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A bstract

This thesis studies a novel approach to iterative decoding of low density parity 

check codes: stochastic iterative decoders.

Physical implementations of iterative decoders often face a compromise be­

tween competing design parameters of decoded error performance, throughput 

rate, device size, and power consumption. It is shown how the belief propaga­

tion decoding algorithm, capable of yielding near-optimal error performance, 

can be implemented using stochastic computational elements, low complexity 

digital probability processing circuits. This combination has the potential for 

achieving a decoder design that yields high error correcting performance while 

being compact and power efficient.

A primer on error control coding, low density parity check codes, belief 

propagation decoding, and stochastic computing is first provided. The archi­

tecture and operation of an initial stochastic decoder design is then presented. 

Based on an analysis of deficiencies in this architecture, a number of perfor­

mance enhancing measures are considered. Employing these enhancements, 

the stochastic iterative decoder is shown to perform within 0.125dB of the 

ideal belief propagation algorithm at a bit error rate of 1.2 x 10-5 for a (7,4) 

Hamming code.
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Chapter 1

Introduction

An error control coding implementation is a critical component of any modern 

communication system, particularly as the prevalence and ubiquity of digital 

communications increases. Reliable communication at efficient transmission 

power is crucial, particularly for mobile data systems.

The discovery of Turbo codes and subsequent rediscovery of low density 

parity check (LDPC) codes has been revolutionary, making it possible to 

achieve transmission rates asymptotically close to the Shannon capacity limit. 

While the theoretical performance of these codes is truly remarkable, several 

challenges present themselves in making the leap to a physical implementation.

The application of powerful error control codes such as Turbo codes and 

LDPC codes has become increasingly important due to their incorporation 

into a number of digital communications standards such as: W-CDMA 3G [2], 

the 3rd Generation Partnership Project (3GPP) for IMT-2000 [3], Consulta­

tive Committee for Space Applications (CCSDS) telemetry channel coding [4], 

UMTS [5], DVB S-2 [6], DVB-RCS [7], and IEEE 802.x standards [8],

The good properties of powerful codes can be negated by poor decoder 

implementations. In order to maximize the benefits of error control coding,

1
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2
good implementations are essential.

The design challenge in an error control scheme is primarily in the decoder. 

An ideal decoder is one that features low complexity, compact size, acceptable 

power consumption, high throughput, and near optimal error performance in 

terms of the code being implemented. These goals are in obvious conflict with 

one another. The prominent engineering compromise is between complexity 

and error performance.

Most high performance decoders rely on complex algorithms employing 5- 

8 bit fixed-point computations. The cost of the performance is often seen in 

terms of larger device size, increased power consumption, and reduced through­

put. Size and power consumption are particularly critical commodities in mo­

bile applications.

Within the last few years, pioneering research has been performed on the 

construction of fully analog decoders, where the internal decoder metrics are 

represented as continuous analog voltages or currents [9] [10] [11]. Such de­

coders harness subthreshold conduction in transistors to perform analog com­

putations with extremely low supply voltages. Improvements in speed or 

power of one to two orders of magnitude have been conjectured for analog de­

coders compared to their digital counterparts. Furthermore, analog circuitry 

is well suited to the relatively low precision requirements of iterative decod­

ing algorithms. Potential drawbacks of analog decoders include technology- 

dependence, power consumption that is largely static, and testability issues.

It is for this reason that there is a high degree of desirability in design­

ing a low-complexity iterative decoder in digital hardware. Digital hardware 

offers technology-independence through multiple potential platforms ranging 

from programmable logic such as FPGAs to standard cell-based ASICs to full- 

custom designs. Power scaling is also possible in digital hardware through
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3
clock speed adjustment and potentially through supply voltage scaling. Ul­

timately, there is a strong motivation to build a decoder that provides the 

benefits of analog and digital decoders while mitigating their deficiencies. The 

premise of this thesis is that the construction of the stochastic iterative decoder 

through the implementation of the belief propagation algorithm in stochastic 

computational hardware will meet this need.

This thesis is organized as follows: Chapter 2 provides background on the 

field of error control coding and its applications. The group of codes known 

as low-density parity-check (LDPC) codes is then discussed, with focus on the 

code properties, factor graph representation, and the belief propagation decod­

ing algorithm. A summary of recent decoder implementations, both in digital 

and analog circuitry, is also presented. Chapter 3 describes stochastic com­

putation, including its history, numerical value representation, and computa­

tional elements that represent the building blocks of a stochastic computer. A 

literature review of implementations based on stochastic computation follows, 

and the chapter then concludes by reviewing properties of stochastic compu­

tation that makes it attractive for implementing iterative decoders. Chapter 4 

presents a novel implementation of an iterative LDPC decoder using stochas­

tic computation. The architecture and properties of the prototype are first 

described, and promising early simulation results are provided. Performance 

problems for larger codes are then investigated and modifications to the de­

coder to ameliorate these problems are assessed. The chapter closes with a 

review of two practical methods of generating the stochastic sequences for the 

decoder. Lastly, Chapter 5 concludes this thesis by identifying its contributions 

and suggesting potential avenues of future research.
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C hapter 2

Error Control Coding

2.1 Introduction

We begin this thesis by discussing the field of error control coding, with specific 

reference to a class of codes known as low density parity check codes.

This chapter is organized as follows: In Section 2.2 we motivate the discus­

sion of error control coding by introducing Shannon capacity theory and its 

application to the transmission of digital information. This leads into a discus­

sion of the field of error control coding in section 2.3. Section 2.4 covers several 

aspects of LDPC codes, including properties of linear block codes (general code 

family to which LDPC codes belong), properties of LDPC codes, factor graph 

representation, and the belief propagation decoding algorithm. Several recent 

digital and analog iterative decoding implementations are presented in Section

2.5. Section 2.6 concludes the chapter.

2.2 Communication and Channel Capacity

Communication is fundamentally a problem of sending a message from a source 

through a channel and reconstructing it at the destination. Conceptually, a

4
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5

decoder

encoder

information sink

information
source modulator

Figure 2.1: Block diagram of basic communications system.

channel is any medium of information transfer [12]. Common examples of 

channels include wired links such as copper wire carrying electrical impulses 

and fiber optic cabling conveying photons of light, and wireless links with 

air or free-space conveying electromagnetic (EM) impulses or photons. The 

recording channel is a prevalent but less obvious communication channel. The 

recording channel could be magnetic media (e.g. hard disk drives) or optical 

media (e.g. compact discs), where information is transferred in time rather 

than in space. Even water can constitute a channel in the case of sonar-based 

communication.

The information transmitted over a channel may be represented in a variety 

of formats, but for the purposes of this thesis it will be assumed that binary 

digits (bits) are the transmitted quantity.

Figure 2.1 depicts a block diagram of a communication system. Data trans­

mission starts with an information source, such as a computer or a voice en­

coder, which produces information to be transmitted. The encoder then adds 

redundant bits to the information bits to assist in reconstituting the data at 

the receiver. The modulator then converts the data (information plus redun­

dant bits) into a signaling format appropriate for the channel. As the data 

passes through the channel it is corrupted by noise. Noise can take many forms 

including thermal noise (e.g. heat from power supplies), man-made noise (e.g.
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6
nearby electrical devices), and environmental noise (e.g. lightning). Channel 

noise is commonly modeled as additive white Gaussian noise (AWGN). On the 

receiver side, a demodulator converts the data back from its channel format 

to a baseband format (bits). The demodulated data is then processed by the 

decoder, which attempts to detect and correct transmission errors due to the 

channel noise and outputs a reconstituted version of the information that was 

originally transmitted. Finally, the information passes to the information sink, 

where the information can be further processed depending on its content.

Noise corruption and the characteristics of the channel place restrictions 

on how to transmit information, and on the rate at which information can be 

transferred.

Information was first quantified mathematically in 1948 by Claude Shannon 

[13]. Shannon developed a logarithmic measure of the information content of 

a source and determined the theoretical maximum rate at which information 

could be transmitted over a channel and be reconstituted at the destination 

without error. He termed this limit capacity. The capacity of a channel is 

dependent on two parameters: the bandwidth of the channel and the signal- 

to-noise ratio (SNR), and is expressed as:

C = B  • log2 (1 +  S / N ) . (2.1)

A common form of Shannon’s famous capacity expression is presented in 

Equation 2.1. B  is the channel bandwidth in Hertz, and S /N  is the signal-to- 

noise ratio expressed as a straight power ratio. Capacity, C, is the theoretical 

maximum errorless transmission rate for the channel in bits/second. If the 

rate of information transfer is less than the capacity of the channel, then 

it is theoretically possible to achieve reliable (i.e. error-free) communication 

with appropriate encoding of the transmitted data. If the rate of information
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7
transfer exceeds capacity, then error-free communication is impossible.

It was from Shannon’s work that arose the concept of an encoder and 

decoder in the communication system. In order to achieve channel utilization 

that is closer to capacity, it is necessary to intelligently encode transmitted data 

through the addition of redundancy such that the receiver can compensate for 

errors due to noise. Shannon proved the existence of capacity-achieving codes 

in [13].

2.3 Error Control Coding

Error control coding is the branch of information theory concerned with the 

reliable transmission of information through a channel.

The fundamental principle of error control coding is to add redundancy 

to a transmitted quantity of information such that the original information 

can be reconstructed without error, or with fewer errors, at the receiver de­

spite corruption that may occur in the channel due to noise and other factors. 

Redundancy in a digital communication system takes the form of additional 

bits transmitted with the information bits. A code is a mapping of information 

(source) words into longer code words. The source bits are termed information 

bits and the redundant bits are termed parity bits.

The rate of a code is the ratio of source word bits to code word bits for a 

given code. A code that maps fc-bit source words to n-bit code words has a code 

rate of k/n.  Codes must also specify an inverse mapping such that codewords 

can be decoded to recover the original source words. To be useful, this process 

must also facilitate some means of error detection and/or correction.

Coding gain, realized through the decoding process at the receiver, is the 

decrease in SNR required to achieve a given bit error rate when ECC is em-
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Bit error rate vs. Eb/NO

uncoded — - 
(7,4) Hamm, BP/8iter — -0.1

0.01

0.001

0.0001

1e-05

1e-06
83 4 5 6 71 20

Eb/NO

Figure 2.2: Illustration of coding gain

ployed versus uncoded transmission. Figure 2.2 provides an illustration of this 

concept. The BER performance for a (7,4) Hamming code is compared to the 

BER for uncoded antipodal transmission (i.e. a binary 1 maps to +1 and a 

binary 0 maps to -1). At a BER of 1 x 10~3 the Hamming code exhibits a 

coding gain of approximately 1.25dB compared to uncoded transmission.

We can therefore see that employing an error control code can yield one of 

two benefits over uncoded transmission:

1. If the same transmission power is used, the bit error rate will be lower.

2. Lower transmission power can be used to achieve the same bit error rate.

There are two major code families: linear block codes and convolutional 

codes. Low density parity check codes, the main code type targeted for im­

plementation in the decoder presented in this thesis, belong to the family of
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9
linear block codes. Convolutional codes are an equally important code family 

but are generally beyond the scope of this thesis.

2.4 Low D ensity Parity Check Codes

2.4.1 O verview

Low density parity check codes are a class of linear block codes first described 

in 1962 by Gallager in [14]. LDPC codes are sometimes referred to as Gallager 

codes after the name of their inventor. These codes were largely forgotten 

until the discovery of Turbo codes [15] and iterative decoding techniques. A 

subsequent rediscovery of LDPC codes [16] [17] occurred when it was deter­

mined that LDPC codes have capacity-approaching performance with iterative 

decoding. There has since been a vigorously renewed interest in researching 

the design, properties, and practical implementation of these codes.

2.4.2 Linear B lock C odes

Linear block codes are an algebraically rich approach to coding and were the 

first family of codes to be developed.

A linear block code is uniquely defined by an (n — k) x n  parity check 

matrix, H. A binary 0 or 1 is placed in each cell of the matrix. Each binary 1 

represents the inclusion of a variable in a parity check constraint.

The number of rows and columns in the parity check matrix provides im­

mediate information about the code: The total number of bits per codeword is 

n, the number of information bits is k, and the number of parity bits is n — k. 

The parity check matrix is related to the codeword set, C, such that

H xT = 0, (2.2)
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10
where x is a legal n-bit codeword.

The rate of a code with an (n —k) x k parity check matrix can be determined

as:

R  = ~. (2.3)n

The rank of a code is the number of linearly independent rows in the parity 

check matrix of the code. Any row in the parity check matrix that is a direct 

copy of any other row or formed by the modulo-2 addition of two or more 

other rows is said to be linearly dependent. Linearly dependent rows in the 

parity check matrix do nothing to enhance the error-correcting capabilities of 

the code.

The distance between two codewords is defined as the number of bit po­

sitions that differ. For example, the distance between the 7-bit codewords 

0100110 and 1110100 is 3. The minimum distance for a code is the smallest 

distance between any two codewords in the codeword set. Generally speaking, 

error correcting performance improves with increasing minimum distance in a 

codeword set.

The modulo-2 sum of any two or more codewords of a linear code where 

each x  € C, is itself a codeword belonging to the set.

2.4.3 P rop erties o f LD PC  codes

An LDPC code is simply a linear block code with a sparse parity check matrix. 

Some LDPC codes have been discovered which approach Shannon Capacity 

within O.ldB for a code length of 106 and within ldB for a code length of 

104 [18].

A regular LDPC code is one which has the same number of Is in each and
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every row of the parity check matrix, and the same number of Is in each and 

every column. The number of Is in each row need not match the number of 

Is in each column for the code to be designated as regular. Conversely, any 

LDPC whose parity check matrix does not conform to the parameters of a 

regular code is designated as irregular. Given predetermined row and column 

weightings in the parity check matrix, research indicates that the placement 

of the Is in the parity check matrix is best chosen at random [18] [19].

With iterative decoding, regular LDPC codes tend to underperform Turbo 

codes of similar size. Irregular LDPC codes, however, can outperform with 

belief propagation decoding Turbo codes of comparable size. [18].

2.4.4 Factor Graph R epresentation

Decoding algorithms must deal with complex functions involving many vari­

ables, a problem space that grows with the code size. It is therefore beneficial 

to factorize the complex global problem of decoding a large codeword into a 

set of simpler, localized functions. Such a factorization can be accomplished 

through the mapping of any linear block code, particularly an LDPC code, 

into its factor graph representation [20]. The factor graph is the essential view 

of LDPC codes in the context of high-performance forward error correction.

A factor graph is a bipartite graph consisting of two types of nodes: variable 

nodes and parity check nodes. Either type of node produces outputs based on 

its inputs according to a specific functional constraint. The size and structure 

of the factor graph is based directly on the parity check matrix.

The mapping of a parity check matrix to factor graph representation is 

straightforward, as shown by the parity check matrix for a (7,4) Hamming code 

in Figure 2.3 and its corresponding factor graph in Figure 2.4. A (n — k) x n 

parity check matrix maps to a graph consisting of n — k parity check nodes and
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1 1 0  0 1 0  1 
0 1 1 1 0  0 1 

_ 0 0 1 0 1 1 1 _

Figure 2.3: Parity check matrix for (7,4) Hamming code

n  variable nodes. The three rows of the parity check matrix for the sample 

(7,4) Hamming code translate to three parity check nodes in the factor graph, 

and the seven columns translate to seven equality nodes. Any row-column 

position, hitj, of the parity check matrix where a T ’ is present signifies an edge 

connecting the ith parity check node and the j th variable node.

The degree of a node is the number of edges connected to the node.

Every edge in the factor graph represents a pair of unidirectional connec­

tions pointing in opposite directions relative to each other. An edge connecting 

two nodes therefore indicates bidirectional communication between those two 

nodes.

The straightforward mapping of a parity check matrix to a factor graph 

is also advantageous for automatically generating a factor graph in a software 

simulator or hardware description language using a parity check matrix as 

input.

2.4.5 B e lie f P ropagation D ecod ing

The description of factor graph code representations motivates the discussion 

of the belief propagation decoding algorithm, used for decoding LDPC codes. 

Belief propagation is an iterative decoding algorithm, whereby messages are 

passed back and forth between the variable nodes and parity check nodes giving 

an iterative refinement of the decoding result. Iterative decoding was one of 

the key innovations of Turbo codes that pushed channel utilization closer than 

ever to capacity.
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Figure 2.4: Factor graph representation for (7,4) Hamming code
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Figure 2.5: Normal factor graph for (7,4) Hamming code

The decoding algorithm utilizes a modified version of the factor graph 

called a normal graph. The normal graph has the requirement that each node 

has a clearly defined functional constraint and the variable nodes only have 

one connected edge. To realize a normal graph, equality nodes are inserted 

between the variable nodes and the parity check nodes as depicted in Figure

2.5.

Nodes therefore produce outputs based on functional constraints applied 

to the inputs. Functional constraints are defined in terms of three-edge nodes. 

Nodes with a degree greater than three, such as the bottommost equality node
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and all of the parity check nodes in Figure 2.5, can be created by internally 

cascading three-edge nodes.

Parity Check Constraint

The generalized functional constraint for a parity check node having inputs A 

and B  and output C is

C = A ® B , (2.4)

where A, B,  and C  may assume values of 0 or 1. To adapt this constraint 

for probabilistic computation, let Si be the set of all pairs of inputs (A, B) 

such that (A, B ,C)  is a valid set for C — 1 according to the parity check node 

constraint. Note that all probabilities represent the probability of a given input 

or output being a '1'. Then,

Pr (C) = a  P r(A )P r(£), (2.5)
(a.sesi)

Pr(C) =  a  [Pr(A)(l -  Pr(B)) +  (1 -  Pr(A)) P r(£ )] . (2.6)

Choose a  such that

£ P r ( C  =  c |A ,fl) =  l .  (2.7)
C

This yields

a  =  (1—P r(A ))(l-P r(B ))+ (l—Pr(A)) P r(5 ))+ P r(A )(l-P r(£ ))+ P r(A ) P r(B).

(2 .8 )
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Simplifying, a  =  1 and therefore for every two inputs (A,B) to a parity 

check node, an output message equal to

Pr(C) =  Pr(A)(l -  Pr(B)) +  (1 -  Pr (A)) Pr (B) (2.9)

is produced for the output C.

Equality Constraint

The generalized functional constraint for an equality node having inputs A 

and B  and output C is

C = A  — B,  (2.10)

where A , B, and C  may take on values of 0 or 1. To adapt this constraint for 

probabilistic computation, let S 2 be the set of all pairs of inputs (A , B)  such 

that (A, B, C) is a valid set for C =  1 according to the equality node constraint. 

As with the derivation of the parity check node equation, all probabilities 

represent the probability of a given input or output being a '1'. Then,

Pr (C) = a Pr(A)Pi(B).  (2.11)
(.A ,B E S 2)

Choose a  such that

£ P r ( C  =  c |A ,fl) =  l ,  (2.12)

"  Pr(A)Pr(B) +  ( l - P r ( A ) ) ( l - P r ( B ) ) '  ^ ' 13^

Therefore, for every two inputs (A, B)  to an equality node, an output 

message equal to
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P rfc )  = ___________ Pr(A )P r(g)___________
{ ’ Pr(A) P r(5 ) +  (1 -  Pr(A))(l -  Pr(B)) K V

is produced for the output C.

Algorithm

A message passing decoding algorithm such as belief propagation must ob­

serve the extrinsic information principle, that a node output produced on a 

given graph edge cannot depend on a message previously received on that 

edge. Violating the extrinsic information principle will produce pronounced 

correlations in the node output messages to the detriment of the accuracy of 

the calculations.

A cycle is a path over connected nodes that begins and terminates at the 

same node without traversing any edge more than once. Short cycles in a 

graph violate the extrinsic information principle to the detriment of decoding 

performance. For this reason cycles of length shorter than a desired parameter 

are disallowed when designing an LDPC code parity check matrix, from which 

the structure of the factor graph flows. A graph with no cycles is called a tree.

The belief propagation decoding algorithm proceeds on a factor graph as 

follows:

1. Each variable node is loaded with = Pr(x, =  1|yf), where denotes 

the ith transmitted symbol and yt is the physical estimate made at the 

output of the channel. All other messages in the graph are reset to 0.5.

2. Each variable node forwards its value to the equality node to which it is 

connected.

3. Messages are passed between the equality nodes and the parity check 

nodes according to their functional constraints given by Equation 2.14
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and Equation 2.9, respectively, for a fixed number of iterations or until 

some other stopping criterion is satisfied.

4. The received message at each variable node is sampled. If Tym* > 0.5, 

output a 1 for the ith hard bit decision. Otherwise, output a 0.

2.5 VLSI Iterative Decoder Im plem entations

2.5.1 D ig ita l D ecoders

Table 2.1 summarizes recent implementations of digital decoders for LDPC 

and Turbo codes. Progress has been made in increasing the throughput of the 

decoders while striving for power efficiency. LDPC decoders, owing largely to 

their parallel structure, have seen throughput rates push into the multi-gigabit 

per second range. Nonetheless, the number of published digital decoder imple­

mentations appears to be low considering the number of important communi­

cations standards in which Turbo and LDPC codes are incorporated. Research 

into higher throughput, higher performance, and lower power consumption de­

coder implementations is only expected to expand.

2.5.2 A nalog D ecoders

Analog decoding [9] [10] [11] is a novel approach to the design of iterative 

decoders using analog voltages or currents to represent the internal metrics 

or values that are passed between functional elements. These decoders are 

an interesting mating of probability theory with transistor physics. Analog 

decoders can provide improvements in speed, power efficiency, or even both 

over their digital counterparts, but they should be viewed as a complementary 

technology to digital decoders rather than an orthogonal development.
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Table 2.1: Published digital decoder implementations

Developer Code
Len.

Throughput Power @ 
Supply

E nergy /B it Process Dimensions T ype

Blanksby, How­
land [21]

1024 512M b/s 690m W  @ 
1.5V

1.3nJ 0.16pm  
CMOS, 
5m  layers

7.5 x  7.5 
m m 2

digital
LDPC

Mansour, 
Shanbhag [22]

2048 800M b/s 760m W  @ 
1.8V

0.95nJ 0.18pm
CMOS

3.1 X 4.2 
m m 2

digital
LDPC

Zhang, 
Parhi [23]

9216 54M b/s Xilinx
V irtex-E
XCV2600E
FPG A

digital
LDPC

Mansour, 
Shanbhag [24]

2048 320M b/s 787m W  @ 
1.8V

2.46nJ 0.18pm
CMOS,
6m layers

14.3 mm2 
(chip)

digital
LDPC

Lin, Lin, et al. 
[25]

1200 3.33G b /s 644m W  (a 
1.8V

0.19nJ 0.18pm
CMOS

25 mm 2 
(chip)

digital
LDPC

Darabiha, 
Carusone, et 
al. [26]

2048 1.6G b/s 0.18pm
CMOS

4.2 X 4.2 
m m 2

digital
LDPC

Bougard, Giuli- 
etti, et al. [27]

432 75.6M b/s 658m W  @ 
1.8V

8.7nJ 0.18pm
CMOS

7.16 mm2 
(core),
14.7 mm2 
(chip)

digital
Turbo

Bickerstaff, 
Garrett, et 
al. [28]

5114
(m ax)

2M b/s 292m W  @ 
1.8V

146nJ 0.18pm  
CMOS, 
6m  layers

9 mm2 
(core)

digital
Turbo

Lee, Shanbhag, 
et al. [29]

27.6M b/s 330m W  @ 
1.8V

12nJ 0.18pm  
CMOS, 
6m layers

3.467 X 
2.513 mm2 
(chip)

digital
M AP

Bekooij, Dielis- 
sen, et al. [30]

2M b/s 35mW  
<a i.8 V
(estim ate)

17.5nJ Altera
FLEX
10K130E
FP G A

digital
Turbo

Berrou, 
Combelles, 
et al. [31]

40M b/s 1 .6W /iter  
@ 5V

160nJ (4 
iters)

0.8pm  
CMOS, 
2m layers

8.9 X 8 .8  
m m 2

digital
Turbo

The speed improvement potential of analog decoders stems primarily from 

two design characteristics: continuous iterations and the removal of the need 

for an ADC.

The current or voltage metrics are allowed to circulate freely in an analog 

decoder and settling to stable result values over time. Value variations decrease 

on each “iteration” and therefore iteration times progressively decrease, leading 

to higher speeds. The continuous iterations also eliminate the area and timing 

requirements of a clock tree.

Analog decoders can accept analog demodulated channel metrics, and there­

fore do not require ADC at their inputs. The removal of the ADC provides a
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speed increase as well as power and area savings.

Analog decoders have been shown to provide convergence properties com­

parable to their digital counterparts, and provide robust operation despite 

transistor nonidealities and mismatch.

Iterations in an analog decoder are continuous, where the voltage or current- 

based values are allowed to settle over time.

Analog decoders have been implemented for both Turbo and LDPC codes. 

Table 2.2 summarizes recent analog decoder implementations.

2.6 Summary

This chapter has provided an introduction to communication systems and to 

the field of error control coding. Low density parity check codes have been 

discussed in more detail, including their properties as linear block codes, their 

factor graph representation, and iterative decoding through belief propaga­

tion. Numerous recent digital and analog decoder implementations were then 

summarized.

Digital and analog decoder implementations continue to improve in per­

formance, but they both have particular drawbacks. Digital decoders may 

consume more power and area than their analog counterparts, whereas ana­

log decoders may be hindered by technology-dependence, power consumption 

that is largely static, and intractable testability. There remains a motivation to 

look beyond these technologies to new approaches that combine the strengths 

of digital and analog decoders while mitigating their weaknesses. Stochastic 

decoding may represent such an approach.

We now proceed to a discussion of stochastic computation.
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Table 2.2: Published analog decoder implementations

Developer Code
Len.

Throughput Power @ 
Supply

E nergy/B it Process Dimensions T ype

Gaudet, Gulak  
[32]

48 13.3M b/s 185mW  @ 
3.3V

13.9nJ 0.35pm  
CMOS, 
3m  layers

1.1312 x 
1.2579mm2

analog
Turbo

Moerz, Gabara, 
et al. [33]

16 160M b/s 20m W  @ 
3.3V

0.125nJ 0.25 pm  
BiCMOS

1.680m m 2 analog
tail-
biting
M AP

W instead, Dai, 
et al. [34]

8 2M b/s 16pW  (at 
20kbps), 
lm W  (at 
IM b /s)

0.8nJ (at 
20kbps), 
InJ (at 
IM b /s)

0.5pm
CMOS

1.5 x  1.5 
m m 2

analog
tail-
biting
M AP

W instead, 
Gaudet, et
al. [35]

256 4.84M b /s 861/rW 0.178nJ TSM C
0.18 pm
CMOS

2.3 x  2.4 
m m 2

analog
Turbo
product

Vogrig, Gerosa, 
et al. [36]

120 2M b /s 10.3m W  @ 
3.3V ,7.6mW  
@ 2V

5.15nJ 
(at 3.3V), 
3.8nJ (at 
2V)

0.35pm  
CM OS, 
3m  layers

3.7 x 
1.1 mm2 
(core), 4.5 
X 2.0 mm2 
(chip)

analog
Turbo

Nguyen, W in­
stead, et al. [37]

8 444kb /s 283pW  @ 
0.8V (sim ­
ulated)

0.64n J /b it 0.18pm
CMOS

0.158 X 
0.276 mm2 
(core)

analog
Ham­
ming

Lustenberger, 
Helfenstein, et 
al. [38]

18 lOOMb/s 50m W  @ 
5V

0.5nJ 0.8pm  
BiCM O S, 
2m  layers

2.8 x 
2.6 mm2 
(chip), 1.7 
x  0.7 mm2 
(core)

analog
tail-
biting
M AP

Lustenberger
[39]

44 150M b/s
(simu­
lated)

1.0W  @ 
5V  (simu­
lated)

6.7nJ 0.8pm
2M 2P
BiCM O S

5.28 x 
5.45 mm2 
(chip), 2.7  
x  2.5 mm2 
(core)

analog
tail-
biting
LDPC

W instead, Dai, 
et al. [40]

8 20M b/s 3.3m W 0.165nJ 0.5pm
CMOS

analog
tail-
biting
M AP

Shakiba, Johns, 
et al. [41]

200M b/s 30m W  ©  
3.3V

0.15nJ 0.8pm
BiCMOS

0.5 mm2 
(core)

class-IV
analog
Viterbi

Hemati, Bani- 
hashemi, et al. 
[42]

32 80M b/s 5m W  @ 
1.8V

0.06nJ 0.18pm
CMOS

0.630 x 
0.910 mm2 
(core)

analog
LDPC
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Chapter 3

Stochastic C om putation

3.1 Introduction

The concept of stochastic computation is not new, having first been considered 

in the late 1960s [43] as an alternative to conventional digital computers. At 

the time, engineers had recognized the utility of performing low-level human 

mental processes using digital computers. Such low-level processes include 

arithmetic operations and storage or, in the colloquial, “number-crunching” . 

Already, pioneering minds were considering performing the high-level functions 

of the human mind using computers as well. Pattern-recognition, learning, and 

decision-making are the prominent high-level functions.

Artificial neural networks (ANNs) are the hardware implementations of 

parallel computing structures that mimic the functioning of the human brain. 

To achieve powerful computational ability in an ANN, parallelism must be 

created on a massive scale. In the late 1960s, digital hardware was substantial 

in area, power inefficient, and somewhat unreliable [44], An enabling technol­

ogy was required to ameliorate these issues and make practical the creation of 

ANNs.

22
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Stochastic computation was discovered and recognized as an attractive new 

computer architecture for ANN implementation because of the simple nature 

of the processing elements. Stochastic computation is innately suited for the 

computation of probability values. That is, computation where the operands 

are all real numbers in the range [0,1].

Today, modern IC processes make it possible to produce, at a relatively 

low cost, conventional integrated circuits that are compact and reliable with 

millions of transistors on a single die. Stochastic computation is nonetheless 

still relevant, finding application in ANNs where the ease of achieving the re­

quired massive parallelism offsets the decreased precision of the computational 

elements.

This chapter is organized as follows: In Section 3.2, the value representation 

employed by stochastic computers is introduced and properties of stochastic 

sequences are described. Simulation results for the accuracy of stochastic se­

quences in isolation relative to the sequence length are also presented. Some 

examples of stochastic computational elements are then presented in Section 

3.3. Section 3.4 reviews applications of stochastic computation in recent lit­

erature. Section 3.5 concludes the chapter by summarizing the properties of 

stochastic computers and asserting their viability as a modern technology. This 

concluding section establishes the premise of this thesis: that high performance 

decoders can be built using stochastic computational elements.

3.2 Stochastic Value Representation

The defining characteristic of stochastic computation is the unique value rep­

resentation that it employs. In a stochastic computer, values are encoded as a 

Bernoulli sequence of bits. A Bernoulli sequence is a sequence of independent
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Figure 3.1: Possible mappings of a probability value to stochastic sequences

random binary variables a i , a 2 , a 3, ... where the probability that any element 

in the sequence is 1 is the same for each and every element. For an unsigned 

number N  in the range [0,1], the probability that any bit di in a Bernoulli 

sequence is a binary ’1’ is given by

Pr {dt =  1) =
N

AC (3.1)

For probability values, Nmax = 1. Thus, the probability of. any given bit 

being a binary ’1’ in a sequence of stochastic bits is equal to the real number 

probability value being represented.

Encoding of stochastic sequences is probabilistic. That is, there is no fixed 

mapping between a real number probability value and its representation as 

a sequence of stochastic bits. Many different stochastic representations are 

possible for the same value. Figure (3.1) shows three possible mappings of a 

probability value to a stochastic sequence.

The precision of stochastic sequences can be controlled in the time domain. 

Precision can be improved by increasing the length of a stochastic sequence 

used to represent a probability value. As the length of the stochastic sequence 

approaches infinity, the difference between the stochastic value and the real 

number value it represents approaches zero. That is, if we let e represent the 

absolute error between a probability value and its stochastic representation,
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Accuracy vs. Stochastic Sequence Length
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Figure 3.2: Average and Absolute Error in Stochastic Sequence Accuracy 

and let N  represent the length of the stochastic sequence in bits, then:

lim e =  0. (3.2)
N - >  oo V '

Figure 3.2 depicts the simulated accuracy of a stochastic sequence versus 

its length. The plotted curves were obtained as follows: 10,000 tests were run.

Each test involved generating a rational number p between 0 and 1, then gen­

erating stochastic bits from the rational number. The stochastic sequence was 

converted back to a rational number at regular length intervals and compared 

to the original number. The average absolute error is an indication of the aver­

age + /-  deviation of a stochastic sequence at a given sequence length compared 

to the rational number the sequence represents. The maximum absolute error 

is the maximum + /-  deviation observed across the set of tests.

Figure 3.3 depicts the simulated accuracy, relative to the probability being
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Accuracy vs. Stochastic Sequence Length
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Figure 3.3: Error in Stochastic Sequence Accuracy Relative to Represented 
Probability

represented, of a stochastic sequence versus its length. The plotted curve was 

obtained through a procedure similar to the procedure described above for 

obtaining the average absolute error curve in Figure 3.2. 10,000 tests were 

run. Again, for each test a rational number p between 0 and 1 was generated, 

then stochastic bits were generated from this number. At each interval where 

the stochastic sequence was converted back to a rational number the absolute 

error was computed. The absolute error was then divided by (1 — p) when 

p > 0.5, and was divided by p when p < 0.5. The resulting scaled absolute 

error value was then averaged across the set of tests.
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3.3 Stochastic Com putational Elem ents

Table 3.1 presents some common stochastic computational elements. It is 

remarkable that complex functions such as multiplication and division can 

be implemented with a single gate. This simplicity stands in contrast to the 

relatively large number of gates required to implement multiplication, division, 

or even addition functions in conventional digital circuitry.

Please refer to [43] and [44] for an expanded listing of stochastic computa­

tional elements.

3.4 Applications

Currently, stochastic computation is primarily targeted for pulsed neural net­

work implementations. Papers on stochastic neural networks abound in the 

literature. However, papers on specific implementations using Gaines’ stochas­

tic computational elements are sparsely distributed:

1. A stochastic neural network with in situ learning capabilities is described 

in [45]. A hardware implementation was produced in 1.2/xm CMOS, with 

approximately 200 synapses on the chip.

2. A stochastic computational implementation of a optical character recog­

nition (OCR) system for the E-13B MICR (Magnetic Ink Character 

Recognition) font is proposed and investigated in [46], The system was 

simulated in a bit-true C + +  program.

3. It is shown how stochastic computing can be used to implement com­

plex analog controllers in [47]. A stochastic computation-based nonlinear 

dissipative controller for a series resonant converter was implemented in
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a Xilinx 4000XL FPGA and its output compared very closely to the 

theoretical expected output.

4. The application of stochastic computing to the signal processing of infor­

mation from parallel microsensor arrays and VLSI imagers is investigated 

in [48], The computations described were not implemented in hardware, 

but the authors suggest ready portability to an FPGA. One specific po­

tential application is the creation of a coprocessor for handling the digital 

signal processing of visual sensor data on mobile robots.

5. The authors of [49] present approaches for designing stochastic neurons 

that can be used to construct very large scale neural networks.

6. An implementation of a multilayer neural network in a 1.5/im process is 

described in [50].

7. A lookup table-based artificial network architecture using stochastic com­

putation and suitable for implementation in FPGAs is discussed in [51].

8. A flexible architecture for realizing neural networks with arbitrary topol­

ogy and dimensions using stochastic computation is presented in [52]. 

Two general-purpose neural network ICs were fabricated as a proof of 

concept.

Other papers provide analysis and insight into the properties of stochastic 

computation without describing implementations, thus serving as technology- 

enablers:

1. The effects of refractory pulse counting processes in stochastic computers 

are studied in [53].

2. A space-efficient technique for the parailel summation of weighted input 

sequences in a stochastic computer is described in [54].
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3. Generation of weighted random sequences suitable for input to a stochas­

tic computer is studied in [55] [56] [57] [58] [59], Stochastic sequence 

generation is addressed in this thesis in Section 4.4.

3.5 Summary

In this chapter we have introduced stochastic computation, including its devel­

opmental background, value representation, and computational elements. The 

utility of employing stochastic computation is clear where the operands are 

probability values. Stochastic computation offers five significant advantages 

over conventional digital hardware [44]:

1. Small die area in implementation

2. Robustness in low precision operation

3. Bit-serial single-wire communication between elements

4. Short critical paths through simple elements, enabling extremely high 

clock rates

5. Control of precision in the time domain, allowing accuracy to be traded 

for computational time with the same hardware

Stochastic computation is a technology currently targeted primarily to neu­

ral network implementations. A factor graph based decoder may be viewed as 

an instance of a neural network. Together, the functional nodes in the factor 

graph form a massively-parallel (at least for larger codes) network much like 

the array of neurons in a neural network. Also like neurons, the factor graph 

nodes maintain internal learning states that are updated through inter-nodal 

communication.
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A stochastic computational network implementation of an iterative decoder 

would seem ideal for resolving the apparently competing design goals of a 

compact, power-efficient decoder that also yields high throughput and error 

performance. Thus, the premise of this thesis is established.
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Table 3.1: Common stochastic computational elements

Circuit Type Function

Probability Inversion

Multiplication
SET

CLR
Division

N-2

N-1
random
select Weighted Summation
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C hapter 4

Im plem entation Approaches

4.1 Introduction

We now examine the application of stochastic computing to iterative decod­

ing. Stochastic decoding was shown in Chapter 3 to have several advantages 

over conventional digital hardware which could make possible efficient, high 

performance decoders. We consider the design requirements of a stochastic 

decoder and investigate its performance.

This chapter is organized as follows: Section 4.2 details the architecture 

and operation of an early stochastic iterative decoder design. The architecture 

is first overviewed. Following this overview is a discussion of the construction 

and performance of stochastic parity and equality circuits, and the construc­

tion of larger functional nodes using these circuits. The issue of converting 

output stochastic sequences to decoded codewords is considered. The operat­

ing algorithm of the decoder is then described, and first performance results 

for the decoder are supplied.

Section 4.3 deals with performance issues encountered with the decoder 

for larger codes. A baseline decoder architecture is established for comparing

32
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1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Figure 4.1: Parity check matrix for irregular (16,8) LDPC code used in proto­
type stochastic decoder

performance improvements resulting from modifications. The issue of lockup 

in the equality nodes is discussed, then several potential improvements are 

proposed and examined: broadcast initialization, parity check node output 

randomization, log-likelihood ratio scaling, factor graph layering, and supern­

odes.

Section 4.4 covers two approaches to the implementation of stochastic se­

quence generators for VLSI implementations. Section 4.5 concludes the chap­

ter.

4.2 Initial Decoder

This section describes the construction, operation, and performance charac­

teristics of the early stochastic iterative decoder presented in [1].

4.2.1 A rchitectural O verview

A simple irregular (16,8) LDPC code was used as the basis for the initial 

stochastic decoder. The parity check matrix for this code is supplied in Figure 

4.1.

Figure 4.2 shows two equivalent factor graph representations of the code. 

Note that the maximum degree of the equality nodes is 3 (including the channel
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I/O) and that the parity check nodes uniformly have a degree of 3.

Only a few types of functional units are required to implement the factor 

graph as a stochastic decoder in hardware: equality nodes, parity check nodes, 

stochastic sequence generators, and threshold converters.

Both equality nodes and parity check nodes are comprised of an inter­

connection of equality circuits or parity circuits, respectively, as described in 

Section 4.2.6. The stochastic parity check circuit is presented in Section 4.2.2 

with a subsequent analysis of its computational accuracy in Section 4.2.3. Like­

wise, the stochastic equality circuit is presented in Section 4.2.4 along with a 

computational accuracy analysis in Section 4.2.5.

Stochastic sequence generators convert probability values of noisy channel 

estimates into stochastic sequences for input to the equality nodes. Because 

the primary focus of this thesis is to explore the use of stochastic computa­

tional elements for performing iterative decoding calculations, the discussion 

of stochastic sequence generation is deferred to Section 4.4.

Threshold converters are employed to convert the output stochastic se­

quence from each equality node into a single decoded bit. The use of threshold 

converters for this purpose is elaborated in Section 4.2.7.

Factor graph edges simply translate to wires in hardware. Communica­

tions are bit-serial and bidirectional, meaning that each graph edge actually 

represents a pair of wires conveying digital sequences in opposite directions. 

The bidirectionality of the links is normally abstracted out in typical repre­

sentations of factor graph-based decoders.

4.2.2 Stochastic P arity Circuit

By inspection, it can be seen that the logical function represented by the 

parity check constraint of Equation 2.9 is exclusive-OR (XOR). Consequently,
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(a)

(b)
Figure 4.2: Factor graph representation of irregular (16,8) LDPC code used 
for stochastic decoder prototype. in indicate information bits and pn indicate 
parity bits, (a) Ring structure of code, (b) Familiar two-column representation 
of the same code.
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Figure 4.3: Stochastic Parity Circuit
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Figure 4.4: Three input stochastic parity check circuit using higher fan-in XOR

the parity check constraint can be implemented with a simple XOR gate. 

Figure 4.3 depicts a stochastic parity circuit. The D flip-flop in this figure 

has been added to support synchronous decoder operation. It does not affect 

the computational logic of the circuit. The initialization scheme described in 

Section 4.3.3 proposes the complete removal of the D flip-flop from the parity 

circuit.

The number of inputs to the parity check circuit can be increased by either 

increasing the fan-in of the XOR gate or by cascading a series of XOR gates. 

Figure 4.4 depicts a three-input parity check circuit constructed using the for­

mer approach. The choice of approach depends on the engineering constraints 

of the implementation.
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4.2.3 Feed-forward A ccuracy o f S tochastic  P arity Cir­

cuit

A bit-true model of the stochastic parity circuit was written in C + +  to de­

termine through simulation the computational accuracy of the circuit. This 

model was designed to have run-time configurability of its degree, such that it 

can be used to simulate any size of parity circuit.

The results presented in Figure 4.5 were obtained by generating 104 sets 

of random floating-point input value sets for the circuit. For each set of input 

values, the expected floating-point output was first computed according to 

Equation 2.9. The floating-point input values were then used to generate input 

sequences of 2000 stochastic bits per input. These sequences of stochastic bits 

were passed through the circuit model and the sequence of output bits was 

summed.

After the passing of the first 50 stochastic bits, and every 50 stochastic 

bits thereafter, the output count was converted to a floating-point value by 

dividing it by the total number of stochastic bits passed. The absolute differ­

ence between this floating-point value and the expected value was computed, 

and the mean of the absolute differences across all 104 input sets formed one 

datum point on the plot.

The output bits from the circuit were not fed back to the circuit inputs in 

any way, hence the designation of this test as a feed-forward accuracy test.

These results provide some insights into the accuracy of the stochastic 

parity circuit: First, as expected, the accuracy of the computations improves 

with increasing numbers of stochastic bits passed per computation. Second, 

the nearly overlapping curves indicate that there is only a minute reduction 

in computational accuracy for circuits of increasing degree. Third, it appears 

that the accuracy of the circuit is fundamentally limited by the accuracy of
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Figure 4.5: Accuracy of parity check circuit in feed-forward configuration

the individual stochastic sequences passing through it. Referring back to the 

accuracy plot of an individual stochastic sequence in Figure 3.2, it is shown 

that an individual stochastic sequence will have an absolute error of roughly 

0.0100 at 1000 clocks, and 0.0070 at 2000 clocks. This is closely tracked by 

the parity circuit, which has an absolute error of about 0.0125 at 1000 clocks 

and 0.0090 at 2000 clocks.

The second and third points above confirm that the stochastic parity cir­

cuit implements a very close approximation of the parity constraint given by 

Equation 2.9. The plot presented in Figure 4.5 may be used as a guide for a 

system integrator to determine the number of clock cycles required to achieve 

the desired level of accuracy.
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Pi 

P2
Figure 4.6: Stochastic division using a JK flip-flop.

4.2 .4  S tochastic  Equality Circuit

The stochastic circuit implementation of the equality constraint given by Equa­

tion 2.14 is not as straightforward as the implementation of the stochastic par­

ity circuit from the parity check constraint. Stochastic division is particularly 

difficult to implement.

Fortunately, Gaines shows in [43] that a JK flip-flop can be used to im­

plement a stochastic divider whose generalized output maps conveniently to 

Equation 2.14. Depicted in Figure 4.6, a JK flip-flop with an input value, Pi, 

on its J input and an input value, P2 , on its K input produces the output 

result

P1 + P2

By substituting Pr(A)Pr(B) for Pi and (1 — Pr(A))(l — Pr(B)) for P2 in 

Equation 4.1, Equation 4.1 is transformed into Equation 2.14.

A JK flip-flop can therefore be used to implement the division in Equation 

2.14. AND gates are used to implement the multiplication in the numerator 

and denominator. Inverters are used to implement the probability inversion. 

The resulting stochastic equality circuit is shown in Figure 4.7.

The number of inputs to the equality circuit can be increased by either
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Figure 4.7: Stochastic Equality Circuit
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Figure 4.8: Three input stochastic equality circuit using higher fan-in AND
gates

increasing the fan-in of the AND gates or by cascading a series of AND gates 

at the J and K inputs. Figure 4.8 depicts a three-input equality circuit con­

structed using the former approach. The choice of approach depends on the 

engineering constraints of the implementation.

4.2.5 Feed-forward A ccuracy o f  Stochastic Equality Cir­

cuit

As with the stochastic parity circuit, a bit-true model of the stochastic equality 

circuit with run-time degree configurability was written in C + +  to determine 

through simulation the computational accuracy of the circuit.

The results presented in 4.9 were obtained through a test identical to the
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Figure 4.9: Accuracy of equality circuit in feed-forward configuration

one described in Section 4.2.3, except that the expected values were calculated 

according to the equality constraint given by Equation 2.14.

These results provide some insights into the accuracy of the stochastic 

equality circuit: First, as expected, the accuracy of the computations improves 

with increasing numbers of clock cycles. Second, the curves show a distinct 

reduction in accuracy for increasing numbers of inputs to the circuit at all 

numbers of clock cycles. This indicates that the stochastic approximation of 

the equality constraint does introduce an error term, and this error compounds 

as the number of inputs to the circuit increases.

Given a sufficient number of clocks, the stochastic equality circuit should 

be capable of providing enough accuracy to make it amenable to integration 

in an iterative decoder. The plot presented in Figure 4.9 may be used as a 

guide for a system integrator to determine the number of clock cycles required 

to achieve the desired level of accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

r _

._______________________________ i

Figure 4.10: Three-edge parity check node (dashed line) with three, three- 
input constituent parity check circuits. Node edges are labeled A, B, C.

4.2.6 N od e C onstruction

An output must be produced on each edge of a node based on inputs on the 

other edges. Functional nodes in the factor graph are therefore constructed by 

an interconnection of constituent circuits. Parity check nodes are comprised 

of instances of the parity check circuit presented in Section 4.2.2. Likewise, 

equality nodes are comprised of instances of the equality circuit presented in 

Section 4.2.4.

The construction of parity check nodes is straightforward. The output 

produced for any given edge is based on the inputs on all of the other edges. 

An n-edge parity check node will consist of n constituent parity circuits, each 

having n — 1 inputs. Figure 4.10 depicts a three-edge parity check node with 

three constituent parity check circuits.

Equality nodes are constructed similarly to parity check nodes, with a slight 

variation due to the channel edge. The output produced for any given edge
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A

Channel

Figure 4.11: Three-edge equality node (dashed line) with three constituent 
eqaulity circuits. Channel edge is labelled ’’channel” and factor graph edges 
are labeled A and B.

connected to the factor graph is based on the inputs on all of the other edges. 

The output on the channel edge, however, is based on the inputs on all node 

edges including the channel edge input. Therefore, an n-edge equality node 

will consist of n constituent equality circuits, with n — 1 having n — 1 inputs 

and one having n  inputs. Figure 4.11 depicts a three-edge equality node with 

three constituent equality circuits.

It is evident that the stochastic parity check and equality nodes are de- 

terministically scalable to any node degree. This fact may make it possible 

to automatically generate hardware description language (HDL) code for a 

stochastic decoder based only on a parity check matrix.

4.2.7 Threshold Conversion

To obtain a result from the decoder, it is not necessary to convert the output 

stochastic sequences back to binary numeric representation. All that is re­
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Figure 4.12: Equality node with up/down counter connected to the output and 
sequence generator connected to the input. Bidirectionality of connections is 
shown explicitly.

quired is to perform a threshold conversion for each codeword decoding cycle 

on the output sequence of each equality node, such that a single-bit result 

is produced. If 50% or more of the output bits are ’1’, then the threshold 

converter output bit should be a ’1’. Otherwise, the output bit should be a 

’O’.

The task of threshold conversion can be performed through the use of an 

up/down counter with a sign bit. The up/down counter must be reset at the 

beginning of the decoding cycle for each new noisy received codeword. At the 

end of the decoding cycle for a given codeword the sign bit is taken as the 

decoding result.

Care must be taken not to confuse the meaning of the sign bit. In typical 

signed binary representation a sign bit of ’0’ indicates a positive number. In 

this application a positive number shall be threshold converted to a T ,  and 

a negative number shall be converted to a ’O’. It is therefore recommended 

that the sign bit be inverted inside each up/down counter, thereby avoiding 

confusion in implementing a stochastic decoder in the framework of a larger 

communications system.

Figure 4.12 depicts an up-down counter attached to the output wire of an 

equality node. The bidirectionality of the connections to the equality node
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are explicitly shown in this figure, whereas they are normally abstracted as a 

single wire. A stochastic sequence generator is connected to the input of the 

equality node. Methods for implementing stochastic sequence generators are 

discussed in Section 4.4.

4.2.8 D ecod er O peration

The decoder operates as follows:

Initialization is performed for each new noisy received codeword by clearing 

all of the flip-flops in the factor graph and clearing the up-down counters 

attached to the equality nodes. The probabilities of each received codeword 

bit being a ’1’, the noisy channel estimates, are loaded into the stochastic 

sequence generators.

The decoder is clocked. On each clock edge each equality node receives a 

new bit from the attached stochastic sequence generator. A new output bit is 

produced by the nodes on every edge in the factor graph (in both directions 

of each edge).

The decoder is clocked for T JN IT  clock cycles with the up-down counters 

held in reset. That is, for the first TJN IT  clock cycles, the up-down counters 

do not count the output bits. This constitutes a training period for the decoder.

After T JN IT  clock cycles, the decoder is clocked until all up-down counters 

reach an absolute count of T_CHECK. At this point, the decoder checks to 

ensure that the sign bits of the up-down counters indicate a valid codeword. 

If the codeword is valid, the sign bits are used to form the decoded codeword 

and a new noisy received codeword can be loaded into the decoder. Otherwise, 

the decoder is allowed to continue operating.

A codeword can be determined to be valid when, for each and every parity 

check node, the XOR sum of all bits coming into the parity check node is ’O’.
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Figure 4.13: BER plot for initial decoder [1]

4.2.9 Perform ance R esu lts

Figure 4.13 presents BER performance results for the LDPC code shown in 

Figure 4.2. The solid curve is the maximum likelihood (ML) decoding result 

for the code, which was possible to obtain due to the code’s simplicity. The 

dashed lines represent different tests of the stochastic decoder with the number 

of cycles for the TJN IT  and T_CHECK phases varied as indicated by the 

paired numbers in the graph legend. At a BER of 10~4 the stochastic decoder 

was only about 0.15dB from the ML curve.

4.3 Im plem entation Challenges and Solutions

While the initial results of the stochastic decoder were extremely promising, 

severe performance degradation was observed with slightly larger codes with 

higher node degrees. This thesis extends the original work by examining meth­

ods of improving performance. The following sections examine problems and
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4.3.1 B aseline D ecoder

It is useful to establish a baseline version of the stochastic decoder in order to 

compare the relative merit of different attempts at improving performance.

The baseline stochastic decoder is constructed identically to the initial 

decoder described in Section 4.2. The baseline decoder uses a simpler operating 

algorithm, differing from that of the initial decoder as follows:

• The node outputs are reset to random values.

• The up/down counters count every bit, eliminating the concept of TJN IT 

and T_CHECK phases.

• The decoder operates for a fixed duration for each codeword.

Figure 4.14 shows the BER plot for the baseline stochastic decoder op­

erating on a (7,4) Hamming code. The stochastic BER curve is compared 

against the output of the ideal belief propagation algorithm operating on the 

same code for 8 iterations. It is apparent that the baseline decoder exhibits 

severe deficiencies. It is interesting to note that the BER performance of the 

stochastic decoder actually degrades above an SNR of approximately 5.5dB.

4.3.2 Equality N od e Lockup

A serious problem affecting the performance of the baseline stochastic decoder 

for more complex codes is a phenomenon that can be termed ’’equality node 

lockup” .

In high-level terms, equality node lockup occurs when the transitions in the 

channel input stochastic sequence cannot cause the outputs of any equality
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Figure 4.14: BER plot for (7,4) Hamming code with baseline stochastic decoder

node to change. The actual lockup condition is preceded by equality node 

outputs that are static for a few or several clock cycles across the entire set 

of equality nodes. When the decoder reaches a locked-up state, the output 

decision bits do not change and iterative decoding effectively ceases.

The decoder can potentially lock onto the correct codeword. The proba­

bility of this happening, though, decreases for larger codes. The more likely 

outcome is that the decoder will lock into some set of suboptimal local min­

ima, which may not even comprise a valid codeword let alone the correct 

codeword. Recently there have been investigations into these suboptimal min­

ima, “trapping sets” , or “stopping sets” with an aim to mitigate their im­

pact [60] [61] [62] [63] [64].

The key difference between the (16,8) LDPC code, for which the stochastic 

decoder worked well, and the (7,4) Hamming code, for which the stochastic 

decoder performed poorly, is that the Hamming code includes an equality node
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with degree 4. All of the equality nodes for the LDPC code have degree 3.

To understand why a higher degree in an equality node could lead to a 

problem, one needs to re-examine the behaviour of the equality circuit pre­

sented in Section 4.2.4. On each clock cycle, the equality circuit evaluates its 

inputs. If all of the inputs are ’O’, the output will be ’O’. Likewise, if all of the 

inputs are ’1’, the output will be ’1’. If the inputs are neither all ’0’ nor all ’1’, 

the equality circuit will hold its output value from the previous clock cycle.

As the degree of an equality node increases, so do the number of inputs 

to the constituent equality circuits. With an increased number of inputs, 

the probability that all of them will agree is decreased. Consequently, higher 

degree equality nodes axe more likely to continue asserting a stored output bit.

For every input that is added to an equality circuit, the probabilities of the 

inputs agreeing and the output bit inverting both decrease by up to a factor 

of two. For example, assuming completely random inputs the probability that 

the inputs of a two-input equality circuit will agree is 0.5. The probability 

that inputs that are in agreement will cause a transition at the output is 0.25 

because the inputs may be agreeing on the previously held output value. If 

the number of equality circuit inputs is increased to three, the probability of 

the inputs being in agreement drops to 0.25 and the probability of a transition 

at the output drops to 0.125.

It is shown in Section 4.2.5 that the stochastic equality circuit has good 

computational accuracy in a feed-forward configuration. That study, however, 

did not take into account the operational characteristics of the equality circuit 

in a feedback configuration.

Figure 4.15 shows the stochastic decoder for a (7,4) Hamming code in 

a state of partial lockup. All graph edges are conveying ’0’ values in both 

directions. Many other states of partial lockup are possible.
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Figure 4.15: Partial lockup state in stochastic decoder for (7,4) Hamming code.
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The term partial lockup is used in reference to Figure 4.15 because the 

two-edge equality nodes in the graph always have the potential to invert the 

outputs of the parity check nodes to which they are connected. It is nonetheless 

difficult for the decoder to have switching activity in a partial lockup state.

For example, the channel input bits on nodes EO and E l would both have 

to be T  on the same clock cycle in order for node E l to output a ’1’ to parity 

check node P I. To have E l output a ’1’ to its attached up-down counter, the 

channel inputs on EO, E l, and E3 would all have to be ’1’ on the same clock 

cycle.

Because E6 has a degree of four, it is even more difficult for this node to 

output a ’1’ on any of its output edges. Nodes EO, E3, and E6 would all have 

to have a ’1’ on their channel inputs on the same clock cycle in order for E6 

to output a T ’ to P2. Even worse, to have E6 output a ’1’ to its attached 

up-down counter, the channel inputs on EO, E3, E5, and E6 would all have to 

have a ’1’ on the same clock cycle.

The fact that it is difficult, but not impossible, to maintain switching ac­

tivity in the (7,4) Hamming code decoder provides an explanation for the poor 

to mediocre performance of the stochastic decoder for this code.

Figure 4.16 depicts a situation of complete lockup. For illustrative pur­

poses, the same (7,4) Hamming code decoder is shown with an additional 

parity check that was specified by adding a linearly-dependent row to the par­

ity check matrix. This addition was made to increase to three the minimum 

degree of any given equality node. In this situation even if all of the channel 

inputs to the decoder are ’1’, none of the equality node outputs will change.

The situation presented in Figure 4.16 also highlights an important prob­

lem: Initializing the outputs of all of the flip-flops in the graph to ’0’ before 

starting a new decoding cycle as described in Section 4.2.8 will initialize the
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Figure 4.16: Complete lockup state in stochastic decoder for (7,4) Hamming 
code with additional parity check.
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decoder to a locked-up state if the minimum degree of any equality node is 

three or greater. Using broadcast initialization as an improvement to the ini­

tialization process is discussed in Section 4.3.3.

4.3 .3  D esign  Im provem ents

Obviously equality node lockup is detrimental to the performance of the stochas­

tic decoder. Indeed, the reduction in uncertainty of received codeword bit 

probabilities and a corresponding reduction in toggling of stochastic sequence 

inputs may explain why the stochastic decoder actually performs worse at 

higher SNR values. This section describes attempts that were made to miti­

gate the lockup problem. The common thread in these modifications is that 

they are primarily aimed at increasing the switching activity in the graph in 

order to keep the equality node outputs toggling periodically.

Broadcast Initialization

Broadcast initialization is proposed as a means of intelligently priming the de­

coder at the beginning of each codeword decode process. As has been shown 

in Section 4.3.2, initializing all node outputs to 0 can actually cause an im­

mediate lockup condition. Randomizing the initial node outputs potentially 

avoids this situation, but broadcasting a set of “best guess” bits on the first 

decoding iteration may be a better solution.

Broadcast initialization is implemented on top of the baseline decoder by 

specifying that, for each codeword bit, a stochastic bit will be clocked into 

the associated equality node and driven out on all of its inputs for the first 

iteration. The D flip-flop is also removed from the parity check circuits. This 

change is made because the initial values of the D flip-flops would otherwise 

propagate back to the equality nodes and negate the benefit of the broadcast
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Figure 4.17: Effect of broadcast initialization with no D flip-flop in parity 
circuit

initialization.

Figure 4.17 shows the BER curve for the stochastic decoder with broadcast 

initialization (including the removal of the D flip-flops in the parity circuits) 

operating on the (7,4) Hamming code. This curve is contrasted with the output 

of the baseline decoder and of the ideal belief propagation algorithm operating 

for 8 iterations. The simple change of adding broadcast initialization produces 

marked improvement in the output. The BER curve now monotonically de­

creases, and differs from the belief propagation output at most by 0.75dB at 

a BER of 5 x 10~5.

Parity Check N ode Output Randomization

One means of proactively avoiding lockup in the equality nodes involves a 

low probability randomization of the parity check node outputs. Because the
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Figure 4.18: Parity check node with additional input edge for output random­
ization.

parity check node outputs directly feed back to the equality node inputs, such 

an approach would consequently randomize the equality inputs.

Introducing some artificial randomness to the parity check node outputs 

can be achieved by adding an input edge to the node. This additional input 

edge is then driven by a stochastic sequence generator. Figure 4.18 depicts a 

parity check node with an additional randomizing input edge.

The new input edge feeds into all of the constituent parity check circuits. 

On each clock cycle a new random bit is driven into the input by a stochastic
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sequence generator. If the bit is a ’O’, the outputs from the parity check node 

will not be affected. That is, the outputs will be the same as they would be 

with no additional randomizing input. If the bit is a T ,  the outputs from 

the parity check node will all be inverted compared to their values without 

the additional randomizing input. The net effect is that the parity check node 

inverts its single-bit decision on all output edges when the input bit on the 

randomizing edge is a T .

Log-likelihood Ratio Scaling

Log-likelihood ratio scaling represents an effort to increase switching activity 

by preprocessing the channel-noise-added output values from the demodulator 

before converting these values to probabilities of being Is and passing them to 

the decoder.

The scaling operation is accomplished by first selecting a scaling factor, (3. 

All noisy values, n*, from the demodulator that constitute a received codeword 

are the scaled in accordance with

m ax{|rii|}

That is, each noisy value is multiplied by the scaling factor then divided by 

the absolute value of the largest noisy value in the noisy value set. Selecting 

smaller values of .3 causes the codeword bit probabilities to be compressed 

closer to 0.5 when the noisy values are subsequently converted to probabilities 

of being Is. More transitions will occur in the input stochastic sequences to 

the decoder when the probability values are all compressed closer to 0.5.

Figure 4.19 shows the BER curve for the baseline stochastic decoder with 

LLR scaling with (3 separately set to 0.8 and 0.9 and operating on the (7,4) 

Hamming code. These two curves are contrasted with the output of the base-
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Figure 4.19: Effect of LLR scaling

line decoder and of the ideal belief propagation algorithm operating for 8 

iterations. The notable feature is that employing LLR scaling delays the onset 

of the performance degradation of the decoding result at higher SNR values, 

ft would appear that the increased switching activity has the desired effect of 

keeping the decoder from locking at higher SNR values.

Factor Graph Layering

Even though stochastic computation is essentially serial, at least in terms of 

its metric representations, this does not preclude a ’’layered” implementation 

of the decoder. Layering involves the instantiation of L  identical factor graphs 

in one decoder. In such an arrangement every node is duplicated L times 

and edge connections are made between nodes exactly as in the single-layered 

factor graph with the exception that the connections are randomly permuted 

amongst the layers. Thus, a form of spatial diversity is realized.
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Figure 4.20: Single-layer factor graph (left) and three-layer factor graph (right) 
for a (7,4) Hamming code. The node labels indicate the node number (E{x}, 
P{x}) and the layer of the node (L{x})
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The left side of Figure 4.20 depicts a standard single-layered factor graph 

for a (7,4) Hamming code, while the right side of the figure depicts one possible 

three-layered graph for the same code. The labels E{x} and P{x} enumerate 

the equality nodes and parity check nodes, respectively, while the L{x} labels 

indicate the layer of the node.

Note that the equality nodes and parity check nodes are connected in fun­

damentally the same way in the single-layered graph and the three-layered 

graph. It is only the connections between layers in the three-layered graph 

that are randomized. For example, the ”E0” equality node(s) connect to the 

”P0” parity check node(s) in both graphs. In the three-layered graph, how­

ever, equality node E0L0 connects to parity check node P0L2, equality node 

E0L1 connects to parity check node POLO, and equality node E0L2 connects 

to parity check node P0L1.

There are two degrees to which spatial interleaving can occur: lower- 

intricacy and higher-intricacy. Lower intricacy interleaving is achieved by 

permuting connections between layers as in the three-layered factor graph of 

Figure 4.20.

Higher intricacy interleaving is achieved by separately routing edges to the 

two AND gates in each equality circuit. In the conventional construction of 

the equality circuit, the same set of inputs is fed into both AND gates. The 

difference between lower intricacy and higher intricacy interleaving at the level 

of the equality circuit is highlighted in Figure 4.21.

One upshot of higher intricacy interleaving is that the inputs to the JK 

flip-flop are decorrelated. Another effect is that the toggle operation of the JK 

flip-flop can potentially occur. It is possible for the J and K inputs to both 

be ’1’ because the sets of inputs to the two AND gates in the equality circuit 

are different. The toggle operation is not possible in the conventional equality
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 Output
From parity check 

node 2, layer 0

L-0
K CLR

(a)

From parity check 
node 0, layer 1 SET
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From parity check 

node 2, layer 1

(b)
Figure 4.21: (a) Equality circuit with lower-intricacy interleaving between fac­
tor graph layers, (b) Equality circuit with higher-intricacy interleaving be­
tween factor graph layers.
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circuit because the inputs to the two AND gates are the same. The specific 

effects of the toggle operation on the computation of equality node constraint 

as well as on switching activity are worthy of further study.

A layered implementation of a stochastic iterative decoder has interest­

ing performance implications. The original motivation for layering was speed. 

It was expected that decoding using L layered stochastic decoders could be 

terminated after l /L  the number of clock cycles normally required by a sin­

gle decoding layer. After the equality node lockup problem was discovered, 

layering was seen as being more important as a means of promoting a height­

ened degree of randomness in the decoder and assisting in increasing switching 

activity.

Layering can further have the desirable effect of increasing the length of the 

shortest cycles in the factor graph. Recall that a cycle is a path that begins 

and terminates at the same node without traversing any edge more than once. 

If the edge connections between layers are made appropriately, the shortest 

cycle in a single-layer factor graph can generally be expected to increase in 

length by a factor of at least L.

The obvious detraction of a layered decoder implementation is the con­

sumption of at least L  times as much die area, and likely more because of 

the non-linear increase in the routing requirements between the nodes. An­

other drawback is that L times as many stochastic sequence generators are 

required for a layered decoder. It is vital that each equality node has its own 

independent (ie. uncorrelated with other input sequences) input sequence. 

This problem may be marginalized by the first implementation approach for a 

stochastic sequence generator described in Section 4.4.

Outputs from the equality nodes, however, can still be summed in a single 

layer of up-down counters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bit error rate vs. Eb/NO

62

BP, 8 iter 
1 lyr/10,000dk 
5 lyr/10.OOOclk 
16 lyr/1 ,OOOdk

0.1

0.01

0.001
<rLU
CD

0.0001

1e-05

1e-06
0 1 2 3 4 5 6 7 8

Eb/NO

Figure 4.22: Effect of layering

Figure 4.22 shows the BER curve for the baseline stochastic decoder sep­

arately with 5 layers and 16 layers, operating on the (7,4) Hamming code. 

These two curves are contrasted with the output of the baseline decoder (the 

1 layer curve) and of the ideal belief propagation algorithm operating for 8 

iterations. With layering, the BER curve decreases monotonically. With 16 

layers, a loss of approximately 0.75dB at a BER of 6 x 10-5 is observed.

Combined Techniques

Prior to proceeding to the last performance improving technique, supernodes, 

we examine the combination of the best of the previously analyzed techniques.

Figure 4.23 shows the BER curve for the baseline stochastic decoder with 

LLR scaling (/? =  0.8), 16 layers, and broadcast initialization operating on the 

(7,4) Hamming code. This curve is contrasted with the curves for LLR scaling 

on its own, broadcast initialization on its own, and the belief propagation al-
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Figure 4.23: Effect of combining broadcast initialization with LLR scaling and 
layering

gorithm operating for 8 iterations. The combined feature decoder outperforms 

the other features in isolation. Moreover, the combined feature decoder closely 

tracks the belief propagation curve and shows a minute loss of only 0.125dB 

at a BER of approximately 1.2 x 10-5.

Confident in the capabilities of the stochastic decoder that combines LLR 

scaling, layering, and broadcast initialization, we attempt to tackle a much 

larger code. Figure 4.24 shows the BER curve for the combined feature decoder 

operating on a rate 1/2, 1024-bit (3,6) regular LDPC code. The BER curve is 

contrasted with the output of the belief propagation algorithm operating for 8 

iterations. When the belief propagation algorithm reaches a BER of 3 x 10-7 

at an SNR of 3.5dB, the stochastic decoder shows little error correction with 

a BER of 7.5 x 10-2. Clearly more investigation is required in the future to 

make the stochastic decoder work with large codes.
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Figure 4.24: Effect of combining broadcast initialization with LLR scaling and 
layering for rate 1/2 1024-bit LDPC code

Supernodes

A final performance-enhancing measure studied in this thesis is the use of 

“super” equality nodes, or supernodes. A supernode receives and outputs 

stochastic sequences, but internally performs conventional computations. This 

approach therefore represents the most significant departure from the baseline 

decoder.

The supernode decoder differs architecturally from the baseline decoder in 

that the equality nodes are replaced with supernodes, the stochastic sequence 

generators are moved inside the supernodes, and the D flip-flops are removed 

from the parity check circuits. Figure 4.25 shows the block diagram of a three- 

input supernode. In reference to this figure, the supernode decoding algorithm 

proceeds as follows:

1. The input accumulators within the supernodes are reset to 0.
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sequence gen

compute

Channel
compute

input accumulator

Figure 4.25: Block diagram of supernode

2. For each codeword bit, the channel probability value (i.e. the probability 

that the bit is a 1) is loaded directly into each stochastic sequence gener­

ator within the associated supernode. This is a broadcast initialization.

3. The decoder is clocked. The stochastic generators in the supernode pro­

duce a new output on every clock edge. The parity check nodes, without 

D flip-flops, pass bits back to the inputs of the supernodes. These bits 

are summed in the input accumulators.

4. After a specific number of clock cycles, nc, the accumulator values are 

forwarded to the compute blocks. Here they are converted into probabili­

ties by dividing by nc. Each compute block calculates a new output value 

from the input probabilities according to the equality node constraint. 

The computation is performed in conventional fixed bit arithmetic. This 

output value is loaded into the attached stochastic sequence generator. 

The input accumulators are cleared. The stochastic sequence generators
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produce stochastic bits based on their updated values. After another nc 

cycles, the update procedure is repeated.

5. The decoder is allowed to operate for a fixed number of clock cycles before 

threshold conversion is performed in the up/down counters to obtain a 

hard-decision decoding result.

A notable feature of the above algorithm is that the supernodes packetize 

the information transferred between themselves and the parity check nodes. 

The baseline stochastic decoder transfers a continuous stream of bits between 

the nodes without any update interval, in much the way that currents flow 

freely between nodes in an analog decoder. The decoder with supernodes, 

however, effectively creates discrete iterations where each iteration is marked 

by the transfer of nc stochastic bits between the nodes. The packetized nature 

of the supernode decoder makes it more like a conventional decoder with a 

sequence of stochastic bits used in place of a single real number as the message 

passed between the nodes.

Figure 4.26 shows the BER curve for the supernode decoder operating on 

the (7,4) Hamming code. The internal computations in the compute blocks 

were performed in floating-point arithmetic for a proof of concept of the su­

pernode. Four curves are shown for the supernode decoder with the paired 

numbers in the graph legend indicating nc and the total number of clocks per 

codeword, respectively. These curves are contrasted with the output of the 

belief propagation algorithm operating for 8 iterations. It can be seen that all 

of the super node curves are monotonically decreasing, and that both a higher 

number of clocks per iteration and a higher total number of clocks improve 

performance. The supernode decoder operating for 20,000 clock cycles with 

2000 cycles per iteration shows a loss of ldB at a BER of 1 x 10-4. The
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Figure 4.26: Effect of supernode

16-layer stochastic decoder outperforms the supernode decoder at comparable 

clock counts, but LLR scaling has not been applied to the supernode decoder.

4.4 Stochastic Sequence Generation

Aside from the implementation of the factor graph decoder itself, one of the 

most important hardware considerations is the generation of weighted stochas­

tic sequences for the channel inputs of the equality nodes.

Generation of the stochastic sequences can be accomplished through the use 

of a weighted linear feedback shift register (LFSR) at each required generation 

point. This approach is infeasible, however, because of the requirement for an 

independent stochastic generator for every equality node. Most of the silicon 

area would be consumed with circuitry involved in the generation of stochastic 

sequences. Other researchers have encountered this inefficiency in their own
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Figure 4.27: Modulator for pipelined stochastic sequence generation

VLSI stochastic computer implementations [59].

This section will focus on two proposals from the literature for improving 

the silicon area efficiency of stochastic sequence generation: pipelined modu­

lators and CMOS ring oscillators.

Pipelined Modulators

The approach of using pipelined modulators is architecturally described in [57] 

and mathematically proven in [58]. Figure 4.27 depicts an instance of what the 

authors term a ’’modulator” , which forms one stage of a generation pipeline.

The number, k, of cascaded modulators in the pipeline is equal to the 

number of bits of resolution required to represent the probability value being 

encoded as a stochastic sequence. The output of each modulator is gated with 

a D flip-flop to facilitate pipelining.

The probability value, represented as a binary value of length k, is supplied 

to the pipeline through the mod bit inputs of the modulators. The most 

significant bit of the probability value is supplied to the first modulator in the 

pipeline and the least significant bit is supplied to the last modulator in the 

pipeline.
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The carrier input is supplied with a ’’carrier stream”, a stochastic se­

quence having a probability of 0.5 and changing values synchronously with 

the pipeline.

The input of the first pipeline stage is the all-zero sequence. The output of 

the last pipeline stage is the weighted stochastic sequence ready for input into 

the stochastic computer. In the case of a stochastic iterative decoder, the last 

pipeline stage would be connected to the channel input of an equality node.

The modulator performs one of two operations depending on the value of 

the mod bit. When the mod bit is ’O’, the output of the modulator is the 

bitwise AND of the input and carrier streams. In this case, the relationship of 

the modulator output probability to its input probability is given by

Pout mod =0 =  7̂ Pin - (4.3)

When the mod bit is ’1’, the output of the modulator is the bitwise OR of 

the input and carrier streams. In this case, the relationship of the modulator 

output probability to its input probability is given by

Pout mod =1 =  ^ P in  +  ^ . (4.4)

The resolution, R, of a fc-bit modulator pipeline is given by

<4-5>

Variance of the output sequence is highest when the probability value to 

be encoded is 0.5. The number of bits that must be produced by the pipeline 

to achieve maximum accuracy is given by

n =  2 , (4.6)
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where i> is the number of bits in the binary representation of the probability 

value being encoded.

The pipelined modulators require supporting hardware to produce the mod 

bits and the carrier streams. Depending on whether the probability value to 

be encoded is initially represented as a binary value or an analog voltage, a 

respective quantizer or A/D converter is required to produce the mod bits. In 

the case of the stochastic decoder, the production of the mod bits could be 

made an integral part of the demodulator supplying noisy channel estimates 

to the decoder.

A device utilizing n bit stream generators, each consisting of k pipeline 

stages, requires the production of kn statistically independent carrier streams. 

Because it is impractical to achieve the ideal of a true random source for 

each carrier stream, the authors describe a method by which a single LFSR 

configured to generate a maximal-length pseudo-random bit sequence (PRBS) 

can be used to supply all of the required carrier streams in the device.

The generation of numerous independent sequences from one PRBS gen­

erator is described in [56], The procedure described therein derives multiple 

random streams from a relatively small number of well-spaced taps on the shift 

register. The authors of [57], however, assert that this approach could still eas­

ily lead to a high degree of correlation between the derived sequences, which 

would be detrimental for the operation of a stochastic computer. They instead 

propose tapping successive bits of the PRBS generator. Sequences derived in 

this manner have overlap but almost no correlation [58],

To ensure that the carrier stream inputs to successive modulators along 

the pipeline of a given stochastic sequence generator are not coincident, the 

PRBS shift register is shifted in a direction opposite to the direction of the 

modulator pipeline. For sufficiently large values of the PRBS shift register
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size, n, the carrier streams will be highly uncorrelated. The minimum length 

of the PRBS shift register is given by the inequality

n > 2k, (4.7)

where k is the number of modulators in a stochastic sequence generator pipeline.

Pipelining allows for a high rate of operation, and the authors posit that 

50MHz should be easily attained for the pipelined modulator approach. Years 

later, Brown and Card described an almost identical stochastic sequence gen­

erator architecture in [44].

CMOS Ring Oscillator

A more elegant, albeit dependent on some custom layout, solution to the 

problem of generating weighted stochastic sequences is presented in [59], The 

authors propose the high-frequency oscillator with a lower rate sampling flip- 

flop depicted in Figure 4.28.

The oscillator consists of five CMOS inverters chained together, with the 

output of the last inverter fed back into the input of the first inverter, thus 

forming a ring oscillator circuit. If the input capacitance of the circuit is 

sufficiently low the circuit will be highly sensitive to noise, which is a desirable 

trait in this application.

The authors assert that phase uncertainty in the oscillator must be greater 

than or equal to 27r in order to ensure complete spatial and temporal ran­

domness in the output sequence. In this context, spatial randomness means 

low cross-correlation between sequences produced by separate stochastic se­

quence generators. Temporal randomness means low autocorrelation amongst 

the output bits of a single stochastic sequence generator.

Because the feedback voltage is indeterminate, the switching times of the
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oscillator will also be indeterminate. To provide an output with a fixed pe­

riod, a D flip-flop is additionally connected to the output of the fifth CMOS 

inverter. If the clock supplied to the D flip-flop is sufficiently slow relative to 

the aperiodic oscillation frequency of the oscillator then the sampled output 

bit stream will be random.

The ratio of the period of time that the oscillator output is high to an 

arbitrary sampling period is Thus, the probability value to be encoded 

is given by The utility of this circuit is that the weight of the output 

stochastic stream is easily voltage-controlled by the inputs VI and V2.

The regulation relationship between the inputs VI and V2 and the output 

ratio is determined experimentally. The results produced by the authors 

are for an implementation in an outmoded 1.5/xm process and are for the 

inverse period of ^ .

Again, because a stochastic decoder would be preceded by a demodulator, 

the output of channel estimates mapped to VI and V2 could be made an 

integral part of the demodulator to reduce signal conversion overhead.

Experimental results from an IC with 8 on-board stochastic sequence gen- 

erators show that values between in the range [0,1] can be produced by 

varying VI and V2.

A study of cross-correlation between sequence generators based on their 

physical proximity on the die is also performed with a sampling frequency 

of lOOKHz, 1000-bit sequence lengths, and fixed to 0.5. It is proven that 

neighbouring sequence generator circuits may exhibit unacceptably high cross­

correlation when placed too close to one another, but will be independent and 

uncorrelated otherwise. The minimum distance for acceptable cross-correlation 

is not quantified, so it would remain a point of study if this approach to 

stochastic sequence generation were used in a stochastic decoder.
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Increasing the sampling frequency of the D flip-flop does not increase the 

level of cross-correlation between generation circuits.

A higher switching frequency in the oscillator, however, will increase the 

autocorrelation of the output sequence of an individual sequence generator. 

The authors note that autocorrelation is not usually a concern for stochas­

tic applications where stochastic sequences are being combined through logic 

gates. The only requirement is that the sequences have low cross-correlation.

The authors identify a reduction of autocorrelation in the sequence genera­

tor output as future work. The two identified methods of improvement are to 

add a noise source to the inverter chain, and to decrease the input capacitance 

of the circuit by using a finer CMOS process.

4.5 Summary

This chapter has described the architecture and operation of the stochastic de­

coder presented in [1], then expanded on this initial work. A baseline stochastic 

decoder was described against which performance enhancing changes could be 

measured. The problem of equality node lockup was elaborated, and means 

to ameliorate this problem were examined. These approaches included broad­

cast initialization, parity check node output randomization, log-likelihood ra­

tio scaling, factor graph layering, and supernodes. Last, two approaches to 

generating stochastic sequences were described.
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C hapter 5

Conclusions and Future 

D irections

5.1 Contributions and Conclusion

In this thesis we have presented the stochastic iterative decoder, a novel ap­

plication of stochastic computing to the design of iterative decoders for low 

density parity check codes. By combining the power and area efficiency of 

stochastic computational elements with the error performance of the belief 

propagation decoding algorithm, it may be possible to build more efficient 

iterative decoders.

The stochastic decoder design techniques described herein provide a foun­

dation for future research into stochastic decoders.

The following subsections summarize the contributions of this thesis:

S tochastic  C om putation Tutorial

A tutorial of stochastic computing technology has been provided. Stochastic 

computing does not appear to be well known outside of the neural networks

75
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design community, and even within this community its mention is intermittent. 

Stochastic computing is an important technology for efficient probabilistic pro­

cessing. The applicability of stochastic computing to iterative decoding has 

been demonstrated.

D eficiency A nalysis

Performance impediments in the stochastic decoder have been identified. Chief 

among these is the problem of equality node lockup, whether due to inputs 

with few transitions or equality nodes with higher degrees. The accuracy of 

stochastic sequences, stochastic parity check nodes, and stochastic equality 

nodes has been simulated.

Perform ance Enhancem ents

Performance enhancing measures for the stochastic decoder were proposed and 

studied. These included broadcast initialization, parity check node output ran­

domization, log-likelihood ratio scaling, factor graph layering, and supernodes. 

Simulation results were provided for each of these approaches.

5.2 Future Directions

The following subsections outline suggested avenues of continued research into 

stochastic iterative decoders:

M athem atical A nalysis

It is important to understand the mathematical underpinnings of the stochastic 

decoder. Density evolution techniques should be employed to develop a more
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mathematical understanding of the decoder. Such procedures should also help 

to define fundamental decoder limitations from a mathematical perspective.

Code D esign

It is possible that some LDPC codes are more well suited to implementation in 

a stochastic decoder than others. The application of recent work on stopping 

set analysis, also known as trapping sets, may provide insights into the design 

of codes that are well tailored for stochastic decoders.

A pplicab ility  to  Turbo C odes

Thus far, stochastic decoder research has focused on LDPC codes. The appli­

cability to Turbo and other codes should be investigated [65].

Im plem entations

In addition to the simulations presented in this thesis, a stochastic decoder 

has already been implemented in an FPGA [66], ASIC implementations are 

the next logical step. Subsequent implementations should provide a complete 

solution, with sigma-delta modulators at the front end of the decoder and 

hardware stochastic sequence generation.

Power and Clock R ate A nalysis

To better understand the physical performance of stochastic decoders, power 

consumption should be analyzed. Maximum clock rates should be character­

ized through static timing analysis. Power and achievable clock rates should 

be considered for a range of CMOS processes.
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A pplicab ility  to  Fault-Tolerant C om puting

Many nanotechnology devices being proposed exhibit stochastic properties. It 

should be investigated whether these devices would be suitable for higher-level 

systems integration.
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