
U niversity of A lberta

S t o c h a s t i c I t e r a t i v e D e c o d i n g

by

Anthony Charles Rapley (O J

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-22353-6
Our file Notre reference
ISBN: 978-0-494-22353-6

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

This thesis studies a novel approach to iterative decoding of low density parity

check codes: stochastic iterative decoders.

Physical implementations of iterative decoders often face a compromise be­

tween competing design parameters of decoded error performance, throughput

rate, device size, and power consumption. It is shown how the belief propaga­

tion decoding algorithm, capable of yielding near-optimal error performance,

can be implemented using stochastic computational elements, low complexity

digital probability processing circuits. This combination has the potential for

achieving a decoder design that yields high error correcting performance while

being compact and power efficient.

A primer on error control coding, low density parity check codes, belief

propagation decoding, and stochastic computing is first provided. The archi­

tecture and operation of an initial stochastic decoder design is then presented.

Based on an analysis of deficiencies in this architecture, a number of perfor­

mance enhancing measures are considered. Employing these enhancements,

the stochastic iterative decoder is shown to perform within 0.125dB of the

ideal belief propagation algorithm at a bit error rate of 1.2 x 10-5 for a (7,4)

Hamming code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A cknow ledgem ents

I owe many thanks to the people who formed the richly supportive environment

in which I have been so privileged to work and live. I wish to acknowledge:

• My supervisor, Dr. Vincent Gaudet, for his guidance, support, and,

indeed, his patience in overseeing my work. It has been a rare and fortu­

nate thing to have someone with his professional and personal qualities

as a thesis supervisor.

• Anne, my wife and best friend, for her love and encouragement and for

allowing me to vent on a fairly regular basis.

• Mom and Dad, for their unfailing love and support and for always letting

me know that they’re proud of me.

• The Natural Sciences and Engineering Research Council (NSERC), the

Alberta Informatics Circle of Research Excellence (iCORE), Micronet

R&D, and the University of Alberta for their generous financial support.

• Dr. Christian Schlegel, for his leadership of the world-class iCORE High

Capacity Digital Communications (HCDC) laboratory.

• Dr. Chris Winstead, for his friendship, for increasing my knowledge of

communications theory beyond the classroom, and for many interesting

discussions about engineering things and non-engineering things alike.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• Dr. Ivan Fair, for his assistance during a challenging first semester and

for teaching an outstanding course on information theory.

• Aaron Hughes, for his friendship and for being an essential study partner

during courses.

I apologize for any omissions. None were intended.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedicated to my sweetie Anne, and to the

memory of my grandfather, Charles Maynard Rapley, who passed away

during the writing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

1 Introduction 1

2 Error Control Coding 4
2.1 Introduction.. 4
2.2 Communication and Channel C a p a c ity .. 4
2.3 Error Control C oding.. 7
2.4 Low Density Parity Check C o d e s .. 9

2.4.1 Overview ... 9
2.4.2 Linear Block C odes... 9
2.4.3 Properties of LDPC c o d e s ..10
2.4.4 Factor Graph Representation ..11
2.4.5 Belief Propagation Decoding...12

2.5 VLSI Iterative Decoder Im plem entations...18
2.5.1 Digital Decoders ..18
2.5.2 Analog D e c o d e rs ..18

2.6 Summary ...20

3 Stochastic Computation 22
3.1 Introduction..22
3.2 Stochastic Value Representation... 23
3.3 Stochastic Computational E lem ents...27
3.4 Applications..27
3.5 S u m m a ry ...29

4 Implementation Approaches 32
4.1 Introduction..32
4.2 Initial Decoder ... 33

4.2.1 Architectural Overview...33
4.2.2 Stochastic Parity C irc u it... 34
4.2.3 Feed-forward Accuracy of Stochastic Parity Circuit . . . 37
4.2.4 Stochastic Equality C ircuit.. 39
4.2.5 Feed-forward Accuracy of Stochastic Equality Circuit . . 40
4.2.6 Node C onstruction ...42
4.2.7 Threshold Conversion..43
4.2.8 Decoder O p era tio n ...45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.9 Performance R e s u l t s ..46
4.3 Implementation Challenges and Solutions.. 46

4.3.1 Baseline D e c o d e r .. 47
4.3.2 Equality Node L o c k u p ...47
4.3.3 Design Improvements.. 53

4.4 Stochastic Sequence G en era tio n ...67
4.5 Summary ... 74

5 Conclusions and Future D irections 75
5.1 Contributions and C onclusion .. 75
5.2 Future D irections.. 76

Bibliography 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

2.1 Published digital decoder im plem entations......................................19
2.2 Published analog decoder im plem entations......................................21

3.1 Common stochastic computational e le m e n ts31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 Block diagram of basic communications system............................ 5
2.2 Illustration of coding g a i n .. 8
2.3 Parity check matrix for (7,4) Hamming c o d e 12
2.4 Factor graph representation for (7,4) Hamming code......................13
2.5 Normal factor graph for (7,4) Hamming co d e 14

3.1 Possible mappings of a probability value to stochastic sequences 24
3.2 Average and Absolute Error in Stochastic Sequence Accuracy . 25
3.3 Error in Stochastic Sequence Accuracy Relative to Represented

Probability .. 26

4.1 Parity check matrix for irregular (16,8) LDPC code used in pro­
totype stochastic decoder.. 33

4.2 Factor graph representation of irregular (16,8) LDPC code used
for stochastic decoder prototype. in indicate information bits
and pn indicate parity bits, (a) Ring structure of code, (b)
Familiar two-column representation of the same code.......................35

4.3 Stochastic Parity C irc u it..36
4.4 Three input stochastic parity check circuit using higher fan-in

X O R ...36
4.5 Accuracy of parity check circuit in feed-forward configuration . . 38
4.6 Stochastic division using a JK flip-flop..39
4.7 Stochastic Equality C ircu it.. 40
4.8 Three input stochastic equality circuit using higher fan-in AND

g a te s ...40
4.9 Accuracy of equality circuit in feed-forward configuration 41
4.10 Three-edge parity check node (dashed line) with three, three-

input constituent parity check circuits. Node edges are labeled
A, B, C.. 42

4.11 Three-edge equality node (dashed line) with three constituent
eqaulity circuits. Channel edge is labelled ’’channel” and factor
graph edges are labeled A and B.. 43

4.12 Equality node with up/down counter connected to the output
and sequence generator connected to the input. Bidirectionality
of connections is shown explicitly...................................... 44

4.13 BER plot for initial decoder [1] ... 46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.14 BER plot for (7,4) Hamming code with baseline stochastic decoder 48
4.15 Partial lockup state in stochastic decoder for (7,4) Hamming code. 50
4.16 Complete lockup state in stochastic decoder for (7,4) Hamming

code with additional parity check..52
4.17 Effect of broadcast initialization with no D flip-flop in parity

c i r c u i t .. 54
4.18 Parity check node with additional input edge for output ran­

domization...55
4.19 Effect of LLR sca ling ...57
4.20 Single-layer factor graph (left) and three-layer factor graph (right)

for a (7,4) Hamming code. The node labels indicate the node
number (E{x}, P{x}) and the layer of the node (L { x }) 58

4.21 (a) Equality circuit with lower-intricacy interleaving between
factor graph layers, (b) Equality circuit with higher-intricacy
interleaving between factor graph layers.. 60

4.22 Effect of la y e r in g ... 62
4.23 Effect of combining broadcast initialization with LLR scaling

and layering .. 63
4.24 Effect of combining broadcast initialization with LLR scaling

and layering for rate 1/2 1024-bit LDPC c o d e 64
4.25 Block diagram of su p ern o d e ..65
4.26 Effect of supernode..67
4.27 Modulator for pipelined stochastic sequence g en era tio n 68
4.28 CMOS oscillator with sampling flip-flop for stochastic sequence

generation ... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Sym bols

A cronym s D efinition

A/D analog to digital [conversion]

ADC analog-to-digital converter

ANN artificial neural network

ASIC application-specific integrated circuit

AWGN additive white Gaussian noise

BER bit error rate

CMOS complementary metal oxide semiconductor

D/A digital to analog [conversion]

DAC digital-to-analog convertor

DSP digital signal processing / digital signal processor

Eb/NO information bit signal to noise ratio

ECC error control coding

FPGA field-programmable gate array

HDL hardware description language

IC integrated circuit

I/O input/output

LDPC low density parity check (code)

LFSR linear feedback shift register

LLR log-likelihood ratio

PRBS pseudo-random bit sequence

VLSI very large scale integration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

An error control coding implementation is a critical component of any modern

communication system, particularly as the prevalence and ubiquity of digital

communications increases. Reliable communication at efficient transmission

power is crucial, particularly for mobile data systems.

The discovery of Turbo codes and subsequent rediscovery of low density

parity check (LDPC) codes has been revolutionary, making it possible to

achieve transmission rates asymptotically close to the Shannon capacity limit.

While the theoretical performance of these codes is truly remarkable, several

challenges present themselves in making the leap to a physical implementation.

The application of powerful error control codes such as Turbo codes and

LDPC codes has become increasingly important due to their incorporation

into a number of digital communications standards such as: W-CDMA 3G [2],

the 3rd Generation Partnership Project (3GPP) for IMT-2000 [3], Consulta­

tive Committee for Space Applications (CCSDS) telemetry channel coding [4],

UMTS [5], DVB S-2 [6], DVB-RCS [7], and IEEE 802.x standards [8],

The good properties of powerful codes can be negated by poor decoder

implementations. In order to maximize the benefits of error control coding,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
good implementations are essential.

The design challenge in an error control scheme is primarily in the decoder.

An ideal decoder is one that features low complexity, compact size, acceptable

power consumption, high throughput, and near optimal error performance in

terms of the code being implemented. These goals are in obvious conflict with

one another. The prominent engineering compromise is between complexity

and error performance.

Most high performance decoders rely on complex algorithms employing 5-

8 bit fixed-point computations. The cost of the performance is often seen in

terms of larger device size, increased power consumption, and reduced through­

put. Size and power consumption are particularly critical commodities in mo­

bile applications.

Within the last few years, pioneering research has been performed on the

construction of fully analog decoders, where the internal decoder metrics are

represented as continuous analog voltages or currents [9] [10] [11]. Such de­

coders harness subthreshold conduction in transistors to perform analog com­

putations with extremely low supply voltages. Improvements in speed or

power of one to two orders of magnitude have been conjectured for analog de­

coders compared to their digital counterparts. Furthermore, analog circuitry

is well suited to the relatively low precision requirements of iterative decod­

ing algorithms. Potential drawbacks of analog decoders include technology-

dependence, power consumption that is largely static, and testability issues.

It is for this reason that there is a high degree of desirability in design­

ing a low-complexity iterative decoder in digital hardware. Digital hardware

offers technology-independence through multiple potential platforms ranging

from programmable logic such as FPGAs to standard cell-based ASICs to full-

custom designs. Power scaling is also possible in digital hardware through

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
clock speed adjustment and potentially through supply voltage scaling. Ul­

timately, there is a strong motivation to build a decoder that provides the

benefits of analog and digital decoders while mitigating their deficiencies. The

premise of this thesis is that the construction of the stochastic iterative decoder

through the implementation of the belief propagation algorithm in stochastic

computational hardware will meet this need.

This thesis is organized as follows: Chapter 2 provides background on the

field of error control coding and its applications. The group of codes known

as low-density parity-check (LDPC) codes is then discussed, with focus on the

code properties, factor graph representation, and the belief propagation decod­

ing algorithm. A summary of recent decoder implementations, both in digital

and analog circuitry, is also presented. Chapter 3 describes stochastic com­

putation, including its history, numerical value representation, and computa­

tional elements that represent the building blocks of a stochastic computer. A

literature review of implementations based on stochastic computation follows,

and the chapter then concludes by reviewing properties of stochastic compu­

tation that makes it attractive for implementing iterative decoders. Chapter 4

presents a novel implementation of an iterative LDPC decoder using stochas­

tic computation. The architecture and properties of the prototype are first

described, and promising early simulation results are provided. Performance

problems for larger codes are then investigated and modifications to the de­

coder to ameliorate these problems are assessed. The chapter closes with a

review of two practical methods of generating the stochastic sequences for the

decoder. Lastly, Chapter 5 concludes this thesis by identifying its contributions

and suggesting potential avenues of future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

Error Control Coding

2.1 Introduction

We begin this thesis by discussing the field of error control coding, with specific

reference to a class of codes known as low density parity check codes.

This chapter is organized as follows: In Section 2.2 we motivate the discus­

sion of error control coding by introducing Shannon capacity theory and its

application to the transmission of digital information. This leads into a discus­

sion of the field of error control coding in section 2.3. Section 2.4 covers several

aspects of LDPC codes, including properties of linear block codes (general code

family to which LDPC codes belong), properties of LDPC codes, factor graph

representation, and the belief propagation decoding algorithm. Several recent

digital and analog iterative decoding implementations are presented in Section

2.5. Section 2.6 concludes the chapter.

2.2 Communication and Channel Capacity

Communication is fundamentally a problem of sending a message from a source

through a channel and reconstructing it at the destination. Conceptually, a

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

decoder

encoder

information sink

information
source modulator

Figure 2.1: Block diagram of basic communications system.

channel is any medium of information transfer [12]. Common examples of

channels include wired links such as copper wire carrying electrical impulses

and fiber optic cabling conveying photons of light, and wireless links with

air or free-space conveying electromagnetic (EM) impulses or photons. The

recording channel is a prevalent but less obvious communication channel. The

recording channel could be magnetic media (e.g. hard disk drives) or optical

media (e.g. compact discs), where information is transferred in time rather

than in space. Even water can constitute a channel in the case of sonar-based

communication.

The information transmitted over a channel may be represented in a variety

of formats, but for the purposes of this thesis it will be assumed that binary

digits (bits) are the transmitted quantity.

Figure 2.1 depicts a block diagram of a communication system. Data trans­

mission starts with an information source, such as a computer or a voice en­

coder, which produces information to be transmitted. The encoder then adds

redundant bits to the information bits to assist in reconstituting the data at

the receiver. The modulator then converts the data (information plus redun­

dant bits) into a signaling format appropriate for the channel. As the data

passes through the channel it is corrupted by noise. Noise can take many forms

including thermal noise (e.g. heat from power supplies), man-made noise (e.g.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
nearby electrical devices), and environmental noise (e.g. lightning). Channel

noise is commonly modeled as additive white Gaussian noise (AWGN). On the

receiver side, a demodulator converts the data back from its channel format

to a baseband format (bits). The demodulated data is then processed by the

decoder, which attempts to detect and correct transmission errors due to the

channel noise and outputs a reconstituted version of the information that was

originally transmitted. Finally, the information passes to the information sink,

where the information can be further processed depending on its content.

Noise corruption and the characteristics of the channel place restrictions

on how to transmit information, and on the rate at which information can be

transferred.

Information was first quantified mathematically in 1948 by Claude Shannon

[13]. Shannon developed a logarithmic measure of the information content of

a source and determined the theoretical maximum rate at which information

could be transmitted over a channel and be reconstituted at the destination

without error. He termed this limit capacity. The capacity of a channel is

dependent on two parameters: the bandwidth of the channel and the signal-

to-noise ratio (SNR), and is expressed as:

C = B • log2 (1 + S / N) . (2.1)

A common form of Shannon’s famous capacity expression is presented in

Equation 2.1. B is the channel bandwidth in Hertz, and S /N is the signal-to-

noise ratio expressed as a straight power ratio. Capacity, C, is the theoretical

maximum errorless transmission rate for the channel in bits/second. If the

rate of information transfer is less than the capacity of the channel, then

it is theoretically possible to achieve reliable (i.e. error-free) communication

with appropriate encoding of the transmitted data. If the rate of information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
transfer exceeds capacity, then error-free communication is impossible.

It was from Shannon’s work that arose the concept of an encoder and

decoder in the communication system. In order to achieve channel utilization

that is closer to capacity, it is necessary to intelligently encode transmitted data

through the addition of redundancy such that the receiver can compensate for

errors due to noise. Shannon proved the existence of capacity-achieving codes

in [13].

2.3 Error Control Coding

Error control coding is the branch of information theory concerned with the

reliable transmission of information through a channel.

The fundamental principle of error control coding is to add redundancy

to a transmitted quantity of information such that the original information

can be reconstructed without error, or with fewer errors, at the receiver de­

spite corruption that may occur in the channel due to noise and other factors.

Redundancy in a digital communication system takes the form of additional

bits transmitted with the information bits. A code is a mapping of information

(source) words into longer code words. The source bits are termed information

bits and the redundant bits are termed parity bits.

The rate of a code is the ratio of source word bits to code word bits for a

given code. A code that maps fc-bit source words to n-bit code words has a code

rate of k/n. Codes must also specify an inverse mapping such that codewords

can be decoded to recover the original source words. To be useful, this process

must also facilitate some means of error detection and/or correction.

Coding gain, realized through the decoding process at the receiver, is the

decrease in SNR required to achieve a given bit error rate when ECC is em-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
Bit error rate vs. Eb/NO

uncoded — -
(7,4) Hamm, BP/8iter — -0.1

0.01

0.001

0.0001

1e-05

1e-06
83 4 5 6 71 20

Eb/NO

Figure 2.2: Illustration of coding gain

ployed versus uncoded transmission. Figure 2.2 provides an illustration of this

concept. The BER performance for a (7,4) Hamming code is compared to the

BER for uncoded antipodal transmission (i.e. a binary 1 maps to +1 and a

binary 0 maps to -1). At a BER of 1 x 10~3 the Hamming code exhibits a

coding gain of approximately 1.25dB compared to uncoded transmission.

We can therefore see that employing an error control code can yield one of

two benefits over uncoded transmission:

1. If the same transmission power is used, the bit error rate will be lower.

2. Lower transmission power can be used to achieve the same bit error rate.

There are two major code families: linear block codes and convolutional

codes. Low density parity check codes, the main code type targeted for im­

plementation in the decoder presented in this thesis, belong to the family of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
linear block codes. Convolutional codes are an equally important code family

but are generally beyond the scope of this thesis.

2.4 Low D ensity Parity Check Codes

2.4.1 O verview

Low density parity check codes are a class of linear block codes first described

in 1962 by Gallager in [14]. LDPC codes are sometimes referred to as Gallager

codes after the name of their inventor. These codes were largely forgotten

until the discovery of Turbo codes [15] and iterative decoding techniques. A

subsequent rediscovery of LDPC codes [16] [17] occurred when it was deter­

mined that LDPC codes have capacity-approaching performance with iterative

decoding. There has since been a vigorously renewed interest in researching

the design, properties, and practical implementation of these codes.

2.4.2 Linear B lock C odes

Linear block codes are an algebraically rich approach to coding and were the

first family of codes to be developed.

A linear block code is uniquely defined by an (n — k) x n parity check

matrix, H. A binary 0 or 1 is placed in each cell of the matrix. Each binary 1

represents the inclusion of a variable in a parity check constraint.

The number of rows and columns in the parity check matrix provides im­

mediate information about the code: The total number of bits per codeword is

n, the number of information bits is k, and the number of parity bits is n — k.

The parity check matrix is related to the codeword set, C, such that

H xT = 0, (2.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10
where x is a legal n-bit codeword.

The rate of a code with an (n —k) x k parity check matrix can be determined

as:

R = ~. (2.3)n

The rank of a code is the number of linearly independent rows in the parity

check matrix of the code. Any row in the parity check matrix that is a direct

copy of any other row or formed by the modulo-2 addition of two or more

other rows is said to be linearly dependent. Linearly dependent rows in the

parity check matrix do nothing to enhance the error-correcting capabilities of

the code.

The distance between two codewords is defined as the number of bit po­

sitions that differ. For example, the distance between the 7-bit codewords

0100110 and 1110100 is 3. The minimum distance for a code is the smallest

distance between any two codewords in the codeword set. Generally speaking,

error correcting performance improves with increasing minimum distance in a

codeword set.

The modulo-2 sum of any two or more codewords of a linear code where

each x € C, is itself a codeword belonging to the set.

2.4.3 P rop erties o f LD PC codes

An LDPC code is simply a linear block code with a sparse parity check matrix.

Some LDPC codes have been discovered which approach Shannon Capacity

within O.ldB for a code length of 106 and within ldB for a code length of

104 [18].

A regular LDPC code is one which has the same number of Is in each and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11
every row of the parity check matrix, and the same number of Is in each and

every column. The number of Is in each row need not match the number of

Is in each column for the code to be designated as regular. Conversely, any

LDPC whose parity check matrix does not conform to the parameters of a

regular code is designated as irregular. Given predetermined row and column

weightings in the parity check matrix, research indicates that the placement

of the Is in the parity check matrix is best chosen at random [18] [19].

With iterative decoding, regular LDPC codes tend to underperform Turbo

codes of similar size. Irregular LDPC codes, however, can outperform with

belief propagation decoding Turbo codes of comparable size. [18].

2.4.4 Factor Graph R epresentation

Decoding algorithms must deal with complex functions involving many vari­

ables, a problem space that grows with the code size. It is therefore beneficial

to factorize the complex global problem of decoding a large codeword into a

set of simpler, localized functions. Such a factorization can be accomplished

through the mapping of any linear block code, particularly an LDPC code,

into its factor graph representation [20]. The factor graph is the essential view

of LDPC codes in the context of high-performance forward error correction.

A factor graph is a bipartite graph consisting of two types of nodes: variable

nodes and parity check nodes. Either type of node produces outputs based on

its inputs according to a specific functional constraint. The size and structure

of the factor graph is based directly on the parity check matrix.

The mapping of a parity check matrix to factor graph representation is

straightforward, as shown by the parity check matrix for a (7,4) Hamming code

in Figure 2.3 and its corresponding factor graph in Figure 2.4. A (n — k) x n

parity check matrix maps to a graph consisting of n — k parity check nodes and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12
1 1 0 0 1 0 1
0 1 1 1 0 0 1

_ 0 0 1 0 1 1 1 _

Figure 2.3: Parity check matrix for (7,4) Hamming code

n variable nodes. The three rows of the parity check matrix for the sample

(7,4) Hamming code translate to three parity check nodes in the factor graph,

and the seven columns translate to seven equality nodes. Any row-column

position, hitj, of the parity check matrix where a T ’ is present signifies an edge

connecting the ith parity check node and the j th variable node.

The degree of a node is the number of edges connected to the node.

Every edge in the factor graph represents a pair of unidirectional connec­

tions pointing in opposite directions relative to each other. An edge connecting

two nodes therefore indicates bidirectional communication between those two

nodes.

The straightforward mapping of a parity check matrix to a factor graph

is also advantageous for automatically generating a factor graph in a software

simulator or hardware description language using a parity check matrix as

input.

2.4.5 B e lie f P ropagation D ecod ing

The description of factor graph code representations motivates the discussion

of the belief propagation decoding algorithm, used for decoding LDPC codes.

Belief propagation is an iterative decoding algorithm, whereby messages are

passed back and forth between the variable nodes and parity check nodes giving

an iterative refinement of the decoding result. Iterative decoding was one of

the key innovations of Turbo codes that pushed channel utilization closer than

ever to capacity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

r

equality
nodes

graph
edges

__A _

parity
> check

nodes

Figure 2.4: Factor graph representation for (7,4) Hamming code

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Figure 2.5: Normal factor graph for (7,4) Hamming code

The decoding algorithm utilizes a modified version of the factor graph

called a normal graph. The normal graph has the requirement that each node

has a clearly defined functional constraint and the variable nodes only have

one connected edge. To realize a normal graph, equality nodes are inserted

between the variable nodes and the parity check nodes as depicted in Figure

2.5.

Nodes therefore produce outputs based on functional constraints applied

to the inputs. Functional constraints are defined in terms of three-edge nodes.

Nodes with a degree greater than three, such as the bottommost equality node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
and all of the parity check nodes in Figure 2.5, can be created by internally

cascading three-edge nodes.

Parity Check Constraint

The generalized functional constraint for a parity check node having inputs A

and B and output C is

C = A ® B , (2.4)

where A, B, and C may assume values of 0 or 1. To adapt this constraint

for probabilistic computation, let Si be the set of all pairs of inputs (A, B)

such that (A, B ,C) is a valid set for C — 1 according to the parity check node

constraint. Note that all probabilities represent the probability of a given input

or output being a '1'. Then,

Pr (C) = a P r(A)P r(£), (2.5)
(a.sesi)

Pr(C) = a [Pr(A)(l - Pr(B)) + (1 - Pr(A)) P r(£)] . (2.6)

Choose a such that

£ P r (C = c |A ,fl) = l . (2.7)
C

This yields

a = (1—P r(A))(l-P r(B))+ (l—Pr(A)) P r(5))+ P r(A)(l-P r(£))+ P r(A) P r(B).

(2 .8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
Simplifying, a = 1 and therefore for every two inputs (A,B) to a parity

check node, an output message equal to

Pr(C) = Pr(A)(l - Pr(B)) + (1 - Pr (A)) Pr (B) (2.9)

is produced for the output C.

Equality Constraint

The generalized functional constraint for an equality node having inputs A

and B and output C is

C = A — B, (2.10)

where A , B, and C may take on values of 0 or 1. To adapt this constraint for

probabilistic computation, let S 2 be the set of all pairs of inputs (A , B) such

that (A, B, C) is a valid set for C = 1 according to the equality node constraint.

As with the derivation of the parity check node equation, all probabilities

represent the probability of a given input or output being a '1'. Then,

Pr (C) = a Pr(A)Pi(B). (2.11)
(.A ,B E S 2)

Choose a such that

£ P r (C = c |A ,fl) = l , (2.12)

" Pr(A)Pr(B) + (l - P r (A)) (l - P r (B)) ' ^ ' 13^

Therefore, for every two inputs (A, B) to an equality node, an output

message equal to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

P rfc) = ___________ Pr(A)P r(g)___________
{ ’ Pr(A) P r(5) + (1 - Pr(A))(l - Pr(B)) K V

is produced for the output C.

Algorithm

A message passing decoding algorithm such as belief propagation must ob­

serve the extrinsic information principle, that a node output produced on a

given graph edge cannot depend on a message previously received on that

edge. Violating the extrinsic information principle will produce pronounced

correlations in the node output messages to the detriment of the accuracy of

the calculations.

A cycle is a path over connected nodes that begins and terminates at the

same node without traversing any edge more than once. Short cycles in a

graph violate the extrinsic information principle to the detriment of decoding

performance. For this reason cycles of length shorter than a desired parameter

are disallowed when designing an LDPC code parity check matrix, from which

the structure of the factor graph flows. A graph with no cycles is called a tree.

The belief propagation decoding algorithm proceeds on a factor graph as

follows:

1. Each variable node is loaded with = Pr(x, = 1|yf), where denotes

the ith transmitted symbol and yt is the physical estimate made at the

output of the channel. All other messages in the graph are reset to 0.5.

2. Each variable node forwards its value to the equality node to which it is

connected.

3. Messages are passed between the equality nodes and the parity check

nodes according to their functional constraints given by Equation 2.14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
and Equation 2.9, respectively, for a fixed number of iterations or until

some other stopping criterion is satisfied.

4. The received message at each variable node is sampled. If Tym* > 0.5,

output a 1 for the ith hard bit decision. Otherwise, output a 0.

2.5 VLSI Iterative Decoder Im plem entations

2.5.1 D ig ita l D ecoders

Table 2.1 summarizes recent implementations of digital decoders for LDPC

and Turbo codes. Progress has been made in increasing the throughput of the

decoders while striving for power efficiency. LDPC decoders, owing largely to

their parallel structure, have seen throughput rates push into the multi-gigabit

per second range. Nonetheless, the number of published digital decoder imple­

mentations appears to be low considering the number of important communi­

cations standards in which Turbo and LDPC codes are incorporated. Research

into higher throughput, higher performance, and lower power consumption de­

coder implementations is only expected to expand.

2.5.2 A nalog D ecoders

Analog decoding [9] [10] [11] is a novel approach to the design of iterative

decoders using analog voltages or currents to represent the internal metrics

or values that are passed between functional elements. These decoders are

an interesting mating of probability theory with transistor physics. Analog

decoders can provide improvements in speed, power efficiency, or even both

over their digital counterparts, but they should be viewed as a complementary

technology to digital decoders rather than an orthogonal development.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Table 2.1: Published digital decoder implementations

Developer Code
Len.

Throughput Power @
Supply

E nergy /B it Process Dimensions T ype

Blanksby, How­
land [21]

1024 512M b/s 690m W @
1.5V

1.3nJ 0.16pm
CMOS,
5m layers

7.5 x 7.5
m m 2

digital
LDPC

Mansour,
Shanbhag [22]

2048 800M b/s 760m W @
1.8V

0.95nJ 0.18pm
CMOS

3.1 X 4.2
m m 2

digital
LDPC

Zhang,
Parhi [23]

9216 54M b/s Xilinx
V irtex-E
XCV2600E
FPG A

digital
LDPC

Mansour,
Shanbhag [24]

2048 320M b/s 787m W @
1.8V

2.46nJ 0.18pm
CMOS,
6m layers

14.3 mm2
(chip)

digital
LDPC

Lin, Lin, et al.
[25]

1200 3.33G b /s 644m W (a
1.8V

0.19nJ 0.18pm
CMOS

25 mm 2
(chip)

digital
LDPC

Darabiha,
Carusone, et
al. [26]

2048 1.6G b/s 0.18pm
CMOS

4.2 X 4.2
m m 2

digital
LDPC

Bougard, Giuli-
etti, et al. [27]

432 75.6M b/s 658m W @
1.8V

8.7nJ 0.18pm
CMOS

7.16 mm2
(core),
14.7 mm2
(chip)

digital
Turbo

Bickerstaff,
Garrett, et
al. [28]

5114
(m ax)

2M b/s 292m W @
1.8V

146nJ 0.18pm
CMOS,
6m layers

9 mm2
(core)

digital
Turbo

Lee, Shanbhag,
et al. [29]

27.6M b/s 330m W @
1.8V

12nJ 0.18pm
CMOS,
6m layers

3.467 X
2.513 mm2
(chip)

digital
M AP

Bekooij, Dielis-
sen, et al. [30]

2M b/s 35mW
<a i.8 V
(estim ate)

17.5nJ Altera
FLEX
10K130E
FP G A

digital
Turbo

Berrou,
Combelles,
et al. [31]

40M b/s 1 .6W /iter
@ 5V

160nJ (4
iters)

0.8pm
CMOS,
2m layers

8.9 X 8 .8
m m 2

digital
Turbo

The speed improvement potential of analog decoders stems primarily from

two design characteristics: continuous iterations and the removal of the need

for an ADC.

The current or voltage metrics are allowed to circulate freely in an analog

decoder and settling to stable result values over time. Value variations decrease

on each “iteration” and therefore iteration times progressively decrease, leading

to higher speeds. The continuous iterations also eliminate the area and timing

requirements of a clock tree.

Analog decoders can accept analog demodulated channel metrics, and there­

fore do not require ADC at their inputs. The removal of the ADC provides a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
speed increase as well as power and area savings.

Analog decoders have been shown to provide convergence properties com­

parable to their digital counterparts, and provide robust operation despite

transistor nonidealities and mismatch.

Iterations in an analog decoder are continuous, where the voltage or current-

based values are allowed to settle over time.

Analog decoders have been implemented for both Turbo and LDPC codes.

Table 2.2 summarizes recent analog decoder implementations.

2.6 Summary

This chapter has provided an introduction to communication systems and to

the field of error control coding. Low density parity check codes have been

discussed in more detail, including their properties as linear block codes, their

factor graph representation, and iterative decoding through belief propaga­

tion. Numerous recent digital and analog decoder implementations were then

summarized.

Digital and analog decoder implementations continue to improve in per­

formance, but they both have particular drawbacks. Digital decoders may

consume more power and area than their analog counterparts, whereas ana­

log decoders may be hindered by technology-dependence, power consumption

that is largely static, and intractable testability. There remains a motivation to

look beyond these technologies to new approaches that combine the strengths

of digital and analog decoders while mitigating their weaknesses. Stochastic

decoding may represent such an approach.

We now proceed to a discussion of stochastic computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Table 2.2: Published analog decoder implementations

Developer Code
Len.

Throughput Power @
Supply

E nergy/B it Process Dimensions T ype

Gaudet, Gulak
[32]

48 13.3M b/s 185mW @
3.3V

13.9nJ 0.35pm
CMOS,
3m layers

1.1312 x
1.2579mm2

analog
Turbo

Moerz, Gabara,
et al. [33]

16 160M b/s 20m W @
3.3V

0.125nJ 0.25 pm
BiCMOS

1.680m m 2 analog
tail-
biting
M AP

W instead, Dai,
et al. [34]

8 2M b/s 16pW (at
20kbps),
lm W (at
IM b /s)

0.8nJ (at
20kbps),
InJ (at
IM b /s)

0.5pm
CMOS

1.5 x 1.5
m m 2

analog
tail-
biting
M AP

W instead,
Gaudet, et
al. [35]

256 4.84M b /s 861/rW 0.178nJ TSM C
0.18 pm
CMOS

2.3 x 2.4
m m 2

analog
Turbo
product

Vogrig, Gerosa,
et al. [36]

120 2M b /s 10.3m W @
3.3V ,7.6mW
@ 2V

5.15nJ
(at 3.3V),
3.8nJ (at
2V)

0.35pm
CM OS,
3m layers

3.7 x
1.1 mm2
(core), 4.5
X 2.0 mm2
(chip)

analog
Turbo

Nguyen, W in­
stead, et al. [37]

8 444kb /s 283pW @
0.8V (sim ­
ulated)

0.64n J /b it 0.18pm
CMOS

0.158 X
0.276 mm2
(core)

analog
Ham­
ming

Lustenberger,
Helfenstein, et
al. [38]

18 lOOMb/s 50m W @
5V

0.5nJ 0.8pm
BiCM O S,
2m layers

2.8 x
2.6 mm2
(chip), 1.7
x 0.7 mm2
(core)

analog
tail-
biting
M AP

Lustenberger
[39]

44 150M b/s
(simu­
lated)

1.0W @
5V (simu­
lated)

6.7nJ 0.8pm
2M 2P
BiCM O S

5.28 x
5.45 mm2
(chip), 2.7
x 2.5 mm2
(core)

analog
tail-
biting
LDPC

W instead, Dai,
et al. [40]

8 20M b/s 3.3m W 0.165nJ 0.5pm
CMOS

analog
tail-
biting
M AP

Shakiba, Johns,
et al. [41]

200M b/s 30m W ©
3.3V

0.15nJ 0.8pm
BiCMOS

0.5 mm2
(core)

class-IV
analog
Viterbi

Hemati, Bani-
hashemi, et al.
[42]

32 80M b/s 5m W @
1.8V

0.06nJ 0.18pm
CMOS

0.630 x
0.910 mm2
(core)

analog
LDPC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Stochastic C om putation

3.1 Introduction

The concept of stochastic computation is not new, having first been considered

in the late 1960s [43] as an alternative to conventional digital computers. At

the time, engineers had recognized the utility of performing low-level human

mental processes using digital computers. Such low-level processes include

arithmetic operations and storage or, in the colloquial, “number-crunching” .

Already, pioneering minds were considering performing the high-level functions

of the human mind using computers as well. Pattern-recognition, learning, and

decision-making are the prominent high-level functions.

Artificial neural networks (ANNs) are the hardware implementations of

parallel computing structures that mimic the functioning of the human brain.

To achieve powerful computational ability in an ANN, parallelism must be

created on a massive scale. In the late 1960s, digital hardware was substantial

in area, power inefficient, and somewhat unreliable [44], An enabling technol­

ogy was required to ameliorate these issues and make practical the creation of

ANNs.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23
Stochastic computation was discovered and recognized as an attractive new

computer architecture for ANN implementation because of the simple nature

of the processing elements. Stochastic computation is innately suited for the

computation of probability values. That is, computation where the operands

are all real numbers in the range [0,1].

Today, modern IC processes make it possible to produce, at a relatively

low cost, conventional integrated circuits that are compact and reliable with

millions of transistors on a single die. Stochastic computation is nonetheless

still relevant, finding application in ANNs where the ease of achieving the re­

quired massive parallelism offsets the decreased precision of the computational

elements.

This chapter is organized as follows: In Section 3.2, the value representation

employed by stochastic computers is introduced and properties of stochastic

sequences are described. Simulation results for the accuracy of stochastic se­

quences in isolation relative to the sequence length are also presented. Some

examples of stochastic computational elements are then presented in Section

3.3. Section 3.4 reviews applications of stochastic computation in recent lit­

erature. Section 3.5 concludes the chapter by summarizing the properties of

stochastic computers and asserting their viability as a modern technology. This

concluding section establishes the premise of this thesis: that high performance

decoders can be built using stochastic computational elements.

3.2 Stochastic Value Representation

The defining characteristic of stochastic computation is the unique value rep­

resentation that it employs. In a stochastic computer, values are encoded as a

Bernoulli sequence of bits. A Bernoulli sequence is a sequence of independent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

0.75 ►

11101011011111111010

10111110011111101111

10101111010101111101

Figure 3.1: Possible mappings of a probability value to stochastic sequences

random binary variables a i , a 2 , a 3, ... where the probability that any element

in the sequence is 1 is the same for each and every element. For an unsigned

number N in the range [0,1], the probability that any bit di in a Bernoulli

sequence is a binary ’1’ is given by

Pr {dt = 1) =
N

AC (3.1)

For probability values, Nmax = 1. Thus, the probability of. any given bit

being a binary ’1’ in a sequence of stochastic bits is equal to the real number

probability value being represented.

Encoding of stochastic sequences is probabilistic. That is, there is no fixed

mapping between a real number probability value and its representation as

a sequence of stochastic bits. Many different stochastic representations are

possible for the same value. Figure (3.1) shows three possible mappings of a

probability value to a stochastic sequence.

The precision of stochastic sequences can be controlled in the time domain.

Precision can be improved by increasing the length of a stochastic sequence

used to represent a probability value. As the length of the stochastic sequence

approaches infinity, the difference between the stochastic value and the real

number value it represents approaches zero. That is, if we let e represent the

absolute error between a probability value and its stochastic representation,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Accuracy vs. Stochastic Sequence Length
0.3

avg. abs error
max. abs error

0.25

0.2

0.15

0.1

0.05

0
0 500 1000 1500 2000 2500 3000

Sequence Length (bits)

Figure 3.2: Average and Absolute Error in Stochastic Sequence Accuracy

and let N represent the length of the stochastic sequence in bits, then:

lim e = 0. (3.2)
N - > oo V '

Figure 3.2 depicts the simulated accuracy of a stochastic sequence versus

its length. The plotted curves were obtained as follows: 10,000 tests were run.

Each test involved generating a rational number p between 0 and 1, then gen­

erating stochastic bits from the rational number. The stochastic sequence was

converted back to a rational number at regular length intervals and compared

to the original number. The average absolute error is an indication of the aver­

age + /- deviation of a stochastic sequence at a given sequence length compared

to the rational number the sequence represents. The maximum absolute error

is the maximum + /- deviation observed across the set of tests.

Figure 3.3 depicts the simulated accuracy, relative to the probability being

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Accuracy vs. Stochastic Sequence Length
0.3

rel. avg. abs error

0.25

0.2

0.15

0.1

0.05

0
0 500 1000 1500 2000 2500 3000

Sequence Length (bits)

Figure 3.3: Error in Stochastic Sequence Accuracy Relative to Represented
Probability

represented, of a stochastic sequence versus its length. The plotted curve was

obtained through a procedure similar to the procedure described above for

obtaining the average absolute error curve in Figure 3.2. 10,000 tests were

run. Again, for each test a rational number p between 0 and 1 was generated,

then stochastic bits were generated from this number. At each interval where

the stochastic sequence was converted back to a rational number the absolute

error was computed. The absolute error was then divided by (1 — p) when

p > 0.5, and was divided by p when p < 0.5. The resulting scaled absolute

error value was then averaged across the set of tests.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27
3.3 Stochastic Com putational Elem ents

Table 3.1 presents some common stochastic computational elements. It is

remarkable that complex functions such as multiplication and division can

be implemented with a single gate. This simplicity stands in contrast to the

relatively large number of gates required to implement multiplication, division,

or even addition functions in conventional digital circuitry.

Please refer to [43] and [44] for an expanded listing of stochastic computa­

tional elements.

3.4 Applications

Currently, stochastic computation is primarily targeted for pulsed neural net­

work implementations. Papers on stochastic neural networks abound in the

literature. However, papers on specific implementations using Gaines’ stochas­

tic computational elements are sparsely distributed:

1. A stochastic neural network with in situ learning capabilities is described

in [45]. A hardware implementation was produced in 1.2/xm CMOS, with

approximately 200 synapses on the chip.

2. A stochastic computational implementation of a optical character recog­

nition (OCR) system for the E-13B MICR (Magnetic Ink Character

Recognition) font is proposed and investigated in [46], The system was

simulated in a bit-true C + + program.

3. It is shown how stochastic computing can be used to implement com­

plex analog controllers in [47]. A stochastic computation-based nonlinear

dissipative controller for a series resonant converter was implemented in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28
a Xilinx 4000XL FPGA and its output compared very closely to the

theoretical expected output.

4. The application of stochastic computing to the signal processing of infor­

mation from parallel microsensor arrays and VLSI imagers is investigated

in [48], The computations described were not implemented in hardware,

but the authors suggest ready portability to an FPGA. One specific po­

tential application is the creation of a coprocessor for handling the digital

signal processing of visual sensor data on mobile robots.

5. The authors of [49] present approaches for designing stochastic neurons

that can be used to construct very large scale neural networks.

6. An implementation of a multilayer neural network in a 1.5/im process is

described in [50].

7. A lookup table-based artificial network architecture using stochastic com­

putation and suitable for implementation in FPGAs is discussed in [51].

8. A flexible architecture for realizing neural networks with arbitrary topol­

ogy and dimensions using stochastic computation is presented in [52].

Two general-purpose neural network ICs were fabricated as a proof of

concept.

Other papers provide analysis and insight into the properties of stochastic

computation without describing implementations, thus serving as technology-

enablers:

1. The effects of refractory pulse counting processes in stochastic computers

are studied in [53].

2. A space-efficient technique for the parailel summation of weighted input

sequences in a stochastic computer is described in [54].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
3. Generation of weighted random sequences suitable for input to a stochas­

tic computer is studied in [55] [56] [57] [58] [59], Stochastic sequence

generation is addressed in this thesis in Section 4.4.

3.5 Summary

In this chapter we have introduced stochastic computation, including its devel­

opmental background, value representation, and computational elements. The

utility of employing stochastic computation is clear where the operands are

probability values. Stochastic computation offers five significant advantages

over conventional digital hardware [44]:

1. Small die area in implementation

2. Robustness in low precision operation

3. Bit-serial single-wire communication between elements

4. Short critical paths through simple elements, enabling extremely high

clock rates

5. Control of precision in the time domain, allowing accuracy to be traded

for computational time with the same hardware

Stochastic computation is a technology currently targeted primarily to neu­

ral network implementations. A factor graph based decoder may be viewed as

an instance of a neural network. Together, the functional nodes in the factor

graph form a massively-parallel (at least for larger codes) network much like

the array of neurons in a neural network. Also like neurons, the factor graph

nodes maintain internal learning states that are updated through inter-nodal

communication.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30
A stochastic computational network implementation of an iterative decoder

would seem ideal for resolving the apparently competing design goals of a

compact, power-efficient decoder that also yields high throughput and error

performance. Thus, the premise of this thesis is established.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Table 3.1: Common stochastic computational elements

Circuit Type Function

Probability Inversion

Multiplication
SET

CLR
Division

N-2

N-1
random
select Weighted Summation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4

Im plem entation Approaches

4.1 Introduction

We now examine the application of stochastic computing to iterative decod­

ing. Stochastic decoding was shown in Chapter 3 to have several advantages

over conventional digital hardware which could make possible efficient, high

performance decoders. We consider the design requirements of a stochastic

decoder and investigate its performance.

This chapter is organized as follows: Section 4.2 details the architecture

and operation of an early stochastic iterative decoder design. The architecture

is first overviewed. Following this overview is a discussion of the construction

and performance of stochastic parity and equality circuits, and the construc­

tion of larger functional nodes using these circuits. The issue of converting

output stochastic sequences to decoded codewords is considered. The operat­

ing algorithm of the decoder is then described, and first performance results

for the decoder are supplied.

Section 4.3 deals with performance issues encountered with the decoder

for larger codes. A baseline decoder architecture is established for comparing

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Figure 4.1: Parity check matrix for irregular (16,8) LDPC code used in proto­
type stochastic decoder

performance improvements resulting from modifications. The issue of lockup

in the equality nodes is discussed, then several potential improvements are

proposed and examined: broadcast initialization, parity check node output

randomization, log-likelihood ratio scaling, factor graph layering, and supern­

odes.

Section 4.4 covers two approaches to the implementation of stochastic se­

quence generators for VLSI implementations. Section 4.5 concludes the chap­

ter.

4.2 Initial Decoder

This section describes the construction, operation, and performance charac­

teristics of the early stochastic iterative decoder presented in [1].

4.2.1 A rchitectural O verview

A simple irregular (16,8) LDPC code was used as the basis for the initial

stochastic decoder. The parity check matrix for this code is supplied in Figure

4.1.

Figure 4.2 shows two equivalent factor graph representations of the code.

Note that the maximum degree of the equality nodes is 3 (including the channel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
I/O) and that the parity check nodes uniformly have a degree of 3.

Only a few types of functional units are required to implement the factor

graph as a stochastic decoder in hardware: equality nodes, parity check nodes,

stochastic sequence generators, and threshold converters.

Both equality nodes and parity check nodes are comprised of an inter­

connection of equality circuits or parity circuits, respectively, as described in

Section 4.2.6. The stochastic parity check circuit is presented in Section 4.2.2

with a subsequent analysis of its computational accuracy in Section 4.2.3. Like­

wise, the stochastic equality circuit is presented in Section 4.2.4 along with a

computational accuracy analysis in Section 4.2.5.

Stochastic sequence generators convert probability values of noisy channel

estimates into stochastic sequences for input to the equality nodes. Because

the primary focus of this thesis is to explore the use of stochastic computa­

tional elements for performing iterative decoding calculations, the discussion

of stochastic sequence generation is deferred to Section 4.4.

Threshold converters are employed to convert the output stochastic se­

quence from each equality node into a single decoded bit. The use of threshold

converters for this purpose is elaborated in Section 4.2.7.

Factor graph edges simply translate to wires in hardware. Communica­

tions are bit-serial and bidirectional, meaning that each graph edge actually

represents a pair of wires conveying digital sequences in opposite directions.

The bidirectionality of the links is normally abstracted out in typical repre­

sentations of factor graph-based decoders.

4.2.2 Stochastic P arity Circuit

By inspection, it can be seen that the logical function represented by the

parity check constraint of Equation 2.9 is exclusive-OR (XOR). Consequently,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(a)

(b)
Figure 4.2: Factor graph representation of irregular (16,8) LDPC code used
for stochastic decoder prototype. in indicate information bits and pn indicate
parity bits, (a) Ring structure of code, (b) Familiar two-column representation
of the same code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

SET

CLR Q

Figure 4.3: Stochastic Parity Circuit

A
B
C

SET
— Out

CLR Q

Figure 4.4: Three input stochastic parity check circuit using higher fan-in XOR

the parity check constraint can be implemented with a simple XOR gate.

Figure 4.3 depicts a stochastic parity circuit. The D flip-flop in this figure

has been added to support synchronous decoder operation. It does not affect

the computational logic of the circuit. The initialization scheme described in

Section 4.3.3 proposes the complete removal of the D flip-flop from the parity

circuit.

The number of inputs to the parity check circuit can be increased by either

increasing the fan-in of the XOR gate or by cascading a series of XOR gates.

Figure 4.4 depicts a three-input parity check circuit constructed using the for­

mer approach. The choice of approach depends on the engineering constraints

of the implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37
4.2.3 Feed-forward A ccuracy o f S tochastic P arity Cir­

cuit

A bit-true model of the stochastic parity circuit was written in C + + to de­

termine through simulation the computational accuracy of the circuit. This

model was designed to have run-time configurability of its degree, such that it

can be used to simulate any size of parity circuit.

The results presented in Figure 4.5 were obtained by generating 104 sets

of random floating-point input value sets for the circuit. For each set of input

values, the expected floating-point output was first computed according to

Equation 2.9. The floating-point input values were then used to generate input

sequences of 2000 stochastic bits per input. These sequences of stochastic bits

were passed through the circuit model and the sequence of output bits was

summed.

After the passing of the first 50 stochastic bits, and every 50 stochastic

bits thereafter, the output count was converted to a floating-point value by

dividing it by the total number of stochastic bits passed. The absolute differ­

ence between this floating-point value and the expected value was computed,

and the mean of the absolute differences across all 104 input sets formed one

datum point on the plot.

The output bits from the circuit were not fed back to the circuit inputs in

any way, hence the designation of this test as a feed-forward accuracy test.

These results provide some insights into the accuracy of the stochastic

parity circuit: First, as expected, the accuracy of the computations improves

with increasing numbers of stochastic bits passed per computation. Second,

the nearly overlapping curves indicate that there is only a minute reduction

in computational accuracy for circuits of increasing degree. Third, it appears

that the accuracy of the circuit is fundamentally limited by the accuracy of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Mean Absolute Error vs. Clock Cycles
0.06

2 inputs —
3 inputs —
4 inputs —
5 inputs ...
6 inputs —
7 inputs -

0.05

0.04

0.03

0.02

0.01

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Clock Cycles

Figure 4.5: Accuracy of parity check circuit in feed-forward configuration

the individual stochastic sequences passing through it. Referring back to the

accuracy plot of an individual stochastic sequence in Figure 3.2, it is shown

that an individual stochastic sequence will have an absolute error of roughly

0.0100 at 1000 clocks, and 0.0070 at 2000 clocks. This is closely tracked by

the parity circuit, which has an absolute error of about 0.0125 at 1000 clocks

and 0.0090 at 2000 clocks.

The second and third points above confirm that the stochastic parity cir­

cuit implements a very close approximation of the parity constraint given by

Equation 2.9. The plot presented in Figure 4.5 may be used as a guide for a

system integrator to determine the number of clock cycles required to achieve

the desired level of accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Pi

P2
Figure 4.6: Stochastic division using a JK flip-flop.

4.2 .4 S tochastic Equality Circuit

The stochastic circuit implementation of the equality constraint given by Equa­

tion 2.14 is not as straightforward as the implementation of the stochastic par­

ity circuit from the parity check constraint. Stochastic division is particularly

difficult to implement.

Fortunately, Gaines shows in [43] that a JK flip-flop can be used to im­

plement a stochastic divider whose generalized output maps conveniently to

Equation 2.14. Depicted in Figure 4.6, a JK flip-flop with an input value, Pi,

on its J input and an input value, P2 , on its K input produces the output

result

P1 + P2

By substituting Pr(A)Pr(B) for Pi and (1 — Pr(A))(l — Pr(B)) for P2 in

Equation 4.1, Equation 4.1 is transformed into Equation 2.14.

A JK flip-flop can therefore be used to implement the division in Equation

2.14. AND gates are used to implement the multiplication in the numerator

and denominator. Inverters are used to implement the probability inversion.

The resulting stochastic equality circuit is shown in Figure 4.7.

The number of inputs to the equality circuit can be increased by either

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

SET

K CLR Q

Figure 4.7: Stochastic Equality Circuit

A
B
C

SET
— Out

CLR Q

Figure 4.8: Three input stochastic equality circuit using higher fan-in AND
gates

increasing the fan-in of the AND gates or by cascading a series of AND gates

at the J and K inputs. Figure 4.8 depicts a three-input equality circuit con­

structed using the former approach. The choice of approach depends on the

engineering constraints of the implementation.

4.2.5 Feed-forward A ccuracy o f Stochastic Equality Cir­

cuit

As with the stochastic parity circuit, a bit-true model of the stochastic equality

circuit with run-time degree configurability was written in C + + to determine

through simulation the computational accuracy of the circuit.

The results presented in 4.9 were obtained through a test identical to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

M ean Absolute Error vs. Clock Cycles

0.4
2 Inputs
3 inputs
4 inputs
5 inputs
6 inputs
7 inputs

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
20001400 1600 1800800 1000 1200200 400 6000

Clock Cycles

Figure 4.9: Accuracy of equality circuit in feed-forward configuration

one described in Section 4.2.3, except that the expected values were calculated

according to the equality constraint given by Equation 2.14.

These results provide some insights into the accuracy of the stochastic

equality circuit: First, as expected, the accuracy of the computations improves

with increasing numbers of clock cycles. Second, the curves show a distinct

reduction in accuracy for increasing numbers of inputs to the circuit at all

numbers of clock cycles. This indicates that the stochastic approximation of

the equality constraint does introduce an error term, and this error compounds

as the number of inputs to the circuit increases.

Given a sufficient number of clocks, the stochastic equality circuit should

be capable of providing enough accuracy to make it amenable to integration

in an iterative decoder. The plot presented in Figure 4.9 may be used as a

guide for a system integrator to determine the number of clock cycles required

to achieve the desired level of accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

r _

._______________________________ i

Figure 4.10: Three-edge parity check node (dashed line) with three, three-
input constituent parity check circuits. Node edges are labeled A, B, C.

4.2.6 N od e C onstruction

An output must be produced on each edge of a node based on inputs on the

other edges. Functional nodes in the factor graph are therefore constructed by

an interconnection of constituent circuits. Parity check nodes are comprised

of instances of the parity check circuit presented in Section 4.2.2. Likewise,

equality nodes are comprised of instances of the equality circuit presented in

Section 4.2.4.

The construction of parity check nodes is straightforward. The output

produced for any given edge is based on the inputs on all of the other edges.

An n-edge parity check node will consist of n constituent parity circuits, each

having n — 1 inputs. Figure 4.10 depicts a three-edge parity check node with

three constituent parity check circuits.

Equality nodes are constructed similarly to parity check nodes, with a slight

variation due to the channel edge. The output produced for any given edge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

A

Channel

Figure 4.11: Three-edge equality node (dashed line) with three constituent
eqaulity circuits. Channel edge is labelled ’’channel” and factor graph edges
are labeled A and B.

connected to the factor graph is based on the inputs on all of the other edges.

The output on the channel edge, however, is based on the inputs on all node

edges including the channel edge input. Therefore, an n-edge equality node

will consist of n constituent equality circuits, with n — 1 having n — 1 inputs

and one having n inputs. Figure 4.11 depicts a three-edge equality node with

three constituent equality circuits.

It is evident that the stochastic parity check and equality nodes are de-

terministically scalable to any node degree. This fact may make it possible

to automatically generate hardware description language (HDL) code for a

stochastic decoder based only on a parity check matrix.

4.2.7 Threshold Conversion

To obtain a result from the decoder, it is not necessary to convert the output

stochastic sequences back to binary numeric representation. All that is re­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

noisy channel i i
estim ate ------H se q u en ce genera to r \
decoded

output bits H I up/down counter

44

factor
>• graph

ed g es

Figure 4.12: Equality node with up/down counter connected to the output and
sequence generator connected to the input. Bidirectionality of connections is
shown explicitly.

quired is to perform a threshold conversion for each codeword decoding cycle

on the output sequence of each equality node, such that a single-bit result

is produced. If 50% or more of the output bits are ’1’, then the threshold

converter output bit should be a ’1’. Otherwise, the output bit should be a

’O’.

The task of threshold conversion can be performed through the use of an

up/down counter with a sign bit. The up/down counter must be reset at the

beginning of the decoding cycle for each new noisy received codeword. At the

end of the decoding cycle for a given codeword the sign bit is taken as the

decoding result.

Care must be taken not to confuse the meaning of the sign bit. In typical

signed binary representation a sign bit of ’0’ indicates a positive number. In

this application a positive number shall be threshold converted to a T , and

a negative number shall be converted to a ’O’. It is therefore recommended

that the sign bit be inverted inside each up/down counter, thereby avoiding

confusion in implementing a stochastic decoder in the framework of a larger

communications system.

Figure 4.12 depicts an up-down counter attached to the output wire of an

equality node. The bidirectionality of the connections to the equality node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45
are explicitly shown in this figure, whereas they are normally abstracted as a

single wire. A stochastic sequence generator is connected to the input of the

equality node. Methods for implementing stochastic sequence generators are

discussed in Section 4.4.

4.2.8 D ecod er O peration

The decoder operates as follows:

Initialization is performed for each new noisy received codeword by clearing

all of the flip-flops in the factor graph and clearing the up-down counters

attached to the equality nodes. The probabilities of each received codeword

bit being a ’1’, the noisy channel estimates, are loaded into the stochastic

sequence generators.

The decoder is clocked. On each clock edge each equality node receives a

new bit from the attached stochastic sequence generator. A new output bit is

produced by the nodes on every edge in the factor graph (in both directions

of each edge).

The decoder is clocked for T JN IT clock cycles with the up-down counters

held in reset. That is, for the first TJN IT clock cycles, the up-down counters

do not count the output bits. This constitutes a training period for the decoder.

After T JN IT clock cycles, the decoder is clocked until all up-down counters

reach an absolute count of T_CHECK. At this point, the decoder checks to

ensure that the sign bits of the up-down counters indicate a valid codeword.

If the codeword is valid, the sign bits are used to form the decoded codeword

and a new noisy received codeword can be loaded into the decoder. Otherwise,

the decoder is allowed to continue operating.

A codeword can be determined to be valid when, for each and every parity

check node, the XOR sum of all bits coming into the parity check node is ’O’.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

128,128
96,32
64,64

ML

S'

73 5 60 2 41

Eb/No

Figure 4.13: BER plot for initial decoder [1]

4.2.9 Perform ance R esu lts

Figure 4.13 presents BER performance results for the LDPC code shown in

Figure 4.2. The solid curve is the maximum likelihood (ML) decoding result

for the code, which was possible to obtain due to the code’s simplicity. The

dashed lines represent different tests of the stochastic decoder with the number

of cycles for the TJN IT and T_CHECK phases varied as indicated by the

paired numbers in the graph legend. At a BER of 10~4 the stochastic decoder

was only about 0.15dB from the ML curve.

4.3 Im plem entation Challenges and Solutions

While the initial results of the stochastic decoder were extremely promising,

severe performance degradation was observed with slightly larger codes with

higher node degrees. This thesis extends the original work by examining meth­

ods of improving performance. The following sections examine problems and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

potential solutions.
47

4.3.1 B aseline D ecoder

It is useful to establish a baseline version of the stochastic decoder in order to

compare the relative merit of different attempts at improving performance.

The baseline stochastic decoder is constructed identically to the initial

decoder described in Section 4.2. The baseline decoder uses a simpler operating

algorithm, differing from that of the initial decoder as follows:

• The node outputs are reset to random values.

• The up/down counters count every bit, eliminating the concept of TJN IT

and T_CHECK phases.

• The decoder operates for a fixed duration for each codeword.

Figure 4.14 shows the BER plot for the baseline stochastic decoder op­

erating on a (7,4) Hamming code. The stochastic BER curve is compared

against the output of the ideal belief propagation algorithm operating on the

same code for 8 iterations. It is apparent that the baseline decoder exhibits

severe deficiencies. It is interesting to note that the BER performance of the

stochastic decoder actually degrades above an SNR of approximately 5.5dB.

4.3.2 Equality N od e Lockup

A serious problem affecting the performance of the baseline stochastic decoder

for more complex codes is a phenomenon that can be termed ’’equality node

lockup” .

In high-level terms, equality node lockup occurs when the transitions in the

channel input stochastic sequence cannot cause the outputs of any equality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Bit error rate vs. Eb/NO

BP, 8 iter
baseline/10.OOOclk

0.01

0.001
DCHI
CO

0.0001

1e-05

1e-06
0 1 2 3 4 5 6 7 8

Eb/NO

Figure 4.14: BER plot for (7,4) Hamming code with baseline stochastic decoder

node to change. The actual lockup condition is preceded by equality node

outputs that are static for a few or several clock cycles across the entire set

of equality nodes. When the decoder reaches a locked-up state, the output

decision bits do not change and iterative decoding effectively ceases.

The decoder can potentially lock onto the correct codeword. The proba­

bility of this happening, though, decreases for larger codes. The more likely

outcome is that the decoder will lock into some set of suboptimal local min­

ima, which may not even comprise a valid codeword let alone the correct

codeword. Recently there have been investigations into these suboptimal min­

ima, “trapping sets” , or “stopping sets” with an aim to mitigate their im­

pact [60] [61] [62] [63] [64].

The key difference between the (16,8) LDPC code, for which the stochastic

decoder worked well, and the (7,4) Hamming code, for which the stochastic

decoder performed poorly, is that the Hamming code includes an equality node

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49
with degree 4. All of the equality nodes for the LDPC code have degree 3.

To understand why a higher degree in an equality node could lead to a

problem, one needs to re-examine the behaviour of the equality circuit pre­

sented in Section 4.2.4. On each clock cycle, the equality circuit evaluates its

inputs. If all of the inputs are ’O’, the output will be ’O’. Likewise, if all of the

inputs are ’1’, the output will be ’1’. If the inputs are neither all ’0’ nor all ’1’,

the equality circuit will hold its output value from the previous clock cycle.

As the degree of an equality node increases, so do the number of inputs

to the constituent equality circuits. With an increased number of inputs,

the probability that all of them will agree is decreased. Consequently, higher

degree equality nodes axe more likely to continue asserting a stored output bit.

For every input that is added to an equality circuit, the probabilities of the

inputs agreeing and the output bit inverting both decrease by up to a factor

of two. For example, assuming completely random inputs the probability that

the inputs of a two-input equality circuit will agree is 0.5. The probability

that inputs that are in agreement will cause a transition at the output is 0.25

because the inputs may be agreeing on the previously held output value. If

the number of equality circuit inputs is increased to three, the probability of

the inputs being in agreement drops to 0.25 and the probability of a transition

at the output drops to 0.125.

It is shown in Section 4.2.5 that the stochastic equality circuit has good

computational accuracy in a feed-forward configuration. That study, however,

did not take into account the operational characteristics of the equality circuit

in a feedback configuration.

Figure 4.15 shows the stochastic decoder for a (7,4) Hamming code in

a state of partial lockup. All graph edges are conveying ’0’ values in both

directions. Many other states of partial lockup are possible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Figure 4.15: Partial lockup state in stochastic decoder for (7,4) Hamming code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51
The term partial lockup is used in reference to Figure 4.15 because the

two-edge equality nodes in the graph always have the potential to invert the

outputs of the parity check nodes to which they are connected. It is nonetheless

difficult for the decoder to have switching activity in a partial lockup state.

For example, the channel input bits on nodes EO and E l would both have

to be T on the same clock cycle in order for node E l to output a ’1’ to parity

check node P I. To have E l output a ’1’ to its attached up-down counter, the

channel inputs on EO, E l, and E3 would all have to be ’1’ on the same clock

cycle.

Because E6 has a degree of four, it is even more difficult for this node to

output a ’1’ on any of its output edges. Nodes EO, E3, and E6 would all have

to have a ’1’ on their channel inputs on the same clock cycle in order for E6

to output a T ’ to P2. Even worse, to have E6 output a ’1’ to its attached

up-down counter, the channel inputs on EO, E3, E5, and E6 would all have to

have a ’1’ on the same clock cycle.

The fact that it is difficult, but not impossible, to maintain switching ac­

tivity in the (7,4) Hamming code decoder provides an explanation for the poor

to mediocre performance of the stochastic decoder for this code.

Figure 4.16 depicts a situation of complete lockup. For illustrative pur­

poses, the same (7,4) Hamming code decoder is shown with an additional

parity check that was specified by adding a linearly-dependent row to the par­

ity check matrix. This addition was made to increase to three the minimum

degree of any given equality node. In this situation even if all of the channel

inputs to the decoder are ’1’, none of the equality node outputs will change.

The situation presented in Figure 4.16 also highlights an important prob­

lem: Initializing the outputs of all of the flip-flops in the graph to ’0’ before

starting a new decoding cycle as described in Section 4.2.8 will initialize the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

EO — \

E1
mmmmam

+
vO /

/ /
E2 \ X / j

E3 * o V \ A /
4 *..... .

E4

/ VX

E5
...

+
\

PO

P1

P2

+
Figure 4.16: Complete lockup state in stochastic decoder for (7,4) Hamming
code with additional parity check.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53
decoder to a locked-up state if the minimum degree of any equality node is

three or greater. Using broadcast initialization as an improvement to the ini­

tialization process is discussed in Section 4.3.3.

4.3 .3 D esign Im provem ents

Obviously equality node lockup is detrimental to the performance of the stochas­

tic decoder. Indeed, the reduction in uncertainty of received codeword bit

probabilities and a corresponding reduction in toggling of stochastic sequence

inputs may explain why the stochastic decoder actually performs worse at

higher SNR values. This section describes attempts that were made to miti­

gate the lockup problem. The common thread in these modifications is that

they are primarily aimed at increasing the switching activity in the graph in

order to keep the equality node outputs toggling periodically.

Broadcast Initialization

Broadcast initialization is proposed as a means of intelligently priming the de­

coder at the beginning of each codeword decode process. As has been shown

in Section 4.3.2, initializing all node outputs to 0 can actually cause an im­

mediate lockup condition. Randomizing the initial node outputs potentially

avoids this situation, but broadcasting a set of “best guess” bits on the first

decoding iteration may be a better solution.

Broadcast initialization is implemented on top of the baseline decoder by

specifying that, for each codeword bit, a stochastic bit will be clocked into

the associated equality node and driven out on all of its inputs for the first

iteration. The D flip-flop is also removed from the parity check circuits. This

change is made because the initial values of the D flip-flops would otherwise

propagate back to the equality nodes and negate the benefit of the broadcast

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bit error rate vs. Eb/NO

54

BP, 8 iter
rand init/10.OOOclk

brdcst init/10.OOOclk, no dff

0.01

0.001
DC
UJco

0.0001

1e-05

1e-06
81 3 4 5 6 70 2

Eb/NO

Figure 4.17: Effect of broadcast initialization with no D flip-flop in parity
circuit

initialization.

Figure 4.17 shows the BER curve for the stochastic decoder with broadcast

initialization (including the removal of the D flip-flops in the parity circuits)

operating on the (7,4) Hamming code. This curve is contrasted with the output

of the baseline decoder and of the ideal belief propagation algorithm operating

for 8 iterations. The simple change of adding broadcast initialization produces

marked improvement in the output. The BER curve now monotonically de­

creases, and differs from the belief propagation output at most by 0.75dB at

a BER of 5 x 10~5.

Parity Check N ode Output Randomization

One means of proactively avoiding lockup in the equality nodes involves a

low probability randomization of the parity check node outputs. Because the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

B

A

r -

low-probability stochastic
sequence generator

c

Figure 4.18: Parity check node with additional input edge for output random­
ization.

parity check node outputs directly feed back to the equality node inputs, such

an approach would consequently randomize the equality inputs.

Introducing some artificial randomness to the parity check node outputs

can be achieved by adding an input edge to the node. This additional input

edge is then driven by a stochastic sequence generator. Figure 4.18 depicts a

parity check node with an additional randomizing input edge.

The new input edge feeds into all of the constituent parity check circuits.

On each clock cycle a new random bit is driven into the input by a stochastic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56
sequence generator. If the bit is a ’O’, the outputs from the parity check node

will not be affected. That is, the outputs will be the same as they would be

with no additional randomizing input. If the bit is a T , the outputs from

the parity check node will all be inverted compared to their values without

the additional randomizing input. The net effect is that the parity check node

inverts its single-bit decision on all output edges when the input bit on the

randomizing edge is a T .

Log-likelihood Ratio Scaling

Log-likelihood ratio scaling represents an effort to increase switching activity

by preprocessing the channel-noise-added output values from the demodulator

before converting these values to probabilities of being Is and passing them to

the decoder.

The scaling operation is accomplished by first selecting a scaling factor, (3.

All noisy values, n*, from the demodulator that constitute a received codeword

are the scaled in accordance with

m ax{|rii|}

That is, each noisy value is multiplied by the scaling factor then divided by

the absolute value of the largest noisy value in the noisy value set. Selecting

smaller values of .3 causes the codeword bit probabilities to be compressed

closer to 0.5 when the noisy values are subsequently converted to probabilities

of being Is. More transitions will occur in the input stochastic sequences to

the decoder when the probability values are all compressed closer to 0.5.

Figure 4.19 shows the BER curve for the baseline stochastic decoder with

LLR scaling with (3 separately set to 0.8 and 0.9 and operating on the (7,4)

Hamming code. These two curves are contrasted with the output of the base-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57
Bit error ra te vs. Eb/NO

BP, 8 i t e r ------
no scaling/10.OOOclk------

LLR 0.8/10.OOOclk
LLR 0.9/1 .OOOclk : -

0.1

0.01

0.001
trLlim

0.0001

1e-05

1e-06
0 1 2 3 4 65 7 8

Eb/NO

Figure 4.19: Effect of LLR scaling

line decoder and of the ideal belief propagation algorithm operating for 8

iterations. The notable feature is that employing LLR scaling delays the onset

of the performance degradation of the decoding result at higher SNR values,

ft would appear that the increased switching activity has the desired effect of

keeping the decoder from locking at higher SNR values.

Factor Graph Layering

Even though stochastic computation is essentially serial, at least in terms of

its metric representations, this does not preclude a ’’layered” implementation

of the decoder. Layering involves the instantiation of L identical factor graphs

in one decoder. In such an arrangement every node is duplicated L times

and edge connections are made between nodes exactly as in the single-layered

factor graph with the exception that the connections are randomly permuted

amongst the layers. Thus, a form of spatial diversity is realized.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

110

LS

L3

LS

ILS

LI

12

Figure 4.20: Single-layer factor graph (left) and three-layer factor graph (right)
for a (7,4) Hamming code. The node labels indicate the node number (E{x},
P{x}) and the layer of the node (L{x})

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59
The left side of Figure 4.20 depicts a standard single-layered factor graph

for a (7,4) Hamming code, while the right side of the figure depicts one possible

three-layered graph for the same code. The labels E{x} and P{x} enumerate

the equality nodes and parity check nodes, respectively, while the L{x} labels

indicate the layer of the node.

Note that the equality nodes and parity check nodes are connected in fun­

damentally the same way in the single-layered graph and the three-layered

graph. It is only the connections between layers in the three-layered graph

that are randomized. For example, the ”E0” equality node(s) connect to the

”P0” parity check node(s) in both graphs. In the three-layered graph, how­

ever, equality node E0L0 connects to parity check node P0L2, equality node

E0L1 connects to parity check node POLO, and equality node E0L2 connects

to parity check node P0L1.

There are two degrees to which spatial interleaving can occur: lower-

intricacy and higher-intricacy. Lower intricacy interleaving is achieved by

permuting connections between layers as in the three-layered factor graph of

Figure 4.20.

Higher intricacy interleaving is achieved by separately routing edges to the

two AND gates in each equality circuit. In the conventional construction of

the equality circuit, the same set of inputs is fed into both AND gates. The

difference between lower intricacy and higher intricacy interleaving at the level

of the equality circuit is highlighted in Figure 4.21.

One upshot of higher intricacy interleaving is that the inputs to the JK

flip-flop are decorrelated. Another effect is that the toggle operation of the JK

flip-flop can potentially occur. It is possible for the J and K inputs to both

be ’1’ because the sets of inputs to the two AND gates in the equality circuit

are different. The toggle operation is not possible in the conventional equality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

From parity check
node 0, layer 1 SET

 Output
From parity check

node 2, layer 0

L-0
K CLR

(a)

From parity check
node 0, layer 1 SET

Output
From parity check

node 2, layer 0

From parity check
node 0, layer 2

CLR
From parity check

node 2, layer 1

(b)
Figure 4.21: (a) Equality circuit with lower-intricacy interleaving between fac­
tor graph layers, (b) Equality circuit with higher-intricacy interleaving be­
tween factor graph layers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61
circuit because the inputs to the two AND gates are the same. The specific

effects of the toggle operation on the computation of equality node constraint

as well as on switching activity are worthy of further study.

A layered implementation of a stochastic iterative decoder has interest­

ing performance implications. The original motivation for layering was speed.

It was expected that decoding using L layered stochastic decoders could be

terminated after l /L the number of clock cycles normally required by a sin­

gle decoding layer. After the equality node lockup problem was discovered,

layering was seen as being more important as a means of promoting a height­

ened degree of randomness in the decoder and assisting in increasing switching

activity.

Layering can further have the desirable effect of increasing the length of the

shortest cycles in the factor graph. Recall that a cycle is a path that begins

and terminates at the same node without traversing any edge more than once.

If the edge connections between layers are made appropriately, the shortest

cycle in a single-layer factor graph can generally be expected to increase in

length by a factor of at least L.

The obvious detraction of a layered decoder implementation is the con­

sumption of at least L times as much die area, and likely more because of

the non-linear increase in the routing requirements between the nodes. An­

other drawback is that L times as many stochastic sequence generators are

required for a layered decoder. It is vital that each equality node has its own

independent (ie. uncorrelated with other input sequences) input sequence.

This problem may be marginalized by the first implementation approach for a

stochastic sequence generator described in Section 4.4.

Outputs from the equality nodes, however, can still be summed in a single

layer of up-down counters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bit error rate vs. Eb/NO

62

BP, 8 iter
1 lyr/10,000dk
5 lyr/10.OOOclk
16 lyr/1 ,OOOdk

0.1

0.01

0.001
<rLU
CD

0.0001

1e-05

1e-06
0 1 2 3 4 5 6 7 8

Eb/NO

Figure 4.22: Effect of layering

Figure 4.22 shows the BER curve for the baseline stochastic decoder sep­

arately with 5 layers and 16 layers, operating on the (7,4) Hamming code.

These two curves are contrasted with the output of the baseline decoder (the

1 layer curve) and of the ideal belief propagation algorithm operating for 8

iterations. With layering, the BER curve decreases monotonically. With 16

layers, a loss of approximately 0.75dB at a BER of 6 x 10-5 is observed.

Combined Techniques

Prior to proceeding to the last performance improving technique, supernodes,

we examine the combination of the best of the previously analyzed techniques.

Figure 4.23 shows the BER curve for the baseline stochastic decoder with

LLR scaling (/? = 0.8), 16 layers, and broadcast initialization operating on the

(7,4) Hamming code. This curve is contrasted with the curves for LLR scaling

on its own, broadcast initialization on its own, and the belief propagation al-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Bit error rate vs. Eb/NO

BP, 8 iter
0.8llr/1 OOOclk
16lyr/1 OOOclk

0.8llr/16lyr/brdcst/1 OOOclk

0.1

0.01

0.001
a:
UJm

0.0001

le-06
0 1 2 3 4 5 6 87

Eb/NO

Figure 4.23: Effect of combining broadcast initialization with LLR scaling and
layering

gorithm operating for 8 iterations. The combined feature decoder outperforms

the other features in isolation. Moreover, the combined feature decoder closely

tracks the belief propagation curve and shows a minute loss of only 0.125dB

at a BER of approximately 1.2 x 10-5.

Confident in the capabilities of the stochastic decoder that combines LLR

scaling, layering, and broadcast initialization, we attempt to tackle a much

larger code. Figure 4.24 shows the BER curve for the combined feature decoder

operating on a rate 1/2, 1024-bit (3,6) regular LDPC code. The BER curve is

contrasted with the output of the belief propagation algorithm operating for 8

iterations. When the belief propagation algorithm reaches a BER of 3 x 10-7

at an SNR of 3.5dB, the stochastic decoder shows little error correction with

a BER of 7.5 x 10-2. Clearly more investigation is required in the future to

make the stochastic decoder work with large codes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bit error rate vs. Eb/NO

64

BP, 8 iter
16lyr/0.8llr/brdcst/1 OOQclk

0.1

0.01

0.001

0.0001

1e-05

1e-06

1e-07
3.52 2.5 31 1.50 0.5

Eb/NO

Figure 4.24: Effect of combining broadcast initialization with LLR scaling and
layering for rate 1/2 1024-bit LDPC code

Supernodes

A final performance-enhancing measure studied in this thesis is the use of

“super” equality nodes, or supernodes. A supernode receives and outputs

stochastic sequences, but internally performs conventional computations. This

approach therefore represents the most significant departure from the baseline

decoder.

The supernode decoder differs architecturally from the baseline decoder in

that the equality nodes are replaced with supernodes, the stochastic sequence

generators are moved inside the supernodes, and the D flip-flops are removed

from the parity check circuits. Figure 4.25 shows the block diagram of a three-

input supernode. In reference to this figure, the supernode decoding algorithm

proceeds as follows:

1. The input accumulators within the supernodes are reset to 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

sequence gen

compute

Channel
compute

input accumulator

Figure 4.25: Block diagram of supernode

2. For each codeword bit, the channel probability value (i.e. the probability

that the bit is a 1) is loaded directly into each stochastic sequence gener­

ator within the associated supernode. This is a broadcast initialization.

3. The decoder is clocked. The stochastic generators in the supernode pro­

duce a new output on every clock edge. The parity check nodes, without

D flip-flops, pass bits back to the inputs of the supernodes. These bits

are summed in the input accumulators.

4. After a specific number of clock cycles, nc, the accumulator values are

forwarded to the compute blocks. Here they are converted into probabili­

ties by dividing by nc. Each compute block calculates a new output value

from the input probabilities according to the equality node constraint.

The computation is performed in conventional fixed bit arithmetic. This

output value is loaded into the attached stochastic sequence generator.

The input accumulators are cleared. The stochastic sequence generators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 6

produce stochastic bits based on their updated values. After another nc

cycles, the update procedure is repeated.

5. The decoder is allowed to operate for a fixed number of clock cycles before

threshold conversion is performed in the up/down counters to obtain a

hard-decision decoding result.

A notable feature of the above algorithm is that the supernodes packetize

the information transferred between themselves and the parity check nodes.

The baseline stochastic decoder transfers a continuous stream of bits between

the nodes without any update interval, in much the way that currents flow

freely between nodes in an analog decoder. The decoder with supernodes,

however, effectively creates discrete iterations where each iteration is marked

by the transfer of nc stochastic bits between the nodes. The packetized nature

of the supernode decoder makes it more like a conventional decoder with a

sequence of stochastic bits used in place of a single real number as the message

passed between the nodes.

Figure 4.26 shows the BER curve for the supernode decoder operating on

the (7,4) Hamming code. The internal computations in the compute blocks

were performed in floating-point arithmetic for a proof of concept of the su­

pernode. Four curves are shown for the supernode decoder with the paired

numbers in the graph legend indicating nc and the total number of clocks per

codeword, respectively. These curves are contrasted with the output of the

belief propagation algorithm operating for 8 iterations. It can be seen that all

of the super node curves are monotonically decreasing, and that both a higher

number of clocks per iteration and a higher total number of clocks improve

performance. The supernode decoder operating for 20,000 clock cycles with

2000 cycles per iteration shows a loss of ldB at a BER of 1 x 10-4. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67
Bit error ra te vs. Eb/NO

BP, 8 iter
sprnde, 10/10,000

sprnde, 100/10,000
sprnde, 1000/10,000
sprnde, 2000/20,000

0.01

0.001oc
LU
CD

0.0001

le -0 5

1e-06
0 1 2 3 4 5 6 7 8

Eb/NO

Figure 4.26: Effect of supernode

16-layer stochastic decoder outperforms the supernode decoder at comparable

clock counts, but LLR scaling has not been applied to the supernode decoder.

4.4 Stochastic Sequence Generation

Aside from the implementation of the factor graph decoder itself, one of the

most important hardware considerations is the generation of weighted stochas­

tic sequences for the channel inputs of the equality nodes.

Generation of the stochastic sequences can be accomplished through the use

of a weighted linear feedback shift register (LFSR) at each required generation

point. This approach is infeasible, however, because of the requirement for an

independent stochastic generator for every equality node. Most of the silicon

area would be consumed with circuitry involved in the generation of stochastic

sequences. Other researchers have encountered this inefficiency in their own

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 8

mod bit

input from
previous stage

D Q

>

OR Q

output to
next stage

carrier input

Figure 4.27: Modulator for pipelined stochastic sequence generation

VLSI stochastic computer implementations [59].

This section will focus on two proposals from the literature for improving

the silicon area efficiency of stochastic sequence generation: pipelined modu­

lators and CMOS ring oscillators.

Pipelined Modulators

The approach of using pipelined modulators is architecturally described in [57]

and mathematically proven in [58]. Figure 4.27 depicts an instance of what the

authors term a ’’modulator” , which forms one stage of a generation pipeline.

The number, k, of cascaded modulators in the pipeline is equal to the

number of bits of resolution required to represent the probability value being

encoded as a stochastic sequence. The output of each modulator is gated with

a D flip-flop to facilitate pipelining.

The probability value, represented as a binary value of length k, is supplied

to the pipeline through the mod bit inputs of the modulators. The most

significant bit of the probability value is supplied to the first modulator in the

pipeline and the least significant bit is supplied to the last modulator in the

pipeline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
The carrier input is supplied with a ’’carrier stream”, a stochastic se­

quence having a probability of 0.5 and changing values synchronously with

the pipeline.

The input of the first pipeline stage is the all-zero sequence. The output of

the last pipeline stage is the weighted stochastic sequence ready for input into

the stochastic computer. In the case of a stochastic iterative decoder, the last

pipeline stage would be connected to the channel input of an equality node.

The modulator performs one of two operations depending on the value of

the mod bit. When the mod bit is ’O’, the output of the modulator is the

bitwise AND of the input and carrier streams. In this case, the relationship of

the modulator output probability to its input probability is given by

Pout mod =0 = 7̂ Pin - (4.3)

When the mod bit is ’1’, the output of the modulator is the bitwise OR of

the input and carrier streams. In this case, the relationship of the modulator

output probability to its input probability is given by

Pout mod =1 = ^ P in + ^ . (4.4)

The resolution, R, of a fc-bit modulator pipeline is given by

<4-5>

Variance of the output sequence is highest when the probability value to

be encoded is 0.5. The number of bits that must be produced by the pipeline

to achieve maximum accuracy is given by

n = 2 , (4.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
where i> is the number of bits in the binary representation of the probability

value being encoded.

The pipelined modulators require supporting hardware to produce the mod

bits and the carrier streams. Depending on whether the probability value to

be encoded is initially represented as a binary value or an analog voltage, a

respective quantizer or A/D converter is required to produce the mod bits. In

the case of the stochastic decoder, the production of the mod bits could be

made an integral part of the demodulator supplying noisy channel estimates

to the decoder.

A device utilizing n bit stream generators, each consisting of k pipeline

stages, requires the production of kn statistically independent carrier streams.

Because it is impractical to achieve the ideal of a true random source for

each carrier stream, the authors describe a method by which a single LFSR

configured to generate a maximal-length pseudo-random bit sequence (PRBS)

can be used to supply all of the required carrier streams in the device.

The generation of numerous independent sequences from one PRBS gen­

erator is described in [56], The procedure described therein derives multiple

random streams from a relatively small number of well-spaced taps on the shift

register. The authors of [57], however, assert that this approach could still eas­

ily lead to a high degree of correlation between the derived sequences, which

would be detrimental for the operation of a stochastic computer. They instead

propose tapping successive bits of the PRBS generator. Sequences derived in

this manner have overlap but almost no correlation [58],

To ensure that the carrier stream inputs to successive modulators along

the pipeline of a given stochastic sequence generator are not coincident, the

PRBS shift register is shifted in a direction opposite to the direction of the

modulator pipeline. For sufficiently large values of the PRBS shift register

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71
size, n, the carrier streams will be highly uncorrelated. The minimum length

of the PRBS shift register is given by the inequality

n > 2k, (4.7)

where k is the number of modulators in a stochastic sequence generator pipeline.

Pipelining allows for a high rate of operation, and the authors posit that

50MHz should be easily attained for the pipelined modulator approach. Years

later, Brown and Card described an almost identical stochastic sequence gen­

erator architecture in [44].

CMOS Ring Oscillator

A more elegant, albeit dependent on some custom layout, solution to the

problem of generating weighted stochastic sequences is presented in [59], The

authors propose the high-frequency oscillator with a lower rate sampling flip-

flop depicted in Figure 4.28.

The oscillator consists of five CMOS inverters chained together, with the

output of the last inverter fed back into the input of the first inverter, thus

forming a ring oscillator circuit. If the input capacitance of the circuit is

sufficiently low the circuit will be highly sensitive to noise, which is a desirable

trait in this application.

The authors assert that phase uncertainty in the oscillator must be greater

than or equal to 27r in order to ensure complete spatial and temporal ran­

domness in the output sequence. In this context, spatial randomness means

low cross-correlation between sequences produced by separate stochastic se­

quence generators. Temporal randomness means low autocorrelation amongst

the output bits of a single stochastic sequence generator.

Because the feedback voltage is indeterminate, the switching times of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

I

o |o
H cc
(/) o

Q A

LIT T U

L I

7
s

Figure 4.28: CMOS oscillator with sampling flip-flop for stochastic sequence
generation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73
oscillator will also be indeterminate. To provide an output with a fixed pe­

riod, a D flip-flop is additionally connected to the output of the fifth CMOS

inverter. If the clock supplied to the D flip-flop is sufficiently slow relative to

the aperiodic oscillation frequency of the oscillator then the sampled output

bit stream will be random.

The ratio of the period of time that the oscillator output is high to an

arbitrary sampling period is Thus, the probability value to be encoded

is given by The utility of this circuit is that the weight of the output

stochastic stream is easily voltage-controlled by the inputs VI and V2.

The regulation relationship between the inputs VI and V2 and the output

ratio is determined experimentally. The results produced by the authors

are for an implementation in an outmoded 1.5/xm process and are for the

inverse period of ^ .

Again, because a stochastic decoder would be preceded by a demodulator,

the output of channel estimates mapped to VI and V2 could be made an

integral part of the demodulator to reduce signal conversion overhead.

Experimental results from an IC with 8 on-board stochastic sequence gen-

erators show that values between in the range [0,1] can be produced by

varying VI and V2.

A study of cross-correlation between sequence generators based on their

physical proximity on the die is also performed with a sampling frequency

of lOOKHz, 1000-bit sequence lengths, and fixed to 0.5. It is proven that

neighbouring sequence generator circuits may exhibit unacceptably high cross­

correlation when placed too close to one another, but will be independent and

uncorrelated otherwise. The minimum distance for acceptable cross-correlation

is not quantified, so it would remain a point of study if this approach to

stochastic sequence generation were used in a stochastic decoder.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74
Increasing the sampling frequency of the D flip-flop does not increase the

level of cross-correlation between generation circuits.

A higher switching frequency in the oscillator, however, will increase the

autocorrelation of the output sequence of an individual sequence generator.

The authors note that autocorrelation is not usually a concern for stochas­

tic applications where stochastic sequences are being combined through logic

gates. The only requirement is that the sequences have low cross-correlation.

The authors identify a reduction of autocorrelation in the sequence genera­

tor output as future work. The two identified methods of improvement are to

add a noise source to the inverter chain, and to decrease the input capacitance

of the circuit by using a finer CMOS process.

4.5 Summary

This chapter has described the architecture and operation of the stochastic de­

coder presented in [1], then expanded on this initial work. A baseline stochastic

decoder was described against which performance enhancing changes could be

measured. The problem of equality node lockup was elaborated, and means

to ameliorate this problem were examined. These approaches included broad­

cast initialization, parity check node output randomization, log-likelihood ra­

tio scaling, factor graph layering, and supernodes. Last, two approaches to

generating stochastic sequences were described.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

Conclusions and Future

D irections

5.1 Contributions and Conclusion

In this thesis we have presented the stochastic iterative decoder, a novel ap­

plication of stochastic computing to the design of iterative decoders for low

density parity check codes. By combining the power and area efficiency of

stochastic computational elements with the error performance of the belief

propagation decoding algorithm, it may be possible to build more efficient

iterative decoders.

The stochastic decoder design techniques described herein provide a foun­

dation for future research into stochastic decoders.

The following subsections summarize the contributions of this thesis:

S tochastic C om putation Tutorial

A tutorial of stochastic computing technology has been provided. Stochastic

computing does not appear to be well known outside of the neural networks

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
design community, and even within this community its mention is intermittent.

Stochastic computing is an important technology for efficient probabilistic pro­

cessing. The applicability of stochastic computing to iterative decoding has

been demonstrated.

D eficiency A nalysis

Performance impediments in the stochastic decoder have been identified. Chief

among these is the problem of equality node lockup, whether due to inputs

with few transitions or equality nodes with higher degrees. The accuracy of

stochastic sequences, stochastic parity check nodes, and stochastic equality

nodes has been simulated.

Perform ance Enhancem ents

Performance enhancing measures for the stochastic decoder were proposed and

studied. These included broadcast initialization, parity check node output ran­

domization, log-likelihood ratio scaling, factor graph layering, and supernodes.

Simulation results were provided for each of these approaches.

5.2 Future Directions

The following subsections outline suggested avenues of continued research into

stochastic iterative decoders:

M athem atical A nalysis

It is important to understand the mathematical underpinnings of the stochastic

decoder. Density evolution techniques should be employed to develop a more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77
mathematical understanding of the decoder. Such procedures should also help

to define fundamental decoder limitations from a mathematical perspective.

Code D esign

It is possible that some LDPC codes are more well suited to implementation in

a stochastic decoder than others. The application of recent work on stopping

set analysis, also known as trapping sets, may provide insights into the design

of codes that are well tailored for stochastic decoders.

A pplicab ility to Turbo C odes

Thus far, stochastic decoder research has focused on LDPC codes. The appli­

cability to Turbo and other codes should be investigated [65].

Im plem entations

In addition to the simulations presented in this thesis, a stochastic decoder

has already been implemented in an FPGA [66], ASIC implementations are

the next logical step. Subsequent implementations should provide a complete

solution, with sigma-delta modulators at the front end of the decoder and

hardware stochastic sequence generation.

Power and Clock R ate A nalysis

To better understand the physical performance of stochastic decoders, power

consumption should be analyzed. Maximum clock rates should be character­

ized through static timing analysis. Power and achievable clock rates should

be considered for a range of CMOS processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78
A pplicab ility to Fault-Tolerant C om puting

Many nanotechnology devices being proposed exhibit stochastic properties. It

should be investigated whether these devices would be suitable for higher-level

systems integration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] V.C. Gaudet and A.C. Rapley. Iterative decoding using stochastic com­

putation. Electronics Letters, 39(3):299-301, February 2003.

[2] S.G. Glisic. Adaptive WCDMA: Theory and Practice. John Wiley & Sons,

New York, 2003.

[3] Japan’s proposal for candidate radio transmission technology on imt-

2000: W-CDMA [online]. Available: http://www.arib.or.jp/IMT-

2000/proponent.

[4] Consulatative Committee for Space Data Systems (CCSDS). Telemetry

Channel Coding, May 1999. Blue book 101.0-B-4.

[5] Multiplexing and channel coding (FDD), universal mobile telecommuni­

cations systems (UMTS), 3G TS2 5.212 version 3.3.0 release 1999 [online].

Available: http://www.etsi.org.

[6] A. Morello and V. Mignone. DVB-S2: The second generation standard

for satellite broad-band services. Proceedings of the IEEE, 94(l):210-227,

January 2006.

[7] Digital video

lite (DVB-RCS)

79

broadcasting return channel via satel-

background book [online]. Avail-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.arib.or.jp/IMT-
http://www.etsi.org

80
able: http://www.dvb.org/technology/white_papers/Tech-

Papers_RCS_nera.pdf.

[8] IEEE 802 standards [online]. Available:

h ttp : / / standards. ieee. org/getieee802.

[9] J. Hagenauer and M. Winklhofer. The analog decoder. In IEEE Inter­

national Symposium on Information Theory, page 145, Cambridge, Mas­

sachusetts, August 1998.

[10] H.-A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy. Proba­

bility propagation and decoding in analog VLSI. IEEE Transactions on

Information Theory, 47(2):837-843, February 2001.

[11] V.C. Gaudet. Architecture and Implementation of Analog Iterative De­

coders. Doctor of philosophy dissertation, University of Toronto, Toronto,

Canada, 2003.

[12] J.G. Proakis. Digital Communications. McGraw-Hill, New York, 4th edi­

tion, 2001.

[13] C.E. Shannon. A mathematical theory of communication. The Bell Sys­

tem Technical Journal, 27:379-423 and 623-656, July and October 1948.

[14] R.G. Gallager. Low-density parity-check codes. IEEE Transactions on

Information Theory, 8(1):21—28, January 1962.

[15] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo-codes. 1. In IEEE International

Conference on Communications, volume 2, pages 1064-1070, Geneva,

Switzerland, May 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dvb.org/technology/white_papers/Tech-

81
[16] D. J.C. MacKay and R.M. Neal. Good codes based on very sparse matrices.

In Cryptography and Coding. 5th IMA Conference, number 1025, pages

100-111. Springer, Berlin, 1995.

[17] D.J.C. MacKay and R.M. Neal. Near Shannon limit performance of low

density parity check codes. Electronics Letters, 32(18):1645-1646, August

1996.

[18] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of capacity-

approaching irregular low-density parity-check codes. IEEE Transactions

on Information Theory, 47(2):619-637, February 2001.

[19] T.J. Richardson and R.L. Urbanke. The capacity of low-density parity-

check codes under message-passing decoding. IEEE Transactions on In­

formation Theory, 47(2):599-618, February 2001.

[20] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and

the sum-product algorithm. IEEE Transactions on Information Theory,

47(2):498-519, February 2001.

[21] A.J. Blanksby and C.J. Howland. A 690-mW 1-Gb/s 1024-b, rate-1/2 low-

density parity-check code decoder. IEEE Journal of Solid-State Circuits,

37(3):404-412, March 2002.

[22] M.M. Mansour and N.R. Shanbhag. A 1.6 Gbit/s 2048-bit programmable

and code-rate tunable LDPC decoder chip. In 3rd International Sympo­

sium on Turbo Codes, pages 137-140, Brest, France, September 2003.

[23] T. Zhang and K. Parhi. A 54 Mbps (3,6)-regular FPGA LDPC decoder.

In IEEE Workshop on Signal Processing Systems, pages 127-132, San

Diego, CA, October 2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[24] M.M. Mansour and N.R. Shanbhag. A 640-Mb/s 2048-bit programmable

LDPC decoder chip. IEEE Journal of Solid-State Circuits, 41(3):684-698,

March 2006.

[25] C.-C. Lin, K.-L Lin, H.-C. Chang, and C.-Y. Lee. A 3.33Gb/s (1200,720)

low-density parity check code decoder. In 31st European Solid-State Cir­

cuits Conference, pages 211-214, Grenoble, Prance, September 2005.

[26] A. Darabiha, A.C. Carusone, and F.R. Kschischang. Multi-Gbit/sec low

density parity check decoders with reduced interconnect complexity. In

IEEE International Symposium on Circuits and Systems, volume 5, pages

5194-5197, Kobe, Japan, May 2005.

[27] B. Bougard, A. Giulietti, V. Derudder, J.-W. Weijers, S. Dupont, L.

Hollevoet, F. Catthoor, L. Van der Perre, H. De Man, and R. Lauwere-

ins. A scalable 8.7nJ/bit 75.6Mb/s parallel concatenated convolutional

(Turbo-) codec. In IEEE International Solid-State Circuits Conference,

volume 1, pages 152-484, San Francisco, CA, February 2003.

[28] M.A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup, G.

Zhou, L.M. Davis, G. Woodward, C. Nichol, and R.-H. Yan. A uni­

fied Turbo/Viterbi channel decoder for 3GPP mobile wireless in 0.18-/rm

CMOS. IEEE Journal of Solid-State Circuits, 37(11):1555-1564, Novem­

ber 2002.

[29] S.-J. Lee, N.R. Shanbhag, and A.C. Singer. A 285-MHz pipelined

MAP decoder in 0.18-//m CMOS. IEEE Journal of Solid-State Circuits,

40(8):1718-1725, August 2005.

[30] M. Bekooij, J. Dielissen, F. Harmsze, S. Sawitszki, J. Huisken, A. van der

Weri, and J. van Meerbergen. Power-efficient application-specific VLIW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83
processor for Turbo decoding. In IEEE International Solid-State Circuits

Conference, pages 180-181, San Francisco, CA, February 2001.

[31] C. Berrou, P. Combelles, P. Penard, and B. Talibart. An IC for Turbo­

codes encoding and decoding. In IEEE International Solid-State Circuits

Conference, pages 90-91, San Francisco, CA, February 1995.

[32] V.C. Gaudet and P.G. Gulak. A 13.3-Mb/s 0.35-/xm CMOS analog Turbo

decoder IC with a configurable interleaver. IEEE Journal of Solid-State

Circuits, 38(11):2010-2015, November 2003.

[33] M. Moerz, T. Gabara, R. Yan, and J. Hagenauer. An analog 0.25 pm biC-

MOS tailbiting MAP decoder. In IEEE International Solid-State Circuits

Conference, pages 356-357, San Francisco, CA, February 2000.

[34] C. Winstead, J. Dai, S. Yu, C. Myers, R.R. Harrison, and C. Schlegel.

CMOS analog MAP decoder for (8,4) Hamming code. IEEE Journal of

Solid-State Circuits, 39(1):122—131, January 2004.

[35] C. Winstead, V. Gaudet, and C. Schlegel. A CMOS analog (16,l l) 2

Turbo product decoder. In 3rd Analog Decoding Workshop, Banff, AB,

June 2004.

[36] D. Vogrig, A. Gerosa, A. Neviani, A.G. i Amat, G. Montorsi, and S.

Benedetto. A 0.35/mi CMOS analog Turbo decoder for the 40-bit rate

1/3 UMTS channel code. IEEE Journal of Solid-State Circuits, 40(3) :753-

762, March 2005.

[37] N. Nguyen, C. Winstead, V.C. Gaudet, and C. Schlegel. A 0.8V CMOS

analog decoder for an (8,4,4) extended Hamming code. In 2004 Interna­

tional Symposium on Circuits and Systems, volume 1, pages I - 1116-19,

Vancouver, BC, May 2004.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84
[38] F. Lustenberger, M. Helfenstein, H.-A. Loeliger, F. Tarkoy, and G.S.

Moschytz. All-analog decoder for a binary (18,9,5) tail-biting trellis code.

In ESSCIRC’99, pages 362-365, Duisburg, Germany, September 1999.

[39] F. Lustenberger. On the Design on Analog Iterative VLSI Decoders. Doc­

tor of technical sciences dissertation, ETH Zurich, Zurich, Switzerland,

2000 .

[40] C. Winstead, J. Dai, W.J. Kim, S. Little, and Y.-B. Kim. Analog MAP

decoder for (8,4) Hamming code in subthreshold CMOS. In Advanced

Research in VLSI Conference, pages 132-147, Salt Lake City, UT, March

2001 .

[41] M.H. Shakiba, D.A. Johns, and K.W. Martin. An integrated 200-MHz

3.3-V biCMOS class-IV partial-response analog Viterbi decoder. IEEE

Journal of Solid-State Circuits, 33(l):61-75, January 1998.

[42] S. Hemati, A.H. Banihashemi, and C. Plett. An 80-Mb/s 0.18-/im CMOS

analog min-sum iterative decoder for a (32,8,10) LDPC code. In IEEE

2005 Custom Integrated Circuits Conference, pages 243-246, Ottawa,

Canada, September 2005.

[43] B.R. Gaines. Advances in Information Systems Science, volume 2, chapter

2. Stochastic Computing Systems, pages 37-172. Plenum, New York,

1969.

[44] B.D. Brown and H.C. Card. Stochastic neural computation I: Com­

putational elements. IEEE Transactions on Computers, 50(9):891-905,

September 2001.

[45] J.A. Dickson, R.D. McLeod, and H.C. Card. Stochastic arithmetic imple­

mentations of neural networks with in situ learning. In IEEE International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85
Conference on Neural Networks, volume 2, pages 711-716, San Francisco,

CA, March-April 1993.

[46] B.D. Brown and H.C. Card. Stochastic neural computation II: Soft

competitive learning. IEEE Transactions on Computers, 50(9):906—920,

September 2001.

[47] S.L.T. Marin, J.M.Q. Reboul, and L.G. Franquelo. Digital stochastic

realization of complex analog controllers. IEEE Transactions on Industrial

Electronics, 49(5): 1101—1109, October 2002.

[48] D.K. McNeill, D. Zhao, C. Shafai, N. Chadha, A. Cuhadar, and H.C.

Card. Processing noisy analog signals from microsensor arrays and VLSI

imagers using stochastic binary computataions. In Canadian Conference

on Electrical and Computer Engineering, volume 2, pages 986-990, Win­

nipeg, MB, May 2002.

[49] M. van Daalen, P. Jeavons, and J. Shawe-Taylor. A stochastic neural

architecture that exploits dynamically reconfigurable FPGAs. In IEEE

Workshop on FPGAs for Custom Computing Machines, pages 202-211,

Napa, CA, April 1993.

[50] J.M. Quero, J.G. Ortega, C.L. Janer, and L.G. Franquelo. VLSI im­

plementation of a fully parallel stochastic neural network. In IEEE In­

ternational Conference on Neural Networks, volume 4, pages 2040-2045,

Orlando, FL, June-July 1994.

[51] S.L. Bade and B.L. Hutchings. FPGA-based stochastic neural networks

- implementation. In IEEE Workshop on FPGAs for Custom Computing

Machines, pages 189-198, Napa Valley, CA, April 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[52] M.S. Tomlinson, D.J. Walker, and M.A. Sivilotti. A digital neural net­

work architecture for VLSI. In IJCNN International Joint Conference on

Neural Networks, volume 2, pages 545-550, San Diego, CA, June 1990.

[53] D.K. McNeill and H.C. Card. Refractory pulse counting processes in

stochastic neural computers. IEEE Transactions on Neural Networks,

16(2):505-508, March 2005.

[54] C.L. Janer, J.M. Quero, J.G. Ortega, and L.G. Franquelo. Fully par­

allel stochastic computation architecture. IEEE Transactions on Signal

Processing, 44(8):2110-2117, August 1996.

[55] J. Alspector, J.W. Gannett, S. Haber, M.B. Parker, and R. Chu. Gen­

erating multiple analog noise sources from a single linear feedback shift

register with neural network applications. In IEEE International Sympo­

sium on Circuits and Systems, volume 2, pages 1058-1061, New Orleans,

LA, May 1990.

[56] J. Alspector, J.W. Gannett, S. Haber, and R. Chu. A VLSI-efficient

technique for generating multiple uncorrelated noise sources and its ap­

plication to stochastic neural networks. IEEE Transactions on Circuits

and Systems, 38(1): 109—123, January 1991.

[57] M. van Daalen, P. Jeavons, J. Shawe-Taylor, and D. Cohen. Device for

generating binary sequences for stochastic computing. Electronics Letters,

29(1):80-81, January 1993.

[58] P. Jeavons, D.A. Cohen, and J. Shawe-Taylor. Generating binary se­

quences for stochastic computing. IEEE Transactions on Information

Theory, 40(3):716-720, May 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87
[59] J.G. Ortega, J.M. Quero, C.L. Janer, and L.G. Franquelo. Synaptic weight

generation in VLSI stochastic neural networks. In IEEE International

Conference on Neural Networks, volume 1, pages 179-182, Perth, WA,

November-December 1995.

[60] A. Orlitsky, K. Viswanathan, and J. Zhang. Stopping set distribution

of LDPC code ensembles. IEEE Transactions on Information Theory,

51(3):929-953, March 2005.

[61] M. Schwartz and A. Vardy. On the stopping distance and the stop­

ping redundancy of codes. IEEE Transactions on Information Theory,

52(3):922—932, March 2006.

[62] T. Tian, C.R. Jones, J.D. Villasenor, and R.D. Wesel. Selective avoidance

of cycles in irregular LDPC code construction. IEEE Transactions on

Communications, 52(8):1242-1247, August 2004.

[63] S. Lander and O. Milenkovic. Algorithmic and combinatorial analysis of

trapping sets in structured LDPC codes. In 2005 International Conference

on Wireless Networks, Communications and Mobile Computing, pages

630-635, Maui, HI, June 2005.

[64] E. Cavus and B. Daneshrad. A performance improvement and error

floor avoidance technique for belief propagation decoding of LDPC codes.

In IEEE 16th International Symposium on Personal, Indoor and Mobile

Radio Communications, volume 4, pages 2386-2390, Berlin, Germany,

September 2005.

[65] C. Winstead, V.C. Gaudet, A. Rapley, and C. Schlegel. Stochastic itera­

tive decoders. In International Symposium on Information Theory, 2005,

pages 1116-1120, Adelaide, Australia, September 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[66] W.J. Gross, V.C. Gaudet, and A. Milner. Stochastic implementation of

LDPC decoders. In Record of the Thirty-Ninth Asilomar Conference on

Signals, Systems, and Computers, pages 713-717, Pacific Grove, Califor­

nia, October-November 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

