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An approximate answer to the right question is worth a great deal more than a 
precise answer to the wrong question.

-  John Tukey
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Chapter 1 

Introduction

1.1 Motivation

Concrete visual means like images has always been preferred by human to express 

ideas and convey information since remote antiquity. In the current information 

explosion age, our reliance on visual modes of communication has further been re

inforced by the recent rapid technological evolution in handling digital data. This 

can be witnessed in the overwhelmingly growing amount of digital image data with 

the development of the world wide web. Thus, image databases are becoming 

more and more common in several diverse application domains, such as multimedia 

search engines, digital libraries, medical and geographical databases, etc. Although 

constructing very large image databases has become fairly easy with the advances 

of techniques for acquisition, transmission and storage of images, the information 

stored there is virtually useless if not organized. In this scenario, searching for a 

certain image from a large image repository is just like looking for a book from 

a huge library without the aid of catalogs. All these factors have stimulated great 

interest in image retrieval techniques.

But how difficult is the problem of searching and retrieving images? Unfor

tunately, traditional text retrieval methods are not suitable for images because of 

the dimensionality difference between images and text as well as the data size dif

ference between them (image data is much larger than text). Moreover, it should 

emphasize the fact that in some sense words themselves are semantic “objects”, 

while the image data needed to be processed and interpreted to extract the percep-

1
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tual meaning, which cannot be achieved by textual indexing techniques [14].

Early image retrieval [6] was performed based on short descriptions as a set 

of content-independent attributes (file name, format, category, size, author’s name, 

and disk location) of the images. However, this approach limits the queries to those 

based on existing attributes. Another alternative is to use manual text annotations 

or keywords so that classical information retrieval (IR) techniques can be used to 

search images indirectly. But this approach still has problems like ambiguity, in

completeness and subjectiveness. Since image data is very rich in information, to 

capture the content of an image using just a few keywords is not feasible, not to 

mention the tedious work involved in the annotation process.

A more effective and automatic approach is the so-called content-based image 

retrieval -  CBIR, which consists of using low-level image features to represent, 

compare and retrieve images. Most CBIR systems [15] follow the two-step ap

proach to search image databases [8]. Firstly (indexing), a feature vector repre

senting certain essential properties of the image is extracted and stored as metadata 

for each database image. Secondly (searching), given a query image, images most 

similar to the query image are returned to the user by comparing the feature vectors 

of database images with that of the query image. These CBIR systems all belong to 

the Query-By-Example (QBE) paradigm.

While most CBIR systems retrieve images based on a full image comparison, 

i.e., given a query image the system returns overall similar images. However, users 

can also be interested in object searching [23]. In this case, the user provides a 

sub-image query (perhaps an object) and the system should retrieve images that 

contain the query (according to human perception) from the image database. The 

sub-image query can be also an image itself. This task, which we call content-based 

sub-image retrieval (CBsIR), is difficult to cope with by a variety of effects (such 

as size variation and different viewing positions, etc.) that cause the target sub

image to have dramatically different appearances in different images. A problem 

associated to the CBsIR task is to how to locate the sub-image inside a database 

image effectively and efficiently.

Besides the basic CBsIR tasks, several related problems also need to be ad-

2
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dressed. Most CBIR and CBsIR systems automatically generate low-level image 

features such as color, texture, shape, etc, for image indexing and retrieval, which 

do not capture the semantics of images. And there is no effective method yet to 

automatically generate good semantic features of general images. When the system 

retrieves some images that are irrelevant to the sub-image query according to the 

user’s judgement, the user might want to provide feedback information about the 

relevance of the obtained results to reinforce the accuracy of future retrievals. Then 

the CBsIR system should process the feedback information efficiently and return 

better result by the user’s intention.

1.2 Challenges

A large number of challenges exist in the CBIR research domain. This thesis deals 

with the challenges described in the following two paragraphs.

The feature extraction of an image database is to compute a n-dimensional vec

tor for a feature based on some image analysis. Color, texture, shape and spatial 

information are the most commonly used low-level features in image retrieval sys

tems. The n  components of a feature vector may be derived from one visual features 

or a combination of several ones, e.g., [22]. A good low-level feature for an image 

should be able to preserve the perceptual similarity, fast to compute and small in 

size. The feature vector not only affects the retrieval efficiency, but also affects the 

design of indexing data structures when the size of the image database becomes 

very large, e.g., the huge image collection available from the Internet, which makes 

the CBsIR task especially challenging. The perceptual similarity determines the 

effectiveness of the feature for retrieval purpose. Being a contrast to low-level im

age features, semantic categories depicted in images are called high-level concepts. 

However, a big gap exists between low-level image features and semantic contents 

of images. In addition, human perception is subjective and task-dependent. All 

these limit the retrieval accuracy of most CBIR (and CBsIR) systems. While high- 

level concepts could help facilitate the human-computer interaction, they are almost 

impossible to extract without human assistance.

3
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A distance function  measures the similarity between two given images by com

puting the difference of the two corresponding feature vectors. The greater the 

distance, the smaller the similarity. The distance function is usually defined as 

City-Block (Li) norm, Euclidean norm (L2), or weighted Euclidean norm [10]. 

Vectorial distances are efficient in comparing histograms and allow the use of spa

tial or metric access methods to speedup query processing [53]. However, they 

have also well-known limitations. One of such limitations is that a high value in a 

single histogram bin dominates the distance between two histograms, no matter the 

relative importance of this single value [36] [50]. This kind of limitation causes dis

tortion in retrieval results when comparing images having a large background with 

the same color but a different foreground with images having the same foreground 

(a high degree of semantic similarity) but a large background with a different color.

Another question to consider is, how precisely should we measure the distance 

between database images and the sub-image query? If we choose a high precision, 

it surely distinguishs distances in a finer granularity. However, it should also be 

noticed that there are so many approximations in the whole retrieval process and 

humans often do not have such a fine distinction between perceived similarities. 

Thus, a lower precision might be better suited. This yet results in the increase in the 

number of tied distances. Different degrees of distance precision yields different 

distance figures. The ranking based on these distances often become confusing and 

could handicap the correct understanding of the investigated methods.

In addition, once it is determined that an image contains a sub-image query, it 

becomes necessary in many cases (like tracking objects in videos) to find the place 

of the sub-image inside the database image. Note that there should be no restriction 

as to where the sub-image query may be within a relevant image in the CBsIR 

system. Because of the lack of accurate and efficient image segmentation process 

for large, arbitrary and heterogeneous image databases, the sub-image queries may 

have to be located in unsegmented images. The problem of how to locate the sub

image effectively and efficiently is thus made more difficult.

4
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1.3 Contributions

In this work, we investigate the problem of content-based sub-image retrieval (CB

sIR) to find database images that contain the query sub-images in two ways.

First, we propose a new method called Hierarchical Tree Matching (HTM) for 

the CBsIR problem. The highlights of this approach are: (i) it uses a fixed decom

position without relying on image segmentation (typically not an accurate process), 

(ii) the hierarchical partition encodes the local spatial information as well as global 

distribution of colors in the image, (iii) the multi-scale representation is small in 

size and stored in the format of an index sequence (allowing fast access during the 

search phase), (iv) a search strategy is designed to achieve effective and efficient re

trieval based on the multi-scale representation. Experimental evidence, tested on an 

image database of over 10,000 images, shows the new approach outperforms other 

related CBsIR approaches and achieves a good balance of accuracy and efficiency.

To further improve retrieval results, we also address how relevance feedback 

can be used to enhance the performance of HTM-based CBsIR system. We present 

a tile re-weighting scheme that assigns penalties to each tile consisting of database 

images and updates those of all relevant images using both the relevant (positive) 

and irrelevant (negative) images identified by the user. Learning is effected by mod

ifying the query vector to incorporate the positive examples based on the update of 

their tile penalties during the feedback iteration. Besides, a new similarity distance 

between an image and the sub-image query is also learned by using a weighted met

ric by the tile penalty, which is possible to shorten the distance between the query 

and relevant images and elongate the distance between the query and irrelevant im

ages. Our results suggest that this learning method is quite effective for the CBsIR 

system.

1.4 Organization

Chapter 2 discusses related research literatures in (color-based) image retrieval, dis

tinguishing the problem of content-based sub-image retrieval (CBsIR) from other 

active research domains in content-base image retrieval (CBIR) and giving a brief

5
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survey of related CBsIR systems. In Chapter 3, we propose the Hierarchical Tree 

Matching approach for CBsIR. We investigate the new method by discussing in 

detail each step in the whole retrieval process. Chapter 4 describes how to use rel

evance feedback combined with the hierarchical tree matching scheme to improve 

the results of content-based sub-image retrieval. Corresponding experimental re

sults are shown in the above two chapters respectively. Finally, Chapter 5 concludes 

the thesis and offers direction for future work.

6
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Chapter 2 

Related Work for Content-Based 
Sub-Image Retrieval

Thus far, a large amount of research published within the area of content-based im

age retrieval (CBIR) [32][53] deals with full-image retrieval, where typically one 

provides a query image and the CBIR system finds the most similar images from an 

image database. The notion of similarity is usually such that the returned images 

should resemble the query in an “overall”manner. An also interesting, though so 

far much less explored, problem is that of finding images that contain the query 

images, i.e., images where the query image is part of the overall image. We term 

this problem Content-Based Sub-Image Retrieval (CBsIR); and define it as follows 

[39]: given a sub-image query Q  and an image database S, retrieve from S  those 

images Q' which contain Q  according to some notion of similarity. It is important 

to clarify that the sub-image retrieval problem is a distinct branch of the image re

trieval domain, which has its own characteristics and merits in various applications.

In this chapter, we discuss existing techniques for two branches in CBIR from 

different points of view. The use of low-level features, color in particular, is useful 

for large and heterogeneous collections of images, where images belong to sev

eral distinct, non-related semantic and visual domains. Since color is also used 

as image feature in our CBsIR system, a survey of existing color-based image re

trieval approaches providing an overview of the background for our CBsIR sys

tem is presented in Section 2.1. Although our approach for the CBsIR problem 

decomposes the images into tiles and define distances between feature vectors ex-

7
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tracted from different image tiles, this is not the same as region-based image re

trieval (RBIR) investigated elsewhere, e.g., [34][41]. Nonetheless, some region- 

based image retrieval methods are also reviewed in Section 2.2 for completeness. 

Moreover, within the context of CBsIR, methods proposed in related literatures are 

investigated in Section 2.3 and further compared with our CBsIR approach by ex

periments in Chapter 3.

2.1 Color-Based Image Retrieval

The choice of the right image features for an image retrieval system is important 

since image features affect every aspect of the whole retrieval process. Most of the 

CBIR systems explore low-level image features like color, texture, shape, etc., since 

they can be extracted automatically. Color is the most commonly used low-level 

feature, possibly because color is immediately perceived by humans and related 

concepts are easy to understand and implement. Besides, color is one of the most 

prominent perceptual features in a large majority of image domains and using color 

information can often achieve satisfactory results. Most commercial CBIR systems 

include color as one of their image features (e.g., QBIC of IBM [9], V irage[ll], 

etc). This section is thus mostly concerned with color-based image retrieval ap

proaches.

2.1.1 Color Spaces

The color of a pixel in a digital image is typically represented by three values, 

one for each channel of the chosen color space. A color space is a specification 

of a 3D coordinate system and a subspace within that system where each color is 

represented by a single point [7]. The first step in any color-based image retrieval 

system is to choose a color space where images will be represented and compared.

The most well-known and used color space is the RGB (Red, Green, Blue) 

model [7][36], The RGB color space is device-dependent such that the displayed 

color depends not only on the RGB values, but also on the device specifications.

8
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(a) The RGB color space (b) The CIE Lab color space 

Figure 2.1: Color spaces

The main drawback of this model is that it is not perceptually uniform, in the sense 

that the differences between RGB colors do not reflect the differences perceived 

by human. The RGB color space is a cube shown in Figure 2.1(a), where the main 

diagonal represents the gray values from black to white, and any point (color) inside 

the cube is represented by a weighted sum of red, green, and blue [53].

Another kind of color spaces is uniform color spaces, where the numerical dif

ferences among colors are consistent with the differences perceived by human. The 

CIE Lab model is one such example. As shown in Figure 2.1(b), the CIE Lab color 

space represents the differences of three elementary pairs: red-green, yellow-blue 

and black-white. Different from the RGB color space, the CIE Lab color space is 

device independent.

The third kind is called the user-oriented color spaces [32] [36], which are based 

on human perception of colors like hue, saturation and intensity. Some example of 

this kind are the HSI and HSV color spaces, where are device dependent.

2.1.2 Color-Based Image Description and Representation

To achieve effectiveness and efficiency in image retrieval systems, a compact and 

accurate description of the color distribution and the spatial distribution of colors 

in the digital images is needed. These descriptors can be further reduced in size by 

static or dynamic reduction methods.

Static methods use a fixed scheme for each image. The simplest scheme to re

duce the number of colors in an images is to use a uniform and coarse quantization 

of each color channel. Thus the obtained colors need not be represented explic-

9
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itly and the comparison of images is easier. However, it is possible that the colors 

present in an image are not uniformly distributed in the color space. It is also not 

appropriate for non-uniform color spaces like HSV, since similar colors may be 

separated and non-similar colors classified together. Another problem is that it is 

difficult to obtain an adequate compromise about the granularity of the quantization 

for the not necessarily uniformly distributed colors in the color space. Dynamic 

reduction methods exploit the visual content of the images and rely on image seg

mentation techniques to reduce both the number of colors and the number of spatial 

locations in an image. A typical image segmentation technique groups neighboring 

pixels with similar colors together into regions whose colors are the average color of 

their pixels. The resulted regions are more compact and meaningful since they bear 

high degree of color similarity and well-defined spatial location, size and shape. 

A sample of the image segmentation techniques used by these methods includes: 

boundary detection, region growing, region splitting and merging [7].

Once the description of the image is chosen, a representation of this information 

is the next step in image retrieval systems. Color histogram has been widely used 

to describe the color information of the image since it is easy to compute, relative 

insensitive to position and orientation changes, feasible in terms of memory usage, 

efficient to compare using vectorial distance functions and sufficiently accurate for 

retrieving images based on overall color impression. The stored information about 

the visual content of an image can be represented in three possible ways described 

next.

Global representations describe the color distribution of the whole image, ignor

ing the spatial distribution of colors. The most commonly used global representa

tion is the Global Color Histogram (GCH) [32] [36]. A GCH is computed by count

ing the number of pixels in the image having each of the quantized colors. Usually, 

the pixel count is normalized to avoid scaling bias [53], However, since global 

color histogram ignore spatial or topological information, it has limited image dis

criminative power. Another alternative is to use partition-based representations to 

describe the color distribution of each partition of an image individually. Generally, 

the image is statically partitioned into a set of rectangular units according to some

10
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scheme, and a Local Color Histogram (LCH) is used to describe each partition unit 

individually. In this kind of representation, extra information about spatial prop

erties of the partition units such as size, shape and spatial location need not to be 

saved, since it is easy to obtain that from the predefined scheme. Some partition- 

based approaches also use other kinds of color histograms [28][58] to introduce 

some spatial information about the visual content of the images decomposing them 

into spatial cells according to a fixed scheme. Apart from the above two represen

tations, regional representation exists for object-level image retrieval, which will be 

discussed in more detail in section 2.2.

Based on the image representation, existing color-based image retrieval tech

niques can be classified into three main categories: (1) global approaches (e.g. 

[32][36]), (2) partition-based approaches (e.g. [28][58]), (3) region-based approaches 

(e.g. [34][41]). Each of these categories poses a distinct compromise among the 

complexity of the image analysis algorithm, the amount of space required to rep

resent the visual features extracted from images, the complexity of the distance 

function used to compare these features, and the retrieval effectiveness.

2.1.3 Distance Function

The success of the image retrieval problem depends mainly on two factors. One 

is the stability of image features used, the other one is the characteristics of the 

distance function used for comparing the image features. The distance function 

affects directly the query processing time and the retrieval accuracy. The better 

the distance simulates the human perception of similarity, the more effective is the 

image retrieval system in retrieving images related to the user’s need. The compu

tational complexity of the distance function is also considered an important factor 

when processing a visual query. Moreover, the distance function restricts use of 

different filtering techniques and/or access methods can be used to speedup query 

processing.

Some well-known vectorial distance functions include [53]:

k
L i ( C i t y  — Block ) : Li (a,b)  — ^  jog — 6,1

Z = 1
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k
L 2{Euclidean) : L 2(a, b) =  (a* — 6,!2)1/2

i = i

Loo(Chebyshev) : Lqo(®, b) — m a xk=1\ai — bi\

where a =  (a^  a2, . . . ,  a*) and 6 =  (6j, b2, . - -, 6*), both are k-dimensional feature 

vectors.

Modeling visual features in a vectorial space has the advantage that the geo

metric distance used to compare two vectors are computationally simple. However, 

there are other cases, such as in region-based image retrieval systems, where it is 

not possible to model complex image retrieval systems in a vectorial space. In 

such scenario, a metric space, where there is no restriction about the representa

tion of the visual features, is used instead. A recent metric proposed to measure 

the distance between two distributions of some random variables in an image, such 

as color histograms, is the Earth-Mover’s Distance (EMD) [31]. EMD reflects the 

minimal amount of work that must be performed to transform one distribution into 

the other by moving the “distribution mass” around. It comes from the transporta

tion problem in combinatorial optimization. EMD can be computed by solving a 

linear programming problem, thus it is computationally expensive. In addition, re

cent research in psychology and computer vision implies that human perception of 

similarity contradict in different ways with the metric axioms, which are believed 

to be too restrictive in the context of similarity search. One of the most criticized 

metric axiom is the triangular inequality, coincidentally the most important axiom 

for indexing purposes [30] but difficult to enforce in complex matching algorithms 

that are statistically robust. This raises serious questions about the extent to which 

existing work on classification can be applied using complex models of similarity. 

Thus, as a possible solution, non-metric distances turn up in many application do

mains, such as string (DNA) matching and retrieval from image databases. Some 

non-metric similarity measures are suggested for image classification in [27],

2.1.4 Similarity Search

Searching for target digital images differs from the usual database search. The 

simplest way is sequential scanning. Each image is compared against the query
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image for the candidate matches to the query image. Although simple this approach 

does not scale since the query processing time is proportional to the database size.

In order to reduce the complexity of the searching process, filtering techniques 

and access methods can be used. On one hand, filtering techniques try to reduce 

the complete database into a much smaller subset that has to be compared using a 

complex function, by relying on a simpler distance that lower-bounds the original 

complex distance to quickly filter out irrelevant images. One of the most common 

reductions for filtering techniques consist in mapping a general metric space into a 

vector space in such a way that each element of the metric space will be represented 

as a point in the target vector space [48]. If the vectorial distance is a lower-bound 

for the original distance, then it is guaranteed that the filtering process will not filter 

out relevant images. An example of the reduction discussed above is the use of 

the average color as a filter for color histograms. Since the comparison of average 

colors is much more efficient than the comparison of color histograms, it is possible 

to quickly eliminate the majority of the irrelevant images using this simple filter.

On the other hand, access methods aim to divide the search space into several 

subspaces so that only a few of these subspaces need to be searched when pro

cessing a query. This may be based on using more sophisticated combinations of 

techniques and data structures to quickly locate the features that are relevant to a 

visual query. Spatial access methods (SAMs) use spatial coordinates to group and 

classify points in the space. These methods are very sensitive to the number of di

mensions of the vectorial space. A survey on SAMs can be found in [24]. SAMs 

uses the absolute spatial location of objects to partition and search the vectorial 

space. But in a general metric space, the unique information available is the rel

ative distance among objects. In this case, metric access methods (MAMs) [35] 

aim to partition the data space in regions by choosing representative elements and 

clustering the other elements around them. These MAMs can be classified in main 

categories [35] as those based on discrete distance functions and those that deal 

with continuous distances or as static and dynamic according to their support for 

insertion/deletion after the creation of the index.

13
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2.2 Region-Based Image Retrieval

2.2.1 Techniques for RBIR

Because low-level image features have weak connections to semantic content of 

images, object (region)-level image retrieval has been used in an attempt that ob

tained regions correspond to higher-level concepts, e.g., objects, that can be easily 

distinguished by the user. To achieve object-level querying, most region-based im

age retrieval systems are based on segmentation techniques to decompose images 

according to their visual content. The segmentation of images yields regions with 

different size, spatial location and shape, being more flexible than the fixed scheme 

adopted in partition-based approaches. However, the comparison of segmented im

ages is a very difficult problem because of inaccurate segmentation [41]. In general, 

the result of the image analysis algorithm in region-based approaches can not be 

used directly to represent and to compare images, since the number of segmented 

regions is usually very high. Because a precise description and comparison of a 

large number of regions are too expensive in computational terms, the image anal

ysis result is post-processed so as to reduce the number of segmented regions and 

to simplify the description of the left regions. Unfortunately, this simplification 

certainly affects the effectiveness of these approaches. Except for some narrowly 

defined problem domains where domain knowledge and the apriori object models 

are available, accurate and complete segmentation on generic real world scene can 

seldom be achieved [25]. Some common characteristics in natural scenery, such as 

shade, highlight, and sharp contrast, are major challenges to image segmentation. 

The most common approach in RBIR systems is to compare the regions individu

ally, e.g., [34], In order to reduce the effect of inaccurate segmentation, recent sys

tems like SIMPLIcity [41] and CBC [47] try to compare images using the properties 

of all segmented images, not only on a region-by-region basis. In the following we 

describe some existing work in region-based methods.

The QBIC system [9] uses a clustering process where two clusters are merged 

if their mutual rank falls bellow a threshold. The Euclidean distance between two 

clusters’ mean colors is treated as the distance between clusters. A bounding rect-
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angle is calculated for each connected component identified after the clustering 

process. Then the bounding rectangles for a given color are successively clustered 

into groups of rectangles that are geometrically close to each other until one rect

angle remains. The distance between two regions is computed as a weighted sum 

of the distance between the clustered colors and the distance between the resulting 

hierarchical tree associated to them. Finally, the similarity between two images is 

measured by the average of the distances between each region of one image and its 

closest region in another image.

In [17], a boundary detection procedure that explores edge flow of both color 

and texture is used to segment images into homogeneous regions. Each region has 

several features, such as color, texture and shape, which are indexed separately. 

A query might consists of more than one of these features. And the results from 

individual features are sorted by a weighted similarity measure. The system deals 

with images of different categories by tuning a set of system parameters.

The Blobworld system [34] clusters pixels in eight-dimensional space of joint 

color, texture and position, which is modeled as a mixture of Gaussians. A 500 

bins local color histogram in L*a*b* color space is used to represent the color 

distribution of each region. The images are compared based on individual regions 

using the weighted Euclidean distance. The retrieval task is that of finding database 

images that have a region similar to a given region, possibly an object, in a query 

image. Although it allows querying based on a limited number of regions, the query 

is performed by merging single-region query results.

In the SIMPLIcity project [41], images are segmented based on color and fre

quency features by the k-means clustering algorithm to group the feature vectors 

into classes, which correspond to regions. The IRM (Integrated Region Matching) 

similarity measure is used to compare images based on the properties of all seg

mented regions. First, a certain region of an image is allowed to match several 

regions of another image during the match process. After regions are matched, 

a weighted sum of the similarity between region pairs is computed for the image 

similarity measure, with weights by a significance matrix.

The CBC approach [47] applies a fully automatic clustering algorithm. Its time
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complexity is in 0(n logn), where n  is the number of pixels in the input image. 

The average L*a*b* color and the spatial coordinates of the geometric center of 

each resulting region are extracted as image features. A distance function similar to 

the IRM measure as in SIMPLIcity system is adopted to compare two segmented 

images.

2.2.2 RBIRvsCBsIR

The sub-image retrieval problem we consider is similar to the region-based image 

retrieval (RBIR) discussed before, since the goal can also be to retrieve images at 

object-level. However, the difference between these two problems stands out as 

the CBsIR problem is to search for an image, given as a whole, which is contained 

within another image, whereas in RBIR one is searching for a region, possibly the 

result of some image segmentation. The former is more intuitive since users can 

provide a query image as in traditional CBIR, and unlike the latter, it does not rely 

on any type of segmentation preprocessing. Unfortunately, automatic image seg

mentation algorithms usually lead to inaccurate segmentation of the image when 

trying to achieve homogeneous visual properties. Sometimes the obtained regions 

are only parts of a real object which a user would likely identify by looking at the 

image and should be combined with some neighbor regions so as to represent a 

meaningful object. Thus, complex distance functions are generally used to com

pare poorly segmented images at query time. Also, the number and size of regions 

per image are variable and a precise representation of the obtained regions may be 

storage-wise expensive. W hat’s more, since region-based queries are usually per

formed after the image segmentation and region description steps, it clearly puts 

some restriction on the user’s expression of his/her information need depending on 

how good the segmentation results match the semantics of images, although the 

user can explicitly select any detected region as query region. In those image re

trieval systems whose images are heterogeneous, rich in texture, very irregular and 

variable in contents, accurate regions are hard to obtain, making RBIR likely per

form poorly. Whereas the seemingly simpler CBsIR with fixed partition could be a 

solution in such cases.
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2.3 Recent Work in Content-Based Sub-Image Re
trieval

In [55], T. Wang et al intend to find an effective way to perform CBsIR and ranking. 

Two kinds of image feature vectors: the global color histogram and the autocor- 

relogram [25] with Li and Dy distance measures [ 16] are tested in the sub-image 

retrieval system. Another distance measure called S j  which aims to emphasize 

the contribution of colors that have very different distributions between the images 

is proposed as well. Preliminary experiments with several distance measures for 

both feature vectors find that the combination of autocorrelogram feature vector 

and the so-called S \ distance measure outperforms other combinations and yields 

excellent results for sub-image retrieval with an acceptable processing overhead. 

Yet more work is still needed to further understand how to achieve the CBsIR task 

efficiently and how the corresponding CBsIR system works. As we have pointed 

out in Section 2.2.2, the CBsIR systems we are concerned with do not belong in 

the region-based image retrieval domain, but use other categories of image retrieval 

approaches classified by the way how the information in an image is represented. 

These methods include partition-based approaches as in [28][39][43] [57] and point- 

based approaches as in [45].

2.3.1 Partition-Based CBsIR

Image partitioning is an important factor to determine the functionality and the ef

ficiency of image retrieval systems [38]. By breaking images into smaller and more 

manageable units, it usually becomes easier to compress, store, access and retrieve 

the image data. The partition-based approaches usually adopt a hierarchical repre

sentation of the spatial decomposition using a simple fixed strategy based on a grid 

of rectangular cells superimposed over the images [28] [39]. The cells at distinct 

hierarchical levels have various sizes and overlap,which makes it possible to detect 

that two images whose objects are in different positions are deemed similar. Two 

images are compared initially at the top of the hierarchy and refined in subsequent 

levels. For efficiency and effectiveness, the partition-based approaches generally
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stand in between two other kinds of solution to CBIR known as global approaches, 

which sacrifice retrieval effectiveness with the absence of spatial and topological in

formation for high efficiency in terms of visual feature extraction, space overhead, 

and image comparison, and the region-based approaches using complex image pro

cessing techniques to decompose images into regions of high similarity, implying 

complex image analysis algorithms for feature extraction, complex distance func

tions for image comparison and high space overhead but an improved retrieval ef

fectiveness. The space overhead for the partition-based approaches might be large 

in such cases when using the hierarchical representation of the partition structure 

as mentioned before. In the following, we briefly review some recent work in 

partition-based methods. The paper by Leung and Ng [28] investigates the idea of 

using the Padding and Reduction algorithms to support sub-image queries of arbi

trary size based on local color information. The algorithms either enlarge the query 

sub-image to match the size of an image block obtained by the multi-resolution 

representation of the database images, or conversely contract the image blocks of 

the database images so that they become as small as the query sub-image. The pa

per presents an analytical cost model and focuses on avoiding I/O overhead during 

query processing time. To find a good strategy to search multiple resolutions, four 

techniques are investigated: the branch-and-bound algorithm, Pure Vertical (PV), 

Pure Horizontal (PH) and Horizontal-and-Vertical (HV). The HV strategy is argued 

to be the best considering efficiency. However, the authors do not report clear con

clusions regarding the effectiveness of their approach (e.g., Precision and/or Recall 

figures).

In [39], the global feature extraction is considered to capture the spatial infor

mation within the image “regions” which are not the same concept of regions in 

region-based image retrieval. The average color and the covariance matrix of the 

color channels in L*a*b* color space are used to represent the color distribution. 

They apply a three-level non-recursive fixed hierarchical partition with overlapping 

rectangle “regions” to achieve the multi-scale representation of database images. 

Aiming at reducing the index size of these global features, a compact abstraction 

for the global features of a “region” is introduced. A new distance measure on
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such abstraction is thus proposed for efficiently searching through the tiles from 

the multi-scale partition strategy. This distance is called inter hierarchical distance 

(IHD) since it is taken between feature vectors of different hierarchical levels of the 

image partition. The IHD index is a two dimensional vector which consumes small 

storage space. And the search strategy is a simple linear scan of the index file, which 

assesses the similarity between the query image and a particular database image as 

well as all its “sub-regions” using their IHD vectors. Finally, the minimum distance 

found is used to rank this database image. This approach is argued to be efficient 

and effective. We will compare our proposed approach with this one in Chapter 3.

The application of CBsIR to the domain of high resolution art images has been 

studied in [43]. The proposed approach is called the Multi-scale Color Coherence 

Vector (M-CCV) method, based on the use of color coherence vectors [12] extracted 

from image patches for the query and target images at a range of scales with multi

ple vector matching to find the best sub-image matches. The query sub-image may 

be a poor quality reproduction of part of the original and may be digitized under 

significantly different conditions. Tested on a collection of art images, many of 

which at very high resolution, the technique is demonstrated to perform well.

2.3.2 Point-Based CBsIR

Image retrieval systems of the “query by example” style usually concern the entire 

image. In the context of part/object-level user interest, global image descriptors 

are of less use. In this case, the approaches based on grey points of interest [19] 

and color points of interest [45] have been developed for object/sub-image retrieval 

tasks, which require more local descriptors, and are discussed next.

Points of interest are points extracted and characterized from color signal at 

once [45], They are pixels that capture significant local features of an image, and 

usually locate around comers and edges of images. A local image descriptor based 

on color points of interest, was proposed in [45] which focuses on object or sub

image retrieval. Compared with region-based approaches in which the quality of the 

segmentation step is sensitive to image geometrical contents, the points of interest 

extraction performs well whatever the image content is. Besides, points are more
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robust to geometric transformations of the image like view point changes, since 

the description is computed locally, and robust to partial occultation. Moreover, 

content-based image retrieval techniques exploit photometric information contained 

in the images, which just matches the definition of a point of interest - being located 

where this photometric information is most significant. Therefore, there exists great 

expectation of using points to achieve a rich and compact image characterization.

When applied to image retrieval, image matching based on points of interest 

needs points with good repeatability. The ideal interest points, which indicate local 

features, should be invariant to illumination change and geometrical transforma

tion. Many point extractors exist in the literature of Computer Vision. It has been 

demonstrated that the Harris color detector [29] fits better for the required repeata

bility. The first step of the image feature indexing is to extract points of interest 

from the whole images by this detector. Second, the points of interest are described 

using photometric quantities implying color differential invariants. The resulting 

image characterization is argued more compact than other existing ones, since it 

contains more photometric information while having comparable storage cost. This 

characterization is also claimed to perform well for object or sub-image description, 

as it implies a local description of the image that is robust to image transformations. 

The search strategy applied in [45] consists of a voting algorithm. The vote com

puted for each image of the database is the function of the distances between the 

query points and the candidate points of the involved image. Experimental results 

show the success of this approach for partial retrieval on sub-images and on 3D 

objects as well as object retrieval under difficult conditions like viewpoint changes 

and occultations.
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Chapter 3 

CBsIR Framework via Hierarchical 
Tree Matching

There are two main factors that cause the limited retrieval accuracy in CBIR in 

general and CBsIR in particular. One is the gap between low-level image features 

and semantic contents of images. We will discuss how to reduce this gap in Sec

tion 4 using machine learning techniques. The other one is the “numerical gap” 

that consists in various steps of the retrieval process, such as image representation, 

distance measure, search strategy. To minimize this kind of gap, we have developed 

a compact and visually consistent image features, accurate and computationally in

expensive distance functions and efficient data structures for similarity search.

In [57], we propose an approach called HTM (Hierarchical Tree Matching) for 

the CBsIR problem. It consists of three main components:

1. a tree structure that models a hierarchical partition of images into tiles using 

color features;

2. an index sequence to represent the tree structure (allowing fast access during 

the search phase);

3. a search strategy based on the tree structures of both database images and the 

query image.

By using a tree to model the hierarchical decomposition of an image into tiles, our 

method is capable of handling virtually all parts of an image. Note that by using a
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fixed decomposition we do not rely on image segmentation, typically not an accu

rate process. The number of partitioned tiles is fixed as long as the partition strategy 

is determined. The resulting tree is small for storage and speedy for searching. In 

addition, the parent-child relationship in the hierarchical tree structure implicitly 

facilitates the tile combination instead of using complex distance functions when 

matching images during the search phase. We store the image features associated 

with the nodes in the tree structure in the format of an index sequence, which allows 

fast access during the search phase. Also, we process the query sub-image by con

structing a tree structure in the same way as the ones constructed for the database 

images, eliminating any size constraint on the query sub-image. The retrieval of 

relevant images is accomplished by efficiently comparing the query’s tree structure 

with all the sub-trees of the database images. Then the distance between the tree 

structures can be effectively computed in order to rank the database images with 

respect to the query. Our experiments show that this strategy yields good results 

using different color features of the images, while consuming acceptable time and 

space. Compared to the related approach proposed in [39], our method is distinctly 

better based on the experimental results.

In the following, Section 3.1 presents the hierarchical partition of images and 

the tree structure to represent the decomposition. Section 3.2 and Section 3.3 pro

vide an account of using different image features and their corresponding distance 

measures in our CBsIR system respectively. A brief review of the feature extrac

tion method and its distance function in related work are presented in Section 3.4. 

Some practical considerations about efficiency and storage are listed in Section 3.5. 

Section 3.6 describes different strategies to search sub-images effectively. The ex

periments and results are discussed in Section 3.7. Finally, Section 3.8 concludes 

the chapter.

3.1 HTM’s Hierarchical Partition and Tree Structure

To model an image, a grid is laid on it yielding a hierarchical partition and tiles. 

Although granularity could be arbitrary, we have obtained good results using a 4 x 4
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Figure 3.1: Hierarchical partition of an image with the resulting tree structure and 
one possible corresponding index sequence for storage.

grid resulting in a three-level multi-scale representation of the image (similarly to 

what was done in [28] and [39]). The hierarchical partition of an image with its 

resulting tree structure and one possible corresponding index sequence for storage 

(to be discussed in Section 3.5.2) are shown in Figure 3.1.

As illustrated in Figure 3.1, there are three levels in the hierarchical structure:

1. The highest level: the whole image itself.

2. The second level: the image is decomposed into 3x3 rectangles with each 

side having half the length of the whole image, yielding 9 overlapping tiles.

3. The lowest level: each tile of the second level is partitioned into 4 non

overlapping sub-tiles, resulting in 4x9=36 rectangles.

Note that to exclude redundancy in the CBsIR system, at the lowest level only the 

indices of the 4x4=16 unique tiles are stored with a small structure for relationship 

information. The features of the image tiles are associated to the nodes in the tree 

structures for images. Thus, every database image is represented as a series of tiles, 

each of which is mapped to a subtree of the tree structure modeling the image. 

Although similar, the tree model of the hierarchical partition is not the well-known 

Quadtree [5]. Our tree structure models the overlapping tiles at intermediate levels 

from the hierarchical partition, while the quadtree is used to describe a class of 

hierarchical data structures whose common property is that they are based on the 

principle of recursive decomposition of non-overlapping spaces.
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3.2 Feature Extraction using Average Color and Vec
torial Distance

3.2.1 Average Color

As discussed in Section 2.1, color is one of the most prominent perceptual features 

to human and is commonly used in both academic and commercial image retrieval 

systems. To describe the color information of an image, the static and uniform 

quantization of a color space has well-known disadvantages (mentioned in Sec

tion 2.1) although it is the simplest scheme to reduce the number of colors present 

in an image.

An alternative to avoid this static quantization step is to reduce the color infor

mation by computing statistics about the color distribution. One of such statistics 

is the average color. Such methods have several advantages to be computationally 

simple, to result in very compact image feature descriptors, and to provide an effi

cient way for image comparison. On the other hand, of course, their effectiveness 

are sometimes compromised since images composed by completely different colors 

might yield identical statistics.

We use the average color of the image tiles in the RGB color space as one choice 

for image indexing in our CBsIR system. If the color components of a pixel P  are 

Pr , Pq and Pr respectively, the average color for an image tile T  is computed as:

u  i(T ) = ^ E p i i e { R , G , B }  
i v  P e T

where N  is the total number of pixels in the image tile T. Thus, a small three 

dimensional global color feature vector V (Ur ( T), Ug{T), Ur {T)) is obtained per 

image tile.

3.2.2 Vectorial Distance Functions

Features alone cannot completely guarantee stability of the image retrieval system. 

Distance functions used to compare features also play an important role. An ideal 

distance function D  and the feature F ( I )  would satisfy the perceptual similarity:

D(F( I i ) ,  F(12 )) is small I\  and / 2 are perceptually similar.
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In most cases, visual features of an image are represented by high-dimensional 

vectors. These vectors can be treated as points in high-dimensional space (each 

vector element corresponds to a spatial coordinate). Therefore, it is natural to de

fine distance functions in terms of Euclidean norms. The L i norm and L 2 norm 

as discussed in Section 2.1.3 are commonly used to compare two feature vectors. 

In practice, the L, distance function performs better than the L2 distance function 

because the former is statistically more robust to outliers [3]. [10] suggests using 

a more complex quadratic form of distance measure which tries to capture the per

ceptual similarity between any two colors. That work uses low-dimensional color 

features as filters before using the quadratic form for the distance function, aiming 

to avoid intensive computation of quadratic functions. The advantages of modeling 

visual features in a vectorial space stand out. We can apply not only the compu

tationally simple geometric distances to vector comparison, but also the spatial or 

metric access methods to speedup query processing if possible [53]. The use of 

access methods is important for large collections of images, because the query pro

cessing time should not increase in the same rate as the image collection increases.

Our distance measure for the statistics-relied feature extraction is based on the 

L i norm because it is simple and robust. After [39], the similarity of two feature 

vectors is determined by computing the weighted Li-norm:

|| V ( T . )  -  V ( T b) |U =  £  1
ie{R,G,B} P \v'>

where Ta and T& are two different image tiles, V  represents the statistics-relied three 

dimensional global color feature vector extracted from the image tiles, and /3(Vi) 

are the standard deviations of the respective features over the entire database.

Remember that we also need to pre-process the query sub-image in order to ex

tract image features and build a data structure comparable with the tree structures 

of database images. Thus, the same hierarchical tree structure (Figure 3.1) is gener

ated for the query sub-image as well as for all database images. Since we have the 

tree structures for both the database image and the query sub-image, we propose 

the following formula to compute the distance between the query sub-image Q and 

a certain tile I $ of a database image I  (note that the full image is also considered a
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tile of the image itself):

d( I  ) = E £ j n ^ m i k
m

where m  is the number of unique leaf nodes in the tree structure for a tile, and Ti 

and Qi represent the corresponding leaf nodes in the tree structures for the tile and 

the query sub-image respectively. In effect, this is the average distance between the 

compared leaf nodes.

To measure the distance between a database image I  and the query sub-image 

Q, we use a formula similar to the IHD method’s [39] to obtain the minimum dis

tance values among the comparisons of the query sub-image’s tree structure with 

all the corresponding sub-tree structures of a database image. This image similarity 

measure is defined as:

D I ( I ,  Q ) =  m in i=o...NTdbd{Ii, Q j )

where N T ^  +  1 represents the number of all sub-trees in the tree structure (tiles) of 

a database image that we should compare with the query’s tree structure at different 

hierarchical levels, and j  indicates the ordinal of the query’s tree structure at a 

certain hierarchical level comparable to a sub-tree structure of the database image.

Figure 3.2 illustrates how we measure the similarity between the tree structures 

of the query sub-image and database images using the above idea. The root level 

of the tree structure represents the whole image. Using the previously discussed 

hierarchical partition (Section 3.1), the original image is progressively decomposed 

with a sliding window in order to capture overlapping image tiles. Figure 3.2 shows 

the full tree structure transformed from a 4 x 4  grid (There are 36 leaf nodes in the 

full tree structure.) Note that even though the query is a tile of the whole image, it 

has the same tree structure associated with it as the full image. Using the proposed 

distance measure, we can calculate the distance between the two tree as follows:
tr - .1 6  m j  r  /  t  \  M l V ^ 1 6  |V ) '(J i ) ~ V )  ( Q i) l
E jU l HV ( I j )  -  V(Qi ) \ \db _  2^=1 ^j€{R,G,B}  p(Vj)

16 ~  16

Note that since all tiles of a database image is treated equally, no leaf node of

the tree structures should be compared more than once. Hence only the 16 nodes

corresponding to the 16 unique tiles are used in the comparison.
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I i *2 * 3 * 4 * JG

Figure 3.2: Simple example of tree structures for database image and query sub
image.

3.3 Feature Extraction and Distance Measure by Bor
der/Interior Pixel Classification

Content-based image retrieval is performed based on abstract descriptions of the 

images extracted during the image analysis phase. Image analysis algorithms might 

depend on the properties of the images being analyzed, thus are usually distinct for 

different image domains and gradually change when the image domains expand. 

Unlike a narrow image domain which has a limited and predictable variability in all 

relevant aspects of its appearance, such as collections of fingerprints and X-rays of 

human skeleton, a broad image domain has an unlimited and unpredictable variabil

ity of the image’s content. It is not possible to use semi-automatic techniques and 

domain-dependent knowledge during the analysis and comparison of images since 

the interpretation of the image’s content is generally not unique and the image col

lections are very large as those formed by the huge amount of images available at 

the world wide web. In this scenario, low-level visual features of the images such 

as color and texture are especially useful to represent and compare images automat

ically.

In [54], a different alternative for CBIR in broad image domains is proposed. 

The authors propose the use of a simple yet powerful image analysis algorithm, 

whose result can be efficiently stored and compared without simplification avoid

ing the necessity of post-processing on the result of sophisticated image analysis 

algorithms used in region-based image retrieval approaches discussed before. This 

approach is called BIC (Border/Interior pixel Classification). The BIC method is 

made up of three main components: (1) a simple and powerful image analysis algo

rithm that classify image pixels as border or interior, (2) a new logarithmic distance
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function to compare color histograms, (3) a compact representation for the visual 

features extracted from images. It is argued that the compactness, effectiveness and 

efficiency of BIC rely on its consistency among the analysis, representation and 

comparison of images.

The BIC approach has been shown to outperform several other CBIR approaches 

and, as such, we adopt it in our CBsIR system to extract the visual feature of 

each tile with the goal of improving the retrieval accuracy when compared with 

the simpler approach adopted in [57], where for each tile only the average color 

was recorded and used for image indexing. In this section, we focus on the dis

cussion of image description within the BIC method proposed in [54]. The, we 

discuss BIC’s distance function and compare it with other distance measures in 

Section 3.3.2. Section 3.5.1 will investigate the way how BIC achieves a compact 

representation of visual features extracted from images.

3.3.1 Image Description

The use of simple and robust image analysis algorithms, whose results can be pre

served without approximation during the representation and comparison of the vi

sual features, is the key to achieve efficient and effective CBIR systems in broad 

image domains. However, automatic segmentation algorithms have many draw

backs (as discussed in Section 2.2), which imply that they are very likely not the 

most adequate ones to deal with image retrieval tasks in broad image domains. The 

aforementioned reason spurs the proposal of a new image analysis algorithm in the 

BIC approach [54], trying to overcome these drawbacks from another point of view.

The BIC approach is based on a very simple (but powerful) image analysis 

algorithm that runs in time 0 (n ) ,  where n  is the size (pixels) of the image being 

analyzed. The image analysis algorithm in BIC uses the RGB color space uniformly 

quantized in 4 x 4x4= 64  colors. Any other color space and quantization scheme 

could be used as well, but this configuration is largely adopted in practice and seems 

to be a good uniform quantization scheme for the RGB color space [36]. The pixel 

count of each histogram bin is normalized between 0 and 255 for the sake of being 

able to represent a histogram bin using only one byte of memory. There is also no
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clear advantage in using more than 256 distinct values per histogram bin as observed 

in practice. After the quantization step, image pixels are classified as either border 

or interior pixels. The classification criterion is: if a pixel is at the border of the 

image itself or if at least one of its 4-neighbors (top, bottom, left and right) has a 

different quantized color then it is classified as border pixel; if a pixel’s 4-neighbors 

have the same quantized color then it is classified as interior pixel. Notice that 

this classification is mutually exclusive and it is based on a inherently binary visual 

property of the images.

The next step after pixel classification is to compute color histograms. Unlike 

the computation for global color histogram, here one color histogram is computed 

using only border pixels and another color histogram is computed using only inte

rior pixels. In this way, each quantized color has the border/interior classification 

representation. In our CBsIR system, each image tile is thus described within BIC 

by means of two color histograms with 64 bins each (one for each quantized color). 

Assume an M -color model, a BIC histogram is an M-dimensional feature vector 

(B ic fass, Bic^lass, ■ • -, Bic°MSS, class G border, interior), in which each B i c f ass 

represents the percentage of classified pixels in an image corresponding to each 

quantized color c*. The BIC histogram B ic  of an image tile T  being of size n \  x 

is defined as:

I! ’j ' c l a s s  || '

f?ic^a,ss(T) =  probability\p  G T ^ ass] =  —  ------  class G {border, in terio r}

where for any border or interior pixel p  from image tile T, B ic ĉ ss{T) gives the 

probability that the color of pixel p  is c,. || T £ ass || is the number of pixels that are 

classified in either class with color c* in image tile T.

The color coherent vector (CCV) approach of [12] also includes a binary clas

sification of image pixels, which is nevertheless based on a non-binary visual prop

erty of the images - the size of the connected components. This requires the use 

of an empirical size threshold in order to have a binary classification in CCV. Most 

of the useful information about the size of the connected components are lost in 

this reduction and the approach may be very sensitive to the chosen threshold that 

varies according to the visual content of the images. Therefore, the CCV approach
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is shown in [54] to be slightly more effective than a simple GCH.

BIC’s classification of pixels in border/interior for each quantized color allows 

a more informed color distribution abstraction and is much more discriminative 

than a simple GCH or CCV according to [54]. This discriminative power can be 

analyzed for individual color in terms of texture, shape and connected components. 

For instance, the texture information of images in Figure 3.3 can be captured by the 

BIC classification in such a way that it yields distinct sets of color histograms for 

the two images, while the two GCHs are the same. The analysis of visual properties 

depends on the portion of the image covered by and also on the proportion between 

border/interior pixels for each quantized color. If the number of interior pixels for 

a given color is smaller than the number of border pixels for the same color, then 

at least one of the following visual properties could be a possibility: (1) the color 

is distributed in a relatively large areas with very irregular shape; (2) the color is 

distributed in small connected areas where the border of each area is larger than its 

interior; (3) the color is part of an image area that is rich in texture information. On 

the contrary, if the opposite situation is true, it can be concluded that (4) the color 

is distributed in relatively large and homogeneous areas with regular shape.

Figure 3.41 shows two examples of images analyzed by border and interior pix

els. The original images are at the left column. The resulting binary images showing 

border pixels in black and interior pixels in white are at the middle column. The 

images showing border pixels in the corresponding original colors and interior pixel 

in white are at the right column.

3.3.2 dLog Distance Function

Apart from a simple and powerful image analysis algorithm, the BIC approach [54] 

also involves a new logarithmic distance {dLog) for comparing histograms. This 

dLog distance function has two main advantages over vectorial distances (e.g. L i): 

(1) it is able to increase substantially the effectiveness of several histogram-based 

CBIR approaches, and at the same time, (2) it reduces by 50% the space requirement 

to represent a histogram. Now, we give a detailed study about the dLog distance

1 From http://db.cs.ualberta.ca/mn/BIC/bic-sample.html
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Figure 3.3: GCH vs. BIC Histograms for texture discrimination.
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Figure 3.4: Two examples of the result by the BIC pixel classification.
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function and how we accomodate it to our CBsIR system.

As discussed in Section 3.3.1, there are two color histograms with 64 bins each 

associated with each image tile. Actually, these two histograms can be stored and 

compared as a single histogram with 128 bins. Thus, any vectorial distance func

tions like L\ or L 2 could be used to compare the BIC visual features. Although 

vectorial distances do have their advantages as mentioned in Section 3.2.2, they 

have also well-known limitations. One of such limitations is that a high value in a 

single histogram bin dominates the distance between two histograms, no matter the 

relative importance of this single value [36] [50]. It is generally true that the fore

ground areas determines the semantic of the image and as such, it is more important 

to determine the similarity among images. On the other hand, it is equally true that, 

in general, the background covers the majority of the image area. Therefore, the 

tiles that compose the background are usually larger than the tiles that compose 

the foreground. For example, consider a set of images with a dominating and ho

mogeneous background area of the image’s content. Thus, this background can be 

represented in just one histogram bin. Now suppose we perform a similarity search 

using a query sub-image obtained from one of such images as example. When a 

vectorial distance is applied to compare these histograms, images having a back

ground with the same color but a different foreground are retrieved ahead of any 

other image having the same foreground (a high degree of semantic similarity) but 

a background with a different color.

To deal with the above distortion based only on the information available within 

the histogram representation, the authors of [54] have proposed the dLog distance 

function which compares histograms in a logarithmic scale. The basic motivation 

behind this is based on the observation that classical techniques based on global 

color histograms treat all colors equally, despite of their relative concentration. 

However, the perception of stimulus, color in images in particular, is believed to 

follow a “sigmoidal” curve [50]. The relative increment in a stimulus is perceived 

more clearly when the intensity of the stimulus is smaller than when it is larger. For 

instance, a change from 10% to 20% of a color is perceived more clearly than an 

change from 85% to 95%. Indeed it has been a well observed phenomena regard-
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mg many other phenomena involving how sensitive one is (including animals) to 

different stimuli [2]. Thus, the distance function is defined as follows:

i < M
dLog{a,b) =  £  \f(a[i]) -  f{b[i])\

i —0

0, if x  =  0
f ( x )  = < 1, if 0 <  x  <  1

\log2x] +  1. otherwise

where a and b are two histograms with M  bins each. The values a[i] and b[i] rep

resent the i th bins of histograms a and b respectively. Here, M  equals to 256 since 

the histogram bins are normalized between 0 and 255 as discussed in Section 3.3.1.

The dLog distance function does not solve the problem of comparing histograms 

when some bins are of very high values, but it diminishes this effects in most of the 

situations. In a log-scale, the range of distances between histogram bins becomes 

much smaller than in the original scale. For instance, the smallest distance between 

histogram bins in the original scale (being zero when both images have the same

amount of a particular color) remains the same in log-scale. But the largest distance

between histogram bins in the original scale (being 255 when the images have just 

one color and they are different) could be reduced to just 9 in log-scale, about 

255/9=28 times smaller than in the original scale.

In [54]’s experiments, a study of substituting the dLog distance for Li in existing 

histogram-based approaches (e.g. GCH, CCV) shows that it clearly increase the 

effectiveness of all histogram-based approaches tested. The dLog distance function 

also plays an important role in the BIC  histogram representation, which allows a 

substaintial reduction in storage. We will expand this issue in Section 3.5.1.

For the superiority of the dLog distance function, we accomodate it in our CB

sIR system when using the BIC image feature description. Thus, the distance be

tween two tiles Ta and Tb from images Ia and Ib respectively is defined as:

DT{TajTb) = Z?=1dLog(H (Tai) ,H (T bi))
m

where Tai and Tbi are sub-tiles of Ta and Tb respectively, represented as correspond

ing leaf nodes in the tree structures of the tiles, m  is the number of unique leaf nodes 

in the tree structures at any hierarchical levels (if already at the leaf level, m =l),
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and the H  function computes the BIC histogram of each tile. The image similarity 

is measured similarly as in Section 3.2.2, which is based on the hierarchical tree 

matching scheme. The only difference is that here the BIC image description and 

the corresponding dLog distance function are used instead of the statistics-relied 

color features and the weighted L x distance function.

3.4 Feature Extraction and Vectorial Distances for 
Sebe et aPs method (IHD)

3.4.1 Color Indexing

Related work [39] (called IHD method here) as discussed in Section 2.3 also uses 

color indexing for image feature extraction. Aiming to capture spatial relationships 

of color areas while also to preserve cheap memory cost and sufficient retrieval 

accuracy, the IHD method adopts the use of taking the covariance and the mean 

of the color distribution in a multidimensional color space [20] to index the image 

database. For the color features, the L*a*b* color space is chosen because it is 

perceptually uniform. The color features representing the color distribution include 

the average color fj, — (fj,L, /j,a, ^ b) and the covariance matrix [o^] (i, j  E {L,  a, 6}) 

of the color channels. If the color components of a pixel P  are P l , Pa and Pb 

respectively, then the index entries characterizing the color distribution of an image 

or an image patch A  are:

~  Iv  ^  Pi i ' i  6 b)iV PeA

=  ^ E ( p i -  IM(A))(P, -  Hi(A))
iV  P G A

where N  is the total number of pixels in the image or image patch A. Since the 

covariance matrix is symmetric, only 6 entries have to be stored. Hence, a nine 

dimensional global color feature vCoior{A) is obtained for the CBsIR system using 

the IHD method in [39].
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3.4.2 Inter Hierarchical Distance (IHD)

For the IHD method [39], the full image /  is also decomposed into a number of 

sub-patches by a similar partition strategy. While the partition-based approach used 

in [39] already introduces some spatial information, the space issue is explicitly 

considered leading to a new distance measure called inter hierarchical distance 

(IHD). The authors argue that the solution to extract the global features of image 

sub-patches vcoior (A) in order to represent the spatial information would increase 

the index size dramatically. However, if only the differences of the global features 

of the image and its sub-patches are stored, then the spatial encoding is guaranteed 

without a major increase of the index size. Thus, a measure of the distance between 

the global features of the image and the features of its sub-patches is proposed. This 

distance is called inter hierarchical distance (IHD) since it is taken between feature 

vectors of different hierarchical levels of the image partition.

In case of color features discussed in Section 3.4.1, a two dimensional feature 

vector is used. The vector components are the Li-norm of the differences of the 

mean and covariance elements respectively [39]:

v l„ D ,M ) =  E  W ^ ) - « ( 4 ) I
i = L , a , 6

VlHDfliA) — Iaij(A) ~ 0ij{Ai)\
i , j = L , a , b

where A  is the full image and Ai is a certain sub-patch, /j is the mean element and cr 

is the covariance element from th e L * a * b *  color space. However, there is no such 

tree-like data structure for the IHD method. So for the example in Figure 3.2, the 

distances between the query and the full database image as well as its sub-patches 

S  are computed as follows:

W s , Q )  = l|v&„(/) -  v?HB(i)|U

Note that when S  — 0, I s  represents the full image, and thus VjHD(I) — 0.

An importance difference between IHD and HTM is that instead of considering 

only the global feature information represented by IHD vectors of the query sub

image and a certain sub-patch in a database image, our HTM method also uses the

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



local information of a tile represented by the leaf nodes in its tree structure. The 

average of distance values among the corresponding leaf nodes is regarded as the 

distance between the tree structures of query sub-image and a certain tile of the 

database image at any hierarchical level. We will demonstrate in our performance 

study that the HTM scheme using statistics-relied feature extraction results in much 

more retrieval accuracy with small extra query processing time cost when compared 

with the IHD method, although much more information of the hierarchical structure 

needs to be stored and compared.

Since the tree structure for the query sub-image could also be a sub-tree of the 

tree structure for the database images, we float the tree structure of the query sub

image within the whole tree structure of database images using the search strategy 

presented in Section 3.6.1. When comparing the tree structures of query sub-image 

and the tiles of database images with statistics-relied color features, we apply the 

distance measures presented in the previous sections to compute the distances be

tween them.

3.5 Efficiency and Storage Consideration

As image databases grow larger, image retrieval systems need to address efficiency 

issues in addition to the issue of retrieval effectiveness. Efficiency concerns lie 

in every phase of the retrieval process. In this section, we focus on investigating 

the methods that improve the efficiency and the compactness of image indexing, 

without compromising effectiveness. Section 3.6 will discuss efficiency concerns 

in the search phase afterwards.

3.5.1 Feature Representation

As discussed above, our CBsIR system extracts features of the image database in 

two distinct ways. For one statistics-relied feature extraction, the color feature rep

resenting the average color of each tile of the database image is just a small three 

dimensional feature vector. This feature extraction method has the inherent advan

tage to result in very compact descriptors that are easy to compute and efficient for
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searching. Although the effectiveness of this method might be affected sometimes 

(e.g., as mentioned in Section 3.2.1), the search strategy based on the hierarchical 

tree matching scheme (discussed in Section 3.6.1) would remedy this in most cases.

Also statistics-based, the BIC method of [54] is adopted in our CBsIR system 

for image feature extraction. We have already discussed two of its components 

- a simple yet powerful image analysis algorithm and a new logarithmic distance 

for histogram comparison in Section 3.3.1 and Section 3.3.2 respectively. Now we 

study in detail the third component of BIC which yields a compact representation 

of the image visual features allowing efficient image comparison.

When the dLog distance function is used to compare histograms, it is possible 

to store the result of the f ( x )  function instead of the normalized pixel count. The 

comparison of the histograms according to the dLog distance thus becomes com

putationally simpler. A more careful look at the definition of the dLog function 

reveals that it is in fact an L \ distance of the log of the pixel count - f ( x ) .  There

fore, all we have to do is just compare the log-based represented histograms using 

the L\  vectorial distance.

Besides, remember that in f ( x ) function x  stands for each bin of a histogram 

whose value range is between 0 and 255. Therefore, the f ( x )  can be perceived as 

an integer between 0 and 9. It can assume only 10 distinct values and these values 

can be stored in just 4 bits (10 <  24). This means that the log-based representation 

of histograms requires only half of the space necessary to store the normalized pixel 

count which is the original representation.

The log-based representation allows a reduction of 50% in the required storage 

space for any histogram-based CBIR approach [54], For the particular case of the 

BIC approach, it is possible to store a BIC histogram being of 128 bins (64 for 

border pixels and 64 for interior pixels) in just 64 bytes of memory. This is a very 

compact representation of image visual features. Thus, high-end workstations can 

maintain fairly large collections of images in memory, completely avoiding the need 

of disk-based access methods to speedup query processing.
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Figure 3.5: Index sequence.
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Figure 3.6: Index sequence without redundant tile at the lowest level of the hierar
chical structure.

3.5.2 Index Sequence

Apart from compact image representations in our CBsIR system, we also consider 

a compact storage format for the visual features that allows fast access during the 

search phase.

From the progressive decomposition strategy (illustrated by the hierarchical 

structure in Figure 3.1), a predefined parent-child relationship for the tree structure 

can be easily extracted. Using the tree structure introduced in Figure 3.1, Figure 3.5 

gives an illustration of the index sequence representing such relationships.

In Figure 3.5, each node in the tree structure is represented by the sequence for 

the elements of the three dimensional feature vector based on statistics-relied image 

indexing or by that for the bins of the BIC histograms. The relationship of parent 

node and child nodes in the tree structure is maintained by a predefined order of 

sequences in the index.

Note that Figure 3.5 represents the storage of redundant tiles at the lowest level 

of the hierarchical structure. Since this index sequence is stored on secondary stor

age and aimed for fast retrieval, we apply an immediate improvement (shown in 

Figure 3.6) by storing only the indices of the 16 unique tiles at the lowest level (ex

cluding the redundancy) with a small structure of the relationship information as an 

extra overhead. This cost is much less compared with that of storing and fetching 

the information about those redundant tiles, which would thus further speedup the 

image comparison in search phase.
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3.6 Search Strategy

Searching is a fundamental problem in computer science [53], However, similarity 

search in digital images that are close or similar to a given visual query is inher

ently different from the exact-match search in traditional database systems. Apart 

from introducing the use of filtering techniques and access methods to reduce the 

complexity of the searching process, some approximate methods relying heavily 

on clustering techniques to classify similar objects together are also applied for the 

indexing of non-metric spaces in such case that the precision of a query can be re

laxed to reduce the query processing time. In the following, we discuss in detail our 

search strategy for sub-image search.

3.6.1 Search by Hierarchical Tree Matching

The search algorithm in [51] uses an expensive branch-and-bound procedure to re

trieve the best match, preserving the query’s scale. The IHD approach in [39] sim

ply follows a linear scan (as “sequential scanning” in Section 2.1.4) to compare the 

IHD vectors of the query sub-image and database image patches, which achieves 

fast speed (because of the compact feature representation being just a two dimen

sional vector) but compromises accuracy as we will discuss in our performance 

study. Here, we combine the above approaches and come up with a hybrid of both 

so as to expediate the matching process without compromising effectiveness. Be

sides, this search strategy is based on a distinct query representation: unlike the 

scale-preserving sub-image retrieval in [51], we generalize the image comparison 

by constructing the same tree structure to represent the hierarchical partition for 

both the database images and query sub-image, so that images can be retrieved 

independent of the size of the sub-image (i.e., scale independency). A formal al

gorithm written in pseudo code (Figure 3.7) summarizes the search strategy of the 

HTM method for finding the most similar images to the sub-image query within the 

whole database.

To further illustrate the search strategy, Figure 3.8 shows the process of finding 

the best matching image and the updating of the tree structure of the query sub-
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procedure SearchHTM (databaseM etafile, queryTree) 

begin

1 for each image I in the database do {

2. dblmageTree := fetchMeta(databaseMetafile, I);

3. entry := 0;

4. tempDist[entry++] := fullTreeCompare(dbImageTree, queryTree);

5. for each subsequent level L of the hierarchical structure do{

6. querySubtree := updateQuery(queryTree, L);

7. for each subtree I_sub at level L of the hierarhical structure for Image I do {

8. tempDist[entry++] := subTreeCompare(dbImageTree, I_sub, querySubtree);

9. }

10. }

11. dist Array [I] : = findMinimum( tempDist);

12. }

13. rankList := sortForMinimum(distArray); 

end

Figure 3.7: Search algorithm of the HTM method.

image in the search phase using the example given in Figure 3.2.

First, in step (a), we compare the full tree structures of the database image I  and 

the query sub-image Q. Note that, at this point, the query sub-image has the same 

tree structure (a three-level hierarchical structure) as the database image. As dis

cussed in Section 3.5.2, the tree structures are mapped into index sequences, which 

maintain the relationship of nodes inside the tree structures. Each piece in the index 

sequence stores the information about the image feature associated with a certain 

node in the tree. Using the distance measures discussed for different methods and 

feature representations respectively, we can obtain the distance between the full 

trees.

In order to compare the query with the sub-tiles of the database image, we float 

the query sub-image’s tree structure within that of the database image. Before doing
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Figure 3.8: Determining the best matching image (sub)tree.

this, we have to update the tree structure of the query image. Since we want to make 

the query’s tree and the database image’s sub-trees (e.g., subtreel of image I  in 

Figure 3.8) comparable, we have to reprocess the query sub-image as to obtain a tree 

structure similar to a certain database image’s sub-tree at a particular hierarchical 

level. In Figure 3.8, the new query tree is shown to the right of steps (b) and 

(c). The indices of the leaf nodes in the query’s updated tree structure is used to 

continue comparing with the sub-trees of the database image. For this example, 

step (b) shows the comparison of the query sub-image with the first sub-tree of the 

database image I .  In step (c), the second sub-tree of the database image (subtree2 

of image I  in Figure 3.8) is compared with the query’s new tree. (According to 

our distance measure, subtree2 is determined as a perfect match for the query.) The 

comparison is similar for the remaining sub-trees and those at the lower levels of the 

database image’s tree structure. Finally, the minimum distance representing the best
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matching sub-tile is used as the distance for the database image between the query. 

In short, the whole searching process is done by updating the query’s tree structure 

and floating it around inside the full tree structure of the candidate database image 

for tree comparison at different hierarchical levels, until there are no more sub-trees 

left.

Experiments detailed in Section 3.7 show that this search strategy by the hier

archical tree matching scheme yields better retrieval accuracy compared to related 

work (e.g., [39]) at the cost of small storage overhead. The query processing time 

cost is also very acceptable compared to [51]. Moreover, it should be emphasized 

that this search strategy has implicitly solved the object localization problem (an 

adjunct issue to the sub-image retrieval problem) along with the search task. By 

using the hierarchical partition strategy, the spatial information is actually kept in 

the relationship of tiles represented in the hierarchical tree structure. During the 

process of determining the distance between the query sub-image and the candidate 

database image, the best matching tile that yields that minimum distance from the 

query among all sub-tiles and the full tile of the database image is filtered out, which 

also implies the location information of this tile as to where it is located inside the 

full image because of the hierarchical decomposition. Note that, in this way, we do 

not need any additional process to deal with the object localization problem, which 

suggests the superiority of our search strategy by the hierarchical tree matching 

scheme.

3.7 Performance Study

3.7.1 Performance Measures

Our sub-image retrieval task is to retrieve, as highly ranked as possible, the image 

from which a given sub-image was extracted. Hence, for each query sub-image 

there is only one relevant answer, namely the original image. We apply the fol

lowing two measures (also used in [25][39], etc.) to evaluate the effectiveness of 

various competing sub-image retrieval approaches. If Q i, • • •, Qn are query sub

images, and for the i th query Qi, Ii is the only image that “contains” Q it (i.e., Ql
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“appears” in /,). A method is said to be better if it has lower average r-measure 

and a higher average precision. Since there is only one relevant image per query, 

traditional Precision x Recall graphs are not meaningful here.

1. Average r-measure gives the mean rank of the correct answer averaged over 

all queries: ^ E"=i rank(Ii).

2. Average precision o f  a method gives the average of the precision values over 

all queries’ recall points (with 1 0 0 % being perfect performance), i.e., at the 

correct answer: I  _ I _

Now for the performance study, we use two kinds of criterion. One is the ef

fectiveness, which is measured via average r-measure and average precision. The 

other criterion is efficiency, which we evaluate by the space and time requirements 

of the compared approaches.

Initially, we measure the distance between the database images and the query 

sub-image using a default precision of 6  decimal digits. But it becomes clear that it 

is not appropriate. The distance between many images would differ only in the 5th 

or even 6th decimal digit. Since there are so many approximations in the retrieval 

process, e.g., the image partitioning, the use of statistics-relied feature vector per 

partition, etc., it does not seem to make sense to use such a fine granularity for 

the distance calculation. In addition, humans do not have such a fine distinction 

between perceived similarities. Thus, we decide to use only two decimal digits pre

cision. An immediate consequence of this lower distance granularity is the increase 

in the number of tied distances. Let us call the set of images with the same dis

tance a group. As we shall see shortly this can have a large impact on the results 

depending on how one defines and measures the rank of a relevant image.

We adopted two kinds of measurement to rank retrieved images [57]. One is 

the average actual rank, which is the average between the minimum and maximum 

ranks for the images inside the same group as where the relevant image is. Assume 

rank(I j)  is the absolute rank of image I j  after ordering all images by their distance 

to the query image (with ties broken arbitrarily). Then if a relevant image I j  has 

the same distance as images /*, I %+\- ■ ■ ■, Ik(i <  j  <  k), the average actual rank of
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Ij  is defined as (m in p(rank(Ip)) +  m axp(rank(Ip)))/2, p  € {i, ■ ■ ■, k}. The other 

measure is the group rank, where all images inside the same group have the same 

rank which is the rank obtained as if the whole group was a single “object” . In this 

case an image’s rank does not depend on its group size, but rather on how many 

groups of images rank before the image’s own group. This reflects the fact that 

if two images have the same distance, they should also have the same ranking, as 

any difference in ordering is only “accidental” . Table 3.1 exemplifies the measures 

above. Note that while the group rank is quite optimistic, the average actual rank is 

probably more realistic.

Table 3.1: Average actual rank and group rank.

Image Distance Original Rank Average Actual Rank Group Rank

I a 0.05 1 1.5 1

I d 0.05 2 1.5 1

I f 0.43 3 4 2

I t 0.43 4 4 2

I m 0.43 5 4 2

I b 0.67 6 6 3

3.7.2 Experimental Setup

It is important to evaluate performance scientifically so as to ensure the validity of 

the results. In order to test the robustness of different feature extraction methods 

and the learning aptitude of the further improved CBsIR system with the relevance 

feedback technique discussed in Chapter 4, we use an image database with 10,150 

images: a mixture of the public Stanford 10k2 image dataset and some images from 

one of COREL’S CD-ROMs. The image database StanfordlOk contains color JPEG 

images of size 128x85, 85x128, 128x96, or 96x128, etc. The database images 

have the same dimensions, but not necessarily the same orientation. Our well- 

balanced large-scale testbed is very realistic and helps us reach a fair evaluation of 

different methods. The content of the database images ranges from animals, people, 

scenery, and architecture, etc.

2http://www-db.stanford.edu/~wangz/image.vary.jpg.tar.
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For the query sub-image datasets, we have constructed two different query sets 

to evaluate different aspects of the system. Both of them are obtained by manually 

cropping part of the original images. These original images are considered as the 

unique correct answer for the respective queries. The first query set consists of 20 

query images ranging over different themes. A sample of the query sub-images, 

along with those from which they are extracted are displayed in Table 3.2. The 

size of the query sub-images varies, being on average 33% the size of the database 

images. The performance results are collected on a computer running Linux 2.4.18 

with two AMD Athlon MP 2400+ CPUs and 2GB of main memory. As for the 

second query set, we obtain 2 1  query sub-images which are distinct from those in 

the first query set. This is because we want to test how accurate the combinations of 

the HTM scheme with different images features, such as average color and the BIC 

histograms, could hit the original image by distinguishing it from the similar images 

that belong to the same category as that of the answer image (original image). The 

size of the query sub-image also varies, being on average of 18% the size of the 

database images. Experimental results on this database are collected from the online 

demo3 on a computer running Linux 2.4.17 with two Pentium III CPUs and 256MB 

of main memory. The above data serve as the ground truth to test different image 

features and retrieval methods.

Table 3.2: Six sample images with query sub-images indicated by the white frames.

We apply three different image features: the statistics-relied feature (average

3http ://db.cs.ualberta.ca/mn/CBsIR.htnil
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color), the BIC histogram, and the IHD feature vector on the above image database. 

And we compare the performance of the combinations of the HTM scheme with 

different image features, as well as the HTM-based retrieval method versus other 

related approaches. Besides, the average size of query sub-images is another tuning 

factor in the experiments.

Specifically, we use the first query set to obtain a preliminary comparison of 

the HTM scheme using average color feature of image tiles and the corresponding 

distance measures with the IHD method. For our HTM method, the RGB color 

space is used while for the IHD method, the L*a*b* color space is applied instead. 

As for the second query set, we apply the average color feature vectors and the BIC 

histograms on the HTM scheme and compare these combinations with the IHD 

method. To compute the BIC histograms, we consider the RGB color space with 

quantization into C  colors. The tradeoff between retrieval accuracy and efficiency 

using the BIC methods is studied by changing this parameter.

3.7.3 Results Analysis

First, we compare our HTM method with related work using the first query set. 

Table 3.3 shows the effectiveness obtained using the average actual rank (defined 

in Section 3.7.1). Here, the statistics-relied image feature representation (average 

color) is chosen for the reason that the compared IHD method also uses the average 

color but with an additional covariance matrix to represent the color distribution. 

Apparently, the color feature representation of the IHD method is more complex 

and more informative than HTM’s statistics-relied feature representation. However, 

Table 3.3 clearly demonstrates the superiority of HTM’s retrieval scheme. When 

looking at the group ranks (defined in Section 3.7.1) in Table 3.4, even though HTM 

is still superior, a relatively much better result is obtained for the IHD method. The 

average r-measure of 1030, obtained when using the average actual rank, dropped 

drastically to 26 using the group rank. This misleading result is due to the large 

number of ties inside the groups obtained for the IHD method. Using the IHD 

method, we obtain groups as large as 351 images, each group having 83 images on 

average. On the other hand, the HTM method is able to discriminate better. No
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Table 3.3: Performance of different methods using average actual rank.

Methods HTM/Avg IHD/AvgCov
Avg r-measure 31.2 1030
Avg precision 0.34 0 . 0 1

Table 3.4: Performance of different methods using group rank.

Methods HTM/Avg IHD/AvgCov

Avg r-measure 10.45 26
Avg precision 0.36 0 . 2

group is larger than 31, and on average each group contains about 4 images. That 

is, the less discriminating an approach is, the more ties it will yield. And the more 

ties there are, the less groups exist. Hence, the lower the group ranks. Nevertheless, 

the more precise and discriminative an approach, the closer the two rank measures.

A more interesting conclusion can be drawn if one uses only the queries that 

yields the 10 best results for each method. Using the average actual rank, our HTM 

method yields 2.5 for average r-measure and 0.65 for average precision while the 

IHD method obtains 191.7 for average r-measure (a very large improvement when 

compared to the 1030 obtained for all 20 queries) and 0.02 for average precision. 

Using group rank, our HTM method produces 2.4 for average r-measure and 0.65 

for average precision, while the IHD returns 5.7 for average r-measure and 0.37 for 

average precision, another large improvement. One should note that these figures 

for the IHD method are quite close to the ones reported in [39] - even though we 

use a different dataset and different queries - which suggests to us that that paper 

may have used the group rank as a measure of retrieval effectiveness.

Because of the distinct difference between the two methods for the aspect of ef

fectiveness, it is worthwhile to look at the distributions of the ranks of the relevant 

(original) images. As can be seen in Table 3.5, for our HTM method 80% of the 

relevant images are ranked among the top 50 retrieved images, while for the IHD 

method only 10% of the original images are ranked among the same top 50. Exam

ples of sample queries and answers by different methods are shown in Figure 3.9. 

Furthermore, Table 3.6 gives the top 3 retrieval results for six sample query sub-
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Table 3.5: Comparison of the distributions of relevant images using average actual
rank.

Number of Queries(%) Number of Queries(%)
Rank Range 

for Original Images HTM/Avg IHD/AvgCov

[1 ,1 0 ] 12(60%) 1 (5%)
[1 1 ,2 0 ] 0  (0 %) 1(5%)
[21,50] 4 (20%) 0  (0 %)

[51, 1 0 0 ] 3 (15%) 2  ( 1 0 %)
[101,500] 1 (5%) 5 (25%)

[501,5000] 0  (0 %) 11 (55%)

images and their corresponding original images’ ranks using average actual rank by 

the HTM method.

Table 3.7 shows the average cost, measured in seconds, to process a query, i.e., 

to access all metadata, obtain the distance between the sub-image query and the 

database images and sort the resulting file. There is a slight difference between the 

two methods for the time cost of search phase. The IHD method is faster than our 

HTM approach since it only stores a two dimensional feature vector per each tile of 

the database images and applies a simple linear search on them. Even though the 

IHD method is 33% faster than HTM, it is important to note that HTM processes 

a query using much more hierarchical structure information in the tree matching 

phases and deals with a database of 10,150 images, where all the metadata is stored 

on disk, not in main memory, still very fast, namely in 0.15 seconds on average. As 

we have pointed out before in Section 3.4 that the improved effectiveness by the 

HTM method clearly dominates the small extra time cost comparing with the IHD 

approach, which is very acceptable.

In order to extract image features from the image database and generate the 

metadata file, our HTM method use 3.35 hours while the IHD method use 4.31 

hours using the machine mentioned in Section 3.7.2. (Note that this procedure can 

be done off-line). When looking at the space cost for those disk-resident index files, 

the HTM method would require 4.38 MB while the IHD method would need less 

storage, namely 3.25 MB. Here, our implementation stores the indices of all the
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Query sub-image HTM: 1; IHD: 14

Query sub-image HTM: 3; IHD: 53

Query sub—image HTM: 5; IHD: 317

Figure 3.9: Sample query sub-images and their original images (answers) with 
erage actual ranks using different methods. (Lower ranks are better.)
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Table 3.6: Search results for six sample query sub-images by HTM. (Note that the 
size of query sub-images and retrieved images is changed for viewing purpose.)

Query Sub-Image/ 
Rank of Relevant Image Top 3 Retrieved Images
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Table 3.7: Comparing query processing efficiency for HTM and IHD.

Methods Search Phase (sec.)
HTM/Avg 0.15

IHD/AvgCov 0 . 1 0

leaf nodes (ignoring the intermediate nodes) for the partition strategy, which means 

there is still much duplicated information because of the overlapping at the second 

level in the hierarchical structure. That is why the index file takes more space 

than the IHD index file. However, considering the much better effectiveness of our 

HTM method compared to the IHD method, this extra cost seems worthwhile. In 

addition, as discussed earlier, this is an issue which can be improved using a more 

storage-conscious implementation.

In a word, based on our experimental results, our proposed HTM method is very 

effective compared to the IHD method of [39] with very acceptable retrieval time 

and space cost. Although it is not completely clear why there are a few outliers in 

the results, we believe the low contrast between the tile of interest and the image’s 

background is to be blamed. Another possible source of problem seems to be im

ages with an unusual large number of colors, detracting the discriminative power 

from the average color feature.

One venue to further explore the HTM scheme is to try using more powerful yet 

compact representation for the tile features. Now, we apply the BIC approach dis

cussed before as well as the statistics-relied approach for image feature extraction 

on the database. Here, the second query set is used to test the robustness about the 

HTM scheme when there are several images that are similar to the correct answer of 

the query sub-image. Also, the related IHD method is applied on the second query 

set, serving as a comparison. For experiments on this query set, we use the average 

actual rank measure since it seems more realistic.

Table 3.8 gives the retrieval accuracy comparison using different image feature 

representations with the HTM scheme and the IHD approach. For the BIC method, 

the BIC parameter (SIZE) refers to the number of uniformly quantized colors on 

the RGB color space. The average color is also extracted from the RGB color
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Table 3.8: Retrieving original images using IHD and different feature representa
tions with HTM.

Methods HTM/BIC HTM/BIC HTM/Avg IHD/AvgCov
BIC parameter(SIZE) 64 colors 16 colors - -

Avg r-measure 2.24 22.81 573.29 1360.90
Avg precision 0.91 0.43 0.15 0 . 0 0 2

space, which is the original approach used in [57], From Table 3.8 we can see that 

the IHD approach produces the worst results, which is consistent with what we have 

obtained from the experiments using different query set. In addition, even using just 

16 quantized colors for image feature representation by BIC, the system achieves 

better retrieval accuracy than using the average color for image feature representa

tion. And the use of 64 quantized colors yields very good results and is the best 

among all. For a more detailed comparison, Table 3.9 also shows the distributions 

of the ranks of the original images using different image feature representations 

with the HTM scheme and the IHD approach.

Besides, it should be noticed that the average size of the query has some effect 

on the final retrieval accuracy. When the average size of the query decreases, using 

simply the average color of each tile could not achieve good performance since it 

is far from discriminative than using BIC. The values for the HTM/AvgColor com

bination are better in [57] because the average query size is then larger than the 

one (being 18%) used in the experiments reported here. Because query sub-images 

and the database images have similar resolution (result of the cropping operation), 

larger query has more details about the object of interest it embodies, thus can be 

more discriminative. If we were to use larger query sizes for both image feature rep

resentations with the HTM scheme, the relative advantage of HTM/BIC would be 

even larger. Table 3.10 compares the average cost of query processing time for the 

u se o f  different BIC histogram s for feature extraction. Som e sam ple queries and 

their answer images’ ranks retrieved from the above database using the IHD ap

proach and different image indexing methods with the HTM scheme are displayed 

in Figure 3.10 as well.
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BIC/64colors: 1 
HTM/Avg: 33

BIC/16colors: 1 

IHD/Avg+Covariance: 2396

BIC/64colors: 1 
HTM/Avg: 132

BIC/16colors: 8 

IHD/Avg+Covariance: 322

I I I -  1 I i i

BIC/64colors: 1 
HTM/Avg: 314

BIC/16colors: 18 

IHD/Avg+Covariance: 410

Figure 3.10: Sample query sub-images and answers with ranks using the IHD 
method and different image indexing methods with HTM. (Lower ranks are bet
ter.)
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Table 3.9: Comparison of the distributions of original images using different feature
representations.

Methods HTM/BIC HTM/BIC HTM/Avg IHD/AvgCov
BIC parameter(SIZE) 64 colors 16 colors - -

Rank Range No. of Qs No. of Qs No. of Qs No. of Qs

[1 .1 0 ] 20 (95.2%) 14(66.7%) 5 (23.8%) 0  (0 %)
[1 1 ,2 0 ] , 0  (0 %) 3 (14.3%) 5 (23.8%) 0  (0 %)
[21,50] 1 (4.8%) 0  (0 %) 2 (9.5%) 0  (0 %)

[51, 100] 0  (0 %) 2 (9.5%) 0  (0 %) 0  (0 %)
[101,500] 0  (0 %) 2 (9.5%) 3 (14.3%) 6  (28.6%)

[501,5000] 0  (0 %) 0  (0 %) 6  (28.6%) 15 (71.4%)

Table 3.10: Comparing query processing efficiency using different BIC histograms 
with the HTM scheme.

Methods Search Phase (sec.)
HTM/BIC/64 quantized colors 1.89
HTM/BIC/16 quantized colors 0.56

3.8 Summary

In summary, we have proposed a new method called Hierarchical Tree Matching 

(HTM) for the problem of content-based sub-image retrieval (CBsIR). The high

lights of the HTM method are:

1 . it adopts a multi-scale hierarchical partition to model both database images 

and the query sub-images in trees, eliminating any reliance on the typically 

complex and inaccurate image segmentation as well as any size constraint on 

the query sub-image;

2 . it stores the image visual features associated to the tree structure in the format 

of an index sequence, allowing fast access during the search phase;

3. it uses a distance measure that considers not only the global feature informa

tion of a sub-tree structure but also the local spatial distribution offered by the 

child nodes in the sub-tree structure so as to capture more detailed distinction;

4. it applies a search strategy that compares the tree structures of both database
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images and query sub-image at any hierarchical levels for the best matched 

tile and locates the object of interest at the same time.

Our experimental evidence shows that this method outperforms the recently pro

posed partition-based CBsIR method [39] by achieving a good balance of retrieval 

accuracy and efficiency. As a side contribution, we have shown that one can obtain 

very different rank measures depending on the distance granularity and ranking cri

teria in the presence of ties.

We have also studied different methods for image indexing with the HTM scheme, 

such as the statistics-relied average color feature vector approach and the BIC 

method [54]. The extraction of average color feature from each tile as the statistics- 

relied approach is very easy to compute and yields very compact descriptors for ef

ficient image comparison, but has limited discriminative power in similarity match

ing. Whereas, based on a simple yet powerful image analysis algorithm and a new 

logarithmic distance function, the BIC method achieves not only compact represen

tation for the visual features extracted from image tiles but also outstanding accu

racy in retrieving images of broad image domains. It is clear that the combination 

of the proposed HTM scheme with image indexing by the BIC method has notable 

superiority for CBsIR.
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Chapter 4 

Supervised Learning in 
Content-Based Sub-Image Retrieval

We have already shown that the HTM method is a stable, effective and efficient 

approach for content-based sub-image retrieval. It is, however, impossible for any 

image retrieval method to be entirely “foolproof” . The main reason is the gap be

tween low-level image features and semantic contents of images. This problem 

arises because visual similarity measures, such as color histograms, do not neces

sarily match the semantics of images and human subjectivity. Human perception of 

image similarity is subjective and task-dependent, that is, people often have differ

ent semantic interpretations of the same image. Even the same person may perceive 

the same image differently at different times. In addition, each type of visual fea

ture tends to capture only one aspect of the image property and it is usually hard 

for a user to specify clearly how different aspects are combined to form an optimal 

query. Therefore, for any query sub-image, not all top ranked images retrieved by a 

retrieval method are actually relevant according to the user’s perception. To address 

this problem, interactive relevance feedback techniques have been proposed to in

corporate human perception subjectivity into the retrieval process. Users can thus 

be prompted to evaluate the results by marking each retrieved image as “relevant”or 

“irrelevant”. Queries or similarity measures are automatically refined on the basis 

of these evaluations, which potentially improves the quality of retrieval.

In this chapter, we investigate the use of information, provided interactively 

by a user, to improve the performance of the HTM-based approaches for CBsIR.
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Inspired from techniques in RBIR [46][56], we outline a tile re-weighting scheme 

that uses feedback information (in the form of labeled examples). Learning is thus 

effected by interpolating the query vector with feature vectors of positive examples. 

Furthermore, the feedback information is also incorporated into the image similarity 

measure based on the tile re-weighting scheme, implicitly refining the final ranking 

of retrieved images.

For organization, Section 4.1 discusses some research work in other related 

image retrieval situations. Then the learning method for CBsIR are introduced in 

Section 4.2. The performance measures (Section 4.3), the experimental framework 

and results (Section 4.4) are presented next. Section 4.5 closes the chapter with a 

brief summary.

4.1 Relevance Feedback in Other Image Retrieval Sce
narios

4.1.1 Learning in traditional CBIR

The key issue in relevance feedback is how to use positive and negative examples 

to refine the query and/or to adjust the similarity measure. Early relevant feedback 

schemes for CBIR are adopted from feedback schemes developed for classical tex

tual document retrieval. These schemes fall into two categories: query point move

ment (query refinement) and re-weighting (similarity measure refinement), both 

based on the well-known vector model.

The query point movement methods aim to improve the estimate of the “ideal 

query point” by moving it towards positive example points and away from the nega

tive example points in the query space. One frequently used technique to iteratively 

update the query is the Rocchio’s formula [1]. It is used in the MARS system [18], 

replacing the document vector by visual feature vectors. Another approach is to 

update query space by selecting feature models. The best way for effective retrieval 

is argued to be using a “society” of feature models determined by a learning scheme 

since each feature model is supposed to represent one aspect of the image content 

more accurately than others.
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Re-weighting methods enhance the importance of a feature’s dimensions that 

help retrieve relevant images while also reduce the importance of the dimensions 

that hinder the process. This is achieved by updating the weights of the feature 

vector in the distance metric. The refinement of the re-weighting method in the 

MARS system is called the standard deviation method [18]. Another alternative for 

learning the distance metric is to automatically select the best one from a set of pre

defined distance metrics for the retrieval process based on the relevance feedback, 

e.g., [2 1 ].

Recent work has proposed more computationally robust methods that perform 

global feature optimization. The MindReader retrieval system [26] formulates a 

minimization problem on the parameter estimating process. Using a distance func

tion that is not necessarily aligned with the coordinate axis, the MindReader system 

allows correlations between attributes in addition for different weights on each com

ponent. A further improvement over the MindReader approach [37] uses a unified 

framework to achieve the optimal query estimation and weighting functions. By 

minimizing the total distances of the positive examples from the revised query, the 

weighted average and a whitening transform in the feature space are found to be the 

optimal solutions. However, this algorithm does not use the negative examples to 

update the query and image similarity measure; and initially the user needs to input 

the critical data of training vectors and the relevance matrix into the system.

Machine learning is about constructing computer programs that can be im

proved with experience. Any task that can be improved as a result of experience can 

be considered as a machine-learning task. In CBIR, relevance feedback improves 

the retrieval performance, and the experience is the feedback examples provided by 

the user. Therefore, relevance feedback can be considered as a learning problem 

-  the system learns from the examples provided as feedback by a user to refine 

the retrieval results. The aforementioned query-movement method represented by 

the Rocchio’s formula and re-weighting method are both simple learning methods. 

However, as users are usually reluctant to provide a large number of feedback exam

ples, i.e., the number of training samples is very small. And the feature dimensions 

in CBIR systems are usually high. Thus, the fact that how to learn from small train-
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mg samples in a very high dimension feature space makes many learning methods, 

such as decision tree learning and artificial neural networks, unsuitable for CBIR.

There are several key issues in addressing relevance feedback in CBIR as a small 

sample learning problem. First, how to quickly learn from small sets of feedback 

samples to improve the retrieval accuracy effectively; second, how to accumulate 

the knowledge learned from the feedback; and third, how to integrate low-level 

visual and high-level semantic features in the query. Most of the research in litera

ture has focused on the first issue. To address the first issue, Bayesian learning has 

been explored in research about effective learning algorithms and it has been shown 

advantageous compared with other learning methods, e.g., [40]. Active learning 

methods have been used to actively select samples which maximize the information 

gain, or minimize entropy/uncertainty in decision-making. These methods enable 

fast convergence of the retrieval result which in turn increases user satisfaction. 

Chen et al [44] use Monte carlo sampling to search for the set of samples that will 

minimize the expected number of future iterations. Tong and Chang propose in [49] 

the use of SVM active learning algorithm to select the sample which maximizes the 

reduction in the size of the version space in which the class boundary lies. Without 

knowing apriori the class of a candidate, the best search is to halve the search space 

each time. In their work, the points near the SVM boundary are used to approxi

mate the most-informative points; and the most-positive images are chosen as the 

ones farthest from the boundary on the positive side in the feature space.

4.1.2 Learning in RBIR

Relevance feedback (RF) has also been introduced in RBIR systems for a dramatic 

performance boost as it does for the image retrieval systems using global repre

sentations. Next, we discuss some learning algorithms in RBIR, while Section 4.2 

focus on presenting the relevance feedback technique for CBsIR.

In [56], the authors introduce several learning algorithms using the adjusted 

global image representation to RBIR. First, the query point movement technique is 

considered by assembling all the segmented regions of positive examples together 

and resizing the regions to emphasize the latest positive examples in order to form
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a composite image as the new query. Second, the application of support vector 

machine (SVM) [49] in relevance feedback for RBIR is discussed. Both the one 

class SVM as a class distribution estimator and two classes SVM as a classifier 

are investigated. Third, a region re-weighting algorithm is proposed corresponding 

to the feature re-weighting ones. It assumes that important regions should appear 

more times in the positive images and fewer times in all the images of the database. 

For each region, measures of region frequency RF  and inverse image frequency 

IlF  (analogous to the TF and IDF  in text retrieval [33]) are introduced for the re

gion importance. Thus the region importance is defined as its region frequency RF 

weighted by the inverse image frequency IIF, and normalized over all regions in an 

image. Also, the feedback judgement is memorized for future use by calculating 

the cumulate region importance. However, this algorithm only consider positive 

examples while ignoring the effect of the negative examples in each iteration of the 

retrieval results. Experimental results on a general-purpose image database demon

strate the effectiveness of those proposed learning methods in RBIR.

4.2 Relevance Feedback for CBsIR

Relevance feedback as an interactive learning technique has been demonstrated to 

boost performance in CBIR systems [42] [52], Despite the great potential of RF 

shown in CBIR systems using global representations and in RBIR systems, to the 

best of our knowledge there is no research that uses it within CBsIR systems. Here, 

we present our solution to improve the retrieval performance of the CBsIR frame

work discussed in Chapter 3 by using relevance feedback to learn the user’s in

tention. Our relevance feedback approach has three main components: (1) a tile 

re-weighting scheme that assigns penalties to each tile of database images and up

dates those tile penalties for all relevant images retrieved at each iteration using 

both the relevant (positive) and irrelevant (negative) images identified by the user; 

(2 ) a query refinement strategy that is based on the tile re-weighting scheme to ap

proach the most informative query according to the user’s intention; (3) an image 

similarity measure that refines the final ranking of images using the user’s feed-
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back information. Each o f these components is explained in details in the following  

subsections.

4.2.1 Tile Re-Weighting Scheme

Researches in RBIR [46][56] have proposed region re-weighting schemes for rel

evance feedback (RF). In this research, we design our tile re-weighting scheme 

that specializes the technique presented in [46] to accomodate our tile-oriented (not 

region-oriented) HTM approach for CBsIR. It should be emphasized that instead 

of considering all the images in the database to compute the parameters for region 

weight [56] (which is computationally expensive), our tile re-weighting scheme 

uses only the positive and negative examples identified by the user to update the tile 

penalty of the positive images only, which is much more efficient. Moreover, the 

region re-weighting scheme in [46] uses a predefined similarity threshold to deter

mine whether the region and the image is similar or not, otherwise the comparison 

of region pairs would become too expensive since images might consist of different 

and large number of regions. This threshold is sensitive and subject to change for 

different kinds of image datasets. Thus, how to obtain the right threshold is yet 

another challenge for the RF method in RBIR. However, our RF method for the 

CBsIR problem does not need any threshold because the number of obtained tiles 

is the same and small for each database image and there exists implicit relationship 

between the tiles, which makes it easier to compare them.

In our system, the user provides feedback information by identifying positive 

and negative examples from the retrieved images. The basic assumption is that im

portant tiles should appear more often in positive images than unimportant tiles, 

e.g., “background tiles” should yield to “theme tiles” in positive images. On the 

other hand, important tiles should appear less often in negative images than unim

portant tiles. Following the principle of “more similar means better matched thus 

less penalty”, we assign a penalty to every tile that represents the database image 

for the matching process. User’s feedback information is used to estimate the “tile 

penalties” for all positive images, which also refines the final ranking of images. 

Note that during the RF iterations, the user does not need to specify which tile of a
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certain positive image is similar to the query, which would only make the problem

simpler at an additional cost to the user. (Nonetheless, we plan to address this in 

the future.)

Next, we introduce some definitions used to illustrate the tile penalty and for

malize the overall RF process.

Definition 1. The distance between two tiles Ta and Tb from images I a and I b 

respectively, is:

where Tai and Tbi are sub-tiles of Ta and Tb respectively, m  is the number of unique 

leaf nodes in the tiles’ tree structures at any hierarchical levels (if already at the leaf 

level, m  — 1), the D is t  function is to be instantiated with some particular distance 

measure based on the result of the feature extraction done by the Feature  function 

on the tiles, e.g., BIC’s dLog() function defined in the previous section, ijfc

D efinition  2: The penalty for a certain tile i from a database image after k iterations 

is defined as: TPi(k), i — 0, • • •, N T ,  where N T  +  1 is the number of tiles per 

database image, and T P j(O ) is initialized as N^ +l-

For instance, in Figure 3.1, N T  +  1 =  1 +  9 +  16, i.e., is equal to the number 

of nodes in the tree structure representing the hierarchical partition of a database 

image; for the lowest level, only unique nodes count.

D efinition 3: For each tile from a positive image, we define a measure of the dis

tance D T S  between tile T  and an image set I S  — { I \ , / 2, • • •, /„}. This reflects the 

extent to which the tile is consistent with other positive images in the feature space. 

Intuitively, the smaller this value, the more important this tile is in representing the 

user’s intention.

D T (T ,  I - ) ), if T  is at the subtree level

where N T  in this case is the number of tiles at the current subtree level. 6

Assuming that I  is one of the identified positive example images, we can com

pute the tile penalty of image I  which consists of tiles {To, T\, ■ ■ ■, Tn t }- The 

user provides positive and negative example images during each k th iteration of

D T (T a,T b) =
D ist(F ea ture(Tai), Feature(Tbi))

m

Y%=1exp (D T (T ,I? )) if T  is at full tree level
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feedback, denoted respectively as I S +(k) — (k), ■ • •, / + (k) } and I8 ~ (k )  =

{ I i ( k ) ,  • - -, I~ (k )} ,  where p  +  q is typically much smaller than the size of the 

database.

Based on the above preparations, we now come to the definition of tile penalty. 

D efinition 4: For all images (only being positive), the tile penalty of T\ after k 

iterations of RF is computed (and normalized) as:

Wi x D T S { T i , I S +{k))
T P i(k ) =

Z fJo (W j  x D T S {T h IS+{k))

where Wi =  1 — , acts as a penalty, reflecting the influence of
2 ^ i = o D T S Vr i J s  ( k >)

the negative examples.

This implies the intuition that a tile from a positive example image should be 

penalized if it is similar to negative examples. Basically, we compute the distances 

D T S  between a particular tile T  and the positive image set I S + as well as the 

negative image set I S ~  respectively to update the penalty of that tile from a positive 

example image. The inverse of the tile’s distance from the negative image set is used 

to weight its corresponding distance from the positive image set.

Let us now illustrate the above methodology with a simple example, which also 

motivates the notion of tile penalty. For simplicity, assume that the color palette 

consists of only three colors: black, gray and white. Figure 4.1 shows the top 3 

retrieved images and the user’s feedback judgement. Image I\  is marked as a pos

itive example since it actually contains the query image, which exactly represents 

the sub-image retrieval problem we are dealing with. Image 1-2 is also marked as 

a positive example because it is the enlargement of the query image (and therefore 

containing it as well).

Q u e r y  q  Image II Image 12 Image 13

Initially retrieved images

aUser’s Feedback

Positive Positive Negative

Figure 4.1: Initial set of retrieved images with user’s feedback.

For the sake of illustration, assume a two-level multi-cale representation of
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database images is used as in Figure 4.2. The tile penalties for tiles per database 

image are initialized as 0.1 for the 10 tiles, i.e., T’Pj(O) =  0.1, % € [0,9]. Now, take 

tile T x for example. According to Definition 3, we need to compute the distances 

D T S  between T x and the positive/negative image set. In order to do this, firstly, 

the distances between T x and all tiles at the corresponding subtree levels of all the 

images in the positive/negative image set should be obtained by Definition 1. Then, 

using Definition 4 the new penalty of T x is updated from 0.1 to 0.090 correspond

ingly. The penalties for other tiles is updated in the same way during each feedback 

iteration. We illustrate the new values of all tile penalties for database image I x as 

a positive example after one feedback iteration in Figure 4.2. We can see that after 

the user provides feedback information, some tiles lose some weight while others 

gain. For instance, T X,T 2, T3 and T9 receive less penalties now because they only 

contain the color of grey and/or black which is/are also in the query. T0, T4 , T5, T7 

and T8 are penalized more since they all contain the color white. The new weights 

for these tiles generally follow the trend that more percentage of white color more 

penalty. T6, which is a rotation of the query image maintains its weight for this 

iteration. This means that our system is to some extent also capable of perceiving 

changes such as rotation. Besides, for a closer look at the updated tile penalties of 

positive image I x, T x receives more penalty than T3 now although they are similar 

to the query image in the same degree. Note that, according to Definition 4, both 

the positive and the negative example images are used to calculate new tile penal

ties. And we penalize a tile more if it is also somewhat more similar to the negative 

example images compared with other tiles in the positive example image. Thus it is 

reasonable that the tile penalty for T x appears higher than that for T3 after feedback 

learning, since T x contains some black color which is also in the negative example 

image I 3 while T3 contains only the grey color.

4.2.2 Query Feature Update

The RF process using query refinement strategy is based on the tile re-weighting 

scheme and all positive and negative example images. The main concern is that 

we need to maintain as much as possible the original feature of query image while
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Q uery  Im age Positive E xam ple 11

Trees for Tiles

T1,T2,...,T9

Tree for Tile TO

- ■ T1
■a■9 T2 ■  T3

TPdbl(l)= 0.090 TPdb2(l)= 0.082 TPdb3( 1 )= 0.086

B T4 n T5
m  T6

TPdb4(l)= 0.112 TPdb5(l)= 0.105 TPdb6(l)= 0.100

□ T7 1 T8 H

TPdb7(l)= 0.117 TPdb8( 1 )= 0.113 TPdb9(l)= 0.090

TPdbO(l) = 0.105

Figure 4.2: Comparison of tile penalty for database image I\ before and after feed
back.

introducing new feature elements that would capture more new relevant images. 

Considering the hierarchical tree structure of the query image, we use the most 

similar tile (with minimum tile penalty) at every subtree level of each positive image 

to update the query feature at the corresponding subtree level.

D efinition 5: The updated query feature after k  iterations is:

k\ ., E L i(1  ~  T P m in H{k)) x P oskk \j] 
gni[Jl £ ? = i( l - T P m i n it(k))

where qnf is the new feature with M dimensions for a subtree (tile) at the Ith level of 

the tree structure for the query image after k  iterations, T P m in j ,  (k ) is the minimum 

tile penalty for a subtree (tile) found at the Ith level of the tree structure for the 

ith positive image after k  iterations, P os£ is the feature for the subtree (tile) with 

minimum tile penalty at the Ith level of the ith positive image’s tree structure after k 

iterations, and p  is the number of positive images given by the user at this iteration.

Intuitively, we use the weighted average to update the feature for a subtree (tile) 

of the query, based on the features of those tiles that have minimum tile penalties 

within respective positive images. In this way, we try to approach the optimal query 

that carries the most information needed to retrieve as many relevant images to the 

query as possible.
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4.2.3 Image Similarity

With the updated query feature and tile penalties for positive images, we can now 

define the distance between images and the query for ranking evaluation at each 

feedback iteration. In order to locate the best match to the query sub-image, our 

image similarity measure tries to find the minimum from the distances between 

the database image tiles and the query (recall that both the database image and 

the query sub-image have been modeled by the tree structure in the same way) at 

corresponding hierarchical level in the tree structure, weighted by the tile penalty 

of corresponding database image tiles.

D efinition 6: The distance between the (updated) query image Q  and a database 

image I  at the kth iteration is:

D I k (I ,  Q )  -  m in i=o..NTTPi(k -  1) x  D T ( I i ,  Q j )

where N T  + 1  is the number of all subtrees in the tree structure (tiles) of a database 

image, and T P i(k  — 1) is the tile penalty for the ith tile of image I  after k — 1 

iterations. 4 k

For the comparison of full tree structures, i =  0 and j  =  0, indicating both the 

full tree structure of the database image and the query image. For the comparison of 

subtree structures, i — 1..A) for each 1 <  j  <  (L  — 1), where A) is the number of 

subtree structures at the Ith level of the tree structure and L  is the number of levels 

of the tree structure, mapped from the hierarchical partition, j  indicates the sub

tree structure at a particular level of the query image’s tree structure, as a result of 

shrinking the original query tree structure to make the comparison with the subtree 

structures of database images comparable.

Thus, the overall RF process for the CBsIR system can be summarized in the 

following pseudo algorithm:

1. The user submits a query (sub)-image with no concern about whether the 

query is a tile or similar to any tile of any database image;

2. The system retrieves the initial set of images using a similarity measure,
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which consists of database images containing tiles similar to the query sub

image;

3. The system collects positive and negative feedback examples identified by 

the user;

4. For each positive image, update the tile penalties of those tiles representing 

this image using positive examples and negative examples;

5. Update the query using positive images and their newly updated tile penalties;

6 . Use the revised query and new tile penalties for database images to compute 

the ranking score for each image and sort the results;

7. Show the new retrieval results and go to step 3.

4.3 Performance Measures

Up to now, we have integrated relevance feedback with our CBsIR system via the 

hierarchical tree matching scheme. Two types of effectiveness for the system should 

be taken into account. The first one (similar to what was done in the previous chap

ter) is about retrieving the original images from which the queries are extracted. 

This is evaluated by using the average r-measure and the average precision as 

discussed in Section 3.7. The second type of effectiveness is about retrieving all 

images relevant to the queries, where it becomes appropriate to calculate the pre

cision and recall for each feedback iteration. For certain applications, it is more 

useful that the system brings new relevant images (found because of the update of 

query feature from previous feedback) forward into the top range rather than keep

ing those already retrieved relevant images again in the current iteration. For other 

applications, however, the opposite situation applies and the user is more interested 

in obtaining more relevant images during each iteration including those s/he has 

already seen before. Besides, it is more helpful that the system learn the user’s in

tention within as fewer iterations as possible. Given these observations, we use two 

complementary measures for precision and recall as follows:

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. New Recall: the percentage of relevant images that were not in the set of 

the relevant images retrieved during previous iterations over the number of 

relevant images in the answer set. (Measured only after the first iteration, i.e., 

after the first feedback cycle.)

2. New Precision: the percentage of relevant images that were not in the set of 

the relevant images retrieved during previous iterations over the number of 

retrieved images at each iteration. (Also measured after the first iteration.)

3. Actual Recall: the percentage of relevant images at each iteration over the 

number of relevant images in the answer set.

4. Actual Precision: the percentage of relevant images at each iteration over the 

number of retrieved images at each iteration.

The new recall and precision explicitly measure the learning aptitude of the system; 

ideally it retrieves more new relevant images as soon as possible.

Moreover, we also try to measure the total number of distinct relevant images 

the system can find during all the feedback iterations. This is a history-based mea

sure that implicitly includes some relevant images “lost” (out of the top presented 

images) in the process. We call them cumulative recall and cumulative precision 

defined as follows:

1. Cumulative Recall: the percentage of distinct relevant images from all itera

tions so far (not necessarily shown at the current iteration) over the number 

of relevant images in the predefined answer set.

2. Cumulative Precision: the percentage of distinct relevant images from all 

iterations so far over the number of retrieved images at each iteration.

Table 4.1 exemplifies the measures mentioned above, assuming the answer set 

for a query contains 3 images A, B, C and the number of returned (presented) im

ages is 5.

In addition, we also measure each method’s storage overhead and query pro

cessing (time) cost.
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Table 4.1: Cumulative/New/Actual Recall and Precision

Iteration Retrieved 
Relevant Ones

Cumulative
Recall/Precision

New
Recall/Precision

Actual
Recall/Precision

1 A 33.33%/20% - / - 33.33%/20%
2 A 33.33%/20% 0 %/0 % 33.33%/20%
3 B,C 100%/60% 66.67%/40% 66.67%/40%

4.4 Experiments and Results

We test the proposed relevance feedback approach for the CBsIR system using the 

image database mentioned in Section 3.7.2. The broad-domain image dataset con

sists of 10,150 color JPEG images: a mixture of the public Stanford 10k1 dataset 

and some images from one of COREL’S CD-ROMs, each of which falls into a par

ticular category -  we use 21 such categories2. Some categories do not have rotated 

or translated images, but others do. On average, each answer set has 11 images, and 

none of the answer sets has more than 2 0  images, which is the amount of images 

we present to the user for feedback during each iteration. We manually crop part of 

a certain image from each of the above categories to form a query image set of 2 1  

queries (one for each category). Images of the same categories serve as the answer 

sets for queries (one sample query and its corresponding answer set are shown in 

Figure 4.3). The size of the query image varies, being on average 18% the size 

of the database images. The following performance results are collected from the 

online demo3 on a computer running Linux 2.4.17 with two Pentium III CPUs and 

256MB of main memory.

In our experiments, the maximum number of iterations explored is set to 10 

(users will give feedback 9 times by pointing out which images are relevant (posi- 

tive)/irrelevant (negative) to the query) and we present the top 2 0  retrieved images 

at each iteration. Note that in our system the series of feedback iterations between 

queries is independent, i.e., the information collected from the user is not integrated

1 http://www-db.stanford.edu/~wangz/image.vary.jpg.tar.
2The union of http://db.cs.ualberta.ca/mn/CBIRone/ and http://db.cs.ualberta.ca/mn/CBIRtwo/
3http://db.cs.ualberta.ca/mn/CBsIR.html
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Query Image Answer Set

Figure 4.3: A sample query (sub)image and its relevant answer set.

Table 4.2: Comparison of retrieving the original images using BIC by feedback 
iterations.______________________________________________________________

BIC parameter (SIZE) Average No. of Iterations needed for Rank <  top 20
64 quantized colors 1 . 1

16 quantized colors >2.3

into the search for the next queries, even if  the very same query is submitted to the 

system again. This consideration is based on the observation of the subjectivity of 

human perception and the fact that even the same person would perceive the same 

retrieval result differently at different times.

Although we have already shown the good retrieval accuracy of finding the orig

inal images by using the BIC method for image indexing in our CBsIR system, here 

we further study the effectiveness of our CBsIR system using BIC to retrieve the 

original images in terms of feedback iterations. Besides, we tune the BIC parame

ter (SIZE -  the number o f quantized colors) to further investigate the HTM-based 

CBsIR system using the BIC method and relevance feedback technique, comparing 

the effectiveness as well as efficiency and storage cost for image feature extraction 

having different degrees of information.

In Table 4.2, it is clear that using the 64 quantized colors the hit rate of the 

original images can almost reach the optimal value.

For the retrieval accuracy of relevant images using 64 quantized colors in the 

BIC method, the results are shown in Figure 4.4 and Figure 4.5 by the measures
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Figure 4.4: Effectiveness measures by actual recall, cumulative recall and new re
call using 64 quantized colors in BIC.

proposed in Section 4.3.

As it can be clearly seen that after 5 iterations the system has already learned 

most of the information it could learn, i.e., the information gain (given by the new 

recall and new precision curves) is nearly null. On the other hand, after only 5 

iterations the actual recall and actual precision values increased by 55% and 60% 

respectively. It is also noteworthy to mention that the stable actual precision value 

of nearly 40% is not as low as it may seem at first. The answer sets have an average 

of 1 1  images and since the user is presented with 2 0  images, the maximum preci

sion one could get (on average) would be about 50%. Hence, in this perspective 

40% of actual precision is not a low value. Similarly 70% of actual recall means 

that on average 8  images out of the 20 presented are actually relevant after 5 it

erations, which also seems to be quite reasonable. We also obtained about 85% 

for cumulative recall and about 50% for cumulative precision. The reason for the 

higher values than those for actual recall and actual precision is because some rele

vant images that may be “lost” in subsequent iterations are always accounted for in 

these measures.

Figure 4.6 and Figure 4.7 give the glimpse of screenshots about the online demo 

using 64 quantized colors in BIC for a sample query during the first two iterations.
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Figure 4.5: Effectiveness measures by actual precision, cumulative precision and 
new precision using 64 quantized colors in BIC.

On the aspect of effectiveness, using 16 quantized colors expectably yields a 

worse accuracy than using 64 quantized colors in the BIC method. Looking at 

Figure 4.8 and Figure 4.9, the former achieves about 60% for the final actual recall 

and about 30% for the final actual precision, both about 10% lower than the latter 

as shown in Figure 4.4 and Figure 4.5. The results obtained using 16 quantized 

colors are also reasonable. The final cumulative recall value increases to 70% from 

the actual recall value being about 60%. Similarly, the final cumulative precision 

is brought up to about 40%. The learning aptitudes of the system using different 

informative degrees of the feature representation (measured by the new recall and 

new precision shown in Figure 4.8 and Figure 4.9) follow a similar trend, i.e., most 

of the information is learned by the first 5 iterations. However, it should be noticed 

that when using 16 quantized colors the left 5 iterations contribute more to reach 

the final cumulative/actual recall and precision at the 10th iteration, compared with 

that of using 64 quantized colors. As shown in Figure 4.10 and Figure 4.11, using 

16 colors the information gain between the 6th iteration and the 1 0 t/l iteration is 

2 2 .1 % for new recall measure and 2 1 .6 % for new precision measure; while for 

64 quantized colors, these values drop to 10.5% and 15.7% respectively. This is 

because the result and information gain of using 64 quantized colors are just already
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Figure 4.6: Results of online demo using 64 quantized colors in BIC for a sample 
query after the first iteration. (The user has given feedback once.)
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Figure 4.7: Results of online demo using 64 quantized colors in BIC for a sample 
query after the second iteration.
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Figure 4.8: Effectiveness measures by actual recall, cumulative recall and new re
call using 16 quantized colors in BIC.

better than those of using 16 quantized colors in the previous 5 iterations. Not as 

much as information left could be learned by the feature representation using 64 

quantized colors. The switch point of the two curves is observed in Figure 4.10 and 

Figure 4.11, appearing in between the 4th and the 5th iterations.

Figure 4.12 shows the average cost, measured in seconds, to process a query 

during each iteration, i.e., to access all disk-resident data, complete the learning 

from the user’s feedback at the current iteration (not applicable to the first iteration), 

obtain the distance between the query image and database images and sort them 

by their resulting ranks. The first iteration takes, on average, slightly less than 2 

seconds when using 64 quantized colors and 0.6 second when using 16 quantized 

colors, whereas each subsequent iteration requires about 2.5 seconds and 1 second 

respectively for the two feature representations. This slight increase is due to the 

overhead for computing and updating the tile penalties. If to compare these two 

image feature representations, using 64 quantized colors is 3.5 times slower than 

only using 16 quantized colors. With relevance feedback, the difference is narrowed 

down a little bit with 3 times slower when using 64 quantized colors.

In order to extract image features from the image database applying the BIC 

method and generate the metadata file, the use of either 64 quantized colors or 16
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Figure 4.9: Effectiveness measures by actual precision, cumulative precision and 
new precision using 16 quantized colors in BIC.
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Figure 4.10: New recall (defined from the second iteration) comparison using 64 
quantized colors and 16 quantized colors in BIC.
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Figure 4.11: New precision (defined from the second iteration) comparison using 
64 quantized colors and 16 quantized colors in BIC.

quantized colors requires about 25 minutes on a computer running Linux 2.4.20 

with AMD Athlon XP 1900+ CPU and 1GB of main memory. This procedure 

can nevertheless be done off-line. The storage cost for the disk-resident metadata is

10.5 MB (only about 20% the size of the image database), while using 16 quantized 

colors needs proportionally less storage, namely 2.7 MB.

In summary, our proposed relevance feedback-based approach for content-based 

sub-image retrieval (using 64 quantized colors in the BIC method for image index

ing) was able to achieve a very good retrieval accuracy with small space cost and 

fast retrieval time including the overhead due to the feedback learning. When using 

only 16 quantized colors in BIC, the query processing time cost is cheaper. While 

the retrieval accuracy suffers, it is still acceptable.

4.5 Summary

In this chapter, we have addressed how relevance feedback can be used to improve 

the performance of CBsIR. We present the supervised learning method known as 

relevance feedback, which is based on a tile re-weighting scheme that assigns penal

ties to each tile of database images and updates those of all relevant images using
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Figure 4.12: Comparing query processing efficiency using different BIC histograms 
at each iteration.

both the positive and negative examples identified by the user. Moreover, the user’s 

feedback information can also be used to refine the image similarity measure by 

weighting the tile distances between the query and the database image tiles with 

their corresponding tile penalties. We combine the learning method with the BIC 

approach for image indexing to improve the performance of content-based sub

image retrieval. Our results on an image database of over 10,000 images suggest 

that the learning method is quite effective for CBsIR.
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Chapter 5 

Conclusions and Future Work

The main contribution of this thesis is the proposal of hierarchical tree matching 

(HTM) scheme for solving the thus far much less explored problem of content- 

based sub-image retrieval (CBsIR) and its accompanying issue on object localiza

tion. The novelty in this new method is the characterization of images in terms of 

hierarchical tiles that captures the spatial correlation of the color features and makes 

for fast and precise object matching. As a summary of the new method, we adopt a 

multi-scale hierarchical partition to both the database and query images. The aver

age color feature of image tiles is associated with a hierarchical tree structure stored 

in an index sequence so as to yield fast access during search phase. For the search 

strategy, we compare the query image’s tree structure with the sub-tree structures 

of the database images at all hierarchical levels and use the average distance be

tween the leaf nodes as the distances between the query tree and the sub-trees of 

the database images, which introduces local spatial information to provide more 

veracious matching. Experimental results on a collection of heterogeneous images 

show that our method achieves both good retrieval accuracy and efficiency. As a 

side contribution we have shown that one can obtain very different rank measures 

depending on the distance granularity and ranking criteria in the presence of ties.

Certainly there is room for improvement and a few possible venues for further 

investigation include the design of disk based access structure for the hierarchi

cal tree (to enhance the scalability for larger databases), the use of better (more 

powerful yet compact) representation for the tile features, and the incorporation of 

machine learning techniques to shorten the gap between low-level image features
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and high-level semantic contents of images so as to better understand the user’s in

tention. In the latter part of this thesis, we have studies two of the above issues to 

improve the performance of the CBsIR system using the hierarchical tree matching 

scheme. On one hand, we adopt the use of a compact and efficient CBIR approach 

suitable for broad image domains called BIC [54] for image indexing. Experimen

tal results show the BIC feature representation for the image tiles is far more dis

criminative than the statistic-based feature representation (average color) because 

of BIC’s simple and powerful image analysis algorithm based on a border/interior 

pixel classification. The logarithmic distance function also helps diminish the dis

tortion in histogram comparison and provide a compact representation of visual 

features. One other possible improvement of using the BIC approach for feature 

extraction is to try to solve the problem that image background, which usually cov

ers the majority of image area but does not determine the semantic of the image, 

could cause distortion in similarity measure by performing “background elimina

tion” during the image analysis process. This action would detect background pix

els according to some criterion and exclude these pixels when computing the BIC 

histogram. In this way, the information that distracts the image semantic is excluded 

from the image feature representation. Thus, better similarity hit could be expected 

during the search phase.

On the other hand, the supervised learning method - relevance feedback is in

vestigated to incorporate human perception subjectivity into the retrieval process, 

trying to capture semantic contents of image in terms of objects. The query refine

ment method in relevance feedback is integrated with the CBsIR system by applying 

a tile re-weighting scheme to assign penalties to tiles that compose database images 

so as to better approach the user’s intention. The tile penalties of positive images 

based on both the positive and negative examples identified by users (without ex

plicit sub-image feedback) are used to update the query for an improvement in the 

retrieval accuracy of the next iteration. Our experimental results on the general- 

purpose image database demonstrate the clear performance improvement by this 

framework compared to that of the previous CBsIR system [57], which uses only 

average color as the feature representation for image tiles and allowed only one
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iteration of retrieval. (Note that as far as we know, there is no research that uses 

relevance feedback within CBsIR systems and it is not comparable to the region- 

based retrieval systems although they aim at a similar retrieval goal.) Some venues 

for future work include integrating other powerful learning algorithms into CBsIR, 

handling the difference in image resolution between possible queries and target im

ages, and accomplishing a more friendly user interface that allows real time query 

definition.

In general, the algorithms we propose for the CBsIR problem are not only sim

ple and inexpensive but also quite effective and might be used to automatically solve 

the adjunctive object localization problem existing in various applications, such as 

tracking of objects in a video sequence. It is unreasonable to expect any CBsIR 

system to be absolutely foolproof. However, the goal is to build relatively better 

CBsIR systems that can offer applications not considered and/or hard to be solved 

by RBIR with a similar perception on the image content. In this direction, based on 

the experiments, we feel that there is a compelling reason to use our HTM scheme 

and corresponding RF approach as one of the basic components in such systems.
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Appendix A 

Simulation of HTM’s Search Process

A high-level simulation of the search process can be viewed in the following series 

of figures from Figure A .l to Figure A.5.
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Search Strategy -  tree structure
Query

Tree for full image

Trees for (9x9 overlapping) tiles

Figure A.1: Tree structures modeling the hierarchical partition of the image.
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Search Strategy -  full image match

Tree for query (sub-image)
Same number of levels as full image 
Tree distance is based on leaf distances 
(recursively)

Figure A.2: Matching the full trees of the query and the database image.
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Search Strategy -  sub-image match

Tree for query (sub-image)
Same number of levels as tile image 
Tree distance is again based on leaf 
distances (recursively)

Figure A.3: Matching the sub-trees of the query and a certain tile at the second level 
of the hierarchical partition.
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Search Strategy -  resulting distances

Query Image

Dist! = 0.25 Dist2 = 0.29 = 03

D isty  =  0 .2

Dist4 = 0.21 Dist5 = 0.1 Dist6 = 0.27

Dist, = 0.19 Dist8 = 0.15 Distg = 0.17

Figure A.4: Obtained distances between the query and each tile of the database 
image after two kinds of match.
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Search Strategy -  image similarity

Image similarity: dist (Q, I ) = min Distj (i = 0...9)

-  dist (Q, I) = Dist5 = 0.1 (tile 5)

t match

Figure A.5: Image similarity measure - finding the minimum among the obtained 
distances as the distance between the query and the database image.
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