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An approximate answer to the right question is worth a great deal more than a
precise answer to the wrong question.

- John Tukey

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To Mom and Dad,
Wherever I am, I always love you.
To Kathy and James,
Without your friendship, I would be lost.
Without your friendship, I would not have grown.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

First of all, I would like to thank all those I care about back East, but especially
Mum, Dad and my elder Uncle, for being supportive when I decided to abandon the
eastern academic and corporate world for a graduate degree out West. I would also
like to thank iCORE and the Department of Computing Science at the University
of Alberta for making the life of a graduate student so attractive with their funding.

This research would not have been possible if it were not for the constant sup-
port and encouragement of my remarkable supervisor, Dr. Mario A. Nascimento.
He gave me the chance to further my research on information retrieval and trusted
that I could accomplish something of merit, although initially I had some adaptation
problems to a different cultural and academic environment. He gave me as much
edification on research methods and freedom as I needed to get my research work
done. I am also grateful to the University of Alberta Database Research Group for
providing me with a forum to present my ideas and receive feedback. Among the
members of the group, I would like to especially thank Yue Zhang for the technical
advice early on, and Meng Xue’s contribution in early stage of this research. Be-
sides, I acknowledge the reviewers of ACM-MMDB 2003 and CIVR 2004 for their
insightful comments about my publications.

My thanks to my schoolmates in the Department of Computing Science at the
University of Alberta — Lihang Ying, Yongjie Liu, Fan Deng, and Jia Li, for their
helpful technical and daily life discussions. Finally, many thanks also go to the
dear friends I met in the States — Xin Liu, Mingjie Yang, and here in Edmonton —
Xiaomeng Yang, Yigian Wang, Carrissa Halton, Siauw Ng, and James Scott, for
sharing my happiness, sadness, and worries, as well as being supportive, comfort-
able, and always close to my heart.

This work was supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), the Alberta Informatics Circle of Research
Excellence (iCORE), and the Canadian Cultural Content Management Research
Network, a Network advanced through Heritage Canada’s New Media Research
Networks Fund.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Introduction

1.1 Motivation . . . . . v v v v v e e e e e e e e e e e
1.2 Challenges. . . . . . . . . o i
1.3 Contributions . . . . . . . . . . . .
14 Organization. . . . . . . . . .. . e

Related Work for Content-Based Sub-Image Retrieval

2.1 Color-Based Image Retrieval . . . . ... ... ...........
2.1.1 ColorSpaces . . ... .. .. i
2.1.2  Color-Based Image Description and Representation . . . . .
2.1.3 DistanceFunction . . . ... ... ... .........
2.1.4 Similarity Search . . . ... ... ... .. 0.

2.2 Region-Based Image Retrieval . . . . .. ... ... ........
2.2.1 TechniquesforRBIR . . . .. ... .............
222 RBIRvsCBsIR. ... ... .................

2.3 Recent Work in Content-Based Sub-Image Retrieval . . . . .. ..
2.3.1 Partition-Based CBsIR . . . . .. ... ...........
232 Point-BasedCBsIR . . . . . ... ... .. .. .......

CBsIR Framework via Hierarchical Tree Matching

3.1 HTM’s Hierarchical Partition and Tree Structure . . . . . . . . . ..

3.2 Feature Extraction using Average Color and Vectorial Distance . . .
321 AverageColor .. ... ............... ...
3.2.2 Vectorial Distance Functions . . . . . ... ... ......

3.3 Feature Extraction and Distance Measure by Border/Interior Pixel
Classification . . . . . . . . . ... . e
3.3.1 TImageDescription . .. .. ... ... ...........
3.3.2 dLogDistance Function . . . .. ... ... ... .....

3.4 Feature Extraction and Vectorial Distances for Sebe et al’s method
AHD) . . .
341 ColorIndexing . . . . ... ... ... ... ... .....
3.4.2 Inter Hierarchical Distance (IHD) . . . .. ... ... ...

3.5 Efficiency and Storage Consideration. . . . . . .. ... ... ...
3.5.1 Feature Representation . . . . .. ... ... ........

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



352 IndexSequence . . . .. ... ... ...
3.6 Search Strategy . . . . . . . . .. .. ...
3.6.1 Search by Hierarchical Tree Matching . . . . . . . ... ..
3.7 Performance Study . .. ... .. ... ... L
3.7.1 Performance Measures . . . . .. ... ...........

3.72 ExperimentalSetup . . . . .. ... .. ... ...
373 ResultsAnalysis . . ... .. .. ... ... .. ... ..
3.8 Summary ... ...

Supervised Learning in Content-Based Sub-Image Retrieval
4.1 Relevance Feedback in Other Image Retrieval Scenarios . . . . . .

4.1.1 Learning in traditional CBIR . . . . . . ... ... ... ..
412 LearningmmRBIR. .. ... ... ... .. .........
4.2 Relevance Feedback forCBsIR . . . . ... ... ... .. ... ..
4.2.1 Tile Re-WeightingScheme . . . . . .. ... ... .....
42.2 QueryFeatureUpdate . ... ... .............

423 ImageSimilarity . ... ... ... ... ... ...,
4.3 Performance Measures . . . . ... ... ... ...
44 ExperimentsandResults . . . ... ... ... ... ... ...,
45 Summary . .. ... e e e e e e

5 Conclusions and Future Work
A Simulation of HTM’s Search Process

Bibliography

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

82

88



List of Tables

3.1
3.2

33
34
35
3.6
3.7
3.8
3.9

3.10

4.1
4.2

Average actual rank and grouprank. . .. . ... ... L. L.
Six sample images with query sub-images indicated by the white
frames. . .. . . . ...
Performance of different methods using average actual rank.
Performance of different methods using grouprank. . . . . . . . ..
Comparison of the distributions of relevant images using average
actwalrank. . . . .. ... Lo
Search results for six sample query sub-images by HTM. (Note that
the size of query sub-images and retrieved images is changed for
VIEWINZ PUIPOSE.) . .« . v v v vt e e e e e
Comparing query processing efficiency for HTM and IHD. . . . . .
Retrieving original images using IHD and different feature repre-
sentationswith HTM. . . . . . ... .. ... ... ... ... ..
Comparison of the distributions of original images using different
feature representations. . . . . . .. ...
Comparing query processing efficiency using different BIC his-
tograms with the HTM scheme. . . . . . . .. ... ... ... ...

Cumulative/New/Actual Recall and Precision . . . . .. ... ...
Comparison of retrieving the original images using BIC by feed-
backiterations. . . . . . .. ... L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

54



List of Figures

2.1

3.1
3.2
33
34
35
3.6
3.7
3.8
3.9

3.10

4.1
4.2

43
4.4

4.5

4.6

4.7

4.8

4.9

Colorspaces . . . . . . . . e 9

Hierarchical partition of an image with the resulting tree structure

and one possible corresponding index sequence for storage. . . . . . 23
Simple example of tree structures for database image and query

sub-image. . . . . . ... e e e 27
GCH vs. BIC Histograms for texture discrimination. . . . . . . .. 31
Two examples of the result by the BIC pixel classification. . . . . . 31
Indexsequence. . . . . . . .. ... L 38
Index sequence without redundant tile at the lowest level of the hi-

erarchical structure. . . . . . . . . ... oo 38
Search algorithm of the HTM method. . . . . . ... ... ... .. 40
Determining the best matching image (sub)tree. . . . . . ... . .. 41

Sample query sub-images and their original images (answers) with
average actual ranks using different methods. (Lower ranks are better.) 49
Sample query sub-images and answers with ranks using the IHD
method and different image indexing methods with HTM. (Lower

ranksarebetter.). . . . . . . ... L 53
Initial set of retrieved images with user’s feedback. . . .. ... .. 63
Comparison of tile penalty for database image I; before and after
feedback. . . . .. .. ... o 65
A sample query (sub)image and its relevant answerset. . . . . . . . 70
Effectiveness measures by actual recall, cuamulative recall and new
recall using 64 quantized colorsin BIC. . . . . ... ... ... .. 71
Effectiveness measures by actual precision, cumulative precision
and new precision using 64 quantized colors in BIC. . . . . . . . .. 72

Results of online demo using 64 quantized colors in BIC for a sam-
ple query after the first iteration. (The user has given feedback once.) 73
Results of online demo using 64 quantized colors in BIC for a sam-

ple query after the second iteration. . . . . . .. ... ... .. ... 74
Effectiveness measures by actual recall, cumulative recall and new
recall using 16 quantized colors in BIC. . . . . .. ... ... ... 75
Effectiveness measures by actual precision, cumulative precision
and new precision using 16 quantized colors in BIC.. . . . . . . . . 76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.10 New recall (defined from the second iteration) comparison using 64

quantized colors and 16 quantized colors in BIC. . . . ... .. .. 76
4.11 New precision (defined from the second iteration) comparison using

64 quantized colors and 16 quantized colorsin BIC. . . . . . . . .. 7
4.12 Comparing query processing efficiency using different BIC his-

tograms at each iteration. . . . . . . ... ... 78
A.1 Tree structures modeling the hierarchical partition of the image. . . 83
A.2 Matching the full trees of the query and the database image. . . .. 84
A.3 Matching the sub-trees of the query and a certain tile at the second

level of the hierarchical partition. . . . . . .. ... ... ... ... 85
A.4 Obtained distances between the query and each tile of the database

image aftertwo kindsof match. . . . . ... ... ... ... ... 86

A.5 Image similarity measure - finding the minimum among the ob-
tained distances as the distance between the query and the database

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Abbreviations

BIC Border/Interior pixel Classification
CBIR Content-Based Image Retrieval
CBsIR Content-Based sub-Image Retrieval
CCV Color Coherence Vector

EMD Earth-Mover’s Distance

GCH Global Color Histogram

HTM Hierarchical Tree Matching

IHD Inter Hierarchical Distance

LCH Local Color Histogram

MAM Metric Access Method

RBIR Region-Based Image Retrieval
RF Relevance Feedback

SAM Spatial Access Method

SVM  Support Vector Machine

TP Tile Penalty

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Motivation

Concrete visual means like images has always been preferred by human to express
ideas and convey information since remote antiquity. In the current information
explosion age, our reliance on visual modes of communication has further been re-
inforced by the recent rapid technological evolution in handling digital data. This
can be witnessed in the overwhelmingly growing amount of digital image data with
the development of the world wide web. Thus, image databases are becoming
more and more common in several diverse application domains, such as multimedia
search engines, digital libraries, medical and geographical databases, etc. Although
constructing very large image databases has become fairly easy with the advances
of techniques for acquisition, transmission and storage of images, the information
stored there is virtually useless if not organized. In this scenario, searching for a
certain image from a large image repository is just like looking for a book from
a huge library without the aid of catalogs. All these factors have stimulated great
interest in image retrieval techniques.

But how difficult is the problem of searching and retrieving images? Unfor-
tunately, traditional text retrieval methods are not suitable for images because of
the dimensionality difference between images and text as well as the data size dif-
ference between them (image data is much larger than text). Moreover, it should
emphasize the fact that in some sense words themselves are semantic “objects”,

while the image data needed to be processed and interpreted to extract the percep-
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tual meaning, which cannot be achieved by textual indexing techniques [14].

Early image retrieval [6] was performed based on short descriptions as a set
of content-independent attributes (file name, format, category, size, author’s name,
and disk location) of the images. However, this approach limits the queries to those
based on existing attributes. Another alternative is to use manual text annotations
or keywords so that classical information retrieval (IR) techniques can be used to
search images indirectly. But this approach still has problems like ambiguity, in-
completeness and subjectiveness. Since image data is very rich in information, to
capture the content of an image using just a few keywords is not feasible, not to
mention the tedious work involved in the annotation process.

A more effective and automatic approach is the so-called content-based image
retrieval — CBIR, which consists of using low-level image features to represent,
compare and retrieve images. Most CBIR systems [15] follow the two-step ap-
proach to search image databases [8]. Firstly (indexing), a feature vector repre-
senting certain essential properties of the image is extracted and stored as metadata
for each database image. Secondly (searching), given a query image, images most
similar to the query image are returned to the user by comparing the feature vectors
of database images with that of the query image. These CBIR systems all belong to
the Query-By-Example (QBE) paradigm.

While most CBIR systems retrieve images based on a full image comparison,
i.e., given a query image the system returns overall similar images. However, users
can also be interested in object searching [23]. In this case, the user provides a
sub-image query (perhaps an object) and the system should retrieve images that
contain the query (according to human perception) from the image database. The
sub-image query can be also an image itself. This task, which we call content-based
sub-image retrieval (CBsIR), is difficult to cope with by a variety of effects (such
as size variation and different viewing positions, etc.) that cause the target sub-
image to have dramatically different appearances in different images. A problem
associated to the CBsIR task is to how to locate the sub-image inside a database
image effectively and efficiently.

Besides the basic CBsIR tasks, several related problems also need to be ad-
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dressed. Most CBIR and CBsIR systems automatically generate low-level image
features such as color, texture, shape, etc, for image indexing and retrieval, which
do not capture the semantics of images. And there is no effective method yet to
automatically generate good semantic features of general images. When the system
retrieves some images that are irrelevant to the sub-image query according to the
user’s judgement, the user might want to provide feedback information about the
relevance of the obtained results to reinforce the accuracy of future retrievals. Then
the CBsIR system should process the feedback information efficiently and return

better result by the user’s intention.

1.2 Challenges

A large number of challenges exist in the CBIR research domain. This thesis deals
with the challenges described in the following two paragraphs.

The feature extraction of an image database is to compute a n-dimensional vec-
tor for a feature based on some image analysis. Color, texture, shape and spatial
information are the most commonly used low-level features in image retrieval sys-
tems. The n components of a feature vector may be derived from one visual features
or a combination of several ones, e.g., [22]. A good low-level feature for an image
should be able to preserve the perceptual similarity, fast to compute and small in
size. The feature vector not only affects the retrieval efficiency, but also affects the
design of indexing data structures when the size of the image database becomes
very large, e.g., the huge image collection available from the Internet, which makes
the CBsIR task especially challenging. The perceptual similarity determines the
effectiveness of the feature for retrieval purpose. Being a contrast to low-level im-
age features, semantic categories depicted in images are called high-level concepts.
However, a big gap exists between low-level image features and semantic contents
of images. In addition, human perception is subjective and task-dependent. All
these limit the retrieval accuracy of most CBIR (and CBsIR) systems. While high-
level concepts could help facilitate the human-computer interaction, they are almost

impossible to extract without human assistance.
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A distance function measures the similarity between two given images by com-
puting the difference of the two corresponding feature vectors. The greater the
distance, the smaller the similarity. The distance function is usually defined as
City-Block (L) norm, Euclidean norm (L,), or weighted Euclidean norm [10].
Vectorial distances are efficient in comparing histograms and allow the use of spa-
tial or metric access methods to speedup query processing [53]. However, they
have also well-known limitations. One of such limitations is that a high value in a
single histogram bin dominates the distance between two histograms, no matter the
relative importance of this single value [36][50]. This kind of limitation causes dis-
tortion in retrieval results when comparing images having a large background with
the same color but a different foreground with images having the same foreground
(a high degree of semantic similarity) but a large background with a different color.

Another question to consider is, how precisely should we measure the distance
between database images and the sub-image query? If we choose a high precision,
it surely distinguishs distances in a finer granularity. However, it should also be
noticed that there are so many approximations in the whole retrieval process and
humans often do not have such a fine distinction between perceived similarities.
Thus, a lower precision might be better suited. This yet results in the increase in the
number of tied distances. Different degrees of distance precision yields different
distance figures. The ranking based on these distances often become confusing and
could handicap the correct understanding of the investigated methods.

In addition, once it is determined that an image contains a sub-image query, it
becomes necessary in many cases (like tracking objects in videos) to find the place
of the sub-image inside the database image. Note that there should be no restriction
as to where the sub-image query may be within a relevant image in the CBsIR
system. Because of the lack of accurate and efficient image segmentation process
for large, arbitrary and heterogeneous image databases, the sub-image queries may
have to be located in unsegmented images. The problem of how to locate the sub-

image effectively and efficiently is thus made more difficult.
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1.3 Contributions

In this work, we investigate the problem of content-based sub-image retrieval (CB-
sIR) to find database images that contain the query sub-images in two ways.

First, we propose a new method called Hierarchical Tree Matching (HTM) for
the CBsIR problem. The highlights of this approach are: (i) it uses a fixed decom-
position without relying on image segmentation (typically not an accurate process),
(ii) the hierarchical partition encodes the local spatial information as well as global
distribution of colors in the image, (iii) the multi-scale representation is small in
size and stored in the format of an index sequence (allowing fast access during the
search phase), (iv) a search strategy is designed to achieve effective and efficient re-
trieval based on the multi-scale representation. Experimental evidence, tested on an
image database of over 10,000 images, shows the new approach outperforms other
related CBsIR approaches and achieves a good balance of accuracy and efficiency.

To further improve retrieval results, we also address how relevance feedback
can be used to enhance the performance of HTM-based CBsIR system. We present
a tile re-weighting scheme that assigns penalties to each tile consisting of database
images and updates those of all relevant images using both the relevant (positive)
and irrelevant (negative) images identified by the user. Learning is effected by mod-
ifying the query vector to incorporate the positive examples based on the update of
their tile penalties during the feedback iteration. Besides, a new similarity distance
between an image and the sub-image query is also learned by using a weighted met-
ric by the tile penalty, which is possible to shorten the distance between the query
and relevant images and elongate the distance between the query and irrelevant im-
ages. Our results suggest that this learning method is quite effective for the CBsIR

system.

1.4 Organization

Chapter 2 discusses related research literatures in (color-based) image retrieval, dis-
tinguishing the problem of content-based sub-image retrieval (CBsIR) from other

active research domains in content-base image retrieval (CBIR) and giving a brief

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



survey of related CBsIR systems. In Chapter 3, we propose the Hierarchical Tree
Matching approach for CBsIR. We investigate the new method by discussing in
detail each step in the whole retrieval process. Chapter 4 describes how to use rel-
evance feedback combined with the hierarchical tree matching scheme to improve
the results of content-based sub-image retrieval. Corresponding experimental re-
sults are shown in the above two chapters respectively. Finally, Chapter 5 concludes

the thesis and offers direction for future work.
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Chapter 2

Related Work for Content-Based
Sub-Image Retrieval

Thus far, a large amount of research published within the area of content-based im-
age retrieval (CBIR) [32][53] deals with full-image retrieval, where typically one
provides a query image and the CBIR system finds the most similar images from an
image database. The notion of similarity is usually such that the returned images
should resemble the query in an “overall”’manner. An also interesting, though so
far much less explored, problem is that of finding images that contain the query
images, i.e., images where the query image is part of the overall image. We term
this problem Content-Based Sub-Image Retrieval (CBsIR); and define it as follows
[39]: given a sub-image query () and an image database S, retrieve from S those
images Q' which contain @) according to some notion of similarity. It is important
to clarify that the sub-image retrieval problem is a distinct branch of the image re-
trieval domain, which has its own characteristics and merits in various applications.

In this chapter, we discuss existing techniques for two branches in CBIR from
different points of view. The use of low-level features, color in particular, is useful
for large and heterogeneous collections of images, where images belong to sev-
eral distinct, non-related semantic and visual domains. Since color is also used
as image feature in our CBsIR system, a survey of existing color-based image re-
trieval approaches providing an overview of the background for our CBsIR sys-
tem is presented in Section 2.1. Although our approach for the CBsIR problem

decomposes the images into tiles and define distances between feature vectors ex-
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tracted from different image tiles, this is not the same as region-based image re-
trieval (RBIR) investigated elsewhere, e.g., [34][41]. Nonetheless, some region-
based image retrieval methods are also reviewed in Section 2.2 for completeness.
Moreover, within the context of CBsIR, methods proposed in related literatures are
investigated in Section 2.3 and further compared with our CBsIR approach by ex-

periments in Chapter 3.

2.1 Color-Based Image Retrieval

The choice of the right image features for an image retrieval system is important
since image features affect every aspect of the whole retrieval process. Most of the
CBIR systems explore low-level image features like color, texture, shape, etc., since
they can be extracted automatically. Color is the most commonly used low-level
feature, possibly because color is immediately perceived by humans and related
concepts are easy to understand and implement. Besides, color is one of the most
prominent perceptual features in a large majority of image domains and using color
information can often achieve satisfactory results. Most commercial CBIR systems
include color as one of their image features (e.g., QBIC of IBM [9], Virage[11],
etc). This section is thus mostly concerned with color-based image retrieval ap-

proaches.

2.1.1 Color Spaces

The color of a pixel in a digital image is typically represented by three values,
one for each channel of the chosen color space. A color space is a specification
of a 3D coordinate system and a subspace within that system where each color is
represented by a single point [7]. The first step in any color-based image retrieval
system 1is to choose a color space where images will be represented and compared.

The most well-known and used color space is the RGB (Red, Green, Blue)
model [7][36]. The RGB color space is device-dependent such that the displayed

color depends not only on the RGB values, but also on the device specifications.
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The main drawback of this model is that it is not perceptually uniform, in the sense
that the differences between RGB colors do not reflect the differences perceived
by human. The RGB color space is a cube shown in Figure 2.1(a), where the main
diagonal represents the gray values from black to white, and any point (color) inside
the cube is represented by a weighted sum of red, green, and blue [53].

Another kind of color spaces is uniform color spaces, where the numerical dif-
ferences among colors are consistent with the differences perceived by human. The
CIE Lab model is one such example. As shown in Figure 2.1(b), the CIE Lab color
space represents the differences of three elementary pairs: red-green, yellow-blue
and black-white. Different from the RGB color space, the CIE Lab color space is
device independent.

The third kind is called the user-oriented color spaces [32][36], which are based
on human perception of colors like hue, saturation and intensity. Some example of

this kind are the HSI and HSV color spaces, where are device dependent.

2.1.2 Color-Based Image Description and Representation

To achieve effectiveness and efficiency in image retrieval systems, a compact and
accurate description of the color distribution and the spatial distribution of colors
in the digital images is needed. These descriptors can be further reduced in size by
static or dynamic reduction methods.

Static methods use a fixed scheme for each image. The simplest scheme to re-
duce the number of colors in an images is to use a uniform and coarse quantization

of each color channel. Thus the obtained colors need not be represented explic-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



itly and the comparison of images is easier. However, it is possible that the colors
present in an image are not uniformly distributed in the color space. It is also not
appropriate for non-uniform color spaces like HSV, since similar colors may be
separated and non-similar colors classified together. Another problem is that it is
difficult to obtain an adequate compromise about the granularity of the quantization
for the not necessarily uniformly distributed colors in the color space. Dynamic
reduction methods exploit the visual content of the images and rely on image seg-
mentation techniques to reduce both the number of colors and the number of spatial
locations in an image. A typical image segmentation technique groups neighboring
pixels with similar colors together into regions whose colors are the average color of
their pixels. The resulted regions are more compact and meaningful since they bear
high degree of color similarity and well-defined spatial location, size and shape.
A sample of the image segmentation techniques used by these methods includes:
boundary detection, region growing, region splitting and merging [7].

Once the description of the image is chosen, a representation of this information
is the next step in image retrieval systems. Color histogram has been widely used
to describe the color information of the image since it is easy to compute, relative
insensitive to position and orientation changes, feasible in terms of memory usage,
efficient to compare using vectorial distance functions and sufficiently accurate for
retrieving images based on overall color impression. The stored information about
the visual content of an image can be represented in three possible ways described
next.

Global representations describe the color distribution of the whole image, ignor-
ing the spatial distribution of colors. The most commonly used global representa-
tion is the Global Color Histogram (GCH) [32][36]. A GCH is computed by count-
ing the number of pixels in the image having each of the quantized colors. Usually,
the pixel count is normalized to avoid scaling bias [53]. However, since global
color histogram ignore spatial or topological information, it has limited image dis-
criminative power. Another alternative is to use partition-based representations to
describe the color distribution of each partition of an image individually. Generally,

the image is statically partitioned into a set of rectangular units according to some

10
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scheme, and a Local Color Histogram (LCH) is used to describe each partition unit
individually. In this kind of representation, extra information about spatial prop-
erties of the partition units such as size, shape and spatial location need not to be
saved, since it is easy to obtain that from the predefined scheme. Some partition-
based approaches also use other kinds of color histograms [28][58] to introduce
some spatial information about the visual content of the images decomposing them
into spatial cells according to a fixed scheme. Apart from the above two represen-
tations, regional representation exists for object-level image retrieval, which will be
discussed in more detail in section 2.2.

Based on the image representation, existing color-based image retrieval tech-
niques can be classified into three main categories: (1) global approaches (e.g.
[32][36]), (2) partition-based approaches (e.g. [28][58]), (3) region-based approaches
(e.g. [34][41]). Each of these categories poses a distinct compromise among the
complexity of the image analysis algorithm, the amount of space required to rep-
resent the visual features extracted from images, the complexity of the distance

function used to compare these features, and the retrieval effectiveness.

2.1.3 Distance Function

The success of the image retrieval problem depends mainly on two factors. One
is the stability of image features used, the other one is the characteristics of the
distance function used for comparing the image features. The distance function
affects directly the query processing time and the retrieval accuracy. The better
the distance simulates the human perception of similarity, the more effective is the
image retrieval system in retrieving images related to the user’s need. The compu-
tational complexity of the distance function is also considered an important factor
when processing a visual query. Moreover, the distance function restricts use of
different filtering techniques and/or access methods can be used to speedup query
processing.

Some well-known vectorial distance functions include [53]:

k
Ly(City — Block) : Li(a,b) =Y |a; — b;|
i=1
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k
Ly(Euclidean) : Ly(a,b) = (3 la; — b;]")'/?

i=1

Loo(Chebyshev) : Lyo(a,b) = mazt_|a; — by
where a = (a1, az,...,ax5) and b = (by, b, . .., by), both are k-dimensional feature
vectors.

Modeling visual features in a vectorial space has the advantage that the geo-
metric distance used to compare two vectors are computationally simple. However,
there are other cases, such as in region-based image retrieval systems, where it is
not possible to model complex image retrieval systems in a vectorial space. In
such scenario, a metric space, where there is no restriction about the representa-
tion of the visual features, is used instead. A recent metric proposed to measure
the distance between two distributions of some random variables in an image, such
as color histograms, is the Earth-Mover’s Distance (EMD) [31]. EMD reflects the
minimal amount of work that must be performed to transform one distribution into
the other by moving the “distribution mass” around. It comes from the transporta-
tion problem in combinatorial optimization. EMD can be computed by solving a
linear programming problem, thus it is computationally expensive. In addition, re-
cent research in psychology and computer vision implies that human perception of
similarity contradict in different ways with the metric axioms, which are believed
to be too restrictive in the context of similarity search. One of the most criticized
metric axiom is the triangular inequality, coincidentally the most important axiom
for indexing purposes [30] but difficult to enforce in complex matching algorithms
that are statistically robust. This raises serious questions about the extent to which
existing work on classification can be applied using complex models of similarity.
Thus, as a possible solution, non-metric distances turn up in many application do-
mains, such as string (DNA) matching and retrieval from image databases. Some

non-metric similarity measures are suggested for image classification in [27].

2.1.4 Similarity Search

Searching for target digital images differs from the usual database search. The

simplest way is sequential scanning. Each image is compared against the query
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image for the candidate matches to the query image. Although simple this approach
does not scale since the query processing time is proportional to the database size.
In order to reduce the complexity of the searching process, filtering techniques
and access methods can be used. On one hand, filtering techniques try to reduce
the complete database into a much smaller subset that has to be compared using a
complex function, by relying on a simpler distance that lower-bounds the original
complex distance to quickly filter out irrelevant images. One of the most common
reductions for filtering techniques consist in mapping a general metric space into a
vector space in such a way that each element of the metric space will be represented
as a point in the target vector space [48]. If the vectorial distance is a lower-bound
for the original distance, then it is guaranteed that the filtering process will not filter
out relevant images. An example of the reduction discussed above is the use of
the average color as a filter for color histograms. Since the comparison of average
colors is much more efficient than the comparison of color histograms, it is possible
to quickly eliminate the majority of the irrelevant images using this simple filter.
On the other hand, access methods aim to divide the search space into several
subspaces so that only a few of these subspaces need to be searched when pro-
cessing a query. This may be based on using more sophisticated combinations of
techniques and data structures to quickly locate the features that are relevant to a
visual query. Spatial access methods (SAMs) use spatial coordinates to group and
classify points in the space. These methods are very sensitive to the number of di-
mensions of the vectorial spacé. A survey on SAMs can be found in [24]. SAMs
uses the absolute spatial location of objects to partition and search the vectorial
space. But in a general metric space, the unique information available is the rel-
ative distance among objects. In this case, metric access methods (MAMs) [35]
aim to partition the data space in regions by choosing representative elements and
clustering the other elements around them. These MAMs can be classified in main
categories [35] as those based on discrete distance functions and those that deal
with continuous distances or as static and dynamic according to their support for

insertion/deletion after the creation of the index.
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2.2 Region-Based Image Retrieval

2.2.1 Techniques for RBIR

Because low-level image features have weak connections to semantic content of
images, object (region)-level image retrieval has been used in an attempt that ob-
tained regions correspond to higher-level concepts, e.g., objects, that can be easily
distinguished by the user. To achieve object-level querying, most region-based im-
age retrieval systems are based on segmentation techniques to decompose images
according to their visual content. The segmentation of images yields regions with
different size, spatial location and shape, being more flexible than the fixed scheme
adopted in partition-based approaches. However, the comparison of segmented im-
ages is a very difficult problem because of inaccurate segmentation [41]. In general,
the result of the image analysis algorithm in region-based approaches can not be
used directly to represent and to compare images, since the number of segmented
regions is usually very high. Because a precise description and comparison of a
large number of regions are too expensive in computational terms, the image anal-
ysis result is post-processed so as to reduce the number of segmented regions and
to simplify the description of the left regions. Unfortunately, this simplification
certainly affects the effectiveness of these approaches. Except for some narrowly
defined problem domains where domain knowledge and the apriori object models
are available, accurate and complete segmentation on generic real world scene can
seldom be achieved [25]. Some common characteristics in natural scenery, such as
shade, highlight, and sharp contrast, are major challenges to image segmentation.
The most common approach in RBIR systems is to compare the regions individu-
ally, e.g., [34]. In order to reduce the effect of inaccurate segmentation, recent sys-
tems like SIMPLIcity [41] and CBC [47] try to compare images using the properties
of all segmented images, not only on a region-by-region basis. In the following we
describe some existing work in region-based methods.

The QBIC system [9] uses a clustering process where two clusters are merged
if their mutual rank falls bellow a threshold. The Euclidean distance between two

clusters’ mean colors is treated as the distance between clusters. A bounding rect-
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angle is calculated for each connected component identified after the clustering
process. Then the bounding rectangles for a given color are successively clustered
into groups of rectangles that are geometrically close to each other until one rect-
angle remains. The distance between two regions is computed as a weighted sum
of the distance between the clustered colors and the distance between the resulting
hierarchical tree associated to them. Finally, the similarity between two images is
measured by the average of the distances between each region of one image and its
closest region in another image.

In [17], a boundary detection procedure that explores edge flow of both color
and texture is used to segment images into homogeneous regions. Each region has
several features, such as color, texture and shape, which are indexed separately.
A query might consists of more than one of these features. And the results from
individual features are sorted by a weighted similarity measure. The system deals
with images of different categories by tuning a set of system parameters.

The Blobworld system [34] clusters pixels in eight-dimensional space of joint
color, texture and position, which is modeled as a mixture of Gaussians. A 500
bins local color histogram in L*a*b* color space is used to represent the color
distribution of each region. The images are compared based on individual regions
using the weighted Euclidean distance. The retrieval task is that of finding database
images that have a region similar to a given region, possibly an object, in a query
image. Although it allows querying based on a limited number of regions, the query
is performed by merging single-region query results.

In the SIMPLIcity project [41], images are segmented based on color and fre-
quency features by the k-means clustering algorithm to group the feature vectors
into classes, which correspond to regions. The IRM (Integrated Region Matching)
similarity measure is used to compare images based on the properties of all seg-
mented regions. First, a certain region of an image is allowed to match several
regions of another image during the match process. After regions are matched,
a weighted sum of the similarity between region pairs is computed for the image
similarity measure, with weights by a significance matrix.

The CBC approach [47] applies a fully automatic clustering algorithm. Its time
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complexity is in O(nlogn), where n is the number of pixels in the input image.
The average L*a*b* color and the spatial coordinates of the geometric center of
each resulting region are extracted as image features. A distance function similar to
the IRM measure as in SIMPLIcity system is adopted to compare two segmented

images.

2.2.2 RBIR vs CBsIR

The sub-image retrieval problem we consider is similar to the region-based image
retrieval (RBIR) discussed before, since the goal can also be to retrieve images at
object-level. However, the difference between these two problems stands out as
the CBsIR problem is to search for an image, given as a whole, which is contained
within another image, whereas in RBIR one is searching for a region, possibly the
result of some image segmentation. The former is more intuitive since users can
provide a query image as in traditional CBIR, and unlike the latter, it does not rely
on any type of segmentation preprocessing. Unfortunately, automatic image seg-
mentation algorithms usually lead to inaccurate segmentation of the image when
trying to achieve homogeneous visual properties. Sometimes the obtained regions
are only parts of a real object which a user would likely identify by looking at the
image and should be combined with some neighbor regions so as to represent a
meaningful object. Thus, complex distance functions are generally used to com-
pare poorly segmented images at query time. Also, the number and size of regions
per image are variable and a precise representation of the obtained regions may be
storage-wise expensive. What’s more, since region-based queries are usually per-
formed after the image segmentation and region description steps, it clearly puts
some restriction on the user’s expression of his/her information need depending on
how good the segmentation results match the semantics of images, although the
user can explicitly select any detected region as query region. In those image re-
trieval systems whose images are heterogeneous, rich in texture, very irregular and
variable in contents, accurate regions are hard to obtain, making RBIR likely per-
form poorly. Whereas the seemingly simpler CBsIR with fixed partition could be a

solution in such cases.
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2.3 Recent Work in Content-Based Sub-Image Re-
trieval

In [55], T. Wang et al intend to find an effective way to perform CBsIR and ranking.
Two kinds of image feature vectors: the global color histogram and the autocor-
relogram [25] with L, and D, distance measures [16] are tested in the sub-image
retrieval system. Another distance measure called S; which aims to emphasize
the contribution of colors that have very different distributions between the images
is proposed as well. Preliminary experiments with several distance measures for
both feature vectors find that the combination of autocorrelogram feature vector
and the so-called S; distance measure outperforms other combinations and yields
excellent results for sub-image retrieval with an acceptable processing overhead.
Yet more work is still needed to further understand how to achieve the CBsIR task
efficiently and how the corresponding CBsIR system works. As we have pointed
out in Section 2.2.2, the CBsIR systems we are concerned with do not belong in
the region-based image retrieval domain, but use other categories of image retrieval
approaches classified by the way how the information in an image is represented.
These methods include partition-based approaches as in [28][39][43][57] and point-

based approaches as in [45].

2.3.1 Partition-Based CBsIR

Image partitioning is an important factor to determine the functionality and the ef-
ficiency of image retrieval systems [38]. By breaking images into smaller and more
manageable units, it usually becomes easier to compress, store, access and retrieve
the image data. The partition-based approaches usually adopt a hierarchical repre-
sentation of the spatial decomposition using a simple fixed strategy based on a grid
of rectangular cells superimposed over the images [28][39]. The cells at distinct
hierarchical levels have various sizes and overlap,which makes it possible to detect
that two images whose objects are in different positions are deemed similar. Two
images are compared initially at the top of the hierarchy and refined in subsequent

levels. For efficiency and effectiveness, the partition-based approaches generally
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stand in between two other kinds of solution to CBIR known as global approaches,
which sacrifice retrieval effectiveness with the absence of spatial and topological in-
formation for high efficiency in terms of visual feature extraction, space overhead,
and image comparison, and the region-based approaches using complex image pro-
cessing techniques to decompose images into regions of high similarity, implying
complex image analysis algorithms for feature extraction, complex distance func-
tions for image comparison and high space overhead but an improved retrieval ef-
fectiveness. The space overhead for the partition-based approaches might be large
in such cases when using the hierarchical representation of the partition structure
as mentioned before. In the following, we briefly review some recent work in
partition-based methods. The paper by Leung and Ng [28] investigates the idea of
using the Padding and Reduction algorithms to support sub-image queries of arbi-
trary size based on local color information. The algorithms either enlarge the query
sub-image to match the size of an image block obtained by the multi-resolution
representation of the database images, or conversely contract the image blocks of
the database images so that they become as small as the query sub-image. The pa-
per presents an analytical cost model and focuses on avoiding I/O overhead during
query processing time. To find a good strategy to search multiple resolutions, four
techniques are investigated: the branch-and-bound algorithm, Pure Vertical (PV),
Pure Horizontal (PH) and Horizontal-and- Vertical (HV). The HV strategy is argued
to be the best considering efficiency. However, the authors do not report clear con-
clusions regarding the effectiveness of their approach (e.g., Precision and/or Recall
figures).

In [39], the global feature extraction is considered to capture the spatial infor-
mation within the image “regions” which are not the same concept of regions in
region-based image retrieval. The average color and the covariance matrix of the
color channels in L*a*b* color space are used to represent the color distribution.
They apply a three-level non-recursive fixed hierarchical partition with overlapping
rectangle “regions” to achieve the multi-scale representation of database images.
Aiming at reducing the index size of these global features, a compact abstraction

for the global features of a “region” is introduced. A new distance measure on
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such abstraction is thus proposed for efficiently searching through the tiles from
the multi-scale partition strategy. This distance is called inter hierarchical distance
(IHD) since it is taken between feature vectors of different hierarchical levels of the
image partition. The IHD index is a two dimensional vector which consumes small
storage space. And the search strategy is a simple linear scan of the index file, which
assesses the similarity between the query image and a particular database image as
well as all its “sub-regions” using their IHD vectors. Finally, the minimum distance
found is used to rank this database image. This approach is argued to be efficient
and effective. We will compare our proposed approach with this one in Chapter 3.
The application of CBsIR to the domain of high resolution art images has been
studied in [43]. The proposed approach is called the Multi-scale Color Coherence
Vector (M-CCV) method, based on the use of color coherence vectors [12] extracted
from image patches for the query and target images at a range of scales with multi-
ple vector matching to find the best sub-image matches. The query sub-image may
be a poor quality reproduction of part of the original and may be digitized under
significantly different conditions. Tested on a collection of art images, many of

which at very high resolution, the technique is demonstrated to perform well.

2.3.2 Point-Based CBsIR

Image retrieval systems of the “query by example” style usually concern the entire
image. In the context of part/object-level user interest, global image descriptors
are of less use. In this case, the approaches based on grey points of interest [19]
and color points of interest [45] have been developed for object/sub-image retrieval
tasks, which require more local descriptors, and are discussed next.

Points of interest are points extracted and characterized from color signal at
once [45]. They are pixels that capture significant local features of an image, and
usually locate around corners and edges of images. A local image descriptor based
on color points of interest, was proposed in [45] which focuses on object or sub-
image retrieval. Compared with region-based approaches in which the quality of the
segmentation step is sensitive to image geometrical contents, the points of interest

extraction performs well whatever the image content is. Besides, points are more
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robust to geometric transformations of the image like view point changes, since
the description is computed locally, and robust to partial occultation. Moreover,
content-based image retrieval techniques exploit photometric information contained
in the images, which just matches the definition of a point of interest - being located
where this photometric information is most significant. Therefore, there exists great
expectation of using points to achieve a rich and compact image characterization.
When applied to image retrieval, image matching based on points of interest
needs points with good repeatability. The ideal interest points, which indicate local
features, should be invariant to illumination change and geometrical transforma-
tion. Many point extractors exist in the literature of Computer Vision. It has been
demonstrated that the Harris color detector [29] fits better for the required repeata-
bility. The first step of the image feature indexing is to extract points of interest
from the whole images by this detector. Second, the points of interest are described
using photometric quantities implying color differential invariants. The resulting
image characterization is argued more compact than other existing ones, since it
contains more photometric information while having comparable storage cost. This
characterization is also claimed to perform well for object or sub-image description,
as it implies a local description of the image that is robust to image transformations.
The search strategy applied in [45] consists of a voting algorithm. The vote com-
puted for each image of the database is the function of the distances between the
query points and the candidate points of the involved image. Experimental results
show the success of this approach for partial retrieval on sub-images and on 3D
objects as well as object retrieval under difficult conditions like viewpoint changes

and occultations.
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Chapter 3

CBsIR Framework via Hierarchical
Tree Matching

There are two main factors that cause the limited retrieval accuracy in CBIR in
general and CBsIR in particular. One is the gap between low-level image features
and semantic contents of images. We will discuss how to reduce this gap in Sec-
tion 4 using machine learning techniques. The other one is the “numerical gap”
that consists in various steps of the retrieval process, such as image representation,
distance measure, search strategy. To minimize this kind of gap, we have developed
a compact and visually consistent image features, accurate and computationally in-
expensive distance functions and efficient data structures for similarity search.

In [57], we propose an approach called HTM (Hierarchical Tree Matching) for

the CBsIR problem. It consists of three main components:

1. atree structure that models a hierarchical partition of images into tiles using

color features;

2. an index sequence to represent the tree structure (allowing fast access during

the search phase);

3. asearch strategy based on the tree structures of both database images and the

query image.
By using a tree to model the hierarchical decomposition of an image into tiles, our

method is capable of handling virtually all parts of an image. Note that by using a
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fixed decomposition we do not rely on image segmentation, typically not an accu-
rate process. The number of partitioned tiles is fixed as long as the partition strategy
is determined. The resulting tree is small for storage and speedy for searching. In
addition, the parent-child relationship in the hierarchical tree structure implicitly
facilitates the tile combination instead of using complex distance functions when
matching images during the search phase. We store the image features associated
with the nodes in the tree structure in the format of an index sequence, which allows
fast access during the search phase. Also, we process the query sub-image by con-
structing a tree structure in the same way as the ones constructed for the database
images, eliminating any size constraint on the query sub-image. The retrieval of
relevant images is accomplished by efficiently comparing the query’s tree structure
with all the sub-trees of the database images. Then the distance between the tree
structures can be effectively computed in order to rank the database images with
respect to the query. Our experiments show that this strategy yields good results
using different color features of the images, while consuming acceptable time and
space. Compared to the related approach proposed in [39], our method is distinctly
better based on the experimental results.

In the following, Section 3.1 presents the hierarchical partition of images and
the tree structure to represent the decomposition. Section 3.2 and Section 3.3 pro-
vide an account of using different image features and their corresponding distance
measures in our CBsIR system respectively. A brief review of the feature extrac-
tion method and its distance function in related work are presented in Section 3.4.
Some practical considerations about efficiency and storage are listed in Section 3.5.
Section 3.6 describes different strategies to search sub-images effectively. The ex-
periments and results are discussed in Section 3.7. Finally, Section 3.8 concludes

the chapter.

3.1 HTM’s Hierarchical Partition and Tree Structure

To model an image, a grid is laid on it yielding a hierarchical partition and tiles.

Although granularity could be arbitrary, we have obtained good results using a 4 x4
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Figure 3.1: Hierarchical partition of an image with the resulting tree structure and
one possible corresponding index sequence for storage.

grid resulting in a three-level multi-scale representation of the image (similarly to
what was done in [28] and [39]). The hierarchical partition of an image with its
resulting tree structure and one possible corresponding index sequence for storage
(to be discussed in Section 3.5.2) are shown in Figure 3.1.

As illustrated in Figure 3.1, there are three levels in the hierarchical structure:
1. The highest level: the whole image itself.

2. The second level. the image is decomposed into 3x3 rectangles with each

side having half the length of the whole image, yielding 9 overlapping tiles.

3. The lowest level. each tile of the second level is partitioned into 4 non-

overlapping sub-tiles, resulting in 4 x9=36 rectangles.

Note that to exclude redundancy in the CBsIR system, at the lowest level only the
indices of the 4 x4=16 unique tiles are stored with a small structure for relationship
information. The features of the image tiles are associated to the nodes in the tree
structures for images. Thus, every database image is represented as a series of tiles,
each of which is mapped to a subtree of the tree structure modeling the image.
Although similar, the tree model of the hierarchical partition is not the well-known
Quadtree [5]. Our tree structure models the overlapping tiles at intermediate levels
from the hierarchical partition, while the quadtree is used to describe a class of
hierarchical data structures whose common property is that they are based on the

principle of recursive decomposition of non-overlapping spaces.
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3.2 Feature Extraction using Average Color and Vec-
torial Distance

3.2.1 Average Color

As discussed in Section 2.1, color is one of the most prominent perceptual features
to human and is commonly used in both academic and commercial image retrieval
systems. To describe the color information of an image, the static and uniform
quantization of a color space has well-known disadvantages (mentioned in Sec-
tion 2.1) although it is the simplest scheme to reduce the number of colors present
in an image.

An alternative to avoid this static quantization step is to reduce the color infor-
mation by computing statistics about the color distribution. One of such statistics
is the average color. Such methods have several advantages to be computationally
simple, to result in very compact image feature descriptors, and to provide an effi-
cient way for image comparison. On the other hand, of course, their effectiveness
are sometimes compromised since images composed by completely different colors
might yield identical statistics.

We use the average color of the image tiles in the RGB color space as one choice
for image indexing in our CBsIR system. If the color components of a pixel P are
Pg, P¢ and Pp respectively, the average color for an image tile 7" is computed as:

Ui(T) = % >. P ie{RG, B}
PET
where IV is the total number of pixels in the image tile 7. Thus, a small three
dimensional global color feature vector V(Ug(T), Ug(T'), Ug(T)) is obtained per

image tile.

3.2.2 Vectorial Distance Functions

Features alone cannot completely guarantee stability of the image retrieval system.
Distance functions used to compare features also play an important role. An ideal

distance function D and the feature F'(I) would satisfy the perceptual similarity:
D(F(I,), F(I;)) is small < I; and I, are perceptually similar.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In most cases, visual features of an image are represented by high-dimensional
vectors. These vectors can be treated as points in high-dimensional space (each
vector element corresponds to a spatial coordinate). Therefore, it is natural to de-
fine distance functions in terms of Euclidean norms. The L, norm and L, norm
as discussed in Section 2.1.3 are commonly used to compare two feature vectors.
In practice, the L, distance function performs better than the Lo distance function
because the former is statistically more robust to outliers [3]. [10] suggests using
a more complex quadratic form of distance measure which tries to capture the per-
ceptual similarity between any two colors. That work uses low-dimensional color
features as filters before using the quadratic form for the distance function, aiming
to avoid intensive computation of quadratic functions. The advantages of modeling
visual features in a vectorial space stand out. We can apply not only the compu-
tationally simple geometric distances to vector comparison, but also the spatial or
metric access methods to speedup query processing if possible [53]. The use of
access methods is important for large collections of images, because the query pro-
cessing time should not increase in the same rate as the image collection increases.

Our distance measure for the statistics-relied feature extraction is based on the
L norm because it is simple and robust. After [39], the similarity of two feature

vectors is determined by computing the weighted L;-norm:

3 _ | Vi(T,) — Vi(Th) |
| V(Ta) = V(Ty) la= ie{R,ZG,B} B0

where T, and T}, are two different image tiles, V represents the statistics-relied three
dimensional global color feature vector extracted from the image tiles, and 5(V;)
are the standard deviations of the respective features over the entire database.
Remember that we also need to pre-process the query sub-image in order to ex-
tract image features and build a data structure comparable with the tree structures
of database images. Thus, the same hierarchical tree structure (Figure 3.1) is gener-
ated for the query sub-image as well as for all database images. Since we have the
tree structures for both the database image and the query sub-image, we propose
the following formula to compute the distance between the query sub-image () and

a certain tile /s of a database image I (note that the full image is also considered a
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tile of the image itself):

i | VUs) = V(@) llas

m

d(ls,Q) =

where m is the number of unique leaf nodes in the tree structure for a tile, and 7;
and (); represent the corresponding leaf nodes in the tree structures for the tile and
the query sub-image respectively. In effect, this is the average distance between the
compared leaf nodes.

To measure the distance between a database image I and the query sub-image
(), we use a formula similar to the IHD method’s [39] to obtain the minimum dis-
tance values among the comparisons of the query sub-image’s tree structure with
all the corresponding sub-tree structures of a database image. This image similarity

measure is defined as:

DI(I, Q) = mini:o...NTdbd(Ih QJ)

where NTy, + 1 represents the number of all sub-trees in the tree structure (tiles) of
a database image that we should compare with the query’s tree structure at different
hierarchical levels, and j indicates the ordinal of the query’s tree structure at a
certain hierarchical level comparable to a sub-tree structure of the database image.

Figure 3.2 illustrates how we measure the similarity between the tree structures
of the query sub-image and database images using the above idea. The root level
of the tree structure represents the whole image. Using the previously discussed
hierarchical partition (Section 3.1), the original image is progressively decomposed
with a sliding window in order to capture overlapping image tiles. Figure 3.2 shows
the full tree structure transformed from a 4 x4 grid (There are 36 leaf nodes in the
full tree structure.) Note that even though the query is a tile of the whole image, it
has the same tree structure associated with it as the full image. Using the proposed
distance measure, we can calculate the distance between the two tree as follows:
SV - V@la _ Tt Tetran gy 2

16 16

Note that since all tiles of a database image is treated equally, no leaf node of

AL, @) =
the tree structures should be compared more than once. Hence only the 16 nodes

corresponding to the 16 unique tiles are used in the comparison.
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Figure 3.2: Simple example of tree structures for database image and query sub-
image.

3.3 Feature Extraction and Distance Measure by Bor-
der/Interior Pixel Classification

Content-based image retrieval is performed based on abstract descriptions of the
images extracted during the image analysis phase. Image analysis algorithms might
depend on the properties of the images being analyzed, thus are usually distinct for
different image domains and gradually change when the image domains expand.
Unlike a narrow image domain which has a limited and predictable variability in all
relevant aspects of its appearance, such as collections of fingerprints and X-rays of
human skeleton, a broad image domain has an unlimited and unpredictable variabil-
ity of the image’s content. It is not possible to use semi-automatic techniques and
domain-dependent knowledge during the analysis and comparison of images since
the interpretation of the image’s content is generally not unique and the image col-
lections are very large as those formed by the huge amount of images available at
the world wide web. In this scenario, low-level visual features of the images such
as color and texture are especially useful to represent and compare images automat-
ically.

In [54], a different alternative for CBIR in broad image domains is proposed.
The authors propose the use of a simple yet powerful image analysis algorithm,
whose result can be efficiently stored and compared without simplification avoid-
ing the necessity of post-processing on the result of sophisticated image analysis
algorithms used in region-based image retrieval approaches discussed before. This
approach is called BIC (Border/Interior pixel Classification). The BIC method is
made up of three main components: (1) a simple and powerful image analysis algo-

rithm that classify image pixels as border or interior, (2) a new logarithmic distance
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function to compare color histograms, (3) a compact representation for the visual
features extracted from images. It is argued that the compactness, effectiveness and
efficiency of BIC rely on its consistency among the analysis, representation and
comparison of images.

The BIC approach has been shown to outperform several other CBIR approaches
and, as such, we adopt it in our CBsIR system to extract the visual feature of
each tile with the goal of improving the retrieval accuracy when compared with
the simpler approach adopted in [57], where for each tile only the average color
was recorded and used for image indexing. In this section, we focus on the dis-
cussion of image description within the BIC method proposed in [54]. The, we
discuss BIC’s distance function and compare it with other distance measures in
Section 3.3.2. Section 3.5.1 will investigate the way how BIC achieves a compact

representation of visual features extracted from images.

3.3.1 Image Description

The use of simple and robust image analysis algorithms, whose results can be pre-
served without approximation during the representation and comparison of the vi-
sual features, is the key to achieve efficient and effective CBIR systems in broad
image domains. However, automatic segmentation algorithms have many draw-
backs (as discussed in Section 2.2), which imply that they are very likely not the
most adequate ones to deal with image retrieval tasks in broad image domains. The
aforementioned reason spurs the proposal of a new image analysis algorithm in the
BIC approach [54], trying to overcome these drawbacks from another point of view.

The BIC approach is based on a very simple (but powerful) image analysis
algorithm that runs in time O(n), where 7 is the size (pixels) of the image being
analyzed. The image analysis algorithm in BIC uses the RGB color space uniformly
quantized in 4x4x4=64 colors. Any other color space and quantization scheme
could be used as well, but this configuration is largely adopted in practice and seems
to be a good uniform quantization scheme for the RGB color space [36]. The pixel
count of each histogram bin is normalized between 0 and 255 for the sake of being

able to represent a histogram bin using only one byte of memory. There is also no
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clear advantage in using more than 256 distinct values per histogram bin as observed
in practice. After the quantization step, image pixels are classified as either border
or interior pixels. The classification criterion is: if a pixel is at the border of the
image itself or if at least one of its 4-neighbors (top, bottom, left and right) has a
different quantized color then it is classified as border pixel; if a pixel’s 4-neighbors
have the same quantized color then it is classified as interior pixel. Notice that
this classification is mutually exclusive and it is based on a inherently binary visual
property of the images.

The next step after pixel classification is to compute color histograms. Unlike
the computation for global color histogram, here one color histogram is computed
using only border pixels and another color histogram is computed using only inte-
rior pixels. In this way, each quantized color has the border/interior classification
representation. In our CBsIR system, each image tile is thus described within BIC
by means of two color histograms with 64 bins each (one for each quantized color).
Assume an M -color model, a BIC histogram is an M-dimensional feature vector
(Bic'ess| Bicgess, . .. Bic$#s class € border, interior), in which each Bicge*
represents the percentage of classified pixels in an image corresponding to each
quantized color ¢;. The BIC histogram Bic of an image tile 7" being of size n; X ny

is defined as:

Tc'lass ’
Bictass (T) = probability[p € T = (bl | class € {border, interior
i & Ty * Tig

where for any border or interior pixel p from image tile T', Bic***(T') gives the
probability that the color of pixel p is ¢;. || T¢*** || is the number of pixels that are
classified in either class with color ¢; in image tile T'.

The color coherent vector (CCV) approach of [12] also includes a binary clas-
sification of image pixels, which is nevertheless based on a non-binary visual prop-
erty of the images - the size of the connected components. This requires the use
of an empirical size threshold in order to have a binary classification in CCV. Most
of the useful information about the size of the connected components are lost in
this reduction and the approach may be very sensitive to the chosen threshold that

varies according to the visual content of the images. Therefore, the CCV approach
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is shown in [54] to be slightly more effective than a simple GCH.

BIC’s classification of pixels in border/interior for each quantized color allows
a more informed color distribution abstraction and is much more discriminative
than a simple GCH or CCV according to [54]. This discriminative power can be
analyzed for individual color in terms of texture, shape and connected components.
For instance, the texture information of images in Figure 3.3 can be captured by the
BIC classification in such a way that it yields distinct sets of color histograms for
the two images, while the two GCHs are the same. The analysis of visual properties
depends on the portion of the image covered by and also on the proportion between
border/interior pixels for each quantized color. If the number of interior pixels for
a given color is smaller than the number of border pixels for the same color, then
at least one of the following visual properties could be a possibility: (1) the color
is distributed in a relatively large areas with very irregular shape; (2) the color is
distributed in small connected areas where the border of each area is larger than its
interior; (3) the color is part of an image area that is rich in texture information. On
the contrary, if the opposite situation is true, it can be concluded that (4) the color
is distributed in relatively large and homogeneous areas with regular shape.

Figure 3.4! shows two examples of images analyzed by border and interior pix-
els. The original images are at the left column. The resulting binary images showing
border pixels in black and interior pixels in white are at the middle column. The
images showing border pixels in the corresponding original colors and interior pixel

in white are at the right column.

3.3.2 dLog Distance Function

Apart from a simple and powerful image analysis algorithm, the BIC approach [54]
also involves a new logarithmic distance (dLog) for comparing histograms. This
dLog distance function has two main advantages over vectorial distances (e.g. Ly):
(1) it is able to increase substantially the effectiveness of several histogram-based
CBIR approaches, and at the same time, (2) it reduces by 50% the space requirement

to represent a histogram. Now, we give a detailed study about the dLog distance

"From http://db.cs.ualberta.ca/mn/BIC/bic-sample.html
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Figure 3.3: GCH vs. BIC Histograms for texture discrimination.

Figure 3.4: Two examples of the result by the BIC pixel classification.
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function and how we accomodate it to our CBsIR system.

As discussed in Section 3.3.1, there are two color histograms with 64 bins each
associated with each image tile. Actually, these two histograms can be stored and
compared as a single histogram with 128 bins. Thus, any vectorial distance func-
tions like Ly or Ly could be used to compare the BIC visual features. Although
vectorial distances do have their advantages as mentioned in Section 3.2.2, they
have also well-known limitations. One of such limitations is that a high value in a
single histogram bin dominates the distance between two histograms, no matter the
relative importance of this single value [36][50]. It is generally true that the fore-
ground areas determines the semantic of the image and as such, it is more important
to determine the similarity among images. On the other hand, it is equally true that,
in general, the background covers the majority of the image area. Therefore, the
tiles that compose the background are usually larger than the tiles that compose
the foreground. For example, consider a set of images with a dominating and ho-
mogeneous background area of the image’s content. Thus, this background can be
represented in just one histogram bin. Now suppose we perform a similarity search
using a query sub-image obtained from one of such images as example. When a
vectorial distance is applied to compare these histograms, images having a back-
ground with the same color but a different foreground are retrieved ahead of any
other image having the same foreground (a high degree of semantic similarity) but
a background with a different color.

To deal with the above distortion based only on the information available within
the histogram representation, the authors of [54] have proposed the dLog distance
function which compares histograms in a logarithmic scale. The basic motivation
behind this is based on the observation that classical techniques based on global
color histograms treat all colors equally, despite of their relative concentration.
However, the perception of stimulus, color in images in particular, is believed to
follow a “sigmoidal” curve [50]. The relative increment in a stimulus is perceived
more clearly when the intensity of the stimulus is smaller than when it is larger. For
instance, a change from 10% to 20% of a color is perceived more clearly than an

change from 85% to 95%. Indeed it has been a well observed phenomena regard-
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ing many other phenomena involving how sensitive one is (including animals) to

different stimuli {2]. Thus, the distance function is defined as follows:

<M

dLog(a,b) = ;) | f(ald]) — £(B[i])]

0, ifz=0
flz) =1 1, if0<z <1
[logez] + 1. otherwise

where a and b are two histograms with M bins each. The values a[¢] and b[i] rep-
resent the 3" bins of histograms a and b respectively. Here, M equals to 256 since
the histogram bins are normalized between 0 and 255 as discussed in Section 3.3.1.

The dLog distance function does not solve the problem of comparing histograms
when some bins are of very high values, but it diminishes this effects in most of the
situations. In a log-scale, the range of distances between histograin bins becomes
much smaller than in the original scale. For instance, the smallest distance between
histogram bins in the original scale (being zero when both images have the same
amount of a particular color) remains the same in log-scale. But the largest distance
between histogram bins in the original scale (being 255 when the images have just
one color and they are different) could be reduced to just 9 in log-scale, about
255/9=28 times smaller than in the original scale.

In [54]’s experiments, a study of substituting the dLog distance for L, in existing
histogram-based approaches (e.g. GCH, CCV) shows that it clearly increase the
effectiveness of all histogram-based approaches tested. The dLog distance function
also plays an important role in the BIC histogram representation, which allows a
substaintial reduction in storage. We will expand this issue in Section 3.5.1.

For the superiority of the dLog distance function, we accomodate it in our CB-
sIR system when using the BIC image feature description. Thus, the distance be-
tween two tiles T, and 7T}, from images I, and I, respectively is defined as:

?;1 dLOg(H(Tai), H(Tbi))

DT(T,,T,) =

where T,, and T, are sub-tiles of T, and T}, respectively, represented as correspond-
ing leaf nodes in the tree structures of the tiles, m is the number of unique leaf nodes

in the tree structures at any hierarchical levels (if already at the leaf level, m=1),
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and the H function computes the BIC histogram of each tile. The image similarity
is measured similarly as in Section 3.2.2, which is based on the hierarchical tree
matching scheme. The only difference is that here the BIC image description and
the corresponding dLog distance function are used instead of the statistics-relied

color features and the weighted L; distance function.

3.4 Feature Extraction and Vectorial Distances for
Sebe et al’s method (IHD)

3.4.1 Color Indexing

Related work [39] (called IHD method here) as discussed in Section 2.3 also uses
color indexing for image feature extraction. Aiming to capture spatial relationships
of color areas while also to preserve cheap memory cost and sufficient retrieval
accuracy, the IHD method adopts the use of taking the covariance and the mean
of the color distribution in a multidimensional color space [20] to index the image
database. For the color features, the L*a*b* color space is chosen because it is
perceptually uniform. The color features representing the color distribution include
the average color u = (pr,, i, i4») and the covariance matrix [oy;] (4,7 € {L, a, b})
of the color channels. If the color components of a pixel P are Pr, P, and P,
respectively, then the index entries characterizing the color distribution of an image
or an image patch A are:

pA)=< SR hje{lab)

PcA

75(4) = ¢ 3 (P~ m(A)(P; = py(4)

PcA

where NN is the total number of pixels in the image or image patch A. Since the
covariance matrix is symmetric, only 6 entries have to be stored. Hence, a nine
dimensional global color feature vgyor(A) is obtained for the CBsIR system using

the IHD method in [39].
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3.4.2 Inter Hierarchical Distance (IHD)

For the THD method [39], the full image [ is also decomposed into a number of
sub-patches by a similar partition strategy. While the partition-based approach used
in [39] already introduces some spatial information, the space issue is explicitly
considered leading to a new distance measure called inter hierarchical distance
(IHD). The authors argue that the solution to extract the global features of image
sub-patches v ,0r(A) in order to represent the spatial information would increase
the index size dramatically. However, if only the differences of the global features
of the image and its sub-patches are stored, then the spatial encoding is guaranteed
without a major increase of the index size. Thus, a measure of the distance between
the global features of the image and the features of its sub-patches is proposed. This
distance is called inter hierarchical distance (IHD) since it is taken between feature
vectors of different hierarchical levels of the image partition.

In case of color features discussed in Section 3.4.1, a two dimensional feature
vector is used. The vector components are the L;-norm of the differences of the
mean and covariance elements respectively [39]:

Vigpa(A) = 3 (m(A) — w(4)|

i=L,a,b

Vigpa(A) = Y loi(A) — 0i;(A)]

ij=L,a,b

where A is the full image and A, is a certain sub-patch, u is the mean element and o
is the covariance element from the L * a * bx color space. However, there is no such
tree-like data structure for the IHD method. So for the example in Figure 3.2, the
distances between the query and the full database image as well as its sub-patches

S are computed as follows:

d(Is,Q) = Vi) — Vi lla

Note that when S = 0, Is represents the full image, and thus V%, (1) = 0.
An importance difference between IHD and HTM is that instead of considering
only the global feature information represented by IHD vectors of the query sub-

image and a certain sub-patch in a database image, our HTM method also uses the
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local information of a tile represented by the leaf nodes in its tree structure. The
average of distance values among the corresponding leaf nodes is regarded as the
distance between the tree structures of query sub-image and a certain tile of the
database image at any hierarchical level. We will demonstrate in our performance
study that the HTM scheme using statistics-relied feature extraction results in much
more retrieval accuracy with small extra query processing time cost when compared
with the IHD method, although much more information of the hierarchical structure
needs to be stored and compared.

Since the tree structure for the query sub-image could also be a sub-tree of the
tree structure for the database images, we float the tree structure of the query sub-
image within the whole tree structure of database images using the search strategy
presented in Section 3.6.1. When comparing the tree structures of query sub-image
and the tiles of database images with statistics-relied color features, we apply the
distance measures presented in the previous sections to compute the distances be-

tween them.

3.5 Efficiency and Storage Consideration

As image databases grow larger, image retrieval systems need to address efficiency
issues in addition to the issue of retrieval effectiveness. Efficiency concerns lie
in every phase of the retrieval process. In this section, we focus on investigating
the methods that improve the efficiency and the compactness of image indexing,
without compromising effectiveness. Section 3.6 will discuss efficiency concerns

in the search phase afterwards.

3.5.1 Feature Representation

As discussed above, our CBsIR system extracts features of the image database in
two distinct ways. For one statistics-relied feature extraction, the color feature rep-
resenting the average color of each tile of the database image is just a small three
dimensional feature vector. This feature extraction method has the inherent advan-

tage to result in very compact descriptors that are easy to compute and efficient for
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searching. Although the effectiveness of this method might be affected sometimes
(e.g., as mentioned in Section 3.2.1), the search strategy based on the hierarchical
tree matching scheme (discussed in Section 3.6.1) would remedy this in most cases.

Also statistics-based, the BIC method of [54] is adopted in our CBsIR system
for image feature extraction. We have already discussed two of its components
- a simple yet powerful image analysis algorithm and a new logarithmic distance
for histogram comparison in Section 3.3.1 and Section 3.3.2 respectively. Now we
study in detail the third component of BIC which yields a compact representation
of the image visual features allowing efficient image comparison.

When the dLog distance function is used to compare histograms, it is possible
to store the result of the f(z) function instead of the normalized pixel count. The
comparison of the histograms according to the dLog distance thus becomes com-
putationally simpler. A more careful look at the definition of the dLog function
reveals that it is in fact an L; distance of the log of the pixel count - f(x). There-
fore, all we have to do is just compare the log-based represented histograms using
the L, vectorial distance.

Besides, remember that in f(z) function z stands for each bin of a histogram
whose value range is between 0 and 255. Therefore, the f(z) can be perceived as
an integer between 0 and 9. It can assume only 10 distinct values and these values
can be stored in just 4 bits (10 < 2%). This means that the log-based representation
of histograms requires only half of the space necessary to store the normalized pixel
count which is the original representation.

The log-based representation allows a reduction of 50% in the required storage
space for any histogram-based CBIR approach [54]. For the particular case of the
BIC approach, it is possible to store a BIC histogram being of 128 bins (64 for
border pixels and 64 for interior pixels) in just 64 bytes of memory. This is a very
compact representation of image visual features. Thus, high-end workstations can
maintain fairly large collections of images in memory, completely avoiding the need

of disk-based access methods to speedup query processing.
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Figure 3.6: Index sequence without redundant tile at the lowest level of the hierar-
chical structure.

3.5.2 Index Sequence

Apart from compact image representations in our CBsIR system, we also consider
a compact storage format for the visual features that allows fast access during the
search phase.

From the progressive decomposition strategy (illustrated by the hierarchical
structure in Figure 3.1), a predefined parent-child relationship for the tree structure
can be easily extracted. Using the tree structure introduced in Figure 3.1, Figure 3.5
gives an illustration of the index sequence representing such relationships.

In Figure 3.5, each node in the tree structure is represented by the sequence for
the elements of the three dimensional feature vector based on statistics-relied image
indexing or by that for the bins of the BIC histograms. The relationship of parent
node and child nodes in the tree structure is maintained by a predefined order of
sequences in the index.

Note that Figure 3.5 represents the storage of redundant tiles at the lowest level
of the hierarchical structure. Since this index sequence is stored on secondary stor-
age and aimed for fast retrieval, we apply an immediate improvement (shown in
Figure 3.6) by storing only the indices of the 16 unique tiles at the lowest level (ex-
cluding the redundancy) with a small structure of the relationship information as an
extra overhead. This cost is much less compared with that of storing and fetching
the information about those redundant tiles, which would thus further speedup the

image comparison in search phase.
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3.6 Search Strategy

Searching is a fundamental problem in computer science [53]. However, similarity
search in digital images that are close or similar to a given visual query is inher-
ently different from the exact-match search in traditional database systems. Apart
from introducing the use of filtering techniques and access methods to reduce the
complexity of the searching process, some approximate methods relying heavily
on clustering techniques to classify similar objects together are also applied for the
indexing of non-metric spaces in such case that the precision of a query can be re-
laxed to reduce the query processing time. In the following, we discuss in detail our

search strategy for sub-image search.

3.6.1 Search by Hierarchical Tree Matching

The search algorithm in [51] uses an expensive branch-and-bound procedure to re-
trieve the best match, preserving the query’s scale. The IHD approach in [39] sim-
ply follows a linear scan (as “sequential scanning” in Section 2.1.4) to compare the
IHD vectors of the query sub-image and database image patches, which achieves
fast speed (because of the compact feature representation being just a two dimen-
sional vector) but compromises accuracy as we will discuss in our performance
study. Here, we combine the above approaches and come up with a hybrid of both
so as to expediate the matching process without compromising effectiveness. Be-
sides, this search strategy is based on a distinct query representation: unlike the
scale-preserving sub-image retrieval in [51], we generalize the image comparison
by constructing the same tree structure to represent the hierarchical partition for
both the database images and query sub-image, so that images can be retrieved
independent of the size of the sub-image (i.e., scale independency). A formal al-
gorithm written in pseudo code (Figure 3.7) summarizes the search strategy of the
HTM method for finding the most similar images to the sub-image query within the
whole database.

To further illustrate the search strategy, Figure 3.8 shows the process of finding

the best matching image and the updating of the tree structure of the query sub-
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procedure SearchHTM(databaseMetafile, queryTree)
begin

1 foreach imagel in the database do {
dblmageTree := fetchMeta(databaseMetafile, I);
entry :=0;

tempDist[entry++] := fullTreeCompare(dbImageTree, queryTree);

ook wD

for each subsequent level L of the hierarchical structure do {
6. querySubtree := updateQuery(queryTree, L);
7

for each subtree I_sub at level L of the hierarhical structure for ImageI do {

e

tempDist[entry++] := subTreeCompare(dbImageTree, I_sub, querySubtree);
9. }

10. }

11.  distArray[I] := findMinimum( tempDist);

12. }

13. rankList := sortForMinimum(distArray);

end

Figure 3.7: Search algorithm of the HTM method.

image in the search phase using the example given in Figure 3.2.

First, in step (a), we compare the full tree structures of the database image I and
the query sub-image (). Note that, at this point, the query sub-image has the same
tree structure (a three-level hierarchical structure) as the database image. As dis-'
cussed in Section 3.5.2, the tree structures are mapped into index sequences, which
maintain the relationship of nodes inside the tree structures. Each piece in the index
sequence stores the information about the image feature associated with a certain
node in the tree. Using the distance measures discussed for different methods and
feature representations respectively, we can obtain the distance between the full
trees.

In order to compare the query with the sub-tiles of the database image, we float

the query sub-image’s tree structure within that of the database image. Before doing
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Figure 3.8: Determining the best matching image (sub)tree.

this, we have to update the tree structure of the query image. Since we want to make
the query’s tree and the database image’s sub-trees (e.g., subtreel of image I in
Figure 3.8) comparable, we have to reprocess the query sub-image as to obtain a tree
structure similar to a certain database image’s sub-tree at a particular hierarchical
level. In Figure 3.8, the new query tree is shown to the right of steps (b) and
(c). The indices of the leaf nodes in the query’s updated tree structure is used to
continue comparing with the sub-trees of the database image. For this example,
step (b) shows the comparison of the query sub-image with the first sub-tree of the
database image /. In step (c), the second sub-tree of the database image (subtree2
of image I in Figure 3.8) is compared with the query’s new tree. (According to
our distance measure, subtree? is determined as a perfect match for the query.) The
comparison is similar for the remaining sub-trees and those at the lower levels of the

database image’s tree structure. Finally, the minimum distance representing the best
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matching sub-tile is used as the distance for the database image between the query.
In short, the whole searching process is done by updating the query’s tree structure
and floating it around inside the full tree structure of the candidate database image
for tree comparison at different hierarchical levels, until there are no more sub-trees
left.

Experiments detailed in Section 3.7 show that this search strategy by the hier-
archical tree matching scheme yields better retrieval accuracy compared to related
work (e.g., [39]) at the cost of small storage overhead. The query processing time
cost is also very acceptable compared to [51]. Moreover, it should be emphasized
that this search strategy has implicitly solved the object localization problem (an
adjunct issue to the sub-image retrieval problem) along with the search task. By
using the hierarchical partition strategy, the spatial information is actually kept in
the relationship of tiles represented in the hierarchical tree structure. During the
process of determining the distance between the query sub-image and the candidate
database image, the best matching tile that yields that minimum distance from the
query among all sub-tiles and the full tile of the database image is filtered out, which
also implies the location information of this tile as to where it is located inside the
full image because of the hierarchical decomposition. Note that, in this way, we do
not need any additional process to deal with the object localization problem, which
suggests the superiority of our search strategy by the hierarchical tree matching

scheme.

3.7 Performance Study
3.7.1 Performance Measures

Our sub-image retrieval task is to retrieve, as highly ranked as possible, the image
from which a given sub-image was extracted. Hence, for each query sub-image
there is only one relevant answer, namely the original image. We apply the fol-
lowing two measures (also used in [25][39], etc.) to evaluate the effectiveness of
various competing sub-image retrieval approaches. If ()4, --, (), are query sub-

images, and for the i** query Q;, I; is the only image that “contains” @;, (i.e., @;
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“appears” in I;). A method is said to be better if it has lower average r-measure
and a higher average precision. Since there is only one relevant image per query,

traditional Precision x Recall graphs are not meaningful here.

1. Average r-measure gives the mean rank of the correct answer averaged over

all queries: = Y7, rank(I;).

2. Average precision of a method gives the average of the precision values over
all queries’ recall points (with 100% being perfect performance), 1.e., at the
1 n 1

correct answer: 7 2ei=1 m.

Now for the performance study, we use two kinds of criterion. One is the ef-
fectiveness, which is measured via average r-measure and average precision. The
other criterion is efficiency, which we evaluate by the space and time requirements
of the compared approaches.

Initially, we measure the distance between the database images and the query
sub-image using a default precision of 6 decimal digits. But it becomes clear that it
is not appropriate. The distance between many images would differ only in the 5%
or even 6" decimal digit. Since there are so many approximations in the retrieval
process, €.g., the image partitioning, the use of statistics-relied feature vector per
partition, etc., it does not seem to make sense to use such a fine granularity for
the distance calculation. In addition, humans do not have such a fine distinction
between perceived similarities. Thus, we decide to use only two decimal digits pre-
cision. An immediate consequence of this lower distance granularity is the increase
in the number of tied distances. Let us call the set of images with the same dis-
tance a group. As we shall see shortly this can have a large impact on the results
depending on how one defines and measures the rank of a relevant image.

We adopted two kinds of measurement to rank retrieved images [57]. One is
the average actual rank, which is the average between the minimum and maximum
ranks for the images inside the same group as where the relevant image is. Assume
rank(I;) is the absolute rank of image I; after ordering all images by their distance
to the query image (with ties broken arbitrarily). Then if a relevant image I; has

the same distance as images I;, [;+1,- - -, [x(i < j < k), the average actual rank of
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I; is defined as (min,(rank(I,)) + maz,(rank(l,)))/2,p € {i,- - -, k}. The other
measure is the group rank, where all images inside the same group have the same
rank which is the rank obtained as if the whole group was a single “object”. In this
case an image’s rank does not depend on its group size, but rather on how many
groups of images rank before the image’s own group. This reflects the fact that
if two images have the same distance, they should also have the same ranking, as
any difference in ordering is only “accidental”. Table 3.1 exemplifies the measures
above. Note that while the group rank is quite optimistic, the average actual rank is

probably more realistic.

Table 3.1: Average actual rank and group rank.

Image {Distance | Original Rank | Average Actual Rank | Group Rank

Ta 0.05 1 15 i
Ip 0.05 2 1.5 1
Ir 0.43 3 4 2
Ir 0.43 4 4 2
I 0.43 5 4 2
Ig 0.67 6 6 3

3.7.2 [Experimental Setup

It is important to evaluate performance scientifically so as to ensure the validity of
the results. In order to test the robustness of different feature extraction methods
and the learning aptitude of the further improved CBsIR system with the relevance
feedback technique discussed in Chapter 4, we use an image database with 10,150
images: a mixture of the public Stanford10k? image dataset and some images from
one of COREL’s CD-ROMs. The image database Stanford10k contains color JPEG
images of size 128 x85, 85x128, 128x96, or 96x 128, etc. The database images
have the same dimensions, but not necessarily the same orientation. Our well-
balanced large-scale testbed is very realistic and helps us reach a fair evaluation of
different methods. The content of the database images ranges from animals, people,

scenery, and architecture, etc.

Zhttp://www-db.stanford.edu/~wangz/image.vary.jpg.tar.
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For the query sub-image datasets, we have constructed two different query sets
to evaluate different aspects of the system. Both of them are obtained by manually
cropping part of the original images. These original images are considered as the
unique correct answer for the respective queries. The first query set consists of 20
query images ranging over different themes. A sample of the query sub-images,
along with those from which they are extracted are displayed in Table 3.2. The
size of the query sub-images varies, being on average 33% the size of the database
images. The performance results are collected on a computer running Linux 2.4.18
with two AMD Athlon MP 2400+ CPUs and 2GB of main memory. As for the
second query set, we obtain 21 query sub-images which are distinct from those in
the first query set. This is because we want to test how accurate the combinations of
the HTM scheme with different images features, such as average color and the BIC
histograms, could hit the original image by distinguishing it from the similar images
that belong to the same category as that of the answer image (original image). The
size of the query sub-image also varies, being on average of 18% the size of the
database images. Experimental results on this database are collected from the online
demo® on a computer running Linux 2.4.17 with two Pentium Il CPUs and 256MB
of main memory. The above data serve as the ground truth to test different image

features and retrieval methods.

Table 3.2: Six sample images with query sub-images indicated by the white frames.

We apply three different image features: the statistics-relied feature (average

3http://db.cs.ualberta.ca/mn/CBsIR .html
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color), the BIC histogram, and the [HD feature vector on the above image database.
And we compare the performance of the combinations of the HTM scheme with
different image features, as well as the HTM-based retrieval method versus other
related approaches. Besides, the average size of query sub-images is another tuning
factor in the experiments.

Specifically, we use the first query set to obtain a preliminary comparison of
the HTM scheme using average color feature of image tiles and the corresponding
distance measures with the IHD method. For our HTM method, the RGB color
space is used while for the IHD method, the L*a*b* color space is applied instead.
As for the second query set, we apply the average color feature vectors and the BIC
histograms on the HTM scheme and compare these combinations with the IHD
method. To compute the BIC histograms, we consider the RGB color space with
quantization into C colors. The tradeoff between retrieval accuracy and efficiency

using the BIC methods is studied by changing this parameter.

3.7.3 Results Analysis

First, we compare our HTM method with related work using the first query set.
Table 3.3 shows the effectiveness obtained using the average actual rank (defined
in Section 3.7.1). Here, the statistics-relied image feature representation (average
color) is chosen for the reason that the compared ITHD method also uses the average
color but with an additional covariance matrix to represent the color distribution.
Apparently, the color feature representation of the IHD method is more complex
and more informative than HTM’s statistics-relied feature representation. However,
Table 3.3 clearly demonstrates the superiority of HTM’s retrieval scheme. When
looking at the group ranks (defined in Section 3.7.1) in Table 3.4, even though HTM
is still superior, a relatively much better result is obtained for the IHD method. The
average r-measure of 1030, obtained when using the average actual rank, dropped
drastically to 26 using the group rank. This misleading result is due to the large
number of ties inside the groups obtained for the IHD method. Using the IHD
method, we obtain groups as large as 351 images, each group having 83 images on

average. On the other hand, the HTM method is able to discriminate better. No
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Table 3.3: Performance of different methods using average actual rank.

Methods | HTM/Avg | IHD/AvgCov

Avg r-measure 31.2 1030
Avg precision 0.34 0.01

Table 3.4: Performance of different methods using group rank.

Methods | HTM/Avg | IHD/AvgCov

Avg r-measure 10.45 26
Avg precision 0.36 0.2

group is larger than 31, and on average each group contains about 4 images. That
is, the less discriminating an approach is, the more ties it will yield. And the more
ties there are, the less groups exist. Hence, the lower the group ranks. Nevertheless,
the more precise and discriminative an approach, the closer the two rank measures.

A more interesting conclusion can be drawn if one uses only the queries that
yields the 10 best results for each method. Using the average actual rank, our HTM
method yields 2.5 for average r-measure and 0.65 for average precision while the
IHD method obtains 191.7 for average r-measure (a very large improvement when
compared to the 1030 obtained for all 20 queries) and 0.02 for average precision.
Using group rank, our HTM method produces 2.4 for average r-measure and 0.65
for average precision, while the IHD returns 5.7 for average r-measure and 0.37 for
average precision, another large improvement. One should note that these figures
for the IHD method are quite close to the ones reported in [39] - even though we
use a different dataset and different queries - which suggests to us that that paper
may have used the group rank as a measure of retrieval effectiveness.

Because of the distinct difference between the two methods for the aspect of ef-
fectiveness, it is worthwhile to look at the distributions of the ranks of the relevant
(original) images. As can be seen in Table 3.5, for our HTM method 80% of the
relevant images are ranked among the top 50 retrieved images, while for the IHD
method only 10% of the original images are ranked among the same top 50. Exam-
ples of sample queries and answers by different methods are shown in Figure 3.9.

Furthermore, Table 3.6 gives the top 3 retrieval results for six sample query sub-
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Table 3.5: Comparison of the distributions of relevant images using average actual

rank.
Number of Queries(%) | Number of Queries(%)
Rank Range
for Original Images HTM/Avg IHD/AvgCov
[1,10] 12 (60%) 1 (5%)
[11,20] 0 (0%) 1(5%)
[21,50] 4 (20%) 0 (0%)
[51, 100] 3(15%) 2 (10%)
[101,500] 1 (5%) 5 (25%)
[501, 5000] 0 (0%) 11 (55%)

images and their corresponding original images’ ranks using average actual rank by
the HTM method.

Table 3.7 shows the average cost, measured in seconds, to process a query, i.e.,
to access all metadata, obtain the distance between the sub-image query and the
database images and sort the resulting file. There is a slight difference between the
two methods for the time cost of search phase. The IHD method is faster than our
HTM approach since it only stores a two dimensional feature vector per each tile of
the database images and applies a simple linear search on them. Even though the
THD method is 33% faster than HTM, it is important to note that HTM processes
a query using much more hierarchical structure information in the tree matching
phases and deals with a database of 10,150 images, where all the metadata is stored
on disk, not in main memory, still very fast, namely in 0.15 seconds on average. As
we have pointed out before in Section 3.4 that the improved effectiveness by the
HTM method clearly dominates the small extra time cost comparing with the IHD
approach, which is very acceptable.

In order to extract image features from the image database and generate the
metadata file, our HTM method use 3.35 hours while the JHD method use 4.31
hours using the machine mentioned in Section 3.7.2. (Note that this procedure can
be done off-line). When looking at the space cost for those disk-resident index files,
the HTM method would require 4.38 MB while the IHD method would need less

storage, namely 3.25 MB. Here, our implementation stores the indices of all the
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Query sub—image HTM: 1; IHD: 14

Query sub—image HTM: 3; IHD: 53

Query sub—image HTM: 5; IHD: 317

Figure 3.9: Sample query sub-images and their original images (answers) with av-
erage actual ranks using different methods. (Lower ranks are better.)
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Table 3.6: Search results for six sample query sub-images by HTM. (Note that the
size of query sub-images and retrieved images is changed for viewing purpose.)

Query Sub-Image/
Rank of Relevant Image Top 3 Retrieved Images

3.

1

___7

2

5
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Table 3.7: Comparing query processing efficiency for HTM and IHD.

Methods | Search Phase (sec.)

HTM/Avg 0.15
THD/AvgCov 0.10

leaf nodes (ignoring the intermediate nodes) for the partition strategy, which means
there is still much duplicated information because of the overlapping at the second
level in the hierarchical structure. That is why the index file takes more space
than the IHD index file. However, considering the much better effectiveness of our
HTM method compared to the IHD method, this extra cost seems worthwhile. In
addition, as discussed earlier, this is an issue which can be improved using a more
storage-conscious implementation.

In a word, based on our experimental results, our proposed HTM method is very
effective compared to the IHD method of [39] with very acceptable retrieval time
and space cost. Although it is not completely clear why there are a few outliers in
the results, we believe the low contrast between the tile of interest and the image’s
background is to be blamed. Another possible source of problem seems to be im-
ages with an unusual large number of colors, detracting the discriminative power
from the average color feature.

One venue to further explore the HTM scheme is to try using more powerful yet
compact representation for the tile features. Now, we apply the BIC approach dis-
cussed before as well as the statistics-relied approach for image feature extraction
on the database. Here, the second query set is used to test the robustness about the
HTM scheme when there are several images that are similar to the correct answer of
the query sub-image. Also, the related IHD method is applied on the second query
set, serving as a comparison. For experiments on this query set, we use the average
actual rank measure since it seems more realistic.

Table 3.8 gives the retrieval accuracy comparison using different image feature
representations with the HTM scheme and the IHD approach. For the BIC method,
the BIC parameter (SIZE) refers to the number of uniformly quantized colors on

the RGB color space. The average color is also extracted from the RGB color
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Table 3.8: Retrieving original images using IHD and different feature representa-

tions with HTM.
Methods | HTM/BIC | HTM/BIC | HTM/Avg | IHD/AvgCov
BIC parameter(SIZE) | 64 colors | 16 colors - -
Avg r-measure 2.24 22.81 573.29 1360.90
Avg precision 0.91 0.43 0.15 0.002

space, which is the original approach used in [57]. From Table 3.8 we can see that
the IHD approach produces the worst results, which is consistent with what we have
obtained from the experiments using different query set. In addition, even using just
16 quantized colors for image feature representation by BIC, the system achieves
better retrieval accuracy than using the average color for image feature representa-
tion. And the use of 64 quantized colors yields very good results and is the best
among all. For a more detailed comparison, Table 3.9 also shows the distributions
of the ranks of the original images using different image feature representations
with the HTM scheme and the IHD approach.

Besides, it should be noticed that the average size of the query has some effect
on the final retrieval accuracy. When the average size of the query decreases, using
simply the average color of each tile could not achieve good performance since it
is far from discriminative than using BIC. The values for the HTM/AvgColor com-
bination are better in [57] because the average query size is then larger than the
one (being 18%) used in the experiments reported here. Because query sub-images
and the database images have similar resolution (result of the cropping operation),
larger query has more details about the object of interest it embodies, thus can be
more discriminative. If we were to use larger query sizes for both image feature rep-
resentations with the HTM scheme, the relative advantage of HTM/BIC would be
even larger. Table 3.10 compares the average cost of query processing time for the
use of different BIC histograms for feature extraction. Some sample queries and
their answer images’ ranks retrieved from the above database using the IHD ap-
proach and different image indexing methods with the HTM scheme are displayed

in Figure 3.10 as well.
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BIC/64colors: 1 BIC/16colors: 1
HTM/Avg: 33 IHD/Avg+Covariance: 2396

BIC/64colors: 1 BIC/16colors: 8
HTM/Avg: 132 IHD/Avg+Covariance: 322

BIC/64colors: 1 BIC/16colors: 18
HTM/Avg: 314 IHD/Avg+Covariance: 410

Figure 3.10: Sample query sub-images and answers with ranks using the IHD
method and different image indexing methods with HTM. (Lower ranks are bet-
ter.)
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Table 3.9: Comparison of the distributions of original images using different feature

representations.
Methods HTM/BIC | HTM/BIC | HTM/Avg | IHD/AvgCov
BIC parameter(SIZE) | 64 colors 16 colors - -
Rank Range No. of Qs | No. of Qs | No. of Qs No. of Qs
[1,10] 20 (95.2%) | 14 (66.7%) | 5 (23.8%) 0 (0%)
[11,20] .0 (0%) 3(14.3%) | 5(23.8%) 0 (0%)
[21,50] 1 (4.8%) 0 (0%) 2 (9.5%) 0 (0%)
[51, 100] 0 (0%) 2 (9.5%) 0 (0%) 0 (0%)
[101,500] 0 (0%) 2(9.5%) | 3(14.3%) 6 (28.6%)
[501, 5000] 0 (0%) 0 (0%) 6(28.6%) | 15(71.4%)

Table 3.10: Comparing query processing efficiency using different BIC histograms

with the HTM scheme.

Methods

| Search Phase (sec.)

HTM/BIC/64 quantized colors

1.89

HTM/BIC/16 quantized colors

0.56

3.8 Summary

In summary, we have proposed a new method called Hierarchical Tree Matching

(HTM) for the problem of content-based sub-image retrieval (CBsIR). The high-
lights of the HTM method are:

1. it adopts a multi-scale hierarchical partition to model both database images

and the query sub-images in trees, eliminating any reliance on the typically

complex and inaccurate image segmentation as well as any size constraint on

the query sub-image;

2. it stores the image visual features associated to the tree structure in the format

of an index sequence, allowing fast access during the search phase;

3. it uses a distance measure that considers not only the global feature informa-

tion of a sub-tree structure but also the local spatial distribution offered by the

child nodes in the sub-tree structure so as to capture more detailed distinction;

4. it applies a search strategy that compares the tree structures of both database
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images and query sub-image at any hierarchical levels for the best matched

tile and locates the object of interest at the same time.

Our experimental evidence shows that this method outperforms the recently pro-
posed partition-based CBsIR method [39] by achieving a good balance of retrieval
accuracy and efficiency. As a side contribution, we have shown that one can obtain
very different rank measures depending on the distance granularity and ranking cri-
teria in the presence of ties.

We have also studied different methods for image indexing with the HTM scheme,
such as the statistics-relied average color feature vector approach and the BIC
method [54]. The extraction of average color feature from each tile as the statistics-
relied approach is very easy to compute and yields very compact descriptors for ef-
ficient image comparison, but has limited discriminative power in similarity match-
ing. Whereas, based on a simple yet powerful image analysis algorithm and a new
logarithmic distance function, the BIC method achieves not only compact represen-
tation for the visual features extracted from image tiles but also outstanding accu-
racy in retrieving images of broad image domains. It is clear that the combination
of the proposed HTM scheme with image indexing by the BIC method has notable
superiority for CBsIR.
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Chapter 4

Supervised Learning in
Content-Based Sub-Image Retrieval

We have already shown that the HTM method is a stable, effective and efficient
approach for content-based sub-image retrieval. It is, however, impossible for any
image retrieval method to be entirely “foolproof”. The main reason is the gap be-
tween low-level image features and semantic contents of images. This problem
arises because visual similarity measures, such as color histograms, do not neces-
sarily match the semantics of images and human subjectivity. Human perception of
image similarity is subjective and task-dependent, that is, people often have differ-
ent semantic interpretations of the same image. Even the same person may perceive
the same image differently at different times. In addition, each type of visual fea-
ture tends to capture only one aspect of the image property and it is usually hard
for a user to specify clearly how different aspects are combined to form an optimal
query. Therefore, for any query sub-image, not all top ranked images retrieved by a
retrieval method are actually relevant according to the user’s perception. To address
this problem, interactive relevance feedback techniques have been proposed to in-
corporate human perception subjectivity into the retrieval process. Users can thus
be prompted to evaluate the results by marking each retrieved image as “relevant”or
“irrelevant”. Queries or similarity measures are automatically refined on the basis
of these evaluations, which potentially improves the quality of retrieval.

In this chapter, we investigate the use of information, provided interactively

by a user, to improve the performance of the HTM-based approaches for CBslR.
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Inspired from techniques in RBIR [46][56], we outline a tile re-weighting scheme
that uses feedback information (in the form of labeled examples). Learning is thus
effected by interpolating the query vector with feature vectors of positive examples.
Furthermore, the feedback information is also incorporated into the image similarity
measure based on the tile re-weighting scheme, implicitly refining the final ranking
of retrieved images.

For organization, Section 4.1 discusses some research work in other related
image retrieval situations. Then the learning method for CBsIR are introduced in
Section 4.2. The performance measures (Section 4.3), the experimental framework
and results (Section 4.4) are presented next. Section 4.5 closes the chapter with a

brief summary.

4.1 Relevance Feedback in Other Image Retrieval Sce-
narios

4.1.1 Learning in traditional CBIR

The key issue in relevance feedback is how to use positive and negative examples
to refine the query and/or to adjust the similarity measure. Early relevant feedback
schemes for CBIR are adopted from feedback schemes developed for classical tex-
tual document retrieval. These schemes fall into two categories: query point move-
ment (query refinement) and re-weighting (similarity measure refinement), both
based on the well-known vector model.

The query point movement methods aim to improve the estimate of the “ideal
query point” by moving it towards positive example points and away from the nega-
tive example points in the query space. One frequently used technique to iteratively
update the query is the Rocchio’s formula [1]. It is used in the MARS system [18],
replacing the document vector by visual feature vectors. Another approach is to
update query space by selecting feature models. The best way for effective retrieval-
is argued to be using a “society” of feature models determined by a learning scheme
since each feature model is supposed to represent one aspect of the image content

more accurately than others.
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Re-weighting methods enhance the importance of a feature’s dimensions that
help retrieve relevant images while also reduce the importance of the dimensions
that hinder the process. This is achieved by updating the weights of the feature
vector in the distance metric. The refinement of the re-weighting method in the
MARS system is called the standard deviation method [18]. Another alternative for
learning the distance metric is to automatically select the best one from a set of pre-
defined distance metrics for the retrieval process based on the relevance feedback,
e.g, [21].

Recent work has proposed more computationally robust methods that perform
global feature optimization. The MindReader retrieval system [26] formulates a
minimization problem on the parameter estimating process. Using a distance func-
tion that is not necessarily aligned with the coordinate axis, the MindReader system
allows correlations between attributes in addition for different weights on each com-
ponent. A further improvement over the MindReader approach [37] uses a unified
framework to achieve the optimal query estimation and weighting functions. By
minimizing the total distances of the positive examples from the revised query, the
weighted average and a whitening transform in the feature space are found to be the
optimal solutions. However, this algorithm does not use the negative examples to
update the query and image similarity measure; and initially the user needs to input
the critical data of training vectors and the relevance matrix into the system.

Machine learning is about constructing computer programs that can be im-
proved with experience. Any task that can be improved as a result of experience can
be considered as a machine-learning task. In CBIR, relevance feedback improves
the retrieval performance, and the experience is the feedback examples provided by
the user. Therefore, relevance feedback can be considered as a learning problem
— the system learns from the examples provided as feedback by a user to refine
the retrieval results. The aforementioned query-movement method represented by
the Rocchio’s formula and re-weighting method are both simple learning methods.
However, as users are usually reluctant to provide a large number of feedback exam-
ples, i.e., the number of training samples is very small. And the feature dimensions

in CBIR systems are usually high. Thus, the fact that how to learn from small train-
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ing samples in a very high dimension feature space makes many learning methods,
such as decision tree learning and artificial neural networks, unsuitable for CBIR.
There are several key issues in addressing relevance feedback in CBIR as a small
sample learning problem. First, how to quickly learn from small sets of feedback
samples to improve the retrieval accuracy effectively; second, how to accumulate
the knowledge learned from the feedback; and third, how to integrate low-level
visual and high-level semantic features in the query. Most of the research in litera-
ture has focused on the first issue. To address the first issue, Bayesian learning has
been explored in research about effective learning algorithms and it has been shown
advantageous compared with other learning methods, e.g., [40]. Active learning
methods have been used to actively select samples which maximize the information
gain, or minimize entropy/uncertainty in decision-making. These methods enable
fast convergence of the retrieval result which in turn increases user satisfaction.
Chen et al [44] use Monte carlo sampling to search for the set of samples that will
minimize the expected number of future iterations. Tong and Chang propose in [49]
the use of SVM active learning algorithm to select the sample which maximizes the
reduction in the size of the version space in which the class boundary lies. Without
knowing apriori the class of a candidate, the best search is to halve the search space
each time. In their work, the points near the SVM boundary are used to approxi-
mate the most-informative points; and the most-positive images are chosen as the

ones farthest from the boundary on the positive side in the feature space.

4.1.2 Learning in RBIR

Relevance feedback (RF) has also been introduced in RBIR systems for a dramatic
performance boost as it does for the image retrieval systems using global repre-
sentations. Next, we discuss some learning algorithms in RBIR, while Section 4.2
focus on presenting the relevance feedback technique for CBsIR.

In [56], the authors introduce several learning algorithms using the adjusted
global image representation to RBIR. First, the query point movement technique is
considered by assembling all the segmented regions of positive examples together

and resizing the regions to emphasize the latest positive examples in order to form
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a composite image as the new query. Second, the application of support vector
machine (SVM) [49] in relevance feedback for RBIR is discussed. Both the one
class SVM as a class distribution estimator and two classes SVM as a classifier
are investigated. Third, a region re-weighting algorithm is proposed corresponding
to the feature re-weighting ones. It assumes that important regions should appear
more times in the positive images and fewer times in all the images of the database.
For each region, measures of region frequency RF and inverse image frequency
IIF (analogous to the TF and IDF in text retrieval [33]) are introduced for the re-
gion importance. Thus the region importance is defined as its region frequency RF
weighted by the inverse image frequency IIF, and normalized over all regions in an
image. Also, the feedback judgement is memorized for future use by calculating
the cumulate region importance. However, this algorithm only consider positive
examples while ignoring the effect of the negative examples in each iteration of the
retrieval results. Experimental results on a general-purpose image database demon-

strate the effectiveness of those proposed learning methods in RBIR.

4.2 Relevance Feedback for CBsIR

Relevance feedback as an interactive learning technique has been demonstrated to
boost performance in CBIR systems [42][52]. Despite the great potential of RF
shown in CBIR systems using global representations and in RBIR systems, to the
best of our knowledge there is no research that uses it within CBsIR systems. Here,
we present our solution to improve the retrieval performance of the CBsIR frame-
work discussed in Chapter 3 by using relevance feedback to learn the user’s in-
tention. Our relevance feedback approach has three main components: (1) a tile
re-weighting scheme that assigns penalties to each tile of database images and up-
dates those tile penalties for all relevant images retrieved at each iteration using
both the relevant (positive) and irrelevant (negative) images identified by the user;
(2) a query refinement strategy that is based on the tile re-weighting scheme to ap-
proach the most informative query according to the user’s intention; (3) an image

similarity measure that refines the final ranking of images using the user’s feed-
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back information. Each of these components 1s explained in details in the following

subsections.

4.2.1 Tile Re-Weighting Scheme

Researches in RBIR [46][56] have proposed region re-weighting schemes for rel-
evance feedback (RF). In this research, we design our tile re-weighting scheme
that specializes the technique presented in [46] to accomodate our tile-oriented (not
region-oriented) HTM approach for CBsIR. It should be emphasized that instead
of considering all the images in the database to compute the parameters for region
weight [56] (which is computationally expensive), our tile re-weighting scheme
uses only the positive and negative examples identified by the user to update the tile
penalty of the positive images only, which is much more efficient. Moreover, the
region re-weighting scheme in [46] uses a predefined similarity threshold to deter-
mine whether the region and the image is similar or not, otherwise the comparison
of region pairs would become too expensive since images might consist of different
and large number of regions. This threshold is sensitive and subject to change for
different kinds of image datasets. Thus, how to obtain the right threshold is yet
another challenge for the RF method in RBIR. However, our RF method for the
CBsIR problem does not need any threshold because the number of obtained tiles
is the same and small for each database image and there exists implicit relationship
between the tiles, which makes it easier to compare them.

In our system, the user provides feedback information by identifying positive
and negative examples from the retrieved images. The basic assumption is that im-
portant tiles should appear more often in positive images than unimportant tiles,
e.g., “background tiles” should yield to “theme tiles” in positive images. On the
other hand, important tiles should appear less often in negative images than unim-
portant tiles. Following the principle of “more similar means better matched thus
less penalty”, we assign a penalty to every tile that represents the database image
for the matching process. User’s feedback information is used to estimate the “tile
penalties” for all positive images, which also refines the final ranking of images.

Note that during the RF iterations, the user does not need to specify which tile of a
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certain positive image is similar to the query, which would only make the problem
simpler at an additional cost to the user. (Nonetheless, we plan to address this in
the future.)

Next, we introduce some definitions used to illustrate the tile penalty and for-

malize the overall RF process.
Definition 1: The distance between two tiles 7, and T, from images I, and I,
respectively, is:

DT(Taa Tb) = 2211 Dl‘St(Feature(Tai)’ Feature(Tbi))

m

where T, and T3, are sub-tiles of T}, and T}, respectively, m is the number of unique
leaf nodes in the tiles’ tree structures at any hierarchical levels (if already at the leaf
level, m = 1), the Dist function is to be instantiated with some particular distance
measure based on the result of the feature extraction done by the F'eature function

on the tiles, e.g., BIC’s dLog() function defined in the previous section. #

Definition 2: The penalty for a certain tile ¢ from a database image after k iterations
is defined as: TP;(k),i = 0,---, NT, where NT + 1 is the number of tiles per
database image, and T'P;(0) is initialized as 57-5. #

For instance, in Figure 3.1, NT +1 =1 + 9 + 16, i.e., is equal to the number
of nodes in the tree structure representing the hierarchical partition of a database

image; for the lowest level, only unique nodes count.

Definition 3: For each tile from a positive image, we define a measure of the dis-
tance DT'S between tile T" and an image set [.S = {Iy, I5, - - -, I,}. This reflects the
extent to which the tile is consistent with other positive images in the feature space.
Intuitively, the smaller this value, the more important this tile is in representing the

user’s intention.

e exp(DT(T, IY)), if T is at full tree level

DTS(T.15) = { wq exp(minj=, nyDT(T, I})), if T is at the subtree level

where NT in this case is the number of tiles at the current subtree level. #
Assuming that I is one of the identified positive example images, we can com-
pute the tile penalty of image I which consists of tiles {7y, T4, --,Ty7}. The

user provides positive and negative example images during each k" iteration of
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feedback, denoted respectively as IS* (k) = {I{(k),---, L} (k)} and IS~ (k) =
{I7(k),---, 17 (k)}, where p + g is typically much smaller than the size of the
database.

Based on the above preparations, we now come to the definition of tile penalty.

Definition 4: For all images (only being positive), the tile penalty of T; after k
iterations of RF is computed (and normalized) as:

W; x DTS(T;, 15* (k)

TP(k) =
0) = Syt  bTs(;, 15+ (#)

where W, = 1 — 5 ;Vl:{; (IT;’(ITf ,_I(:z)(k)), acts as a penalty, reflecting the influence of
the negative examples. #

This implies the intuition that a tile from a positive example image should be
penalized if it is similar to negative examples. Basically, we compute the distances
DTS between a particular tile T and the positive image set I1S™* as well as the
negative image set 1S~ respectively to update the penalty of that tile from a positive
example image. The inverse of the tile’s distance from the negative image set is used
to weight its corresponding distance from the positive image set.

Let us now illustrate the above methodology with a simple example, which also
motivates the notion of tile penalty. For simplicity, assume that the color palette
consists of only three colors: black, gray and white. Figure 4.1 shows the top 3
retrieved images and the user’s feedback judgement. Image I, is marked as a pos-
itive example since it actually contains the query image, which exactly represents
the sub-image retrieval problem we are dealing with. Image I, is also marked as
a positive example because it is the enlargement of the query image (and therefore

containing it as well).

Query Q Image I1 ImageI2  Image I3
. Initially retrieved images ﬂ ' [:l
User’s Feedback
Positive Positive  Negative

Figure 4.1: Initial set of retrieved images with user’s feedback.

For the sake of illustration, assume a two-level multi-cale representation of
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database images is used as in Figure 4.2. The tile penalties for tiles per database
image are initialized as 0.1 for the 10 tiles, i.e., TP;(0) = 0.1, € [0, 9]. Now, take
tile 7} for example. According to Definition 3, we need to compute the distances
DTS between T and the positive/negative image set. In order to do this, firstly,
the distances between T3 and all tiles at the corresponding subtree levels of all the
images in the positive/negative image set should be obtained by Definition 1. Then,
using Definition 4 the new penalty of 73 is updated from 0.1 to 0.090 correspond-
ingly. The penalties for other tiles is updated in the same way during each feedback
iteration. We illustrate the new values of all tile penalties for database image I, as
a positive example after one feedback iteration in Figure 4.2. We can see that after
the user provides feedback information, some tiles lose some weight while others
gain. For instance, 1,75, T3 and Ty receive less penalties now because they only
contain the color of grey and/or black which is/are also in the query. Tg, Ty, T5, T
and Ty are penalized more since they all contain the color white. The new weights
for these tiles generally follow the trend that more percentage of white color more
penalty. 7§, which is a rotation of the query image maintains its weight for this
iteration. This means that our system is to some extent also capable of perceiving
changes such as rotation. Besides, for a closer look at the updated tile penalties of
positive image I;, T} receives more penalty than 73 now although they are similar
to the query image in the same degree. Note that, according to Definition 4, both
the positive and the negative example images are used to calculate new tile penal-
ties. And we penalize a tile more if it is also somewhat more similar to the negative
example images compared with other tiles in the positive example image. Thus it is
reasonable that the tile penalty for 73 appears higher than that for T3 after feedback
learning, since T} contains some black color which is also in the negative example

image I3 while T contains only the grey color.

4.2.2 Query Feature Update

The RF process using query refinement strategy is based on the tile re-weighting
scheme and all positive and negative example images. The main concern is that

we need to maintain as much as possible the original feature of query image while
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Query Image  Positive Example 11

Trees for Tiles

T1,T2,...,T9 . T1 E T2

TPdb1(1)=0.090 TPdb2(1)=0.082 TPdb3(1)=0.086

™. M- N

TPdb4(1)=0.112  TPdb5(1)=0.105 TPdb6(1)=10.100

D T7 l:l T8 . T9

TPdb7(1)=0.117  TPdb8(1)=0.113  TPdb9(1)=0.090

T3

Tree for Tile TO

TPdb0O(1) = 0.105

Figure 4.2: Comparison of tile penalty for database image I, before and after feed-
back.

introducing new feature elements that would capture more new relevant images.
Considering the hierarchical tree structure of the query image, we use the most
similar tile (with minimum tile penalty) at every subtree level of each positive image

to update the query feature at the corresponding subtree level.
Definition 5: The updated query feature after £ iterations is:

. (1 = TPmin, (k) x Posk ]
qnl [J] - p -
r_1(1 —TPmin;(k))

where qnfc is the new feature with M dimensions for a subtree (tile) at the {** level of
the tree structure for the query image after k iterations, 7 Pmin;, (k) is the minimum
tile penalty for a subtree (tile) found at the [** level of the tree structure for the
i™ positive image after & iterations, Posf is the feature for the subtree (tile) with
minimum tile penalty at the I** level of the 5™ positive image’s tree structure after &
iterations, and p is the number of positive images given by the user at this iteration.
o

Intuitively, we use the weighted average to update the feature for a subtree (tile)
of the query, based on the features of those tiles that have minimum tile penalties
within respective positive images. In this way, we try to approach the optimal query
that carries the most information needed to retrieve as many relevant images to the

query as possible.
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4.2.3 Image Similarity

With the updated query feature and tile penalties for positive images, we can now
define the distance between images and the query for ranking evaluation at each
feedback iteration. In order to locate the best match to the query sub-image, our
image similarity measure tries to find the minimum from the distances between
the database image tiles and the query (recall that both the database image and
the query sub-image have been modeled by the tree structure in the same way) at
corresponding hierarchical level in the tree structure, weighted by the tile penalty

of corresponding database image tiles.

Definition 6: The distance between the (updated) query image () and a database

image I at the k* iteration is:
DI(1,Q) = minz‘:O..NTTPz‘(k - 1) X DT(I,-, Qj)

where NT + 1 is the number of all subtrees in the tree structure (tiles) of a database
image, and TP,(k — 1) is the tile penalty for the i*® tile of image I after k¥ — 1
iterations. #

For the comparison of full tree structures, + = 0 and j = 0, indicating both the
full tree structure of the database image and the query image. For the comparison of
subtree structures, 7 = 1..V, for each 1 < j < (L — 1), where NV, is the number of
subtree structures at the {?* level of the tree structure and L is the number of levels
of the tree structure, mapped from the hierarchical partition. j indicates the sub-
tree structure at a particular level of the query image’s tree structure, as a result of
shrinking the original query tree structure to make the comparison with the subtree
structures of database images comparable.

Thus, the overall RF process for the CBsIR system can be summarized in the

following pseudo algorithm:

1. The user submits a query (sub)-image with no concern about whether the

query is a tile or similar to any tile of any database image;

2. The system retrieves the initial set of images using a similarity measure,
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which consists of database images containing tiles similar to the query sub-

image;

3. The system collects positive and negative feedback examples identified by

the user;

4. For each positive image, update the tile penalties of those tiles representing

this image using positive examples and negative examples;
5. Update the query using positive images and their newly updated tile penalties;

6. Use the revised query and new tile penalties for database images to compute

the ranking score for each image and sort the results;

7. Show the new retrieval results and go to step 3.

4.3 Performance Measures

Up to now, we have integrated relevance feedback with our CBsIR system via the
hierarchical tree matching scheme. Two types of effectiveness for the system should
be taken into account. The first one (similar to what was done in the previous chap-
ter) is about retrieving the original images from which the queries are extracted.
This is evaluated by using the average r-measure and the average precision as
discussed in Section 3.7. The second type of effectiveness is about retrieving all
images relevant to the queries, where it becomes appropriate to calculate the pre-
cision and recall for each feedback iteration. For certain applications, it is more
useful that the system brings new relevant images (found because of the update of
query feature from previous feedback) forward into the top range rather than keep-
ing those already retrieved relevant images again in the current iteration. For other
applications, however, the opposite situation applies and the user is more interested
in obtaining more relevant images during each iteration including those s/he has
already seen before. Besides, it is more helpful that the system learn the user’s in-
tention within as fewer iterations as possible. Given these observations, we use two

complementary measures for precision and recall as follows:
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1. New Recall: the percentage of relevant images that were not in the set of
the relevant images retrieved during previous iterations over the number of
relevant images in the answer set. (Measured only after the first iteration, i.e.,

after the first feedback cycle.)

2. New Precision: the percentage of relevant images that were not in the set of
the relevant images retrieved during previous iterations over the number of

retrieved images at each iteration. (Also measured after the first iteration.)

3. Actual Recall. the percentage of relevant images at each iteration over the

number of relevant images in the answer set.

4. Actual Precision: the percentage of relevant images at each iteration over the

number of retrieved images at each iteration.

The new recall and precision explicitly measure the learning aptitude of the system,
ideally it retrieves more new relevant images as soon as possible.

Moreover, we also try to measure the total number of distinct relevant images
the system can find during all the feedback iterations. This is a history-based mea-
sure that implicitly includes some relevant images “lost” (out of the top presented
images) in the process. We call them cumulative recall and cumulative precision

defined as follows:

1. Cumulative Recall. the percentage of distinct relevant images from all itera-
tions so far (not necessarily shown at the current iteration) over the number

of relevant images in the predefined answer set.

2. Cumulative Precision: the percentage of distinct relevant images from all

iterations so far over the number of retrieved images at each iteration.

Table 4.1 exemplifies the measures mentioned above, assuming the answer set
for a query contains 3 images A, B, C and the number of returned (presented) im-
ages is 5.

In addition, we also measure each method’s storage overhead and query pro-

cessing (time) cost.
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Table 4.1: Cumulative/New/Actual Recall and Precision

Iteration Retrieved Cumulative New Actual
Relevant Ones | Recall/Precision | Recall/Precision | Recall/Precision
1 A .33.33%/20% —/— 33.33%/20%
2 A 33.33%/20% 0%/0% 33.33%/20%
3 B,C 100%/60% 66.67%/40% 66.67%/40%

4.4 Experiments and Results

We test the proposed relevance feedback approach for the CBsIR system using the
image database mentioned in Section 3.7.2. The broad-domain image dataset con-
sists of 10,150 color JPEG images: a mixture of the public Stanford10k! dataset
and some images from one of COREL’s CD-ROMs, each of which falls into a par-
ticular category — we use 21 such categories?. Some categories do not have rotated
or translated images, but others do. On average, each answer set has 11 images, and
none of the answer sets has more than 20 images, which is the amount of images
we present to the user for feedback during each iteration. We manually crop part of
a certain image from each of the above categories to form a query image set of 21
queries (one for each category). Images of the same categories serve as the answer
sets for queries (one sample query and its corresponding answer set are shown in
Figure 4.3). The size of the query image varies, being on average 18% the size
of the database images. The following performance results are collected from the
online demo® on a computer running Linux 2.4.17 with two Pentium III CPUs and
256MB of main memory.

In our experiments, the maximum number of iterations explored is set to 10
(users will give feedback 9 times by pointing out which images are relevant (posi-
tive)/irrelevant (negative) to the query) and we present the top 20 retrieved images
at each iteration. Note that in our system the series of feedback iterations between

queries is independent, i.e., the information collected from the user is not integrated

Ihttp://www-db.stanford.edu/~wangz/image.vary.jpg.tar.
2The union of http://db.cs.ualberta.ca/mn/CBIRone/ and http://db.cs.ualberta.ca/mn/CBIRtwo/
3http://db.cs.ualberta.ca/mn/CBsIR .html
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Query Image Answer Set

Figure 4.3: A sample query (sub)image and its relevant answer set.

Table 4.2: Comparison of retrieving the original images using BIC by feedback

iterations.
BIC parameter (SIZE) | Average No. of Iterations needed for Rank < top 20
64 quantized colors 1.1
16 quantized colors >2.3

into the search for the next queries, even if the very same query is submitted to the
system again. This consideration is based on the observation of the subjectivity of
human perception and the fact that even the same person would perceive the same
retrieval result differently at different times.

Although we have already shown the good retrieval accuracy of finding the orig-
inal images by using the BIC method for image indexing in our CBsIR system, here
we further study the effectiveness of our CBsIR system using BIC to retrieve the
original images in terms of feedback iterations. Besides, we tune the BIC parame-
ter (SIZE — the number of quantized colors) to further investigate the HTM-based
CBsIR system using the BIC method and relevance feedback technique, comparing
the effectiveness as well as efficiency and storage cost for image feature extraction
having different degrees of information.

In Table 4.2, it is clear that using the 64 quantized colors the hit rate of the
original images can almost reach the optimal value.

For the retrieval accuracy of relevant images using 64 quantized colors in the

BIC method, the results are shown in Figure 4.4 and Figure 4.5 by the measures
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Figure 4.4: Effectiveness measures by actual recall, cumulative recall and new re-
call using 64 quantized colors in BIC.

proposed in Section 4.3.

As it can be clearly seen that after 5 iterations the system has already learned
most of the information it could learn, i.e., the information gain (given by the new
recall and new precision curves) is nearly null. On the other hand, after only 5
iterations the actual recall and actual precision values increased by 55% and 60%
respectively. It is also noteworthy to mention that the stable actual precision value
of nearly 40% is not as low as it may seem at first. The answer sets have an average
of 11 images and since the user is presented with 20 images, the maximum preci-
sion one could get (on average) would be about 50%. Hence, in this perspective
40% of actual precision is not a low value. Similarly 70% of actual recall means
that on average 8 images out of the 20 presented are actually relevant after 5 it-
erations, which also seems to be quite reasonable. We also obtained about 85%
for cumulative recall and about 50% for cumulative precision. The reason for the
higher values than those for actual recall and actual precision is because some rele-
vant images that may be “lost” in subsequent iterations are always accounted for in
these measures.

Figure 4.6 and Figure 4.7 give the glimpse of screenshots about the online demo

using 64 quantized colors in BIC for a sample query during the first two iterations.
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Figure 4.5: Effectiveness measures by actual precision, cumulative precision and
new precision using 64 quantized colors in BIC.

On the aspect of effectiveness, using 16 quantized colors expectably yields a
worse accuracy than using 64 quantized colors in the BIC method. Looking at
Figure 4.8 and Figure 4.9, the former achieves about 60% for the final actual recall
and about 30% for the final actual precision, both about 10% lower than the latter
as shown in Figure 4.4 and Figure 4.5. The results obtained using 16 quantized
colors are also reasonable. The final cumulative recall value increases to 70% from
the actual recall value being about 60%. Similarly, the final cumulative precision
is brought up to about 40%. The learning aptitudes of the system using different
informative degrees of the feature representation (measured by the new recall and
new precision shown in Figure 4.8 and Figure 4.9) follow a similar trend, i.e., most
of the information is learned by the first 5 iterations. However, it should be noticed
that when using 16 quantized colors the left 5 iterations contribute more to reach
the final cumulative/actual recall and precision at the 10% iteration, compared with
that of using 64 quantized colors. As shown in Figure 4.10 and Figure 4.11, using
16 colors the information gain between the 6% iteration and the 10" iteration is
22.1% for new recall measure and 21.6% for new precision measure; while for
64 quantized colors, these values drop to 10.5% and 15.7% respectively. This is

because the result and information gain of using 64 quantized colors are just already
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Query Image

Top 20 retrieved DB images
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CPU time: 1.89 seconds / Database size: 10, 150 images

Go back to image search engine for a new query

Figure 4.6: Results of online demo using 64 quantized colors in BIC for a sample
query after the first iteration. (The user has given feedback once.)
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No.2 Iteration of Search

Query Image

Top 20 retrieved DB images using Relevance Feedback
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Figure 4.7: Results of online demo using 64 quantized colors in BIC for a sample
query after the second iteration.
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Figure 4.8: Effectiveness measures by actual recall, cumulative recall and new re-
call using 16 quantized colors in BIC.

better than those of using 16 quantized colors in the previous 5 iterations. Not as
much as information left could be learned by the feature representation using 64
quantized colors. The switch point of the two curves is observed in Figure 4.10 and
Figure 4.11, appearing in between the 4™ and the 5" iterations.

Figure 4.12 shows the average cost, measured in seconds, to process a query
during each iteration, i.e., to access all disk-resident data, complete the learning
from the user’s feedback at the current iteration (not applicable to the first iteration),
obtain the distance between the query image and database images and sort them
by their resulting ranks. The first iteration takes, on average, slightly less than 2
seconds when using 64 quantized colors and 0.6 second when using 16 quantized
colors, whereas each subsequent iteration requires about 2.5 seconds and 1 second
respectively for the two feature representations. This slight increase is due to the
overhead for computing and updating the tile penalties. If to compare these two
image feature representations, using 64 quantized colors is 3.5 times slower than
only using 16 quantized colors. With relevance feedback, the difference is narrowed
down a little bit with 3 times slower when using 64 quantized colors.

In order to extract image features from the image database applying the BIC

method and generate the metadata file, the use of either 64 quantized colors or 16
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Figure 4.9: Effectiveness measures by actual precision, cumulative precision and
new precision using 16 quantized colors in BIC.
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Figure 4.10: New recall (defined from the second iteration) comparison using 64
quantized colors and 16 quantized colors in BIC.
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Figure 4.11: New precision (defined from the second iteration) comparison using
64 quantized colors and 16 quantized colors in BIC.

quantized colors requires about 25 minutes on a computer running Linux 2.4.20
with AMD Athlon XP 1900+ CPU and 1GB of main memory. This procedure
can nevertheless be done off-line. The storage cost for the disk-resident metadata is
10.5 MB (only about 20% the size of the image database), while using 16 quantized
colors needs proportionally less storage, namely 2.7 MB.

In summary, our proposed relevance feedback-based approach for content-based
sub-image retrieval (using 64 quantized colors in the BIC method for image index-
ing) was able to achieve a very good retrieval accuracy with small space cost and
fast retrieval time including the overhead due to the feedback learning. When using
only 16 quantized colors in BIC, the query processing time cost is cheaper. While

the retrieval accuracy suffers, it is still acceptable.

4.5 Summary

In this chapter, we have addressed how relevance feedback can be used to improve
the performance of CBsIR. We present the supervised learning method known as
relevance feedback, which is based on a tile re-weighting scheme that assigns penal-

ties to each tile of database images and updates those of all relevant images using
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Figure 4.12: Comparing query processing efficiency using different BIC histograms
at each iteration.

both the positive and negative examples identified by the user. Moreover, the user’s
feedback information can also be used to refine the image similarity measure by
weighting the tile distances between the query and the database image tiles with
their corresponding tile penalties. We combine the learning method with the BIC
approach for image indexing to improve the performance of content-based sub-
image retrieval. Our results on an image database of over 10,000 images suggest

that the learning method is quite effective for CBsIR.
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Chapter 5

Conclusions and Future Work

The main contribution of this thesis is the proposal of hierarchical tree matching
(HTM) scheme for solving the thus far much less explored problem of content-
based sub-image retrieval (CBsIR) and its accompanying issue on object localiza-
tion. The novelty in this new method is the characterization of images in terms of
hierarchical tiles that captures the spatial correlation of the color features and makes
for fast and precise object matching. As a summary of the new method, we adopt a
multi-scale hierarchical partition to both the database and query images. The aver-
age color feature of image tiles is associated with a hierarchical tree structure stored
in an index sequence so as to yield fast access during search phase. For the search
strategy, we compare the query image’s tree structure with the sub-tree structures
of the database images at all hierarchical levels and use the average distance be-
tween the leaf nodes as the distances between the query tree and the sub-trees of
the database images, which introduces local spatial information to provide more
veracious matching. Experimental results on a collection of heterogeneous images
show that our method achieves both good retrieval accuracy and efficiency. As a
side contribution we have shown that one can obtain very different rank measures
depending on the distance granularity and ranking criteria in the presence of ties.
Certainly there is room for improvement and a few possible venues for further
investigation include the design of disk based access structure for the hierarchi-
cal tree (to enhance the scalability for larger databases), the use of better (more
powerful yet compact) representation for the tile features, and the incorporation of

machine learning techniques to shorten the gap between low-level image features
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and high-level semantic contents of images so as to better understand the user’s in-
tention. In the latter part of this thesis, we have studies two of the above issues to
improve the performance of the CBsIR system using the hierarchical tree matching
scheme. On one hand, we adopt the use of a compact and efficient CBIR approach
suitable for broad image domains called BIC [54] for image indexing. Experimen-
tal results show the BIC feature representation for the image tiles is far more dis-
criminative than the statistic-based feature representation (average color) because
of BIC’s simple and powerful image analysis algorithm based on a border/interior
pixel classification. The logarithmic distance function also helps diminish the dis-
tortion in histogram comparison and provide a compact representation of visual
features. One other possible improvement of using the BIC approach for feature
extraction is to try to solve the problem that image background, which usually cov-
ers the majority of image area but does not determine the semantic of the image,
could cause distortion in similarity measure by performing “background elimina-
tion” during the image analysis process. This action would detect background pix-
els according to some criterion and exclude these pixels when computing the BIC
histogram. In this way, the information that distracts the image semantic is excluded
from the image feature representation. Thus, better similarity hit could be expected
during the search phase.

On the other hand, the supervised learning method - relevance feedback is in-
vestigated to incorporate human perception subjectivity into the retrieval process,
trying to capture semantic contents of image in terms of objects. The query refine-
ment method in relevance feedback is integrated with the CBsIR system by applying
a tile re-weighting scheme to assign penalties to tiles that compose database images
s0 as to better approach the user’s intention. The tile penalties of positive images
based on both the positive and negative examples identified by users (without ex-
plicit sub-image feedback) are used to update the query for an improvement in the
retrieval accuracy of the next iteration. Our experimental results on the general-
purpose image database demonstrate the clear performance improvement by this
framework compared to that of the previous CBsIR system [57], which uses only

average color as the feature representation for image tiles and allowed only one
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iteration of retrieval. (Note that as far as we know, there is no research that uses
relevance feedback within CBsIR systems and it is not comparable to the region-
based retrieval systems although they aim at a similar retrieval goal.) Some venues
for future work include integrating other powerful learning algorithms into CBsIR,
handling the difference in image resolution between possible queries and target im-
ages, and accomplishing a more friendly user interface that allows real time query
definition.

In general, the algorithms we propose for the CBsIR problem are not only sim-
ple and inexpensive but also quite effective and might be used to automatically solve
the adjunctive object localization problem existing in various applications, such as
tracking of objects in a video sequence. It is unreasonable to expect any CBsIR
system to be absolutely foolproof. However, the goal is to build relatively better
CBsIR systems that can offer applications not considered and/or hard to be solved
by RBIR with a similar perception on the image content. In this direction, based on
the experiments, we feel that there is a compelling reason to use our HTM scheme

and corresponding RF approach as one of the basic components in such systems.
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Appendix A

Simulation of HTM’s Search Process

A high-level simulation of the search process can be viewed in the following series

of figures from Figure A.1 to Figure A.5.
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Search Strategy — tree structure

Tree for full image

Trees for (9x9 overlapping) tiles

Figure A.1: Tree structures modeling the hierarchical partition of the image.
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Search Strategy — full image match

» Tree for query (sub-image)

+ Same number of levels as full image
Tree distance is based on leaf distances
(recursively)

LY NN

Figure A.2: Matching the full trees of the query and the database image.
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Search Strategy — sub-image match

« Tree for query (sub-image)

» Same number of levels as tile image
» Tree distance is again based on leaf
distances (recursively)

Figure A.3: Matching the sub-trees of the query and a certain tile at the second level
of the hierarchical partition.
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Search Strategy — resulting distances

i - H B

Dist,=029  Dist;=03

Dist, = 0. 21 Dlsts 0.1 Dist, =027

Dist, =0.2

Dist, =0.19  Dist, =0.15 Dlst9 0.17

Figure A.4: Obtained distances between the query and each tile of the database
image after two kinds of match.
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Search Strategy — image similarity

« Image similarity: dist (Q, I ) = min Dist, (i=0...9)
— dist (Q, I) = Distg = 0.1 (tile 5)

Figure A.5: Image similarity measure - finding the minimum among the obtained
distances as the distance between the query and the database image.
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