 1.

•  The maximum prediction horizon N 2 should encompass all the response which is 

significantly affected by the current control. Usually N 2 is chosen as larger than 

the degree of polynomial 6(g-1 ); and more typically, a rather larger value of N 2 is 

suggested, corresponding more closely to the rise-time of the plant. A default setting 

for N 2 is 10. In this thesis, N 2 is chosen as different values, according to different 

models and design purposes.

•  The control horizon N u is chosen to be N u < N 2. This means after N u intervals, the 

projected incremental controls are assumed to be zero. This is equivalent to placing 

effectively infinite weights on control changes after some future time. Usually N u =  1 

will be adequate for typical industry plants to get reasonable performance. In this 

thesis, as a tuning parameter, N u is chosen to be an integer greater than 1 for higher 

performance. And sometimes we choose N 2 — N u = N  for the reason of simplicity in 

the calculation.

•  GPC can adopt both constant and varying future setpoints. In most cases, the refer

ence signal w[k + j] will be a constant w equal to the current setpoint w[k]. In some 

cases, w[k +  j] can be a smooth approximation from the current value y[k] towards 

the known reference by means of a simple first order lag system:

w[k] = y[k],
w[k + j] = aw[k +  j  — 1] +  (1 — a)w, j  = 1, 2 , \ ’ )
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where a  is a parameter between 0 and 1. It influences the dynamic response of the 

system, and the closer to 1 this value, the smoother the transition from the current 

measured variable to the real setpoint w. In this thesis, w[k +  j] will be taken as a 

constant.

•  The weighting sequences <$[/] and A \j] are usually chosen constant or exponentially 

increasing. In this thesis, 8\j\ is chosen to be 1 and A[j] is set to be a tuning constant 

A; and thus a simplified cost function of (2.8) is:

N2 N u

J[k] =  2  +  f t  ~ w \.k +  i ]}2 + X J 2  +  3 -  l ]}2 • (2 .10)
i=N i  i=i

2.3 Obtaining the control law (constraint-free)

To calculate the control sequence

Au[k  -f i -  1], i -  1 ,2, • • •, N u,

we need to  minimize (2.10) with the knowledge of the prediction model. To do this, the 

key step is to write out the i-step ahead prediction of the future output signal y[k +  i\k], 

based on all the information available up to  the current time k. We assume tha t during the 

minimization procedure, there is no constraint on the control signals, for otherwise there 

does not exist an analytical solution.

1. C ontrol law for th e C A R IM A  m odel

The prediction for CARIMA model (2.1) involves the use of two Diophantine equations, 

which is standard in the theory of prediction of such stochastic processes [24]. The first 

Diophantine equation is:

c(q~l ) = Ei{q- l )a(q~1) A +  g~JF;(g_1), (2.11)

where E{, F,- are polynomials and the degree of Ei{q_1) is i — 1. Referring to (2.1), without 

loss of generality, assuming the time delay d =  0 , and dropping the operator q-1 , we have:

y[k +  i] =  -u[k  +  i -  1] +  Eie[k +  i\ +  ~jre[k] (2 .12)
(I {7: / \

— ~y[k]  H— — Au[k +  i — 1] +  E{e[k +  i], (2.13)

where (2.13) is derived by replacing e[k] in (2.12) with (2.1), and e[k +  t] in (2.13) is 

independent from the signals known at time k. The minimum variance prediction of y[k + i]
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is thus given by:

y[k +  i\k] = -~y[k] +  ^ - A u [ k  +  i -  1]. (2.14)

Next we use the second Diophantine equation to write out past and future control incre

ments:

£;(<T1) % - 1) =  G iiq -1 M g - 1) +  q ^ G i i q - 1), (2.15)

where G{ is a polynomial of order i -  1 and is given by

Gi — gift +  1 +  gi,2q 2 +  — 1- §i,i-iq ^

A new form of prediction for y[k +  i\ is then yielded:

y[k + i\k] =  Gi(q~1)Au[k  +  i -  1] +  y[k +  i\k]

where y[k + i\k] =  ,F\ , y[k] +  ,G\ , Au[k  -  1].
c(g -i) c (g -J)

When i varies from iVi =  1 to N 2 > N u with the following definitions:

T
Y[k ] =  [ y  [k+l\k]  y[k + 2\k] 

y[fc] =  y[k+l \k]  y[k + 2\k]

y[k + N 2\k] 

y[k + N 2\k]

AU[k] Au[k] Au[k  +  1] • ■ • Au[k  +  iVu — 1] J

T
5

T

all the i-step ahead predictions can be written in a compact form:

where

G =

Y[k] =  G ■ AU[k] +  Y[k],

9 1 . 0

92.1 92,0

9 N u, N u - l 9N u , l

(2.16)

(2.17)

(2.18)

(2.19)

(2 .20)

. 9 N 2,N2- 1    9 N 2,N2- N U+1 .

and the matrix G  is Toeplitz (according to equation (2.16), the first i coefficient of G{+i 

will be identical to those of Gi). The performance index (2.10) can thus be written as:

J[k] =  (Y[k] -  W[k])T (Y[k] -  W[k]) + XAU[k]TAU[k),

where

W[k] — w[k +  1] w[k +  2] w[k +  iY2]

(2 .21)

(2 .22)
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and the minimization of J[k] with respect to AU[k] (at time instant k) results in the 

following constraint-free optimal control law:

AU[k] = (Gt G  +  Ai y lGT {W[k\ -  Y[k]). (2.23)

2. C ontrol law for the transfer function m odel

The prediction for the transfer function model in (2.3) is more straightforward than 

tha t for the CARIMA model. The control law can be calculated without the use of the 

Diophantine equation [93, 95]. Add an integrator to the model (2.3), i.e.,

(a(g~x)A) • y[k] = % ~ x) • Au[k],

and assume

A(g~x) =  a(q~1) A - l  + A 1q~1 + A 2q~2 -\ b Aiq~l,

b(q~1) — b0 +  6ig_x +  b2q~2 4 b k q ~ l ,

with I the order of the system, (2.3) can be rewritten as:

y[k] =  boAu[k] +  biAu[k — 1] +  • • • +  biAu[k -  I]

- A i y [ k  -  1] -  A 2y[k -  2 ] -----------Aiy[k -  I].

Then the Tstep ahead prediction of future output based on information available at time k 

is:

y[k + i\k] = M [i ]Au{k] +  ■ • • +  M ^ A u [ k  +  i]

+ N ^ A u [ k  — 1] +  • • • +  iv|^An[fc — 1+1]

+Dfy[k]  +  ••• +  D f y [ k  -  I +  1], (2.24)

where (-)W (i =  1, 2 • • • ,-/V2) is used to denote parameters for the i-step ahead prediction,

and:

M{1] =  h , M f ] =  b0, (2.25)

AW =  6a , a  =  2 ,3, ■ • •, (2.26)

=  —Ap, /3 =  1 ,•••,!, (2.27)

Ml/ 1 -  € ] +  X > M 4 ], a  =  0,1, • • • ,7 , 7  =  2 ,3, • • • ,7V2,
A:=l

AW =  +  a  =  2 ,3, 7  =  1,2, • • •, iV2,
fc=i
7 - 1

47] -  4 + 7 - 1 +  E 4 ]4 ~*] «  =  i , 2 , T =  2,3,• • • , n 2 .

k =1
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The remaining symbols not covered in (2.25), (2.26) and (2.27) are taken to be zero, e.g, 

2V|1] =  0 with x > I.

Defining Y[k], AU[k], W[k] as in (2.18), (2.20), and (2.22), and letting i change from 

iVx =  1 to iV2 > N u, we have a compact form for all the N 2 prediction equations:

where

Y[k} = PxAU[k] +  P2AUp[k] +  P3Yp[k],

M [1] m W

P i  =
I] m ^n

P2  =

.

r  4 1]
4 2]

N 3 ] ■ •

A f ] ••

• W j[1]

■ ^ / 2]

N ™ N ™  • • ■ A p ] .

P 3 =

'  D ®

D \ i2]

D [1] • •  

D f  • •

• ■ 
-*? 

.-1
?

1

.  d ™ D ™  • • D m  _

A  Up[k\

Yp[k] =

A u[k — 1]

A u[k — 1 -f 1]

y[k]

.  y[k -  /  +  1]

The optimal constraint-free GPC solution can thus be derived by making the gradient 

of J  equal to  zero:

A U[k] =  (P1I P1 +  X I ) - 1 P^[W{k]  -  P2AUp[k\ -  P3Yp[k]). (2.28)

3. C ontrol law for th e state-space m odel

From model (2.5), the i-step ahead prediction of the future output is as follows:

y[k +  i\k] — Cx[k +  «]
C A %x[k\ +  C A i  1 Bu[k +  i -  j], when i < N,
C A lx[k] +  C A l- iB u[k  +  j  -  1]. when i > A, (2.29)

When i varies from N x — 1 to N 2 > N u, all the N 2 predictions can be put into one equations:

Y[k] =  G • U[k) +  #  • x[k],
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where we have defined: 

U[k\ =

G

u[k\ u[k +  1] • • ■ u[k +  N u -  1] 

C B  
C A B  C B

C A N»~l B  '•

c a n*~xb

C B

. . .  C A N2~N- B

$  = (CA)t  ( C A Y  (CANY  f

and Y[k] is the same as in (2.18).

Note here tha t

U[k] =  AU[k] +  U[k -  1],

the minimization of J[k] in (2.21) with respect to A U[k] then gives the constraint-free 

solution:

A U[k] =  (Gt G +  X i y lGT (W(k] -  G ■ U[k -  1] -  $  • x[k]), (2.30)

where the future reference sequence W[k\ has been defined in (2.22).

To estimate the state x[k\ in (2.30), a full-order observer could be used:

£[& +  1] =  Ax[k] +  Bu[k\ +  L(y[k] — Cx[k]),

=  (A — LC)x[k\ +  Bu[k] +  Ly[k\. (2.31)

Here L is the observer gain and (A -  L C ) is chosen to be stable.

4. Control law for th e sta te  space equivalence o f  th e  C A R IM A  m odel

For model (2.6), the output signal at time instant k +  i, i =  1, 2, • • •, IV2 is:

i
y[k + i] = C A ^ lk ]  +  y~) CA^~l Fe[k + i — j ]

j = 1

. r, ELi CA3~l B&u[k + i -  j], when i < N u
+  L +  J +  |  C A ^ B A u [ k  + j -  1). when i > 1VU

Based on the information available up to and at time instant k, the i-step ahead prediction 

of output can then be derived:

y[k +  i\k] =  C A lx[k] + C  A 1 1Fe[k\ 

j  E L i  C A :’~1BAu[k  +  i — j], when i < N u 
+  ( Ej=i CA'~^BAu[k + j -  1], when i > N u

(2.32)
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here x[k] and e[k] are the estimates of the state x[k] and the disturbance e[k\, respectively. 

Moreover, all the estimation of future disturbances has been set to  be zero since e is assumed 

to be white noise with zero mean. Replacing e[k] in (2.32) by (2 .6), i.e.,

e[k] =  j/[fc] — Cx[k],

then (2.32) can be rewritten as:

y[k +  i\k] =  C A l- l {A -  FC)x[k] +  C A l~l Fy[k]
( C A i~ 1BAu[k  +  i — j], when i < N u 
\  £ ? = i CA'~ iBAu[k  + j  — 1]. when i > N u

(2.33)

Again, when i takes values from Ni  =  1 to iV2 > N u, all the N 2 predictions of future output 

signals can be collected into one compact equation:

Y[k] = G  ■ A U[k] +  #  • x[k] + T • y[k],

where Y[k], AU[k) are the same as in (2.18) and (2.20); and matrices G, <f>, and F are 

defined as follows:

C B
C A B  C B

G  =
C A n ^ B C B

C A n2-1B  .............. C A n*~n *B

$  =  

r  =

(C)T { C A f  

(CF)t  (C F 2f

{CAN*~ 1)T 1 (A -  F C ) ,

(CFN*YJ

At time instant k, with the same W  in (2.22), the following optimal constraint-free control 

law can be obtained:

A [/[A;] =  (Gt G +  \ I ) ~ 1GT (W[k] -  $  • x[k] -  F • y[k}). (2.34)

The state x[k\ in (2.34) can be directly estimated by the steady-state Kalman filter (2.7).

2.4 Some remarks

Once the future incremental control sequence A U[k] is calculated at time k, only the first 

element Au[k] will be implemented to the process, i.e., u[k] — u[k — 1] +  Au[fcj. At next
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sample time, all the procedures will be repeated. Thus GPC is a receding horizon control 

strategy.

When we derive control laws, we have assumed tha t there is no constraint on the inputs 

and outputs. However, in practice, all processes are subject to constraints. For example, 

the valves are limited by the positions of totally open or closed and by the response rate. 

Normally, the constraints on a system can be the bounds in the amplitude and in the flow 

rate of the control signal and limits in the output:

‘U’m in  — u[/r] Umax ,  \/k

tl[k 1] \/k

V m in  ^  y \ k \  J: U m a x • V A l

When these constraints are added, the minimization of the cost function in (2.10) will 

become more complex. An explicit solution does not exist in the presence of constraints. 

To find the optimal solution, the quadratic programming (QP), or the convex optimization 

methods with LMI can be used.

Many processes are affected by external disturbances caused by the variation of variables 

tha t can be measured. And it is possible to extend the original GPC algorithm to include 

the case of measurable disturbances [14]. Including the disturbances, the CARIMA model 

changes to:

=  K<l~l )u[k ~  1] +  d {q~r)v\k\ +  (2.35)

where v[k] is the measured disturbance at time k and d(q~1) is a known polynomial. By 

using the Diophantine equation, the i-step ahead expected value for y[k +  i] can be inter

preted as a combination of the free response and forced response. There will be one term 

in the forced response tha t depends on the future deterministic disturbances. Thus the 

prediction of y[k +  i] is related with the properties of the disturbance. The final optimal 

control law has a similar form as tha t for the case with no measured disturbances; it only 

differs from (2.23) in tha t the future “known” disturbances will affect the control law for 

systems described by (2.35).
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C hapter 3

GPC for N on-Uniform ly Sampled  
System s

3.1 Introduction

Generalized predictive control (GPC) [24, 25] has found wide applications in the process 

control industry, mainly due to its features such as the time-domain formulation, reced

ing horizon scheme, and constraint-handling capability. Most studies on GPC assume a 

single-rate sampling scheme [11, 14]. The main purpose of this chapter is to extend GPC 

algorithms to more general sampling and updating schemes.

One extension from single-rate systems is the class of multirate systems. The relevance 

and importance of multirate processes in the M PC /G PC  framework have been recognized 

by several researchers over the last decade, for example, Lee et al. [54], and Scattolini et al. 

[99]. They investigated multirate M PC /G PC  design in the state-space setting, but dealt 

with the time-varying nature of multirate systems directly in the time domain. To avoid 

the complex time-varying systems and problems, our approach to multirate GPC extension 

will be through the use of the lifting technique.

The idea of lifting was due to Kranc in 1957 [50], in which he proposed a switch decom

position technique; this was later developed into the widely used lifting technique by Khar- 

gonekar et al, [47]. There are several advantages in using the lifting technique: First, it is 

conceptually simple -  lifting converts a time-varying multirate system into a time-invariant 

single-rate system, for which there is a rich source of results. Second, lifted control moves 

are computed over a larger interval which is usually integer multiples of the sampling and 

updating periods; this implies tha t there is a computational advantage in GPC optimization 

over the time-varying state-space methods in [54, 99]. Third, lifting gives rise to an LTI 

framework in which stability and robustness analysis of the resultant closed-loop systems
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can be done in a relatively easy manner comparing with the time-varying methods. How

ever, the obstacle in using the lifting technique is the so-called causality constraint, which 

enforces certain structural constraint in the controller feedthrough terms. How to handle 

this causality constraint has been the main challenge in the robust multirate control [19], 

and it remains to be an unsolved problem in the GPC design (although idea similar to 

lifting has been applied to multirate M PC /G PC  topics [16, 61], the causality constraint in 

the design has not been taken into account). One of the main objective in this chapter is 

to propose a solution to tackle the causality problem in the GPC framework with a more 

general sampling and updating scheme -  the non-uniformly sampled systems.

There are three main reasons for non-uniformly sampled systems to arise: First, in 

typical applications, a distributed computer system is usually used to implement digital 

control operations, in addition to other tasks such as process monitoring and setpoint op

timization; in such task-sharing situations, it is more reasonable and cost-effective to allow 

non-uniform sampling and updating operations. Second, the non-uniform sampled systems 

are quite general and include multirate sampled-data systems as special cases, e.g., for a 

multirate system as shown in Figure 1.1 with a period of 2h for S  and a period of 3h for 

H,  the sampling and updating pattern is periodic with period T  = Qh, but the sampling 

(updating) instants are equally spaced. Third, there are advantages in non-uniformly sam

pled systems over uniformly sampled ones, e.g., Kreisselmeier [51] proposed a non-uniformly 

sampled (but periodic) scheme which always preserves controllability and observability in 

discretization. (Recall tha t a non-pathological sampling condition is required to guarantee 

controllability and observability in the uniformly sampled case, see, e.g., [20].)

Research activities on non-uniformly sampled systems exist: Except the reference in 

[51] mentioned earlier which dealt with controllability and observability issues; modeling 

of slowly sampled, fast and non-uniformly updated systems was studied in [97]; and a 

receding horizon control problem was investigated in [2], where non-synchronized discrete- 

time signals were treated. These studies all assumed the sampling and updating patterns 

are periodic (with a frame period T),  but the patterns are special cases of what we will 

propose here in the chapter.

Briefly, the contributions in this chapter are as follows:

•  Using the lifting technique, we derive a state-space model for the non-uniformly and 

periodically sampled system in discrete time, based on the continuous-time model; a 

sufficient condition on sampling is given under which the state-space model is both 

controllable and observable.
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• We present a solution to the GPC problem for non-uniformly and periodically sampled 

systems, treating the causality constraint by grouping output samples appropriately. 

The solution is based on the input-output approach in [93, 95]. To our best knowledge, 

this is the first causal and optimal solution proposed for the lifted models.

•  Such a causal GPC solution in the lifted domain is new even in the special case of 

multirate systems in which the causality constraint has been the main difficulty in 

G PC /M PC  design using the lifting framework [102].

The rest of the chapter is organized as follows. Section 3.2 studies modeling issues for the 

non-uniformly and periodically sampled systems, from continuous time to the lifted discrete 

time. Controllability and observability of the lifted models are also addressed. Section 3.3 

forms the main contribution in this paper by formulating the non-uniformly sampled GPC 

problem and deriving a causal and optimal solution. Section 3.4 presents an illustrative 

example for the results in Sections 3.2 and 3.3. Finally, in Section 3.5, concluding remarks 

are given.

3.2 M odeling o f non-uniformly sampled system s

In view of Figure 1.1, in this section we define precisely the non-uniform sampler S  and 

zero-order hold H,  and derive a state-space model in the lifted domain. For simplicity, we 

focus on the single-input, single-output (SISO) case.

3 .2 .1  T h e  sa m p lin g  and  u p d a tin g  sch em e

In Figure 1.1, the continuous-time process P  is assumed to have the following state-space 

representation:
f x(t) =  Ax(t)  + Bu{t),
\  y(t) =  Cx(t)  + Du(t),  [6-L)

where x(t) G R n° is the state, u(t) € R 1 is the control input, and y(t) G R 1 is the output.

Non-uniformly sampled systems are characterized by the fact tha t both the control 

updating instants (when u[k] occur) and the sampling instants (when y[k] occur) need not

be equally spaced in time; however, for tractability we adopt the same assumption as in

[97, 2] tha t the whole sampling and updating pattern is periodic over a larger interval T,  

known as the frame period. The notation and arrangement with the sampling and updating 

are as follows:
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•  Over the k-th  period [kT, (k -f 1 )T), we assume the control signal u is updated non- 

uniformly m  times at time instants k T + t i ,  i =  1 , 2, • • •, m.  W ithout loss of generality, 

we can take t\ =  0 and arrange t\ < t i  < ■ ■ • < t m < T .

•  Over the period [kT, (&+ 1)T), there are rii (n,- > 0) output samples available within 

the time interval [kT +  L, kT +  £;+i), i =  1, 2,• • •, m (denoting tm+i =  T); these

rii output samples occur at time instants k T  + t j , j  — 1,2, 

generality, we arrange these t- in the following order:

W ithout loss of

U < t] < t f  < < t ?  < t i+1-

Thus during each period of T, the control signal u is updated m  times, and the output signal

y is sampled p — n\ +  n2 -I V nm times, all non-uniformly. Such a sampling and updating

scheme is briefly illustrated in Figure 3.1. We remark tha t the non-uniform sampling and 

updating scheme introduced is quite general: Compared with the one used in [2], we do not 

assume tha t the sampling and updating instants are integer multiples of some base period.

Y(k)

Jk_. yVm

k r + o
|
y(kT + Q

| | 
y(kT  + Q y ( k T + o

kT + tx) 1 u(kT + t 2) u(kT + 0  • ■ ■ ■------ li--- 1------------- u(kT + tm) ^

k T ( k + 1  ) T
U(k)

Figure 3.1: The non-uniform sampling and updating scheme

Single-rate GPC problems are usually framed in the discrete-time domain [24, 25, 93, 

95]. We will next discuss the lifting technique and lifted discrete-time models for the non- 

uniformly and periodically sampled systems.

3 .2 .2  L iftin g , lif te d  m o d e ls  and  th e  c a u sa lity  co n stra in t issu es

Looking at the system discussed earlier in discrete time, from u[k] to y[k], it is clearly 

time-varying, due to the non-uniform sampling and updating scheme. However, if we group 

every m  input values and every p output samples together, we have a p X m  LTI system 

operating over period T; this is the idea of lifting.
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Let v[h\ be a discrete-time signal:

v = {u[0], u[l], u[2], • • •}.

For a positive integer n, the n-fold lifted signal, denoted v is defined as

(3.2)

v[0] v[n\
\

<
«[1] v[n +  1]

.  v[n -  1] _ v[2n -  1]

v =

The map from v to v is defined as the lifting operator L n . The inverse lifting operation, 

L~ l , is from v to v, defined in the obvious way.

The non-uniformly sampled system from u[k] to y[k] is linear but time-varying. Because 

the sampling and updating scheme is periodic with period T,  we can use lifting to convert 

the system into an LTI system. Lifting u[k] by Lm and y[k] by Lp and noting tha t p =  

ni  +  n 2 +  • • • +  nm, we get u[k] and y[k], corresponding to inputs and outputs over the 

interval [kT, (k +  1)T):

u[k]

u(kT  + ti) 
u{kT  + 12)

u(kT  + tm)

y[k] =

n i
y (kT  + t{)

. y (kT  + t ? )  

y(kT  + tjn)
Tim <

(3.3)

. y (* r  +  i”m)

The lifted system, Pi, maps u[k] to y[k], and has m  inputs and p outputs. From Proposi

tion 1 below we will see tha t P\ admits a state-space realization in terms of given continuous

time model in (3.1) and the sampling and updating instants; hence P\ is LTI, an advantage 

of lifting.

P ro p o sitio n  1 A state-pace model for the lifted system Pi is given by

p i  x[k +  1] =  Ax[k\  + B_u[k], 
1 ' ( y[k] =  Cx[k] + Du[k],

where := x{kT),  and

A  =  e

C

AT
B  — i l l  B o  • • ■ B n

'  Ci  ‘ '  D\
c 2

, D =
D\ D 22

. . .Din D 2m . £)m

(3.4)

(3.5)

(3.6)
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with

Bi =  

Ci =

D\  =

f  eAT Bdr,  i =  1,2, • • •, to,
JT-U+!

.At} 'Ce

CeAt?'

CeArB dr  +  D 

$ ' - * *  CeArB dr  + D 

6 ~ l 3 CeATBdr

f X  I 3 CeATBdr

, i — 2 , • • •, m; 1 < j  < i.

h - h + i

P ro o f  Solving the state equation in (3.1) from kT  to (k +  1 )T,  we have

r(fc+l)T
jc((fr +  1)T) =  e((fc+1)T- fcT)Ax(A:r) +  /  " ' e((H 1)T -r)4B tt(r )(fj

JkT

Since
u(kT  -f t \ ) ,  t  £ [AT +  ti> k T  -f- £2);

tt(r) =  <
u(kT  +  tm), r  € [AT +  tm , k T  +  T),  

the state at time (A; +  1 )T  in (3.9) can be rewritten as:

771 j.fcT-j-ti,i - i

x((k  +  1)T) =  eATx(kT)  +  V  /  e[(fc+i)r-r]AB d r +  ^
-/w’+4*

For i from 1 to m, note tha t ix =  0, tm+i =  T,  and

r ‘ T + “ + 1  e ( ( H i r  ■ ' '  , T ~ U
Ik T + U  i j+ i

Using the definitions in Proposition 1, we get easily:

/Jkl
ÂBdr  =  ( T *’ eArBdr.

JT—ti+i

(3.7)

(3.8)

(3.9)

+  1] =  Ax[k] +  B_ u[k].

Also, for the output equation, we have

y (kT  +  ti) — C x (k T  + 1?) +  D u(kT  +  U), 

where i = 1,2, ■ ■ ■ , m  and j  = 1,2, • • • ,n2-. The state a t each time instant can be written as

x (kT  + 1::i) = e At’x(kT)  + V '  [ '  eAr B dr  u (kT  + ti) + /  ‘ ’ eAr Bdr  u ( k T +  T).
i=1Jti~n+1 Jo
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Putting these equations together in the definition of y[k], we arrive at the output equation 

in Proposition 1:

y[k] =  Cx[k] +  Du[k],

where C  and D. are defined as in Proposition 1. Q.E.D

Note tha t the upper triangular blocks in D  in (3.6) are zero; this represents the so-called 

causality constraint in Pp. Certain blocks in the direct feedthrough term must be zero to 

satisfy causality. Since the model for Pi is derived from the continuous-time model, the 

causality constraint is automatically satisfied. However, in controller design, the causality 

constraint on the lifted controllers poses a difficult problem. The lifted controller, to be 

designed, takes y[k] to u[k]', the causality structure for the direct feedthrough term in this 

case is summarized in the following proposition.

P ro p o s itio n  2 The direct feedthrough terms in the lifted controllers are m  X p matrices 

mapping y[k] to u[k], and must satisfy the causality constraint, which takes the following 

block lower triangular structure:

ni

ax 0 • • • 0
ni  n 2

------------ a-------------   ,-------------s.
x x • • • x  a2 0

n \  T12 n m —i rim—̂  V >■ i/S-n.HT-n-.n     •'N m.................
x x  • • • x  x x  • • • x  ••• x x  • • • x  am 0 • • • 0

. (3.10)

Here the upper triangular blocks are all zero, x means a designable element (no restriction). 

I f  t] =  ti, a,- =  x ;  otherwise, a,- =  0.

This causality constraint must be satisfied by all lifted controllers, for otherwise the 

controllers cannot be implemented in real time (some control moves would be dependent on 

future sampled values). Although lifting converts time-varying systems into LTI systems, 

the causality condition in the lifted controllers poses a hard constraint. How to handle this 

constraint is the new feature in control design for non-uniformly sampled systems. (Note 

tha t since the lifted process models are derived from the continuous-time systems, they 

automatically satisfy the causality condition.)

We remark tha t an alternative approach is to model the non-uniformly sampled system in 

terms of periodically time-varying state-space equations, thus connecting to the M PC /G PC  

methods studied in [54, 99]. In light of this, the lifting approach we adopted here amounts
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to selecting a different state vector and stacking up the inputs and outputs according to the 

frame period.

3 .2 .3  C o n tr o lla b ility  and  o b serv a b ility

In Section 3.2.2, we presented a lifted discrete-time model for the non-uniformly sampled 

system described in Section 3.2.1; the lifted model was given in the state-space form (Propo

sition 1). A natural question is: Under what condition the lifted model is controllable and 

observable?

It is well-known tha t sampling cannot gain controllability and observability; so it is 

necessary tha t we assume controllability and observability of the continuous-time model in 

(3.1). We will give a sufficient condition for the lifted model to preserve the two properties, 

namely, tha t the frame period T  is non-pathological relative to A, which means tha t no two 

eigenvalues of A  differ by a non-zero integer multiple of 2-rrj/T [20].

Theorem  1 In the discretization process from P  in (3.1) to Pi in Proposition 1, assume 

the frame period T  is non-pathological. Then

1. (A, B) is controllable if  (A, B) is controllable;

2. (C_, A) is observable if  (C , A) is observable.

P ro o f Discretizing the continuous-time model in (3.1) with period T,  we obtain a single

rate model, denoted P j:

f x[k + 1] =  A Tx[k] + B Tu[k],
T - \  y[k] =  Cx[k] + Du{k], ’

where x[k] := x(kT),  y[k] := y(kT),  u[&] is the single-rate control sequence with period T, 

and

f T
A t  =  eAT, B t  =  /  eAr Bdr.  (3.12)

Jo

Assume (A, B)  is controllable and (C, A) is observable. Because T  is non-pathological, it

follows tha t (At, St) is controllable and (C, At) is observable [20]. Next we will use this

to prove Theorem 1.

Part 1: In order to show tha t (A, B_) is controllable, we first note from (3.12) and (3.7) 

tha t m
A t =  A, B t  =  (3.13)

i= I
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since ty =  0 and fm+1 =  T.  Based on (3.5) and (3.13), it is easily seen th a t for any eigenvalue 

A of A,

rank A - X I  B > rank A — XI B t

The right-hand side equals to nc, the dimension of A,  because of controllability of {At , B t )', 

hence (A, B)  is controllable.

P a r t  2: Define the observability matrix for (C,A):

n  :=

c
C A

e-l

Because of the dimension of C, this is a pnc x nc matrix. Now we define

CeAti 
CeAii  A

Uij \=  . , t = 1, 2 , j  =  1 , 2 ,

_ C f M A * * - 1

By the definition of C  in (3.6), it follows tha t all rows in Ilf, are those of II. Hence

rank n  > rank n ^  . (3.14)

However, since eAti and A  commute and eAt> is invertible,A t3;

c C
C A

=  rank
C A

_ C A n*~l _ _ CA"*-1 _

rank n^- =  rank

which equals to n c because of observability of (C , A t ), Thus from (3.14), rank H > nc; this 

implies observability of (C, A ) . Q.E.D

Note in the proof tha t the sufficient condition in Theorem 1 also guarantees tha t the uni

formly sampled system with period T  is controllable and observable. A question may arise: 

Do non-uniformly sampled systems have any advantage over uniformly sampled systems in 

preserving controllability and observability? The answer is positive. Let us illustrate this 

with an example, looking at controllability only.

E x am p le  Consider a controllable continuous-time model with

A  =
0  — 7T

7T 0 B  =
1
0
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Take the frame period T  to be 3 sec, and m  — 3. It can be verified th a t this T  is pathological. 

If the uniform updating pattern is used, we have ti =  0, £2 =  1 , and £3 =  2. From 

Proposition 1, the lifted (A, B)  pair in this case can be computed as

(A, B) =

which is clearly uncontrollable. However, with the same conditions th a t T  =  3 and m  =  3, 

if we use a non-uniform updating pattern, say, t\  =  0 , £2 =  0 -8 ) and £ 3  =  1.2 , then we get

’  - 1  o ' 0 0 0
0 - 1 ) 0.6366 -0.6366 0.6366

' - 1  o ' ’ -0.1871 0.3742 -0.1871 '
0 - 1 J 0.5758 0 0.0608

(A,B)

which is now controllable. We comment here tha t the choice of the sampling instants is 

critical in preserving controllability properties.

3.3 GPC algorithm for non-uniformly sampled system s

In this section, we study the GPC design problem for the non-uniformly and periodically 

sampled systems discussed in the preceding section. We will see th a t conventional GPC 

algorithms fail to provide causal control laws; and we propose a new GPC solution, taking 

into account the causality constraint in (3.10). The lifted model in Proposition 1 will be 

used in setting up the problems.

In view of the lifted model in (3.4), the GPC design is to minimize a cost function of 

the form

N2

J[k] =  jw[fc + i \ -  y[k +  i\k]j ^w[k + i] -  y[k + i\k]j 
*'=1

N u
+A |Am[A: +  i — l]TAu[fc +  i — 1] j  , (3.15)

* '= i

by computing the incremental control moves A u[k +  i] for i =  0,1, • • ■, N u — 1, subject to 

the condition tha t A u[k  +  i] =  0 for i =  N u, N u +  1, • • •, iV2. The vector sequence w [ k  +  i] 

is the output tracking reference; y [ k  +  i|fc] is the i-step ahead prediction of the future lifted 

output at present time k.  The minimum and maximum prediction horizons are 1 and N 2 , 

respectively; N u is the control horizon. The weighting for the error signal between w  and 

y is an identity matrix, and for the lifted incremental control signal is a constant diagonal 

m atrix XI. For simplicity, in the following, we assume IV2 =  N u =  N.

We choose to deal with the GPC design problem in the input-output framework instead 

of the state-space framework for two reasons: First, this way we avoid estimating the state
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vector in which a causality condition arises; second, the method we use later is based on 

reformulating the GPC problem by introducing delays in certain output channels, which is 

easy to accommodate in the transfer function domain, but not in the state-space domain 

(state dimension is increased with the time delays). Including an integrator 1/A  to the 

lifted model in (3.4), we can obtain a transfer function representation from A u to y:

(3.16)

where d(q *) is the common denominator (polynomial in q *) of the form

d{q 1) =  1 +  d\q 1 +  d2q 2 +  • • • +  d\q  ̂ (3.17)

(assuming the order of the system involved is I), lV(g-1 ) is a p x m  matrix polynomial of 

the form
' N n i q - 1) N 12(q~l ) N lm{q~l ) '

/Vooin-C . . .
(3.18)N i q - 1) =

' N n i q - 1) N 12(q~l ) 
iV2i (g - : ) I M r 1) •••

Nim{q  *) 
N 2m {q~l )

. N pi(q~l ) N p2(q~1) ••• Npm{q *)

with each element being an F th order polynomial:

Nij{q~1) == Nfj + N ^ q  1 +  IV,2 g 2 + (3.19)

In the following, we will omit q~l in the polynomials, if no confusion will arise.

3.3.1 Conventional GPC design

First, following [93, 95], we review how the GPC solution is derived, without considering 

the causality constraint. This solution will be helpful in two ways: First, it illustrates that 

the conventional GPC solution is not implementable in the lifted framework, because it is 

noncausal; second, based on this solution, we will propose a causal GPC solution.

Rewrite (3.16) as follows:

y[k\ — lVoAu[fc] -f NiA u[k  — 1] +  ■ • • +  N;Au[k — I] 

- D iy [ k  -  1] -  D 2y[k -  2 ]  Diy[k -  /]. (3.20)

Here, based on (3.18) and (3.17), we have

Ni =
n L

N{2 ■ 
N h  •

• Ni  11771

. TV*iV 2 TO
, Di =

' di "

■‘S?t n ; 2 ■ pm - di . p X p
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From [93, 95], for the MIMO system in (3.20), y[k +  i\k], the i-step ahead prediction of 

future output at current time k, is

y[k-\-i\k] =  M^Au[k]  +  • ■ • +  M ^ A u [ k  +  i]

+N®Au[k -  1] +  • ■ ■ +  N f ]Au[k -  I +  1]

+ D fy[k \  +  ••■ +  D f y [ k  - 1  +  1], (3.21)

where (-)W (i = 1 ,2  • • •, N)  is used to denote parameters for the i-step ahead prediction:

(3 .22)

(3.23)

(3.24)

m J1] =  N u

II

iV-W =  N a , a  =  2 ,3  , • • • , / ,

nM
U P =  - D p , to II i—

*

e-*«
4

m W =  wW +  ^ d M m M ,
k = 1

AtHx a II , + E d W - 11
*=1

] j b } — ot+'y-- i  +  £  D k ]D lr k]
k = 1

The remaining symbols not covered in (3.22), (3.23) and (3.24) are taken to be zero, e.g, 

iv |1] =  0 with x > I.

Now we define

Y[k] =  [y[k  + l\k]T y[k +  N\k]T ] ,

w[k +  l ]y  • • • w[k +  N]t  J .W[k]

Letting i in (3.21) vary from 1 to N ,  we obtain the following compact equations for Y[k] 

and J[k] in (3.15):

Y[k] =  P1AU[k} + P2AUp[k] + P3Yp[k],

J[k] = (W[k] -  Y[k])T (W[k] -  Y[k]) + AU[k]TAAU[k], (3.25)

where A =  \ I m N x m N ,

m [1] M [o ]

M JV -l
Mi[iV]

N

M.[iV -l]

Mi[N]

, AU[k]
A  u[k]

Au[k  +  N  -  1]
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Ps

N l1] 4 1] ■•• n }1]
7V|2] A f ] • •• n }2]

A f l i v f 1 • . .  iN f]

d [1] 4 1] . • A [1]
D m D f  • • D ?]

d W D w  • • d \n]

AUp[k] =

Yn>

A  u[k — 1]

A u[k — I +  1]

# ]

_ y [ k ~  I + 1]

Minimizing J[k] with respect to the future control sequence A U[k\, we obtain the optimal 

GPC solution:

AU[k] =  (PI Pi +  XI) P i  (W[k} -  P2AUp[k] -  PzYp[k}).

In the frame period [kT, (k +  1 )T),  only the first element of A U[k], namely, A«[&], will be 

implemented, and it is given by

Au[&] = l m X m 0 0 ( i f  Pi +  A / ^ i f (W[k] -  P2AUp[k] -  P3Yp[k]). (3.26)

Since the first element of Yp[k) is y[k], the direct feedthrough term from y[k] to Au[A:] is

h

D c = ~ [  Imxm 0 ••• 0 ] ( i f  Pt +  X I ) - 1 P f  P3

l p X p

0

0

Clearly, this Dc depends on the design horizons, weighting matrices, and dynamic prop

erties of the process; it is a general m  X p matrix. There is no guarantee tha t it has the 

block lower triangular structure as shown in (3.10). So such a conventional GPC solution 

is not implementable in real time.

Our task next is to find a GPC algorithm which results in a causal control law.

3 .3 .2  P r o p o se d  G P C  d esign

To obtain causal GPC control law, the idea we adopt is as follows: During every frame 

period T,  construct a chain of new lifted signals and models, corresponding to the control 

moves; then apply the conventional GPC design to every one of them.

To see how to handle the causality issue, let us review the conventional algorithm in 

Section 3.3.1. Over the fc-th frame period [kT, (k -f 1)T), the optimal control law given in 

(3.26) is the lifted vector Au[k), which has m  incremental control moves for the whole frame 

period. As time goes on, the elements in Au[k] would be implemented one by one, e.g.,
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on time interval [kT + t \ , k T  +  £2)1 we would implement Au(kT  +  £1); on the next interval 

[kT+t2, k T + t 3), we would implement A u ( k T + t 2). However, A u (k T + t i ) ,  A u ( k T + t 2), and 

so on would depend on future measurements occurring later in the frame period, making it 

impossible for real-time implementation.

In our proposed algorithm, during the k-th frame period [kT, (k -f 1)T), each control 

move will be calculated separately; at each time instant £ =  k T  +  £;, we will construct 

a corresponding lifted output y! [k], consisting of the most recent p measurements (some 

elements in yl[k] are in fact measured in the last frame period). For example, at time 

£ = kT  + 1\ (£1 =  0), if y(kT)  is not available, i.e., £{ > 0, then the new lifted output y l [k] 

is defined by

y [k]

y ( ( k - l ) T  + t\)
(3.27)

. y ( ( f c - l ) T +  ££">) .

where all the elements are listed in their order of occurrence; if t\  — 0, th a t is, y{kT) 

happens to be available, then

y ( ( k - l ) T  + tl)

y l [k] =
y ( ( f c - l ) T +  ££■») 

y (kT  + t\)

(3.28)

Similarly we can define y%[k] corresponding to the control move a t £ =  kT+ t i .  It is relatively 

easy to derive a model relating y*[fc] to Au[k]; thus we can solve the standard GPC problem 

using this model and a similar cost function as in (3.15), implementing Au{kT  +  £;) only. 

Because of the way the chain of new lifted output signals and new models are constructed, 

it is clear tha t the optimal A u(kT  +  £,■), i =  1, 2, • • •, m, are causal.

Denote the model from Au[fc] to y^[k] by M ’; it can be derived from tha t in (3.16). For 

example, to find M 1, we rewrite (3.16) as

y[k -  1] ^ N A y^k  — 1] =  ^z(q 1 A) A «[/:],
d

Then in the case of y x[k] in (3.27), we have

y \ k \  =  - N 1Au[k], N 1 =
r xN 11

q- 'N p  !

(For the case of y l [k] in (3.28), the change is obvious.)

1 m

9  N p m  J
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Thus, in one frame period T, a chain of m  models are obtained. For each model, follow 

the procedure in Section 3.3.1 to compute the optimal Au‘[fc]:

A u ^ k T  + h )

ArdfFj = A u ^ k T  + ti)

A u %{kT + tm) _

However, only the i-th element Au%(kT + U) is implemented. As time goes (i increases from 

1 to m), the actual lifted incremental control signal implemented in the fc-th frame period 

is
A ul {kT + 1\) 
A u2(kT  + £ 2)

(3.29)

A um {kT + tm)

It is clear from the discussions tha t the proposed GPC control algorithm has the follow

ing properties:

1. It is based on a chain of lifted models derived from the original model.

2. The control law is periodic with period T.

3. The control law is causal and therefore can be implemented in real time.

Closed-loop expression for the optimal and causal control in (3.29) can be derived. 

Consider the frame interval [kT, (k +  1)T), based on (3.26), A ul (kT  +£;) in (3.29) has the 

following form

A u \ k T  +  U) =  K\W[k)  +  K \ A U p[k\ +  KlY;[k},  (3.30)

where

yl[k]
Yl[k] =

. y%{k — /-h i]

K\,  K\i  and are 1 x pN,  1 x m(l  — 1), and 1 x pi matrices, respectively, all depending 

on the i-th model M %. Partition these matrices as follows:

ir
l ii ' K [  i • ' K 1N _ i

K \  = ' K i n - i ) ]

II w«
*.

i—*

i 
i

■£T
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Assume th a t the future reference signal is a constant w along the horizon, and define:

N  p l - l  I

f ^ E E ' T - M ) .  G ‘ =  E n i = ' E r * ' K U< <3-31)
3 = 1 k = 1 3 = 1 3=1

where K [ j ( l , k )  represents the element in the fcth column of K\j ,  and q~x is the backward 

shift operator (on the lifted signals). Then equation (3.30) can be written as

A u \ k T  +  U) =  F w  +  G!Au*[fc] +  H Y [ k \ .

Let i vary from 1 to m,  and note that

y)[k] = O iy[k], (3.32)

o 1 =  — A ...>----- - " i - 1 9 (no =  1) (3.33)0 diag{q V -i7 1}p-n0-- ~n<_i
InoA--- hfi>—l 0

where we have assumed tha t tj =  L, i.e., the output signal is available right a t the time 

instant k T +f,-, when the control input is updated. Thus we obtain the closed-loop expression 

for the optimal control in (3.29):

A «*[&] =  IP 1 • 0u> +  2  y[k] (3.34)

where
- G 1 ■ - p i  ■ ‘ H l0 1 '

® =  /m ~
. Gm .

, 0  =
pm

> L“"'

» 3 
...

0 1

(3.35)

($  is assumed to be invertible.) The result can be summarized as follows.

T h eo re m  2 Assume that the future reference signal is a constant w along the horizon. The 

optimal lifted control law is given by its closed-loop form in (3.34), where the term from y[k\ 

to Aa*[fc], <P_12 , always satisfies the causality structure in (3.10).

P ro o f  First, we introduce an operator K: If a system P  is with the state-space represen

tation [A, B,  C, D], then K(P) =  D.

By the definition of G* and fP in (3.31) and (3.35), it is easy to  see that

G 1 ^
K(vp) =  N(Jm) -  K( 

in this way, N(\P-1 ) =  Im.

Gr‘
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Also, from H x in (3.31) and Ox in (3.33), we have

N (fPO ‘‘) =  K (iT)K (08')

x X
1 Xp

no+ni-i  hn;_i

X X 0

0 0 p - n o —« l -------?U-i
I n 0+ m  + 0

. . .  0
1 Xp

pXp

When i varies from 1 to m, the following result can be obtained:
ni

K(S) =

★ 0 0
ni n2

X * 0

Til

X X 0

. (3.36)

This is exactly the same as the causal structure proposed in (3.10). Since R (^- 1S) =  

N(\P- 1)N(S) =  K(H), we conclude th a t the new algorithm presented in this paper can 

always result in a causal GPC controller. It needs to be mentioned tha t this m  X p matrix 

will have a little bit change when the assumption t} =  f,- (this is made when 0 ‘ is defined) 

is not true for every i E {1, • • - ,m}.  Some *s (or maybe all *s) will be 0. However, no 

m atter what assumptions are made on f,- and tj, the resulted GPC controller is no doubt 

always causal. Q.E.D

3.4 Example

In this section, we illustrate the GPC algorithm proposed in Section 3.3.2 by an example. 

Consider a SISO continuous-time model:

0.0039(s+ 0.7294)
<?(*) = (3.37)

(s +  0.0708) ( s +  0.0042)'

We assume th a t the control signal is updated every 8 sec, while the output signal is sampled 

every 12 sec; thus the frame period is T  =  24 sec. Such a multirate system is a special case of 

the non-uniformly sampled systems discussed in this paper, so all the results in Sections 3.2 

and 3.3 are directly applicable. (To the best of our knowledge, no GPC solution exists for 

such multirate systems in the lifted domain, producing causal control laws.)

First, let us check controllability and observability of the lifted control system. For the 

continuous-time model in (3.37), a minimal realization is:

A = -0.0750 -0.0003 
1.0000 0

B 1
0
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c  = 0.0039 0.0028 D = 0.

Following Proposition 1, we can obtain the discrete-time lifted model for the multirate 

system:

A =

C

0.1373
10.8301

-0.0032
0.9496

0.0039 0.0028 
0.0239 0.0028

B

D =

1.6277 3.2055 5.9969
80.9051 62.1705 26.4152

0 0 0
0.1511 0.0341 0

It is easy to see tha t (A , B .) is controllable and (C, A) is observable. This is also true by 

Theorem 1, because T  = 24 sec is non-pathological.

Next we will design a multirate GPC controller for the uniformly sampled system. Notice 

here tha t in one frame period T  = 24 sec, the control input is updated 3 times. According 

to the results in Section 3.3.2, a chain of 3 lifted models should be defined. However, 

in this example (and many industrial processes), the output is sampled at a slower rate: 

The first sample is taken at t = kT  sec, and the next is not available until time instant 

t — kT  12 sec. Thus the first two incremental control moves, A u(kT)  and A u (k T  + 8), can 

be computed together in one time by constructing y1 [A;]; and the third incremental control 

moves A u(kT), will be computed separately by constructing y2[&]. For an illustration, see 

Figure 3.2.

u(kT ) u(kT +8) u(kT+16)

( k - l ) T  y(kT-12) y(kT) y(kT+12) ( k + l ) T  

Figure 3.2: An illustration of the design

So in this example, only two lifted models need to be used. These two lifted models, 

including the integrator, in the input-output framework are

i [ k ]  = -N'AuVc] ,
a

N 1 = ’ N{ N 1,

i l k ]  = ^ N 2Au[k], N 2 = ' N 2 N 2 N 2 '
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where

i l k ]  =

and

y (kT  -  12) 
y{kT)

y2[k} = y(kT)  
y ikT  +  12) A u[k] =

A u{kT)
A u(kT  +  8) 

A u (k T  +  16)

d = 1 — 2.0863g-1 +  1.2516g~2 — 0.1653g-3 ,

TV* = 0.2801?-1 +  1.0901 q - 2 +  0.1053g~3 ' 
0.9131g-1 +  Q.5612g~2 +  O.OOllg” 3 5

N 21 = ’ 0.0338g-1 +  1.0887g-2 +  0.3529g“ 3 ' 
0.4666g-1 +  0.9642g~2 +  0.0446g“ 3 1

iv! = ’ 0.6803g~2 +  0.7828g~3 +  0.0123g~4 ’ 
O .ISllg - 1 +  1.1405g-2 +  0.2038g-3

TVI  = ' O .Omg- 1 +  0.5612g-2 +  0.0011g“ 3 ’ 
0.2801+ 1.0901g_1+  0.1053g-2 )

TVf = ’ 0.4666g_1 +  0.9642g“ 2 +  0.0446g~3 ’ 
0.0338+ 1.0887g-1 +  0.3529g-2 )

IIC
O

’ 0.1311g_1 +  1.1405g-2 +  0.2038g-3 ' 
0.6803g_1 +  0.7828g~2 +  0.0123g"3

The purpose of the GPC design is to minimize the cost function discussed in Section

3.3.2, where the tuning parameters are IV2, N u and A. If we choose

N 2 =  6 , N u = 5, A =  0.1, (3.38)

the tracking performance of the closed loop with the multirate GPC controller can be 

simulated, see the solid lines in Figure 3.3.

Both the process output and the control input are shown in Figure 3.3. The simulation 

time is 800 sec, and the setpoint changes from 0 to 1 at t — 0, from 1 to  0 a t t — 203 sec, 

and from 0 to  3 at t = 600 sec.

Tuning the parameters N 2, N u and A can affect tracking performance, as well as closed- 

loop robustness. For example, increasing A -  the weighting factor on the control signal -  

from 0.1 to 5 will result in decrease in the maximum value of the control input, but the 

price paid is th a t the tracking becomes more sluggish, see the dotted lines in Figure 3.3. 

We can also tune N 2 or N u to be a larger or a smaller number, say, N 2 =  10 or N u — 1 

to make the closed-loop system more robust in the presence of model-plant mismatch, see, 

e.g., [8].

Finally, with the tuning parameters in (3.38), we can compute the closed-loop form of 

the multirate GPC controller. According to (3.30) to (3.34), the lifted optimal control law
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Figure 3.3: Tracking performance of the closed-loop with the multirate GPC controller

is

Art*
A u 1(kT) 

A u x(kT  +  8) 
A u2(kT  +  16)

Qw +  Sy[k] .

The direct feedthrough term from y[k] to  Art*[&] is which is computed to be

=  s r

1.1321 0
0.0369 0

-1.5729 1.4937

This matrix is block lower triangular, satisfying the causality constraint in this case.

3.5 Conclusions

In this chapter, we studied non-uniformly sampled systems, which are characterized by a 

non-uniform but periodic pattern for control updating and output sampling. Periodicity 

allows lifted and LTI models to be derived. Moreover, we gave a sufficient condition for the 

lifted models to inherit properties such as controllability and observability from continuous 

time.

We also dealt with the GPC problems for non-uniformly sampled systems. It is em

phasized tha t when the lifting technique is used, the so-called causality constraint on lifted
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controllers should be taken into account in design. Starting from the conventional GPC de

sign for MIMO systems, we proposed an approach which can handle the causality constraint 

in the design of GPC controllers.

42

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



C hapter 4

M ultirate GPC for Sam pled-Data  
System s

4.1 Introduction

Generalized predictive control (GPC) was first proposed by Clarke et al. in 1987 [24, 25]. 

The control algorithms derived there were based on discrete-time models using a discrete

time performance index. Because discrete-time control algorithms in fact are operating with 

A /D  and D /A  converters in a continuous-time environment, poor inter-sample behavior may 

arise due to the fact tha t the design is based on performance solely at the sampling instants. 

To improve inter-sample performance, several pieces of work have been done. Demircioglu 

and Gawthrop proposed the continuous-time generalized predictive controller (CGPC) in 

1991 using continuous-time performance index and implementing continuous-time control 

law [32]; however it is difficult to implement the continuous-time scheme using a digital 

computer. Then in 1995, Lauritsen et al. proposed to implement continuous-time GPC 

algorithms using the delta operator [53]; however in the case of a slow sampling rate, the 

delta operator brings about poor performance. Moreover, in these methods, the predictors 

are approximated by a truncated Maclaurin series. Therefore, in the case of larger prediction 

horizon, the approximation error becomes large. Basically, these ways of getting a discrete

time control law works well only when the prediction horizon is not too large or the sampling 

rate is fast; otherwise poor performance may result.

A preferred approach is the sampled-data design problem: Design discrete-time con

trollers directly based on continuous-time performance criterion [20]. This approach has 

the advantage of capturing the inter-sample behavior and obtaining optimal discrete-time 

controllers directly in design. Such sampled-data design problems were considered by Ma- 

suda et al. in 1997 in the GPC framework [62] and also by Chai et al. in 1999 in the
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model predictive control (MPC) framework [17], both in a single-rate setting. Their so

lutions have a common feature: By converting continuous-time performance indices into 

equivalent discrete-time ones, they reduced the sampled-data design problems to equivalent 

discrete-time design problems, and hence solvable in discrete time.

The goal in this chapter is to extend their solutions to multirate sampled-data systems 

where different A /D  and D /A  converters adopt different operating rates, due to practical 

constraints. For simplicity, we consider a useful case where the D /A  conversion is an in

teger multiple faster than the A /D  conversion, i.e., the manipulated signals are adjusted 

faster, while the output measurements are sampled slower. Such dual-rate systems arise in 

process control industry when physical constraints limit the sampling rate of the output, 

yet the manipulated signal can be updated faster. We will see later tha t this multirate con

trol scheme delivers better performance than both the conventional discrete-time multirate 

scheme, and the sampled-data single-rate scheme operating a t the slow sampling rate.

This chapter is organized as follows. In Section 4.2 we introduce the multirate sampled- 

data system we will study and propose the associated GPC problem, taking into account the 

inter-sample behavior. In Section 4.3 we reduce the multirate GPC problem to a least square 

problem and derive an explicit solution. In Section 4.4 we give an illustrative example and 

compare the sampled-data multirate GPC algorithm with: (1) the optimal discrete-time 

multirate GPC algorithm and (2) the optimal sampled-data single-rate GPC algorithms 

operating a t the fast and slow rates; the results show the advantage of the multirate control 

scheme. Finally, in Section 4.5 we offer some concluding remarks.

4.2 Problem  formulation

Consider the SISO sampled-data system shown in Figure 4.1, an idealized representation of

u(t) m

Figure 4.1: Dual-rate sampled-data open-loop system

the practical situation involving fast D /A  conversion and slow A /D  conversion. Here, P  is

a continuous-time LTI process with the following state-space representation:

x{t) =  Ax(t)  + Bu(t)  
y(t) =  Cx(t);

Hh is a fast zero-order hold with period h; and Snh is a slow sampler with period nh 

(n is an integer). The continuous-time signals involved in Figure 4.1, y(t) and u(t), are
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process output and control input, respectively; the discrete-time signals, u[k] and y[k], are 

digital controller output and sampled output, respectively. In such a dual-rate system, y[k] 

is available only once every slow period nh; the control signal u[k] is updated every fast 

period /i; and the corresponding continuous-time signal u(t) is given by

u (:t) =  u[k], kh < t < (k +  1 )h. (4.2)

To capture inter-sample behavior, we use the continuous-time GPC performance crite

rion
r (k+ N 2)Ts f ( k + N u)T3

J{k) — /  [y(r) -  Um( T ) ]  dT + X[Au(r)] dr. (4.3)
J ik + N ^ T s  J  kTs

Note here tha t all the time frames in J(k)  are multiples of Ts =  nh, the slow sampling 

period; iVi, and N u are the minimum, maximum prediction horizons and control horizon, 

respectively. (Later, we assume Ni  =  1 and N 2 = N u = N.)  The positive constant A is 

the control weighting. The signal ym (t) is the reference and is defined to be a step-wise 

function:

ym (t) =  ym [k], kTs < t < (k + 1 )TS. (4.4)

In the following, ym[k] will be chosen as constant for k > 0, i.e., the control objective is 

set-point tracking. Finally in (4.3), A is the differencing operator:

A u(t) — Au[k] =  u[k] — u[k — 1], kh < t < (k +  l)h.  (4.5)

The SD multirate G P C  design problem is to find a discrete-time control sequence u[k] (or 

A«[&]) to minimize the continuous-time J  in (4.3).

To solve the SD GPC design problem, we need a discretized model for P .  To handle 

the dual-rate feature, first we introduce a discrete-time system S n, the down-sampler by a 

factor of n, defined as

y = Snx y(k) =  x(nk).  (4.6)

It is easy to verify tha t Snh =  SnSh', and this fact together with the discretization method 

in [20] leads from Figure 4.1 to a discrete-time system as shown in Figure 4.2, where P h  is

u[k]
P h

v[k] y[k]

Figure 4.2: Dual-rate discrete-time open-loop system 

the discretized P  a t the sampling period h. The discrete-time system Ph has the following
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state-space form (see, e.g., [20]):

x[k +  1] =  Ahx[k) +  Bhu[ 
v[k] =  Cx[k],

where x[k] = x (kh ), v[k] is the output of Ph, and

A h =  eA h B h
fJo

eAada ■ B.

(4.7)

(4.8)

Note tha t the discrete-time model from u[k] to y[k] in Figure 4.2 is time-varying, because 

of the presence of the down-sampler Sn. In order to get an LTI model for the purpose of 

design later, we employ the lifting technique.

Lift u to get the slow-rate signal u, as shown in Figure 4.3, and compress the three 

systems L~l , Ph and Sn into one: P^; it is easy to see tha t the lifted plant P_h is LTI [20] 

and can be represented by the following state-space model:

x[k + 1] =  Ax[k] +  B_u[k] 
y[k] =  Cx[k],

where

A A nh, B in—1B h A T 2B h

and Ah and Bh were defined in (4.8).

u[k]
L

u[k] v[k] y[kl

(4.9)

A hB h B h , C  = C, (4.10)

Figure 4.3: Lifted LTI and single-rate model

Note tha t P_h is a LTI and single-rate model a t the slow sampling period nh. Later we 

will convert the SD GPC design problem to a discrete-time lifted GPC problem and obtain 

an LTI lifted GPC algorithm. We remark tha t when the lifted GPC controller is designed, it 

computes u[fc]; and u[k] should be inverse lifted before it is implemented to  the real process. 

Thus the inverse lifting operator together with the lifted controller can be thought of as the 

required controller for the original dual-rate system.

We also remark tha t the causality constraint (3.10) on the lifted controllers (which we 

have discussed in Chapter 3) will be automatically satisfied for dual-rate systems studied
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here. Refer to Figure 4.3, the lifted controller inputs y[k] and calculates u[k], where

u(k • nh)
u(k • nh + h) 

y[k] = y(k  • nh), u[k] =  .

u(k • nh-\- ( n — 1 )h)

It is obvious tha t the future control signals only depend on information available up to time 

k • nh, thus the design and analysis of the lifted controller for P h can adopt any results for 

single-rate systems, without the consideration of the causality constraint.

4.3 Dual-rate GPC design for sam pled-data system s

The sampled-data GPC problem for single-rate systems was proposed and solved recently

[62]; this digital controller resulted in better inter-sample behavior than conventional GPC

in Section 4.2. The whole procedure can be summarized into several steps.

4 .3 .1  D isc r e t iz a t io n  at th e  fa st ra te

Imagine a fast single-rate system, we derive a GPC design problem using a discrete-time 

cost function which is equivalent to the continuous-time one in (4.3) [62].

With the assumption tha t iVj — 1, and N 2 = N u = N , J  in (4.3) can be rewritten as 

follows:

Then for the fast-rate GPC problem, J(k)  in (4.3) can be thought of as the performance

design. In this section, we will extend this solution to the SD dual-rate GPC problem posed

pknh+nNh r
/  [y(r) -  ym {r)]2 dr + /

Jknh+nh Jk
n N ~ - l  (  />(A;n+j+l)/i

knh-\- nNh

(fcn+j+l)/i
(4.11)

index at time instant t — (nk)h. In this case, the minimum and maximum prediction 

horizons turn out to be nN\ = n and n N 2 = nN ,  respectively; and the control horizon is 

n N . Based on results in [62], define:

Y l [ k ] = \ y L [ k ]  2/™^ +  !] ••• yL[k + n N  -  1} }T , (4.12)

where

ym(t) = yh[k], kh < t < (k + 1 )h,
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and

X[k] =  x[k]T x[k +  1]T • • • x[k +  n N  -  1]T

C/[Ar] =  u[k] u[k +  1] ■ ■ • u[k +  n N  -  1] ,

A U[k] — Au[k] Au[k + 1] • • • A u[k + n N  — 1] J ,

we get the following discrete-time equivalent cost function Jf[k] at t = kh:

J f [k] = X[k]TAQX[k] + 2X[k]TA s U[k] + RU[k]TA IU[k] 

-2X [k]TAMY^[k] -  2M2U[k]TA IY jl[k] 

+hYjl[k]T +  \ h A U [ k f  AU[k\.

Here

a q = V Tp

' Q
ii

n

0 ••• 0 I

- Q . 0 ••• 0 I  _

A s II

- s *

11

n,---- a----
0 ••• 0 1

- s . .  0 ••• 0 1

A /  =  V TV, Am  =  K
M f

and

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Q =  [ h A d(T)TC TC A d(r)dr, M x =  C A d{r)dr, (4.20)
Jo Jo

R = f  B d(T)TC TC B d{T)dT, M 2 — f  C B d{T)dT, (4.21)
Jo Jo

S  = f  A d{r)TC TC B d(T)dT, (4.22)
Jo

with the definition that: Arf(t) =  eA<, and B d(t) =  /J  eAada • B.  Notice here tha t x[k], u[k], 

Au[k\ and are all discrete-time signals at the fast rate (with period h): x[k] and u[k]

appear in the fast-rate model (4.7), and y^[k] is the fast-rate reference signal; Q, R, S, Mi  

and M 2 are matrices which can be calculated using matrix exponentials, see [17] and [20]. 

Replacing k in (4.13)-(4.16) by nk,  we get tha t J(k)  in (4.3) is equal to  Jf[nk] as follows:

Jj[nk] — X[nk]T AqX[nk]  +  2X[nk]T AsU[nk] + RU[nk]T AjU[nk] 

-2 X [ n k )TAMYl[nk]  -  2M2U{nk}TAIYl[nk]

+hYjl [nk]TA j Y ^ n k )  +  XhAU[nk]T AU[nk\.  (4.23)
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4 .3 .2  L iftin g  for con version  to  th e  s low  rate

Here we relate fast-rate signals to the lifted slow-rate ones. From the lifted plant model in

(4.9) and the fast-rate system in (4.7), we have

x[k\ =  x[nk],

u[k] =  u[nk\ u[nk +  1] • ■ • u[nk +  n — 1] j .

Then the compact state X[nk] in (4.23) can be written as

where

X[nk] = $ AX[k] +  ®B U[nk],

2£[&] =  x[k]T x[k +  I ]5 x[k +  N  -  1]T

(4.24)

(4.25)

(4.26)

$A  =

© B

& A © B
, $ b  =

® A  . © B

T 0

© A  =

1
Ah

, © B  =

B h 0
AhBh Bh 0

. A T 1 . . A nh- 2B h A I ^ B h ••• B h 0 .

and furthermore, the compact fast-rate future control U[nk] in (4.23) equals to

u[nk]

U[nk] —
u[nk +  n — 1] 

u[n{k +  N  — 1)]

u[k] 
u[k +  1]

u[k +  N  — 1]

£[*].

(4.27)

(4.28)

(4.29)

u[nk +  n N  — 1]

As to the compact reference signal Y^[nk\  in (4.23), since the control objective is to 

follow a constant future setpoint, the following fact exists:

Yl[nk) = $ c Ym[kl (4.30)
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where

Ym[k)

ym[k~\
Um \_k T  1]

Dm [k +  N  — 1]

, = (4.31)

Note here tha t ym[k] is the slow-rate reference signal in (4.4).

4.3.3 Lifting the cost function

Now we obtain the equivalent discrete-time cost function Ji[k] corresponding to the lifted 

signals. We have converted the continuous-time J{k)  in (4.3) into an equivalent discrete

time (Jf[nk]) in Section 4.3.1; in Section 4.3.2 we have also found the relationships between 

the fast-rate signals and their lifted slow-rate ones. The SD dual-rate design problem is now 

equivalent to a discrete-time design problem with cost function Ji[k], which can be derived 

as follows:

1. Use (4.9) repeatedly to obtain the following compact lifted state predictor:

x[k]  =  ^x[k]  +  r w M ,

with

(4.32)

T 0 0 0 '
1
A B 0 0A

, r , = A R R 0 0

. A N~l . . A n ~2B
0

B  0

2 . Substitute (4.32) into (4.25) to get

X[nk] =  $x[k] +  TU[k],

with

$  =  r  =  +  <&£.

(4.33)

(4.34)

(4.35)
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3. Replacing X[nk\,  U[nk), and [nk] in (4.23) with (4.34), (4.29) and (4.30), respec

tively, we get the equivalent discrete-time cost function:

Ji[k] = ($x[k] +  ru[k])TAQ(<s>x[k] +  rt/[/h])

+2(<Z>x[k] +  TU[k])TAs U[k] +  R U l k f A & i k ]

- 2 ($z[k\ + VU[k])TAM$ c Ym [k] -  2M2U[k]TA ^ c Y m [ k \  

+hYm [k]TQ%AI$ c Ym[k] +  \hAU[k]T AU[k]. (4.36)

4 .3 .4  O p tim a l co n tro l law

We then minimize Ji[k] over A U[k] to derive the optimal SD dual-rate GPC algorithm.

Note tha t U[k] =  U[k — 1] +• AU[k]. Setting the partial derivative of J; in (4.36) with 

respect to AU[k] to zero and solving for AU_[k], we get the optimal solution:

AU[k] =  { ( (? +  A h i ) 1 } ”1 { - H $ x [ k ]  +  FYm [k\ -  GT U[k -  1]} , (4.37)

where we have defined

G = Tt A q T +  r r As +  A^r +  i?A/,
H  =  r TA£ +  A£, (4.38)
F  =  (rTAM +  N A i)  • $C-

Notice tha t only the first element of AU[k] is implemented in practice, i.e., the optimal 

control law is actually

Au[k] = K  { - H $ x [ k ]  +  FYm[k] -  GT U[k -  1]} , (4.39)

where K  = {(G + \ h l f }  \

To estimate the state x[k] in (4.39), full-order observers in [62] can be used here:

x[k +  1] =  Ax[k] + B_u[k] +  L(y[k\ — Ci[fc])

=  (A — LC)x[k] +  B  u[k] +  Ly[k], (4.40)

where L  is the observer gain and A  -  LC_ is chosen to be stable.

To apply the optimal solution to the original sampled-data dual-rate system, first we 

calculate

u[k\ =  u[k -  1] +  A u[k]; (4.41)

then inverse lift u[&] to get

{u[nk], u[nk -f 1], ■ • •, u[nk +  n — 1]}. (4.42)
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These n  fast control moves are applied in the time interval [kTs, (k +  1)TS) as follows:

u(t)

u[nk\, nkh < t <  nkh  +  h
u[nk +  1], nkh + h < t < nkh  +  2h

(4.43)

u[nk +  n — 1], nkh + nh — h < t < nkh  +  nh.

Note tha t the whole optimization procedure is repeated every slow period Ts =  nh.

4.4 A design example

In this section, we apply the sampled-data dual-rate GPC algorithm derived in Section 4.3 

to an example studied in [62] in the single-rate case. We will compare its performance 

with (1) tha t using conventional discrete-time dual-rate scheme, and (2) those using SD 

single-rate schemes at the fast and slow rates. The continuous-time plant is a third-order 

system with a state-space model of the form in (4.1) with

(4.44)

4 .4 .1  D isc r e te - t im e  d u a l - r a te  G P C  sch em e

This is the case where y(t) is sampled with period nh  and u(t) is adjusted with period h, 

but we are using a discrete-time cost function -  a conventional discrete-time approach. The 

problem is formulated as follows: Find the optimal A u[k] (lifted) to minimize:

' 0 1 0 ' ' 0 " 1
A = 0 0 1 , B = 0 Q •s 11 - 0.2

0 - 1 0 1 0

N - l  N

J d = Y l  W + j ] -  ym[k+ j]}2 + Y^X 13>2
j= z 1 j  =  l

(4.45)

Note tha t in (4.45), the weighting elements, minimum and maximum prediction horizons, 

and control horizon are all chosen to be the same as those in the continuous-time case in 

(4.3). y[k] is the slow-rate sampled output in (4.9), ym [k] is the slow-rate reference signal 

in (4.4), and Au[&] is the lifted incremental control signal.

The solution can be derived similarly to what M asuda et al. did in [62], except tha t 

here the discrete-time model is a lifted one. Define

I T
ym[k +  N  -  1]

i[k + N  -  1]T ]T ,

Ym [k] -  [ ym[k] ■

U[k\ = [u[k]T •

the optimal control law is given as follows:

Att[fc] =  K d { - H d$ix[k\ +  FdYm[k) -  G dU[k -  1]} ,
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where

Kd, — |' l n 0 • • • 0 j (Gd  +  A I )

Gd =  v f ( y pd)T A dQv pdr h

Ed =  T f ( V d)TA dQV d,

Fd =  r f ( K d)TA |y d,

- i

with

II

■ 0 I

5

0 1

II

-eO<
1

. o

■ C TC

I .

-I

ii
o

- C T
1 .

C TC  . C T

(4.49)

(4.50)

Notice tha t two matrices: 4>; and T;, have been defined in (4.32); and the state x[k] is 

estimated by the observer in (4.40).

4 .4 .2  S a m p led -d a ta  s in g le -r a te  G P C  sch em es

For the model described by (4.1) with parameters in (4.44), two SD single-rate GPC algo

rithms are designed: One is the fast-rate case where the sampling period is h — 4.0 sec; the 

other is the slow-rate case where the sampling period is nh] for simplicity, we choose n — 2 . 

Both schemes use the continuous-time cost function in (4.3) at t = (nk)h =  k{nh). The 

fast-rate case has been discussed in Section 4.3.

For the slow-rate case, we can write down the equivalent discrete-time cost function as 

follows [62]:

Js[k) = X s[k]TA sQX s[k] + 2 X s[k]TA ss Us[k] + R sUs[k)TA sIUs[k} 

- 2 X s[k]TA sMY^[k} -  2NsUs[k]TA sIY^[k\

+ n h Y £ [ k f  A ^ i k ]  +  XnhAUs[k]r  AU s[k].

Here

X,[k] =

Us[k) =

v m  =

A Us[k] =

x s[k]T 

us[k] ■ 

ySm[k] 

A us[£;]

x s[k +  N  — I]1
T

T

us[k +  N  -  1] 

ysm[k + N -  1]

• A as[fc +  N  — 1]

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)
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and is the slow-rate reference signal. The signals x s[k] and us[k] appear in the slow-

rate discretized model of (4.1):

x s[k + 1] =  A sx s[k] 4- B sus[k] 
Vs[k] =  C x s[k],

(4.56)

with A s =  eA'nh, B s =  f g h eAada B.  Other matrices in (4.51) are defined as follows:

A?> = (Vps )
s \ T

Q s

Q s J

V s V sr V f v v

A c

A SM

(VPS)T

(v ; f

0 I  

0

0 1

M j

m T

F s , A j  =  (V S) T V S

(4.57)

(4.58)

(4.59)

and

r ii p n h
A d(r)TC TC A d(T)dT, Mg = /  C A d(r)dr,

Jo
pnh  pnh

Rs = /  B d(r)TC TC B d(T)dr, N s = /  C B d(r)dT,
Jo Jo

pnh
S s =  /  A d(r)TC TC B d{r)dT,

Jo

(4.60)

(4.61)

(4.62)

where A d(t) =  eAt, B d{t) =  fg eAadaB.  Note tha t in the slow-rate case, the matrices Q s, 

R s, S s, M s and N s are all computed by integrating over the time period [0, nh) instead of 

[0 , h] in the fast-rate case.

The optimal control laws for SD single-rate GPC problems operating at the fast and 

slow rates can then be obtained by minimizing J/[k) and J s[k], respectively, and take similar 

forms to that in the SD dual-rate case [62]. The observer in (4.40) is used to give the desired 

state estimation. The responses of these GPC algorithms are simulated and compared 

below.

4.4.3 Sim ulation results

In the simulation, the GPC design parameters are chosen as follows: The control weighting 

is A =  0.01; the minimum prediction horizon, the maximum prediction horizon, and the 

control horizon for both the slow single-rate and the dual-rate GPC are Ni — 1, IV2 =  5, 

and N  =  N 2 = 5, respectively; for the fast single-rate case, they are all multiplied by the 

factor n =  2 to be compatible. For these tuning parameters, if we increase N 2 or decrease

54

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



N u, we will get more robust closed-loop system in the presence of model-plant mismatch, 

as we have mentioned in Chapter 3. However, the purpose of this chapter is to improve 

the inter-sample behavior of the closed-loop system, and we will not pay much attention on 

how to tune these parameters. The poles of the observer are the same as those in [62]: 0.2, 

0.3, and 0.4. We simulate the responses from 0 to 50 sec.

Step responses of the closed-loop system with the discrete-time dual-rate GPC scheme 

is shown in Figure 4.4, where small circles in the system output denote the sampled output. 

It is clear tha t considerable inter-sample ripples exist because of the use of the discrete-time 

cost function.

£3.
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40

t i m e
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Figure 4.4: Tracking performance and control efforts with discrete-time dual-rate GPC

Step responses of the closed-loop system with the three SD GPC schemes (fast single

rate, dual-rate, and slow single-rate) are given in Figures 4.5 and 4.6. We see tha t the poor 

inter-sample behavior in Figure 4.4 is improved a great deal, especially by the fast and 

dual-rate SD algorithms.

Among the three SD schemes, the fast single-rate design has the best closed-loop tracking 

performance -  the tracking is fast and the overshoot is small; while the slow single-rate 

design gives a sluggish response with large overshoot. The dual-rate design is not as good 

as the fast single-rate one, but it is much better than the slow single-rate one. These are also 

supported by the Table 4.1, where the three equivalent cost functions for the SD designs
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Figure 4.5: Comparison of the system tracking responses with the three SD schemes
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Figure 4.6: Comparison of the control efforts with the three SD schemes
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are compared at some sampling instants. From table 4.1, the following inequality always

time k J f  (fast SD) Ji (dual-rate SD) Js (slow SD)
0 0.06575195080217 0.06575195080217 0.42563648582065
8 0.00030254662026 0.00471099387869 0.28238019454586
16 0.00000440701098 0.00059018694606 0.18125003123815
24 0.00000000109848 0.00003115873481 0.12713442722877
32 0.00000000001982 0.00000158270061 0.07792679268696
40 0.00000000000002 0.00000007477598 0.05648079587473
48 0.00000000000000 0.00000000349837 0.03413331387905

Table 4.1: Comparison of cost functions for the three SD designs

holds:

j f  < J i <  Js. (4.63)

But J\ is much closer to J j  than J s.

We remark tha t in Table 4.1, the difference in the first row (where the sampling instant 

is 0) is caused by different sampled-data control laws only; the results in other rows are 

also affected by different initial conditions. Note tha t the inequality (4.63) exists for those 

data in the first row. It shows tha t in cases when practical constraints limit the sampling 

frequency, the dual-rate design is a much better choice than the slow single-rate design.

We also remark tha t inter-sample ripples may occur for other reasons: e.g., the observ

ability of the open-loop system is lost due to sampling; or there are poorly damped zeros 

in the open-loop system tha t are canceled by the controller ([7]). In this example, the 

inter-sample ripple is caused by large sampling period (note tha t the base period is h =  4 

sec). If a smaller base period, say, h =  2 sec is allowed, this inter-sample ripple in both the 

fast single-rate discrete time design and the dual-rate discrete time design will disappear. 

However, in chemical process applications, the availability of the output measurement is 

usually limited. For example, a composition analyzer in a distillation column can only 

be sampled in a slow rate. In such a case, the sampled-data design would be beneficial. 

And the dual-rate sampled-data design will result in satisfactory inter-sample behavior for 

systems where multirate scheme is employed and slow operating period is required.

4.5 Conclusions

This chapter proposed a sampled-data GPC scheme for a special case of multirate systems, 

where the input control rate is an integer multiple of the output sampling rate. The design 

example showed tha t the sampled-data dual-rate GPC scheme can effectively capture the
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inter-sample behavior of continuous-time responses, and deal with the limitation on the 

output sampling rate imposed by possible physical constraints. Future work will focus on 

extension of this work to more general sampling situations, for which a causality condition 

(for more details on this, see, e.g., [19]) would arise in the design.

58

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



C hapter 5

On the Robust Stability of  
D ual-R ate GPC System s

5.1 Introduction

Generalized predictive control (GPC) was proposed by Clarke and co-workers in 1987, and 

the control algorithm derived was in the polynomial domain [24, 25]. Subsequently, many 

pieces of work have been completed on the analysis and applications of GPC, for example, 

the work in [9] and [27]. Success of GPC in industrial applications, especially in the process 

control industry, is a strong motivation for continuous research in this area [11, 14].

State-space approach to GPC problems has the advantage of ease in treating multivari

able systems and has been studied in a series of im portant work in [1], [118], [12], [69], [75] 

and [55]. One objective of our research is to derive a state-space GPC solution for multirate 

systems by using the lifting technique, with the causality condition being considered in the 

design of the lifted controllers. Note tha t a causal solution to multirate GPC problems 

has been presented in Chapter 3, however, it is in the transfer function framework and its 

state-space counterpart is still an open problem.

In this chapter, we will extend the state-space GPC algorithms developed by Ordys 

and Clarke [75] to the special fast-control slow-sampling dual-rate systems. This kind of 

systems have the property tha t the updating rate is an integer multiple of the sampling 

rate, and more importantly, they automatically satisfy the so-called causality constraint in 

the design of the lifted controllers (see Section 4.2). In the following, for simplicity, when 

we say dual-rate systems and controllers, we mean systems described here and controllers 

designed for them.

We emphasize th a t this chapter will focus on design and analysis of GPC problems for 

dual-rate systems. In particular, our objectives are three-fold:
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•  First, using the lifting technique, we derive a state-space solution to the GPC problem 

for dual-rate processes in the unconstrained case by extending methods in [75]; the 

solution is explicit in terms of matrix operations. Our starting point is a model for 

the process in consideration at the faster rate; i.e., we assume a single-rate model at 

the input control rate.

•  Second, we study stability robustness of such dual-rate GPC controllers where there is 

model-plant mismatch (MPM), and give some sufficient robustness conditions; these 

conditions are in terms of the nominal model, the sampling ratio, and the dual-rate 

controller; and can be checked readily using norm computation in modern robust 

control theory.

• Finally, we illustrate the results derived in the paper on two examples and show that 

several meaningful conclusions can be obtained, e.g., if the input control rate is fixed, 

the robustness of the dual-rate GPC algorithm is improved as the sampling ratio 

decreases.

We remark tha t prior work on robustness of GPC algorithms in the single-rate setting 

exists, see, e.g., [91] and [8]. Both papers made use of the well-known small gain theorem; 

the former dealt with the robust design of the GPC observer pre-filters for mean-level 

and dead-beat performance; the later combined the spectral estimation of the model-plant 

uncertainty bound with robust design methods in the GPC framework. In this chapter, we 

will examine the stability robustness of the dual-rate GPC algorithms.

This chapter is organized as follows. Section 5.2 sets up the stage for the dual-rate 

sampled-data systems by importing lifting technique to convert dual-rate systems into 

single-rate systems. Section 5.3 formulates the dual-rate GPC problem and derives a solu

tion in the state-space domain. Section 5.4 combines the lifting technique with the small 

gain theorem to analyze the closed-loop stability robustness of the dual-rate GPC controller 

when there is model-plant mismatch. Section 5.5 presents two illustrative examples for the 

results in Sections 5.3 and 5.4. Finally, in Section 5.6, concluding remarks are given.

5.2 Dual-rate sam pled-data system s with noise

A dual-rate sampled-data system with noise is shown in Figure 5.1, where P  and N  are the 

LTI continuous-time process and noise model, respectively; Hh is the zero-order hold with 

period h, and Snh is the sampler with period nh, with n being a positive integer; u  is the
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Figure 5.1: Dual-rate sampled-data open-loop system with noise

white noise in continuous time; and u and y are the control signal and output measurement 

in discrete time.

This typical fast-control, slow-sampling multirate system arises often in process con

trol industry. And later we will shown tha t such dual-rate systems usually lead to better 

performance than corresponding single-rate systems operating at the slow output sampling 

rate.

By introducing the down-sampler Sn defined in (4.6), together with the discretization 

method [20], Figure 5.1 is converted into a discrete-time system shown in Figure 5.2. Here,

Figure 5.2: Dual-rate discretized system with noise

both Ph and Nh are single-rate discretizations at the sampling period h : Ph is the step- 

invariant transformation of P,  and Nh the impulse-invariant transformation of N .  The 

input to Nh, e, is a white noise in discrete time.

Now we will derive a single-rate discrete-time system from Figure 5.2 using lifting and 

down-sampling, and then close the loop and introduce the so-called lifted controller. Lift u 

to get the slow signal u, as shown in Figure 5.3, and down-sample the white noise input e 

to get the noise model N nh a t the slow rate. Then bring in the lifted controller K_ which 

inputs the slow sampled error signal and outputs the lifted control signal u. This way we 

obtain the closed-loop configuration in Figure 5.3.
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n

Figure 5.3: Lifted LTI closed-loop system

Note tha t A  is single-rate and to be designed, and hence we can require tha t K_ be

LTI. Compress the three systems L~x, Ph, and Sn into one, the lifted process model; it is 

easy to see tha t this compressed system is also single-rate and LTI. This way we arrive at 

a closed-loop LTI system operating at the slow single rate nh.

5.3 Dual-rate GPC problem: a state-space solution

In this section, we formulate a dual-rate GPC problem and present a state-space solution. 

We will augment an integrator in the process model and the model from A u to y is defined

as Pdh =  Ph/A.

Let us s ta rt by obtaining state-space models for single-rate systems (such as Pdh, or, 

n =  1) modeled by the following CARIMA model [24]:

Here, the sampling period is h ; e[k] is assumed to be a Gaussian distributed white noise; 

and a, b and c are polynomials in q~x:

a{q 1)y[k] = b(q *)«[<: -  1] +  e[fc]. (5.1)

a ( ? - 1 ) =  1 +  a i C 1 +  ■ ■ ■ +  a naq~na, 

b( q~x) =  bo +  h q - 1 +  ■■■ +  bnbq~ nb, 

c( q ~ x) =  l  +  c i q - 1 H b Cncq~nc.

It has been shown in [7] and [75] tha t such a model has a canonical observable state-space 

realization. To write it down, let us multiply both sides of (5.1) by A and then by q raised 

to a suitable power; thus we obtain an equation involving polynomials of q, the forward 

shift operator:

a{q) ■ V[k] = b(q) • Au[k] +  c(q) ■ e[k]. (5.2)
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Write a(g), b(q) and c(g) as follows:

a(q) =  gr +  a 1gr_ 1 -| h dr ,

b(q) = b\qr 1 +  • • • +  hr ,

c(g) =  ([ +  cigr_1 H h cr .

Then the canonical observable state-space model is

x[k +  1] =  Ax[k] -(- BAu[k] +  Fe[k] 

y[k] = Cx[k] + e[k],

with

A =

0 0 0 
1 0 0 
0 1 0

— (lr 
- O r - 1 

- d r - 2

B  =

c  =

: : : : - o 2
0 0 0 • • ■ 1 —di

br 6r- i  6r _2 • • • hi

0 0 0 • • •  0 1

F  =

cr — ar 
c r_ i  — d r_ i

dr—2 ~ dr-2 

c2 -  d2
ci -  di

Such a process can be generalized to multi-input, multi-output (MIMO) systems, 

m-output, p-input single-rate system modeled by the CARIMA model

o(g- 1)y[*] =  b{q~l )u[k -  1] +  -C- ^ - - e[fc],

where a(q~1) and c(q~1) are m  X m  monic polynomial matrices and b(q~1) is a ? 

polynomial matrix; similarly, we convert equation (5.3) into

y [k] = ^ - A u [ k }  + ^ \ e [ k ]  
a(q) a(g)

[d(g) is a scalar function] and write

a(q) =  g'- +  digr_1 +  d2gr_2 +  f- ar- iq  +  ar (oj are scalars),

b(q) =  higr_1 +  h2gr_2 H-------h hr_ig +  br (6t- are m x p ) ,

c(g) =  c0gr +  cigr_1 +  c2qr~2 H h cr_ig +  cr (ct- are m x m).

Then the observable canonical state-space realization for the MIMO model in (5.4) i:

x[k +  1] =  Ax[k\ +  BAu[k] +  Fe[&] 

y[fc] =  Cx[k] + Ge[k],
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where
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. 0 m 0m 0 m ’ I m  h\Im Cl — O i I m

B

C

G

I T  IT  IT  
r ° r - 1 i— 2

Om Om 0 m

&2
T

Jm  *m  ?

C0 .

This state-space model in (5.5) and (5.6) is used to represent the fast single-rate process 

with sampling period h:

y =  Pdh&u +  N he.

To introduce the GPC problem for the dual-rate system, let us review first the GPC 

problem for the single-rate system in (5.5) and (5.6): The aim is to minimize the following 

cost function

f N*
J s[k] =  E  < ^  {w[k +  i] -  y[k + i]}T {w[k +  *] -  y[k +  «]}

( i=Ni
Nu

+A ^  Am[A: + i — 1]TAu[k  -f- i — 1] > , (5.7)
J

subject to A u[k +  j] =  0, j  =  N U, N U +  1, • • •, A 2. Thus N u future control increments, 

namely,

{Au[k + j] :  j  = 0, • • •, N u -  1}

are computed explicitly through the minimization of (5.7) under the condition tha t only 

data up to and including time instant k is available. Once these control moves are com

puted, however, only the first, namely, u[k] = u[k — 1] +  Aw[&], is applied. The process of 

minimization is repeated at the next sample point.

For the dual-rate GPC problem, we will first obtain a state-space model for the lifted 

system from An and e to y (refer to Figure 5.3), the starting point being the single-rate fast 

model in (5.5) and (5.6). Using lifting and down-sampling [20], one can obtain the following 

state-space model for the lifted LTI system with period nh:

x[k +  1] =  Ax[k] +  B_ Au[k] +  F_e[k\ 

y[k] =  Qx[k] + D_Au[k] +Ge[k\ ,

(5.8)

(5.9)
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where x[k\ =  x[nk], and u is the lifted u, i.e.,

A u(k ■ nh)

A u[k • nh + (n -  1 )h\

The matrices in (5.8) and (5.9) can be given in terms of the fast single-rate model in (5.5) 

and (5.6):

A  =  A n, B =  [ An~l B  A n~2B  ••• A B  B  , 

F  =  A n~1F, C  = C, D = 0, G = G.

Here D_ =  0 is due to the fact th a t the fast single-rate system from A u to y is assumed to 

be strictly causal.

follows: Compute the control moves A u[k +  j], j  — 0,1, • • •, nu — 1, to minimize the GPC 

index

subject to Au[k  +  j] =  0, j  =  nu, ■ • ■, n^- Once these control moves are computed, however, 

only the first, namely, A«[fc], is implemented; this corresponds to implementing n fast 

control moves at once. The computation is repeated at the slow sample rate.

Here we take n\ = 1. For the dual-rate cost function in (5.10) and the single-rate one in

GPC controllers later), we make the following standing assumptions

® The cost and control horizons satisfy =  n ■ n? and N u = n ■ nu.

•  The weighting matrix for the tracking error in (5.10) is f2 =  n l q.

Now we extend the approach in [75] to give a solution to  the dual-rate GPC problem 

posed above. Let j  be a positive integer; from (5.8) and (5.9), we obtain

The GPC problem for the dual-rate system modeled in (5.8) and (5.9) can be stated as

J d[k\ -  . + i ] - y [ k  + i]}

(5.10)

(5.7) to be comparable (and hence we can compare performance of single-rate and dual-rate

y[k +  j] = C A j x[k] +  B  A u[k +  i -  1] +  ^  ^  Fe[k + i ~  1]

+Ge[k + j].
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Since for future noise e[k-\-i\ (0 < i < j ) , E  {e[k +  i]} — 0, we get the j-step  ahead prediction 

of y[k +  j] a t time k:

j
y[k +  j\k] =  C A J x[k] B A u [ k  +  i -  1] +  C A j~1 Fe[k\.

i ~ l

The estimation of the present noise e[k] can be easily derived:

e[k] =  G~l {y[k] -  Cx[k]}  =  G _ 1j/[fc] — G ~l Qx[k}.

Thus

y[k+j \k]  = Y  C A ^ B A u l k  +  * -  1] +  ( C A j -  C A ^ 1 F C T 1 C)x[k]
2 =  1

+ C A j - 1F G ~ 1y[k}.

Letting j  in (5.11) go from n\  to n2 and defining

Y[k] =  yT[k + ni\k] yT [k +  nx +  l\k] ••• yT[k +  n2\k] ] T ,

A U[k] — Ay?[k\ A n7 [A; + 1] • • • A uT[k +  nu — 1]

we have

Y[k] =  HAU[k] +  $£[*] +  Ty[k] =  #At/[fc] +  y  [jfe], 

where we have used the definition

Y[k] — <&£[&] + Ty[k\.

The matrices involved are given below:

H

C B
C A B  C B

C b C B

$  = (A -  F G r 1 C),

r  =

C A ^ - ' B  ••• ••• C A n2~nu B
C

C A

C A n2~l 

C
C A  

C A n2~l

F G - l

(5.11)
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Defining the vector

r i T
W [ k \  =  w T [k + rii\ w T [k +  n i  +  1] • • • w T [k -f 712] ,

we can rewrite the dual-rate GPC cost function in (5.10) in the matrix form:

J d[k] = (W[k\ -  Y [ k ] f r { W [ k ]  -  ypfej) +  XAU[k]T AU[k].

Here T  is a block diagonal matrix:

T  =  diag{fl, 0 , •••,  fl}.

From here, we can compute the optimal dual-rate GPC solution:

A U[k] = (H t T H  +  XI)~1H TT T (W[k] -  Y[k ]).

Comparing with the single-rate results in, e.g., [75], we note tha t the multirate GPC 

strategy

{Au[k + j] : j  =  0, • • •, nu -  1}

is a sequence of lifted control moves. As mentioned before, only the first one, Au[A:], is 

implemented; this corresponds to implementing n fast control moves for every period (nh) 

the output is sampled.

The state estimation is an im portant part in state-space GPC solutions ([7],[75]). we 

use a steady-state Kalman filter for this purpose:

x[k +  1] =  (A -  F G ~ 1 C)x[k] + BAu[k]  +  F G 7 l y[k}. (5.12)

With (5.12), the dual-rate state-space GPC solution would be exactly the same as an input- 

output solution if one would choose to approach the GPC problem from an input-output 

viewpoint.

5.4 Stability robustness

For a model-based control scheme such as GPC, it is im portant to analyze the stability 

robustness of the closed-loop system in the presence of model-plant mismatch. It turns out 

tha t it is better to carry out the analysis in the frequency domain, for which we need a 

polynomial domain solution of the dual-rate GPC problem. We will focus on SISO systems 

in this section.

67

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



5 .4 .1  C A R IM A  m o d e ls

Starting with a CARIMA model in (5.1) for a fast single-rate system, rewrite it as follows:

a(g_1)A • y[k] = q~l h(q~l ) • A u[k] +  c(g_1) ■ e[k}. (5.13)

Down-sampling the output by a factor n and lifting the control signal -  refer to Figure 5.3, 

we get a lifted LTI system

A(q x)y[k] = B(q x)Au[k -  1] +  C(q X)e[k], (5.14)

The underlying periods of all signals involved are the same, namely, nh. Notice here that 

A and C  are scalar polynomials, and B  is a 1 X n polynomial matrix.

To compute A, B  and C,  we first find from (5.13) the two transfer functions for Pdh, 

the system from A u to y, and Nh, the system from e to y. Then obtain state-space models 

for the two transfer functions:

Pdh {q) = ---
-1 BP

. c p 0 , N h(q)
A n B n

Cn D n

Notice here tha t we assumed tha t Pdh is strictly causal and hence Dp — 0.

It is then not difficult to get the lifted model P dfl and the down-sampled noise model 

N n h ' -

Edh(q) —

N nh{q) =

a ; A nv ~l B p A™'2 B p ■ • B p
_ cp 0 0 •• 0

[ ^N A'%~1B n  '

Cn Dn

From here we can obtain the transfer functions for P_dh and N nh; then comparing equation

y[k] = P dh(q)Au[k\ +  N nh(q)e[k] 

with (5.14), we can find polynomials A, B  and C  in the following form:

A(q 1) — 1 4- Aiq  1 +  A^q 2 +  ■•• +  A rq 

B(q x) =  B\  +  i?2g 1 +  ■ • B r -19 -(>—i)

C(q  ) — 1 +  Ciq  +  C*2g +  • • • +  Crq r .

(5.15)

(5.16)

(5.17)

Note again tha t A; and Ci are scalars, and R, are l x n  matrices.

Next we will describe a solution to the dual-rate GPC problem based on the CARIMA 

model in (5.14) in the polynomial domain.
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5.4.2 Dual-rate GPC solution in the polynom ial dom ain

We have reduced the dual-rate GPC problem into a single-rate one with multiple inputs 

and a single output, as is described by (5.14). In the following we will give a solution to the 

GPC problem in the polynomial domain; such a solution is useful later for our robustness 

analysis.

First, we solve the Diophantine equation:

C  =  E j A  +  q - j F j ,  (5.18)

where j  is a positive integer, E j  and F j  are unique polynomial scalars of order j  -  1 and 

r — 1, respectively. Multiplying (5.14) by qi and using (5.18), we get

y[k +  j] -  ~ A u [ k  + j -  1] +  Eje[k +  j] +  ~e[k \ .

From (5.14), replace e[k] by

e[k] = ^  [Ay[k] -  BAu[k  -  1]]

to get

y[k +  j] =  —̂ - A u [ k  +  j  -  1] +  ^ y [ k ]  +  Eje[k + j ].

Since E  {e[k + j]} — 0, at time fc, the best j-step  ahead prediction of the output is then

y[k +  j\k] =  ^ ^ - A u [ k  +  j  -  1] +  ^ y [ k ) .  (5.19)

Next, solve the Diophantine equation:

E jB  = GjC + q - j Gj.  (5.20)

Here Gj  is a 1 X n polynomial matrix of order j  — 1 and is given by

Gj = Gj,o +  Gj'iq-1 +  ■ • • +

and Gj+ij  =  Gyy for i =  0, • • •, j  — 1. Replacing E j B  in (5.19) by (5.20), we obtain the 

optimal j-step  ahead prediction:

y[k + j\k] =  GjAu[k + j - l ]  + ^ A u [ k  -  1] +  ^ y [ k ]

= GjAu[k + j  -  1] +  y[k + j\k]. (5.21)

We just defined in (5.21)

y[k + j\k] = ^ - A u [ k  -  1] +  ~ y [ k ) .
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Then we want to give a solution to the GPC problem in the matrix form, with the 

performance index defined in (5.10). Letting j  vary from n\ =  1 to n2 in (5.21) and 

defining

Y[k]

Y[k}

y[k + n 1\k] y[k +  % +  l\k] ■■■ y[k + n2\k] 

y[k + ni\k] y[k + ni + l\k] ••• y[k + n2\k]

AG[&] =  A wT[fc] Ay^[k  + 1 ] • • • A +  nu — 1]

we have

Y[k\ = HAU[k\  +  Y[k], 

where H  is a matrix defined as follows:

G i,o
<-?2,i G 2fl

H  =
G.n u ,n u — 1 G n u ,0

• • •  G r,G n 2 ,n 2 - 1   '-*n2 ,n2- n u J

Prom here the optimal GPC control vector is

A U[k\ = (Ht T H  +  AI ) - lH TY T (W{k\ -  Y[k]). (5.22)

Note again tha t only A u(k),  the first element in U, is implemented.

Finally, we want to express the GPC control law in a feedback form. Define the first n 

rows of matrix (Ht T H  +  AI )~ 1H TY T in (5.22) as K  and the i-th column of K  as Ki,  we 

get

n 2

Au[fc] =  E  K i i w [k +  *] -  y[k +  i |fc]}
i= 1
712 n2

-  E  Kiw[k + i] -  E  KiV[k +  i\k]
i =1 s=l
n2 n2 ^  712 p

=  £  K;m[k +  i] -  • £  K , - £ A u [ k  -  1] -  £  K , ^ y [ k } .
C-8 = 1  8 =  1 1 = 1

Assume the future reference signal is constant along the horizon: w[k -f- i\ — w[k]. The 

above equation can be written as:

712 \  712 712
C- I + q~l YY R £ i  A«[*] =  C  YY K M k] -  E KiFiVlk}- 
 ̂ 8 = 1 /  8=1 8 = 1

(5.23)
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Now we define

R i g - 1) =  C - I  +  g-

712

T i g - 1) =
8 =  1

n 2

s i r 1) = E K*Fi’

«2

t=i

8 = 1

and assume tha t the square matrix R{q~l ) is invertible. Then equation (5.23) becomes

A u[k] = R~ l [Tw[k] — Sy[k] \ . (5.24)

This feedback control law gives rise to the closed-loop control configuration shown in Fig

ure 5.4, which is the basis for our subsequent study on stability robustness.

Figure 5.4: Dual-rate GPC closed-loop system 

5 .4 .3  S ta b ility  ro b u stn ess  a n a ly sis

We have set the stage for studying the stability robustness of the dual-rate GPC control 

system in Figure 5.4. In the following we assume th a t a multiplicative uncertainty model 

is adopted. In Figure 5.5, Pdh is the estimated fast single-rate model from A u to y; (1 +  

O W 2 )Pdh captures the class of uncertain models, where is a fixed stable weighting filter 

and O represents the model-plant mismatch or the uncertainty; O is stable and belongs to 

the class

{O : ||0 ||co < 1} •

Robust stability is achieved if the controller stabilizes every admissible plant.

We remark tha t due to the presence of the down-sampler Sn and inverse lifting L " 1, the 

feedback system in Figure 5.5 is a time-varying system. For stability issues, we ignore the
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~ r

-*■ W2

Figure 5.5: Dual-rate GPC closed-loop system with model uncertainty

input. Isolating the O block, we can reconfigure Figure 5.5 into the feedback connection in 

Figure 5.6, where the feedback loop, the system from b to a is -MW2',  it is easy to derive 

that

M  =  ( /  +  L ~ 1 R ~ 1 S S n P d h ) ~ 1 L ~ 1 R ~ 1 S S n P d h -

Applying the small gain condition [33], we have tha t the GPC controller achieves robust 

stability if the loop gain HMLF2II00 is less than 1. Thus the problem reduces to computing

- M W ,

Figure 5.6: Simplified system for robustness analysis

the norm of M W 2, which in this case is a dual-rate system.

Using the norm preserving property of the lifting, we can relate the norm computation

of MW2  to tha t for an LTI system. Since HMW^Hoo =  \\LnM W 2 L~l \\co and

LnM W 2 L ~ 1 =  Ln{I +  L - 1 R - l SSnPdh) - 1 L - 1 R~l SSnPdhW 2 L - 1

=  [I +  R - l SSnL - \ L nPdhL - l ) Y l R - l SSnL - l {LnPdhL - l ){LnW2 L - 1)

= ( /  +  R - ' s v t i h r ' R - ' s v P , ^

where we defined

P4h =  LnPdhL~1, W 2  =  LnW 2 L - \  V =  SnL - P  

Notice tha t P d  ̂ and W 2  are LTI systems and V  is indeed a static system given by the
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matrix

Hence

V =  \ I  0

\\MW2\U  =  ||(J +  R - yS V P dh) - 1R - 1S V E 4hV!U (5.25)

To summarize, the stability robustness property is indicated by the norm computation 

in (5.25), which amounts to evaluating the oo-norm of an LTI system involving P d h , W 2 

and V,  depending on the model, and R  and S,  depending on the GPC controller.

5.5 Illustrative exam ples

Two examples are given in this section: In the first one we apply the state-space GPC algo

rithm developed in Section 5.3 to a multirate MIMO system and compare its performance 

with those of single-rate control schemes; in the second we study stability robustness in an 

example based on the result in Section 5.4, as the down-sampling ratio n changes.

E x a m p le  1

This example is based on an experimental setup in the Department of Chemical Engineering

at the University of Alberta. This is a pilot-scale stirred tank heater whose schematic

diagram is simply given in Figure 5.7. This process has two inputs (manipulated variables),

the valve positions of the inlet cold water and steam, and two measured outputs, the level

and temperature of the water in the tank.

Steam 
valve

i

Cold water 
valve

Figure 5.7: Schematic diagram of a stirred tank heater
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We will study and compare three GPC design cases for the stirred tank heater:

Case 1 Adjust the control signals and sample the outputs every 4 seconds -  the fast single

rate case. A fast single-rate process model (A, B,  C, D) can be obtained using certain 

system identification methods, for example, CVA [52] or N4SID [109, 110]. However, 

the true noise model is difficult to obtain. So in the state-space G PC problems, we use 

F  as a design parameter. Thus (A, B,  C, D, F) is considered to be the fast single-rate 

state-space model. The GPC performance index used is given by

{ 12
{w[k + i \ -  y[k +  i]}T {w[k + i] -  y[k +  i]}

i= 112 1
+ 2  '^2 Au[fc -f i -  1]TAu[k +  i — 1] > .

i= l  J
Case 2 Adjust the control signals every 4 seconds and sample the outputs every 8 seconds -  

the dual-rate case with ratio 2. The lifted state-space model (A,B,C_,D,F_) can be 

obtained from the fast single-rate model. The associated GPC index is

Jd[k] = {w[k +  d -  y[k +  i)}T {w[k +  i] -  y[k + i]}
I »=i

+ 2  ^ 2  Au[k + i — 1]TA u[k + i — 1]1 .
i= 1 J

Case 3 Adjust the control signals and sample the outputs every 8 seconds -  the slow single

rate case. Based on the fast single-rate model, the slow single-rate state-space model 

(AS, B S,C S, D S,F S) can be obtained. The associated GPC index is

J s[k] -  E i . 2 ^ 2 { w [ k  + i ] - y [ k  + i]}T {w[k + i \ - y [ k  + i]}
I <=i

+4 ^ 2  Au[& +  i -  1}TAu[k +  i — 1] | .
*=i J

Notice that the choices of horizons and weightings are such tha t the three performance 

indices are compatible. The setpoint changes are as follows: Setpoints for water level and 

temperature both change from 0 to 1 mA at time 0 (we use mA to quantify both y\ and y2; 

there are simple linear relationships to translate these units to actual physical units); then 

the setpoint for water level changes to  4 mA at time 1200 sec; and setpoint for temperature 

changes to 4 mA at time 1400 sec. Also, at time 200 sec, the water level is subjected to 

a step type disturbance with magnitude 1. There are also filtered integrated white noise 

added to the process outputs.
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Under these conditions, the three GPC problems are solved via state-space algorithms 

and their performances are compared by simulation. The tracking performance of the three 

cases over the whole time horizon is presented in Figure 5.8, which shows little difference 

for the three cases.

6
5

4

0
■10 200 400 600 800 1200 1400 20001000 1600 1800

5

4

Q
33

5?<DQ.
E 2aj

00 200 400 600 800 1000 1200 1400 1600 20001800
soild line: fast single rate; dashed  line: multi-rate(n=2); dashdo t line: slow single rate

Figure 5.8: Tracking performance over the whole time horizon

Now let us zoom into the period from time 0 to 250 sec, see Figure 5.9 and 5.10. 

It is clearer tha t the fast single-rate GPC generates the fastest response with minimum 

overshoot, the slow single-rate GPC is the worst, while the dual-rate one is in between.

We can also compare the performance indices for the three cases for setpoint tracking 

to get a rough idea -  see Figure 5.11. It appears th a t the fast single-rate GPC has the 

smallest performance index a t most times, and the dual-rate G PC ’s performance is in 

between the performance of the two single-rate ones. In cases when practical constraints 

limit the sampling frequency, this example shows tha t dual-rate control scheme is a better 

choice than the slow single-rate scheme.

E x a m p le  2

Here we study stability robustness using an example from [8]. The continuous-time process 

is third-order:

P(s) =  ----------   1 w.........x.
(s +  1) (3s +  1) (5s +  1)
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w aterlevel
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0.85
50 100 150 200

soild line: fast single rate; d ash ed  line: multi-rate(n=2); d ashdo t line: slow single rate
250

Figure 5.9: Tracking performance of the water level during time period [0,250] sec

tem perature
1.2

1.18

1.14

1.08
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1.02

50 100
soild line: fast single rate; d ash ed  line: multi-rate(n=2); dashdo t line: slow single rate

150 200 250
-rate(n. .2): dashdot line: slow

Figure 5.10: Tracking performance of the temperature during time period [0,250] sec
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Figure 5.11: Performance index comparison for three cases over time horizon [0,250] sec

Take the sampling period to be h =  1 sec; then the discrete-time model is

p  ( =  Q-0077? -1  +  0-Q212g~2 +  0.0036g~3
h[q J 1 -  1.9031q-' +1.1514^-2 -  0.2158g-3 ' 1 j

This is regarded as the true process model. Using square wave excitation and the least

square methods, a first-order model was identified:

p h(q- i) _  0.0419?-1+  0.0719g~2 (5.27)
1 -  0.8969g-1

Notice the model-plant mismatch between Ph and Ph- Next we want to embed Ph into 

the multiplicative uncertainty class

{(1 + OW 2)Ph : | | 0 | | o o < l } ,

in order to find a suitable weighting filter W 2 . This requires tha t W 2 satisfies the following 

inequality
Pu(e

| l - - ^ - | | < r 2( ^ ) | ,  Vu; G [0,7r].
Ph(e3W)

By trial and error, we found a suitable weighting function

w 2(,-') = : :.
1 1 -  0.6g-1

Figure 5.12 shows the Bode plot of W 2 over-bounding th a t of the true multiplicative per

turbation, namely, 1 — Ph/Ph
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  true uncertainty
 weighting filter

s  1 0 “'

10~3
Normalized frequency

Figure 5.12: Bode plots of W 2 and the true uncertainty

Now we design dual-rate GPC for the nominal model P^. Performance indices in (5.7) 

and (5.10) are used for the fast single-rate and the dual-rate GPC problems, respectively. 

The tuning parameters are chosen as follows:

N 1 — Hi = 1) N 2 = N u = 12, n2 =  N 2/n ,  nu = N u/n ,  A =  0.5, (5.28)

where the larger the N 2 (or the smaller the N u), the more robust the closed-loop system. 

But we will not tune them in this example and only the down-sampling ratio n is left as a 

variable to be changed in the design process: We allow n to take values among 1 (the fast 

single-rate case), 2, 3, 4, and 6 . Another im portant tuning param eter, the filter polynomial 

c{q~l ) -  see (5.1), is chosen to be c(g-1 ) =  1 — 0.8g-1 . The step tracking performance 

of the G PC’s with different n  values, when applied to the nominal model Ph is shown in 

Figure 5.13. We see tha t as n increases the overshoot gets larger.

Next we want to  see the effect of the down-sampling ratio n on the stability robustness 

properties of the dual-rate G PC ’s. According to (5.25), the quantity HMW2H00 is an indi

cator of stability robustness: The smaller tha t quantity, the more robust the closed-loop 

system. The following table summarizes our calculation:
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1500 3000

Figure 5.13: GPC tracking response with model Ph

ratio n
6
4
3
2
1

1.4607
1.2316
1.0131
0.8381
0.7269

So the closed-loop system becomes much more robust when n decreases. This observation 

can be verified by the following simulation results. Figures 5.14 and 5.15 show, respectively, 

the closed-loop tracking responses when the G PC ’s designed for nominal model Ph are 

applied to the true model Ph in (5.26) and the model with transfer function (1 +  W 2 )Ph, 

one of the extreme cases in the uncertainty class with 0  = 1. In the first situation, we see 

more oscillation as n increases, indicating closer to instability. In the second situation, the 

closed-loop system becomes unstable, when n = 6 .

All these results indicate tha t the down-sampling ratio n is closely related to the robust

ness property of the GPC algorithm. The smaller this ratio n, the more robust the dual-rate 

GPC closed-loop system. An explanation by intuition is tha t when n decreases, the output 

is sampled more frequently, and the uncertainty information is fed to the controller more 

quickly. As a result, the controller can act to keep the closed-loop robust stability more 

efficiently.
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Figure 5.14: GPC tracking response with model Ph

500 1000 1500 2000 2500 3000
time

Figure 5.15: GPC tracking response with model (1 +  W 2 )Ph
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5.6 Conclusions

In this paper, we have studied GPC problems in a special case involving dual sampling 

rates. It is possible to find explicit formulas for the GPC solutions in both the state-space 

and polynomial domains, the main tool used being the lifting technique. We have also 

attem pted stability robustness study for the dual-rate GPC algorithms.

We remark tha t the state-space GPC obtained in this chapter for dual-rate systems is an 

extension of the single-rate GPC algorithm developed by Ordys and Clarke [75], where the 

relations between the polynomial and state-space parameters are presented. In particular, 

the Kalman gain in (2.7) reflects the observer filter c(g-1) in the CARIMA model (2.1). 

This is also true for the lifted model. There have been efforts to  design c in the transfer 

function framework to improve disturbance rejection or to enhance robustness of the closed- 

loop [27, 12, 8]. However, how to tune the corresponding Kalman gain in the state-space 

framework for the same purposes are still open problems in the process control area.
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C hapter 6

Issues on M ultirate System s

6.1 Introduction

Research on multirate systems can be traced back to  the late fifties, when Kranc [50], Jury 

and Mullin [45], and Kalman and Bertram [46] published a series of early work. Lately, 

multirate issues have been discussed in the LQG/LQR designs by Berg et al. [10], Al- 

Rahmani and Franklin [4], Chen and Francis [18], and Meyer [65]; the parameterization of 

all stabilizing controllers by Meyer [64] and Ravi et al. [85]; the %2 and 'H00 discrete-time 

and sampled-data designs handling the causality constraint by Feintuch et al. [34], Georgiou 

and Khargonekar [37], Voulgaris et al. [I ll], and Qiu and Chen [80, 19, 81], and the work 

by Meyer and Burrus [66], Araki and Yamamoto [6], Hagiwara and Araki [41], Colaneri et 

al. [29], and Sezer and Siljak [100].

A SISO multirate system can be represented by Figure 6.1, where P  is a continuous

time plant; H mh and Snh are ideal multirate D /A  and A /D  converters with period mh  and 

nh,  respectively. We remark tha t m, n are coprime positive integers, for otherwise, the 

common factors of m  and n can be absorbed into h, which is a positive real number and is 

the so-called base period. For this multirate open-loop system, a multirate controller can

mh

Figure 6.1: A SISO multirate sampled-data system

be designed to close the loop. This controller updates the control signal every period mh,  

and samples its input signal every nh.

One objective of this chapter is about the design of multirate controllers: Assume an 

analog controller K  has been designed for the continuous-time plant P,  how to implement
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it on a computer through a multirate scheme? This is called the multirate discretization 

problem or the multirate digital redesign problem in some references.

We remark tha t single-rate digital redesign for a well designed continuous-time control 

system has been widely studied. Traditionally, the single-rate redesign is accomplished by 

discretizing the analog controller based on any of the conventional discretization methods [7]. 

However, these methods are open-loop based without consideration of closed-loop stability 

and performance in the discretization process. Serious performance degradation is observed 

when sampling rates are limited to be relatively slow. To overcome these disadvantages, 

the optimal digital redesign technique was proposed by Rafee et al. [84]. It has been 

shown superior to the conventional methods in aspects such as the closed-loop stability and 

performance, the ability to capture the inter-sample behavior, and so on. Its drawback 

is tha t the redesigned digital controllers are sometimes of high order and hence model 

reduction may be required after the design. This issue was solved by Rabbath et al. [82] 

with the so-called reduced-order plant input mapping technique. It enables the designer to 

not only constrain the order of the discrete-time controller, but also achieve a satisfactory 

closed-loop performance.

M ultirate discretization of analog controllers is similar to the single-rate cases. Two 

approaches were mentioned by Rafee et al. in [83]: the first is the easy extension to  multirate 

cases of the conventional single-rate discretization methods, such as those based on the 

step-invariant transformation and bilinear transformation. And the second is based on the 

optimal matching of the closed-loop step responses of the analog and digital systems. The 

second approach has been throughly studied in [83]. We will only look into the multirate 

digital redesign by using the first approach in this chapter, focusing on the error analysis 

in the frequency domain.

Most plant in industry, especially in the process industry, exhibit input-output delays. 

T hat is, the effect of a change in the manipulated variable is not felt on the process output 

until some time has elapsed. Time delay are mainly caused by transport delays or sometimes 

as the result of processes with dynamics composed of multiple chained lags. The difficulties 

of controlling processes with significant time delays are well known and are due to the fact 

tha t time delays produce a phase lag tha t deteriorates the phase margin. As a result, how to 

get the knowledge of the time delay in a continuous time process is im portant. And another 

objective of this chapter is to identify the unknown time delay for the continuous-time plant 

P  in Figure 6.1, based on the multirate input-output data.
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Identification of the unknown continuous time delay is generally agreed to  be a difficult 

problem. Conventionally, discrete-time approaches will be used to obtain a discrete-time 

plant model (including a discrete time delay), based on the sampled input and output data. 

Various identification methods in the discrete time domain have been developed and can be 

found in the book by Soderstrom and Stoica [104]. However, in the event of identification of 

an inherently continuous-time system in terms of a discrete-time equivalent, the question of 

sampling is not trivial. Also, obtaining a continuous-time model from its identified discrete 

form has some difficulties ([103]). Furthermore, in the presence of a possible, and often 

unknown time delay, which may not happen to be an integral multiple of the sampling time, 

the resulting discrete-time model may have the undesirable non-minimum phase property. 

For all these reasons, efforts on continuous-time identification approaches have been made 

in the past decades [108]; but in some circumstances the identified continuous model is 

biased in the presence of noise [36, 42] except when the output is corrupted only by white 

noise [21].

Note tha t both discrete-time and continuous-time identification approaches use sampled 

input and output data, and most of them are in the single-rate setting. However, single-rate 

sampled input-output data are sometimes impractical or impossible to obtain, especially 

in chemical process industry. Identification of the continuous time delay by the multirate 

input-output data has been discussed by Li et al. [59], where a lifted model for the multirate 

system is first identified, and then the continuous time delay is extracted. In this chapter, 

instead of the lifted model, an interactor matrix ([113]) of the lifted model is first derived 

from the available multirate data by using existing techniques and algorithms, and then the 

continuous time delay is estimated.

The notion of an interactor matrix [113] for a multivariate system can be best understood 

by relating it to the meaning of the time delay for a univariate process. Interactor matrices 

are not exactly the reflection of time delays of MIMO systems; for example, a system without 

time delay can still have an interactor matrix. However, interactor matrices are closely 

related with time delays in a system; this explains why we manage to  get an estimation 

of the unknown continuous time delay by the interactor matrix of the lifted model in this 

chapter.

Briefly, this chapter is organized as follows: In Section 6.2, we deal with the multirate 

digital redesign by extending the single-rate digital redesign methods: discretizing a de

signed analog controller by step-invariant and bilinear transformation methods. The differ

ence between these two redesigns will be checked in the frequency domain. The continuous
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time delay identification problem is discussed in Section 6.3. Properties of the time-delay 

matrix of the lifted model will be first investigated. Then, with the introduction of interac

tor matrices, we will show its relationship with the unknown continuous time delay. Results 

and conclusions in Sections 6.2 and 6.3 are illustrated by examples, respectively. Finally, 

conclusions are given in Section 6.4.

6.2 M ultirate discretization o f analog controllers

The multirate digital redesign problem can be stated as follows: assume an analog controller 

K  has been designed for continuous-time P  in Figure 6.1, then we need to obtain an 

approximation of K  by H mhKdSnh for some multirate digital Kd- Such a procedure to 

get Kd from K  is called redesign. This multirate digital controller Kd can have a form as 

follows:

Kd — Smh,KHnh, (6 .1)

and can be represented by Figure 6.2, where it calculates the control signal and samples 

the input signal at periods m h  and nh, respectively.

mh

Figure 6.2: M ultirate digital Kd

Introducing the discrete-time down-sampler S m by a factor of m,  and the discrete-time 

zero-order holder H n defined by:

x' =  Hnx x'[kn +  r] =  a:[A], r =  0,1, ■ • •, n — 1.

Kd in (6 .1) then becomes:

K d =  SmK hH n, (6.2)

where Kh is a single-rate discretization of K  with sampling period h and any discretization 

methods for single-rate systems are applicable for it. In this chapter, two commonly used 

methods will be used: the step-invariant and the bilinear transformation methods.

6 .2 .1  E rror s y s te m

Note tha t for any multirate discretization of K ,  say, Kd, it is actually implemented by 

H mhKdSnh as shown in Figure 6.3. Thus there exists an error, say, K  -  H mhKdSnh,
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m h

Figure 6.3: M ultirate sampled-data implementation of K  

between the designed analog K  and its sampled-data approximation, see Figure 6.4.

m h

Figure 6.4: The error system

When step-invariant and bilinear transformation methods are applied to (leading 

to different Kf) ,  the error system in Figure 6.4 will have different responses for the same 

input y. The smaller the error e, the better the discretization approximation. Thus the 

error system can be regarded as a way to tell how well an approximation fits the designed 

analog controller. Since the error system is time-varying and has no transfer function, we 

will study it in the frequency domain by writing out the relationship between the Fourier 

transform of signals e(ju>) and y(jco).

To do so, we first present an equivalent of Figure 6.4 as shown in Figure 6.5; and

mh

Figure 6.5: The equivalence of Figure 6.4 

introduce the following lemma:

L em m a 1 In Figure 6.5,

1. The block Snh maps y(t) to v[k]; and their Fourier transforms are related by the
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equation

Here ye(ju>) is the periodic extension of y(jco), i.e.,

00
Ve (jw) =  J 2  y t i u  + j k u s),

k~—oo

and u s = is the sampling frequency.

2. The discrete zero-order holder H n maps v[k) to v'[k], with Fourier transforms given 

by the equation
1 _  p - j w n h  .

) =  1 _  e-,w . (6.4)

3. The down-sampler S m maps z'[k\ to z[k], with Fourier transforms given by the equation

1 TO —1
z(e~jumh) = - J 2  z'(e~jwh- 3 ^ ) .  (6.5)

m  r= o

f .  The holder H mh maps z[k] to u(t); and their Fourier transforms are related by the 

equation

u(ju>) =  m h ■ r ( j u ) z ( e ~ ^ mh). (6 .6)

Here r(t) is defined as:

r (t) =  J  0 < t < m h ,
'  '  1 0 , elsewhere,

and therefore its Laplace transform and Fourier transform are

1 _ e s m h  • . m h s i n u ; 2 ^
2

smh  ’

Lemma 1 allows us to write the frequency-domain relationship between u(t) and y(t) in 

Figure 6.5: from (6.3) to (6 .6), we have

1 m—1
u(ju>) =  m h • r(ju>) ■— y~) i /(e~-7a'fe~-?~^r), (6.7)

m  i= 0

. , I _  p —j w n h  1
(6 .8)

Thus for the error system in Figure 6.5, the error e(jcj) is:

1 TO —1
e(joj) -  k{ ju)y{ ju )  -  m h  • f ( jw) ■ — (6.9)
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with z'{& iwh) defined in (6 .8).

Assume tha t y(jw) is bandlimited to frequencies less than u>n , i.e.,

y(ju)  =  0 for oj > wjy.

Then

Ve{ ju)  =  y(ju>) for u  < ojn ,

here w/v =  ^  is the Nyquist frequency.

For u  < a>jv, if m  — 1, i.e., the updating rate of the control signal is an integer (n) 

multiple of the sampling rate of the output signal, we have:

e(ju>) = k ( ju )y ( ju )  -  h • r ( ju)  ■ kh{eT3W )~1 _  &_jwh

1 _  e-junh I
k ( ju )  -  r(jaj) ■ kh(e i“h) x ^ y ( ju )

This motivates the definition of the error function,

1 _  e-j«mh 1
E(u)  := 

and the maximum error,

k ( ju )  -  r(jui) • kh(e i“h) x _  ^_jwh ^ (6 . 10)

Emax ■= max E(u>). (6 .11)

Clearly, for inputs tha t are bandlimited to frequencies less than u>n , E max is a measure 

of how closely HhKjSnh  approximates K.  And this error is due to three factors: (i) the 

presence of the zero-order hold H mh, (ii) the single-rate discretization kh, and (iii) the 

integer n.

If to > 1, due to the properties of the discrete sampler Sm , there does not exist the 

so-called error function. We can only calculate e(ju>) by making assumptions on the input 

y(ju>) and using equation (6.9). Except the three factors mentioned above, error e(ju>) is 

also affected by integer to.

The comparison between the two discretization approximations mentioned, based on the 

error system in Figure 6.5, will be illustrated next in an example.

6 .2 .2  E x a m p le

In this example, we take the elliptic filter in [20] as the analog controller K  in Figure 6.5. 

It is with zeros ±  1.23334j ,  ±1.72290j, poles -0.78280, -0.07543 ±  1.05165j, -0.379155 ±  

0.875369 and gain 0.175407. Figure 6.6 shows its magnitude Bode plot.
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Figure 6 .6 : Bode plot of the elliptic filter

Now we want to approximate this analog controller by the fast-updating, slow-sampling 

dual-rate (with ratio n) implementation HhKdSnh = KhHn, and we choose Kh to be the 

step-invariant transformation and the bilinear transformation, respectively. Based on the 

error system in Figure 6.5, the error function in (6.10), and the maximum error in (6.11), 

we will see which approximation is better.

We first try  n = 1, the most simple case - single-rate discretization. Figure 6.7 shows the 

graph of E(u)  under two discretization methods. The error of the bilinear approximation 

with =  10 is represented by the solid line and the error of the step-invariant approxi

mation is represented by the dotted line. Also, computation gives tha t E max for the former 

transformation is 0.2702 and 0.3058 for the later. All these facts indicate tha t the bilinear 

approximation is better than the step-invariant method in single-rate digital redesign.

This is also true when n, the dual-rate ratio, takes increasing integer values, see Fig

ure 6 .8 , where n varies in the range (1,10]. It is clear tha t when n increases, errors under 

two approximation methods tend to be the same. When n is larger than certain value, say, 

6 , there is almost no difference between these two digital redesign methods. Moreover, for 

a fixed discretization method and frequency u,  |2?(w)| will become larger with the increas

ing of n, see Figure 6.9 for the bilinear approach and Figure 6.10 for the step-invariant 

transformation.
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Figure 6.7: Error for single-rate discretization of Elliptic filter
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Figure 6 .8 : Error for dual-rate discretization with different n
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Figure 6.9: Error for bilinear approximation with different n
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frequency

Figure 6.10: Error for step-invariant approximation with different n
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n E b i U n e a r , m a  x E z O H , m a x

1 0.2702 0.3058
2 0.4136 0.4547
3 0.5552 0.5970
4 0.6884 0.7308
5 0.8108 0.8538
6 0.9207 0.9643
7 1.0164 1.0607
8 1.0996 1.1419
9 1.1691 1.2068
10 1.2221 1.2550
11 1.2583 1.2864
12 1.2780 1.3013
13 1.2816 1.3047
14 1.2752 1.2939
15 1.2566 1.2899
16 1.2586 1.2933
17 1.2617 1.2944
18 1.2629 1.2937
19 1.2625 1.2915
20 1.2610 1.2886

Table 6.1: Emax for two approximations with different n

The maximum value of E(u)  also changes when n takes value in the range [1,20]. 

Table 6.1 shows this variation for the two dual-rate digital redesign methods.

If to ^  1, i.e., the analog controller is approximated by the general implementation 

H mhKdSnh, to compare different approximation methods, we need to  calculate e(ju>) with 

assumptions on input y( ju ) .  Here we take y(t) — e>WQt, i.e., y(juj) = 2tt8{u) — o>o). By 

equations (6.9) and (6 .8), when wo changes in certain range, e(ju>) over this range can be 

plotted. See Figure 6.11 and Figure 6.12, where the base period h — tt/10; o>o varies in the 

range [0 .1, 100 9]; the solid line represents the bilinear approximation and the dotted line 

represents the step-invariant approximation.

In Figure 6.11, m  is fixed to be 2, and n — 3 ,5 ,7 ,9 , respectively. Similarly, in Figure 6.12, 

n is fixed to be 9, and m  — 2,4, 5, 7, respectively. Comparing with Figure 6 .8 , we note 

tha t the difference between the integer ratio dual-rate approximation and the multirate 

approximation is mainly in the high frequency range. This aliasing is introduced by the 

down-sampler S m; and the larger the integer to, the more serious the aliasing.
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Figure 6.11: Error signal e(ju>) for different n
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Figure 6.12: Error signal e(ju>) for different m
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6.3 Time-delay estim ation o f multirate system s based on in
teractor matrices

6 .3 .1  P r o p e r tie s  o f  t im e -d e la y  m a tr ic e s  o f  lif te d  m o d e ls

For a SISO multirate system illustrated in Figure 6.1, we first assume the continuous-time 

plant P  is causal and with time delay r , where r  is a positive real number in the range 

((I — 1 )h, Ih], and I is a positive integer. Applying the lifting technique, we then get an LTI 

lifted model jP which has n inputs and m  outputs and a m x  n transfer matrix represented 

as follows:

(6 .12)

1), assuming it contains a

Poo P oi Po,n-l
Pio P n Pl,n-1

E  = :
1 3° I ”o Pm—1,1 Pm — l,n—l

For every subsystem Pij {i — 0 , 1 ,*-- m  -  1 , j =  0 , l , - - - , n  —

time delay of k j , then a time-delay matrix for the lifted P  is:

T (P ,l) =

‘ 00

h o

h i
h i

h , n —l

h , n —l
(6.13)

^m —1,0 1,1 ' ' ' ^m —l , n —1

Here we use T (P ,/) to show th a t this matrix is related to the integer I, which reflects the 

continuous time delay: (I — l)h  < t  < Ih.

The lifted system P  maps u[k] to y[k], where

u(k • n • mh) y{k • m  • nh)

=
u((kn  +  1) • mh)

, y[k] =
y((km  +  1) • nh)

u(((k  +  1 )n — 1) ■ mh) y(((k  +  l)m  — 1) • mh)

both having period mnh; and the subsystem P . maps Uj[k] =  u((kn  + j )  ■ mh) to y^k] =  

y((km  +  i) • nh). Note tha t during the first interval [0, m nh), Uj[ft] occurs a t time j  • mh  

and y^k] at time i ■ nh; so the actual time delay from Uj[k] to y^k], incorporating tha t due 

to lifting, is

Tij =  r  +  jm h  — inh. (6.14)

By (6.14), if r  =  0, i.e., the continuous-time model has no time delay, then the actual 

time-delay matrix for the lifted system is:

m

0
-nh

m h  
—nh  +  mh

■(m — l)n h  —{ m — l)n h  -f- m h
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(n — 1 )m h  
—nh  +  (n — l)m h

— (m  — 1 )nh  +  (n — 1 )m h

(6.15)
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and the corresponding time-delay matrix for P  is denoted by r(P , 0).

T heorem  3 Divide the first interval (0, mnh] into m n subintervals: ((k — 1 )h,kh] (k =  

1,2, • • ■ ,m n ). Then there exists a 1-to-l correspondence between F (P , k) and k. In other 

words, given a time-delay matrix T(P , k), the continuous time delay r  can be determined 

with accuracy h, i.e., (k -  l)h  < t  < kh.

To prove Theorem 3, we need the following lemmas, where we have assumed that the 

continuous time delay r  varies in the first interval (0 , mnh}.

Lem m a 2 For F (P , k), Ux < hy and lxj > lyj, if  x < y.

Lem m a 3 When r varies from the first subinterval to the m n-th subinterval, every element 

in F (P , 0) will change only once.

Lem m a 4 When r  changes from the k-th subinterval to the (k + l)-th  subinterval, only one 

and must be one element in F (P , k) that changes.

P ro o f o f  Lem m a 2: During the first interval (0, mnh], we have

hj =  0 , if T j  < 0 ,
< lij =  1 , if 0 < Tij < m nh, (6.16)

lij — 2 , if m nh < T j  < 2m nh.

By (6.14) and (6.16), Lemma 2 is proved. Furthermore, for a specific F (P ,k )  related with

(k — l)h  < t  < kh, there exist inequality restrictions between every Uj and their neighboring

elements, which is shown below:

too < tox <  • ' • < to,n—l
v | v | V|
^10 < ^ l i <  • ■ ' < t l ,n —1
v | V| V|

, V| V| VI
m —1,0 < t-rn—1,1 <  • ■ ' < tm — l , 7 i — 1

Q.E.D

Proof of L em m a 3: For a complete proof, we first show tha t every element in F(P , 0)

will change. W ithout loss of generality, we assume tha t the (i, j) - th  element in F(P , 0) is

lij — x. By (6.14) and (6.16), the corresponding T j  satisfies:

(x — 1 )m nh < T j  — jm h  — inh  < xm nh.
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When t  is in the m n-th subinterval ((m n — l)h , mnh], the (i, j) - th  element in F(P , mn), 

say, V-, is determined by Tj- — m nh  +  jm h  — inh] here we have used the property that 

when t  takes different values in one range ((k -  1 )h, kh] (k =  1, 2, • • •, m n ) , T(P, k) is the

same. The limit on T-- isV

xm nh  < T-j =  m nh + jm h  — inh < (x +  1 )m nh,

i.e., V- in r(P , mn) equals to x +  1. It is then proved th a t when r  varies from the first

subinterval to the mn-th subinterval, every element in T (P , 0) will change (from x to x +  l).

Next, we will prove tha t any element 1,-j can only change once. If not, assume Z,y changes 

from x to x +  1 and y to y +  1, with x and y being two different integers, then

r  +  jm h  — inh  =  xm nh + h,

t ' +  jm h  -  inh — ym nh  +  h.

As a result, it is obtained tha t r  — r '  =  [x -  y)m nh\ however, this is impossible, since r  

only changes in the range (0, mnh]. Q.E.D

P ro o f  o f  L em m a 4: First, we prove tha t only one element in r(P, k) will change. If not, 

say, Iq jj changes from 0 to 1, and li2j 2 changes from 1 to 2 , then we have

i\ > *2) (6.18)

h  < J2, (6.19)

r  T  j \m h  — i\n h  =  0, (6.20)

r  +  j^m h  -  i2nh =  m nh, (6 .21)

where (6.18) and (6.19) can be easily concluded from (6.14), and (6.20) and (6.21) represent 

the change of I4ljl and /,2j 2. From (6.20) and (6.21), we get

( j 2  -  j i )m  + (ii -  i2)n = m n. (6 .22)

Since m  and n are coprime, and j 2 — j i and i\ — i2 are positive integer numbers, equation

(6.22) cannot be true. In other words, when r  changes from the k-th  subinterval to the 

(.k +  l)-th  subinterval, only one element in T(P) will change.

Next, we prove tha t when r  changes from the k-th. subinterval to the (fc +  l)-th  subinter

val, there must be one element in T(P, k) th a t changes. If not, m n  changes of the elements 

in S (P ) will occur in other m n  — 1 times of the interval changes of r . However, this is 

conflicting with we just proved above. Q.E.D
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P ro o f  o f  T h e o re m  3: By Lemmas 3 and 4, when r  varies from the first subinterval to 

the mn-th subinterval, every element in F (P , 0) will change only once; and for different k, 

r (P , k) is different. Since T(P, k)  corresponds to the range tha t r  lies, it is proved tha t given 

a time-delay matrix F(P , k), r  can be determined with accuracy h, i.e., (k — l ) h  < r  < kh.

Q.E.D

To help understanding Theorem 3, here we illustrate the 1-to-l correspondence by the 

case where m  = 2 and n =  3. From (6.15) and (6.16), it is clear tha t

m
0 2 h Ah

-3 h —h h => F (P ,0 ) =
0 1 1 
0 0 1

(6.23)

and during the period (0 , 6h\, when r  is in different subintervals, the corresponding time- 

delay matrices are:

0 <  t <  h >-
} i—1
 1! 1

0
1
0

1
1

(6.24)

h <  r  <  2h ■ $=> F (P , 2) = ’ 1 
0

1
1

1 ’ 
1

(6.25)

2h < t < 3h <=A- F (P, 3) =
' 1

0
1
1

2
1 (6.26)

3h < t < Ah <=> F (P , 4) =
' 1 

1
1
1

2 "
1

(6.27)

Ah < t < 5h r ( P ,  5) =
' 1 

1
2
1

2 '
1 (6.28)

bh < t  < Qh <==> F (P ,  6) =
’ 1

1
2
1

2 " 
2 (6.29)

We remark tha t due to the periodicity of the original multirate system, the time-delay 

matrix of P  has the property tha t if r  takes value in subinterval ( r m n h + (k - l)h ,  rm nh+ kh] 

in the (r +  l)-th  interval (rm nh, (r +  1 )mnh], then

F(P , rm n +  k) =  r • E mXn +  T(P, k ), (6.30)

where r is a positive integer, and E mxn is an m  X n matrix with all elements being 1. For 

the case discussed here, if r  =  1 and k = 1, i.e., 6h < t  < 7h, then (6.30) becomes

F (P , 7) =

CQ
•

2

iCM
II H-

4 " i l l "

i--
--- 1—

1

1 2 1 1 1
.

+ r (P, i).

Theorem 3 shows tha t for a multirate control system, once m, n and the time-delay ma

trix r(P , k) are known, the unknown continuous time delay can be estimated with accuracy
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h,  i.e., (k — 1 )h < t  < kh.  A question then arises is: how to  get the specific T(P_, k )? Next 

we will try  to answer this question by introducing the concept of interactor matrices for 

MIMO systems. We emphasize tha t a lifted model is with multi-input and/or multi-output, 

so it has interactor matrices, too.

6 .3 .2  In tera cto r  m a tr ices

To solve the multivariable deadbeat and minimum variance control problems, Wolovich 

and Falb [113], Wolovich and Elliott [114], as well as Goodwin and Sin [39] introduced the 

concept of interactor matrices, which is the generalization of the SISO time delay to the 

MIMO case.

T h eo re m  4 For every m x n  proper, rational polynomial transfer function matrix P, there 

is a unique, non-singular, to X m lower triangular polynomial matrix D , such that |D | =  qa

and

lim D P  =  lim P  — R  (6.31)
q~ l —rO 9_ 1 —S'O

where R  is a full rank (full column rank or full row rank) constant matrix, the integer a is 

defined as the number of infinite zeros o f P, and P  is the delay-free transfer function (factor) 

matrix of P  which contains only finite zeros. The matrix D is defined as the in te ra c to r  

m a tr ix  and can be written as

D =  D 0 +  D xq +  D 2q2 H-------b D d,qd

where d is denoted as the order o f the interactor matrix and is unique for a given transfer 

function matrix (Shah et al. [101]; Mutoh and Ortega [71]), and D; (for i =  0, • • -,d) are 

coefficient matrices.

The matrix D also has forms other than the lower triangular one. It can be one of the 

three forms described in the sequel:

•  If D is of the form, D =  qdI,  then it is regarded as a simple interactor matrix.

•  If D is a diagonal matrix, i.e., D =  diag(qdl,q d2, ■ • •, qdm), then it is regarded as a

diagonal interactor matrix.

•  Otherwise D is regarded as a general interactor matrix, which can be a full matrix,

an upper triangular matrix (Shah et al. [101]; Huang et al. [43]), a nilpotent matrix

(Rogozinski et al. [92]), or a unitary interactor matrix (Peng and kinnaert [76]).
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D efin ition  1 Instead of taking the lower triangular form, if  an interactor matrix in Theo

rem 4 satisfies

is also pointed out tha t the unitary interactor is non-unique. However, it is unique from 

the algorithm by Peng and Kinnaert [76] and Rogozinski et al. [92]. Later in illustrative 

examples, we will use their algorithms to calculate interactor matrices of lifted models based 

on multirate input-output data.

6 .3 .3  E s t im a t io n  o f  c o n t in u o u s  t im e  d e la y s

In the following, we assume:

® The continuous-time plant P  has unknown time delay r.

•  Interactor matrix D of the lifted model P  and the corresponding full rank matrix R  

are both available.

We will show next tha t under certain conditions, the continuous time delay r  can be esti

mated with accuracy h by the knowledge of D and R.

For the lifted system P_ with transfer function matrix (6.12), the interactor matrix D is 

an m  X m  square one, say,

D T(g -1)D(g) =  I

then this interactor matrix is denoted as a unitary interactor matrix.

The unitary interactor matrix is an all-pass factor, as a delay term should be. The existence 

of the unitary interactor matrix has been established by Peng and Kinnaert [76], where it

Doo • • • Do,m—l
D =

D m  —1,0 ‘ " ' D m  —l , m —l  .

Assume

(6.32)

and
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where Uj belongs to F(P, I) in (6.13) and represents the time delay of the subsystem Pij\ 

and lij, dij are both non-negative integers. Then by the definition of interactor matrix in 

(6.31), the element of R , i.e., P,y (i =  0, • ■ •, m  -  1; j  =  0, • • ■, n -  1) is given by:

771 — 1
R n =  ^  E ̂ H ^ P ^  +  <T1< )(‘T 1)], (6-34)

where n j^ (q ~ 1) represents a polynomial in HR form.

Since we assume the interactor matrix D and the constant matrix R  are both known, 

then if we can limit every Uj within certain ranges, i.e., get the time-delay matrix F(P, I), 

we can determine r  with accuracy h immediately by Theorem 3. So the key step here is to 

obtain r(P , I) by the knowledge of D (it can be in any form as described before) and R. 

The feasibility of this step still needs to be proved in general. While the procedure will be 

much more simple when D has a diagonal form, or a form where every row or column has 

only one non-zero element.

T heorem  5 Assume (i) the D /A  rate is higher than the A /D  rate, i.e., m  < n; (ii) the 

lifted model P  has an interactor matrix D in the diagonal form, or a form where every 

row or column has only one non-zero element. Then the continuous time delay r  can be 

determined with accuracy h, i.e., we can find I such that (I — 1 )h < r  < Ih.

To help proving Theorem 5, let us first look at the following lemma. Here we assume m  

and n  both are integers larger than 1 .

Lem m a 5 For a specific time-delay matrix F(P, I) in correspondence with {l—l)h  < r  < Ih,

1. the difference between the maximum and the minimum lij can only be 1 or 2;

2. the difference between the maximum and the minimum Uj in one row can only be 0 or

i ;

3. the difference between the maximum and the minimum Uj in one column can only be 

0 or 1;

4- the difference between Uj and its four neighbors: U-i,j, U,j-1, U,j+1 > and U+i,j> can 

only be 0 or 1;

5. the difference between Uj and its four diagonal neighbors: U-i,j-i> U-i,j+i, U+i,j-i, 

and U+i,j+i, can only be 0 or 1 .
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P ro o f  o f L em m a 5:

1. From (6.17) in Lemma 2 , the maximum Uj in F (P , I) is /o,n-i and the minimum is

1,0° Assume lm~i,o ^i i»0'5

(x — l)m n h  < r m_ i ,0 =  r  — (to -  l)n /i <  xm n h , 

then for Toin- i  =  r  +  (n -  1)to/i, the following inequality exists:

(a: — 1 )m nh  +  2m nh — m h — nh < Tb,n-i < xm nh  +  2m nh — m h  — nh.

By assumptions to > 1 and > 1 , it is true that

m h  +  nh < m nh ,

thus we get

xm nh  < To,n- i  < (^ +  2)m nh — m h — nh.

This limit on To,n-i demonstrates tha t /o,n-i can only be x +  1 or x +  2; in other 

words, the difference between lo,n- i  and can only be 1 or 2 .

2. By (6.17), the maximum and the minimum 1^ in the i-th row of r ( P ,  I) are and 

lip, respectively. Assume 1,-̂  =  x, i.e.,

(x — 1 )m nh < Tito = r — inh < xm nh,

then the maximum satisfies

xm nh -  m h < =  r  +  (n -  1 )m h  — inh < (x +  1 )m nh — mh.

This indicates tha t can take a value as x or x +  1, and correspondingly the

difference between k tn - i  and Zqo can only be 0 or 1.

3. Similar as the i-th  row, the j- th  column of T(P, I) also has the property tha t the 

difference between the maximum and the minimum Uj, say, lo j and can only 

be 0 or 1.

4. Assume Uj =  %, i.e., (x — 1 )m nh  < Tij =  r  +  jm h  — inh  < xm nh, then

(a; — 1 )m nh  -  m h  < T»,j_i =  r  +  (y — l)m h  — ifth < xm nh  -  mh,

{x — 1 )m nh  +  m h  < T,-J+ i =  r  +  (j +  l)m /i — inh < xm nh  +  mh,

(x — 1 )m nh + nh < T,-_ij =  r  +  jm h  — (i — 1 )nh < xm nh  +  nh,

(x — l)m n/i — ft/r < T;+i,j =  r  +  jm h  -  (i +  l)n /i < xm nh  — nh.
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These limits indicate th a t h,j~i and can take a value as x — 1 or x] h tj+i and

U-i,j can take a value as x or x +  1. In other words, the differences between lij and

its four neighbors can only be 0 or 1 .

5. Similarly as above, with the assumption Ijj — x, the corresponding real time delays 

of its four diagonal neighbors are limited by:

(x — 1 )m nh  +  nh — m h < T;_i j_ i  < xm nh  +  nh  — m h ,

(x — l)m n h  +  mh  +  nh < T ;_ ij+i < x m n h  + m h + nh,

(x — 1 )m nh  — m h  -  nh  < < xm nh  — m h  — n h ,

(a: — 1 )m nh  +  m h  — nh < T j+ ij+ i < xm nh  +  m h — nh.

Clearly, the differences between lij and its four diagonal neighbors can only be 0 or 1.

Q.E.D

P ro o f  o f T h e o re m  5: Assume in the «-th row and the j- th  column of D , D ij is the only 

non-zero element; according to the definition for interactor matrices, we have:

R i r = lim r = 0 , 1 , • • •, (n -  1).

Thus the range for ljr (j =  0,1, • • •, m  — 1) can be determined as follows:

•  If Rir =  0, then

djj -  ljr < 0 => ljr > dij. (6.35)

•  If Rir ^  0, then

djy " Ijr — 6 Ijv '—■ d%j. (6.36)

Let i varies from 0 to m — 1, an initial form of the time-delay matrix F is obtained. 

We call it an initial form because some elements of F may not have exact values: they are 

given in certain ranges as shown in (6.35). To derive an exact F, note tha t the constant

m  x n matrix R  is full row rank. That means every row of R  has a t least one non-zero

element and subsequently every row of F has at least one element which can be decided 

according to (6.36). Assume lap in the ct-th row is x, then other elements in the same row 

with limitations as (6.35) can only be x +  1. Otherwise they are conflicting with Lemma 5, 

where we have proved th a t the difference between the maximum and the minimum elements 

in the same row cannot exceed 1 .
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Once the time-delay matrix T (P ,l)  is obtained, r  can be estimated immediately with 

accuracy h by Theorem 3. Q.E.D

We remark th a t the method to identify the continuous time delay, provided by Theo

rem 5, has advantages due to the following properties of interactor matrices:

•  The interactor matrix (Dc;) of the closed-loop transfer function matrix is the same 

as the interactor matrix (D) of the open-loop transfer function matrix ([44]). This is 

also true for lifted systems.

• The interactor matrix can be calculated independent of the transfer function matrix; 

only the first several Markov parameter matrices (or impulse response coefficient ma

trices) are required. In our method, Markov param eter matrices of the lifted model 

can be obtained by the measured multirate input and output data, using certain 

existing techniques.

Due to these advantages, when the continuous time plant (including the delay) is un

known, it is still possible for us to calculate the interactor m atrix of the closed loop based 

on the multirate input-output data, and furthermore to estimate the delay.

We also remark th a t when a multirate system fails to meet the condition m  < n, but has 

a diagonal like interactor matrix, the unknown continuous time delay r  is still possible to 

be identified by taking into account the inequality restrictions in (6.17) and the limitations 

described in Lemma 5; although it is difficult to proof th a t r  can definitely be computed. 

When the control signal is updated at a slower rate than th a t for sampling the output 

signal, i.e, to > n, R  is of full column rank. It implies th a t every column of R  has at least 

one non-zero element and every column of F has a t least one element with exact value. 

These values are useful to determine other corresponding elements in their same rows (see 

the proof for Theorem 5), thus totally n X n elements in F can be fixed. However, there is 

no guarantee for all other (to x  n) — (n X n) elements. Fortunately, most of the multirate 

systems in industry adopt fast-updating and slow-sampling strategy, thus Theorem 5 can 

be applied to a wide class of industrial systems.

If a multirate system does not have a diagonal like interactor matrix, the estimation of r  

becomes more complicated. However, we may try  a more direct method. For this purpose, 

we first introduce the following lemma which is from Chapter 3 in [20], where with reference 

to a state model, the packed notation

" A B '
C D
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denotes the transfer function, D  +  C (8I — A )~ 1B. Note th a t 6 stands for the Laplace 

variable s in the continuous-time context and for the Z-transform variable 2: in the discrete

time context; and I  represents the identity matrix with the same dimension as state matrix 

A.

L em m a 6 I f  a continuous-time system P  (with delay r )  has transfer matrix

p{s) =

then its step-invariant equivalent (with discretization period h) has transfer matrix

Ph(q x)

‘ A B ’
C 0

Ad B d '

D d _

(6.38)

(6.39)

where Ad — ehA, Bd =  fg eTAdrB , Cd =  Ce^lh DA, Dd — C fgh T etAdtB , and I is the 

integer such that the continuous time delay r  lies in the sampling interval ((I — 1 )h,lh].

Now for the multirate system shown in Figure 6.1, denote Ph as the step-invariant 

equivalent of the continuous P , and notice tha t H m h =  H h H m  and S n h — S n S h ,  a pure 

discrete-time system is obtained, see Figure 6.13.

H

Figure 6.13: Discrete-time equivalent of Figure 6.1

Introducing the lifting and inverse lifting operators, we can get an LTI lifted system 

P_ =  L mS nPhHmL~ l as shown in Figure 6.14, where the lifted model P  can be regarded as 

a system with n inputs and m outputs, and is LTI with underlying period m nh.

r , x ----- H ..........■> P S -----> J,
n m h n m

Figure 6.14: Lifted LTI system

To calculate P , we first assume P  in Figure 6.1 is represented by (6.38). According 

to Lemma 6 , Ph then has a form of (6.39), which is equivalent to the following impulse 

response transfer function:

Ph(q X)
2 =  0

-L (6.40)
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Rewrite (6.40) as follows:

Ph(q
m n — 1

£  t f ' U q  
*=0

(6.41)

where

A(<rmn) = £<?— k x m n
P i + k x m n  i

k - 0

then the transfer matrix of P  can be written in terms of the impulse sequence pi in (6.40). 

For example, if m  — 2 and n  — 3, then

Po + q-'Ps q- lP4 + q-1P3 q~l P2 + q - 1Pi

and if m  — 3 and n

P

Pz + Pi 

2 , then

P i + P o  q 1 P<s +  q 1 P 4
(6.42)

P q  +  q l p 5 +  q l p 4 q 1F>3 +  q   ̂P2 +  q 1P 4 

P2 +  P i +  Pq q l P5 +  q l P4 p q  1F >3
P4 +  P3 +  P 2 Pi +  Po +  q - 'P s

(6.43)

From preceding derivations we see tha t the transfer function of P  is associated with 

the continuous time delay r . If P  is known, it is possible to estimate I by confirming 

Po =  P i  — • • • =  P i - 1 =  0 and pi ^  0; then the continuous time delay r  is immediately 

limited into the range (I — l)h  < t  < Ih.

6 .3 .4  E x a m p les

To demonstrate the effectiveness of the determination procedure provided by Theorem 5, 

and the possibility to estimate r  for systems (i) having m  > n  but with diagonal like inter

actor matrix, (ii) only having general form interactor matrix. Three illustrative examples 

will be given next. We emphasize tha t the interactor matrix can be computed by different 

algorithms. Here it is calculated by algorithms provided in [92] and [76]. The continuous 

process P  in Fig. 6.1 is represented by the following transfer function:

1P(s)
S +  1'

(6.44)

E xam ple  1: If the control signal is updated every 2h (m  =  2), and the output is sampled 

every 3h with h — 1 sec, i.e., m  < n; and if the lifted model has diagonal like interactor 

matrices, r  can definitely be decided according to Theorem 5. Here we will illustrate this by 

2 cases based on the information of the interactor matrix D and the corresponding matrix 

R .
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C ase 1:

D = 0 - 1  
- q  0

According to D, we have

Roj =  lim qd°l ~llj[Dqj01
q * 1-*  0 J J

R ij = lim / 10“ ^ [ D S o)Po(? j) +  q - 'R ^ i q - 1)],9_1-+ 0 J J

where c?oi =  0, dio =  1, j  =  0,1, 2. If

R  = x x 0
X X X

with X representing nonzero numbers, then the range for Uj and furthermore the delay r  

can be determined as follows:

loo — 1, loi — 1) 0̂2 =  1) 
Iio =  0, In  =  0, l \ 2 > 0,

T(P) 1 1 1  
0 0 1

0 < r  < 1 sec.

Note tha t Ii2 is originally only limited to the range Ii2 > 0, but we can get its exact value, 

i.e., I12 =  1 referring to (6.17) and Lemma 5; consequently, r  is determined by Theorem 3 

and (6.24).

Similarly, if

R x 0 0
x x 0

then

loo — 1) I01 — 1) I02 > 1) 
Iio =  0 , In  > 0 , I12 > 0 , r  (£) =

1 1 2  
0 1 1

2 sec <  t < 3 sec.

Here we have applied Lemma 5 to determine I02, In  and l i2. The minimum Uj is I10 =  0 

and the maximum is l02 which satisfies 1 < I02 < 2 —y I02 = 2 ; one neighbor of Ii0 is In  

and it should be 0 < In  < 1 —»■ In  =  1; the maximum Uj in the second row is l \2 and it is 

limited by 0 < I12 < 1 —> I12 =  1- According to Theorem 3 and (6.26), r  is easily estimated.

Case 2:

In this case we have

D = 0 - q  
- q  0

Roj

R ij

\\m Qqd̂ [ D  +  g -1^ ^ " 1)],

n  A o - L . p g - l p f e )  +  q - i R ( f ( q ~ i ) ] ,
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where d0i =  1, di0 — 1 , j  =  0,1, 2. If

R  = X X X
x  0 0

then

loo — 1) loi > 1, Iq2 > 1 , 
IlO =  1, 111 =  1, Il2 =  1,

r(P) = 1 2  2 
1 1 1

4 sec < r  < 5 sec.

Note here r  is determined by Theorem 3 and (6.28). The integers I0i and Iq2 can only be 2 

for the reason tha t the former is one diagonal neighbor of Iio, and the later is one diagonal 

neighbor of In .

If
x x  0 
x 0 0

R

then

loo — 1, loi > 1) I02 > 1,
IlO =  1, 111 =  1) Il2 >  1, rca 1 2 2 

1 1 2
5 sec < t < 6 sec.

Similarly, here r  is estimated by using Theorem 3 and (6.29). I0i and I02 can only be 2 

because they are diagonal neighbors of Iio and In , respectively. Ii2 is equal to 2 due to its 

position in the second row: it has the maximum value and cannot exceed 2 .

E x am p le  2: For the continuous time plant P, if the system is updating the control inputs 

every 3h and sampling the outputs every 2h with h — 1 sec, i.e., m  > n, and has a diagonal 

like interactor matrix, it is still possible to estimate r .

C ase  1 :

For this case we have

D  =
0 0 - 1  

- q  0 0
0 q 0

Roj =  lim qdo ^ [ D ^ P ^ } + g - ^ g V 1)],

R ij = I™ qdl0~l°i [Diolo)F g 0j) +  g - 'R ? ) (q~ %
q-1-} 0 J J

q~l-¥ 0

where d02 =  0, dw = 1, d2i = 1, j  = 0,1. If

R
X 0
X X
X X
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then
ho — 0 , h i  > 0 , 1 1
ho =  1, h i  — 1; * =>  r (F )  = 1 1  ==>- 2 sec < r  < 3 sec.
îo =  1) ^ii =  1, 0 1

Here h i  can only be 1 because it lies in the same row as h o  =  0.

Case 2:

D =
0 0 ?
0 ? 0
? 0 0

Correspondingly, R i fs  are

R o3 =  lim  ̂qd^  [ D ^ P ^  +  q ~ l R $  ( q ~ 1)]
g-1—fO

R ij  =  lim qd

2 j

du—hj p(bj)
11 Pi i

toi 

1

R 2j =  lim g ^ 0- ^ [ D g 2°)po(̂ ) +  q - l R ^ { q ~ l ) l
q - l_ j .o

where d02 =  1, d n  =  1, d2o =  1, j  =  0,1. If

then

X X

R = X X 1
X 0

ho =  1) h i  =  1, ‘ 1 2  '

ho =  1) =  1) > = >  r  (P) = 1 1

ho — 1) fin > 1) 1 1
=$■ 4 sec < r  < 5 sec.

Here h i  can only be 2 because it lies in the same row as ho — 1 and the same column as 

^ii =  h i  =  1-

E x am p le  3: For the same updating and sampling strategy as in Example 2 for the con

tinuous time plant P , i.e., m — 3 > n =  2; if the 3 x 3  matrix D is in a general form, there 

still exists possibility th a t r  can be identified, although the determination procedure may 

become a little bit complicated. For example, one estimation of D turns out to be:

D =

and the corresponding R  is

0 -0.3940 -0.9191
-0.9191? -0.3621? 0.1552?
-0.3940? 0.8448? -0.3621?

R
x  0
X X 

X X
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From (6.43), P  can be rewritten as:

Po 0 Pi +  P 5  +  P6 Pi + P 2 +  P 3
p  = Po +  Pi +  P% 0 P 6 + P 7 +  P8 Po T Pi T Ps

_ P 2 + P 3 +  P 4 P 0 +  P 1 . _ P 8 + P 9 +  PlO P 5 + P 6 + P 7  _

Writing out the definition equation

lim D P  =  R
g_1-> 0

in details, the following equations are enough to determine r:

Po + P i  = 0,

-0.3940p2 -  0.9191 (p2 + P3 + P4 ) = Roo, 

-0.9191po -  0.3621 (p0 +  Pi + P 2) +  0.1552(p2 +  P3 +  p4) =  0, 

-0.3940po +  0.8448(po +  pi + p 2) -  0.3621(p2 + p 3 +  p4) =  0,

and the result is:

Po =  0, pi =  0, p2 0 =t> I — 2 =$■ 1 sec < r  < 2 sec.

6.4 Conclusions

In this chapter, we first looked into the multirate digital redesign problem. It is an ex

tension of the single-rate digital redesign methods by discretizing analog controllers with 

bilinear and step-invariant transformation methods. The example shows tha t in a fast- 

updating slow-sampling dual-rate setting, the bilinear method is better than the step- 

invariant method; but with the increasing of », this advantage tends to be negligible.

M ultirate discretization methods employed in this chapter have disadvantages similar 

to their single-rate versions: they are open-loop based and cannot guarantee the closed- 

loop stability and performance. We emphasize tha t we are not developing novel methods 

here, but looking into details for systems in the multirate setting. Due to  the discrete 

down-sampler, results in the multirate setting present serious aliasing in high frequencies; 

tha t has suggested us to look for some other approaches to handle multirate discretization 

problems.

We remark tha t a ZOH equivalence of a continuous-time plant in a non-uniformly sam

pled system has been obtained in Chapter 3, and the results there are also applicable for 

the discretization of an analog controller if it is implemented non-uniformly. One question
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then arises is: can we non-uniformly discretize such an analog controller by extending the 

bilinear transformation method from single-rate systems? This is left for the future.

We also presented a novel approach to identify the unknown time delay of a SISO 

continuous-time process in a multirate system, where the control signal is updated with 

period m h  and the output is sampled with period nh. Based on the multirate operating data, 

we obtained first an interactor matrix of the lifted model by certain existing algorithms, 

then the desired estimation with accuracy h. We proved th a t when integers m  and n 

satisfy certain restrictions and the interactor matrix has simple diagonal like structures, the 

unknown continuous time delay can be estimated with accuracy h - the base period of the 

multirate system. The smaller the base period h, the more accurate the estimation.

The effectiveness of our approach is demonstrated by several examples, which also 

showed tha t when conditions on to, n and D mentioned above cannot be satisfied, the 

unknown continuous time delay is possible to be estimated by certain rules on the proper

ties of time delay matrices of lifted models.
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C hapter 7

Conclusions and Future Work

T.l Conclusions

The main contributions of this thesis are:

•  Discussion of the GPC problem for non-uniformly/multirate sampled systems by uti

lizing the lifting technique. We remark th a t M PC /G PC  schemes for multirate systems 

have been proposed in the literature, e.g., Lee et al. [54] and Scattolini and Schiavoni 

[99]. However, all of these multirate designs are based directly on time-varying sys

tem models, and hence complicating the expressions and results. Using the lifting 

technique, non-uniformly/multirate systems are converted into LTI single-rate cases, 

the lifted controllers are designed by applying the standard LTI design methods and 

theories developed for this class of single-rate systems.

•  Derivation of a causal GPC solution to the non-uniformly/ multirate systems, when 

the lifting technique is employed. Although ideas similar to lifting have been used 

in some previous work on multirate M PC /G PC  issues, see, for example, Scattolini

[98] and Ling and Lim [61], the issue of causality constraint on the lifted controllers 

has never been discussed or mentioned in the synthesis problem. By appropriately 

grouping the output samples, we handle this constraint in Chapter 3. To our best 

knowledge, the results obtained are the first causal and optimal solution for the lifted 

models.

•  Study of non-uniformly sampled systems. Starting from a sampled-data representation 

of such systems, with a continuous-time model and non-uniform sampler and hold 

device, the modeling issue is investigated. A sufficient condition is proposed, under 

which the obtained lifted discrete model will keep the controllability and observability 

of the original continuous-time model. We emphasize tha t the non-uniformly sampled
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systems in this thesis are more general than those in reference [97, 2], and all results 

for non-uniformly sampled systems are applicable for multirate systems.

•  Development of a sampled-data GPC algorithm for m ultirate systems. Conventional 

GPC design is based upon discrete-time model and performance index, and hence the 

inter-sample behavior is not optimized. Overcoming this disadvantage, Masuda et 

al. [62] proposed a sampled-data GPC scheme for single-rate systems. This scheme 

is extended to  multirate systems in Chapter 4. By using a continuous-time cost 

function, the optimal solution is finally obtained and results in improved inter-sample 

behavior and continuous responses. The advantages of this sampled-data multirate 

GPC scheme are illustrated by a numerical example.

•  Development of a state-space GPC algorithm for MIMO multirate systems. State- 

space representations have the advantage of easily handling MIMO systems, but are 

non-unique due to different choices of states. In Chapter 5, a multirate state-space 

GPC is presented based on the single-rate GPC provided by Ordys and Clarke [75]. 

The advantage is tha t the relationship between the state-space model and the corre

sponding CARIMA model is straightforward, particularly, the design of the observer 

filter c(q~1) is reflected in the state-space model as the Kalman gain. The effectiveness 

of the derived algorithm is demonstrated by an example.

® Analysis of the robust stability of the multirate GPC controller in the presence of 

the multiplicative and uncertain MPM. The analysis is carried out in the frequency 

domain by applying small gain theorem to a closed-loop system composed of the lifted 

LTI model and the designed lifted controller. An example is illustrated to indicate 

the relationship between the down-sample ratio n and the stability robustness of the 

closed-loop system.

• Study of the multirate digital redesign problem. Discretization of multirate analog 

controllers has been carefully studied by Rafee et al. [83]. Using %  optimization with 

a causality constraint, they give a design procedure to guarantee closed-loop stability 

and performance. In this thesis, we investigate different approaches for the same 

problem. These are easy extensions to multirate cases of the conventional single-rate 

discretization methods based on (i) step-invariant transformation, and (ii) the bilinear 

transformation. The comparison of these two methods are carried out in the frequency 

domain, based on the discretization error system as shown in Figure 6.5.
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•  Study of the continuous time delay estimation problem. It is generally a difficult 

problem to identify the unknown continuous time delay of the model, especially for 

a system where only multirate sampling strategy can be adopted due to practical 

constraints. Introducing the interactor matrix in Chapter 6 , we connect the continuous 

time delay estimation problem with the interactor m atrix of the lifted models. Some 

interesting results are presented here and several illustrative examples are given.

7.2 Future work

Towards this end, some of the problems tha t need to be investigated are:

•  Identification of continuous time delays through interactor matrices of lifted models. 

In Chapter 6 , we have shown tha t the continuous time delay can be determined with 

accuracy h (h is the base period in a multirate system) by knowledge of the interactor 

matrix of a lifted model. However, it is illustrated by particular examples and the 

interactor matrix has a form similar to diagonal, i.e., every row/column has only 

one non-zero element. Objectives of our future work include the possibility of this 

estimation by interactor matrices with more general forms, and to prove these results 

theoretically.

• Development of discretization approaches for an analog controller in the non-uniformly 

sampled setting. There are many choices to discretize an analog controller in the 

single-rate setting; step-invariant and bilinear transformations are the most commonly 

used two methods. Extension of the former method to the non-uniformly sampled case 

can refer to the modeling issue for non-uniformly sampled systems discussed in Chap

ter 3, where a lifted discrete time model is derived assuming the continuous-time 

model is known. Similarly, an analog controller can be discretized. Extension of the 

later method is not so straightforward. Recall tha t in using bilinear transformation 

in the single-rate setting we replace s in controller K (s)  with |  [h is the dis

cretization period), thus the natural question tha t arises is: what is this replacement 

in the non-uniformly discretization case? If there does not exist such a solution, we 

propose investigation of other possible approaches.

•  Development of causal and state-space GPC controllers for non-uniformly sampled 

systems based on the lifted models. We remark tha t a causal and optimal controller 

for similar problems has been proposed in Chapter 3; however, it is derived in the
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polynomial domain. For large systems with multi-input and multi-output, expres

sions and solutions in the state-space framework are more desirable. To find out the 

required state-space GPC controllers, our future work will be concerned with solving 

difficulties such as state estimation, time-delay handling, just to name a few. These 

state-space controllers may be classical discrete-time ones or sampled-data ones in 

order to improve the inter-sample behavior of the closed loop.

•  Establishing an effective state estimator in the multirate state-space GPC schemes. 

The state-space GPC derivations in Chapters 2 and 5 have shown tha t the observer 

gain F  (F  for the multirate case) reflects the observer polynomial c(g-1 ) (C(q~1) for 

the multirate case) in the CARIMA model. We know th a t this user-specified filter will 

affect the closed-loop robustness in the presence of the model-plant mismatch, and 

the selection guidelines for such filter in the single-rate setting have been discussed by 

Mohtadi [68], McIntosh et al. [63], and Robison and Clarke [91]. Thus F / F  is in fact 

the corresponding tuning parameter in the state-space framework and more results 

on this parameter and the state observer are expected. For example, how to tune the 

parameter F /F ?  W hat rules shall we follow when selecting this F /F ?  Is the state 

estimator in (2.7) (for single-rate case) or in (5.12) (for m ultirate case) effective for 

most chemical processes in industry? If not, what kind of multirate state filter shall 

we utilize and develop?

•  Analysis and design of stabilizing and robust multirate GPC controllers. We have 

analyzed the robust stability of the unconstrained GPC for the fast-control, slow- 

sampling dual-rate systems in Chapter 5, where a closed form expression was derived 

and the stability analysis was straightforward. Next we will focus on the general 

multirate systems. Note tha t for single-rate constrained or unconstrained M PC/G PC 

systems, various approaches to stability and robust problems have emerged in the past 

decades. For example, a survey of the related literature before 1999 is given by Ca

macho and Bordons [14]; an exponential stability of the constrained receding horizon 

controlled system was established in Lee [56] by using the Lyapunov approach; results 

on stability and robustness of the receding horizon control with LMI formulations 

were obtained in Primbs and Nevistic [78, 79]. The extension of these techniques to 

multirate systems is possible, with the consideration of the causality constraint.

• Development of constrained multirate GPC. In this thesis, the control problem has 

been formulated by considering all signals to possess an unlimited range. This is not
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very realistic because in practice all processes are subject to constraints. Thus a prac

tical issue in our future work will be: how to implement multirate GPC controllers 

for processes with constrained input and output signals? This implementation will 

require the solution of quadratic programming problem, th a t is, an optimization prob

lem with a quadratic objective function and linear constraints. A revision of main QP 

algorithms has been done by Camacho and Bordons [14]. Recently, convex optimiza

tion methods have found several applications in the area of control; and constraints 

in MPC have been handled in the form of LMI, see, e.g., Kothare et al. [48]. Fur

thermore, to overcome the on-line computation complexity, Rossiter et al. [96] have 

proposed several suboptimal alternatives to the QP optimization to reduce the on-line 

computational load. All these constraint handling strategies will be considered when 

we design the multirate constrained GPC controllers.

•  Application of the developed GPC algorithms for multirate systems. To verify their 

effectiveness, experiments will be carried out on different real-time processes and sim

ulated models. We will also look for some on-line tuning techniques for these con

trollers, in order to improve the closed-loop performance in tracking and disturbance 

attenuation.

Since GPC is an MPC type of controllers and multirate systems are special cases of 

non-uniformly sampled systems, our future work also includes extensions of our results on 

GPC and multirate systems to MPC and non-uniformly sampled systems.
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