
 

 

Enhanced Methodologies for Improved Ground Kinematics Interpretation in the Context 

of Landslide Early-Warning Systems 

by 

Sohrab Sharifi 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

in 

Geotechnical Engineering 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

© Sohrab Sharifi, 2024 



ii 

 

ABSTRACT 

Landslides are widespread geohazards in Canada that cause loss of millions of dollars 

annually directly and indirectly. Such geohazards are prevalent in Canada’s landforms which 

compromise the safe operation of infrastructures and public safety. Not only stabilizing an area 

with this scale is financially beyond feasible, but many options are also next to insufficient. A 

reliable risk management strategy would advise to keep observing the ground to ensure the hazard 

is adequately mitigated. Monitoring programs are therefore becoming indispensable tools and an 

integrated pillar in the modern practice of geohazards management. Early-warning systems 

(EWSs) are a robust tool to this end and developing such systems calls for collaborative efforts 

and scientific exchanges between different fields considering that kinematical inputs into EWSs 

come from a variety of means of measurements. 

Technology has improved landslide monitoring in many aspects by granting high spatio-

temporal resolution of readings, millimetric accuracies, (near) real-time acquisition and remote 

data retrieval. Technology in this context comes with certain limitations as well that impede its 

further incorporation into EWSs. The quality of received data determines the performance of an 

EWS and thus effectiveness of mitigative actions. The high sampling rate of some instruments 

(e.g., Shape-Accel Arrays or GNSS units), subject to the presence of scatter (noise), obscures the 

true displacement of the ground. As a result, the slope’s kinematics will not be fully understood, 

and the onset of acceleration cannot be simply detected to raise the alarm. Data filtration is then a 

significant constituent in an EWS yet poorly addressed. In addition to in-situ methods of 

monitoring, remote sensing techniques such as space-borne interferometric synthetic aperture 

radar (InSAR) are another source of recording ground displacements. InSAR constantly 

illuminates a footprint by broadcasting microwaves to the ground and records the backscattered 
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waves which can be transformed into displacement values. However, the application of InSAR in 

landslide monitoring suffers limitations too. SAR sensors are only sighted to displacement along 

its line-of-sight (LOS). As a result, the velocity map it provides is not a full reflection of the 

direction and magnitude of movements. The added ambiguity due to this InSAR’s limitation 

prohibits direct incorporation of the results in EWSs. A decomposition of LOS velocity in three 

dimensions is then necessary. Common decomposition methods are associated with certain 

assumptions. The reliability of EWSs heavily revolves around the precision of measurements but 

little insights on the accuracy of these methods exist.  

This research aims to devise and pursue methodologies to enhance the kinematics 

interpretation respecting the present limitations in developing modern EWSs. The first element of 

this thesis is data analysis in which the simple moving average is compared against Gaussian-

weighted moving average and Savitzky-Golay filters. The impact of using each in interpreting the 

landslide kinematics is studied as well as detecting the onset of acceleration and forecasting failure 

time using the inverse-velocity method. The second element is dedicated to examining different 

approaches in decomposing InSAR’s LOS velocities: ignoring the northward component, surface-

parallel flow method, aspect-parallel flow method and steepest terrain following method. This is 

carried out by quantifying their accuracy in light of LOS estimations' accuracy and the 

mathematical impact of assumptions associated with each method. The outcome of this research 

is expected to assist geoscientists with implementing alternative methodologies in EWSs which 

leads to an improved reliability by acquiring a more accurate and truthful kinematics of 

movements. 
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Chapter 1: Introduction 

Landslides are widespread natural hazards in Canada. This type of geohazards leads to 

various levels of damage to the infrastructure, compromising the economic welfare and public 

safety of Canadians. Figure 1- 1 shows the risk associated with the occurrence of landslides across 

Canada, colour-coded based on the susceptibility of each point. An adverse combination of slope 

geometry, weak geological formations, precipitation and permafrost has led to a medium (colour: 

yellow) to high (colour: red) risk of landslides in the Prairies and southeastern Canada (P. T. 

Bobrowsky & Dominguez, 2012). Within the past 150 years, the death toll caused by landslides 

surpasses those caused by other natural hazards in total (Evans 1999). It is estimated that Canada’s 

economy faces a loss of $200~400 million annually (Clague & Bobrowsky, 2010) with this range 

increasing to $281-450 million to address the damages, in Western Canada alone, according to a 

more recent study (Porter et al., 2019). 

 

Figure 1- 1. Landslide susceptibility map of Canada (P. T. Bobrowsky & Dominguez, 2012) 



2 

 

Safe and reliable operation of infrastructures carries a high priority in asset management. 

Linear structures are heavily impacted due to the long nature of the corridor they are embedded 

within. Alberta Transportation reports about 500 sites traverse landslides.  78% of these cases are 

categorized as “active” with a significant portion of 60% affecting main provincial highway sectors 

(Tappenden & Skirrow, 2020). In British Columbia, a highway stretching from Horseshoe Bay to 

Pemberton hosted 154 landslides from 1856 to 2007 which is responsible for 18% of landslide-

related life casualties in that period within Canada (Blais-Stevens & Hungr, 2008). A total of 1277 

cases have been documented in a different study along B.C. Highway 99 and Trans-Canada 

Highway since 1999 (Hungr et al., 1999). Railways are also another linear structure frequently 

reported to traverse unstable sites. More than 2200 at-risk sites are reported in British Columbia 

(Hungr et al., 1999). While the exact number of actually affected sites is beyond estimation, 

managing the damages landslides on railway systems requires $10-18 million annually (Porter et 

al., 2019). However, the pipeline industry is perhaps the most affected one financially with $205-

305 million as a result of leaks, ruptures, re-routing, monitoring and stabilization. Non-linear 

structures are also impacted by landslide processes and the related mechanisms. The Sainte 

Marguerite dam in Quebec, Gardiner and Nipawin dams in Saskatchewan, Oldman River and 

Dunvegan dams in Alberta, and Peace Canyon, Site C, WAC Bennett, Seymour Falls and 

Cheakamus dams in British Columbia are examples of such in Canada and 153 similar cases also 

exist in the United States (Jaspar & Peters, 1979; Morgenstern & Simmons, 1982; Sauer, 1984; 

Houston, 2001; Schuster, 2006; Scammell et al., 2012; Scammell, 2013; Hendry et al., 2019).  

Stabilization options are often deemed infeasible as they lead to cost-ineffective, 

technically insufficient, and/or environmentally harmful solutions. Proactive monitoring strategies 

instead provide more practical solutions and have become consequently an integrated component 
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of risk management plans. A globally endorsed subset of these strategies is early-warning systems 

(EWSs). An EWS is defined as a “set of capacities to generate timely and meaningful warning to 

enable individuals, communities, and organizations to respond appropriately” (International 

Strategy for Disaster Reduction, 2009). EWSs are fed by measurements coming from various 

instruments where they are processed, and appropriate warnings will be issued based on the 

severity of the anticipated risk. In an attempt to increase efficiency, an EWS should be automated 

to an extent that the reliability of alarms is not impacted. This, however, is challenging considering 

that characteristics of the fed data span a whole wide spectrum in terms of spatio-temporal 

frequency as well as measurement precision. The rapid advancement of technologies in recent 

decades has been advantageous to enrich the collected datasets respecting the volume of 

measurements.  

1.1. Problem Statement 

The integration of novel techniques within an EWS should be associated with a 

comprehensive understanding of the mechanism of data collection and traits of yielded output. 

This calls for higher involvement of geoscientists with other fields such as data analysis and remote 

sensing. The first challenge is minimizing the scatter in time-series displacements. Raw readings 

from electronic devices are characterized by volatility and rapid variations, which is referred to as 

“scatter” herein after. Figure 1- 2 shows an example of displacement readings reported by a 

positioning system (Geocube) before and after filtration. Numerous studies reported the use of 

such scatter-contaminated readings. However, the data management and data analysis 

methodologies are frivolously treated. A rudimentary filter called simple-moving average (SMA) 

is frequently employed with no apparent reason but simplicity. In addition, the filtration intensity 

seems to be often chosen arbitrarily with no in-depth understanding of how it affects the perceived 
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kinematics. This lack of knowledge of SMA’s performance becomes even more crucial in 

determining the moment of onset of acceleration or forecasting the failure time.  

 

Figure 1- 2. Impact minimizing scatter in displacement readings on the velocity values (NOTE: data is realistic and collected by 

a Geocube unit on Ten-mile landslide, Sharifi, Hendry, Macciotta, et al., 2022) 

In-situ observations have been augmented by data provided through remote sensing 

methods such as interferometric synthetic-aperture radar (InSAR). It has been well-received in 

recent decades because of relatively lower associated costs and efforts than in-situ means of 

monitoring. InSAR is an all-day all-weather sensor that covers a wide area with an acceptable 

temporal sampling frequency, but it is associated with limitations as well. The SAR sensor is only 

capable of sensing displacements along a line aiming at the target (scatterer), called line-of-sight 

(LOS). This leads to a counter-intuitive way of demonstrating 3D movements in 1D. 1D LOS 

measurements prohibit determining the true magnitude and direction of velocities which 

complicates their application in an EWS. Decomposing LOS velocities is an ill-posed problem 

with more unknowns (3 velocity components) than knowns (2 LOS velocities from different 

satellite orbits). As a result, additional mathematical assumptions are required to successfully 
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decompose LOS velocities in 3D. Within this process, the main obstacle is the lack of an 

established mathematical methodology with documented accuracy. Many previous researchers 

have adopted a simplified approach which simply ignores the South-North velocity component 

given the near-polar orbit of SAR satellites. This suggestion seems to be a pragmatic solution 

rather than a scientific approach. It implies no movements along the South-North direction which 

does not agree with reality of landslide movements in a general case. 

1.2. Research Objectives 

Corresponding to the knowledge gaps discussed above, this study aims to investigate 

methodologies to determine an enhanced interpretation of the landslides kinematics which directly 

benefit EWSs. A higher-level category of objectives of this study corresponds to the following 

elements: data analysis and InSAR. The specific objectives of this study are as follows with the 

first two associated with data analysis and the remainder associated with InSAR: 

1. Investigating the impact of using SMA on the interpreted kinematics and compare its 

performance against two other filters, Gaussian-weighted moving average (GWMA) 

and Savitzky-Golay (SG); 

2. Investigating the effect of using the above filters on detecting the onset of acceleration 

moment and forecasting failure time using the inverse-velocity method; 

3. Measuring the combined precision of InSAR velocity estimations by ignoring the 

northward velocity component (simplifying assumption), combined with InSAR’s 

inherent uncertainties; 

4. Evaluating other decomposition methods which enforce a relationship between 

velocity components based on the ground geometry (topography-informed methods). 
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1.3. Overview of Methodology 

1.3.1. Sufficiency of Scatter Filters (Objectives 1 and 2) 

1.3.1.1. Approach 1: Numerical Analysis of Synthetic Database 

The filtration process is associated with the execution of a mathematical operation. 

Different filters employ different kernels such as averaging, weighted averaging or linear 

regression. This inevitably leads to different filtered results and a quantitative comparison of their 

performance is not possible because the true trend of displacements is not known.  A framework 

called “Numerical Analysis of Synthetic Database” is here developed accordingly. It attempts to 

create scattered displacements which resemble the raw readings an EWS receives directly from 

instruments. This framework starts by generating a series of known trends, called “scenario”, 

inspired by the regular trends reported in the literature. The variation of the methodology to reach 

objectives 1 and 2 is the type of generated scenarios. For the latter, accelerating and failing trends 

are considered while harmonical trends are mostly considered for objective 1. The scatter, 

randomly generated, is then added to the scatter-free scenarios at different variability levels which 

are later filtered using SMA, GWMA and SG at different filtration intensities. Considering the 

availability of true trends, it is now feasible to evaluate the behaviour of each filter in interpreting 

the kinematics by calculating the error.  

1.3.1.2. Approach 2: Analysis of Documented Landslides 

The second approach is applying the filters to the displacement of documented landslides. 

Although the true scatter-free trend is still unknown, examining the filtered results can provide 

further support to the first approach. The significant criteria of filter rating are to what degree the 

application of each filter underrepresents the kinematics while minimizing the volatility, 
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measurement lags, sensitivity to filtration intensity, and success toward outliers as well. The ten-

mile landslide, located in southwestern British Columbia is chosen for this purpose as several 

positioning devices, called “Geocube”, are installed at this location. Please refer to “Section 3.3” 

for further background information on this site. For objective 2, 17 datasets from 9 failed cases are 

gathered from the literature which correspond to various physical dimensions, geological settings, 

triggering factors and means of monitoring. For further information on these datasets, please refer 

to “Section 4.3”. Given that the actual failure time is known, it is possible to calculate the error in 

forecasting such a moment upon employing SMA, GWMA and SG. 

1.3.2. Precision of InSAR Decomposition by Simplifying Assumption (Objective 3) 

Two sources of uncertainty are considered for InSAR-evaluated kinematics: inherent 

InSAR precision along LOS and the simplifying assumption (ignoring the northward component). 

The impact of the latter is studied through the mathematical configuration of LOS projection. Eq. 

1. 1 states how true components of ground velocity at vertical (VV), Eastward (VE) and Northward 

(VN) can be used to calculate LOS velocity using the geometry of acquisition: 

(
VLOSAsc
VLOSDes

)= [
cos θAsc - sin θAsc cos αAsc sin θAsc sin αAsc
cos θDes - sin θDes cos αDes sin θDes sin αDes

] (
VV
VE
VN

), ( 1. 1 ) 

where Asc and Des subscripts attribute the parameter to the ascending and descending orbits, and 

𝜃 and 𝛼 are the side-looking angle of sensor and satellite trajectory as shown in Figure 1- 3. 

Reducing the velocity vector dimension to ignore VN leads to Eq. 1. 2: 

(
VLOSAsc
VLOSDes

)= [
cos θAsc - sin θAsc cos αAsc
cos θDes - sin θDes cos αDes

] (
Vv
Ve
), ( 1. 2 ) 
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where Vv and Ve are new estimated components following the simplifying assumption. Equating 

the left-hand sides of Eqs. 1. 1 and 1. 2 leads to the equations that can be leveraged in calculating 

the error of ignoring VN. For further information on the procedure, please refer to Appendix B in 

Chapter 5. The second source of uncertainty is InSAR’s ability to track the movements of targets 

on the ground based on the received backscattered energy of microwaves. Eq. 1. 3 presents the 

LOS precision of targets as a function of reflectivity (γ – also called “coherence”): 

Precision=
λ

4π
√
1-γ2

2γ2
, ( 1. 3 ) 

where 𝜆 is the typical microwave length which is about 5.5 cm for a typical SAR sensor operating 

at the C-band range of microwaves. The chosen study for this objective is Oldman River Dam, 

located in southern Alberta. Please refer to “Section 5.2” for further information.  

 

Figure 1- 3. Geometry of acquisition, featuring θ (side-looking or incidence angle) and α (trajectory or heading angle) 

More than 200 SAR scenes are processed and then, the LOS precision as quantified by Eq. 1. 3 is 

added to and subtracted from the LOS matrix in Eq. 1. 2. Given that the direction of movements 

is governed by the geological structure, the error induced by ignoring VN was compensated which 

finally leads to the calculation of combined precision. 
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1.3.3. Evaluating Topography-Informed Decomposition Methods (Objective 4) 

As Eq. 1. 1 suggests, there are 3 unknowns (velocity components in 3D) and two knowns 

(LOS velocities from ascending and descending orbits). This system of equations is under-

determined and simplifying assumption resolves it by reducing the unknowns. An alternative 

approach is adding to the knowns by enforcing a relationship between components. The surficial 

geometry of the ground has been a source of inspiration to this end. Eqs. 1. 4-1. 6 which are called 

the Surface-Parallel Flow Method, Aspect-Parallel Flow Method and Steepest-Terrain Following 

Method, respectively: 

VV=VEiE+VNiN, ( 1. 4 ) 

VE=VN tan β , ( 1. 5 ) 

VV=VEiE+VNiN AND VE=VN tan β , ( 1. 6 ) 

where iE and iN are elevation gradients in eastward and northward directions, respectively and β is 

the aspect angle of each point on the ground. To reach objective 4, more than 400 SAR scenes 

archived over Thompson River Valley by Canadian Radarsat-2 (U5 and U21 beams in descending 

orbit), and European Sentinel-1 (ascending and descending orbits) are analyzed. This corridor 

carries a significant financial and environmental significance that is compromised by several slow-

moving landslides with a record of 9 historic failures. Please refer to “Section 6.2” for more 

information. 3GPS devices installed on the Ripley landslide can facilitate reaching objective 4. 

First, InSAR analysis of multiple combinations of SAR stacks mentioned earlier is carried out. 

The decomposition by topography-informed assumptions is then conducted. Having the GPS 

measurements, the performance of decomposition methods is examined in terms of interpreting 

the magnitude and direction of velocity vectors. 
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1.4. Thesis Outline 

The presented thesis is organized into seven chapters. The following provides a summary 

of what each subsequent chapter presents: 

• Chapter 2 includes a brief overview of the previous studies corresponding to data analysis and 

InSAR elements of this thesis. 

• Chapter 3 (paper #1) presents the mathematical framework which is the Numerical Analysis 

of Synthetic Database using 12 different kinematics scenarios. The results of the application 

of SMA, GWMA and SG to the Ten-mile landslide displacements as reported by Geocubes 

are also presented in this chapter. The implication of each filter on the trend distortion, induced 

lag, fidelity to the true trend, handling outliers and underrepresentation of ground kinematics 

are discussed in the context of real-time monitoring. Furthermore, this chapter contains 

practical suggestions for selecting the filtration intensity. 

• Chapter 4 (paper #2) builds upon the framework discussed in Chapter 3 to specifically weigh 

the advantages and disadvantages of each filter at/near critical points: onset of acceleration 

(OOA) and failure. Using appropriate scenarios, the reliability of each in detecting OOA is 

probabilistically assessed as well as the error in forecasting the failure time. Additionally, this 

chapter discusses the accuracy of each filter in forecasting the failure time of 9 case histories 

if they were applied in real-time. 

• Chapter 5 (paper #3) first provides historical background on Oldman River Dam until 2015 

and proceeds to present the InSAR results. The analysis continues by analyzing the error of 

simplifying assumption, InSAR’s LOS error, and finally calculating the combined precision 

by taking into account both sources of uncertainty. This chapter also identifies an active area 

on the embankment and then concludes with a discussion on the mechanism of instabilities. 
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• Chapter 6 (paper #4) demonstrates how SPFM, SPFM coupled with the Least-Squares 

Method, APFM and STFM achieve the decomposed vectors of velocity. This is carried out by 

comparing the magnitude and geometry of interpreted vectors quantitatively against those 

shown by GPS devices on the Ripley landslide. This chapter continues to provide 

mathematical justification for the observed trends using novel methods developed in this study 

for the first time. 

• Chapter 7 collates the significant concluding remarks from previous chapters and brings this 

thesis to a close by introducing ideas for future follow-up studies. 
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Chapter 2: Literature Review 

This chapter presents a summary of the background information and published literature 

regarding both data analysis and InSAR elements of this thesis. A more comprehensive review 

could be found in the appropriate chapters, specific to each objective. The following sub-chapters 

address the following: 

• The necessity of scatter filtration and various filters used to this end; and 

• Different methods to decompose InSAR’s LOS velocities. 

2.1. Scatter Filtration 

The data reported by modern means of monitoring are often contaminated by scatter and 

the occurrence is beyond control. These unfavourable interferences can be caused by the external 

environment such as the atmosphere, or the quality of communicating signals due to the 

perturbation of electronic connections, power sources or other electro-magnetic instruments in the 

proximity (L. Li, 2011; G. Wang, 2011). Scatter is populated around the “true” displacement trend, 

such that the average separation is zero. A scatter set also has a finite and constant standard 

deviation through time. Several previous studies highlighted the impact of scatter on the quality of 

deductions and issues it can impose on the reliability of monitoring systems such as EWSs (Husaini 

& Ratnasamy, 2001; Intrieri et al., 2012; Michoud et al., 2013; Intrieri et al., 2017; Tan et al., 2020; 

Thirugnanam et al., 2020). As a result, the scatter should be reduced as much as possible without 

distorting the true displacement trends which filtration algorithms aim to achieve.  

Scatter minimization can be either performed on the frequency or time domain. The former 

is typically conducted using the fast Fourier transform (FFT) that aims to find the frequency 

content of a signal. FFT extracts the frequency content of a signal and by excluding frequencies 
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outside of a certain boundary, scatter filtration can be achieved. However, very raw values of 

voltage signals are required to follow this approach. This opportunity is not always provided by 

most instrument manufacturers. Even so, the existence of other external factors such as air 

temperature and pressure make scatter filtration problematic in this way. Additionally, one level 

of filtration (e.g., Kalman) is usually already applied and the received scatter in displacements is 

the residual of this initial filtration which along with previous reasons rejects the suitability of 

Fourier transform in this context. Additionally, information is provided at discrete frequency steps 

which  calls for interpolation techniques for frequencies in between (Henry, 2022). Non-stationary 

and non-periodic data (such as displacement or velocity) are also not appropriate to be filtered by 

FTF (Karl, 1989; Yoshizawa et al., 2011), but if one can manage even to transform the 

measurements to stationary, it is computationally intensive to transform back and forth for 

substantial amount of data as is the case for robust monitoring systems. As opposed to this, a short-

term Fourier Transformation has been adopted which makes the selection of window time 

extremely complicated (Kehtarnavaz, 2008). FTF has also a drawback when it comes to finite 

signals and the energy leaks from adjacent frequency bins that leads to a challenging decision on 

the filtration frequencies to be filtered out as one small variation leads to a different filtered 

kinematics (Harris, 1978). Finally, limited applications of using FTF in the landslide community, 

especially among geotechnical engineers, is a cause of concern in validating the filtered results 

while others such as filters that work in time domain are well-incorporated into the current practice 

and the applications in the literature are numerous (Sharifi et al., 2021). Interested readers may 

refer to the following studies for further information: Duhamel & Vetterli (1990), Luck (2014) , 

Rajaby & Sayedi (2022). 
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Filters that work on the time domain often work on a window-basis, meaning that they 

repeatedly perform an operation point-by-point as an imaginary window slides across the dataset. 

The mathematical operations executed in this window can be classified as recursive, kernel, or 

regression filters. Recursive filters, such as the exponential filtering function, calculate the filtered 

value at a given time based on the previous filtered value. Kernel filters, which include simple 

moving average (SMA – Eq. 2. 1) and Gaussian-weighted moving average (GWMA – Eq. 2. 1), 

calculate the filtered values as the weighted average of neighbouring measurements:  

y
î
=∑ wjyj

i+
p-1
2

i-
p-1
2

, ( 2. 1 ) 

where yj is the jth raw measurement in the sliding window, ŷ
i
 is the filtered value at ith data and 

wj is the weight coefficient. The SMA’s weight coefficient is identical for all points in the filtration 

window. It means that the weighted averaging simplifies into a simple averaging which leads to 

the same contribution of all points to the filtered value. The GWMA’s weight coefficient on the 

other hand follows its namesake distribution, Gaussian. 

Out of GWMA and SMA, the latter is frequently used in the literature largely due to its 

simplicity (Dick et al., 2015; Macciotta et al., 2016; Carlà, Farina, et al., 2017; Carlà, Intrieri, et 

al., 2017; Macciotta, Rodriguez, et al., 2017; Bozzano et al., 2018; Carlà et al., 2018; Intrieri et al., 

2018; Kothari & Momayez, 2018; Carlà et al., 2019; M. Chen & Jiang, 2020; X.-P. Zhou et al., 

2020; Grebby et al., 2021; Y. Zhang, Ma, et al., 2021; Y. Zhang, Tang, et al., 2021; Desrues et al., 

2022). Regression filters, another category of filters, calculate the filtered values employing 

regression analysis on unfiltered values (e.g., Savitzky-Golay, or SG) (Savitzky & Golay, 1964; 

Cleveland, 1979, 1981; Cleveland & Devlin, 1988; Reid et al., 2021). SG could be transformed 
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into a kernel filter (Appendix 3.A) but the distribution of weight values would be different. Carlà, 

Intrieri, et al. (2017) applied SMA and exponential filtering to multiple failed landslide cases and 

concluded the latter is inferior in terms of accuracy of forecasting failure time. On the other hand, 

Carri et al. (2021) cautioned the designers and users of EWSs against the use of SMA when rapid 

movements are expected. Published applications of filters other than SMA for landslide monitoring 

are scarce, and studies dedicated to comparing the functionality of those to that of SMA are limited. 

2.2. InSAR LOS Decomposition Methods 

Interferometric synthetic-aperture radar (InSAR) is a space-borne earth observation 

method that uses satellite imagery for applications ranging from fault characterization (B. Smith 

& Sandwell, 2003) and volcano monitoring (Di Traglia et al., 2021) to mapping subsidence 

(Motagh et al., 2017; Khorrami et al., 2020; J. Hu et al., 2022) and landslide displacements (X. 

Liu et al., 2021; Y. Wang et al., 2021). InSAR yields only part of movements which are along the 

sensor’s line-of-sight (LOS). This added ambiguity results in a less intuitive understanding of the 

kinematics of a landslide (Samsonov et al., 2013; Shi et al., 2018; Cenni et al., 2021). Schlögl et 

al. (2022) underlined that the incorporation of InSAR into EWSs faces several obstacles. One 

problem is setting alarm thresholds for regions with several landslides moving at different rates 

and directions which questions the sufficiency of LOS estimations. Ng et al. (2012), Samsonov et 

al. (2013), Khorrami et al., (2020), Ma et al. (2021), Chen et al. (2022) and many others suggest 

ignoring northward component  (simplifying assumption) due to the near-polar orbit of satellites 

(8-10° variance). Although studies adopting this technique are numerous, there are no studies to 

evaluate the error induced in other components of movements upon ignoring northward. Those 

who also attempted to quantify the error, like Fuhrmann & Garthwaite (2019), only achieved to 

express it relative to LOS error without actually quantifying the LOS error. This assumption is 
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most reasonable for phenomena with no significant northward movements, such as ground 

subsidence or landslides mainly sliding toward east or west. As a result, implications of exercising 

such assumption should be carefully investigated for other cases. 

Others have instead pursued different approaches when the northward component is 

sizable. Additional information can be incorporated from other variants of SAR analysis, external 

sources, or an a priori deformation model. The first group includes methods such as pixel offset 

tracking (Shi et al. 2018; Wang et al. 2018) and multi-aperture InSAR (Jo et al., 2017), which 

intend to determine the velocity along the direction orthogonal to the LOS (i.e., azimuth). 

However, these methods are less accurate than regular InSAR (on the centimetric order), time-

consuming to run, very sensitive to decorrelation, and not as applicable to slow-moving landslides 

with dim reflectivity (Bechor & Zebker, 2006; Simons & Rosen, 2007; Eriksen et al., 2017; Shi et 

al., 2018). In the second category of methods, external sources such as in situ instruments, mostly 

GNSS/GPS units, are used to infer 3D movements (Samsonov & Tiampo, 2006; Samsonov et al., 

2007; W. Zhu et al., 2014). This approach also faces several challenges including the shortfall of 

these units in terms of both quantity and uniform spatial distribution, which significantly limits the 

study area and requires the use of advanced mathematical techniques during post-processing stages 

(Hu et al. 2014). Finally, the last approach is employing an a priori deformation model, which 

involves exercising compatibility assumptions between the presumed failure kinematics and the 

calculated 3D velocity vectors. The used compatibility model includes the use of surficial 

geometry of the terrain and, thus, they are referred to as “topography-informed” assumption. 

Surface-Parallel Flow Model (SPFM), first introduced by Joughin et al. (1998) and used by others 

(Sun et al., 2016; Ao et al., 2019; Samsonov et al., 2020; X. Liu et al., 2021; Ren et al., 2022), 

assumes the velocity components follow the topography as follows (Eq. 2. 2): 
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VV=iEVE+iNVN, ( 2. 2 ) 

where H is the topography elevation, and iE and iN represent the elevation gradients in the eastward 

and northward directions, respectively. SPFM can be mathematically adjusted to only prompt one 

LOS geometry, hereafter referred to as Steepest Terrain Following Model (STFM), which has been 

adopted in previous studies as well (Bianchini et al., 2013; Herrera et al., 2013; Journault et al., 

2018; Yi et al., 2022). The last approach proposed to interpret 3D vectors is by dictating the 

velocity to follow the terrain’s aspect, here called the Aspect Parallel Flow Model (APFM), which 

has been employed by Y. Zhu et al. (2022) and Soltanieh & Macciotta (2022a, 2022b). 
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Chapter 3: Evaluation of Filtering Methods for Use on High-frequency 

Measurements of Landslide Displacements 

Contributions of the Ph.D. Candidate 

The material presented in this chapter, including the literature review, conceptualization, 

methodology development, analysis, draft preparation and revisions, are conducted by the Ph.D. 

candidate. The supervisors, Dr. Michael Hendry and Dr. Renato Macciotta, have reviewed all 

pieces presented in the published manuscript, cited below:  

Sharifi S, Hendry MT, Macciotta R, Evans T, 2022. “Evaluation of filtering methods for use on 

high-frequency measurements of landslide displacements”, Natural Hazards and Earth System 

Sciences, 22(2):411-430. https://doi.org/10.5194/nhess-22-411-2022. 

Contributions of This Chapter to the Overall Study 

Evaluating the performance of scatter filters calls for a knowledge of true trends of 

kinematics which is not provided in the received measurements by means of monitoring. A 

framework is introduced in this chapter to address this gap which involves generating scattered 

trends resembling the raw data. To assure its flexibility, the scatter set is scaled at 6 various levels, 

and superimposed on 12 kinematics scenarios which are iteratively generated corresponding to 10 

scales of monitoring periods. 3 filters – SMA, GWMA and SG – are applied to the synthetic 

database at various intensities. The error in interpreting the velocity of trends were then calculated 

to cast light on advantages and disadvantages of these filters. To minimize the lag in the filtered 

results caused by real-time nature of simulations, a chart is presented which examines the Geocube 

data received from the Ten-mile landslide. The developed methodology and findings in this 

chapter deliver the objective #1.  
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Abstract 

Displacement monitoring is a critical control for risks associated with potentially sudden 

slope failures. Instrument measurements are, however, obscured by the presence of scatter. Data 

filtering methods aim to reduce the scatter and therefore enhance the performance of early warning 

systems (EWSs). The effectiveness of EWSs depends on the lag time between the onset of 

acceleration and its detection by the monitoring system, such that a timely warning is issued for 

the implementation of consequence mitigation strategies. This paper evaluates the performance of 

three filtering methods (simple moving average, Gaussian-weighted moving average, and 

Savitzky-Golay), and considers their comparative advantages and disadvantages. The evaluation 

utilized six levels of randomly generated scatter on synthetic data as well as high-frequency global 

navigation satellite system (GNSS) displacement measurements at the Ten-mile landslide in 

British Columbia, Canada. The simple moving average method exhibited significant disadvantages 

compared to the Gaussian-weighted moving average and Savitzky-Golay approaches. This paper 

presents a framework to evaluate the adequacy of different algorithms for minimizing monitoring 

data scatter. 

Keywords: Landslide; Early Warning System; Scatter; Filter; Gaussian-Weighted Moving 

Average, Savitzky-Golay. 

3.1. Introduction 

Landslides are associated with significant losses in terms of mortality and financial 

consequences in countries all over the world. In Canada, landslides have cost Canadians 

approximately $10 billion since 1841 (Guthrie, 2013) and more than $200 million annually 

(Clague & Bobrowsky, 2010). Essential infrastructure, such as railways and roads that play vital 



20 

 

roles in the Canadian economy, can be exposed to damage if it transverses landslide-prone areas. 

Attempting to completely prevent landslides is typically infeasible, as stabilizing options and 

realignment may be cost-prohibitive or lead to environmental damage. This accentuates the 

significance of adopting strategies that require constant monitoring to mitigate the consequences 

of sudden landslide collapses (Vaziri et al., 2010; Macciotta & Hendry, 2021). 

In recent years, detailed studies have addressed the use of early warning systems (EWSs) 

as a robust approach to landslide risk management (Intrieri et al., 2012; Thiebes et al., 2014; Atzeni 

et al., 2015; Hongtao, 2020) . The United Nations defines an EWS as “a chain of capacities to 

provide adequate warning of imminent failure, such that the community and authorities can act 

accordingly to minimize the consequences associated with failure” (International Strategy for 

Disaster Reduction, 2009). Although an EWS comprises various components acting interactively, 

the core of its performance relies on its ability to detect the magnitude and rate of landslide 

displacement (Intrieri et al., 2012). Given that the timely response of an EWS determines its 

effectiveness, an accurate sense of landslide velocity and acceleration is necessary. Monitoring 

instruments able to provide real-time or near real-time readings such as global navigation satellite 

systems (GNSSs) and some remote sensing techniques are, satisfactory for this purpose (Yin et 

al., 2010; Tofani et al., 2013; Benoit et al., 2015; Macciotta et al., 2016; Casagli et al., 2017; Chae 

et al., 2017; Huntley et al., 2017; Rodriguez et al., 2017; Intrieri et al., 2018; Journault et al., 2018; 

Rodriguez et al., 2018; Carlà et al., 2019; Deane, 2020; Rodriguez et al., 2020; Woods et al., 2020, 

2021). These instruments can record the displacement of locations at the surface of the landslide 

with a high temporal resolution, which allows the monitoring system to track movements on the 

order of a few millimeters per year. In practice, the results are usually obscured by the presence of 

scatter, also known as noise, and outliers that affect the quality of observations. These unfavorable 
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interferences do not reflect the true behavior of the ground motion and stem from sources such as 

the external environment and the quality of the communication signals and wave propagation in 

the case of remote sensing techniques (G. Wang, 2011; Carlà, Intrieri, et al., 2017).  

Scatter can be defined as measurement data that are distributed around the “true” 

displacement trend, such that the average difference between the scatter and the displacement trend 

is zero and has a finite standard deviation. Scatter in displacement measurements can significantly 

impact the evaluation of slope movements performed on unfiltered data and decrease the reliability 

of an EWS. This can lead to false warnings of slope acceleration or unacceptable time lags between 

the onset of slope failure and its identification, and therefore a loss of credibility for an EWS  

(Lacasse & Nadim, 2009). As a result, scatter should be reduced as much as possible without 

removing the true slope displacement trends. The application of algorithms that work as filters 

aims to minimize the amplitude of measured scatter around the displacement trend.  

Several approaches have been proposed to filter displacement measurements based on 

either the frequency or time domain. Fourier and wavelet transformations aim to find the frequency 

characteristics of the data, then attenuate or amplify certain frequencies. These approaches are 

discussed in Karl (1989), who suggests they are generally unsuitable for non-stationary data such 

as monitoring data time series. Filters that work on the time domain can be classified as recursive, 

kernel, or regression filters. Recursive filters, such as the exponential filtering function, calculate 

the filtered value at a given time based on the previous filtered value. Kernel filters, which include 

simple moving average (SMA) and Gaussian-weighted moving average (GWMA), calculate the 

filtered values as the weighted average of neighboring measurements. Of these two kernel filters, 

SMA is frequently used in the literature largely due to its simplicity (Dick et al., 2015; Macciotta 

et al., 2016; Carlà, Farina, et al., 2017; Carlà, Intrieri, et al., 2017; Macciotta, Rodriguez, et al., 
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2017; Bozzano et al., 2018; Carlà et al., 2018; Intrieri et al., 2018; Kothari & Momayez, 2018; 

Carlà et al., 2019; M. Chen & Jiang, 2020; X.-P. Zhou et al., 2020; Grebby et al., 2021; Y. Zhang, 

Tang, et al., 2021; Y. Zhang, Ma, et al., 2021; Desrues et al., 2022). Regression filters calculate 

the filtered values by means of regression analysis on unfiltered values (e.g., Savitzky-Golay, or 

SG) (Savitzky & Golay, 1964; Cleveland, 1979, 1981; Cleveland & Devlin, 1988; Reid et al., 

2021). Carlà, Intrieri, et al. (2017) studied both SMA and exponential filtering on multiple failed 

landslide cases and concluded the latter is inferior in terms of accuracy of failure time prediction. 

On the other hand, Carri et al. (2021) cautioned the designers and users of EWSs against the use 

of SMA when rapid movements are expected. However, published applications of filters other than 

SMA for landslide monitoring are scarce, and studies dedicated to comparing the functionality of 

other filters to that of SMA are limited. 

This paper presents an approach to detect and remove outliers, evaluates the performance 

of three filters (SMA, GWMA, and S-G), and assesses their suitability to be utilized in an EWS. 

We evaluated three filters against the following criteria: 1) scatter is minimized, 2) true underlying 

displacement trends are kept with as little modification as possible, and 3) filtered displacement 

trends detect acceleration episodes in a timely manner. Moreover, the paper investigates the 

significance of the time lag between a landslide acceleration event and its identification by a 

monitoring system for the three filters evaluated. 

3.2. Methodology 

3.2.1. Synthetic Data Generation 

A numerical analysis on a synthetic dataset approach was adopted, which consists of 

synthetic dataset scenarios generated to resemble typical landslide displacement measurements, 
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including acceleration and deceleration periods. These scenarios are idealizations based on 

observations of typical landslide displacements published in the literature (Leroueil, 2001; Intrieri 

et al., 2012; Macciotta et al., 2016; M. B. Schafer, 2016; Carlà, Farina, et al., 2017; Scoppettuolo 

et al., 2020). A total of 12 dimensionless scenarios were built, with all data between the coordinates 

x=0, y=0 and x=1, y=1. The x value represents time, and normalization between 0 and 1 allows for 

extrapolation of the findings for variable displacement measurement frequencies (e.g., the full 

range of x could represent a week, a month, a year). The analysis of synthetic data focuses on the 

ability of different algorithms to minimize scatter and identify changes in measured trends; 

therefore, y represents any of the displacement measurement metrics of interest, e.g., displacement, 

cumulative displacement, velocity, inverse velocity, etc. Mathematical equations and graphical 

illustrations of the 12 scenarios are shown in Figure 3- 1.  

Nine of the scenarios are referred to as harmonic scenarios, which are characterized by 

gradual changes in the trend of parameter y. The remaining three scenarios show sudden variations 

at or near x=0.5, and are referred to as instantaneous scenarios. Considering the discrete nature of 

instrument measurements, and to account for different ranges in measurement frequencies, each 

scenario was generated several times, each time with a different number of points (Table 3- 1). 

The next step was adding random scatter to the scenarios to represent unfiltered displacement 

measurements. Macciotta et al. (2016) show the scatter in displacement monitoring for a GNSS 

used in their analyses fitted a Gaussian distribution. We validated the scatter distribution fit 

approximates a Gaussian distribution for the displacement data scatter of the case study in this 

paper. This assumption, however, has an underpinning theoretical base established by the central 

limit theorem in probability theory. It states that the mathematical summation of independent 

variables (such as scatter) goes toward a Gaussian distribution (S. W. Smith, 2013). As a result, 
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Figure 3- 1. Configuration of all synthetically generated scenarios 

the scatter was randomly produced from a normal distribution centered at zero, with extreme 

values truncated between −1 and 1 and a standard deviation of 0.20. Random generation of the 

scatter followed the techniques outlined in Clifford (1994) known as the acceptance-rejection 

method, which generates scatter values through a series of iterations until the algorithm generates 

the initial normal distribution. The amplitude of the scatter around the trend in parameter y was 

defined for each scenario by scaling the randomly generated scatter. This allowed for the 
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investigation of the effect of different scatter magnitudes on the performance of the filters. Scaling 

was done by defining the ratio n/t, which is the ratio of scatter amplitude (maximum deviation 

around the trend, termed n) to the range of values of the trend (t) in each scenario. Six levels of n/t 

(0.001, 0.005, 0.010, 0.050, 0.100, and 0.150) were considered when performing the analysis to 

cover a range of possible levels of scatter in unfiltered measurements. Figure 3- 2 shows two 

samples of synthetic unfiltered scenarios that are the result of superimposing scatter with n/t values 

of 0.05 and 0.10, respectively, on scenario No. 7. 

Table 3- 1. Number of points used to generate scenarios and examples of their corresponding time spans represented by the 

range of x from 0 to 1, if the measurement frequency is known (1-h and 1-m readings for illustrative purposes) 

Number of points 
Example monitoring frequency 

1-h readings 1-m readings 

1000 41.7 Days 16.7 Hours 

3000 4.1 Months 2.1 Days 

9000 1.0 Years 6.3 Days 

20000 2.3 Years 2.0 Weeks 

40000 4.6 Years 4.0 Weeks 

86000 9.8 Years 2.0 Months 

250000   5.8 Months 

500000   0.9 Year 

750000   1.4 Years 

1.00E+6   1.9 Years 

3.2.2. Data Processing Approaches 

3.2.2.1. Simple Moving Average 

SMA is a well-known method for scatter reduction that attempts to reduce scatter by 

calculating the arithmetic mean of neighboring points’ values. A constant-length interval (window 

or bandwidth) is used for the calculation for each point; this is also termed a “running” average. 

Eq. 3. 1 is the formulation of this method, which was used by Macciotta et al. (2016) to analyze 

GNSS data scatter: 
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p-1
2

p
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( 3. 1 ) 

where y
î
 is the filtered value, y

j
 is the unfiltered value, and p is the window length. The window 

length is constant across the dataset except for regions near the boundaries where fewer points are 

available. Accordingly, p will be adjusted to the number of available points that are indeed less 

than the value set by the user. This will cause variation in the effectiveness of the method at the 

extremes, which needs to be considered when evaluating the results of this approach. 

 

Figure 3- 2. The procedure of generating a scenario with scatter: (a) generated scenario trend, (b) randomly generated scatter, 

and two scenarios with scatter based on n/t values of (c) 0.05 and (d) 0.10. 
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3.2.2.2. Gaussian-Weighted Moving Average 

Varying the weights of the measurements within the calculation window in SMA can be 

used to develop different filtering methods. The largest weight can be given to the measurement 

at the time for which the calculation is being done, with weights decreasing for measurements 

farther away in time. One simple weighting function that can be adopted is the Gaussian (normal) 

distribution. Eq. 3. 2 is the formulation of the Gaussian-weighted moving average (GWMA):  

y
î
=∑ wjyj

i+
p-1
2

i-
p-1
2

, ( 3. 2 ) 

where wj is the weight coefficient based on the Gaussian distribution and the other terms follow 

the same definition as per SMA. 

3.2.2.3. Savitzky-Golay 

SG fits a low-degree polynomial equation to the unfiltered measurements within a window 

and defines the filtered measurements using the fitted curve (Schafer, 2011). Although this 

procedure seems dissimilar from the weighted averaging as discussed for GWMA, its function can 

be transformed into a kernel concept using the least-squares method if the data points are evenly 

spaced. The detailed procedure is presented in Appendix A. Figure 3- 3 shows the weight kernel 

over a window of seven points attained by fitting a quadratic polynomial. An immediate 

observation is that some points are given negative weights. If points are not evenly spaced, the 

weighting kernel cannot be used, and local regression analysis should be periodically conducted 

for each point. Such filtering is known as locally estimated scatterplot smoothing (LOESS). This 
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decreases the computational efficiency of filter performance and exponentially increases the 

execution time. 

 

Figure 3- 3. The weighting kernel of the Savitzky-Golay filter for seven points 

3.2.3. Evaluation of Processing Algorithms 

The synthetic monitoring data and data from the case studies were filtered using SMA, 

GWMA, and SG techniques. The filters were applied with different lengths of moving windows, 

from 0.01 (1%) to 0.1 (10%) of all monitoring points, referred to as the bandwidth ratio. These 

limits for the bandwidth ratio were selected based on literature reports for SMA. In the filtration 

process, we only used the points prior to the time for which the calculation is being made (point 

of interest, Figure 3- 4). This is to reflect the reality of displacement monitoring information as 

applied to EWSs. To this end, filters used the first half of their kernels, but the weights were 

multiplied by 2 in comparison to a symmetric window in order to keep the sum of weights equal 

to 1. 

All of these filters require the definition of the bandwidth. A roughness factor was defined 

to aid in the evaluation of the effect of bandwidth in reducing scatter. This factor is defined as (Eq. 

3. 3):  
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J2=
∫(ŷ

'')
2
dx

Ra
, ( 3. 3 ) 

Ra=∫ (y'')
2
 dx , ( 3. 4 ) 

where J2 is the roughness factor, ŷ
''
 is the second derivative of filtered measurements, Ra is the 

absolute roughness computed by Eq. 3. 4, and y'' is the second derivative of unfiltered 

measurements. The second derivative measures how much the slope of the line connecting two 

consecutive points changes, which itself is an indication of fluctuation. The greater this second 

derivative, the greater the variation. J2 was normalized to the overall curvature of the unfiltered 

scenario to determine the relative scatter reduction after the application of a filter, eliminating any  

 

Figure 3- 4. Concept of symmetric and non-symmetric window types in the filtration process 
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roughness associated with the real trend in the scenario. In limit states, a value of 1 means that 

fluctuations are similar to the unfiltered dataset, and therefore no improvement has been achieved; 

a value of 0 suggests the slope of a scenario remains unchanged and indicates a linear trend. 

Because all the scenarios, except the first, include trends showing concavity or convexity, a 

residual value for the roughness factor would be expected in the lowest limit state, meaning that a 

value of 0 is not necessarily a goal. J2 was used to infer the minimum value of bandwidth ratio 

after which no significant change in the fluctuation of results is achieved. Considering the second 

power in the formulation of J2, all observations are valid if the scenarios are mirrored (when they 

vary from 1 to 0, instead of 0 to 1). 

The filters are not expected to remove all scatter, and the error attributed to the residual 

scatter can be calculated using the root mean square error (RMSE). Given that velocity values are 

usually used as thresholds in an EWS, one concern is whether the filter should be applied to 

displacement values or velocity values derived from unfiltered displacements. To address this 

issue, two different approaches to filtering were investigated: direct and indirect. As a result, two 

different approaches using the RMSE were also utilized here. 

3.2.3.1. Direct Scatter Filtration 

Direct filtration means the filter is applied to the diagram of interest. If the filtered 

displacement values are the goal, and the filter is applied to unfiltered displacement values, then 

the filtering process is called direct filtration. The same concept applies when velocity values are 

derived using unfiltered displacements and the filters are then directly applied to the velocity 

values. In this approach, the RMSE follows Eq. 3. 5:  
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where RMSEd is the measurement of error in direct filtration, y
i
 is the value of the true trend (for 

the synthetic scenario), y
î
 is the filtered value, and m is the total number of points. This approach 

is often used in the literature (Macciotta et al., 2016; Carlà, Farina, et al., 2017; Carlà, Intrieri, et 

al., 2017; Carlà et al., 2018; Intrieri et al., 2018; Carlà et al., 2019). 

3.2.3.2. Indirect Scatter Filtration 

Some EWSs can apply the filter to the displacements but use velocity trends as the metric 

for evaluation. In this case, the filtered velocity values will be computed using the filtered 

displacements. Indirect filtration indicates the diagram of interest is the first derivative of the 

diagram to which the filter is applied. The RMSE, in this case, is defined as (Eq. 3. 6): 

RMSEi=√
1

m
∑ (ŷ

i

'
-y
i
' )
2

m

i=1

, ( 3. 6 ) 

where RMSEi is the measurement of error in indirect filtration, y
i
'  is the first derivative of the true 

trend, ŷ
i

'
 is the first derivative of filtered data (derived velocity after the filter is applied to the 

displacements), and m is the total number of points. Similar to J2, all observations are valid for the 

mirrored scenarios of those presented in Figure 3- 1. This is a consequence of using the second 

power in the definition of RMSEi and RMSEd. 

3.2.4. Lag Quantification 

Only antecedent measurements are fed into the filters, which is expected to result in a lag 

between the true trend and its identification by the filters. This lag means the calculated value of 
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velocity or displacement occurred sometime in the past. Consequently, reducing this lag means 

less time is lost with respect to providing an early warning. To quantify the induced lag, the filtered 

diagrams of all scenarios at all n/t ratios and bandwidth ratio values were shifted backwards a 

number of points equivalent to 0.001 (0.1%) to 0.1 (10%) of all generated points. We refer to this 

as the shift ratio in the rest of this paper. This shift of filtered diagrams is expected to increase their 

similarity with the true trend until the best correlation is achieved. The R2 test was used to 

determine how well the shifted and filtered results replicate the underlying trend.  

3.2.5. Geocube Differential GNSS System 

A Geocubes system is a network of differential global navigation satellite system (GNSS) 

units that work with a single frequency (1572.42 MHz), making it cost-effective (Doberstein, 

2012; Benoit et al., 2014; Rodriguez et al., 2018). Geocubes communicate with each other through 

radio frequency, and a reference unit outside the boundaries of the landslide is assumed as static 

for differential correction to increase the poor accuracy associated with single frequency GNSSs  

(Benoit et al., 2014; Rodriguez et al., 2018). The ability of this system to achieve real-time 

positioning, remote data collection, and processing makes it a suitable candidate for incorporation 

into an EWS. As a result, Geocube data are used in this study to evaluate the performance of the 

three mentioned filters. 

3.2.6. Outlier Detection 

Outliers are defined herein as abnormal inconsistencies (e.g., displacement directions, 

magnitudes) when compared to the majority of observations in a random sampling of data (Zimek 

& Filzmoser, 2018). Techniques for outlier detection have been proposed based on the statistical 

characteristics of datasets. One common example is the Z-score method, which calculates the mean 
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and standard deviation of data within a defined interval and identifies outlier data as those beyond 

three standard deviations from the mean (Rousseeuw & Hubert, 2011). A limitation of this kind of 

approach is the sensitivity of the mean and standard deviation to the outlier data points, which has 

led to the development of other methods that use other indices such as the median (Salgado et al., 

2016). One such technique that was adopted in this study is the Hampel filter (Hampel, 1971). In 

this method, the median of the displacement measurements within a running bandwidth is 

calculated and data outside a defined threshold from the median are identified as outliers. The 

threshold is defined as a constant (threshold factor) multiplied by the median absolute deviation. 

An asymmetric window with a bandwidth ratio of 0.004 (0.4%) and a threshold factor of three 

were adopted following previous studies (Davies & Gather, 1993; Pearson, 2002; H. Liu et al., 

2004; Z. Yao et al., 2019). The data identified as outliers were then removed from the dataset. 

3.3. Study Site – Ten-mile Landslide 

The Ten-mile landslide is located in southwestern British Columbia (BC), in the Fraser 

River Valley north of Lillooet (Figure 3- 5a). It is a reactivated portion of a post-glacial earthflow  

(Bovis, 1985) that was first recognized in the 1970s. The landslide velocity has increased from an 

average of 1 mm/day in 2006 to 6 mm/day in 2016, with a maximum measured velocity of 10 

mm/day (Gaib et al., 2012; BGC Engineering Inc., 2016). The movement of this landslide impacts 

the integrity of BC Highway 99 and a section of railway operated by Canadian National Railway 

(CN) (Carlà et al., 2018), with most movement limited to the volume downslope from the railway 

due to the installation of a retaining wall (Macciotta, Carlà, et al., 2017). Despite the stabilization 

work done to date, the uppermost tension crack has retrogressed approximately 200 m in 45 years 

and is now situated 60 m upslope of the railway track. The landslide lateral extents have not 

expanded since 1981 according to the aerial photographs (Macciotta, Rodriguez, et al., 2017). The 
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Ten-mile landslide is currently approximately 200 m wide, 140 m high, and has a volume of 0.75 

to 1 million m3, moving towards the Fraser River on a continuous rupture surface with a dip of 

about 22 to 24°, which is sub-parallel to the ground surface (Rodriguez et al., 2017; Donati et al., 

2020). The elevation of the shear surface and mechanism of the landslide have been inferred from 

the readings of multiple slope inclinometers installed in 2015 (BGC Engineering Inc., 2015). 

The bedrock in this region consists of volcanic rocks, such as andesite, dacite, and basalt, 

and is overlain by Quaternary deposits (Macciotta, Carlà, et al., 2017; Carlà et al., 2018; Donati et 

al., 2020). The thickness of the landslide varies between 20 and 40 m and the ground profile from 

the surface to depth comprises medium to high plastic clays and silts overlying colluvium material 

and glacial deposits, overlying bedrock (BGC Engineering Inc., 2015). The stratigraphy of the 

sedimented soils in the landslide area notably varies from one borehole to another and reflects the 

complex stratigraphy of the earthflow. 

A total of 11 Geocubes were installed at the Ten-mile landslide in 2016. Figure 3- 5b is a 

front view of the landslide showing the locations of the Geocube units. Units 44 and 50 are installed 

near the uppermost tension crack identified as the current landslide backscarp, unit 69 is 30 m 

above the backscarp, and unit 39 is used as the reference point. Please note that unit 69 is used as 

the fixed Geocube, and is not shown in Figure 3- 5b. The other units are located within the 

boundaries of the landslide, with a maximum distance between units of 310 m (Rodriguez et al., 

2018). The time step between every two consecutive measurements is 60 s. Figure 3- 6 shows the 

displacements of units 46 and 47, which were the largest in comparison to other Geocubes.  
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Figure 3- 5. (a) Location of the Ten-mile landslide (© Google Earth) and (b) front view of the Ten-mile landslide and distribution 

of Geocubes on its surface (Macciotta, Rodriguez, et al., 2017; Rodriguez et al., 2018) 

 

Figure 3- 6. Cumulative horizontal displacement of Geocube units No. 46 and 47 
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3.4. Results 

3.4.1. Synthetic Analysis 

Figure 3- 7 shows the roughness value (J2) of Scenario 6 for SMA, GWMA, and SG on a 

semi-logarithmic scale. This figure illustrates how, regardless of the n/t ratio, J2 substantially 

decreases as the bandwidth ratio increases to 0.01 and then asymptotically approaches a final value. 

This means that increasing the bandwidth ratio drastically reduces scatter; however, its 

effectiveness is restricted as the bandwidth ratio increases above 0.01. This observation was 

consistent for other scenarios. J2 values (including Scenario 6 in Figure 3- 7) indicate that J2 

approaches its minimum at bandwidth ratio values of 0.03 to 0.04, regardless of the filter selected.  

 

Figure 3- 7. Variation of roughness factor for Scenario 6 with respect to the applied filter on a semi-log scale 

3.4.1.1. Effect of Filters on Trend Distortion 

Scenarios 11 and 12 were first analyzed to evaluate the degree to which the trend was 

preserved by these filters, as peaks made it easier for visualization. Figure 3- 8a shows the true 

trend of Sscenario 11 along with two SMA-filtered scenarios at bandwidth ratios of 0.04 and 0.10, 
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respectively. This figure shows that, as the SMA filter bandwidth increases, the peak in 

measurements is identified at a later time than the true trend (x=0.5) and the magnitude of the peak 

is reduced (more than 70% reduction at a bandwidth ratio of 0.10). Furthermore, as the bandwidth 

ratio increases, the “instantaneous” nature of the peak is lost to a more transitional variation. This 

highlights a disadvantage of SMA when handling sudden changes in data trends. The calculated x 

value of the peak in Scenario 11 is plotted for different bandwidth ratios and for all three filters in 

Figure 3- 8b. This figure shows the time at which the peak is identified lags as the bandwidth ratio 

increases for all filters; however, GWMA and SG identify the peak with a much smaller lag, 

independent of the n/t ratio. As an example, for a year of monitoring data at a frequency of 30 s 

and bandwidth ratio of 0.10, SMA, GWMA, and SG predict the peak point approximately 17, 3.5, 

and 2.7 days after the real peak, respectively. This lag can be attributed to the utilization of an 

asymmetric window, which leads to a lagged response of the filter. As more points are included in 

the filtering procedure (increasing bandwidth ratio), this lag increases because the averaging 

process is sensitive to window type. The degree of sensitivity, however, depends on the filter. 

Figure 3- 8c shows the variation of the peak magnitude with respect to the bandwidth ratio for all 

three filters. SMA and GWMA both underestimate the peak value, and the difference between the 

calculated peak and real peak increases as the bandwidth ratio increases. SMA calculations 

underestimate the peak more than twice as much as GWMA. On the contrary, SG intensifies the 

peak up to a bandwidth ratio of 0.04, with the impact tending to diminish at larger bandwidth 

ratios; it predicts the true value at a bandwidth ratio value of almost 0.09.  
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Figure 3- 8. (a) An example of peak displacement by applying SMA, and variation of (b) peak position and (c) peak value with 

respect to the filter and bandwidth ratio used (original peak at 0.5) 

Scenario 12 was used for a detailed evaluation of the ability of these filters to conserve the 

underlying original trend. Figure 3- 9 shows Scenario 12 and the filtered results for all three filters 

and an n/t ratio of 0.15. This scenario and these specific parameters were selected for illustration 

purposes as they allow visual identification of differences for discussion. The SMA filter 

considerably underestimates the magnitude of the peak at a bandwidth ratio of 0.04, which should 

be the minimum bandwidth ratio according to Figure 3- 7. At a bandwidth ratio of 0.10, the filtered 

diagram is distorted in comparison to the true trend and the initial peak is not identified. GWMA 

at a bandwidth ratio of 0.04 shows less underestimation of the peak magnitude, and a slight lag is 

visually observed at a bandwidth ratio of 0.10. This indicates the significantly better performance 

of GWMA over SMA. SG results for both bandwidth ratios closely identify the time and 

magnitude of both peaks, indicating yet better performance. However, the peak is artificially 

intensified at a bandwidth ratio of 0.04, and a significant drop occurs well beyond the true trend 

immediately after the second peak for both bandwidth ratios (pulsating effect), which was also 

observed in Scenario 11. Increasing the degree of the polynomial fitted as part of the SG 

methodology was not completely effective at eliminating this effect. The pulsating effect was also 
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observed when a symmetrical window was utilized and is attributed to the negative weights in the 

SG kernel. 

 

Figure 3- 9. Filtered results of Scenatio 12 with scatter using SMA (a,d), GWMA (b,e), and SG (c,f) at bandwith ratios 

(BRs) of 0.04 (a-c) and 0.10 (d-f) 

3.4.1.2. Results of Direct Scatter Filtration 

 Figure 3- 10 shows the RMSEd of all three filters for all the harmonic synthetic scenarios. 

This figure shows that, for these numerical analyses on synthetic scenarios, the error depends 

linearly on the bandwidth ratio for all of the filters and does not depend on the scenario or n/t ratio. 

SMA shows the greatest difference from the true trend, followed by GWMA (approximately 60% 

less difference than SMA). SG, on the other hand, almost lies on the horizontal axis for all the 

bandwidth ratios, which means the filtered results yield near-zero error. Figure 3- 10 also shows 

how the error increases as the bandwidth ratio increases. This can be attributed to the utilization 
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of an asymmetric window, which leads to a lagged response of the filter. As more points are 

included in the filtering procedure (increasing bandwidth ratio), this lag increases and, 

consequently, causes a larger error. The RMSEd of filters for the instantaneous synthetic scenarios 

are shown in Figure 3- 11. In Scenario 10, the same behavior as noted for the harmonic scenarios 

can be seen for SMA and GWMA, whereas SG is not as accurate. This is more noticeable in 

Scenarios 11 and 12 in which SG becomes less accurate than GWMA at larger bandwidth ratios. 

This result shows that SG cannot handle the instantaneous scenarios as satisfactorily as the 

harmonic ones. The errors related to SMA and GWMA for the instantaneous synthetic scenarios 

show non-linear behavior and are greater when compared to the harmonic scenarios. Figure 3- 11 

clearly shows all filters are challenged by the instantaneous variations when compared to gradual 

ones in direct filtration. 

 

Figure 3- 10. RMSEd fpr the harmonic scenarios 
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Figure 3- 11. RMSEd for the instantaneous scenarios 

3.4.1.3. Results of Indirect Scatter Filtration 

Figure 3- 12 shows the RMSEi results for the harmonic scenarios (when performing 

indirect filtration) on a semi-logarithmic scale. We observed that the error considerably decreases 

as the bandwidth ratio increases to 0.02; however, to highlight the variation of error in the range 

of interest for the bandwidth ratio, only RMSEi values corresponding to bandwidth ratios greater 

than 0.04 are plotted in Figure 3- 12 and Figure 3- 13. In Figure 3- 12, the error for the GWMA is 

either equal to or slightly less than the error for the SMA, and SG shows the least error for the 

harmonic scenarios. The RMSEi results for the instantaneous scenarios (Figure 3- 13) are similar 

to those for the harmonic scenarios for large n/t ratios (0.05, 0.10 and 0.15). For small n/t ratios, 

the GWMA is superior at bandwidth ratios above 0.06, and SG has the worst performance. 
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Figure 3- 12. RMSEi for the harmonic scenarios on a semi-log scale 

3.4.1.4. Lag Quantification 

The non-symmetric inclusion of points causes the identification of a lag in the trend of 
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SMA grossly lags with respect to the identification of any change, and GWMA has a reduced lag 

when compared to SMA. 

 

Figure 3- 13. RMSEi for the instantaneous scenarios 

Figure 3- 15a shows an example of the R2 correlation for Scenario 7, comparing the original 
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values. R2 calculations are shown for the filtered data (shift ratio of 0) and as the filtered trends 

are shifted backwards in time (negative shift ratio values). In this analysis, the peak R2 value 

(largest correlation between the shifted filtered results and original trend) indicates the shift 

required to minimize the lag in identifying the original trend changes, therefore providing a 

quantitative approach to calculating the lag in parameter x. In the example in Figure 3- 15a, the 

lag corresponded to 0.018 (1.8%) of the total points. 
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Figure 3- 14. Scenario 10 with and without scatter, and with scattered results filtered by SMA, GWMA and SG for an n/t value of 

0.15 and a bandwidth ratio of 0.04 

 

Figure 3- 15. (a) R2 values for Scenario 7 with filtered and shifted results at an n/t value of 0.01 and bandwidth ratio of 0.04 and 

(b) shift ratio at peak R2 for all scenarios and n/t ratios, with the mean (solid line) bounded by one standard deviation (dashed 

lines) 
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for all scenarios and n/t values, bounded by one standard deviation, for GWMA and SMA. Table 

3- 2 shows linear and quadratic regressions of this correlation and the strength of the correlation 

in terms of R2 and RMSE. Figure 3- 15b quantitatively shows that GWMA lags less than SMA 

with respect to identifying changes in measurement trends. Moreover, the uncertainty associated 

with lag for SMA is greater than for GWMA because of the larger standard deviation. Figure 3- 

15b quantifies how increasing the bandwidth ratio increases the lag with respect to identifying true 

measurement trends and, although large bandwidth ratios decrease the scatter in data, the 

bandwidth ratio should carefully balance minimizing both scatter (J2) and lag (shift ratio). SG is 

not included in this analysis as the method resulted in no significant lag in identifying changes in 

measurement trends; however, it had the disadvantages previously noted including pulsating 

effects and overestimating peak values. 

Table 3- 2. Regression correlations between shift ratio (SR) and bandwidth ratio (BR) with the strength of the correlation in terms 

of R2 and RMSE 

 Linear regression Quadratic regression 

S
M

A
 

SR=-0. 0  ( R) 
R2=0.9940 

RMSE=0.0014 
SR=-1.323( R2)-0.4049( R) 

R2=0.999  

RMSE=3.24E-4 

G
W

M
A

 

SR=-0.1  3( R) 
R2=0.9996 

RMSE=1.2963E-4 
SR=-0.11 1( R2)-0.1691( R) 

R2=0.9999 

RMSE=3. 6 2E-  

3.4.2. Results on the Ten-mile Landslide 

Unfiltered results reported by Geocubes 46 and 47 installed on the Ten-mile landslide were 

processed by all three filters. To illustrate to the reader through visual inspection the difference 

between the performance of SMA, GWMA, and SG, only a 200-day window of displacement data 

from Geocube 46 and filtered points produced by direct filtration are shown in Figure 3- 16. Figure 

3- 16a also features an inset showing scaled Scenario 4, which resembles the general trend of 
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Geocube 46 data for the period from day 200 to 400. Figure 3- 16 shows that increasing the 

bandwidth ratio reduces the scatter, but increases the lag in the filtered results, consistent with 

observations on the synthetic datasets. For bandwidth ratios larger than 0.04, SMA becomes 

insensitive to some short-scale (20- to 30-day) trends in the data (qualitative visual inspection). As 

an example, at a bandwidth ratio of 0.10, SMA suggests the displacement of Geocube 46 follows 

a bi-linear trend with an inflection point at day 240, while unfiltered points and other filters suggest 

other periods of acceleration and deceleration. Importantly, SG is sensitive to even subtle variation 

and does not show significant lag. 

Figure 3- 17 shows the filtered velocity values obtained by directly filtering the calculated 

velocities and by indirectly filtering the displacement values before calculating the velocity from 

Geocube 46 data. The direct and indirect filtering approaches demonstrated similar performance 

in terms of scatter reduction for Geocube 46 data. As the bandwidth ratio increases, SMA tends to 

significantly attenuate the local maximum and minimum points in comparison to results at smaller 

bandwidth ratios, indicating a probable loss of information about the landslide behavior and 

sensitivity of this filter to the bandwidth ratio, as also noted in Figure 3- 16 (curvature loss in SMA 

results). Indirect filtration by SMA seems to be limited near the boundary at time zero, resulting 

in a subdued replica of direct filtration. The length of this region is found to be governed by the 

bandwidth ratio, as the necessary number of points for filtering in this portion has not been 

provided to the filter. This is also observed in SG results. This problem was not found in GWMA 

results, as direct and indirect filtration both follow the same pattern. GWMA and SG are both able 

to preserve the velocity variation even at the most intense filtration (bandwidth ratio of 0.10); 

however, variations between local maxima and minima are more extreme in SG than GWMA 

results. This is attributed to peak overestimation (Figure 3- 8 and Figure 3- 9) or a pulsating effect  
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Figure 3- 16. Unfiltered displacement of Geocube 46 data vs. time and data filtered by SMA, GWMA, and SG for bandwidth 

ratios (BRs) of (a) 0.04, (b) 0.07, and (c) 0.10. 

superimposing on the peaks/troughs. Moreover, the SG results still demonstrate relatively large 

fluctuations even at the largest bandwidth ratio. This means that the application of SG might still 

trigger false alarms in an EWS if the landslide is moving at a faster rate or experiencing different 
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episodes of acceleration and deceleration. To avoid this, a larger bandwidth ratio should be used 

but this can be problematic due to the higher computational effort required and issues that might 

follow, such as the pulsating effect. 

Results for Geocube 47 confirm the same observations made for Geocube 46 but also allow 

for an evaluation of the significance of outliers on the filtered results. Figure 3- 18a displays the 

outliers detected in the displacement diagram of Geocube 47 data along with the threshold 

established by the Hampel algorithm using an asymmetric window, a bandwidth of 0.4% and a 

threshold factor of 3. Figure 3- 18b-d shows a magnified portion of the displacement measurements 

for Geocube 47 filtered by each of the three filters at three different bandwidth ratios before the 

elimination of outliers. This highlights the necessity of outlier elimination before the application 

of any scatter filter. These plots show that detecting and removing outliers significantly impacts 

the performance of SG, as the presence of the outlier generates a peak that follows the outlier 

measurement and is followed by a sudden decrease that drops well beyond the data trend. SMA 

tends to widen the time range affected by the outlier more than GWMA but, for the most part, the 

SMA-filtered results are almost parallel to the underlying trend. All filters appear to be 

significantly impacted by the outlier value, suggesting a pre-processing filter is required to remove 

outliers regardless of the use of SMA, GWMA, or SG to reduce scatter. The outliers were 

successfully identified and removed after the application of the Hampel algorithm, and the above-

mentioned effects were no longer observed in the filtered results. 

 



49 

 

 

Figure 3- 17. Indirect and direct filtration results of Geocube No. 46 velocity values for bandwidth ratio (BR) values of (a) 0.04, 

(b) 0.07, and (c) 0.10. 

3.4.2.1. Lag Minimization in Filtered Geocube Results 

The lag between unfiltered and filtered data for Geocube 46 (Figure 3- 16) is consistent 

with the synthetic database results. The lag quantification results (Figure 3- 15b) were used to 

provide a correction value for the filtered Geocube results. The shift ratios used for this purpose 

with respect to each filter and bandwidth ratio are tabulated in Table 3- 3. To determine whether  
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Figure 3- 18. Unfiltered and filtered displacement measurements for Geocube 47 at bandwidth ratios (BRs) of (a) 0.04, (b) 0.07 

and (c) 0.10 

the results of lag correction using the mean correlations derived from the synthetic scenarios (Table 

3- 2) were acceptable, the filtered diagrams were shifted (using the mean line for GWMA and 

values between the mean and lower boundary for SMA) and different portions of the displacement 
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diagrams for Geocubes 46 and 47 were examined. Some examples are shown in Figure 3- 19. The 

mean and standard deviation of the scatter around the trend (error distribution) were calculated by 

assuming a linear trend within the short periods of analysis (considered an approximation of the 

true displacement trend for the short time interval). These were also calculated for the filtered and 

shifted diagrams. The closer the mean and standard deviation of the filtered and shifted data are to 

that obtained from the linear trend, the better the performance of the lag correction based on the 

results from the synthetic scenarios. As an example, for the period from day 250 to 260, the 

GWMA resulted in a standard deviation of 0.001 to 0.0015 for bandwidth ratios from 0.04 to 0.10, 

respectively; corresponding values for SMA to 0.0018 to 0.0021. This illustrates that shifted 

GWMA results are closer to the true (scatter-free) displacements because the standard deviations 

of scatter inferred by this filter are closer to the true scatter, although both have good agreement 

with the true scatter. The means of inferred scatter by both filters are also close enough to the mean 

of the true scatter (almost zero). The results show the statistical indices of scatter inferred from the 

filtered shifted displacement measurements closely agree with that considered to be true scatter, 

and therefore the filtered displacement measurements are corrected for lag. This suggests the 

correlations stated in Figure 3- 15b and Table 3- 2 based on the synthetic scenarios are applicable 

to minimize the lag for the Geocube system at the Ten-mile landslide.  

Table 3- 3. Shift ratios used for lag minimization of Geocube 46 displacements 

Bandwidth ratio 
Shift ratio 

SMA GWMA 

0.04 -0.02 -0.007 

0.07 -0.035 -0.012 

0.10 -0.06 -0.018 



52 

 

 

Figure 3- 19. Mean and standard deviation of scatter inferred by SMA and GWMA in comparison with true scatter in the 

displacement of Geocube 46 

3.5. Discussion 

Previous studies dedicated to landslide monitoring consistently adopt SMA for scatter 

minimization in displacement data. However, the adequacy of this filter and the effect of 

bandwidth selection were not well understood. Analyzes conducted on synthetic databases in this 

study using a roughness factor (J2) demonstrate that at least 4% of the total observations should be 

fed into the filter to ensure fluctuations are sufficiently reduced.  

The results of this study show that SMA tends to considerably distort the underlying trend 

at a bandwidth ratio of 0.10 (Figure 3- 8 and Figure 3- 9), and its lagged response with respect to 

real-time monitoring is almost three times that of GWMA results. As a result, a bandwidth ratio 

between 0.04 and 0.07 is suggested. However, we caution that the bandwidth should be selected 

with complete awareness that SMA is highly sensitive to bandwidth, and sensitivity analyses on 
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bandwidth are recommended when defining an EWS. Corresponding observations were made 

during the analysis of displacement data from Geocubes installed on the Ten-mile landslide.  

Error calculations show that GWMA and SG outperform SMA in both direct and indirect 

filtration and are more successful in preserving the true displacement trend. The near-zero lagged 

response of SG makes it a notable candidate for developing an EWS. Nonetheless, its intrinsic 

shortcoming in handling peaks, leading to a pulsating effect, will pose challenges for its utilization. 

The bandwidth range used for SMA is also suggested to be applied with the SG filter.  

GWMA results suggest a proper trade-off can be achieved between minimizing the lag 

time and scatter and avoiding the pulsating effect. Compared to SMA and SG, GWMA is less 

sensitive to changes in the bandwidth. Analyses focused on the Geocube data also confirm that 

GWMA is capable of constraining the fluctuations in the velocity diagram while not attenuating 

variations in the displacement rate diagram. Moreover, the lag quantification chart proposed could 

reliably capture the required shift with a greater degree of confidence in comparison to SMA even 

at the largest bandwidth ratio studied here (0.10). The bandwidth for GWMA can therefore range 

from 0.04 to 0.10. Moreover, we observed consistency between direct and indirect filtration results 

using GWMA but greater differences when using SMA or SG results. This was especially the case 

in the early parts of the datasets and at some locations where outlier elimination was likely 

ineffective. 

Filter and bandwidth selections should not be arbitrarily or purely empirical, as differences 

in outcomes can be substantial. An automated surveillance system for landslides demands stability 

in filter performance for a variety of circumstances, considering the ground can experience 

irregular sequences of acceleration and deceleration. The results here suggest practice moves away 

from the adoption of SMA due to the limitations discussed. SG demonstrates some inconsistent or 



54 

 

erratic performance for certain displacement trends, which is detrimental although overall the error 

is smaller than for SMA. On the balance of its strengths and limitations as evaluated in this study, 

GWMA appears to be the more robust approach. 

3.6. Conclusions 

This study evaluated the suitability of SMA, GWMA, and SG filters for scatter reduction 

of datasets targeted for use in an EWS. A total of different 12 scenarios with harmonic and 

instantaneous changes were synthetically generated and random variations with Gaussian 

distribution were then added to produce unfiltered results. The three filters considered were then 

each applied with different bandwidths and the error computed. These filters were also 

successfully applied to the records from two Geocubes installed on the Ten-mile landslide. The 

results led to the following conclusions: 

• When used for direct filtration of harmonic scenarios, the error resulting from the GWMA 

approach is approximately one-third that of the SMA approach. The SG approach results in 

near-zero error regardless of the values of the bandwidth ratio and n/t. When used for direct 

filtration of instantaneous scenarios, the superiority of SG is no longer unconditional and 

depends on the bandwidth ratio; this reflects the fact that SG cannot appropriately handle 

peaks in the velocity diagram. 

• When used for indirect filtration of harmonic scenarios, SG again outperforms the other 

methods. The error associated with GWMA is marginally less than for SMA. These 

observations are not valid when the filters are applied to instantaneous scenarios, as GWMA 

results in less error than SG at bandwidth ratios above 0.03.  
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• Detailed investigations with Scenarios 11 and 12 demonstrate that SMA distorts the 

underlying trend by displacing and sometimes neglecting peak(s), while GWMA and SG tend 

to preserve them somewhat similarly. 

• Due to the presence of negative weights in the SG kernel, some artificial smaller troughs and 

peaks are created after major peaks. This phenomenon, referred to herein as a pulsating effect, 

results in an unfavorable performance of SG on the velocity and displacement diagrams, 

especially in the presence of outliers. 

• Investigations on the roughness factor reveal the bandwidth ratio should be at least 0.04. 

Taking this into account, GWMA seems to be the most reasonable option as the related 

uncertainties are much smaller than for SG and the error is acceptable and less than for SMA.  

• A consequence of using asymmetric windows in the filtering process is a lag in the SMA and 

GWMA results that increases with increasing bandwidth ratio. Lag quantification suggests a 

correlation between the needed shift and bandwidth ratio that can be used to eliminate the lag. 

SMA requires approximately three times the shift of GWMA on average. 

• Application of these filters to displacement data reported by Geocubes shows SMA and SG 

are unable to properly handle data points at the beginning of the dataset (i.e., near the 

boundary) in indirect filtration of the velocity diagram. Moreover, SMA and SG are inclined 

to respectively underestimate and overestimate peaks and fluctuations in the velocity diagram. 

Overall, GWMA provides the most reliable filtered values for velocity with no distinct 

difference between direct and indirect filtration. 
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Appendix 3.A 

Consider a polynomial of degree k that is intended to be fitted over an odd number of points 

denoted as z. The weighting coefficients of the Savitzky-Golay filter can be extracted from the 

first row of matrix C (Eq. 3. 7): 

C=(JTJ)
-1
JT, ( 3. 7 ) 

where T operator is the transpose of a matrix and J is the Vandermonde matrix, with elements at 

the ith row and jth column (1≤i≤z and 1≤j≤k+1) that can be achieved as follows (Eq. 3. 8): 

Jij=mi

j-1
, ( 3. 8 ) 

where m is the local index of points (- (z+1) 2⁄ ≤m≤ (z+1) 2⁄ ). As an example, the kernel of an SG 

filter that fits a quadratic polynomial (k=2) over seven points (z= ) is attained here. In the first 

step, J is set up as follows (Eq. 3. 9): 

J=

[
 
 
 
 
 
 
 
1 (-3)1 (-3)2

1 (-2)1 (-2)2

1 (-1)1 (-1)2

1 (0)1 (0)2

1 (1)1 (1)2

1 (2)1 (2)2

1 (3)1 (3)2 ]
 
 
 
 
 
 
 

. ( 3. 9 ) 

Then, using Eq. 1, matrix C is computed as Eq. 3. 10: 

C= [
-0.09 2 0.1429 0.2   0.3333 0.2   0.1429 -0.09 2

-0.10 0 -0.0 14 -0.03  0 0.03  0.0 14 0.10 1

-0.0 9 0 -0.03  -0.04 6 -0.03  0 0.0 9 

]. ( 3. 10 ) 

The second and third rows of C are the coefficients to find the filtered values’ first and 

second derivations at the point of interest, respectively.  
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Chapter 4: Algorithms to Enhance Detection of Landslide Acceleration 

Moment and Time-to-failure Forecast Using Time-series Displacements 

Contributions of the Ph.D. Candidate 

The material presented in this chapter, including the literature review, conceptualization, 

methodology development, analysis, draft preparation and revisions, are conducted by the Ph.D. 

candidate. The supervisors, Dr. Michael Hendry and Dr. Renato Macciotta, have reviewed all 

pieces presented in the published manuscript, cited below:  

Sharifi S, Macciotta R, Hendry MT, 2022. “Algorithms to enhance detection of landslide 

acceleration moment and time-to-failure forecast using time-series displacements”, Engineering 

Geology, 106832. https://doi.org/10.1016/j.enggeo.2022.106832. 

Contributions of This Chapter to the Overall Study 

Detecting the onset of acceleration (OOA) and forecasting failure time are the two most 

critical aims of EWSs, and the application of scatter filters directly influences the outcome. 

Following the framework discussed in the previous chapter, such influences are studied on failing 

and accelerating scenarios in this chapter. To include a broad range of circumstances, OOA was 

varied between the early and late stages of the monitoring period and the curvature of the failing 

scenario was adjusted as well as all the previous factors explained before. The separation of actual 

OOA and the interpreted OOA after application of SMA, GWMA and SG is plotted on a 

cumulative probability diagram to assess the reliability of each filter in detecting OOA 

probabilistically. The error in forecasting failure time was studied both using a synthetic database 

and 17 datasets of failed cases from the literature. The findings of this chapter deliver the objective 

#2. 
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Abstract 

Landslide monitoring data are characterized by scatter that can make the velocity and 

acceleration of a landslide unclear. The presence of scatter can therefore influence the reliability 

of an early warning system (EWS) too. Data filters such as simple moving average (SMA) are 

commonly used to reduce scatter in the data and enhance the reliability of EWSs. Therefore, 

evaluating the adequacy of these filters to reproduce displacement characteristics representative of 

the landslide is important. Gaussian-weighted moving average (GWMA) and Savitzky-Golay (SG) 

filters are examined here against SMA. To this aim, a comprehensive numerical analysis of a 

synthetic database was carried out on accelerating scenarios to quantify the reliability of each filter 

to detect the onset of acceleration and forecast the failure time using the inverse velocity method. 

GWMA and SG applications in the synthetic scenarios reached reliability thresholds of 90% at 

30% and 4% of the corresponding time by SMA, respectively, and provided a timelier capture of 

moment patterns. Specifically, these synthetic cases show the application of GMWA and SG 

improves failure time forecasting by 60 to 80% and 90 to 100%, respectively, compared to SMA 

depending on the amount of data used by the filter and the remaining time to failure. Additionally, 

nine failed cases (17 datasets) from the literature were examined after employing these three filters. 

Results of these cases show using alternatives to SMA would increase the accuracy of failure time 

forecasts by 60%. 

Keywords: Landslide; Early Warning System; Inverse Velocity Method; Simple Moving 

Average; Gaussian-Weighted Moving Average; Savitzky-Golay. 
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4.1. Introduction 

Landslides cause significant life and economic loss every year around the world (Schuster 

& Highland, 2001; Clague & Bobrowsky, 2010). Monitoring and early warning systems (EWS) 

have been successfully adopted as a strategy to mitigate landslide risks. An EWS acts as a central 

unit in which measurements (e.g., in-situ and remote displacement measurements, piezometric 

data) from a variety of monitoring instruments are processed so that the EWS can provide 

appropriate warnings for decision-makers to take appropriate action (e.g., mining geotechnical 

teams, municipalities, ministries of highways, railway operators). Based on case histories, 

published recommendations, and tolerable risk levels, an EWS provides a warning if a 

transgression is detected against pre-set thresholds of study parameters such as displacement, 

velocity, acceleration or even precipitation, depending on the EWS’s configuration (Ju et al., 

2020). Commonly explained by creep theory, the evolution of a landslide deformation from early 

movements to failure is divided into three phases of primary, secondary and tertiary. The primary 

or transient phase, characterized by a logarithmically decreasing displacement rate, is followed by 

the second stage in which the ground travels at a constant velocity (balanced state). In the last 

stage, its kinematics exponentially evolve when the collapse (rupture) takes place, and the slope 

fails (S. Wang et al., 2020; X. Hu et al., 2021). The onset of acceleration (OOA), marking the 

transition from secondary to tertiary phase, can be an alarming sign in monitoring such geohazard  

(Zavodni & Broadbent, 1978; Carlà, Intrieri, et al., 2017; Chang & Wang, 2022). This is also 

reflected by Scoppettuolo et al. (2020) in which phenomenological models of 18 well-documented 

landslides are gathered. Timely detection of OOA and reliable failure time forecasting (FTF) are 

the two most crucial tasks of a reliable EWS. In this paper, slope failure is recognized as the 
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collapse of the slope followed by rapid downslope movement of the failed mass and serviceability 

failure modes associated with large slope deformations are outside the scope of this paper. 

The relationship proposed by Saito & Uezawa (1961) was an early attempt to deliver FTF 

in which the logarithm of time to failure was correlated to the strain rate. Later, Fukuzono (1985b, 

1985a, 1990), following the work of Saito (1969), developed a methodology, known as the inverse 

velocity method (INV), by experimenting on artificial slopes and using creep theory (Eq. 4. 1): 

1

v
=[A(α-1)]

1
(α-1)(tf-t)

1
(α-1), ( 4. 1 ) 

where v is the landslide velocity, t is time, tf is the failure time, and A and 𝛼 are empirical constants. 

𝛼 mainly controls the shape of the inverse velocity diagram (linear, convex, or concave; Figure 4- 

1) and is typically in the range of 1.0 to 3.0 (Intrieri et al., 2019). As indicated in Figure 4- 1, the 

diagram is linear when 𝛼 =2. This makes the FTF simple and previous research suggests that, with 

some tolerable deviation, this parameter can be generally approximated as 2.0 (Rose & Hungr, 

2007; Segalini et al., 2018). Linear INV is not the only graphical method proposed for FTF as 

other methods have been proposed by, for example, Mufundirwa et al. (2010) and Hao et al. 

(2017), but these methods have not been as widely adopted as INV because of complicated 

implementation or somewhat similar accuracy to INV.  

Although the INV has the advantage of balancing simplicity and accuracy, it has certain 

limitations. First, this method is devised based on ideal and controlled laboratory conditions (Rose 

& Hungr, 2007) to which real situations do not necessarily conform (i.e., heterogeneity in material 

properties or variation in applied stress). Second, INV is susceptible to the existence of scatter 

because any variation from the actual displacement is propagated through differentiation and 

inversion, causing considerable error in FTF (Carlà, Intrieri, et al., 2017; Ju et al., 2020; X.-P.  
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Figure 4- 1. The schematic variation of inverse velocity values for α values equal to, greater than, and less than 2 

Zhou et al., 2020). Therefore, these two factors lead to dispersed inverse velocity values that make 

FTF challenging and disputable. To account for these shortcomings, different techniques have 

been adopted, such as applying filtration algorithms to reduce scatter (Rose & Hungr, 2007; 

Mufundirwa et al., 2010; Carlà, Farina, et al., 2017; Carlà, Intrieri, et al., 2017; Intrieri et al., 2018; 

Carlà et al., 2019), following a probabilistic approach rather than offering a deterministic result 

(Miao et al., 2018; J. Zhang et al., 2020), and abandoning the creep theory to use other physical 

explanations such as visco-plastic model (Herrera et al., 2009) or employing novel evolutionary 

computation programming (Lian et al., 2015; W. Yao et al., 2015; C. Zhou et al., 2016; W. Zhang 

et al., 2019; Deng et al., 2021; X. Hu et al., 2021). Moreover, evolutionary algorithms are known 

as data-driven methods, meaning they execute predictions based on historical data, and overlook 

discrepancies with proceeding patterns of landslide movements unless complex, algorithm training 

techniques are adopted, which can also be computationally intensive. We propose that, when 

scatter reduction is performed with sufficient understanding of the filter function, this solution can 

be the most practicable method that provides adequate information about landslide kinematics. 
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Scatter in readings of in situ and remote sensing techniques obscure the true values of 

displacement and velocity (Benoit et al., 2015; Hendry et al., 2015; Journault et al., 2018; Deane 

et al., 2020; Woods et al., 2020, 2021; Roy et al., 2022; Sharifi, Hendry, & Macciotta, 2022; 

Sharifi, Hendry, Macciotta, et al., 2022). To minimize this effect, the simple moving average 

(SMA) is frequently used to process displacement monitoring data for EWSs. While there is no 

theoretical limitation to applying SMA to parameters that are different in nature such as pore-water 

pressure (Pecoraro & Calvello, 2021) or even footing displacements (Sharifi, Abrishami, Dias, et 

al., 2022), this study only focuses on displacement and its derivatives hereafter. SMA (Eq. 4. 2) 

simply calculates the average of neighbouring points values and uses it as the filtered value 

(Macciotta et al., 2016): 

y
î
=

∑ y
j

i+
p-1
2

i-
p-1
2

p
, 

( 4. 2 ) 

where y
î
 is the filtered value, y

j
 is the unfiltered value, and p is the averaging window length (also 

known as bandwidth). SMA has been employed in many previous studies given its simplicity. 

Intrieri et al. (2018) derived the displacement of the Maoxian landslide (Mao County, Sichuan 

Province, China) from synthetic-aperture radar (SAR) images attained by the Sentinel-1 satellite 

and used SMA with a window size of 5 days to process the data. The application of INV to the 

processed data showed filtration was successful in estimating the failure time with an acceptable 

degree of accuracy. Carlà et al. (2019) also studied the Maoxian landslide and failure of a tailings 

dam embankment at Cadia gold mine (New South Wales, Australia) using three-point window 

SMA and INV. Carlà, Intrieri, et al. (2017) examined the performance of SMA and an exponential 
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filter (Eq. 4. 3) as applied to events including Mount Beni, the Vajont landslide, Stromboli, and 

the collapse of a medieval city wall in Volterra: 

vt̂=β∙vt+(1-β)∙ v̂t-1, ( 4. 3 ) 

where vt̂ is the filtered velocity at time t, vt is the unfiltered value, v̂t-1 is the previous filtered value, 

and β is a filtering factor (assumed as 0.5 in Carlà et al. 2017a Carlà, Intrieri, et al., 2017). They 

show SMA outperforms the exponential filter in terms of FTF. To improve the credibility of EWSs 

and avoid false FTF, they recommended establishing a failure window in which the failure is 

considered most probable. This task comprises performing two parallel SMAs with two different 

bandwidths, called the short-term moving average (p=3) and the long-term moving average (p=7). 

The extents of these windows are [tshort SMA-
∆

2
;tlong SMA+

∆

2
], where tshort SMA and tlong SMA 

are the forecasted failure time using inverse velocity values filtered by the short- and long-term 

moving average, respectively, with their difference denoted as ∆ . Although this method is a step 

forward from a purely deterministic approach, it is still not completely probabilistic because no 

probabilities are quantified. Additionally, it does not state how p values for the short and long term 

should be chosen if the measurement frequency is different than what is reported in their study. 

We propose that when a more suitable filter is used in the data processing, the resulting failure 

window can be reduced or might be unnecessary from a practical perspective. Grebby et al. (2021) 

also reported they were able to detect precursory deformations of Brumadinho Tailing Dam prior 

to the collapse in 2019 and practiced INV for FTF. They applied a 3-point SMA to the time-series 

data inferred from SAR interferometry to minimize the residual scatter from atmospheric phase 

screening.  
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The effect of scatter can also be critical when data frequency is high, as it is in the case of 

most novel monitoring technologies such as a Geocube system working on the global navigation 

satellite system (GNSS) with an acquisition frequency of one positioning measurement every 60 

seconds (Macciotta, Rodriguez, et al., 2017). Sharifi, Hendry, Macciotta, et al. (2022) present a 

detailed study on high-frequency monitoring data filtration with SMA and two alternative filters 

called Gaussian-weighted moving average (GWMA – Eq. 4. 4) and Savitzky-Golay (SG – Eqs. 4. 

5-4. 6). GWMA is a modified version of SMA, with the inclusion of a weighting constant (w) 

applied to the data within the moving window. The weighting constant follows the Gaussian 

distribution, giving the largest weight to the point in time when the average is calculated and 

decreasing weight as the temporal distance increases. SG, on the other hand, fits a low-degree 

polynomial on a window of points and estimates the filtered value based on the fitted function. SG 

can be interpreted as a weighted average approach using least-squares equations to define the 

weights following the low-degree polynomial fit: 

y
î
=∑ wjyj

i+
p-1
2

i-
p-1
2

, ( 4. 4 ) 

y
î
=∑ C1jyj

i+
p-1
2

i-
p-1
2

, ( 4. 5 ) 

C=(JTJ)
-1
JT, ( 4. 6 ) 

where i corresponds to all data points, j corresponds to the data points in the filtration window, T 

is the transpose operator, J is the Vandermonde matrix with 2n+1 rows and m+1 columns (n is the 

number of points in the filtration window and m is the degree of polynomial to be fitted; 2 here), 
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and C1 is the first row of matrix C that provides the weights considered in the SG filter. Figure 4- 

2 displays an example of the performance of GWMA (Eq. 4. 4) and SG (Eq. 4. 6) along with their 

weight distribution for a 13-point filtration window. 

 

Figure 4- 2. (a) Performance of GWMA and SG on an example dataset using a 13-point window, weight distribution of (b) 

GWMA and (c) SG 

Sharifi, Hendry, Macciotta, et al., (2022) highlighted that the significance of the data 

filtration step in landslides monitoring has been unheeded in most previous works. To this end, 

they adopted a method called numerical analysis of a synthetic database in which all three of these 

filters were applied to synthetically generated scenarios with a variety of acceleration-deceleration 

trends and temporal resolutions. The Ten-mile landslide located in southwestern British Columbia, 

Canada was also examined as an example of practical application. To account for real-time 

monitoring, an asymmetric window was used in their study, meaning that only precedent 

measurements were considered in the filtration process. They concluded that GWMA and SG 
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managed to minimize the scatter while causing minimum distortion to the data trend, in contrast 

to SMA which tends to alter the trend significantly.  

This paper evaluates the performance of SMA, GWMA, and SG for FTF, and quantifies 

the reliability of these three filters to identify OOA in the real-time function of an EWS on a local 

scale. The work uses numerical analysis of synthetic cases and nine case histories (17 datasets) 

reported in the literature as test data for this purpose. 

4.2. Methodology 

4.2.1. Synthetic Data Generation 

The method of numerical analysis of a synthetic database (Sharifi et al., 2021; Sharifi, 

Hendry, Macciotta, et al., 2022) is used here to investigate the performance of SMA, GWMA, and 

SG for FTF. In this technique, a pre-defined trend of the study parameter (e.g., displacement) is 

generated and a random scatter set is added to simulate a sample of observations similar to what 

instruments report. This framework allows one to make quantitative comparisons between the 

performance of different filters by taking advantage of knowing the true (scatter-free) values, 

which are not available in real monitoring data. The accuracy of conclusions made from this 

method will, however, primarily depend on: 1) the consistency of the statistical properties between 

synthesized and true scatter and 2) the representativity of the synthetic scenarios’ trends to the 

kinematics of real landslide events and their pre-failure behaviour.  

In this study, the statistical distribution of the random scatter set was assumed as Gaussian. 

This decision was made based on the central limit theorem in probability theory, stating that the 

summation of independent random variables goes toward a normal (Gaussian) distribution (S. W. 
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Smith, 2013), as also shown by Macciotta et al. (2016) and Sharifi, Hendry, Macciotta, et al. (2022) 

for landslide deformation measurements. 

Two different types of landslide scenarios are generated: accelerating and failing. The 

former is produced by a simplified bi-linear trend (Scoppettlo et al., 2021) as depicted in Figure 

4- 3a with the mathematical expression presented in Eq. 4. 7, and the latter is the result of using 

Eq. 4. 8 (depicted in Figure 4- 3b), which is the back-calculated expression of INV (Eq. 4. 1): 

d=
1

2(1-tOOA)
[|t+tOOA|+|t-tOOA|]-

tOOA

1-tOOA
, ( 4. 7 ) 

d= (
α-1

2-α
) [A(α-1)]

1
1-α(tf-t)

2-α
1-α+c, ( 4. 8 ) 

where t and d are dimensionless and normalized time and displacement, respectively; tOOA is the 

designated time of OOA, which holds a value between 0 and 1; A and 𝛼 are the same parameters 

as defined for Eq. 4. 1; tf is the failure time, which is assumed to be 1 for the synthetic data; and c 

is an integral constant to make the initial location 0 (Eq. 4. 9): 

c= (
α-1

α-2
) [A(α-1)]

1
1-α, ( 4. 9 ) 

The parameter A is assumed as 1 (α-1)⁄  to make the inverse velocity diagram normalized between 

0 and 1, without overriding any condition. Notably, monitoring instruments provide discrete 

information in time contrary to the above continuous mathematical equations. The generated 

scenarios, therefore, consisted of discrete points that follow the equations presented. The number 

of points generated was varied to evaluate a range of data acquisition frequencies within the 

normalized time interval of 1. These are presented in Table 4- 1 along with their corresponding 
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time period. These numbers were selected to cover appropriate time ranges with respect to various 

measurement frequencies. 

 

Figure 4- 3. Two categories of synthetically generated cases: (a) accelerating and (b) failing 

Table 4- 1. Number of points used to generate synthetic cases and the corresponding time period with regard to frequencies of 1 

minute, 1 hour, and 1 day. 

Number of 

points 

Example monitoring frequency 

1-min readings 1-h readings 1-d readings 

50 50 minutes 2.0 days 1.6 months 

100 1.6 hours 4.1 days 3.3 months 

1,000 16.6 hours 1.3 months 2.7 years 

10,000 6.9 days 1.1 years   

50,000 34.7 days 11.5 years   

100,000 2.3 months     

500,000 1 year     

1.00E+6 2 years     

The scatter sets were normalized within a range of values between ±1 and followed a 

normal distribution with a mean of 0 and a standard deviation of 0.2. Before superimposing the 

scatter sets on the synthetic scenario trends, they were scaled to represent different variability 

levels (VLs), with values of 0.001, 0.005, 0.010, 0.050, 0.100, and 0.15 (Sharifi, Hendry, 

Macciotta, et al., 2022). These six VL values along with the fact that scenarios are normalized and 

constructed with a variety of point frequencies (Table 4- 1) allow for the evaluation of scenarios 
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that represent a wide range of data scatter and monitoring frequencies. Figure 4- 4 shows examples 

of an accelerating scenario with tOOA=0.5, and a failing scenario when α=2, after the addition of 

scatter with VL=0.10. 

 

Figure 4- 4. Samples of unfiltered synthetic cases along with their true underlying trend at VL=0.10: (a) accelerating case and 

(b) failing case (α=2) 

4.2.2. Procedure for Evaluating Filter Performance 

To quantify the reliability of filters for OOA detection, accelerating scenarios with 𝑡𝑂𝑂𝐴 

values between 0.1 and 0.9 were generated at 0.1 intervals and scatter sets were superimposed to 

define the unfiltered synthetic databases. Filters were then applied with bandwidths of 0.04, 0.07, 

and 0.10 of the total number of points, referred to as the bandwidth ratio (BR). These values were 

selected based on Sharifi, Hendry, Macciotta, et al. (2022), who report this as the most reliable 

range in which an acceptable minimum fluctuation is achieved while also maintaining the error 

and lag at tolerable levels. Only preceding data to the time of evaluation of the filter were 

considered in the filtering process at each point of interest to simulate real-time monitoring. 
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Application of this asymmetrical window leads to a lagged response of filters, and increasing the 

bandwidth increases the lag (Sharifi, Hendry, Macciotta, et al., 2022). A function following Eq. 4. 

7 was then fitted to the filtered diagram using the least-squares method without imposing the 𝑡𝑂𝑂𝐴, 

and the algorithm was allowed to freely detect the OOA point based on the filtered values. The 

temporal separation of detected OOA and originally designated OOA is considered the error of the 

filter with respect to the identification of OOA. The cumulative probability function (CPF) of that 

error (for all scenarios modelled) illustrates the delay in identifying the OOA when employing 

each filter. To compute the CPF, a total of 1296 accelerating scenarios were synthesized and 

analyzed for each filter. 

Unfiltered failing scenarios were generated following INV characteristics for 𝛼 =1.50, 2.0, 

and 3.0 and the six VL values to investigate the accuracy of the filters for FTF purposes. SMA, 

GWMA, and SG filters were then applied to these scenarios using the BRs used before (0.04, 0.07, 

and 0.10). The predicted failure time was then extrapolated using Eq. 4. 1 (inverse velocity curves) 

as fitted from the filtered values. In an ideal situation, filtration does not cause any lag or trend 

distortion, the scatter is entirely eliminated, and the predicted failure time would match the 

designated failure time (𝑡=1). Life expectancy diagrams are usually used to show the time-to-

failure at specific times, and Figure 4- 5 is an example. FTF can improve as monitoring progresses 

towards the defined (for synthetic data) or observed time of failure (Figure 4- 5). The error between 

the predicted and the “true” time of failure for GWMA and SG can be compared to the error when 

using SMA (commonly adopted). This is done by calculating an error ratio (Eq. 4. 10): 

Error ratio=
Error in GWMA or SG predictions

Error in SMA predictions
. ( 4. 10 ) 
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This same process was adopted to evaluate the case history data, with filters sometimes 

applied on displacement or velocity values depending on data availability. If velocity is the 

parameter of interest, the filtered value can be obtained in two ways: direct or indirect filtration. 

Direct filtration means the filter is applied directly to the velocity values computed from unfiltered 

displacements; indirect filtration means the displacement values are first filtered and then the 

velocities calculated. Direct and indirect filtration do not produce significantly different results  

(Sharifi, Hendry, Macciotta, et al., 2022), and thus the availability of either velocity or 

displacement values from case history data did not influence the assessments in this paper. 

 

Figure 4- 5. An example of life expectancy diagram (distometric base 1-2 installed on Mt. Beni) (Carlà, Intrieri, et al., 2017) 

4.3. Study Sites 

Table 4- 2 shows the 17 datasets used for this study, from nine case histories. The objective 

was to apply and evaluate the filters to different failure characteristics, including geology, failure 

mechanism, and different values of fitting parameter 𝛼 for INV. The 𝛼 value of sets 15 and 16 was 
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back-calculated as a part of this investigation given they were not reported in the corresponding 

references. For set 16, the average displacement values of all accelerating points were used. Sets 

4, 15, and 16 do not conform to the usual assumption of linearity in the inverse velocity diagram 

as they hold 𝛼 values other than 2. Because bypassing such a parameter in FTF is not within the 

scope of this investigation, back-calculated values as reported in Table 4- 2 were used in the 

analyses, which means convexity/concavity of the inverse velocity diagram was regarded as a 

known factor. This will allow for comparisons between filters; however, assumptions of the shape 

of the INV response can be critical to the reliability of FTF as presented in Figure 4- 6. 

Some of the available datasets were omitted as they did not comply with the assumptions 

in this research of scatter, having an average of 0 around the displacement trend. For example, the 

raw inverse velocity values of distometric base 15-13 installed on the eastern flank of Mt. Beni are 

shown in Figure 4- 7 (after Carlà, Intrieri, et al., 2017). Any regression line would lead to an 

unbalanced distribution of scatter due to the points highlighted within the red circle (mean of 

scatter for the moving window would not be 0 with respect to the true trend), which is an integrated 

assumption about scatter (S. W. Smith, 2013; Macciotta et al., 2016). These data points could be 

the result of measurement bias or human error, or real deceleration from the processes of slope 

progression towards collapse, not fully captured by the monitoring frequency. To eliminate 

variables in the comparison between filter reliability for SMA, GWMA, and SG, these datasets 

were not used for evaluation. Each case tabulated in Table 4- 2 was filtered iteratively by different 

window sizes in such a way that the BR would fall within the range from 0.04 to 0.10, similar to 

synthetic scenarios. You may find the collected datasets used for this study in Appendix A as they 

were published. 
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Table 4- 2. List of all case studies used in this investigation 

Name Location 
Slope 

Materials 
Mechanism 

Destabilizing 

factor 
Data used 

Set 

number 

𝛼 

value 
References 

Mt. Beni 
Florence, 

Italy 

Ophiolitic 

breccias 

Rockslide / 

Toppling 

Quarry activities, 

precipitation 

Baseline 1-2 [1] 

 

[2] 

 

[3] 

1.99 

(Gigli et al., 

2011) 

Baseline 3-2 
(Intrieri & 

Gigli, 2016) 

Distometric base 1-2 
(Carlà, Intrieri, 

et al., 2017) 

Creep test 

Samples 

from 

Beijing, 

China 

Granite 
Creep 

failure 

Loaded to initial 

stress and held at 

the constant stress 

Sample 1 

 

Sample 2 

 

Sample 3 

[4] 

 

[5] 

 

[6] 

1.77 

 

2.03 

 

2.20 

(Hao et al., 

2017) 

Delabole 

slate 

quarry 

Cornwall, 

England 

Quartz-

chlorite-

sericite 

slates 

Progressive 

multi-block 
Rainfall 

West face 

movements 
[7] 1.96 

(Boyd et al., 

1973; Coggan 

& Pine, 1996) 

Vajont 

(Mt. Toc) 
Italian Alps 

Limestone 

and clay 

Roto-

Translation 
Unknown 

Benchmark 50 

Benchmark 67 

[8] 

[9] 

1.97 

(Helmstetter et 

al., 2004) 

Unknown [11] (Voight, 1988) 

Benchmark 63 

Benchmark 5 

[12] 

[13] 
(Carlà, Intrieri, 

et al., 2017) 

Mount St. 

Helens 

Washington

, 

United 

States 

- 
Volcano 

eruption 
Magmatic flow Crater diameter [10] 1.96 (Voight, 1988) 

Liberty Pit 

Mine 

Utah, 

United 

States 

Quartz 

monzonite 
Rockslide 

Blast, pore water 

pressure 
Unknown [14] ~2.00 

(Zavodni & 

Broadbent, 

1978; Rose & 

Hungr, 2007) 
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Coal mine 

British 

Columbia, 

Canada 

Mist 

Mountain 

and 

Morrissey 

formation 

Retrogressi

ve 

rotational 

failure 

Mining activity 

and waste dump 
GPS Point 105 [15] 

2.8 ~ 

2.9 
(Clayton et al., 

2020) 

Cadia gold 

mine 

tailing dam  

New South 

Wales, 

Australia 

Rockfill 

and clay 

core 

Progressive 

translational 

failure 

Static liquefaction 

due to lateral 

movement of a 

weak layer near 

foundation 

75 points attained by 

InSAR analysis 
[16] 

3.0 ~ 
3.5 

(Carlà et al., 

2019) 

Xinmo 

Maoxian) 

Sichuan, 

China 

Heavily 

jointed 

metamorp-

hic 

sandstone  

Progressive 

rock 

avalanche 

Intense rainfall, 

and seismic 

activities in the 

region 

49 points attained by 

InSAR analysis 
[17] 1.93 

(Intrieri et al., 

2018; Carlà et 

al., 2019) 
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Figure 4- 6. Inverse velocity diagram of (a) case 15 and (b) case 16 along with projected failure time using linear and non-linear 

fitting 

 

Figure 4- 7. Inverse velocity diagram for data from distometric base 15-13 installed on Mt. Beni (red circles mark data points 

with outlier trait) 
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4.4. Results and Discussion 

4.4.1. OOA Reliability Results 

Figure 4- 8 displays the CPF of error in OOA detection for each filter for all synthetic 

scenarios. In this figure, the horizontal axis (below) shows the error between the “true” and 

detected OOA in terms of data points. Normal distribution functions are also fitted to the error 

distributions for visualization and analysis. Above this diagram, three additional horizontal axes 

are provided to scale the normalized and dimensionless time to actual values based on the three 

different time periods (assuming 6 months, 1 year, and 2 years of data are represented by the full 

extent of data points generated). The mean and standard deviation of the three fitted distributions 

are provided in Table 4- 3. This table and Figure 4- 8 show SMA has the greatest skewness to the 

right, indicating that detection of OOA by SMA lags significantly in comparison to GWMA and 

SG filters. SG observations are somewhat symmetric to the zero-error axis, meaning almost 50% 

of SG observations have negative values. Importantly, and as shown in Table 4- 3 which contains 

the statistical indicators of fitted normal distributions, the spread of error (standard deviation) in 

SMA and GWMA are 8.67 and 3.18 times that of SG, respectively. The error distribution of 

GWMA and SMA results have considerable positive mean values, which are attributed to the 

lagged response that is characteristic of the averaging process incorporated in the formulation of 

SMA and GWMA. As a result, SG is insensitive to the asymmetric window, and partly attenuated 

sensitivity is seen in GWMA results due to the inclusion of weight constants near the evaluation 

time, as opposed to the equal weighting in SMA. The 90% threshold adopted for evaluation (90% 

of OOA identified are within this threshold) shown in Figure 4- 8 corresponds to errors of 0.003, 

0.023, and 0.075 for SG, GWMA, and SMA filters, respectively. This means GWMA and SG have 

only 30% and 4% of the latency of SMA, respectively. These values, for example, correspond to 
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respective delays of 13 hours, 4 days, and 13.5 days to identify the OOA when the synthetic data 

represent readings for a 6-month period.  

 

Figure 4- 8. CPF of OOA detection using SMA, GWMA, and SG filters on synthetic accelerating cases (top axes indicate actual 

time scales for time periods of 6 months, 1 year, and 2 years) 

Table 4- 3. Mean (in days) and standard deviation (in days) of the fitted normal distribution for each filter along with the actual 

time corresponding to time periods of 6 months, 1 year, and 2 years. 

 Mean Standard deviation 

Time 

scale 

Normalize

d 
6 mos. 1 yr. 2 yrs. 

Normalize

d 
6 mos. 1 yr. 2 yrs. 

SMA 0.04965 8.94 17.87 35.75 0.01831 3.30 6.59 13.18 

GWMA 0.01449 2.61 5.22 10.43 0.00671 1.21 2.42 4.83 

SG 0.00021 0.04 0.08 0.15 0.00211 0.38 0.76 1.52 

4.4.2. Failure Time Forecast 

4.4.2.1. Results of Numerical Analysis of Synthetic Database 

The results of analysis on synthetic cases are presented in Figure 4- 9. This figure shows 

the average of errors calculated across different bandwidths as well as errors converted to the 
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equivalent time corresponding to the three different monitoring periods as before (6 months, 1 and 

2 years). The figure shows the greater accuracy of the GWMA and SG filters in FTF with little 

variations over time, with SG predictions being the closest to the true failure time. Figure 4- 9 

shows the application of GWMA enhances the FTF by up to 60 to 80% in comparison to SMA; 

this improvement rises to 90 to 100% for SG depending on the 𝛼 value and time to failure. In 

Figure 4- 9b, a deviation from general trend with outlier characteristic is seen at the time-to-failure 

of 0.01 for all filters. Given that scatters are randomly generated, their stochastic arrangement in 

the filtration window could lead to complicated interactions that cause these anomalies. Although 

these outliers were sometimes encountered, we observed that the general behaviour of results 

would not differ very much from one iteration to another. As a results, tools such as normalization 

(in case of error ratio), linear regression and statistical indicators (average, standard deviation, etc.) 

were used, where appropriate, to capture large-scale behaviour of population and minimize the 

impact of such erratic measurements.  

The mean error ratios (Eq. 4. 10) are plotted against time in Figure 4- 10. Linear fits in this 

figure show that all the error ratios are close to a linear trend and the discussed outliers are not 

evident here. The slopes of these lines display that error ratio diagrams of GWMA and SG have 

positive slopes toward the designated failure. This, according to Eq. 4. 10, suggests that SMA 

accuracy improves relative to other filters for FTF as more information about the landslide motion 

is provided and the time of failure approaches. This trend is more pronounced when 𝛼=2.0 due to 

the synergy of the underlying linear trend in the inverse velocity diagram, with the tendency of 

SMA to arrange the data in a linear trend (Sharifi, Hendry, Macciotta, et al., 2022). 18% of all 

generated FTF for the synthetic scenarios, approximately equally distributed between GWMA and 

SG (9% each) , were not used in Figure 4- 9 and Figure 4- 10 as they held an absolute error ratio 
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greater than 1. Most of the rejected data were generated with VL values of 0.10 and 0.15 and the 

small number of points. This led to insufficiency of BRs lower than 0.10 when either the VL value 

is high or few data are available. Higher BR values as much as 0.15 were used for those and it was 

partially successful to address the issue. However, the authors would like to caution against using 

BRs much higher than 0.10 as it would lead to a higher lag in the filtered response as well as 

imposing a larger computation burden with no or even negative effect on FTF. The latter statement 

regarding the paradox of bandwidth will be further discussed using the results of case histories in 

Section 4.2.2. The discarded points also corresponded to the initial points in scenarios, and for 

that, the boundary effect may be considered a culprit which happens with smaller data points fed 

into the filter, compared to the bandwidth. As a result, it appears the reliability of each GWMA 

and SMA to improve the FTF is 91%. 

4.4.2.2. Results of Analysis of Case Histories 

Error diagrams of all cases are presented in Appendix B. The error of FTF on the set 1, as 

an example, is shown in Figure 4- 11 with respect to the time-to-failure when applying SMA, 

GWMA, and SG with p values (bandwidth, or the window size of the moving average) ranging 

from 2 to 4 that on average translate into 10 to 20 days. The FTF error and error ratios of all 

datasets with respect to different p values as a result of projection at the last available data point 

are presented in Table 4- 4 and Table 4- 5. The following discussions are based on these tables and 

Figure 4- 11. Generally, as the remaining extent of the slope advances toward 0, the FTF 

performance of all filters tends to improve. This figure also illustrates that increasing the 

bandwidth leads to larger FTF errors, meaning that although increasing the bandwidth aims to 

reduce the scatter, it leads to a larger error for FTF (bandwidth paradox) caused by the increased 

lag in identifying changes in displacement trends. The bandwidth paradox is accentuated the most  
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Figure 4- 9. Mean error of failure time forecast for all filters at 𝛼 =1.50, 2.0, and 3.0 (auxiliary axes indicate actual time scales 

for time periods of 6 months, 1 year, and 2 years) 
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Figure 4- 10. Error ratio of failure time forecast when using GWMA and SG on synthetic cases at 𝛼 =1.50, 2.0, and 3.0 

in SMA, while the performance of SG is almost indifferent to bandwidth. This indicates FTF 

enhancement and scatter reduction are not competing when using SG. Sharifi, Hendry, Macciotta, 

et al. (2022) state that using GWMA can lead to a shift in results by only 23 to 45% of the shift 

calculated using SMA (shift or lag ratio), and one may suggest using these numbers to correct the 

SMA-forecasted failure moment instead of using the GWMA filter itself. However, it is not 

recommended since only 15% of the error ratios of GWMA in our results lie within that range, 

and for a considerable   % of points, the GWMA’s error ratio was out of this range. This is 

attributed to the use of failure cases studied here, which adds to the randomness of measurements 

through variability associated with monitoring instrumentation and landslide development 

mechanisms as opposed to the lag estimations in Sharifi, Hendry, Macciotta, et al. (2022). The 

results from these case studies, however, support their findings that the enhanced performance of 

GWMA in FTF is due to the trend distortion caused by applying SMA while GWMA tends to 

preserve the underlying trend better. 

The difference between the results of GWMA at high p values with the results of SG is not 

significant in most cases, suggesting a low bandwidth is preferred for SG to reduce the computation 
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effort and capture trend deviations in short time periods; however, a larger bandwidth is preferred 

for GWMA. Notably, SG tends to create a depression in filtered values immediately after the 

measured peaks, which is less pronounced at lower bandwidths (Sharifi, Hendry, Macciotta, et al., 

2022), supporting the use of a low bandwidth for SG.  

Figure 4- 12 shows a summary of error ratios for the 17 datasets in a polar diagram for ease 

of comparison between datasets. In this diagram, the distance of each point from the origin (r) 

represents the error ratio to SMA and the results of each set are arranged at a unique angle (𝜃). 

The results are also color coded based on the sign of the error ratio. The error ratios in Figure 4- 

12 are the average results of different bandwidth values and each point corresponds to a certain 

time before failure. Figure 4- 12 shows that using GWMA and SG have improved performances 

compared to SMA for FTF purposes as all of the points are located at 𝑟 < 1. The furthest points 

from the origin (r values near 1) correspond to the earliest measurements, later improving as time 

advances. If those that fall in the earliest 10% of the dataset are excluded, the average error ratio 

of all cases drops below 0.5 for both filters. This means that using these alternative filters improves 

the accuracy of FTF by at least 50%, with improvements of 70 to 80% becoming very likely but 

depending on the characteristics of the monitoring data. 

The statistical indicators of the whole dataset consisting of the error ratio of all sets after 

the application of GWMA and SG are listed in Table 4- 6. This table shows the maximum, 

minimum, average, and median of SG filters are prone to lower values compared to GWMA filters, 

which is manifested in more negative average values in Figure 4- 12 and higher negative values in 

Table 4- 6. On the other hand, the standard deviation is similar for both filters, which implies that 

GWMA and SG are similar in terms of error ratio uncertainty. Almost 70% of absolute error ratios 

for both GWMA and SG are less than 0.4. 
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Figure 4- 11. Variation of error in failure time forecast for set 1 using SMA, GWMA, and SG filters vs. time to failure 

Table 4- 4. Error and error ratio of all 17 datasets with respect to p corresponding to the latest time to failure 

Set 

No. 
Filter Mis forecast p=2 p=3 p=4 p=5 p=6 

Set 

1 

SMA Error (days) 4.92 8.900 13.78 

- - 
GWMA 

Error (days) -0.26 0.49 1.29 

Error ratio -0.05 0.05 0.09 

SG 
Error (days) -0.463 -0.467 -0.53 

Error ratio -0.09 -0.05 -0.03 

Set 

2 

SMA Error (days) 

- - 

9.92 17.12 25.75 

GWMA 
Error (days) -2.95 -2.05 -1.07 

Error ratio -0.29 -0.12 -0.04 

SG 
Error (days) -4.11 -3.53 -3.63 

Error ratio -0.41 -0.20 -0.14 

Set 

3 

SMA Error (days) 

- - 

9.92 17.12 25.75 

GWMA 
Error (days) -2.95 -2.05 -1.07 

Error ratio -0.29 -0.12 -0.04 

SG 
Error (days) -4.11 -3.53 -3.63 

Error ratio -0.41 -0.20 -0.14 

Set 

4 

SMA Error (mins) 0.018 0.031 0.045 0.060 0.077 

GWMA 
Error (mins) -4.36E-05 2.5E-03 5.3E-03 8.3E-03 1.1E-02 

Error ratio -2.39E-03 8.16E-02 1.18E-01 1.39E-01 1.52E-01 

SG 
Error (mins) -7.2E-04 -1.9E-04 8.09E-05 7.6E-04 1.4E-04 

Error ratio -3.92E-02 -6.18E-03 1.80E-03 1.27E-02 1.84E-02 

Set 

5 

SMA Error (mins) 

- 

0.007092 0.012781 0.019063 0.02593 

GWMA 
Error (mins) -0.00268 -0.00181 -0.00079 0.00036 

Error ratio -0.37 -0.14 -0.04 0.01 

SG 
Error (mins) -0.00341 -0.00361 -0.0038 -0.00347 

Error ratio -0.48 -0.28 -0.19 -0.13 

Set 

6 

SMA Error (mins) 
- 

0.012771 0.021965 0.032133 0.043384 

GWMA Error (mins) -0.005 -0.00327 -0.00136 0.00073 
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Error ratio -0.39 -0.14 -0.04 0.01 

SG 
Error (mins) -0.00656 -0.00658 -0.00515 -0.00503 

Error ratio -0.51 -0.29 -0.16 -0.11 

Set 

7 

SMA Error (year) 0.349041 0.479167 0.655989 0.842059 0.962348 

GWMA 
Error (year) 0.147913 0.179968 0.212097 0.245115 0.27980 

Error ratio 0.42 0.37 0.32 0.29 0.29 

SG 
Error (year) 0.139481 0.144408 0.155877 0.130835 0.106811 

Error ratio 0.39 0.30 0.23 0.15 0.11 

Set 

8 

SMA Error (days) 

- 

12.29302 14.66625 17.33832 20.44267 

GWMA 
Error (days) 7.535246 8.068908 8.601707 9.154141 

Error ratio 0.61 0.55 0.49 0.44 

SG 
Error (days) 6.937242 6.966858 6.914076 6.917222 

Error ratio 0.56 0.47 0.39 0.33 

Set 

9 

SMA Error (days) 

- 

7.143295 9.241116 11.67486 14.48605 

GWMA 
Error (days) 3.059772 3.498314 3.949269 4.427070 

Error ratio 0.42 0.37 0.33 0.30 

SG 
Error (days) 2.522733 2.527320 2.531317 2.521038 

Error ratio 0.35 0.27 0.21 0.17 

Set 

10 

SMA Error (days) 

- - 

2.309319 4.12451 6.201187 

GWMA 
Error (days) 1.894528 1.574035 1.227203 

Error ratio 0.82 0.38 0.19 

SG 
Error (days) 2.565527 2.584055 2.613131 

Error ratio 1.11 0.62 0.42 

Set 

11 

SMA Error (days) 

- 

2.93316 4.454480 6.222090 8.257520 

GWMA 
Error (days) 0.35956 0.55787 0.81021 1.10893 

Error ratio 0.12 0.12 0.13 0.13 

SG 
Error (days) 0.15829 0.1795 0.01148 0.03701 

Error ratio 0.05 0.04 1.0E-3 4.0E-3 

Set 

12 

SMA Error (days) 

- - 

23.4549 32.3327 43.1302 

GWMA 
Error (days) 4.12988 5.56195 7.05906 

Error ratio 0.17 0.17 0.16 

SG 
Error (days) 1.02297 0.96505 0.68636 

Error ratio 0.04 0.03 0.01 

Set 

13 

SMA Error (days) 

- 

2.850862 4.665007 6.760283 9.167468 

GWMA 
Error (days) -0.68895 -0.30938 0.082252 0.49769 

Error ratio -0.24 -0.06 0.01 0.05 

SG 
Error (days) -1.16031 -1.14906 -1.14052 -1.16465 

Error ratio -0.40 -0.24 -0.16 -0.12 

Set 

14 

SMA Error (days) 10.7808 16.7713 

- - - 
GWMA 

Error (days) 3.4791 4.66449 

Error ratio 0.32 0.27 

SG 
Error (days) 3.19432 4.96647 

Error ratio 0.29 0.29 

Set 

151 

SMA Error (days) 
- 

2.03818 2.192728 3.36595 2.559269 

GWMA Error (days) 1.153719 1.173601 1.280897 1.336571 
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Error ratio 0.56 0.53 0.54 0.52 

SG 
Error (days) 0.834468 0.684181 0.624921 0.637146 

Error ratio 0.40 0.31 0.26 0.24 

Set 

162 

SMA Error (days) 7.514682 10.36665 12.39547 12.34299 13.13021 

GWMA 
Error (days) 2.872128 4.438498 4.901791 5.45333 5.784523 

Error ratio 0.38 0.42 0.39 0.44 0.44 

SG 
Error (days) 2.735168 3.281445 3.827722 5.183299 5.972365 

Error ratio 0.36 0.31 0.30 0.41 0.45 

Set 

172 

SMA Error (days) 1.817428 2.548136 3.631645 3.952903 6.414177 

GWMA 
Error (days) 0.313583 0.930811 1.413272 1.521274 1.421061 

Error ratio 0.17 0.36 0.38 0.38 0.22 

SG 
Error (days) -1.38101 -1.29136 -1.3189 -1.16766 -0.19107 

Error ratio -0.75 -0.50 -0.36 -0.29 -0.02 
1. The remaining records for set 15 are presented in Table 4- 5 under high p values 

2. Error-values are the average of all detected points by InSAR 

Table 4- 5. Continued of Table 4- 4  for Set 15 at high p values 

Set 

No. 
Filter Mis forecast p=7 p=8 p=9 p=10 p=11 

Set 15 

(cont.) 

SMA Error (days) 2.784326 3.000708 3.192642 3.335847 3.457953 

GWMA 
Error (days) 1.416918 1.382435 1.526133 1.644441 1.734951 

Error ratio 0.50 0.46 0.47 0.49 0.50 

SG 
Error (days) 0.588089 0.514632 0.474210 0.398132 0.391581 

Error ratio 0.21 0.17 0.14 0.11 0.11 

Table 4- 6. Statistical indicators of error ratio after forecasting failure time of case histories 

Indicator GWMA SG 

Maximum 0.838 0.666 

Minimum -0.738 -0.925 

Average 0.113 -0.023 

Standard deviation 0.323 0.304 

Median 0.128 0.043 

Negative values (%) 32% 40% 

Figure 4- 13 shows the absolute error ratio in the log scale vs. the time-to-failure of 

distometric base 15-13 installed on the eastern flank of Mt. Beni (Figure 4- 7). As mentioned 

before, this set was among the datasets dismissed for analysis due to a violation of the zero-mean 

criterion. In this specific instance, GWMA and SG filters underperformed in comparison to SMA 

given that the error ratio is greater than 1 for most of the extent of the slope. This can be attributed 

to those points located in the red circle in Figure 4- 7 which significantly affect the scatter  
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Figure 4- 12. Polar exhibition of error ratios for all 17 studied sets 
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dispersion such that these points would have to be treated as outliers rather than scatter for data 

processing purposes, or due to decelerating factors not properly captured by the frequency in data 

acquisition. Because SMA is a low-pass filter or in other words, tends to intensively attenuate the 

anomalies such as sharp peaks and troughs in the data (Sharifi, Hendry, Macciotta, et al., 2022), 

these points did not impact the FTF results from the SMA as much as the adverse effects seen in 

the GWMA and SG results. This highlights the need to apply algorithms designed to capture 

outliers prior to employing any filter to reduce scatter, such as the Hampel filter (Hampel, 1971).  

 

Figure 4- 13. Absolute error ratio values of distometric base 15-13 installed on Mt. Beni after application of GWMA and SG 

filters 

4.5. Conclusions 

Detecting the time when a landslide initiates an acceleration period and forecasting the 

time to a potential failure are crucial for landslide risk management and control. EWSs use 

monitoring data as a means to meet these goals. Considering the scatter in landslide monitoring 

data, employing a filter becomes necessary to minimize any adverse impact on interpreted velocity 

and acceleration values of the landslide. In this paper, the performance of three different filters 

(SMA, GWMA, and SG) was studied to evaluate how their application affects the detection of 
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onset of acceleration and failure time forecast using the inverse velocity method. To this end, a set 

of synthetic accelerating and failing cases, as well as nine case histories (17 datasets) from the 

literature, were used. The analysis of 1296 synthetic cases for each filter showed SMA predicts 

the onset of acceleration with 90% confidence 3.2 and 25 times later than GWMA and SG, 

respectively. The standard deviation for detecting the onset of acceleration for SMA and GWMA 

was 8.67 and 3.18 times that of SG, respectively. These findings all indicate the alternatives 

considered herein to SMA can lead to improvements in the capacity of EWSs with respect to the 

timely detection of changes in landslide patterns and the onset of acceleration. Failure time 

forecasting using the inverse velocity method and synthetic cases showed GWMA and SG can 

enhance the accuracy of such prediction by 60 to 80% and 90 to 100%, respectively, depending on 

the kinematics of the landslide (characterized by the curve in the inverse velocity before failure 

and quantified by the 𝛼 value in the fitted curve). The results of inverse velocity FTF with case 

history data filtered by SMA, GWMA, and SG also confirmed these alternative filters outperform 

SMA at least by 60% in terms of FTF accuracy. Our results suggest the adoption of GWMA and 

SG can improve the reliability of EWSs over the current prevalent use of SMA, as they enable an 

EWS to capture the acceleration moment with reduced lag time and forecast time to failure with a 

narrower range of error. 
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Appendix 4.A – Case Histories Data 

 
Figure 4- 14. Inverse velocity diagram of Sets 1 to 3 

 
Figure 4- 15. Strain rate representative diagram of Sets (a) 4 and 5, and (b) 6 
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Figure 4- 16. Movement diagram of Set 7 

 
Figure 4- 17. Inverse velocity diagram of Sets (a) 8, 9, 12, 13, and (b) 11 
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Figure 4- 18. Inverse velocity diagram of Set 10 

 
Figure 4- 19. Inverse velocity diagram of Set 14

 

Figure 4- 20. Inverse velocity diagram of Set 15 
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Figure 4- 21. Line-of-sight (LOS) displacement diagram of Set 16 

 
Figure 4- 22. Line-of-sight (LOS) displacement diagram of Set 17 

                

           

    

   

   

   

   

 

 
 
 
  
  
 
  
 
 
 
 
 
  
  

 
 

                            

                

                 

           

    

    

   

   

   

   

 

  

 
 
 
  
  
 
  
 
 
 
 
 
  
  

 
 

     

                



79 

 

Appendix 4.B – FTF error vs. time-to-failure of all case histories 

 
Figure 4- 23. Error in FTF vs. time to failure for different baselines in Mt. Beni landslide (Florence, Italy) 

 
Figure 4- 24. Error in FTF vs. time to failure for creep test (samples acquired from Beijing, China) 
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Figure 4- 25. Error in FTF vs. time to failure for set 7 (Failure in Delabole slate quarry, Cornwall, England) 

 
Figure 4- 26. Error in FTF vs. time to failure for different benchmarks of the Vajont failure (Italian Alps) 
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Figure 4- 27. Error in FTF vs. time to failure for set 10 (Mount St. Helens failure, Washington, USA) 

 
Figure 4- 28. Error in FTF vs. time to failure for set 14 (Failure in Liberty pit mine, Utah, USA) 

 
Figure 4- 29. Error in FTF vs. time to failure for set 15 (failure in a coal mine, British Columbia, Canada) 

 

 

 

 

 

  

  

  

  

  

               

 
  
 
  
  
  
 
 
  
 
 
 
 
 

                      

        

        

        

         

         

         

       

       

       

 

  

  

  

  

  

       

 
  
 
  
  
  
 
 
  
 
 
 
 
 

                      

        

        

         

         

       

       

 

 

 

 

 

 

 

 
  
 
  
  
  
 
 
  
 
 
 
 
 

                      

        

        

        

         

         

         

       

       

       



82 

 

 
Figure 4- 30. Error in FTF vs. time to failure for set 16 (Cadia gold mine tailings dam embankment failure, New South Wales, 

Australia) 

 
Figure 4- 31. Error in FTF vs. time to failure for set 17 (Xinmo landslide, Sichuan, China) 
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Chapter 5: An Improved Estimation of Surficial Velocities Obtained by MT-

TOPSAR Interferometry: A Case Study of Oldman River Dam, Alberta, 

Canada 

Contributions of the Ph.D. Candidate 

The material presented in this chapter, including the literature review, conceptualization, 

methodology development, analysis, draft preparation and revisions, are conducted by the Ph.D. 

candidate. Dr. Michael Hendry has reviewed all pieces presented in the published manuscript, cited 

below:  

Sharifi S, Hendry MT, 2023. “An assessment of surficial velocities by MT-TOPSAR 

interferometry: Case study of the Oldman River Dam, Alberta, Canada”, Bulletin of Engineering 

Geology and Environment, 82(446). https://doi.org/10.1007/s10064-023-03473-0. 

Contributions of This Chapter to the Overall Study 

Decomposing InSAR 1D LOS velocities has been long conducted in 2D by ignoring the 

northward velocity component. Adopting such an assumption is not infallible and leads to 

erroneous estimations of vertical and eastward velocity components. This chapter introduces a 

method to combine the variance caused by this assumption in combination with InSAR’s inherent 

uncertainty respecting the reflectivity of objects on the ground. The obtained mathematical 

expressions of errors along vertical and eastward axes provide guidelines on choosing the scenes 

if the simplifying assumption is to be practiced. An investigation on the surficial velocity of the 

ground at the Oldman River Dam, southern Alberta, is carried out. Due to the presence of sheared 

slip surfaces and expansive materials, the spillway has been a target of monitoring in the past two 

decades. The variety of ground targets from stable to active moving in different directions make 

this site an informative case study to deliver objective #3. 
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Abstract 

Numerous dams in North America are constructed on foundations and/or abutments consisting of 

unstable weak materials or low-friction pre-sheared surfaces such as the Oldman River Dam 

(ORD), in southern Alberta, Canada. The objective of this paper is to examine the performance of 

Interferometric Synthetic Aperture Radar (InSAR) on the slow-moving ORD site by comparing 

the mapped velocities obtained through InSAR analysis in 2015-2022 with velocities from 

previous investigations. Additionally, the study aims to determine the precision of estimated 

velocities by analyzing InSAR temporal decorrelation and incorporating the error of simplifying 

assumption necessary to decompose line-of-sight velocities. The results indicate the spillway, 

covering an area of ~26×103 m2, has been moving at an average total velocity of 1.26 mm/yr. On 

the slope of the embankment, measuring ~160×103 m2, an active area next to the left abutment is 

also experiencing a higher average velocity of 8.29 mm/yr (both rates in millimetres per year). An 

analysis of the precision of the estimations showed an accuracy of 0.72 and 2.78 mm/yr for the 

spillway and embankment, respectively. Overall, the spillway velocities have not deviated much 

from 1 mm/yr in the study period but the embankment’s active area decelerated from >20 to   

mm/yr toward the end of 2022. Eventually, a lagged spillway displacement in response to seasonal 

variation of the reservoir level was also observed. 

Keywords: Ground hazard; Dam; InSAR; Monitoring; Velocity; Precision 

5.1. Introduction 

Ground movements can threaten the integrity and operation of essential infrastructures 

(Journault et al., 2018; Khorrami et al., 2019; Ma et al., 2021; Macciotta & Hendry, 2021; 

Wasowski & Pisano, 2020; Woods et al., 2021; C. Zhou et al., 2022). In situ instruments are used 
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to record and monitor ground movements, but they require considerable resources (Cenni et al., 

2021; Rodriguez et al., 2021). Different variants of remote sensing techniques, accordingly, have 

been widely adopted as a complementary component in monitoring plans to minimize expenditures 

(Bekaert et al., 2020; Deane et al., 2020; Macciotta & Hendry, 2021; Rodriguez et al., 2020; Woods 

et al., 2020).  

Interferometric Synthetic-Aperture Radar (InSAR) is a space-borne remote sensing 

technology that uses satellite imagery for a better understanding of the kinematics of ground 

activities. Synthetic-Aperture Radar is a sophisticated sensor that operates within the microwave 

range and utilizes a short-length antenna to receive data. These waves illuminate a footprint and 

depending on the objects’ reflectivity, a portion of waves are reflected toward the sensor (X. Hu 

et al., 2016; Mondini et al., 2021). When a second backscattered acquisition is made, the phase 

difference can be calculated between these two scenes. The outcome is called an interferogram 

which is a superimposed product of various factors including displacements and atmospheric 

effect. Minimizing the latter has been a challenge and modern algorithms, called multi-temporal 

(MT) analyses, were developed to deliver this task more reliably. Rather than only two scenes, 

they take advantage of a stack of images. This is because such interferences have a weak 

correlation in time (Roy et al., 2022; Y. Wang et al., 2022). Understanding the temporal 

development of ground movement has been a further motivation for studies using MT analysis. 

MT interferometry has been shown as a successful tool for a variety of applications such as fault 

characterization (B. Smith & Sandwell, 2003), volcano modelling (Di Traglia et al., 2021), 

mapping subsidence (Ghazifard et al., 2016; J. Hu et al., 2022; Khorrami et al., 2020; Motagh et 

al., 2017) and landslide monitoring (X. Liu et al., 2021; Y. Wang et al., 2022) 
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Infrastructures are exposed to ground movements, such as dams and their related structures 

which carry a considerable hydrological, environmental, financial and safety significance. These 

instabilities can compromise the integrity of dam structures to various degrees. Seepage problems 

in the short term or a probable total failure in the long-term resulting in devasting aftermaths are 

instances of concern in at-risk dams. Schuster (2006) gathered more than 160 of such cases from 

North America such as the dams on Calaveras Creek, Castaic Creek, Grande Creek, and Cuyama 

River in the USA (Cotton, 1972; Glover et al., 1997; Hall, 1978; Hanegan, 1973; Kintzer, 1980; 

Nilsen, 1972). In Canada, the Gardiner Dam and Nipawin Dam in Saskatchewan, Oldman River 

Dam and Dunvegan Dam in Alberta, and Peace Canyon Dam, Site C Dam, and WAC Bennett 

Dam in British Columbia are also affected by ground movements (Hendry et al., 2019; Houston, 

2001; Jaspar & Peters, 1979; Morgenstern & Simmons, 1982; Sauer, 1984; Scammell, 2013; 

Scammell et al., 2012; Schuster, 2006). Of factors contributing to the movements, the following 

can be mentioned: weak unstable materials susceptible to expansion, pre-sheared bedding surfaces 

due to valley rebounds or glacier thrust, the existence of previous landslides in the foundation and 

the presence of erodible materials. 

Even though concerns for dams’ safety in North America are prevalent and in situ 

monitoring means face many limitations, no systematic study on the applicability of InSAR for 

these cases has been conducted. To examine the performance of InSAR for such cases, the Oldman 

River Dam (ORD) in southern Alberta, Canada has been chosen. The ORD, underlain by mudrock 

formations and pre-sheared clay shale seams, has been selected because of the availability of 

displacements recorded since 1990. In this paper, 288 Sentine-1 scenes are analyzed, and line-of-

sight velocities are obtained for ORD’s spillway and embankment. LOS velocities are then 

decomposed here using the common practice of ignoring northward velocity component. A 
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detailed mathematical investigation on the impact of this simplifying assumption and InSAR’s 

inherence precision is also conducted for the first time. The objective of this paper is (1) to assess 

the feasibility of InSAR application on this slow-moving site by comparing the mapped velocities 

with previous in situ investigations and (2) to determine the precision of InSAR estimations by 

considering all known sources of errors (combined precision).   

5.2. Site Background 

The ORD is located approximately 10 km north of the town of Pincher Creek, and its 

reservoir is fed by the Oldman River as well as the tributary Crowsnest River and Castle River. 

The elements and structures of the ORD referred to in this study are shown in Figure 5- 1. The 

crest elevation is 1125.6 masl with an average slope of 1(vertical):3.5(horizontal) both upstream 

and downstream. The dam is designed for a maximum reservoir level of 1118.6 masl, which 

corresponds to 500 Mm3, but normally operating levels are 1108 to 1118.6 masl. Figure 5- 2 

displays the variation of reservoir level measured at hydrometric station 05AA032 (49°36’43” N 

114°03’11” W) on the dam’s upstream (Government of Canada, 2022).  

Situated on the west limb of the Alberta syncline, the ORD is constructed on the Porcupine 

Hills Formation (upper mudrock and basal sandstone sequences) of the Paleocene epoch, which 

itself is disconformably underlain by the late Cretaceous Willow Creek Formation (lower mudrock 

sequence) at an approximate elevation of 1005 masl under the dam centerline (Bally et al., 1966; 

Jackson, 2002). All units are recognized as non-marine deposits with a sub-horizontal dip of 0.6°N 

17°E, which agrees with the adjacency of the site to the Alberta syncline axis 5 km to the west 

(Sinclair et al., 1989; Figure 5- 3). Davachi et al. (1991) report encountering several shear planes 

in clay shale seams during their field investigation. These features are common in the Western 
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Canadian Sedimentary Basin and several dams with similar foundation and abutments are also 

impacted, such as the Gardiner Dam and Nipawin Dam in Saskatchewan, Dunvegan Dam in 

Alberta, and Peace Canyon Dam, Site C Dam, and WAC Bennett Dam in British Columbia (Jaspar 

& Peters, 1979; Morgenstern & Simmons, 1982; Sauer, 1984; Houston, 2001; Schuster, 2006; 

Scammell et al., 2012; Scammell, 2013). Due to the glaciotectonic thrusts and valley rebound upon 

river downcutting and stress relief, the planes have undergone extensive shearing that has led them 

to the residual state  (Morgenstern, 1989). These planes have a strike from northwest to southeast 

and a 0.5° to 1.5° dip towards the northeast. The elevation and design values for the residual 

friction angle of shear planes identified beneath the spillway are shown in Figure 5- 4. Interested 

readers may refer to Davachi et al. (1989) for further information regarding other shear planes in 

the abutments and at the valley bottom.  

Monitoring at the ORD includes reading a collection of SIs up to six times per year, 

extensometers four to six times per year, and surface displacement surveys by a total station eight 

times from 1991 to 2015. Hendry et al. (2019) compiled and interpreted the datasets obtained by 

these instruments as follows. Figure 5- 5 shows the average direction and average magnitude of 

horizontal displacements obtained by SIs for the years 2013-2017 for most units along with their 

corresponding most active shear plane. Except for one unit on the northeast, the general direction 

of the shear planes is northeast on the west side of the spillway and approximately southeast on 

the other side. Moreover, the most active plane is R1 at almost all locations and the variation of 

velocity magnitudes is limited within the range of 0.8 to 1.7 mm/yr. A total of 38 extensometers 

are also installed at locations shown in Figure 5- 5. Similar to the SI results, data from the 

extensometers for the R1 shear plane show maximum velocities of 1.1, 1.6, 0.7, and 0.2 mm/yr in 

the headworks, upper and lower half of the chute, and flip bucket, respectively.  



89 

 

 

Figure 5- 1. Layout of different areas and elements of the ORD 

 

Figure 5- 2. Variation in the ORD reservoir level from 2000 to 2021 (data from Government of Canada, 2022)  
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Figure 5- 3. (a) View of spillway approach channel along with (b) a closer look at the geological formations shown at the 

outcrop (January 17, 2018) 

 

Figure 5- 4. Cross-section of the spillway at its centerline featuring the elevation and design friction angle of shear planes (not to 

scale) 



91 

 

The average velocities calculated by total station surveys are presented in Figure 5- 6. This 

figure shows the surficial velocity of the spillway generally decreases from northeast to southwest 

and from the headworks toward the flip bucket. The azimuth of the movement direction affected 

by the formation dip is strongly eastward at the headworks and rotates toward almost 135° at lower 

elevations. The velocities on and around the flip bucket are lower than the accuracy of 

measurements and are accordingly deemed unreliable. Time-series data of instruments, Figure 5- 

7, up to 2015 demonstrate the ongoing displacements have been decelerating since the first filling 

of the reservoir. Hendry et al. (2019) established a long-term trend of 1 mm/yr for the spillway 

velocities until 2015 and hypothesized the most probable cause of the instability is swelling in the 

mudstone rock formation associated with a shear strength reduction due to moisture absorption.  

 

Figure 5- 5. Average direction and magnitude of the most active shear plane based on SI data collected from 2013 to 2017 unless 

indicated otherwise, and the location of extensometers (after Hendry et al., 2019)  
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Figure 5- 6. Average velocities obtained by a total station from 1991 to 2015 at (a) top of headworks, the mid and lower portions 

of the chute and flip bucket, (b) base of headworks, and (c) top of the chute (after Hendry et al., 2019)  

5.3. Methodology 

Figure 5- 8 presents a flow chart of the applied workflow which is comprised of 3 major 

blocks of calculation: InSAR analysis, LOS velocities decomposition and calculation of combined 

precision. Upon analyzing Sentine-1 scenes in the first block, the mapped velocities are spatially 

interpolated to reconcile the spatial disparity between detected points from ascending and 

descending orbits. These LOS velocities are decomposed using the prior knowledge in the 

direction of movements discussed previously. The inherent precision of InSAR LOS velocities 

(temporal decorrelation) is then calculated which leads to four different combinations of LOS 

velocities obtained from ascending and descending scenes. These four systems of equations are 

solved for decomposition followed by compensating the error caused by the simplification 

assumption needed to solve the equations. The maximum difference of four total velocities from  
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Figure 5- 7. Time-series variation of ground velocity as measured by example (a) SIs and (b) extensometers (NOTE: location of 

these instruments are marked on Figure 5- 5) 

the initially calculated one is considered the precision of estimation. Given that this precision is 

calculated by considering all known sources of variance, it is referred to as “combined” precision. 

In the following, each block is presented in detail. 
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Figure 5- 8. Applied workflow in this study to conduct InSAR analysis, decomposing LOS velocities into total velocities 

and calculating combined precision 

5.3.1. InSAR Analysis 

A total of 129 ascending and 159 descending scenes in the imaging mode of Terrain 

Observation by Progressive Scans (TOPS) and Interferometric Wide (IW) archived by Sentinel-1 

were downloaded from the Alaska Space Facility Data Search Vertex 

(https://search.asf.alaska.edu/#/, which is the full mirror server of Copernicus Open Access Hub: 
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https://scihub.copernicus.eu/dhus/#/home). A metadata summary of scenes is provided in Table 5- 

1. 

Table 5- 1. Characteristics of images used in this study 

Orbit  Path Frame Beam mode Polarization Scenes Sensing Period 

(YYYY/MM-DD) 

Ascending 122 158 IW VV 129 2014/10/26-2021/12/18 

Descending 71 429 IW VV 159 2015/04/20-2021/12/14 

The differential SAR interferometry seeks to construct the displacement map by practicing 

the conjugation of scenes (i.e., the calculation of phase difference). Eq. 5. 1 summarizes all of the 

factors that contribute to the phase difference between two SAR scenes: 

∆φ
dIn
=Δφ

disp
+Δφ

topo
+Δφ

orbit
+Δφ

atm
+Δφ

noise
, ( 5. 1 ) 

where ∆φ
dIn

, Δφ
disp

, Δφ
topo

, Δφ
orbit

,  Δφ
atm

, and Δφ
noise

 are respectively the phase of 

differential SAR interferometry, interpreted displacement, topography, orbital error, atmospheric 

perturbations and residual speckle noise due to thermal effects, arbitrary distribution of different 

objects in each pixel, or residual values from other terms. The goal in InSAR analysis is to suppress 

the last four terms on the right side of Eq. 5. 1 and isolate the phase of displacement for which pre-

developed digital elevation models (DEMs), orbital tube coordinates, and filters are procured. The 

displacement can be then computed using Eq. 5. 2: 

Displacement=Δφ
disp
∙
λ

4π
, ( 5. 2 ) 

where λ is the wave-length which is 5.54 cm for Sentinel-1. 

Multi-temporal (MT) interferometry is a sequel to differential SAR interferometry and is 

developed to detect the most stable targets and minimize the impact of atmospheric interferences. 

In this study, SARPROZ software version 2021 (Perissin and Wang 2011; www.sarproz.com/) is 

https://scihub.copernicus.eu/dhus/%23/home
http://www.sarproz.com/
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used that employs a method called Persistent Scatterer InSAR (PS-InSAR; Ferretti et al. 2001). 

PS-InSAR starts with choosing a master scene to which other SAR scenes are co-registered. With 

respect to this master, all possible interferograms are generated. A series of candidate PSs with 

user-enforced reflectivity are chosen which can be used to estimate and screen the atmospheric 

contribution using the criteria of strong correlation in space but weak correlation in time. In the 

next step, by relaxing the threshold of PSs selection, more scatterers are selected and their phase 

value is transformed into the displacements which facilitates the calculation of velocity. The 

applied workflow followed the steps discussed in Goorabi et al. (2020), Khoshlahjeh Azar et al. 

(2021) and partly X. Liu et al. (2019). A threshold of 0.6 was used to mask poor coherent scatterers. 

Although a value of 0.75~0.8 is usually suggested (Di Traglia et al., 2021; Roque et al., 2021), 

lower values as used here are also reported for studying rural areas, especially on a local scale (Sun 

et al., 2015; X. Hu et al., 2016; Samsonov et al., 2020; Kang et al., 2021; H. Chen et al., 2022; Roy 

et al., 2022). 

5.3.2. LOS Velocities Decomposition 

To minimize any remaining noise, displacements of scatterers were filtered by Gaussian-

weighted moving average with a bandwidth of 7% of the total number of scenes (Sharifi et al., 

2021; Sharifi, Hendry, Macciotta, et al., 2022; Sharifi, Macciotta, & Hendry, 2022), then the 

average velocities were mapped using linear regression. However, these values are only projected 

values on the satellite line-of-sight (LOS). Its unit vector, LOS velocity (VLOS), can be related to 

the true components of velocity as follows (Motagh et al., 2017; Sharifi, Hendry, & Macciotta, 

2022): 

VLOS=VV cos θ -(VE cos α -VN sin α) sin θ, ( 5. 3 ) 
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where VV, VE, and VN are the vertical, eastward, and northward velocity components, 

respectively, α is the heading angle, and θ is the incidence angle. 𝛼 is the azimuth of the satellite’s 

orbiting direction with respect to true north and θ is the side-looking angle of the sensor toward 

the target (Figure 5- 7). Eq. 5. 3 is an ill-posed problem and, to address this, images obtained in 

two opposite orbits (ascending and descending) are used. However, this does not fully resolve the 

issue of decomposing the LOS velocity and the VN component is typically ignored at this point. 

This is usually justified by considering that the satellite is sweeping the ground in near-polar orbits, 

which makes it almost unsighted to movements in the south-north direction (González, 2022). 

Therefore, VV and VE can be back-calculated upon making this simplifying assumption. These 

are, nevertheless, estimated components as the satellite is not completely insensitive to the south-

north velocities; otherwise, the term would not appear in Eq. 5. 3 at all. The error of simplification 

by discarding VN would be mathematically propagated toward VV and VE, making them an 

estimation of true values. These estimated values are denoted by small subscripts hereafter (Vv 

and Ve). The error of such an assumption for the ORD and other sites under comparable α and θ 

can be quantified using Eqs. 5. 4 and 5. 5, which are derived for this specific site as follows (the 

proof and general equations are presented in Appendix B): 

η
V
=-0.1 06∙VN, ( 5. 4 ) 

η
E
=0.0031∙VN, ( 5. 5 ) 

where η
V
=Vv-VV and η

E
=Ve-VE denote the error terms of the vertical and eastward 

components, respectively. To measure the effect of the true horizontal direction on the results, a 

sensitivity analysis was conducted using an angle β defined between the true horizontal velocity 
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and VN, which can be approximated as tan-1 (|Ve VN⁄ |) (please refer to Appendix B for further 

discussion). To conduct this analysis, Eqs. 5. 4 and 5. 5 can be transformed into the following: 

η
V
=-0.1 06∙Ve∙ tan β, ( 5. 6 ) 

η
E
=0.0031∙Ve∙ tan β . ( 5. 7 ) 

 

Figure 5- 9. Geometric characteristics of SAR images captured for ascending and descending orbits 

To find the maximum error for a conservative quantification, equating the derivations of 

η
V

 and η
E

 to zero was not possible because they are proportional to sec2 β. Based on the geometry 

of the geological formations, the angle β was varied in a known range of E0° to E45°S for points 

with an eastward direction of movement, mainly on the spillway. E45°S was found to result in the 

largest error and thus the most conservative estimations. For movements on the embankment, 

which are mostly under the influence of the slope-driven instability, we assumed the direction to 
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be S18°W, which is perpendicular to the dam’s crest. This orientation was selected because it 

yields the largest error within the range of S18°W to S90°W, and a further south-inclined direction 

seems unlikely due to the slope geometry. 

For a successful decomposing practice, the ascending and descending velocities must 

correspond to the same point on the ground yet it is rather unlikely to have scatterers from these 

two sets that geographically overlie. We accordingly borrowed an alternative method from 

computational geometry called the k-nearest neighbours (kNN) search algorithm (Guo et al., 

2003). For every single scatterer from one orbital geometry, kNN searches for k neighbouring 

scatterers from the opposing geometry and a weighting kernel based on the distance of these 

scatterers is enforced to address their different contributions. For instance, Figure 5- 9 shows a 

scatterer from an ascending set (red circle) surrounded by 𝑘 =7 descending scatterers (blue 

circles), numbered from the nearest to the farthest (i.e., 1 is the closest). Eqs. 5. 8 and 5. 9 

demonstrate how kNN is adopted in this example: 

V̂LOSDj
=
∑ wiVLOSD i
 
i=1

∑ wi
 
i=1

, ( 5. 8 ) 

wi=1-
di

d 
, ( 5. 9 ) 

where V̂LOSDj
 is the equivalent descending LOS velocity corresponding to the jth ascending 

scatterer, VLOSD i
 is the LOS velocity of ith descending scatterer, and wi is the averaging weight as 

calculated using Eq. 5. 9. Because the point numbers are sorted in accordance with the distance 

from the red circle, d7 is the largest distance and the weights of other points are normalized with 

respect to it, which automatically leads to the zero significance of point 7 itself. The red and blue 
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points in this procedure can be switched to find all of the equivalent ascending scatterers 

neighbouring the descending scatterers. The kNN algorithm appreciates the discrete nature of 

scatterers that would not lead to a reduction in resolution, obscuring the spatial trend, and 

complications regarding the geometrical aspect of its implementation. Contrary to square down-

sampling (Carlà et al., 2019; M. Li et al., 2020), this method does not require an evaluation of the 

gridding sufficiency, orientation, and size of cells because the kNN algorithm only prompts the 

number of points (k), which can be deduced from a simple sensitivity analysis considering that a 

distance-damping kernel is employed. 

 

Figure 5- 10. An example of kNN algorithm application (red and blue circles belong to ascending and descending sets, 

respectively) 

5.3.3. Combined Precision Calculation 

To quantify the inherent precision of InSAR measurements, an approach using temporal 

coherence (𝛾) was adopted using Eq. 5. 10 (Y. Zhang et al., 2018; Kellndorfer et al., 2022): 

Precision=
λ

4π
√
1-γ2

2γ2
, ( 5. 10 ) 

where λ is the wavelength, equal to 5.54 cm for C-band sensors such as Sentinel-1. The precision 

computed by Eq. 9 was added to and subtracted from the cumulative displacements to obtain the 
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maximum and minimum range of LOS velocities for each scatterers. Four different combinations 

of LOS velocities with respect to two orbiting geometries (ascending and descending) were 

incorporated into decomposition process to assess Eastward and vertical components after 

compensating for the error associated with the simplifying assumption (Eqs. 5. 6 and 5. 7). The 

largest difference between the resultant components with the initially estimated velocities is 

regarded as the combined precision, which is comprehensive enough in evaluating the reliability 

of InSAR-driven velocities given all known sources of errors are taken into account.  

5.4. Results and Discussion 

5.4.1. Estimated InSAR velocities 

The k in the kNN algorithm was varied iteratively from 2 to 21, and Vv and Ve were 

estimated at each iteration for the scatterers. The mean changes of these components bounded by 

1-σ for one unit of increase to k (from k-1) are plotted in Figure 5- 11a. This figure shows changes 

in the Vv and Ve are agreeably close and unstable at low k values, but the range of the changes 

gradually decreases after a k of 7 or 8. A k of 11 was selected for this study; however, variations 

of results in response to changing k from 7 to 13 showed negligible impacts on the results. Figure 

5- 11b presents the weight distribution of 11 surrounding scatterers around each scatterer of 

interest. The trend of the weight kernel for all scatterers starts from an initial high value (0.22 on 

average) and exponentially decreases to zero for the 11th point. The average diagram in Figure 5- 

11b provides a sense of how 𝑤𝑖 changes and was not used in the analysis; each scatterer was 

studied using its specific kernel (grey lines).   

A total of 740 scatterers with an approximate density of 1 per 320 m2 were identified in the 

process of InSAR analysis. Figure 5- 12 shows the temporal coherence of these scatterers both in 
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space and as a histogram distribution. The mean coherence is 0.86 with a standard deviation of 

0.10, meaning almost 80% of the scatterers have a coherence of greater than 0.75 as typically 

recommended, and the remaining scatterers with a coherence between 0.60 and 0.75 are in the 

expected range given the lower reflection of geo-materials (Sun et al., 2015; X. Hu et al., 2016; 

Samsonov et al., 2020; Kang et al., 2021; H. Chen et al., 2022; Roy et al., 2022). Early LOS 

velocity values are also provided in Appendix A.2 for further interests of readers. 

 

Figure 5- 11. (a) Sensitivity of estimated velocity components with a unit increase to k, and (b) weight distribution for scatterers 

in kNN for k=11 

Figure 5- 13 displays the spatial distribution of scatterers on the spillway, colour-coded by 

the magnitude of estimated velocity components, as well as a histogram portraying the statistical 

distribution of velocity magnitudes. The detected scatterers largely populate the headworks of the 

spillway and the mid-chute part toward the flip bucket. The sign convention is upwards and 

eastward for positive values of Vv and Ve, respectively. Figure 5- 13a,b demonstrates almost all of 

the scatterers are showing subsidence except for three scatterers with negligible vertical velocities 

of 0 to 0.02 mm/yr. The spatial trend of 𝑉𝑣 is increasing subsidence, from values of almost -0.3  
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Figure 5- 12. (a) Spatial distribution of detected scatterers colour-coded based on the coherence value and (b) histogram of these 

values 

mm/yr at the headworks toward peak values of -1.17 mm/yr at the mid-chute and again decreasing 

to -0.3~-0.4 mm/yr at the flip bucket. Ve is approximately 0.35, 1.10, and 0.6 mm/yr at the 

headworks, mid-chute, and flip bucket, respectively. The total station surveys indicated an 

eastward tendency of spillway velocities with a decreasing trend in their magnitudes from 

northeast to southwest and high to low elevations along the spillway fall line. The eastward 

direction of Ve is parallel to the survey results and also confirmed by our geological knowledge of 

the formations’ strike. However, as seen in Figure 5- 13, the general spatial trend in Ve is increasing 

from the headworks to the flip bucket with no distinct pattern of lateral variation. Possible 

explanations for this discrepancy can relate to the residual noise, simplifying assumption error, 

and InSAR precision that distorted these Ve estimations to a level such that the spatial trend is no 

longer discernible even though the values themselves are in a credible range. This calls for a 

detailed error and precision study, which is discussed later. As a result of these uncertainties, the 

average values are regarded as representative values for Vv and Ve estimations. Figure 5- 13b,d 

suggests such values are -0.65 and 0.69 mm/yr for the vertical and the eastward velocities while 
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Ve values are slightly more concentrated around the mean value. Involving the coherence values 

shown in Figure 5- 12 in the averaging as a weighting function and granting a larger contribution 

to more coherent scatterers was considered, but did not significantly change the average values. 

Considering -0.65 and 0.69 mm/yr for Vv  and Ve, the total velocity can be approximated between 

0.95 and 1.20 mm/yr for horizontal movements between purely eastward and E45°S based on the 

in situ data. This range of velocities is in good agreement with Hendry et al. (2019), who reported 

a long-term velocity of 1 mm/yr (Figure 5- 6). 

 

Figure 5- 13. Spatial distribution and velocity histogram of the spillway scatterers in vertical (a & b) and eastward (c & d) 

directions 
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Figure 5- 13 illustrates the spatial distribution and histogram of 𝑉𝑣 and 𝑉𝑒 estimations for 

the scatterers identified on the embankment. All points have negative 𝑉𝑣 values, implying pervasive 

subsidence with most points subsiding at rates less than 2 mm/yr on the headland, rock outcrop, 

riprap, and sides of the dam’s crest. However, a confined region on the top two-thirds of the 

embankment adjacent to the left abutment is settling at greater than 2 mm/yr, with a few points 

with low coherence reaching extreme values of 7 mm/yr (Figure 5- 11). A similar bimodal 

distribution is also seen in the histogram of 𝑉𝑒, again suggesting the points within the same active 

area are travelling westward at higher rates up to 3 mm/yr while the remaining scatterers on the 

embankment and in the adjacent areas are moving toward the east at rates less than 2.01 mm/yr. 

For the active area, higher vertical velocities near the crest and a fairly uniform 𝑉𝑒 in the middle 

would imply the affected area is bowl shaped. The average 𝑉𝑣 and 𝑉𝑒 for scatterers on the 

embankment are computed to be -1.81 and -0.11 mm/yr (Figure 5- 13b,d), with little effect of 

coherence. However, differentiating the active area from the inactive areas is better in terms of 

proposing a representative value. The average 𝑉𝑣 and 𝑉𝑒 values for the active and inactive areas 

were calculated as -3.92 and -2.04 mm/yr and -0.9 and 0.71 mm/yr, respectively . Adopting an 

assumption regarding the horizontal velocity direction being the same as the spillway resulted in 

the total velocity of inactive areas estimated to fall within the range of 1.14 to 1.68 mm/yr. 

Assuming a horizontal velocity direction of the active area orthogonal to the dam’s crest leads to 

a total velocity of 7.68 mm/yr for this area. 

5.4.2. Quantification of Error and Combined Precision 

The error associated with the simplifications as calculated by Eqs. 5. 6 and 5. 7 is shown 

in Figure 5- 14a. The error associated with the simplifying assumption is insignificant for the 

majority of scatterers, being limited to 0.4 and 0.0072 mm/yr for Vv and Ve, respectively. The 
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average values of η
V

 and η
E

 for the scatterers on the spillway are 0.12 and 0.0021, which is 13% 

and 0.3% of the representative values discussed before (Vv= -0.9 mm/yr and Ve= 0.71 mm/yr). 

The active area on the embankment, however, is exposed to larger errors with a maximum of 1.51 

and 0.0274 mm/yr in the vertical and eastward directions; the average values in this area of 1.07 

and 0.02 mm/yr, respectively, are 27% and 1% of the representative velocity values (Vv=-3.92 

mm/yr and Ve=-2.04 mm/yr). The vertical component is identified as the most susceptible to the  

 

Figure 5- 14. Spatial distribution and velocity histogram of the embankment scatterers in the vertical (a & b) and eastward (c & 

d) directions 

simplifying assumption. After quantifying the error associated with the simplifying assumption, a 

more accurate calculation of the total velocity was possible as shown in Figure 5- 14b. The average 
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total velocity is calculated as 1.26 and 8.29 mm/yr for the spillway and active area, respectively, 

and 1.50 mm/yr for the remaining scatterers. 

Based on Eq. 5. 10, Figure 5- 15 features a histogram of the precision of LOS velocities 

and the corresponding LOS velocities. The mean and standard deviation of the precision values 

are calculated as 0.23 and 0.12 mm/yr, respectively. The resultant combined precisions are 

illustrated in Figure 5- 16a-c for the vertical, eastward, and total velocities. The majority of 

scatterers located in the inactive areas have a combined precision in 𝑉𝑣 estimations of less than 

0.75 mm/yr, while those on the rock outcrop are subjected to larger precision values (1.5 mm/yr). 

This rises to 2.5 mm/yr for the active area on the embankment, indicating a higher uncertainty in 

the vertical velocity than for the spillway (Figure 5- 12a,b) that may increase the Vv estimations 

of the active area (Figure 5- 13a,b) to almost 10 mm/yr. On the other hand, the combined precision 

for Ve (Figure 5- 16b) indicates estimations for this component (Figure 5- 12c,d and Figure 5- 

13c,d) have a greater level of uncertainty. Most of the area is showing a precision of 1.5 to 4 

mm/yr, except for the headland, headworks, and top of the spillway chute. This could substantiate 

why the spatial trend of the estimated Ve for the spillway (Figure 5- 12c) did not conform to the 

total station surveys (Figure 5- 6). The former showed an increase from the headworks to the 

flipbucket while the opposite was observed in the latter. The combined precision of Vv and Ve, 

and especially Ve, was subjected to non-negligible changes with respect to the small variations in 

the assumed horizontal direction of movement (β) while this was less accentuated for the total 

velocity. To take this observation into account and also report a single consolidated parameter, we 

decided to regard the combined precision of the total velocity as the final precision. Figure 5- 16c 

shows the spatial trend of the total velocity precision reconciles better with Vv and distinctly  
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Figure 5- 15. (a) Magnitude of simplifying assumption error on 𝑉𝑣 and 𝑉𝑛, and (b) the total conservative velocity upon the 

assumed horizontal direction of movement (E45°S and S18°W for the eastward and westward-moving scatterers, respectively) 

separates the active area from the remaining inactive area. Therefore, the histograms of total 

velocity precision for these two areas are plotted independently (Figure 5- 16d) with mean values 

of 0.72 and 2.78 mm/yr for the inactive and active areas, respectively.  

5.4.3. Time-series Velocities and Displacements 

In addition to average velocities in the study period (late 2014 to late 2021), velocity 

assessments broken down into shorter periods would be beneficial to establish new projections 

regarding long-term trends. The yearly averaged total velocities of scatterers on the spillway and  



109 

 

 

Figure 5- 16. (a) Histogram of LOS velocity precision and (b) precision vs. corresponding LOS velocities 

 

Figure 5- 17. Spatial distribution of combined precision of (a) 𝑉𝑉, (b) 𝑉𝑒 and (c) total velocity, and (d) the histogram of 

total velocity combined precision 
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the embankment’s active area are plotted in Figure 5- 18. The general trend of the active area is 

decreasing, reaching values of 5 mm/yr with a lower range of variations after 2018. The spillway, 

on the other hand, is somewhat consistently moving at about the rate of 1 mm/yr, similar to long-

term trends established by (Hendry et al., 2019) (Figure 5- 6). These variations in average 

velocities could not be correlated to seasonal variations in the reservoir level. The average velocity 

discussed throughout this paper stems from a non-seasonal cause and is calculated by fitting a line. 

The residual displacement varying around this fitted line is composed of noise and seasonal effects. 

We attempted to minimize the noise by employing the Gaussian-weighted moving average, which 

leaves the seasonal variations as the dominant component in the seasonal displacements. The 

displacements of headworks’ scatterers were averaged because they indicated a coherent radar 

response (Figure 5- 12), and then linearly detrended, which is shown against the reservoir level in 

Figure 5- 19. Around July of each year, the reservoir level reaches its maximum and the seasonal 

LOS displacement shows a lagged response of a local maximum. The same observation is also 

evident for the troughs in the diagram. The characteristic points marking the same local maxima 

and minima in the reservoir level diagram and seasonal LOS displacements are heuristically 

identified and numbered in Figure 5- 19. Neither the absolute values nor the magnitude of changes 

of reservoir level and LOS displacements of identical points could be quantitatively correlated. 

However, the uncanny similarities between the trends of these two diagrams suggest the reservoir 

level is one major factor that contributes to the seasonal displacements of the spillway. 
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Figure 5- 18. Yearly-averaged velocities for the spillway and the active area on the embankment (horizontal and vertical lines 

characterize the average span and range of values, respectively) 

 

Figure 5- 19. Average LOS displacements of the headworks’ scatterers (right axis) against the reservoir level measured at 

hydroclimatic station No. 05A032 (left axis) for November 2014 to the end of 2021 (numbered points indicate comparable 

characteristic points in two diagrams) 

5.5. Discussion 

Previous investigations conducted by industry firms hypothesized the following 

mechanisms for continuous movements of the spillway: (1) a progressive failure with strength 

reduction due to ongoing strain and (2) swelling of the mudstone rock formation in the foundation. 

Hendry et al. (2019) argue that the latter is likely the reason for the continuous movements of the 

spillway and the surrounding areas. They refute the progressive failure mechanism since there is 
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no evidence of correlations between pore pressures measured by piezometers with the velocities 

measured by extensometers. Responses of piezometers at the elevation of clay shales to the 

changes in reservoir level indicate that these weak materials have ready access to water. This 

triggers the swelling mechanism which is also manifested by the upward movements reported by 

the extensometers beneath the spillway’s headwork as much as 0.3 to 1.2 mm/yr. In this study, 

however, we could not observe these upward movements which shows these sub-millimetric 

velocities may not be detected by coarse-resolution SAR scenes.   

We suggest that changes in water level leads to a variation in the effective stress given the 

reported hydraulic connection between the reservoir level and piezometer readings. The observed 

lag between the diagrams in Figure 5- 19 also arises from the time it takes for water to percolate 

or dissipate until the groundwater table reflects the reservoir level. Therefore, it is conjectured that 

two driving mechanisms are at work. The first one is the swelling mechanism, as per Hendry et al. 

(2019), that continuously prompts the ground to move but the effect of which has decelerated 

toward 1 mm/yr (Figure 5- 7). The second one is  the shear strength reduction in the shear planes 

caused by seasonal reservoir level changes that is partially responsible for the seasonality in the 

displacements. This latter observation was not recognized in the displacements of the active area 

on the embankment, implying another mechanism is responsible. However, a decreased velocity 

of the active area since 2018 may suggest the activity has ceased and reached an equilibrium. 

Future measures to keep tracking the movements on the embankment are suggested.  

5.6. Conclusions 

In North America, numerous dams and their associated structures are susceptible to ground 

movements caused by weak materials or pre-sheared surfaces. One notable example is the Oldman 
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River Dam, located in southern Alberta, Canada. This study focused on analyzing the period from 

2015 to the end of 2021 using multi-temporal SAR analysis of 288 scenes archived by Sentinel-1. 

The history of ground movement detection at the Oldman River Dam dates back to its 

initial filling in 1991. Previous studies have indicated a deceleration in the velocity of the spillway 

and its adjacent areas, reaching an average of 1 mm/yr in the long term. In this study, we aimed to 

validate this conclusion using SAR interferometry and assess the activity state of the embankment. 

We quantified the error of estimations resulting from temporal decorrelation and simplifying 

assumptions in the velocity decomposition. We also examined the relationship between seasonal 

movements of the spillway's headwork and variations in reservoir level to understand their 

contribution to ground movements. 

The spillway is experiencing subsidence at an average velocity of 0.65 mm/yr and 

displacement towards the east at an average velocity of 0.69 mm/yr. Considering the formation 

strike reported in the site investigation, the total velocity is estimated to be between 0.95 and 1.20 

mm/yr. The average subsidence and westward velocity of the embankment area were calculated at 

1.81 and 0.11 mm/yr, respectively. Notably, an oval-shaped active area was identified, exhibiting 

subsidence at a velocity of 3.92 mm/yr and westward movement at 2.04 mm/yr. In contrast, the 

remaining inactive areas show subsidence at a rate of 0.9 mm/yr and an eastward velocity of 0.74 

mm/yr. 

We present ad hoc equations to calculate the error resulting from simplifying assumptions, 

which can be modified for other cases. After compensating for this error, the total velocities of the 

spillway and the active area on the embankment were determined to be 1.26 and 8.29 mm/yr, 

respectively. Considering both the simplifying assumption error and temporal decorrelation, the 
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combined precision of estimations was calculated as 2.78 mm/yr for the active area and 0.72 mm/yr 

for the rest of the site. 

Regarding the yearly average velocities, the active area on the embankment seems to have 

decelerated to 5 mm/yr from toward the end of 2021, while the spillway velocity remains relatively 

stable at around 1 mm/yr with minor variations. The analysis revealed that the reservoir level 

affects the seasonal displacement of the spillway, but no significant correlation was found for the 

active area on the embankment. 

Overall, this study provides valuable insights into the performance of InSAR for 

monitoring ground movements at the Oldman River Dam site. The findings highlight the 

importance of considering error sources, such as simplifying assumptions and temporal 

decorrelation, in velocity estimations. The knowledge gained from this research can contribute to 

improving monitoring and management strategies for infrastructure affected by ground 

movements. 

Appendix A – Quantification of Simplifying Error 

Eq. 5. 11 shows the complete system of equations relating both knowns (ascending and 

descending LOS velocities) to the unknowns (three components of real velocity), which is 

simplified to Eq. 5. 12 upon discarding the south-north component: 

(
VLOSAsc
VLOSDes

)= [
cos θAsc - cos αAsc sin θAsc sin αAsc sin θAsc
cos θDes - cos αDes sin θDes sin θDes sin θDes

] (
VV
VE
VN

) , ( 5. 11 ) 

(
VLOSAsc
VLOSDes

)= [
cos θAsc - cos αAsc sin θAsc
cos θDes - cos αDes sin θDes

] (
Vv
Ve
) , ( 5. 12 ) 
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where Asc and Des subscripts pertain to ascending and descending orbits, respectively, VLOS is 

the LOS velocity, θ is the incidence angle, α is the heading angle, VV, VE, VN are the true vertical, 

eastward, and northward velocity components, respectively, and Vv and Ve are the estimated 

vertical and eastward velocity components, respectively. Equating the right-hand sides of Eqs. 5. 

11 and 5. 12 and solving the matrixes leads to Eq. 5. 13, which describes the relationship between 

the true and estimated velocity components: 

(
Vv
Ve
)=

[
 
 
 
 1 0

-(sin(αAsc-αDes) sin θAsc sin θDes)

cos αAsc cos θDes sin θAsc - cos αDes cos θAsc sin θDes

0 1
-(sin αAsc cos θDes sin θAsc - sin αDes cos θAsc sin θDes)

cos αAsc cos θDes sin θAsc - cos αDes cos θAsc sin θDes ]
 
 
 
 

(
VV
VE
VN

) . ( 5. 13 ) 

Substituting values of 45°, 350°, 44°, and 190° for the ascending incidence angle, ascending 

heading angle, descending incidence angle, and descending heading angle, respectively, results in 

Vv-VV=-0.1 06VN and Ve-VE=0.0031VN, which can be used to study the effect of discarding the 

south-north component on the estimated velocity components (Vv and Ve). In general, the 

simplifying assumption’s error is linearly correlated to VN by a coefficient. Tables Table 5- 2 to 

Table 5- 4 show the variation of coefficients of error in vertical and eastward components as well 

as their ratio, respectively for a typical range of incidence angle (30-45°) and heading angles (350 

and 190° for ascending and descending orbits, respectively). Table 5- 2 indicates low incidence 

angles are preferred to minimize the simplifying assumptions’ error while Table 5- 3 displays the 

incidence angles between ascending and descending orbits should be as close as possible. Table 

5- 4 confirms that vertical component is always the most compromised component. This, in 

particular, can be critical for translational landslides moving sub-horizontally which are very 

common in Western Canadian Sedimentary Basin. 
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Table 5- 2. Coefficient of simplifying assumption’s error (%) along vertical axis 

  Ascending 

 Incidence angle 30 35 40 45 

Descending 

30 -10.03 -10.99 -11.88 -12.71 

35 -10.99 -12.16 -13.26 -14.30 

40 -11.88 -13.26 -14.57 -15.85 

45 -12.71 -14.30 -15.85 -17.36 

Table 5- 3. Coefficient of simplifying assumption’s error (%) along eastward axis 

  Ascending 

 Incidence angle 30 35 40 45 

Descending 

30 0.00 1.70 3.26 4.72 

35 -1.70 0.00 1.59 3.11 

40 -3.26 -1.59 0.00 1.54 

45 -4.72 -3.11 -1.54 0.00 

Table 5- 4. Ratio of simplifying assumption’s error in vertical axis over eastward axis 

  Ascending 

 Incidence angle 30 35 40 45 

Descending 

30 N/A -6.48 -3.65 -2.69 

35 6.48 N/A -8.33 -4.60 

40 3.65 8.33 N/A 10.27 

45 2.69 4.60 10.27 N/A 

In this study, an angle of β
1
= tan-1(VE VN⁄ ) is defined to study the effect of the horizontal 

velocity direction on the assessments. In the following, β
1
 is shown to be agreeably close to 

β
2
= tan-1(Ve VN⁄ ), which is helpful as VE is not known but Ve is known: 

tan β
1
=
VE

VN
=
Ve-0.0031VN

VN
=
Ve

VN
-0.0031= tan β

2
-0.0031, ( 5. 14 ) 

tan(β
2
-β
1
)=

tan β
2
- tan β

1

1+ tan β
1
tan β

2

=
0.0031

1+ tan β
2
( tan β

2
-0.0031)

. ( 5. 15 ) 
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Plotting Eq. 5. 15 reveals this function varies between 0.0031 and zero, which means: 

0≤ tan(β
2
-β
1
)≤0.0031⟹0≤β

2
-β
1
≤0.1 °. ( 5. 16 ) 

This means the separation between β
1
 and β

2
 is less than 0.2° in the worst-case scenario, 

implying β
1
≈β

2
=β (as referred to in the main body). The importance of this outcome, as mentioned 

above, is that it enables us to conduct a sensitivity analysis by varying the angle of β, the azimuth 

of horizontal velocity: 

VV=Vv+
0.1 06

cos β
Ve, ( 5. 17 ) 

VT=√(Vv+
0.1 06

cos β
Ve)

2

+ (
0.1 06

cos β
Ve)

2

, ( 5. 18 ) 

where Vv, Ve, and  β are known and VT is the true total displacement. 

Appendix B – InSAR LOS Velocity 

Figure 5- 20 presents the LOS velocity of scatterers detected in analyzing ascending and 

descending scenes. 

 

Figure 5- 20. LOS velocity obtained by analyzing SAR scenes in (a) ascending and (b) descending orbital geometries 
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Chapter 6: Evaluating topography-based methods in 3D decomposition of 

InSAR 1D velocities obtained for translational landslides: Thompson River 

Valley in Canada 

Contributions of the Ph.D. Candidate 

The material presented in this chapter, including the literature review, conceptualization, 

methodology development, analysis, draft preparation and revisions, are conducted by the Ph.D. 

candidate. The supervisors, Dr. Michael Hendry and Dr. Renato Macciotta, have reviewed all 

pieces presented in the published manuscript, cited below:  

Sharifi S, Macciotta R, Hendry, MT, 2023. “Evaluating topography-based methods in 3D 

decomposition of InSAR 1D velocities obtained for translational landslides: Thompson River 

Valley in Canada”, Landslides, 1:17. https://doi.org/10.1007/s10346-023-02153-0. 

Contributions of This Chapter to the Overall Study 

Another approach to decomposing InSAR’s LOS velocity is exercising assumptions 

inspired by the ground geometry. This establishes a compatibility assumption between velocity 

components. However, very few insights exist on the accuracy and detriments of each, especially 

for applications on landslides with translational mechanisms. Four different methods, SPFM, 

SPFM-LSM, APFM and LSTM are examined on analyzed SAR scenes over Thompson River 

Valley. The GPS devices on the Ripley landslide facilitated a mathematical evaluation of 

decomposition methods. Based on the observed trends in biasing the interpretations, mathematical 

experiments were developed and successfully employed to explain the observed large errors in the 

interpreted magnitude and geometry of vectors. The findings in this chapter deliver the objective 

#4. 
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Abstract 

Interferometric synthetic aperture radar (InSAR) has gained considerable attention as a landslide 

monitoring strategy owing to its high accuracy, large coverage, and relatively low associated costs. 

A crucial drawback of InSAR, however, has limited its further incorporation: one-dimensional 

estimations along the sensor’s line-of-sight (LOS). This leads to an ambiguity in results and a less 

intuitive understanding of landslide kinematics. A frequently exercised approach to address this 

issue has been taking inspiration from the topography to establish compatibility assumptions 

between velocity components, yet little insight exists on the performance of these methods. The 

objective of this paper is to investigate the performance of four renowned topography-based 

methods—Surface Parallel Flow Model (SPFM), SPFM coupled with least-squares method (SPF-

LSM), Aspect Parallel Flow Model (APFM), and Steepest Terrain Following Model (STFM)—in 

evaluating the magnitude and geometry of total velocity vectors. To this end, the analysis is 

performed on 202 Radarsat-2 and 243 Sentinel-1 scenes acquired over a section of the Thompson 

River valley, a critical railway corridor in Western Canada traversing 14 landslides. The results 

indicate the APFM provides estimations with the lowest magnitude error (15~19 mm/yr or 

18.75~23.75% of in situ measurements) compared to the other approaches. SPFM and SPF-LSM 

are highly sensitive to LOS variance and tend to bias the interpreted vectors toward the north 

orientation. However, APFM and STFM reflect more realistic aspect angles, with the former 

inclined to steeper travel angles and the latter suffering from erratic upward travel angles due to 

local topographies. 

Keywords: InSAR; LOS; 3D decomposition; Topography; Translational Landslides; Thompson 

River Valley. 
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6.1. Introduction 

Remote sensing techniques have become an integrated component of landslide monitoring 

plans, with interferometric synthetic-aperture radar (InSAR) gaining a considerable share of 

attention in recent decades (Komac et al., 2015; Lannacone & Falorni, 2016; Intrieri et al., 2018; 

Shi et al., 2019; Bentivenga et al., 2021; Cenni et al., 2021; Bar et al., 2022; Jia et al., 2022). InSAR 

is a widely used technique for tracking ground movements due to relatively lower costs and efforts 

than in-place instrumentation, as it covers a wider area and has a higher temporal sampling 

frequency (Bianchini et al., 2013). The development of modern multi-temporal algorithms, aimed 

at minimizing atmospheric perturbations into InSAR results, also contributed to its popularity 

given the improved accuracy of measurements to the millimetric level and a finer spatial resolution 

of detected points  (Berardino et al., 2002; Ferretti et al., 2001, 2011). However, a crucial limitation 

of this robust tool is that the SAR sensor is sighted only to part of the movements that are visible 

along the line-of-sight (LOS) but not orthogonal to it (Ferretti, 2014). The LOS measurement is a 

product of both magnitude and direction of velocity and, thus, this added ambiguity results in a 

less intuitive understanding of the kinematics of a landslide (Samsonov et al., 2013; Shi et al., 

2018; Cenni et al., 2021), especially for velocities oriented toward the north/south, which become 

less visible to the sensor considering the near-polar trajectory of satellites (Wasowski & Bovenga, 

2014). This limitation becomes even more significant when setting alarm thresholds in a 

monitoring system for regions that host several landslides moving at different rates and directions 

or for a single landslide with different slope aspects (Bianchini et al., 2013; Schlögl et al., 2022). 

Numerous studies have addressed the problem of reconstructing a 3D velocity vector out 

of a 1D LOS measurement (J. Hu et al., 2014). As satellites orbit the earth in two directions 

(ascending and descending), the relationship between the three components of velocity (𝑉𝑉, 𝑉𝐸, 
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and 𝑉𝑁 representing vertical, eastward, and northward components, respectively) and LOS velocity 

(𝑉𝐴𝑠𝑐 and 𝑉𝐷𝑒𝑠 representing LOS velocity seen in ascending and descending geometry, 

respectively) is as follows: 

(
VAsc
VDes

)= [
cos θAsc - sin θAsc cos αAsc sin θAsc sin αAsc
cos θDes - sin θDes cos αDes sin θDes sin αDes

] (
VV
VE
VN

), ( 6. 1 ) 

where θ and α represent the geometry of SAR scene acquisition, i.e., the sensor’s incidence angle 

(side-looking angle) and the satellite trajectory, respectively (as shown in Figure 6- 1).  

 

Figure 6- 1. Geometry of SAR scene acquisition in ascending and descending viewing geometries 

Eq. 6. 1 is an under-determined system of equations and, to resolve this, 𝑉𝑁 was simply 

disregarded in many early studies due to the orbital geometry of satellites that detects the least 

ground velocity along south/north orientations (Ng et al., 2012; Samsonov et al., 2013; Khorrami 

et al., 2020; Ma et al., 2021; H. Chen et al., 2022). This assumption is the most reasonable for 

phenomena with no significant northward movements, such as ground subsidence or landslides 

mainly sliding toward the east or west. Others have instead pursued different approaches when the 

northward component is sizable, incorporating additional information that can be procured from 

other variants of SAR analysis, external sources, or an a priori deformation model. The first group 
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includes methods such as pixel offset tracking (Shi et al., 2018; Z. Wang et al., 2018) and multi-

aperture InSAR (Jo et al., 2017), which intend to determine the velocity along the direction 

orthogonal to the LOS (i.e., azimuth). However, these methods are less accurate than regular 

InSAR (on the centimetric order), time-consuming to run, very sensitive to decorrelation, and not 

as applicable to slow-moving landslides with dim reflectivity (Bechor & Zebker, 2006; Simons & 

Rosen, 2007; Eriksen et al., 2017; Shi et al., 2018). In the second category of methods, external 

sources such as in situ instruments, mostly GNSS/GPS units, are used to infer 3D movements  

(Samsonov & Tiampo, 2006; Samsonov et al., 2007; W. Zhu et al., 2014). This approach also faces 

several challenges including the shortfall of these units in terms of both quantity and uniform 

spatial distribution, which significantly limits the study area and requires the use of advanced 

mathematical techniques during post-processing stages (J. Hu et al., 2014). Finally, the last 

approach is employing an a priori deformation model, which involves exercising compatibility 

assumptions between the presumed failure kinematics and the calculated 3D velocity vectors. As 

an example, Fan et al. (2021) assumed the symmetrical horizontal and vertical movements of the 

ground along the strike and dip of the working face in a sub-horizontal coal seam mine. Their study 

built upon the probability integral method, in which 3D velocity vectors are assumed to show a 

normal distribution around the mining strike based on the symmetrical nature of movements  

(Yang et al., 2017; Milczarek et al., 2021). A priori compatibility model underpinning the 

kinematics of the landslide is often reflected in the surficial geometry of the terrain and, thus, the 

topography can be leveraged toward this end. Surface-Parallel Flow Model (SPFM – Eq. 6. 2), 

first introduced by Joughin et al. (1998) and used by others (Sun et al., 2016; Ao et al., 2019; 

Samsonov et al., 2020; X. Liu et al., 2021; Ren et al., 2022), assumes the velocity components 

follow the topography as follows: 
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VV= (
∂H

∂xE
)VE+(

∂H

∂y
N

)VN, ( 6. 2 ) 

where H is the topography elevation, and ∂H ∂xE⁄  and ∂H ∂y
N

⁄  represent the elevation gradient 

in the eastward and northward directions, respectively. SPFM can be mathematically adjusted to 

only prompt one LOS geometry, hereafter referred to as Steepest Terrain Following Model 

(STFM), which has been adopted in previous studies as well (Bianchini et al., 2013; Herrera et al., 

2013; Journault et al., 2018; Yi et al., 2022). The last approach proposed to interpret 3D vectors is 

by dictating the velocity to follow the terrain’s aspect, here called the Aspect Parallel Flow Model 

(APFM), which has been employed by Y. Zhu et al. (2022) and Soltanieh & Macciotta (2022a, 

2022b). 

Few studies are available in the literature that focus on retrieving 3D velocity vectors of 

slow-moving translational landslides. Moreover, the accuracy of such methods is not clear in terms 

of interpreting both the magnitude and geometry of vectors compared to one another. Given the 

glacial morphology in Canada, translational and compound landslides are very common (Biagini 

et al., 2022) and, therefore, applying the most suited algorithm in this region can significantly 

enhance landslide surveillance systems for managing associated risks. The objective of this paper 

is to examine the performance of four methods—SPFM, SPFM coupled with the least-squares 

method (SPFM-LSM), STFM, and APFM—in the context of translational landslides for the most 

active landslides along Thompson River Valley, a critical railway corridor in Western Canada. To 

this end, 202 Radarsat-2 scenes (U5 and U21 beams in descending orbit) and 243 Sentinel-1 scenes 

(ascending and descending orbits) are analyzed using Persistent Scatterer Interferometry. The 

spatial interpolation of the 3D vector maps obtained from the four topography-based methods 

facilitated the calculation of error in the magnitude and geometry of total velocity vectors 
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compared to other in situ measurements. Further discussion is then presented on the sources of 

variance and their contribution to the interpreted geometry of vectors. 

6.2. Study Area 

The Thompson River valley is located in the Canadian Cordillera between the towns of 

Ashcroft and Spences Bridge, British Columbia, Canada. A long history of landslides has been 

documented within a 10-km section of this valley, as shown in Figure 6- 2. The tracks of both the 

Canadian Pacific Railway (CP) and Canadian National Railway (CN) pass through this corridor 

and traverse 12 out of 14 landslides. These trans-continental high-traffic railways are of great 

financial significance in Canada and are proactively monitored for risk management (Macciotta et 

al., 2016). A collection of government agencies, universities, and industry partners have engaged 

in studies and field campaigns, especially on the Ripley landslide that is recognized by the 

International Programme on Landslides (IPL – Project 202) of the International Consortium on 

Landslides (ICL) (P. Bobrowsky et al., 2017; Han et al., 2021).  

The landslides along the valley show retrogressive behaviour, vary in volume from 0.4 to 

15 million m3, and typically move at rates slower than 200 mm/yr (Eshraghian et al., 2007). Despite 

the historical events that led to fatalities and short-term river impoundment, previous studies 

concluded the likelihood of such scenarios is low for slow-moving landslides other than Ripley  

(Eshraghian et al., 2008a; Hendry et al., 2015). The surficial geology of this valley comprises 

Quaternary deposits formed by a series of glaciation events separated by episodes of incision and 

erosion in the Pleistocene sequence. Clague & Evans (2003) identified eight formations overlying 

andesitic bedrock; four of these units are reported to be present at unstable slopes with Units 6 and 

8 found close to uplands (Figure 6- 3) (Clague & Evans, 2003; Hendry et al., 2015). A weak, highly 

plastic clay seam at the residual state with friction angles of 9-16° within Unit 2 accommodates  
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Figure 6- 2. Approximate daylighted boundaries of recognized landslides along the Thompson River valley with CP and CN 

tracks shown (a), and aerial images of the Nepa and Ripley (b) and North and South (c) landslides. 

the sub-horizontal basal shear surface of the landslides within the Thompson River valley. Several 

hypotheses have been presented on the triggering reasons, including the role of precipitation filling 

back scarps or irrigation water sourced from agricultural activities in the uplands (Stanton, 1898; 

Porter et al., 2002). However, later studies indicated the elevation of the Thompson River is the 

main factor contributing to de/stabilizing the slopes and the effect of previously speculated triggers 

is limited (Eshraghian et al., 2005, 2008b; Bishop et al., 2008; Hendry et al., 2015). The buttressing 

effect of the river has a constructive effect when rising, which can potentially halt the movement, 

but can also trigger movements when drawing down due to seasonal variations (Hendry et al., 

2015). The river is also involved in stability by altering the geometry of the sliding block through 

toe erosion (Eshraghian et al., 2008b; Macciotta et al., 2016).  

The Ripley landslide is the most heavily instrumented case, and its movements have been 

monitored using a variety of surficial and sub-surface methods, including shape-accel arrays, slope 
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inclinometers, GPS units, corner reflectors, and multiple geophysical methods (e.g., electrical 

resistivity tomography). With approximate dimensions of 200 m × 300 m × 40 m (length × width 

× height) and a volume of 0.75  million m3, Ripley is close to the smallest instability in the valley 

yet is one of the most active cases, reaching movement rates as high as 2 mm/d in the short term 

(Macciotta et al., 2014). Three GPS units are installed at the site, with two units (GPS1 and GPS2) 

close to the tracks and a third unit on the retaining wall between the CP and CN tracks. Figure 6- 

4 shows the location of these units, acquired time-series displacements from April 2008 to 

February 2020, and the magnitude and direction of average velocities in the horizontal and vertical 

planes (VH and VT are horizontal and total velocities, respectively). GPS1 and 2 are travelling at 

an aspect of N62-66°W at a travel angle of 14 to 17° below the horizon while GPS3 is illustrating 

a more pronounced total velocity of 117 mm/yr at N56°W at a travel angle of 35°. GPS3 is 

theorized to be situated on a different block than the other two, acting as a graben and pushing the 

facing block to slide sub-horizontally (M. B. Schafer, 2016). However, it is also believed that 

excessively local phenomena such as wall deflections and base scouring are superimposed on the 

reported displacements and GPS3 measurements do not reflect only the landslide kinematics. 

 

Figure 6- 3. Most common geological units in the Thompson River Valley 
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Figure 6- 4. Location of GPS units on the Ripley landslide and average velocities (a), observed time-series of horizontal (b) and 

vertical (c) displacements, magnitude, and direction of velocities in horizontal (d) and vertical (e) planes (dashed lines mark 3-

year intervals) 

The Geological Survey of Canada recently launched a series of field studies using remote 

sensing techniques to document and monitor the regime of movements of the North landslide as 

well. The most active part of this landslide is its toe, also known as the “Solar Slump,” which was 

a part of a rapid failure in October 1881 (Stanton, 1898) as a result of over-steepening due to 

construction and excessive erosion (Porter et al., 2002). North landslide is an ancient roto-

translational landslide with a similar geological setting as discussed above and dominated by the 

variation of pore pressures in the confined aquifer above the bedrock close to the river. Historical 

records show a peak velocity of 15 cm/yr at the site (Huntley et al., 2021); however, surveys by a 

real-time kinematic global navigation satellite system (RTK-GNSS) at ground control points 

(GCPs) indicate this can increase to more than 20 cm/yr. Ortho-photos taken by a remotely piloted 

aircraft system (RPAS) between September 2019 and September 2021 were also analyzed by 

digital image correlation (DIC) (Lucieer et al., 2014); the results presented in Figure 6- 5 

demonstrate the magnitude and aspect of horizontal velocities. 
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Figure 6- 5. Aspect (a) and magnitude (b) of horizontal velocities at ground control points (GCPs) and remotely piloted aircraft 

system-digital image correlation (RPAS-DIC) pixels on the toe of North landslide from September 2019 to September 2021 

(Rotheram-Clarke et al., 2022) 

6.3. Methodology 

Figure 6- 6 shows the general framework applied in this study to determine the accuracy 

of SPFM, SPFM-LSM, APFM, and STFM in terms of total velocity magnitude and geometry 

(aspect and travel angles). The following describes the major steps in the methodology. 

6.3.1. InSAR Analysis 

Sentinel-1 (S1) SAR scenes obtained by both A/B sensors were downloaded from Alaska 

Space Facility Data Search Vertex (www.search.asf.alaska.edu), which is a mirror server to the 

original Copernicus Open Access Hub (www.scihub.copernicus.eu). Radarsat-2 (RS2) images 

were also procured by the Canadian Space Agency through the Geological Survey of Canada. A 

total of 243 S1 single-look complex scenes were acquired in interferometric wide swath mode with 

VV polarization along ascending and descending orbits spanning from March 2016 to November 

2021 with a nominal revisiting time of 12 d. RS2 scenes are only from descending orbits with a 

http://www.search.asf.alaska.edu/
http://www.scihub.copernicus.eu/
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revisiting time of 24 d, but have an ultra-fine resolution at two different beams (U5 and U21) that 

provide radar back-scattered reception at two different incidence angles. Table 6- 1 presents a 

metadata summary of scenes. 

 

Figure 6- 6. Applied framework to evaluate the accuracy of decomposition methods in terms of magnitude and geometry (aspect 

and travel angles) 

Table 6- 1. Metadata summary of SAR scenes used in this study 

Sensor Sentinel-1 Radarsat-2 

Viewing geometry Ascending Descending Descending Descending 

Polarization VV HH 

No. of scenes 119 124 100 102 

Nominal revisiting 

time (d) 

12 24 

Spatial resolution Wide-swath (20×5) Ultra-fine (3×3) 

Heading angle (°) 350 190 190 190 

Incidence angle (°) 40 45 34 45 

Sensing period 

(YYYY/MM/DD) 

2016/03/09-

2021/11/08 

2017/07/11-

2021/10/03 

2013/09/08-

2020/07/09 

2013/11/16-

2020/07/06 

SAR Set identifier S1Asc S1Des RS2U5 RS2U21 

The Persistent Scatterer InSAR algorithm was employed to process the SAR scenes in a 

typical single-master STAR scheme by SARPROZ software (Perissin & Wang, 2012; 

www.sarproz.com/). The master (reference) scene was chosen for all datasets at almost the middle 

of the study period to minimize its temporal and spatial separation from other scenes. The applied 

http://www.sarproz.com/
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workflow started by applying precise orbit coordinates, if necessary, to geocode the pixels and for 

co-registration purposes to assure pixels are accurately aligned. Upon extracting the area of 

interest, the Shuttle Radar Topography Mission digital elevation model (DEM) was downloaded 

to remove the elevation effect from the SAR scenes. A linear phase ramp was then employed to 

estimate and remove the atmospheric perturbations, followed by identification of persistent targets 

on the ground to calculate the average velocities following the frameworks discussed in Azadnejad 

et al. (2019), Khoshlahjeh Azar et al. (2021), and Tarighat et al. (2021). The noise in time-series 

displacements was deemed negligible and filtration algorithms were not employed  (Sharifi, 

Hendry, Macciotta, et al., 2022; Sharifi, Macciotta, & Hendry, 2022). 

6.3.2. LOS Velocity Decomposition 

The outcome of the InSAR process, at this point, is LOS velocities acquired from four 

different datasets (S1A, S1D, RS2U5, and RS2U21), which were used to develop combinations of 

satellite orientations. This would allow the implementation of the discussed post-processing 

algorithms to calculate the 3D velocity vectors. Different approaches were given category letters 

A through D and different combinations of satellite LOS velocities were given iteration numbers 

1 and 2, leading to eight combinations as presented in Table 6- 2. Each iteration will be referred 

to using the category letter followed by iteration No. (e.g., A-1 or C-2). The mathematics of SPFM, 

SPFM-LSM, APFM, and STFM to decompose LOS velocities into 3D are given as Eqs. 6. 3-6. 6, 

respectively: 

(
Vv
Ve
Vn

)= [

cos θ1 - sin θ1 cos α1 sin θ1 sin α1
cos θ2 - sin θ2 cos α2 sin θ2 sin α2
-1 iE iN

]

-1

(
VLOS1
VLOS2
0

) , ( 6. 3 ) 



131 

 

(

Vv
Ve
Vn

)=(GTG)
-1
GT(

VLOS1
VLOS2
VLOS3
0

) , ( 6. 4 ) 

(

Vv
Ve
Vn

)= [

cos θ 0 sin θ sin α - tan β sin θ cos α

0 1 - tan β

cos θ 0 sin θ sin α - tan β sin θ cos α

]

-1

(

VLOS1
0

VLOS2

) , ( 6. 5 ) 

(

Vv
Ve
Vn

)=
VLOS

A
(
-iT√1+ tan

2 β

tan β

1

) , ( 6. 6 ) 

where Vv, Ve, and Vn are velocity estimated along vertical, eastward, and northward axes, 

respectively; θ and α describe the geometry of acquisition as before (Figure 6- 1); iE and iN are 

the topographical gradient in eastward and northward directions, respectively; VLOS is the LOS 

velocity estimated from each SAR stack depending on the iteration (please refer to Table 6- 2); G 

(Eq. 6. 7) is the design matrix of the over-determined system, which contains the geometry of 

acquisitions similar to Eq. 6. 3; T is the transpose operation; β is the aspect angle; iT=√iE
2 +iN

2  is 

the total gradient; and A is just a defined constant for brevity (Eq. 6. 8): 

G= [

cos θ1 - sin θ1 cos α1 sin θ1 sin α1
cos θ2 - sin θ2 cos α2 sin θ2 sin α2
cos θ3 - sin θ3 cos α3 sin θ3 sin α3
-1 iE iN

], ( 6. 7 ) 

A=iT cos θ√1+ tan
2 β - tan β sin θ cos α + sin θ sin α . ( 6. 8 ) 

Figure 6- 7 displays a schematic sketch of how each of these four topography-based 

methods takes the geometrical restrictions into the decomposition. In this study, the elevation map 



132 

 

as provided by 1-arcsecond SRTM DEM was interpolated using the spline method (Ajvazi & 

Czimber, 2019; Desmet, 1997; Her et al., 2015). Elevation gradients were found to be reasonable 

and well-matching with the topography of landslides. Moreover, a too-high-resolution DEM is not 

necessarily in favour of LOS decomposition since much of the surficial features do not conform 

to the geometry of the sliding plane beneath the ground and low-pass filters to avoid capturing 

very local geometry are advised in these cases (X. Liu et al., 2021; Samsonov et al., 2020). SRTM 

also has the advantage of considerable coverage and public access which is beneficial for 

developing regional monitoring systems. 

 

Figure 6- 7. Schematic sketch of decomposition using (a) SPFM & SPFM-LSM, (b) APFM and (c) STFM (the green vector is the 

total decomposed velocity and red features are the geometrical constraints posed by each method) 

Table 6- 2. Post-processing analysis program broken down for each assumption 

Category Assumption Iteration No. Combination of used SAR sets 

A SPFM 1 S1A, RS2U21 

2 S1A, S1D 

B SPFM-

LSM 

1 S1A, S1D, RS2U21 

2 S1A, S1D, RS2U5 

C APFM 1 S1A, RS2U21 

2 S1A, S1D 

D STFM 1 RS2U21 

2 S1D 

Decomposition must be done using LOS velocities obtained from different SAR stacks that 

spatially correspond to similar locations. Given the varied reflectivity of objects from different 

V
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viewing geometries, the location of scatterers in between stacks would differ. The literature reports 

down-sampling the ground surface to large cells, with the average LOS velocities of scatterers 

falling in an identical cell as the representative value, and performing decomposition on the cell 

level (Carlà et al., 2019; M. Li et al., 2020; Soltanieh & Macciotta, 2022a, 2022b). However, this 

approach leads to obscuring the spatial trend and under-representation of LOS velocities given this 

method acts like a low-pass filter. Furthermore, the scatterers in each cell should also be 

comparable to others in the neighbouring cell, both in number and reliability (i.e., coherence). 

Considering all of these limitations, the cell configurations should be non-uniformly altered (e.g., 

non-quadrilateral or warped-sided shapes), which calls for knowledge of the landslide moving 

blocks of the study site as well. The k-nearest neighbouring (kNN) search algorithm (Taunk et al., 

2019) with a damping weight kernel was used in this study to automate this process; this is 

advantageous for regional studies or for developing an automated monitoring system. The details 

of this method are presented in Appendix A. 

6.3.3. Accuracy Evaluation at Ripley Landslide 

6.3.3.1. Error in Magnitude of Total Velocity Vectors 

Upon the calculation of total velocity magnitudes at eight iterations, these parameters were 

then spatially interpolated at the locations of GPS1 and 2 using the kNN algorithm and taking into 

account the scatterers within a range of 20 m. GPS3 data were abandoned because of the impact 

of very local phenomena that cannot be captured by S1 and RS2 sensors given their resolution. 

Considering GPS measurements to be the closest estimations to the true vectors, the performance 

of each of the four topography-based decomposition methods could be then assessed at the Ripley 

landslide by subtracting the interpolated magnitude and geometry of linear-fit velocities from the 

InSAR-decomposed velocities by calculating the error (called “direct analysis error”). Many 
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previous investigations suggested that the active block of Ripley is behaving as a unit and rather 

similar GPS measurements can also attest to that (Macciotta et al., 2016; Soltanieh & Macciotta, 

2022b, 2022a). However, judgment on the accuracy of these methods for interpreting the 

magnitude of velocities should be made in light of this limitation. Different sources of variance 

co-act in the direct analysis error; it is also beneficial to isolate the impact of exercising each 

compatibility assumption from practical limitations (e.g., different spatial resolution, spatial 

disparity of scatterers, and efficiency of InSAR analysis itself). A second approach is used in 

parallel, providing an opportunity to study the accuracy of decomposition methods when other 

exogenous variances are excluded. The total velocity vectors of GPS units (Figure 6- 4) were first 

back-projected on the LOS of the sensors (using their geometries stated in Table 6- 1) and the 

decomposition again conducted using Eqs. 6. 3-6. 6. The difference between total velocity 

magnitude and geometry interpreted in this analysis with GPS measurements is referred to as the 

“back-projection error.” Figure 6- 6 demonstrates the step-by-step visualization of processing 

tasks. 

6.3.3.2. Error in Geometry of Total Velocity Vectors 

Underestimation of a specific component may be compensated and obscured by 

overestimation of another, leading to a rather similar magnitude of total velocity, but this counter-

balancing effect is always reflected in either aspect or travel angle. As a result, investigating the 

alteration of vector geometry caused by LOS variance is essential when evaluating the 

performance of decomposition methods. Each scatterer is characterized by a certain value of 

coherence (γ), which is a quantification of the phase stability of that scatterer throughout the entire 

monitoring period (Ferretti, 2014). In rural areas, such as the Thompson River valley, artificial 

targets that possess high reflectivity are not found and the 𝛾 threshold should be lowered to mask 
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fewer unreliable scatterers. A lower coherence implies less reliable LOS velocity estimations, i.e., 

the root cause for lower levels of LOS accuracy. Variance (σ) is correlated to 𝛾 as follows: 

σ∝√
1-γ2

γ2
. ( 6. 9 ) 

Early results demonstrated a tendency of SPFM and SPFM-LSM to rotate the vectors 

toward north orientation due to LOS variance. Eq. 6. 10 is developed based on Eq. 6. 2, and 

describes how inaccurate estimations in vertical and eastward directions may lead to new aspect 

angles (please refer to Appendix B.1 for proof): 

tan β
e
=

a+1

b (
1
iN
) -a (

iE
iN
) +c

, 
( 6. 10 ) 

where β
e
 is the error-contaminated aspect angle, a= dVE VE⁄ , b= dVV VE⁄ , c= 1 tan β⁄ , and dVE 

and dVV are errors in VE and VV estimations, respectively. The coefficients (a, b, c) are obtained 

by regression analysis after Eq. 6. 10 is fitted on the Ripley scatterers in the space 

<β, 1 iN⁄ , iE iN⁄ >, which will be referred to as the aspect characteristic surface. 

An over-steepening tendency of travel angle in APFM, also revealed in early results, is 

investigated by evaluating how much LOS variance leads to variance in VV compared to VH. A 

lower coherence threshold in S1 stacks was chosen than in RS2 stacks to obtain comparable 

scatterers in terms of number and distribution due to the lower spatial resolution of S1 scenes. This 

led to 2.1 and 1.47 times the variance in velocity of S1Asc and S1Des, respectively, compared to 

RS2U21. These ratios were substituted in Eqs. 6. 3-6. 6 for LOS vectors (i.e., 2.1 and 1.47 for the 
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VLOS of S1Asc and S1Des, respectively) to calculate the propagation of error in LOS velocity into 

three components as well as the horizontal and total velocities calculated by Eqs. 6. 11 and 6. 12: 

dVH=
dVE∙VE+dVN∙VN

VH
, ( 6. 11 ) 

dVT=
dVE∙VE+dVN∙VN+dVV∙VV

VT
, ( 6. 12 ) 

where dVN, dVH, and dVT are errors in VN, VH, and VT, respectively. Once dVT was calculated, 

dVV and dVH were normalized to it to then compute the values of dVV and dVH in response to a 

unit of dVT. 

6.4. Results 

6.4.1. Magnitude of Total Velocity Vectors 

Table 6- 3 presents the direct analysis error of total velocity magnitude (𝑉𝑇) resulting from 

different InSAR post-processing approaches. It is highlighted that due to the limited differences 

observed in early results between locations of GPS 1 and 2, the averages are reported here as the 

representative values. In the first iteration, the lowest error in total velocity belongs to APFM (15 

mm/yr or 18.75%) followed by SPFM (19 mm/yr or 23.76%), SPFM-LSM (29 mm/yr or 36.25%), 

and finally STFM (37 mm/yr or 46.26%). A similar trend is also observed in the second iteration, 

with values of 19 (23.75%), 24 (30.00%), 32 (40.01%), and 45 (56.26%) mm/yr for APFM, SPFM, 

SPFM-LSM, and STFM, respectively. In iteration 2, more Sentinel-1 scenes were used and 𝛾 had 

to be lowered for this sensor, leading to 10-26% larger errors than in iteration 1. This can be also 

viewed in Figure 6- 8 which shows the GPS time-series displacements projected on different LOS 

geometries used in this study. It is seen that Radarsat-2 was more successful in providing average 
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velocities close to GPS results and Sentinel-1 tends to under-represent the kinematics of Ripley at 

the location of GPS units. The back-projection errors, which only indicate the performance of each 

method, are also presented in Table 6- 3. Given that RS2U21 and S1Des have similar incidence 

angles (Table 6- 1), the back-projection errors between iterations 1 and 2 in categories A, C, and 

D are the same. Back-projection errors are also consistent with direct analysis errors, with the 

lowest error for APFM  (5 mm/yr) and the highest for STFM (47 mm/yr). It generally indicates 

that the direct analysis, which is affected by the InSAR analysis algorithm itself and coherence 

thresholds, has induced an error close to the ideal values (i.e., back-projection results). Looking at 

the back-projection errors of two iterations of SPFM-LSM, it seems that replacing RS2U21 with 

RS2U5 had a negative impact in raising the error from 22 to 27 mm/yr. Therefore, a lower 

incidence angle seems to be detrimental to the accuracy of estimations. The direct analysis errors 

are generally 2 to 14 mm/yr different than the back-projection errors, which is attributed to the 

efficiency of atmospheric phase screening, LOS variance, and kNN spatial interpolation in post-

processing stages. The highest error for STFM is attributed to the relatively steep terrain, especially 

upslope of the track, which induced higher magnitude velocities. 

Table 6- 3. Average direct analysis and back-projection error of total velocity magnitude averaged at the locations of GPS1 and 2 

for each iteration 

A
p
p
ro

ac
h

 

It
er

at
io

n
 Direct analysis error in 

magnitude of 𝑉𝑇 (mm/yr) 

[relative to average GPS 

velocities] 

Back-projection error in 

magnitude of 𝑉𝑇 

(mm/yr) [relative to 

average GPS velocities] 

Absoloute difference in 

error of direct analysis 

and back-projection 

(mm/yr) [relative to direct 

analysis error] 

SPFM A-1 19 [23.76%] 
21 [26.25%] 

2 [10.52 %] 

A-2 24 [30.00%] 3 [12.5 %] 

SPFM-

LSM 

B-1 29 [36.25%] 22 [27.50%] 7 [24.13 %] 

B-2 32 [40.01%] 27 [33.75%] 5 [15.63 %] 

APFM C-1 15 [18.75%] 
5 [6.25%] 

10 [66.67 %] 

C-2 19 [23.75%] 14 [73.68 %] 

STFM D-1 37 [46.26%] 
47 [58.76%] 

10 [27.02 %] 

D-2 45 [56.26%] 2 [4.44 %] 
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Figure 6- 8. Cumulative displacements of GPS1 (a) and 2 (b) along LOS geometries of all used SAR sensors as well as median 

time-series displacement of scatterers within the range of 20 m (NOTE: S1Des and RS2U21 are plotted on a similar diagram 

given the similar acquisition geometry) 

6.4.2. Geometry of Total Velocity Vectors 

Table 6- 4 presents the direct analysis and back-projection error in aspect and travel angles, 

averaged at the locations of GPS1 and 2. Table 6- 4 shows the direct error in aspect angle notably 

increases for SPFM and SPFM-LSM to values more than 30° while APFM and STFM map the 

direction of velocity in the horizontal plane almost accurately with an error of less than 7°. There 

are no meaningful differences between iterations 1 and 2 for the same category from the 

perspective of aspect angle as indicated by the direct analysis error. The back-projection error in 

aspect angle also aligns with the direct analysis error, showing an error of 20 to 41° for SPFM and 

SPFM-LSM, respectively, while the other two methods show a limited error of 7.1°. The error in 

travel angle, except for APFM which is about 14°, is also limited to a maximum of 4.9° regardless 

of iteration number, which shows the success of SPFM, SPFM-LSM, and STFM with respect to 

interpreting the travel angle agreeably close to reality. However, the back-projection error in travel 

is low for all methods, even APFM that shows a low error of 2.1°. Table 6- 4 suggests a significant 
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difference of more than 10° between the direct and back-projection error with respect to the aspect 

angle performance of SPFM and SPFM-LSM and the travel angle performance of APFM, which 

is investigated through aspect characteristic surface and error propagation analysis.  

Table 6- 4. Direct and back-projection error of total velocity geometry averaged at the locations of GPS1 and 2 as calculated in 

different iterations (GPS1 and 2 reported a movement direction of N66°W14°D and N62°W17°D, respectively) 

Figure 6- 9 displays the velocity map of the Ripley landslide with superimposed unit vectors of 

velocity as well as histograms presenting the distribution of magnitude and geometry of vectors 

subject to each decomposition method. In this figure and similar ones for other landslides in the 

valley (Figure 6- 12-Figure 6- 15), only results of iteration 1 are presented as they provide better 

accuracy in total velocity magnitude but rather similar geometries to iteration 2. Table 6- 4 suggests 

that, even in an ideal back-projection case, the aspect angle error of SPFM and SPFM-LSM is 

large, which is rooted in its mathematical configuration in Eq. 6. 3 (please refer to Appendix B.2), 

and the direct analysis error is generally larger than the back-projection error. However, Figure 6- 

9 shows the higher error of SPFM and SPFM-LSM in aspect angle is not only limited to the 

locations of GPS1 and 2, and that the vectors are collectively biased toward the north for both 

SPFM and SPFM-LSM. The regression analysis of Eq. 6. 10 on SPFM data using the least-squares 

method led to the function illustrated in Figure 6- 10. The fitted function has an R-squared value 

A
p
p
ro

ac
h

 

It
er

at
io

n
 

Direct analysis 

error in aspect 

angle (°) 

Back-projection 

error in aspect 

angle (°) 

Direct analysis 

error in travel 

angle (°) 

Back-projection 

error in travel 

angle (°) 

SPFM 
A-1 36.7 

20.0 
3.2 

6.8 
A-2 32.4 1.6 

SPFM-

LSM 

B-1 33.8 20.3 2.9 6.9 

B-2 36.3 41.0 4.9 8.0 

APFM 
C-1 1.5 

7.1 
14.4 

2.1 
C-2 6.9 14.5 

STFM 
D-1 2.1 

7.1 
2.4 

6.6 
D-2 6.9 1.0 
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of 0.78, implying the tendency of the vector towards a north orientation in SPFM results from a 

high sensitivity to LOS velocity variance. Figure 6- 10b also demonstrates the fitted function in a 

2D in-plane view of the most sensitive input, 1 iN⁄ , which shows β exponentially departs from the 

true aspect (-64°) when iN decreases. The calibrated coefficients of the fitted function are presented 

in Table 6- 5 and are back-calculated into VE, VN, and β values of 71 and 44 mm/yr and -58°, 

respectively. These values are on average 2 and 10 mm/yr and 6° apart from average GPS 

measurements (Figure 6- 4). It is underlined that interpreted VE in Table 6- 5 is calculated by 

computing dVE through comparing SPFM result against GPS values and VN is subsequently 

obtained by having VE and β. Here, these measures are taken to validate the aspect characteristic 

surface; however, in a general case with no GPS or similar measurements, interpreting β through 

the value of c is sufficient to correct the geometry of SPFM vectors and account for polar-biasing 

error.  
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Figure 6- 9. Map of total velocities and their unit vectors for iterations A-1 (a), B-1 (b), C-1 (c), and D-1 (d) and histograms of 

velocity aspect (e-f), travel angles (g-h), and magnitude (i-j) for scatterers for the Ripley landslide (Note: GPS vectors are not to 

scale). 

 

Figure 6- 10. Visual representation of the fitted aspect characteristic surface for A-1 in 3D (a) and 2D in-plane (b) view of the 

most sensitive input (1 iN⁄ ) 
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Table 6- 5. Calibrated coefficients of aspect characteristic surface after regression analysis on A-1 results along with the average 

back-calculated 𝑉𝐸, 𝑉𝑁, and 𝛽 values at the location of GPS units on the Ripley landslide and their reported values 

Fitted a Fitted b Fitted c 

0.60 0.23 -0.61 

Interpreted VE (mm/yr) Interpreted VN (mm/yr) Interpreted β (°) 
71 44 -58 

GPS-reported VE (mm/yr) GPS-reported VN (mm/yr) GPS-reported β (°) 
69 34 -64 

Figure 6- 9g also shows that a steeper estimation of travel angle in APFM is not only 

limited to the GPS locations. The error propagation analysis was performed using Eqs. 6. 11 and 

6. 12 which indicates how much error in each component of the velocity is reflected by having a 

unit of error in the total velocity while considering the coherence threshold. Table 6- 6 indicates 

VH and VV respectively receive 0.95 and 0.18 per 1 unit of error in 𝑉𝑇 in SPFM and SPFM-LSM, 

almost similar to STFM. On the other hand, the portion of error in VH and VV interpreted by APFM 

is on average 3.13 and 11 times the unit error in VT, respectively. This shows that, as a result of 

LOS variance, the error in VV is 3.5 more than the error in VH, resulting in an over-steepened 

interpretation of travel angle; other methods do not display this effect. A higher portion of error in 

VV of APFM results (10.35 and 11.65) may be attributed to the fact that this method does not 

impose any restrictions on the VV and LOS variances are more likely to reflect along this 

component. While VH also receives a high portion relatively (3.95 and 2.32), given that the ratio 

of VE and VN should still follow the dictated aspect angle, they proportionately vary together. 

The scatterer maps and velocity magnitude and geometry histograms obtained for other 

active landslides in the valley are presented in Online Resource 1 as well as maps of scaled 

horizontal velocity vectors in Online Resource 2. 
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Table 6- 6. Portion of error in vertical (VV) and horizontal (VH) velocities per unit of error in total velocity (VT) 

 

 

 

 

 

6.5. Discussion 

Back-projection and direct analysis at the Ripley landslide both indicate APFM provides 

the most accurate estimations of total velocity magnitude, followed by SPFM and SPFM-LSM and 

then STFM with the largest error. Looking at the entire valley, STFM leads to an overestimation 

of magnitude when the terrain is steep. This is because the assumption that vectors follow the 

steepest terrain simply does not conform to the mechanisms of sub-horizontal landslides with 

limited travel angles. However, SPFM and SPFM-LSM occasionally suffer from overly large 

estimations due to geometrical distortions toward north/south. This could affect secluded locales 

such as at the Red Hill landslide or be more universal as in the case of the Goddard and South 

landslides. This highlights why examining the performance of each method solely on the accuracy 

of interpreting total velocity magnitude is not sufficient because all of these methods heavily rely 

on the geometry of the terrain. Therefore, the geometrical sensitivity of these methods is also a 

major contributor to their accuracy. 

The back-projection analysis showed SPFM and SPFM-LSM generally lead to large errors 

in interpreting the aspect angle. The direct analysis showed yet a larger error, and detailed 

mathematical investigations demonstrated SPFM’s sensitivity to LOS variance, as also reported 

Approach Iteration Portion of error 

in 𝑉𝑉 

magnitude 

Portion of error 

in 𝑉𝐻 

magnitude 

Portion of error 

in 𝑉𝑇 

magnitude 

SPFM A-1 0.18 0.95 

1 

A-2 0.18 0.95 

SPFM-

LSM 

B-1 0.18 0.95 

B-2 0.18 0.95 

APFM C-1 10.35 3.95 

C-2 11.65 2.32 

STFM D-1 0.15 0.96 

D-2 0.15 0.96 
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by Ao et al., (2019). The aspect characteristic surface showed the mathematical configuration of 

SPFM is very susceptible to LOS variance, leading to an overestimation of VN and thus biasing 

the vectors toward the north orientation. This phenomenon was more accentuated for lower slope 

gradients in the north direction, which highlights a susceptibility to polar biasing for strong west- 

or east-aspected slopes. Therefore, SPFM and SPFM-LSM might be less preferred approaches in 

valleys with quasi-polar azimuths. Incorporating a weight matrix in SPFM and SPFM-LSM to 

adjust the contribution of different LOS velocities in light of their coherence could be a remedy 

but not a solution, as these methods are inclined to polar biasing even with no LOS variance as 

seen in the back-projection analysis (please refer to Appendix B.2). A more practical approach to 

tackle this limitation of SPFM could be fitting the aspect characteristic surface on a group of 

scatterers known or speculated to be moving about the same direction even when there are no in 

situ measurements. To mitigate the error in aspect angle, the aspect angle interpreted from this 

fitted function can be used to correct the geometry of vectors.  

In contrast, APFM forces the vectors to align parallel with the aspect of the valley, which 

is a reasonable assumption for translational instabilities sliding along the valley fall line. However, 

APFM’s strict compatibility assumption, dictating the relationship between VE and VN, leads to 

magnifying the variance in VV and a steep interpretation of travel angle.  

In the case of STFM, which prompts one SAR stack, variance in LOS velocity does not 

impact the geometry of velocity as the ratios between components make the geometry of vectors 

merely a function of topography and not LOS velocity (Eq. 6. 6). Nonetheless, STFM should be 

employed with caution because the geometry of decomposition is completely at the mercy of 

topography. Very large total velocities could be interpreted for steep terrains and a cut-off for the 

slope inclination should be defined. For example, Herrera et al. (2013) considered 72° for their 
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study site; however, this threshold should be much lower for unstable slopes sliding on a sub-

horizontal shear surface and further evaluations are recommended in this regard. Moreover, the 

landscape in Western Canada is often described as hummocky, and thus a local upward elevation 

gradient would result in a positive vertical velocity if STFM is exercised. This leads to an 

interpretation of upslope velocities or bulging, and potentially an incorrect interpretation of 

movements. This is highlighted in settings similar to the Thompson River valley where the 

retrogressive mechanism has led to the formation of horsts with surficial geometry slightly tilted 

rearward. As an example, a considerable portion of scatterers in the case of the North landslide, 

which features both bulging at the toe (Figure 6- 11a) and hummocky terrain (Figure 6- 11b), were 

interpreted to show upward velocity while only the former is a valid scenario.  

6.6. Conclusion 

InSAR is becoming more integrated into landslide monitoring programs. However, the 

ambiguity of line-of-sight (LOS) velocities impedes a full and realistic understanding of the 

landslide kinematics that is necessary for both risk management strategies and setting alarm 

thresholds when developing early warning systems. As a result, LOS velocities should be 

decomposed from 1D estimations into 3D. Among many approaches adopted to this end, 

topography-based methods have been well received in terms of feasibility, accuracy, and resource 

management. However, the choice of specific method should be informed because the shortfalls 

of each method are manageable if the user is aware of the consequences. In this paper, 202 

Radarsat-2 and 243 Sentinel-1 scenes acquired from various viewing geometries over landslides 

along the Thompson River valley were processed and 1D LOS velocities were decomposed using 

four different methods: Surface Parallel Flow Method (SPFM), SPFM coupled with the least- 
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Figure 6- 11. Toe bulge (a) and a view of the hummocky topography (b) at the North landslide 

squares method (SPFM-LSM), Aspect Parallel Flow Method (APFM), and Steepest Train 

Following Method (STFM). The following are concluding remarks: 

• In the best combination of SAR stacks, the incorporation of SPFM, SPFM-LSM, APFM, and 

STFM in decomposition resulted in an error of 19 (23.76%), 29 (36.25%), 15 (18.75%), and 

37 mm/yr (46.26%), respectively, in the case of the Ripley landslide. 

• The vectors obtained by SPFM and SPFM-LSM are biased toward the north orientation 

because 𝑉𝑁 is exaggerated in response to their sensitivity to LOS variance. Such sensitivity 

was successfully characterized by a proposed “aspect characteristic surface,” which showed a 

higher error at lower 𝑖𝑁 values.  

• SPFM and SPF-LSM showed sporadic overestimation of total velocity magnitude where 

variance in 𝑉𝑁 was not compensated by counterbalancing variance in 𝑉𝐸, leading to artificially 

large estimations of 𝑉𝑇. 

• APFM was more successful in appreciating the velocity aspect with less sensitivity to LOS 

variance compared to SPFM and SPFM-LSM. However, a restrictive assumption to force 𝑉𝐸 
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and 𝑉𝑁 to align with the valley’s aspect led to the manifestation of LOS variance mostly in 

𝑉𝑉, inducing erroneous and steep travel angle estimations. 

• The geometry of STFM vectors remained somewhat unaffected by LOS variance given its 

compliance with the terrain geometry. This feature narrows the role of LOS velocities in 

STFM solely to the magnitude of the decomposed velocity and introduces a vulnerability 

related to rearward-tilted terrain that can result in the interpretation of upslope velocities. 

STFM also has a weakness on steep terrain that causes synthetically large total velocities, 

resulting in the need to define a cut-off in the elevation gradient. 

In conclusion, employing a stand-alone method would result in foregoing an accurate 

understanding of velocities in at least one attitude of the magnitude, aspect, or travel angle. A 

hybrid approach in the 3D decomposition of 1D LOS velocities is therefore suggested to analyze 

translational landslides. Different decomposition methods should contribute to the interpretation 

of a specific vector attitude when they outperform others from that perspective. We propose using 

APFM to estimate the magnitude and aspect angle of total velocity vectors, and using SPFM or 

SPFM-LSM for reliable interpretation of the travel angle. Constraining the geometry of vectors 

using Ground-based InSAR or Unmanned Aerial Vehicle (UAV) would also help but it limits the 

monitoring area. 

Appendix 6.A – kNN Algorithm 

The k-nearest neighbouring (kNN) search algorithm is a subset of computational geometry 

that is mainly used for classification purposes (Guo et al., 2003). It was re-purposed here to 

interpolate the LOS velocity spatially at an opposing geometry. For this, a damping weight kernel 

was implemented to adjust the contribution of different scatterers depending on their distance from 
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the location of interest; the farther the distance, the lower the significance. This algorithm is 

applied to each scatterer from one SAR set and finds k surrounding scatterers from other 

geometry(ies) that will be averaged adaptively. At the location of ith scatterer from a specific orbit 

geometry, the LOS velocity of opposing geometry at the location of the scatterer of interest is 

calculated as follows (Eq. 6. 13): 

V̂LOSi=
∑ wjVLOSj
k
j=1

∑ wj
k
j=1

, ( 6. 13 ) 

wj=1-
dj

dk
, ( 6. 14 ) 

where V̂LOSi
 is the equivalent LOS velocity at the opposing geometry of the ith scatterer, VLOSj

 is 

the LOS velocity of the jth-ordered scatterer (based on the distance in the ascending order) around 

the scatterer of interest, and 𝑤𝑖 is the averaging weight (Eq. 6. 14) normalized based on the largest 

distance. Given that the surrounding scatterers are ordered by the distance, the weight of the kth 

point will be zero, leading to automatic discarding of the farthest point. This method only prompts 

k as an input, which can be interpreted with the aid of a simple sensitivity analysis on any 

components of velocity. Sharifi, Hendry, & Macciotta (2022) increased k from 3 to 14 and 

calculated the variation of 𝑉𝑣 and 𝑉𝑒 by increasing a unit in k value. They reported an asymptotic 

trend in such parameters that agreeably started to converge linearly after a certain value, which 

was used for the final value of k in their analysis. In this study, the sensitivity analysis was 

performed on the variation of total velocity magnitude and the kNN was modulated to the post-

processing script. 
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Appendix 6.B – SPFM Polar Biasing Characteristic 

B.1. Error-contaminated Aspect Angle in Direct Analysis 

The compatibility relationship in SPFM-based assumptions is as follows (Eq. 6. 15): 

VV=iEVE+iNVN, ( 6. 15 ) 

which can be derived into error terms as in Eq. 6. 16: 

dVV=iEdVE+iNdVN, ( 6. 16 ) 

where dVV, dVE, and dVN are errors in the vertical, eastward, and northward directions, 

respectively. If InSAR analysis itself or post-processing stages superimpose an error in the 

eastward component or vertical component as much as a unit, such deviations lead to a dVN of 

1 iN⁄  and iE iN⁄ , respectively, based on Eq. 6. 16. The magnitude of iE iN⁄  is between 2 and 4 for 

Ripley, 10 and 50 for Red Hill, and 10 and 20 for South landslides while the magnitude of 1 iN⁄  

increases to range from 5 to 10 for Ripley and 50 to 100 for both the Red Hill and South landslides. 

These values explain the exaggeration of VN that leads to vectors inclined to the north orientation 

in SPFM and SPFM-LSM. However, this explanation isolates the effect of error in only one 

direction (either vertical or eastward). A more complex interaction of errors in both directions 

simultaneously would result in an error-contaminated aspect angle (β
e
) as a function of elevation 

gradient ratios (1 iN⁄ , iE iN⁄ ). By re-arranging terms in Eq. 6. 16, dVN can be expressed by error 

terms along other axes: 

dVN=
1

iN
(dVV-iEdVE). ( 6. 17 ) 
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The erroneous velocity aspect as a result of superimposing the error along all axes can be 

calculated as follows (subscript e indicate erroneous parameters of such that do not have the 

subscript): 

tan β
e
=
VEe

VNe
=
dVE+VE

dVN+VN
=

dVE+VE
1
iN
(dVV-iEdVE)+VN

=

dVE
VE

+1

1
iN
∙
dVV
VE

 - 
iE
iN
∙
dVE
VE

+
VN
VE

  , ( 6. 18 ) 

which can be simplified into: 

tan β
e
=

a+1

b (
1
iN
) -a (

iE
iN
) +c

, 
( 6. 19 ) 

where a= dVE VE⁄ , b=dVV VE⁄ , and c= 1 tan β⁄ . Eq. 6. 19 is a homographic function of 1 iN⁄  and 

iE iN⁄  and coefficients a, b, and c can be estimated by regression analysis. Given that the velocity 

aspect of scatterers on Ripley landslide is controlled by geological structures, c can be estimated 

as constant across different scatterers considering it is another form tan β. Other coefficients are 

also approximated as constant considering the scale of Ripley landslide, which was demonstrated 

to be a reasonable assumption considering the R-squared value of the fitted surface and back-

calculated velocity components (Table 6- 5). This analysis can be beneficial as an error mitigation 

method to interpret an improved estimation of aspect angle. 

B.2. Aspect Angle in Back-Projection Analysis of Ripley Landslide 

After substituting appropriate values in Eq. 6. 3, the velocity components are given in Eq. 6. 20 

for A-1: 



151 

 

(
Vv
Ve
Vn

)=

[
 
 
 
 
 
 
0.13iE+0. 1iN

0.02iE+iN-0.16

-0.11iE+0.64iN

0.02iE+iN-0.16

0.16

0.02iE+iN-0.16

-0. 21iN+0.114

0.000 iE+iN-0.1 1

0.  1iN-0.114

0.000 iE+iN-0.1 1

0.00 

0.000 iE+iN-0.1 1

0. 21iE+0. 1

0.00 iE+iN-0.1 1

-0.  1-0.64 

0.00 iE+iN-0.1 1

1

0.00 iE+iN-0.1 1 ]
 
 
 
 
 
 

(
VS1A
VRS2U21

0

) , ( 6. 20 ) 

which can be used to calculate the aspect angle (Eq. 6. 21): 

tan β =

(0. 21
iE
iN
+0. 1

1
iN
)VS1A+ (-0.  1

iE
iN
+0.64 

1
iN
)VRS2U21

(-0. 21+0.114
1
iN
)VS1A+ (0.  1-0.114

1
iN
)VRS2U21

. ( 6. 21 ) 

For the Ripley landslide, by substituting iE iN⁄ =(-4~-2) and 1 iN⁄ =(-10~- ) and knowing 

that VRS2U21<0<VS1A, the denominator of Eq. 6. 21 will be larger than the numerator (while the 

contrary should be true given the true β is less than 315°). A similar conclusion can be made for 

other iterations of categories A and B. Depending on LOS velocities, Eq. 6. 21 shows that, when 

iN is larger than iE (similar to the Thompson River valley with strong east/west aspects), the aspect 

angle might be still biased toward the north, even in an ideal case (as seen in back-projection) in 

which no LOS variance is included in the decomposition. 

Online Resource 1 – Results of Other Active Landslides in Valley 

For the Red Hill landslide, the SPFM and SPFM-LSM results in Figure 6- 12 show sporadic 

areas with high velocities reaching 200 mm/yr near the head scarp in the northern half of the 

landslide and its toe; however, APFM and STFM results indicate only the toe, with smaller very 

active areas. SPFM and SPFM-LSM show the largest average velocities of 66 and 55 mm/yr, 

respectively, with a standard deviation larger than 40 mm/yr; such parameters decrease to 45 and 

22 mm/yr for APFM and to 48 and 28 mm/yr for STFM. Similar to the discussion above regarding  
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Figure 6- 12. Map of total velocities and their unit vectors for iterations A-1 (a), B-1 (b), C-1 (c), and D-1 (d) and histograms of 

velocity aspect (e-f), travel angles (g-h), and magnitude (i-j) for scatterers for the Red Hill landslide 
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the Ripley landslide, the aspect angle of SPFM and SPFM-LSM for the Red Hill landslide show a 

strong tendency toward the north orientation, even near the head scarp where an eastward 

orientation is suggested by the geomorphology. Finally, APFM indicates steeper travel angles and 

STFM shows upward travel angles for more than 30% of scatterers. 

For the South landslide, Figure 6- 13 illustrates that SPFM and SPFM-LSM interpreted a 

larger area to be active with more scatterers reaching values greater than 120 mm/yr; this is 

contrary to APFM and STFM that report the South extension is the most active part. The average 

and standard deviation of total velocity magnitudes reported by SPFM (62 and 43 mm/yr) and 

SPFM-LSM (55 and 38 mm/yr) are larger than reported by APFM (37 and 23 mm/yr) and STFM 

(42 and 30 mm/yr). Figure 6- 13 further supports the polar biasing characteristic of SPFM and 

SPFM-LSM as the vectors of the South extension (Figure 6- 2a) show it is merely moving 

southward. The arcuate features in the southwest overlooking the gully incised by Barnard Creek 

imply the areas bordering this gully should be under the influence of landslide processes toward 

the south. However, this effect should diminish for regions further away and be superseded by the 

predominant landslide process in Thompson River valley, with instabilities toward the southwest 

similar to that shown by APFM and STFM. Almost 50% of scatterers, as reported by STFM, have 

an upward component (Figure 6- 13h). 

For the North landslide, the rates of movements vary considerably both annually and 

seasonally so its kinematics cannot be reliably extrapolated to years before the monitoring period 

(starting September 2019). The activity state therefore cannot be quantitatively compared to Figure 

6- 5b. However, Figure 6- 14 shows SPFM-LSM cannot successfully recognize the spatial trend 

whereas SPFM, APFM, and STFM show a clearer distinction between the most active part of the 

Solar Slump and less active regions in the southwest. The difference between the aspect angle of  
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Figure 6- 13. Map of total velocities and their unit vectors for iterations A-1 (a), B-1 (b), C-1 (c), and D-1 (d) and histograms of 

velocity aspect (e-f), travel angles (g-h), and magnitude (i-j) for scatterers for the South landslide 
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each method becomes more conspicuous in the southwest of the Solar Slump where the river 

course runs closer to the south and APFM and STFM suggest a more perpendicular aspect to the 

river, contrary to SPFM and SPFM-LSM. Moving from northeast to southwest, the velocity aspect 

in Figure 6- 14c-d rotates from values within the range of N10°W and N30°W to more westward 

aspect angles of N40°W and N90°W and more assorted aspect angles in southwestern parts similar 

to Figure 6- 5a. On the other hand, SPFM and SPFM-LSM consistently report an aspect angle of 

about N10°W throughout the entire region of the Solar Slump. STFM also reports more than 50% 

of points showing upward movement.  

Figure 6- 15a,b shows SPFM and SPFM-LSM interpret a universal high activity state for 

the Goddard landslide, also reflected by a severe right skewness and large kurtosis in Figure 6- 

15i,j. This does not conform to the frequency of track maintenance, as this landslide’s velocities 

would be reaching velocities of 100 mm/yr on average. Moreover, the polar biasing of SPFM and 

SPFM-LSM becomes so predominant that, counter-intuitively, they indicate a robust and extensive 

southward movement; this could explain the overestimations in the total velocity magnitudes.  



156 

 

 

 

Figure 6- 14. Map of horizontal velocities and their unit vectors for iterations A-1 (a), B-1 (b), C-1 (c), and D-1 (d) and 

histograms of velocity aspect (e-f), travel angles (g-h), and magnitude (i-j) for scatterers for the North landslide 
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Figure 6- 15. Map of total velocities and their unit vectors for iterations A-1 (a), B-1 (b), C-1 (c), and D-1 (d) and histograms of 

velocity aspect (e-f), travel angles (g-h), and magnitude (i-j) for scatterers for the Goddard landslide 
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Online Resource 2 – Horizontal Velocities Vectors 

 

Figure 6- 16. Horizontal velocity vectors at Ripley landslide as interpreted by (a) SPFM, (b) SPFM-LSM, (c) APFM and (d) 

STFM 
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Figure 6- 17. Horizontal velocity vectors at Red Hill landslide as interpreted by (a) SPFM, (b) SPFM-LSM, (c) APFM and (d) 

STFM 
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Figure 6- 18. Horizontal velocity vectors at South landslide as interpreted by (a) SPFM, (b) SPFM-LSM, (c) APFM and (d) 

STFM 
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Figure 6- 19. Horizontal velocity vectors at Solar Slump of North landslide as interpreted by (a) SPFM, (b) SPFM-

LSM, (c) APFM and (d) STFM 
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Figure 6- 20. Horizontal velocity vectors at Goddard landslide as interpreted by (a) SPFM, (b) SPFM-LSM, (c) APFM 

and (d) STFM 
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Chapter 7: Conclusions and Recommendations 

The general goal of this research was to address knowledge gaps pertaining to the 

development of EWSs by acquiring an improved understanding of ground kinematics. The first 

two objectives, classified as the element of “data analysis”, pursued methodologies to separate the 

true underlying trend of landslide displacements from unfavoured data artifacts, scatter. Another 

element of this study is relevant to the application of Interferometric Synthetic-Aperture Radar 

(InSAR). The incorporation of InSAR into monitoring systems faces a critical impediment to 

velocity estimations along the sensor’s line-of-sight (LOS). The LOS velocity is the product of 

projecting true velocity along the LOS arm that makes InSAR’s results a convoluted mixture of 

magnitude and geometry manifested in 1D.  

In the next sections, a summary of findings, detailed in Chapters 3-6, is presented. This 

chapter comes to a conclusion by introducing suggestions for future follow-up studies. 

7.1. Concluding remarks 

7.1.1. Data Analysis Element 

7.1.1.1. Advantages and Disadvantages of SMA, GWMA and SG 

The filtration bandwidth (window width) should be at least 4% of the total monitoring time 

to ensure fluctuations are sufficiently minimized. SMA does not preserve the trends and a complete 

distortion was observed when encountering sudden changes in velocity values even at the 

bandwidth of 7%. However, 7% may not provide sufficiently less variance in velocity values and 

a 10% bandwidth could be carefully used in light of its all limitations. SMA also tends to attenuate 

the changes in velocity relatively more which results in an under-representation of a landslide 

kinematics.  
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In the Numerical Analysis of Synthetic Database, an asymmetric filtration window was 

employed to resemble real-time monitoring since future observations are unknown. This induced 

a lag in the filtered displacements. Among the three filters, SMA displayed the largest lag while a 

near zero-lag was noted in SG results. This was due to the negative values in its kernel but they 

also created artificial fluctuations (pulsating effect). The extent of the pulsating effect depends on 

the bandwidth and consequently, a large value, such as 10% or more is not recommended. The 

pulsating effect can also cause fluctuations in the velocity values if SG is directly applied to the 

velocity diagram. 

GWMA results were found to be free of the mentioned artifacts. The pulsating effect was 

not observed because of all-positive values in the GWMA kernel. It also does not suffer from 

lagged response as much as SMA since GWMA’s kernel grants less significance to points farther 

away. The velocity values interpreted after the application of GWMA possessed medium volatility 

while managing to reduce the scatter. GWMA is also less sensitive to bandwidth compared to 

SMA, giving it the advantage of less computational capacity needed for pre-processing. Results 

displayed that it is capable of preserving the true trend even at the bandwidth of 7%.  

In conclusion, the application of SG is not recommended due to its erratic performance 

despite a satisfactory performance in terms of lag and lower associated error. SMA is also 

outperformed by GWMA in many aspects as discussed above. The application of GWMA at the 

bandwidth of 7% provides an optimal solution, striking a trade-off between lagged response, and 

residual scatter, preserving the trend and consistent performance in different scenario 

circumstances. A chart is also presented in section “3.4.1.4. Lag Quantification” which can be used 

in practice to minimize the lagged response of GWMA. 
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7.1.1.2. Filters Performance on Acceleration and Failure 

Results signified a timelier response from GWMA and SG to detect the onset of 

acceleration. The mean and standard deviation of SMA’s error were found to be 3.42 and 2. 2 

times GWMA’s, and 236.42 and  .6  times SG’s. It is understood that the application of SMA’s 

alternatives would lead to more accurate detection of the onset of acceleration with more 

confidence. As an example, SMA, GWMA and SG would reach 90% confidence respectively 13.5 

days, 4 days and 13 hours after the true acceleration moment, if the total monitoring period is 6 

months. 

For linear trends (α=2) in the inverse velocity diagram, the application of GWMA and SG 

improved the forecast accuracies, respectively, by 60-75% and 90-95%. An improvement of 65-

72% for GWMA and at least 89% for SG was noted for non-linear trends (α≠2). Analyzing the 

time-series of actual failed cases from the literature also confirmed the GWMA and SG satisfy the 

expectation of accurate forecasts. It was observed that employing GWMA and SG, on average, led 

to respectively 60-80% and 90-100% improvement in the forecast as well. An interesting 

conclusion was that a higher filtration bandwidth would lead to larger errors when using GWMA 

as opposed to the expectation, while no such observation was made for SG. This, called the 

“bandwidth paradox”, emphasizes that considerations should be taken into account when setting 

the filtration bandwidth and higher values would not necessarily lead to an improved forecast. 

In conclusion, the adoption of any other SMA alternatives discussed here improves the 

reliability of EWSs, as they prompt the monitoring systems to act timely and meaningful.  
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7.1.2.  InSAR Element 

7.1.2.1. Combined Precision  

Mathematical calculations showed that the error induced by the simplifying assumption in 

vertical and eastward components of velocity is linearly correlated to the northward component. 

For the Oldman River Dam case, the effect on the vertical component was found 55 times more 

than the impact on the northward component. This highlights the vulnerability of interpretations 

in the vertical plane to this assumption. For true movements due North, the vertical component is 

exposed to a downward error with a magnitude of 17.06% of the northward velocity component. 

The same is also true when the true movements are due South; however, the direction of the error 

vector would be upward. This, in particular, is detrimental for translational landslides in Canada, 

sliding on sub-horizontal shear surfaces with limited vertical velocity which may be rendered 

moving upward. The induced error in the eastward component is only 0.31% of the northward 

component which highlights the immunity of this component to the simplifying assumption. The 

17.06% and 0.31% coefficients are a function of the geometry of acquisitions (i.e., incidence and 

heading angles). To ensure a minimum error in the vertical component, the difference between 

incidence angles of ascending and descending orbits should be minimized. To minimize the error 

in the eastward component, both incidence angles should be lowered as much as possible. As a 

result, a low similar incidence angle of both geometries should be used which may entail other 

geometrical distortions in InSAR analysis itself. This fact undermines the suitability of using 

simplifying assumptions for phenomena with sizable northward components such as landslides. 

A framework was developed and successfully applied to the case of Oldman River Dam. 

The proposed approach adopts the effect of simplifying the assumption’s error along with InSAR’s 

inherent accuracy in estimating LOS velocities. Spillway LOS accuracy was found to vary from 0 
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to 2 mm/yr while this range increases to 3.5~5.2 mm/yr for the active area on the embankment. 

The combined precision, taking into account both sources of uncertainty, was found to be 0.72 and 

2.78 mm/yr on average for the spillway and active area on the embankment. Comparing them 

against the interpreted average velocity for these two regions of interest reveals that the combined 

precision is 33~57% of 1.26 and 8.29 mm/yr. This highlights, the significance of estimating the 

combined precision when reporting InSAR and not relying on the estimated magnitudes alone. In 

addition, it shows that the simplifying assumption is not the best decomposing practice and other 

techniques should be too evaluated for each site. 

7.1.2.2. Accuracy of topography-informed assumptions 

The accuracy of SPFM, SPFM-LSM, APFM and STFM was evaluated in decomposing a 

total of 445 SAR scenes obtained by Sentinel-1 and Radarsat-2 on the Thompson River Valley. 

All the mentioned topography-informed assumptions were evaluated in terms of interpreting the 

magnitude and the geometry of velocity vectors.  

Results of InSAR direct analysis showed a north-biased interpretation of vectors by SPFM 

and SPFM-LSM leading to a large error in the aspect angle. Further mathematical investigations 

demonstrated that SPFM-based methods manifest any variance in LOS velocity as a geometrical 

rotation toward the South-North direction (polar-biasing). It was also observed that these methods 

are less preferred for slopes with strong east/west aspects as SPFM’s tendency for polar-biasing 

was found to be inversely related to the northward gradient. By super-imposing the variance on 

SPFM’s main assumption, a mathematical expression, called “aspect characteristic surface” which 

is a function of ground gradients is proposed as follows (Eq. 7. 1): 
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tan β
e
=

a+1

b (
1
iN
) -a (

iE
iN
)+c

, 
( 7. 1 ) 

where a= dVE VE⁄ , b=dVV VE⁄ , c= 1 tan β⁄ , and β and β
e
 are true and erroneous aspect angles, 

respectively. Eq. 7. 1 is a homographic function of 1 iN⁄  and iE iN⁄ , and coefficients a, b, and c 

could be estimated by regression analysis. Fitting a surface which follows Eq. 7. 1 on a group of 

scatterers believed to be moving in a relatively single direction leads to retrieving the constant c. 

It is possible to back-calculate the true aspect angle by having the value of c constant. Aspect 

characteristic surface is then beneficial in practice to reduce the error of SPFM 

APFM, on the other hand, was able to interpret the aspect angle with limited error yet 

showed a considerable deviation in the travel angle. A mathematical investigation called error 

propagation analysis showed that APFM reflects the LOS variances by steeper travel angles. This 

is because APFM strictly dictates the vectors to face the aspect angle and the only remaining degree 

of freedom is the dip of vectors in the vertical plane.  

In the case of STFM, LOS variances were not found to be contributing to geometrical 

distortions because the aspect and travel angles are strictly enforced by the topography. This 

characteristic sometimes leads to the interpretation of vectors aiming upslope, caused by 

hummocky terrain. Another disadvantage of STFM is that yields very large velocities when the 

ground is steep.  

In conclusion, it is observed that a single method of the existing topography-informed 

assumptions cannot satisfy all of the expectations and a hybrid approach is recommended. For 

translational landslides, APFM is suggested for procuring the magnitude and the aspect angle in 

conjunction with leveraging SPFM to interpret the travel angle. The use of SPFM-LSM is 
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recommended to be adjourned to the cases where all the incorporated SAR stacks hold high spatial 

resolution.  

7.2. Recommendations for Future Studies 

7.2.1. Data Analysis Element 

1. It is now known that having a kernel with tapered ends is more efficient since they give 

less contribution to those measurements temporally distant from the point of interest. However, 

GWMA and SG filters are not the only ones, and Figure 7- 1 displays a list of well-known kernels 

in statistics which can be used to evaluate further filters. The formulas shown in Figure 7- 1 are 

non-normalized in the vertical axis (K(u)) and configured for a horizontal axis parameter (u) 

varying between -1 and +1. 

 

Figure 7- 1. Suggested kernels for candidate filters 
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2. Many disadvantages of the SG filter, as well as its advantages, are rooted in the negative 

values of its kernel. As a result, it is speculated that maintaining these negative values but 

fracturing their intensity and spreading them across the filtration should improve SG performance. 

This can be achieved by fitting higher-order polynomials in the filtration window, instead of 

parabolic shapes which was used here. Early results on the data reported by Geocubes on the Ten-

mile landslide confirmed it but a comprehensive investigation using the numerical analysis of 

synthetic database is necessary. Figure 7- 2 displays the kernel of SG with the polynomial degrees 

from 2 to 8 with increments of 2. 

 

Figure 7- 2. Kernel of SG at degrees of (a) 2, (b) 4, (c) 6 and (d) 8 

3. Multi-passing is applying a filter over and over on an already filtered dataset. If p is the 

bandwidth of the filter, after n passes, the equivalent bandwidth is p’=n(p-1)+1. It is known that 

the time complexity of a filter, denoted by 𝒪(), with the bandwidth of h, is 𝒪(h2). Therefore, the 

time complexity of a filter with the bandwidth of p’ is Eq. 7. 2: 
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𝒪(p' 2)=𝒪((n(p-1)+1)2)=𝒪(n2(p-1)2+2n(p-1)+1), ( 7. 2 ) 

where it is a larger value than n𝒪(p2). As a result, multi-passing results in reducing the time 

complexity and the computation demand by using a filter with lower bandwidth. Its advantage will 

be consequently a timelier and more efficient performance of a monitoring system. 

Mathematically, multi-passing an SMA filter provides results similar to GWMA since the self-

convolution of a constant kernel goes toward a normal distribution. It is beneficial, in future 

studies, to find an optimized value of the number of passes. In the context of real-time monitoring 

with an asymmetric window, multi-passing only leads to a large lag and finding a solution to either 

eliminate or minimize the lag would satisfy the goal. 

7.2.2. InSAR element 

1. Based on the theoretical calculations, the portion of the northward component that is 

translated into an error, due to the simplifying assumption, along the vertical axis is now known 

(𝛼 –Table 5- 2 & Table 5- 3). Two different 𝛼 values could be obtained by analysing a SAR stack 

obtained at different incidence angles from a redundant orbital geometry (i.e., ascending or 

descending). The relationship between true, denoted by capital subscripts, and erroneous 

components, denoted by small subscripts, are as follows: 

Vv1-VV=α1VN, ( 7. 3 ) 

Vv2-VV=α2VN, ( 7. 4 ) 

By rearranging terms in Eqs. 7. 3 and 7. 4 to have VV on the same side and equating them, the 

northward component can be computed: 
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VN=
Vv2-Vv1
α2-α1

. ( 7. 5 ) 

The same process can be repeated by looking into the errors induced along eastward. These two 

back-calculated northward components are probably different due to the LOS variance and other 

errors produced by the post-processing stages. Studies on other sites where the direction of 

velocities are known by in situ measurements would be useful to establish what ratio of vertical 

component, contributes to the calculation of the true northward component. 

2. In Chapter 6, only descending Radarsat-2 scenes are studied. Utilizing ascending 

Radarsat-2 scenes in the same framework would help with identifying how much SPFM-LSM is 

truly advantageous. Additionally, coupling the least-squares method with APFM and STFM will 

provide insights if their drawbacks can be mitigated this way. These analyses could be initial steps 

to define geometrical cut-offs for STFM as well. 

3. Aspect characteristic surface, detailed in Chapter 6, is potentially a measure for 

understanding a more accurate aspect angle of movement when using SPFM. Although the 

investigation on the Ripley landslide showed promising results, future studies on other sites where 

more positioning units exist could provide more validation. Moreover, evaluations of topography-

informed assumptions in other movement mechanisms such as rotational landslides or areas at the 

risk of rockfalls would cast light on the performance of each method in different settings. 

4. Similar to the methodology adopted to develop the aspect characteristic surface, 

calculations can result in Eq. 7. 6 which describes the erroneous travel angle (η
e
) as a function of 

aspect angle: 
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tan η
e
=

1+a

b+c sin β +d cos β
, ( 7. 6 ) 

where a= dVV VV⁄ , b= 1 tan η⁄ , c= dVE VV⁄ , d= dVN VV⁄ , η is the true travel angle and dVV, dVE 

and dVN indicates the error in the vertical, eastward and northward components of velocity. 

Constants a, b, c and d are to be interpreted from regression analysis over a group of scatterers 

believed to travel identically. Eq. 7. 6, which can be correspondingly called travel characteristic 

surface, is a possible technique to minimize the error in travel angle observed in APFM. Further 

studies are required to confirm if this could be applied in practice.  
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