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Abstract 

Maps that describe the characteristics of live and dead biomass across large areas (i.e., fuel 

maps) are a critical input to a wide range of research models and decision support systems that 

aim to describe potential fire behaviour and inform fire management actions. As remote sensing 

technologies become more affordable, the ability to utilize these technologies to create 

comprehensive fuel maps on small and large scales is becoming increasingly pragmatic. 

Airborne Laser Scanning (ALS), a remote sensing technology that uses LiDAR, has already been 

used extensively to characterize forest attributes such as stand height, above ground biomass and 

stem density; however, few studies have used ALS within the boreal forest to describe forest 

structural attributes such as fuel loading at a fine resolution (i.e., <10 m grid cell resolution), 

which is particularly relevant to fire behaviour. This study investigates the viability of using ALS 

to predict forest attributes in black spruce (Picea Mariana) stands, located in Alberta, Canada. 

Five fuel attributes important to wildfire behaviour were investigated: canopy bulk density 

(CBD), canopy fuel load (CFL), stem density, canopy height and canopy base height (CBH). 

Predictive models for estimating fuel attributes from ALS data were developed and compared 

among ALS datasets with three different pulse point cloud densities (i.e., dense, intermediate and 

thin). Least absolute shrinkage and selection operator (lasso) regression was used to develop 

linear models with a training dataset (52 field plots) and evaluated on a testing dataset (28 field 

plots). Statistically significant relationships were found between all ALS datasets and the 

forestry metrics of interest. Predictive power decreased with decreasing ALS pulse density. 

Model accuracy was acceptable and consistent with similar prior studies. Results of this study 

suggest that ALS can be a useful tool for estimating black spruce canopy fuel attributes at a 40 

m2 resolution in Alberta, Canada. Maps of model outputs are a cost-effective alternative to field-
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based sampling to predict potential wildfire behaviour and support with fire-management 

decisions.  
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Chapter 1 Introduction 

1.1 Research Context 

Wildfire is a dominant natural disturbance in Canada’s boreal forest ecosystems (Rowe, 1983; 

Weber and Flannigan, 1997; McRae et al., 2001). Although wildfires play an important role in 

supporting healthy ecosystem functioning, they can have adverse effects on communities and 

other human values. Damages that accompany some of the most destructive wildfires in the 

Boreal Region have reached billions of dollars when factoring in insurable losses, wildfire-

suppression costs and recovery costs. Examples of wildfires in Alberta that resulted in losses that 

exceeded one billion dollars include the Flat Top Complex wildfires that affected the town of 

Slave Lake in 2011 (Flat Top Complex Wildfire Review Committee, 2012) and the Horse River 

Wildfire that affected Fort McMurray in 2016 (Insurance Bureau of Canada, 2016).  

 

To protect communities, infrastructure and other values at risk, wildfire behaviour models are 

used to predict the manner in which a given fire can be expected to spread (e.g., Van Wagner 

1987; Finney, 1998; Andrews et al., 2005). In addition, these models aid in informing 

operational fire management decisions, such as fire suppression tactics and evacuation 

recommendations. Moreover, these models are also used extensively in a wide range of strategic 

planning assessments and as inputs to research models (e.g., Linn et al., 2002; Parisien 2005). 

Information about the characteristics of live and dead biomass in an area (i.e., fuels) is a critical 

input to all fire behaviour models. Accurate fuel maps are especially critical when assessing 

wildfire risk within the vicinity of a community. Wildfire fuel maps utilized in wildfire 

behaviour models and strategic fire risk management and planning tools typically summarize 

fuel attributes into broad categories called fuel types due to the difficulty associated with directly 
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measuring fuel characteristics in the field across a landscape (e.g., Wilson et al., 1994; Chuvieco 

et al., 2003; Nadeau et al., 2005). Advancements in remote sensing technologies provide a less 

expensive alternative to field sampling and are able to describe the characteristics of flammable 

vegetation  in much more detail than categorical fuel types (e.g., Andersen et al., 2005; Erdody 

and Moskal, 2010; Skowronski et al., 2011; Hermosilla et al., 2014; Engelstad et al., 2019). 

Airborne Laser Scanning (ALS), a form of remote sensing that utilizes LiDAR (Light Detection 

and Ranging), is a promising new source of data for describing forest characteristics in dense 

stands, due to its ability to penetrate small openings in the canopy and describe the three-

dimensional structure of a forest (Vastaranta et al., 2012; White et al., 2016; Wu et al., 2016). 

This thesis evaluates the viability of using ALS to derive fine-scale fuel attributes of black 

spruce (picea mariana) stands. It also assesses the effect of ALS data resolution on model 

predictive performance.  

 

1.2 Fire Regime in the Canadian Boreal Forest 

 Fire processes in a given ecosystem are commonly referred to as the fire regime, which is 

typically described using a set of standard fire attributes characteristic of an area within a given 

period of time (Sugihara et al., 2006). Defining characteristics of a fire regime include the fire 

frequency, size, intensity, seasonality, type and severity (Merrill and Alexander, 1987). The 

boreal forest is a dominant fire regime in Canada that covers 270 million ha of land (NFI, 2013). 

Wildland fire is the most common form of natural disturbance within the Boreal Region and 

plays a critical role in healthy biotic and abiotic ecosystem functioning (Rowe, 1983).  
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In Canada between 2008 and 2018 there was an average of over 6000 wildland fires per year 

burning an average annual area of over 2.7 million ha (CIFFC, 2018). Most wildfires in boreal 

ecosystems are extinguished when they are relatively small with only 3% of fires growing larger 

than 200 ha; however, these large fires account for 97% of annual area burned within the Boreal 

Region (Stocks et al., 2002). On average, 0.7% of forested land in the Boreal Region burns 

annually (Stocks et al., 2002). As climate change continues to progress, the average annual area 

burned and number of large fires per year is expected to increase, particularly in the boreal 

(Hanes et al., 2018). 

 

Lightning and human caused ignitions are the two main mechanisms for wildfires starting in the 

boreal forest. Although lightning is the ignition source for only 35% of Canada’s fires, it is 

responsible for 85% of the area burned (Krezek-Hanes et al., 2011). This is likely because human 

caused ignitions tend to be closer to resources that can be used for fire suppression (Stocks et al., 

2002). The Canadian forest fire season generally begins in April and continues to mid-October 

(Stocks et al., 2002). Human caused ignitions are most common in the spring and fall months 

where lightning caused ignitions dominate the summer months (Stocks et al., 2002). 

 

There are three main classifications of wildfires: ground, surface and crown; and each type can 

contribute to different ecological functions (Stocks et al., 2002). Ground fires burn in the organic 

matter beneath the litter surface on the forest floor and are common in the boreal forest where 

there is abundant peat to keep the fire smoldering for lengthy periods of time. Dormant ground 

fires can smolder through the winter months and become active by igniting new surface fires in 

the spring. Surface fires consume low level vegetation, litter and duff at or above the forest floor. 
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Unlike ground fires, surface fires have a visible flame and are easier to extinguish. Ground and 

surface fires tend to spread relatively slowly, but can transition to a crown fire when surface 

combustion reaches critical intensities (Van Wagner, 1987). Involvement of crown fuels in 

combustion results in much higher intensities compared with surface fires and the intensities of 

crown fires exceed the capabilities of direct suppression along the fire front (Alexander, 1982; 

Hirsch et al., 1998). The boreal is characterized by crown or surface fires with a high enough 

intensity to kill entire stands, resulting in even-aged post-fire regeneration (Heinselman, 1981; 

Bonan and Shufart, 1989). These fires are necessary for healthy ecosystem functioning and play 

a critical role in regeneration (Zackrisson et al., 1996; Nguyen-Xuan et al., 2000; McRae et al., 

2001). For example, some species, such as Jack Pine (Pinus banksiana) are dependent on high 

intensity, stand-replacing fires as they have evolved to have serotinous cones, which require the 

heat of a fire to release their seeds (Heinselman, 1981). Wildfires can also expose nutrients and 

mineral soil which helps with forest succession (Rowe. 1983).  

 

Despite wildfires being recognized as a natural part of the boreal landscape, most provinces and 

territories in Canada aim to contain wildfires as soon as possible. This is because the risk of 

letting a wildfire burn unsuppressed is unacceptably high, due to the potential liability associated 

with adverse fire effects on public safety, property and other values (Martell, 2001). Wildfires 

can threaten human life, destroy infrastructure, increase soil erosion, decrease water quality and 

generate huge economic losses (Shakesby et al., 1993; Parise and Cannon, 2012; Moritz et al., 

2014; Reid et al., 2016). As a result, the benefit of accommodating wildfires naturally on the 

landscape is widely recognized by fire management agencies across Canada as an important 
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goal, but remains elusive in practice (e.g., Martell, 2001; Flannigan et al., 2009; Alberta 

Wildfire, 2019). 

 

1.3 Fire Environment and Behaviour 

Wildfire behaviour is commonly defined as “the manner in which fuel ignites, flame develops 

and fire spreads” (CIFFC, 2017). Wildfire behaviour is determined by three interacting factors: 

topography, weather and fuel. Topography describes the shape of the land and includes attributes 

such as slope, elevation and aspect. Topography is the most stable component of the fire 

environment where weather is arguably the most variable over time. Weather attributes include 

temperature, humidity, precipitation and wind speed. Weather greatly influences the moisture 

content of fuels and their ability to ignite and propagate a wildfire (Van Wagner, 1987; Van 

Wagner, 1993; Beverly and Wotton, 2007). Wildland fuels consist of live and dead biomass that 

are available to combust and contribute to the spread, intensity and severity of a forest fire 

(Anderson, 1981; Andrews and Queen, 2001; Arroyo et al., 2008). The vegetation type, loading, 

structure and continuity of fuel will affect fuel receptivity to ignition and the ability for a wildfire 

to spread (Anderson, 1981).  

 

Despite fuel being a main component of the fire environment, it can be quite difficult to describe 

and quantify (Keane et al., 2001; Arroyo, 2008). This is in part because there are so many 

physical characteristics that can be used to describe a given fuel complex (Keane et al., 2001). 

One way to describe fuel is to focus on size. Fine combustible materials, such as needles or dried 

dead leaves, respond faster to environmental conditions (Anderson et al., 1966; Fosberg, 1970) 

due to their higher surface-to-volume ratio. The higher surface-to-volume ratio enables quicker 
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endothermic preheating and speeds up the combustion process, making fine materials much 

easier to ignite than coarser materials such as tree boles or downed woody debris (Stocks et al., 

2004). The moisture content of these fine fuels will modulate their flammability (Beverly and 

Wotton, 2007). Expansive quantities of fine crown fuels (i.e., needles) in coniferous forests are 

highly combustible and therefore enable extreme fire intensities, whereas leafy, green vegetation 

in deciduous or mixedwood stands are resistant to burning due to their moisture content and only 

contribute to fire spread when leaves accumulate as dead, dried fuel on the forest floor. Coarser 

materials > 1.0 cm in diameter are often not fully consumed in a wildfire and do not make a large 

contribution to wildfire intensity (Stocks et al., 2004).  

 

Fuel can also be described by its vertical position above the ground and horizontal continuity 

across an area. Ground fuels consist of all combustible materials below the litter layer on the 

forest floor. Surface fuels, such as dead and downed woody debris, understory shrubs, mosses 

and litter, are combustible materials that are close to the forest floor. Canopy fuels consists of 

combustible materials over 2 m in height and are typically composed of a tree’s foliage and 

branchwood, but can also include mosses, lichen or other dead material (Keane, 2013). Ladder 

fuels provide a connection between the surface fuels and crown fuels and consist of taller shrubs, 

small trees and lichen for example. The vertical continuity of the fuel strata will affect fire 

behaviour and the presence of ladder fuels provides a path for a surface fire to transition into a 

crown fire (Van Wagner, 1977; Anderson, 1981). Horizontal continuity of fuels is also important 

to fire behaviour and affects the rate of and potential for fire spread (Anderson, 1981; Stephens, 

1998; Knapp & Keeley, 2006).  
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Another important characteristic of fuels that will affect wildfire behaviour is vegetation type. 

Some species have a chemical composition and structure that make them easier to ignite and 

spread fire. For example, black spruce trees have resinous needles and cones that contribute to 

flammability, as well as accumulations of dead branches that facilitates fire spread into the 

crown (Viereck and Little, 1972). The moisture content of fuel is also a key factor in fire 

behaviour. Depending on species type, time of year and age of the foliage, moisture content of 

fuel can vary significantly (Agee et al., 2002).  

 

1.4 Fuel Models and Mapping 

Fuel characteristics are a key determinant of fire behaviour and are therefore a required input to 

any fire behaviour model. Typical modelling parameters to describe canopy fuels include canopy 

height, canopy base height (CBH), canopy fuel load (CFL) and canopy bulk density (CBD) 

(Keane et al., 2001; Cruz et al., 2003). Canopy height affects wind trajectory and speed (Finney, 

1998) which will influence observed fire behaviour and affect the distance embers travel aloft 

(Chuvieco et al., 2003). Canopy base height is a measurement of the vertical separation between 

the ground and the live canopy fuel layers and is important for determining whether a surface fire 

will progress into a crown fire (Van Wagner, 1977). Canopy fuel load is a determinant of fire 

intensity and refers to the amount of fuel in the canopy that is available for combustion and often 

includes foliage and small branches (Stocks et al., 2004). Canopy bulk density describes the 

available canopy fuel per unit volume which will affect the rate of fire spread (Chuvieco et al., 

2003). These varied stand attributes have an important influence on wildfire behaviour but would 

be prohibitively costly and time consuming to measure in the field. Measuring fuel 

characteristics manually also results in a limited inventory of stand attributes across a landscape 
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(Andersen et al., 2005; Hermosilla et al., 2014). Due to their limited extent, field measurements 

are ineffective for capturing fine scale variability of fuels across large areas. Consequently, 

simplified representations of fuels are widely relied on in fire research studies and fire 

management applications. 

 

In the United States, fuel models are used to provide a generalized description of fuel properties 

that are important to wildfire behaviour (Keane et al., 2001). Fuel models can also be used to 

define categorical fuel types. Within a given fuel type, species type(s) and the form, size, 

arrangement and continuity of fuels is assumed to be relatively static (Anderson, 1981; Arroyo, 

2008). Fuel types are used as inputs into wildfire behaviour models. For example, in Canada and 

parts of the United States, the Canadian Forest Fire and Behaviour Prediction (FBP) System is 

used to generate quantitative estimates of the rate of fire spread, fire intensity and other fire 

behavior attributes specific to one of 18 possible fuel types (Forestry Fire Danger Group, 1992). 

This is one of several fire prediction modelling systems that uses inputs describing topography, 

weather and fuel moisture to predict how a wildfire will behave in a specific fuel type.  

 

The FBP System is used by Canadian fire managers to assess initial conditions at the site of a 

newly reported fire and estimate the potential for a fire to escape, given the predicted fire 

behaviour. Within the FBP System, fuel types are used to describe dominant vegetation types in 

Canada (Forestry Fire Danger Group, 1992). Although the FBP System has proven valuable for 

informing fire management decisions, it cannot be used with high precision to determine exactly 

how and where a wildfire will burn (Taylor & Alexander, 2016). This is in part because the 

model assumes uniform and continuous fuels and that the fuels of interest fit into one of the 18 
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benchmark fuel types. Studies show that even within the same FBP fuel type, the variability in 

stand structure can significantly affect crown fire intensity and the chances of a fire escaping 

containment (Lavoie, 2004; Johnston et al., 2015; Beverly, 2017). As a result, inaccurate 

predictions of wildfire behaviour may occur by not accounting for the structural variability of 

stand characteristics (Keane et al., 2012).  

 

Mapping fuel attributes over space provides fire researchers and resource managers forest 

structure information to support wildfire behaviour models (Keane et al., 2001; Andersen et al., 

2005; Hermosilla et al., 2014). In Canada, satellite image-based land cover classification, 

ecozone and ecoregion boundaries, and National Forest Inventory data are used to create FBP 

fuel type maps (Nadeau et al., 2005). Limited or outdated data for any of these sources could 

affect the reliability of the produced fuel grids (Nadeau et al., 2005). The operational FBP 

System fuel type grid resolution for Canada is 250 m although provinces may develop their own 

finer resolution grids. For example, Alberta uses a 1-ha fuel type grid for operations (Stockdale 

et al., 2018). This coarse classification and often outdated inventory information, can lead to 

incorrect fuel typing and therefore inaccurate fire behaviour predictions. 

 

The FBP System fuel types have been deeply integrated into fire management decision processes 

across Canada since 1984 (Stocks et al., 1989). There is no doubt that fuel typing has made an 

invaluable contribution to helping fire managers better understand how wildfire may behave 

(Stocks et al., 1989). That said, technology is improving and studies show that remote sensing 

technologies are now able to accurately measure and map over space fuels at high resolutions 

(e.g. Andersen et al., 2005; Erdody and Moskal, 2010; Hermosilla et al., 2014; Bright et al., 
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2017; Engelstad et al., 2019). The limitations of relying on simplified fuel types and ignoring 

variability in fuel structure within these broad categories, will eventually be overcome with 

advances in fuel mapping methods. Availability of better fuel data will enable development of 

new and improved fire behavior models and more realistic fire behaviour predictions.  

 

1.5 Introduction to Airborne Laser Scanning 

Airborne laser scanning (ALS) is a form of remote sensing that uses a laser mounted on an 

aircraft to map the surface of the earth. Airborne laser scanning has been used operationally in 

forestry since the early 2000s (White et al., 2016). It has the unique ability to capture more 

accurate 3D forest characteristics compared with other forms of remote sensing, making it an 

ideal technology for enhanced forest inventories and mapping forest characteristics across small 

and large scales (Dubayah and Drake, 2000; Lim et al., 2003; White et al., 2016; White et al., 

2017). Airborne laser scanning has been used extensively to summarize forest attributes such as 

stand canopy height, basal area and stem volume and is a well-established technology in forestry 

applications (Wulder et al, 2013; Næsset, 2014; White et al., 2016). In contrast, the use of ALS 

for wildfire management research, applications and planning remains relatively unexplored 

within the Canadian boreal forest context. 

 

An ALS system is composed of a Light Detection and Ranging (LiDAR) sensor, a GPS receiver, 

an inertial measurement unit (IMU), an onboard computer and data storage devices (Wulder et 

al., 2013).  The ALS system works by emitting a laser pulse from the airborne platform and 

measuring the time it takes for the energy of that pulse to be returned after hitting a reflective 

surface. In a forestry context this could be the ground, a branch, a shrub or other land-based 
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feature (White et al., 2013). The laser travels at the speed of light, such that accurate distance 

measurements can be obtained between the sensor and the reflected surface using the travel time 

of the laser to the ground and back. With the GPS receiver and inertial measurement unit, very 

accurate X, Y and Z locations can be defined for whatever surface receives and reflects the laser 

(White, et al., 2013). ALS systems are capable of transmitting and receiving up to 500 000 laser 

pulses per second which generates dense point clouds representing the forest beneath the ALS 

system (White, et al., 2013). In discrete-return systems, one laser pulse can also have multiple 

returns. This is when some of the energy is reflected back to the sensor, but some of the energy 

from the emitted laser continues to penetrate the canopy and is able to detect more objects on the 

way. The point clouds generated with an ALS system can be compared with field data to 

generate a model that predicts forest characteristics of interest. A robust model can then be 

applied to map these forest characteristics across a given area without requiring time- and 

resource-intensive ground-based field sampling campaigns.   

 

Andersen et al. (2005) was one of the first research groups to successfully relate ALS metrics to 

field-measured fuel data with the purpose of developing fuel maps that could be direct inputs 

into fire behaviour models. They used stepwise regression followed by cross-validation to create 

and test their models which were designed to make fuel maps of critical canopy fuel parameters 

over Pacific Northwest conifer forests. Numerous studies have since followed this approach for 

describing the variability of fuel characteristics over space (e.g., Skowronski et al., 2011; 

Hermosilla et al., 2014; Zhang et al., 2017). Many statisticians argue that stepwise regression 

tends to overfit models and should be used with extreme caution (Thompson, 1995; Babyak, 

2004;); however, other studies used alternative variable selection methods to relate ALS data to 
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field-measured fuel data and continue to find promising results (e.g., Hall et al., 2005; 

Skowronski, et al., 2007; Erdody and Moskal, 2010; González-Ferreiro et al., 2014; Botequim, et 

al. 2019). As technology and computer processing advances, machine learning is becoming a 

popular method for predicting forest canopy fuel attributes from ALS data (e.g., Jakubowski et 

al., 2013a; Bright et al., 2017).  

 

As ALS data becomes less expensive and easier to obtain, higher quality datasets are being 

produced. Interestingly, many studies show that even low point cloud resolutions (<1 first returns 

per m2) can have good relationships with forestry metrics important to wildfire behaviour 

(Botequim et al., 2019) or forestry metrics in general (Treitz et al., 2012; Jakubowski et al., 

2013b). The point resolutions required to generate reliable models ultimately depends on the 

forest structure and scale represented by the models.  

 

1.6 Black Spruce Stand Management  

One of the recommendations made by the Flat Top Complex Wildfire Review Committee after 

the devastation caused by the Flat Top Complex Wildfire on the town of Slave Lake, Alberta 

was to increase our understanding of “the contribution of black spruce as a source of extreme 

wildfire behaviour and spotting” (2012). Black spruce stands within the boreal forest are a highly 

combustible and structurally diverse fuel. Crown fires or surface fires with enough intensity to 

kill overstory trees are the most common types of fire for black spruce stands (Viereck, 1983). 

Black spruce stands are typically represented by the Boreal Spruce (C-2) fuel type within the 

FBP System. These fuels are characterized by canopies that extend to the forest floor and contain 

accumulations of dead branches and lichen (Forestry Fire Danger Group, 1992), adaptations that 
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allow for efficient transition of a surface fire into a crown fire (Viereck, 1983). Due to the high 

intensity crown fires characteristic of these stands, black spruce fuels are a significant challenge 

for fire suppression within much of Canada (Viereck, 1983).  

 

Evidence shows that the FBP System does not provide enough structural information to predict 

fire behaviour in black spruces stands with a high degree of precision. For example, Beverly 

(2017) used an indirect method to infer stand structure in black spruce based on the time elapsed 

since the last fire and showed this variable was a significant determinant of whether or not a fire 

in C-2 fuel will escape and become large, likely due to natural changes in fuel loads as the stand 

develops and ages. Johnston et al. (2015) analyzed black spruce stands in boreal bogs and 

measured canopy fine fuels in a chronosequence of stands consistent with the C-2 Boreal Spruce 

fuel type. The large variability in canopy bulk density measurements led Johnston et al. (2015) to 

conclude that stand structure would result in different fire behaviours in C-2 stands with different 

ages. Finally, Taylor et al. (2004) found that while fire spread in black spruce stands is highly 

dependent on wind conditions, it is also influenced by fuel characteristics. 

 

Managed stands introduce another source of variability in fuel structures that deviate from the 

standard natural forest types represented in the FBP System. Stand management through 

mechanical alteration (i.e., thinning, limbing) is increasingly used as a proactive method to 

reduce potential fire behaviour in the vicinity of high valued areas like communities. Mechanical 

thinning treatments typically involve reductions in stand density and limbing the bole of the tree 

to separate crown fuels vertically and horizontally in an effort to inhibit movement of a surface 

fire upwards into the canopy. Since 2012, when the Flat Top Complex Wildfire Review 
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Committee recommended increasing fuel management practices across the province of Alberta 

(particularly in black spruce stands), communities have increasingly applied for funding to 

conduct vegetation management treatments. Between 2011 and 2017 almost $43 million in 

funding was distributed to over 50 communities in Alberta for vegetation management projects 

or related wildfire community safety initiatives (Alberta Agriculture and Forestry, 2017). 

Unfortunately, managed stands are not represented by any FBP System fuel types, such that 

expected fire behaviour in these stands is largely unknown. Anecdotal evidence from wildfires 

(Saperstien et al., 2014; Government of Saskatchewan, 2015; Perrine 2016) and prescribed fires 

(Butler et al., 2013; Miller 2016) suggest that thinning treatments in black spruce stands reduces 

observed fire behaviour, an outcome that is also supported by modelling studies (Little et al., 

2019). Unfortunately, there are no existing models for predicting how fires will behave in 

mechanically altered Canadian fuel types. 

 

Airborne Laser Scanning offers an opportunity to describe black spruce forest characteristics 

important to wildfire behaviour at a high resolution. This may help fire management personnel 

better understand what structural attributes cause black spruce stands to show extreme fire 

behaviour. Airborne Laser Scanning has been used for documenting conditions in other stand 

types with notable success; however, when building models, it is common practice to account for 

species type (White et al., 2017) and to date, no prior studies have investigated the viability of 

using ALS to derive fuel attributes in black spruce stands. Treitz et al. (2012) and Luther et al. 

(2013) showed that ALS data could successfully predict wood quality and quantity attributes of 

black spruce stands, but did not measure characteristics important to wildfire behaviour. By 

addressing this research gap, high-precision and high-resolution maps that reflect the spatial 
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heterogeneity of a forest could allow land managers to better model fire behaviour, smoke 

emissions and prioritize hazardous fuel reduction treatments (Andersen et al., 2005; Erdody and 

Moskal, 2010; Skowronski et al., 2011) and efficiently monitor changes in stand conditions over 

time.   

 

1.7 Research Objectives 

This thesis explores the use of ALS for mapping the structural attributes of black spruce stands 

that are relevant to wildland fire behavior. The following specific research questions are 

addressed: (1) Are ALS data suitable for estimating forest stand metrics relevant to wildland fire 

behaviour in black spruce stands? and (2) What is the influence of ALS pulse density on model 

performance? To achieve these objectives, field plots were established in two study areas in the 

province of Alberta in both natural and hand-thinned black spruce stands. Airborne laser 

scanning data was collected over these study sites and split into three different pulse density 

resolution datasets. Predictive models were developed and evaluated for each forestry metric of 

interest (CBD, CFL, stem density, height and CBH) and for each of the three-pulse density 

resolution point clouds. 
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Chapter 2 Data and Methods 

The methods for this study were developed to evaluate the suitability of using ALS data to 

predict forest stand metrics related to fuel flammability and to assess importance of ALS pulse 

density in deriving fuel measures for properties of black spruce (Picea mariana) stands. Field 

measurements were related to ALS data using lasso regression and models were evaluated on a 

testing dataset. A schematic overview of the methods used in this study is shown in Figure 2.1 

summarizing the step-by-step sequence of the analysis detailed in the remainder of this chapter. 

In total, 15 models were created for this study, three for each of five canopy fuel metrics of 

interest.  

 

2.1 Study Area 

Two study sites were selected to represent the structural variability of black spruce stands within 

Alberta’s boreal forest: one site was established at the Pelican Mountain Research Site (hereafter 

referred to as Pelican Mountain) and a second site was established within the community of 

Conklin (Figure 2.2). Locations were selected based on three criteria: presence of abundant black 

spruce stands; representation of a range of stand structures (e.g., unmanaged versus thinned and 

pruned states); and logistical ease of accessing the site and establishing field sampling plots. 

Both sites were located in the Boreal Natural Region, which covers 58% of the province and 

contains a variety of deciduous, mixedwood and coniferous forest ecosystems characterized by 

short summers and long and cold winters (Natural Regions Committee, 2006).  

 

The Pelican Mountain Research Site spans 150 ha and was established by the agency responsible 

for fire management in the province, the Alberta Wildfire Management Branch, to evaluate the 
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effectiveness of fuel reduction treatments in black spruce stands (Figure 2.3). The site is 

composed almost entirely of black spruce trees, with pockets of aspen (Populus tremuloides), 

balsam poplar (Populus balsamifera), tamarack (Larix laricina), paper birch (Betula papyrifera) 

and willow (Salix spp.). Pelican Mountain has predominantly flat terrain, with elevations ranging 

from 590 m to 657 m above sea level. 

 

Conklin is a hamlet in northern Alberta (Figure 2.4) with a land area of 16.3 km2 (Statistics 

Canada, 2016) that contains and is surrounded by forest cover that includes mixedwood, 

deciduous, black spruce and other conifer stands, as well as some grassland areas. Elevations 

range from 530 m to 624 m above sea level. Due to the high fire risk associated with the black 

spruce stands surrounding the community, many stands were thinned and pruned in fuel 

reduction treatments between 2001 and 2011 with the intention to decrease the potential for 

extreme wildfire behaviour. Stands thinned and pruned at Conklin are representative of a range 

of older managed forest stands that can be found throughout Alberta. These managed stands also 

approximate the structure of black spruce stands that are naturally open.  

 

This study focused on stands within the Pelican Mountain and Conklin research sites that fit the 

descriptions of the C-2 Boreal-Spruce fuel type of the Canadian Forest Fire Behaviour Prediction 

System (Forestry Canada Fire Danger Group, 1992). Canopies were almost purely composed of 

black spruce trees. Dead branches were often draped with bearded lichens and tree crowns in 

unmanaged stands extended to or near the ground. The forest floor was often a nearly continuous 

cover of feather mosses, dominated by big red stem moss (Pleurozium schreberi) with occasional 

small hummocks of sphagnum moss, primarily common brown sphagnum (Sphagnum fuscum). 
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Surface vegetation was dominated by Labrador tea (Ledum groenlandicum), lowbush cranberry 

(Vaccinium vitis-idaea), blueberry (Vaccinium myrtilloides) and bog cranberry (Vaccinium 

oxycoccos). Downed woody debris was largely absent in the natural stands, with a moderate 

presence in treated stands. Most sites had a thick organic layer, often > 40 cm in depth.  
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Figure 2.1 Schematic diagram of the data processing and modeling methods used to compare 

airborne laser scanning (ALS) data to field measurements. 
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Figure 2.2 (a) Location of the study area within Alberta, Canada and (b) location of the Pelican 

Mountain Research Site and community of Conklin within the study area. 
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Figure 2.3 The Pelican Mountain Research Site is composed of unmanaged and managed black 

spruce forest. Managed forest stands have undergone stem thinning and have had the lower 

branches removed on remaining trees. Sampling plots were established to capture the full 

structure variability of black spruce stands across the research site.  
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Figure 2.4 The Conklin community study area is surrounded by managed and unmanaged forest. 

Managed forest stands have undergone stem thinning and have had the lower branches removed 

on remaining trees. Sampling plots were established to capture the full structure variability of 

black spruce stands across the research site.  
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2.2 Field-based Fuel Estimates 

A total of 59 plots were established at Pelican Mountain including 31 in natural stands and 28 in 

managed stands that were thinned and pruned to reduce fuel loads prior to sampling. Tree core 

samples at 0.25 m in height were taken at each plot indicating that tree age varied from 40 to 100 

years. Tree ages were not adjusted for height above ground in age. Ground observations of stand 

structure provided further evidence that multiple historical fires affected the research site. 

Sampling took place over three years between April and August of 2017 and May and August of 

2018 and 2019. Measurements in managed stands occurred 0-2 years post-treatment.  

 

Twenty sampling plots were established throughout the Conklin community in August 2018 and 

August 2019. Eight were located in natural black spruce stands and 12 were located in managed 

black spruce stands. Based on tree core samples taken at each plot location, stand age varied 

from 40 to 110 years.  

 

Development of effective models with ALS data, is dependent on field plots that capture the full 

range of variability of stand characteristics being analyzed (White et al., 2017). Plot locations 

were selected using imagery and knowledge gathered through site visits in an effort to represent 

a wide variety of stand structures associated with natural and managed black spruce stands. 

Although other boreal stand types were present at both study sites, field measurements were 

limited to black spruce stands. Detailed descriptions and assumptions pertaining to calculations 

used to derive canopy characteristics are outlined below.  
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A total of 79 circular fixed inventory plots were established across the two study areas in natural 

and managed black spruce stands between April 2017 and August 2019. Circular plots are 

recommended when relating ground measured data to ALS data as edge effects are minimized 

(Frazer et al., 2011). Plot positions were determined to a horizontal accuracy of less than 0.6 m 

using a Trimble® Geo7X global navigation satellite system device with a Trimble® Tempest 

Antenna (Sunnyvale, CA). Trimble Pathfinder Office software was used for differential post-

processing. Either Slave Lake or Fort McMurray base stations were used for correcting the 

coordinates, depending on which base station yielded higher horizontal accuracy. Average 

horizontal accuracy for the plot center coordinates was 0.39 m.  

 

Plot size is an important parameter when developing ALS models (Frazer et al., 2011). Large 

plot sizes tend to minimize edge effects and decrease co-registration error (Frazer et al., 2011); 

however, when using the area-based approach, it is also critical to maintain consistency between 

the ground plot size and the grid resolution of the desired raster output of the modelled forest 

attributes (White et al., 2017). Consequently, to generate high-resolution spatial estimates of fuel 

characteristics, a small ground plot size was required. Although smaller plot sizes introduce 

potential error within the model, a number of studies have used very small ground plot sizes to 

generate wall-to-wall metrics across their study area with ALS data. Greaves et al. (2016) used 

circular ground plots with only a 0.45 m radius to capture shrub biomass estimates. Estornell et 

al. (2011) used plots with a minimum radius of 0.5 m to map shrubs in small forest stands. A 

study by Popescu et al. (2011) mapped more complicated forest structure using small ground plot 

sizes. In that study, Geoscience Laser Altimeter System (GLAS) data and ALS data with 5.64 m 

radius ground plots were used to calculate wall-to-wall above ground biomass estimates for 
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young pine stands. Zhao et al. (2009) also mapped forest biomass using an individual tree-

delineation approach with 5.64 m radius plots. The sampling radius for ground plots in this study 

was either 3.57 m (76 plots) or 5.64 m (3 plots). The 5.64 m sampling radius was used when 

fewer than 20 trees occurred within the 3.57 m sampling radius area. Reliance on a variable 

radius plot when using the ABA to relate ground data to ALS data is usually not recommended 

(White et al., 2017), but was necessary in this study to efficiently capture canopy characteristics 

in low density stands.  

 

Field crews from the Alberta Wildland Fuels Inventory Program (AWFIP) assisted with data 

collection. The AWFIP is run by the Alberta Wildfire Management Branch, the agency 

responsible for fire management in Alberta. Ground measurements were collected following the 

standard AWFIP sampling protocol. For each sampling area, all trees greater than 1.37 m in 

height were measured to record species, status (live or dead), height, live crown base height and 

diameter at 1.37 m (DBH). For trees with a DBH of 9.0 cm or greater, dead crown base height 

was also measured. Canopy height, canopy fuel load (CFL), canopy bulk density (CBD), canopy 

base height (CBH) and stem density were calculated using field measurements for each plot in 

the statistical software package R (R Core Team, 2018). 

 

Canopy Height 

Canopy height (m) was defined as the tallest tree within the sampling area and was measured 

using a Haglöf Sweden® Vertex instrument.  

 

Canopy Fuel Load 
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Canopy fuel load (CFL, kg m-2) was defined as crown biomass available to be consumed in the 

flaming stage of a passing crown fire per unit area. There is no consensus within the scientific 

community as to what components of the canopy should contribute towards the CFL 

measurement (Arroyo et al., 2008). Some researchers suggest that live crown foliage is the main 

source of fuel for a crown fire (e.g., Van Wagner, 1977), while others argue that lichen, moss 

and branch wood should also be considered (e.g., Alexander et al., 2004; Stocks et al., 2004). 

Based on documented fuel consumption for crown fires in stand types similar to black spruce, I 

opted to include foliage and fine branchwood less than 1.0 cm in diameter in my CFL 

calculations. This assumption follows Stocks et al. (2004) which reports fuel consumption for 

different fuel size classes at the International Crown Fire Modeling Experiment (ICFME), 

located in the Northwest Territories, Canada. They found that on average, 95% of the mass 

consumed in the overstory canopy during a crown fire was from foliage and woody material less 

than 1.0 cm in diameter (Stocks et al. 2004). Linn et al. (2012) modeled the ICFME fires with 

FIRETEC (Linn, 1997), a physics-based, 3-D stand-level wildfire behaviour model, using CFL 

values from total loads of needles and roundwood up to 1 cm in diameter. This assumption was 

also used by Johnston et al. (2015) to calculate CFL values in black spruce forested bogs. The 

purpose of this study was to evaluate the effectiveness of using ALS data to describe forest 

characteristics important to flammability and potential wildfire behaviour. Assumptions about 

CFL composition used in this study differ from those used in the FBP system, where only foliage 

mass counts towards canopy fuel load values. Consequently, direct comparisons of fire 

behaviour modelled using the CFL values produced in this study with fire behaviour predicted 

using the FBP system are not possible.  
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Published allometric equations based on DBH and species type were used to calculate the mass 

of available canopy fuel for each tree over 1.37 m in height (Table 2.1). Canopy fuel load 

(kg m-2) for the plot was then calculated as follows (Eq. 1): 

CFL =  
∑ 𝐶𝐹𝑖

𝑎
 ,  [Eq. 1] 

where CFi is the mass of canopy fuel contributed by an individual tree in kg and a is the 

sampling area of the plot (m2). For dead trees it was assumed that no foliage was present; 

however, dead, fine branchwood less than 1.0 cm was included. Although plots used in this study 

were almost entirely composed of black spruce, occasionally other species were found within the 

plot. Observed species considered to contribute to canopy fuel load are listed in Table 2.1 along 

with the allometric equations used to estimate their contribution to the plot level fuel load. Paper 

birch, trembling aspen, balsam poplar, tamarack and willow species were also found within some 

plots, but it was assumed that these hardwood trees and shrubs were insignificant contributors to 

available canopy fuel load and were omitted from analysis. This assumption is consistent with 

other widely used models including the Fire and Fuels Extension (FFE; Reinhardt and Crookston 

2003, Rebain et al., 2010) contained within the Forest Vegetation Simulator (FVS; Wykoff et al., 

1982). The FFE-FVS is used to simulate fuel dynamics and potential fire behaviour for different 

vegetation types in the United States and parts of Canada. It is one of the most commonly used 

models to simulate wildfire effects and has proven to be a valuable tool for informing fire 

management and response decisions (Barker et al., 2019).  
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Table 2.1 Allometric equations used to calculate an individual tree’s canopy fuel load (CFi) 

based on tree diameter at breast height 

Species Source for Calculating 

Canopy Fuel Load 

Equation 

Black spruce 

(picea 

mariana) 

Alexander, 2004 CFi = 0.23317(DBH)1.25384 + 0.13267(DBH)1.11546 + 

0.05553(DBH)1.12281 + 0.04995(DBH)1.29626 + 

0.000167(DBH)3.81224 

   

Jack pine 

(pinus 

banksiana) 

Alexander, 2004 CFi = 0.00672(DBH)2.25699 + 

0.00478(DBH)2.08881 + 0.00824(DBH)1.88877 + 

0.00105(DBH)2.43234 + 0.00161(DBH)2.30592 

   

Lodgepole 

pine (pinus 

contorta) 

Johnson et al., 1990 CFi = 0.0525(DBH)1.6057 + 0.0533(DBH)1.8052 + 

0.1369(DBH)1.3553 

   

White spruce 

(picea glauca) 

Johnson et al., 1990 CFi = 0.6373(DBH)1.1457 + 0.0869(DBH)1.8938 + 

0.0304(DBH)1.7481 

 

 

Canopy fuel loads predicted from allometric equations based on DBH had to be adjusted for 42 

plots in managed stands where the trees had been pruned during fuel reduction treatments. There 

are no strict recommendations for how fuel reduction treatments are carried out across Canadian 

boreal forests (Butler et al., 2013), but typically the guidelines set out by FireSmart Canada are 

followed. FireSmart Canada recommends thinning trees to a minimum 3 m spacing between 

crowns and pruning remaining trees by removing all live and dead branches at least two meters 

from the ground (Vicars and Luckhurst, 1999). The purpose of these treatments is to remove the 

amount of fuel available to burn in a crown fire and to separate ground and canopy fuels making 

it more difficult for a surface fire to transition into a crown fire (Vicars and Luckhurst, 1999). 

These guidelines were followed during fuel treatments of the managed stands included in this 

study. In both study areas, any biomass mechanically removed during the treatment was piled 

and burned on site. As a result, the fuel load for each pruned tree was less than what would be 
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predicted using allometric equations. To account for this, a regression comparing tree height and 

live crown base height was made for all live natural black spruce trees measured in this study 

(Figure 2.5). Live crown base height was measured to the average height above the ground 

where live foliage began. The relationship between field-measured tree height and live crown 

base height was used to estimate the pre-treatment crown base height for each tree in managed 

stands using the following equation (Eq. 2): 

𝐶𝐵𝐻1 = 0.53 × ℎ + 0.15,  [Eq. 2] 

 where h is the height of the tree (m) and CBH1 is the predicted crown base height for the tree 

before pruning took place. The predicted crown fuel load from all trees in managed stands based 

on DBH was then adjusted by the percent of canopy removed using the following equation 

(Eq. 3):  

𝐶𝐹𝑖 =  𝐶𝐹𝑝𝑖  ×  [(ℎ − 𝐶𝐵𝐻2) ÷  (ℎ − 𝐶𝐵𝐻1)], [Eq. 3] 

where CFpi is the mass (kg) of canopy fuel predicted using the allometric equations from Table 

2.1 and CBH2 is the recorded crown base height for the tree post-pruning (m). If a post-treatment 

tree had a CBH1 greater than CBH2, then no adjustment was used and CFi was calculated solely 

on the allometric equations from Table 2.1. It should be noted that CBH1 values for dead trees 

were calculated using the same method as for live trees. This was because the sampling protocol 

did not involve collecting crown base height information for dead trees with a DBH below 

9.0 cm and therefore a reliable regression could not be created. Given that only 32 trees out of 

the 546 trees measured in managed sites were classified as dead, the effects of this assumption 

would be minimal. An important assumption is associated with Equation 3, where it is assumed 

that no fuel would contribute to the canopy fuel load under the predicted crown base height. For 

live trees, this means that if there were dead branches beneath the live crown base height, it was 
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assumed they did not contribute to the available canopy fuel load. This assumption could result 

in overestimates of canopy fuel loads in managed stands.  

 

Figure 2.5 Relationship between tree height and live crown base height for all black spruce trees 

from unmanaged stands used in this study. 

 

Canopy Bulk Density 

Canopy bulk density (CBD, kg m-3) was defined as the amount of fuel available to burn per unit 

volume and was calculated following the same methodology as the FFE-FVS (Reinhardt and 

Crookston, 2003; Rebain et al., 2010). For each individual tree, a uniform distribution of fuels 

was assumed between the crown base height and height of the tree. The crown base height was 

defined as the live crown base height for live trees and dead crown base height for dead trees. 

Since only dead trees with a DBH of 9.0 cm or greater had the dead crown base height recorded, 

dead crown base height was estimated using Equation 2 for dead trees with a DBH less than 

9.0 cm. Using the crown position above the ground, the fuel density for all trees within the plot 

was summed in 0.3 m horizontal increments from the ground to the top of the canopy (Figure 
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2.6). Canopy bulk density was defined as the maximum 4.6 m running mean of crown fuel 

density for the plot. It should be noted that the FFE-FVS only counts conifer trees over 1.8 m tall 

towards canopy fuels (Rebain et al., 2010). In this study a slightly shorter threshold of 1.37 m is 

used because black spruce stands are typically stunted due to poor growing conditions, yet 

smaller trees still contribute significantly to the canopy (Johnston et al., 2015). A number of 

assumptions were made that may affect CBD values. Firstly, CBD was calculated based on the 

canopy fuel load values. The canopy fuel load values were derived from allometric equations and 

further assumptions as to what components of a forest should actually contribute to the canopy 

fuel load. Any errors or false assumptions would be propagated in calculated CBD values. 

Secondly, by evenly distributing canopy fuel load throughout the “depth” of a tree’s canopy, 

CBD could be overestimated at the top of the tree and underestimated near the base. A study by 

Ex et al. (2016) found that the FFE-FVS underestimated CBD values by about 10-30% for even-

aged interior western conifer stands in the United States when using uniform canopy fuel load 

distributions compared to nonuniform distributions. Finally, CBD could also be overestimated 

because the crown base height values used for live trees assumes that there are no dead branches 

that could contribute to the available canopy fuel load beneath this height. If this assumption is 

false, then the “depth” of the canopy would be too short resulting in a larger calculated CBD 

value. To mitigate these assumptions in the future, destructive samples could be collected to 

create a vertical fuel density profile, such as in Linn et al.’s study (2012) for the ICMFE site. 

Although Alexander et al. (2004) did create vertical fuel load and density profiles for jack pine 

and black spruce stands for at ICMFE, there was significant variation in the amount of fuel 

contributed by black spruce trees across their plots. Because of this, their vertical fuel profiles for 

black spruce stands were not deemed suitable for this study. Regardless of the assumptions used 



32 

 

for estimates, CBD values should always be used with caution as there is no published theory, 

model or empirical data that provides a critical CBD value that is necessary to propagate a fire 

vertically through the crown (Alexander et al., 2004; Werth et al., 2016).  

 

Canopy Base Height 

Crown base height (CBH, m) is easy to measure for an individual tree, but it is much more 

difficult to quantify canopy base height (CBH) for an entire stand (Scott and Reinhardt, 2001). In 

a wildfire context, CBH represents the height at which there is sufficient canopy fuel for a 

surface fire to transition into a crown fire. In the FFE-FVS model, CBH is identified using the 

vertical fuel density profile for calculating CBD (Figure 2.6). After applying a 0.9 m running 

mean, CBH is identified as the lowest height that the 0.011 kg m-3 threshold value is passed 

(Reinhardt and Crookston, 2003; Rebain et al., 2010). This value was chosen rather arbitrarily by 

Scott and Reinhardt (2001) and has been repeatedly used despite the lack of evidence to show it 

is an appropriate threshold (Cruz and Alexander, 2010). Reinhardt et al. (2006) acknowledge that 

the 0.011 kg m-3 threshold was “not based on any kind of combustion physics”, but continued to 

use it because “it seems to perform well.” Due to the lack of empirical information to support 

this approach, Van Wagner’s (1977) simpler approach to defining CBH was used instead based 

on the average height from the ground surface to the live crown base height. Given that the live 

crown base height was measured for every live tree in the sampling area, minimal assumptions 

were needed when defining this parameter. To further support this method, Cruz and Alexander 

(2010) found that using Scott and Reinhardt’s (2001) CBH definition over Van Wagner’s (1977) 

led to an underprediction of potential crown fire behaviour in conifer forests of western North 

America. Canopy base height values calculated for this study should be used with caution as the 
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influence of ladder fuels which can help propagate a surface fire into a crown fire was not 

accounted for.    

 
Figure 2.6 The vertical distribution of canopy fuel calculated using FFE_FVS methods. Canopy 

bulk density is defined as the maximum of the 4.6 m running mean and canopy base height is 

defined as the height where the 0.9 m running mean exceeds the 0.011 kg m-3 threshold. 

 

Stem Density 

Finally, stem density (stems ha-1) was calculated using all trees over 1.37 m tall within the 

sampling area. All field measurements for this study were conducted within at least 15 months of 

ALS data acquisition. Given that black spruce stands grow quite slowly it was assumed that no 

significant changes took place in the study area and the ALS data represents the stand at the time 

of measurement.  
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2.3 Airborne Laser Scanning (ALS) Data 

Airborne Laser Scanning data for forest inventory is often analyzed using one of two techniques: 

the area-based approach (ABA) or the individual tree detection (ITD) approach (Lim et al., 2003; 

Reutebuch et al., 2005; Wulder et al., 2008; Vauhkonen et al., 2011; Vastaranta et al., 2012). The 

ABA is the most common manner of utilizing ALS data to describe forestry metrics (Vastaranta 

et al., 2012). The ABA entails developing a predictive model that relates statistical ALS metrics 

to field based measurements (White et al., 2017). Once a relationship is estimated, the model can 

be used to map predicted forestry attributes over the entire area where ALS data were collected 

using some form of tessellation, often a raster. This is one of the key advantages of using remote 

sensing data in comparison with classic field-based measurements (Wulder et al., 2013). The 

ABA allows detection of detailed, within-stand variability for the entire area, rather than relying 

on a single field plot to represent stand-scale characteristics (White et al., 2017). In addition, the 

ABA is functional across a variety of scales, including plot, stand or regional extents (Wulder et 

al., 2013). The ABA approach has become the standard operational method to process and 

analyze ALS data (White et al., 2017).  

 

As ALS technology improves, the ITD approach has gained more attention as a viable method 

for describing forest characteristics (Kaartinen et al., 2012; Zhen et al., 2016). The ITD approach 

attempts to identify and distinguish individual trees within a forest stand, usually above some 

height threshold (e.g. 5- 10 m). Most ITD approaches find a maximum in the canopy height 

model derived from the ALS point cloud to identify individual trees and then segment the trees 

based on the predicted crown edge (Hyyppä et al., 2008; Vauhkonen et al., 2011; Vastaranta et 

al., 2012). Multiple ITD approaches have been used, but comparisons of derived algorithms are 
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complicated by the lack of standards for assessing accuracy; further, algorithms effective in one 

stand type may not be equally effective in others (Ke and Quackenbush, 2011; Kaartinen et al., 

2012; Zhen et al., 2016). Research to date into ITD using ALS data has produced encouraging 

results (e.g., Breidenbach et al. 2010; Vauhkonen et al., 2011; Mohan et al., 2017), but evidence 

suggests performance is sensitive to stand density, configuration and structure (Breidenbach et 

al., 2010; Vauhkonen et al., 2011; White et al., 2017). Compared with ABA methods, ITD 

typically requires a higher density point cloud, which was cost prohibitive in the early years of 

ALS (Vastaranta et al., 2012). Although point densities can now be collected in much higher 

resolution, the ITD is still considered a developing research approach in comparison with the 

operationally-established ABA method (White et al., 2017). In addition, the raster-based output 

of ABA is intuitive and easily integrated with other spatial data. In this study, the ABA was 

utilized to describe forest metrics due to its status as an established operational tool.  

 

Discrete return multi-spectral, ALS data were acquired in 2018 for Conklin and Pelican 

Mountain on August 18th and 19th, respectively, using a Teledyne Optech Titan multispectral 

sensor mounted on a Piper Navajo aircraft. This system emits three independent laser pulses in 

the 1550 nm (short wave infrared), 1064 nm (near infrared) and 531 nm (green) wavelengths. 

Metadata for the LiDAR system settings, flight parameters and data are shown in Table 2.2. The 

University of Lethbridge ARTEMis lab collected and preprocessed the data using the LiDAR 

Mapping Suite (LMS, proprietary software from Teledyne Optech) to generate a point cloud for 

each channel. After block adjustment, point cloud height accuracy had a delta height RMSE of 

3.5 cm and 3.1 cm for Pelican Mountain and Conklin, respectively. To create a bare-earth digital 

elevation model (DEM), returns presumed to be measurements of the terrain surface were 
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classified as ground points for the 1064 nm channel only. Point cloud data were delivered in 

LAZ file format. The LASzip application (Version 3.2.9; Isenburg, 2018) was used to convert 

the LAZ data into LAS files for further processing. FUSION (Version 3.80, McGaughey 2018a), 

an open source software specialized for LiDAR data processing, was used as the main software 

for manipulating LiDAR data in this study.  

 

Three different point cloud datasets were utilized in this study to evaluate how point cloud 

density can affect the predictive power of ALS models. The first point cloud represents a high-

resolution dataset with a mean density of 10.5 pulses per m2 and 11.3 pulses per m2 for Pelican 

and Conklin, respectively. This point cloud was created by merging the point clouds from all 

three of the multispectral channels using the MergeData tool within FUSION. The second point 

cloud represents an intermediate point cloud resolution with a mean point density of 4.4 pulses 

per m2 and 4.7 pulses per m2 for Pelican and Conklin, respectively. It consists of only returns 

from the 1064 nm channel, which is the wavelength typically used in single-channel LiDAR 

systems (Okhrimenko et al., 2019). The third point cloud represents a low resolution dataset and 

one that equals the lowest sampling intensity of ALS data collected by the Government of 

Alberta for the province between 2003 and 2014. To obtain the desired resolution, the point 

cloud from the 1064 nm channel was thinned to 1 pulse m-2 using the ThinData tool within 

FUSION. Only the 1064 nm channel was used, rather than all three multispectral channels, to 

align with the ALS data collected by the Government of Alberta.  
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Table 2.2 Summary table of Airborne Laser Scanning flight parameters and system settings 

Parameter Value 

Study Area Pelican Mountain Conklin 

Area, km2 1.5 16.5 

   

Date of Survey 19-August-2018 18-August-2018 

   

LiDAR Sensor Channels 

(C1, C2, C3) 

Teledyne Optech Titan 

1550 nm, 1064 nm, 532 nm 

Teledyne Optech Titan 

1550 nm, 1064 nm, 532 nm 

   

Camera Sensor CM-6500 (35 mm) CM-6500 (35 mm) 

   

Survey Altitude, AGL 1000 m 1000 m 

   

PRF (total/per channel) 300 000/100 000 300 000/100 000 

   

Scan Frequency 32 32 

   

Scan Angle (full), degrees 50 50 

   

Side Overlap (planned) 50% 50% 

   

Camera Overlap (along, 

across) 

30%, 50% 30%, 50% 

   

Aircraft Speed, m/s 68 70 

   
   

Point Density, Planned 

Single Returns (total/per 

channel), points/m2 

9/3 9/3 

   

Point Density, Multiple 

Returns (all, C1, C2, C3) 

10.5, 4.8, 4.4, 1.3 11.3, 5.1, 4.7, 1.5 

   

Datum NAD83 CSRS (Epoch 2002), 

UTM zone 12, ellipsoidal 

heights 

NAD83 CSRS (Epoch 2002), 

UTM zone 12, ellipsoidal 

heights 
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The GridSurfaceCreate tool within FUSION was used to generate a 1-m resolution digital 

elevation model (DEM) for each ALS point cloud. This tool works within a specified grid system 

by averaging the elevation associated with each LiDAR point in the cell. Parameters were set so 

that only classified “ground” points were used for this calculation. If no ground points were 

within the designated cell boundary, the elevation value was interpolated using the distance-

weighted average of the eight surrounding cells.  

 

Processing and analysis of ALS data largely followed the work and recommendations of White 

et al. (2013, 2017). In order to compare ALS point cloud metrics to field sampling 

measurements, each point cloud was clipped to the sampling boundary of the field plots. This 

process involved transforming the plot coordinate information from the WGS84 geographic 

coordinate system to the NAD83 CSRS (epoch 2002), UTM zone 12 datum and projection, 

which matches the ALS data format. This transformation was performed in R using the “rgdal” 

package and spTransform function (Bivand, 2019). Within ArcGIS Desktop v.10.7.1 (ESRI, 

2019), plot coordinates were buffered by their sampling plot radius and exported as a shapefile. 

Using the PolyClipData tool within FUSION, each of the three density ALS point clouds were 

cut to the boundary of every sampling plot area. Each return within the point clouds had an 

elevation above sea level recorded. To make plot-to-plot comparisons, the data were normalized 

so point elevations were in height above the ground. This was completed using the associated 

point cloud’s DEM and the ClipData tool with the height switch in FUSION. Finally, ALS plot 

metrics were calculated using the CloudMetrics tool in FUSION. Returns of LiDAR pulses that 

were less than 1.37 m from the ground were excluded to ensure only data points related to the 

canopy were used to describe canopy characteristics following White et al. (2017). Strata subset 
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parameters were also calculated between default strata heights of 0.15, 1.37, 5, 10 and 20 m. Any 

points with a height higher than 50 m above the ground were considered errors and were 

excluded from analysis. The resulting output from the CloudMetrics tool was a comma separated 

value (CSV) file that contained a variety of ALS statistical parameters associated with each field 

plot. 

 

2.4 Model Development 

Modeling efforts should be guided by the principle of parsimony; however, when hundreds of 

possible explanatory variables are available, models can quickly become overly complicated. 

White et al. (2017) outline some of the common techniques used to develop a predictive model 

using the area-based approach (ABA). They summarize two main approaches: parametric and 

non-parametric. The two most commonly used forms of parametric methods are ordinary least-

squares (OLS) regression and Seemingly Unrelated Regression (SUR). In contrast, the most 

commonly used non-parametric methods include k-nearest neighbours (k-NN) and random 

forest. When comparing OLS and SUR, Næsset et al. (2005) recommended OLS as it performed 

comparably to SUR, but is simpler and easier to implement. While non-parametric methods have 

proven successful for modelling forest attributes, they are considered a “black box” approach 

where the inputs and outputs of the model are known, but the internal workings are not. In 

addition, non-parametric methods tend to require larger datasets to produce accurate results and 

cannot be extrapolated past field measured values (Penner et al., 2013; White et al., 2017). Due 

to the limited number of sampling plots in this study and the objective of developing a simple 

model for operational use, a linear parametric method was deemed the most suitable.  
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With parametric regression, too many explanatory variables can result in unstable predictions 

due to multicollinearity (White et al., 2013). In addition, the more predictor variables used in the 

model the more complicated it gets, violating the goal of parsimony. The CloudMetrics tool in 

FUSION calculated 115 metrics for each plot, many of which are related to each other. This is 

clearly too many variables to include in a simple linear regression. Li et al. (2008) found that 

strong regression models to predict aboveground biomass can be largely explained with only the 

mean height, coefficient variation of height and canopy LiDAR point density metrics. Often, 

researchers manually subset these large datasets by variables they think may be important in 

predicting the response variables (e.g., Andersen et al., 2005; Erdody and Moskal, 2010; 

Skowronski et al., 2011). A selection method is then used to choose the best variables to predict 

the response variables. Stepwise regression is a common method to choose significant ALS 

predictor variables for parametric regression (e.g., Andersen et al., 2005; Skowronski et al., 

2011; Hermosilla et al., 2014; Zhang et al., 2017); however, most statisticians agree that stepwise 

regression is outdated and tends to overfit models (Thompson, 1995; Babyak, 2004).  

 

The lasso method (i.e., least absolute shrinkage and selection operator) performs shrinkage and 

variable selection to produce a linear regression model that can be used for predictions 

(Tibshirani, 1996). Lasso has been used with ALS data for variable selection (Domingo et al., 

2018) and as a regression method for predicting forestry parameters (Vastaranta et al., 2011). 

The approach generates a linear regression equation with a penalty term that discourages reliance 

on excessive numbers of variables (Tibshirani, 1996). The penalty term reduces or “shrinks” 

coefficient values to zero for parameters that are not important for explaining variability within 

the model. The term λ is used as a tuning parameter that determines the amount of shrinkage. 
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Selecting a good value for λ is critical for the performance of the model. Lasso tends to create 

simple models that account for collinearity between predictor variables and is considered a 

superior alternative to stepwise regression (Babyak, 2004). Given that the dataset for this study 

has numerous predictor variables with unknown importance and the goal is to produce a simple, 

easy to implement model, lasso regression was chosen as the ideal method for both variable 

selection and model building for this study.  

 

Prior to performing lasso, 15 candidate ALS variables were selected from the full set of 119 

variables calculated with FUSION and output in the plot-level ALS metrics dataset (Table 2.3). 

Selected ALS-based predictor variables consisted of a variety of height and strata metrics. 

Although lasso is able to handle large datasets for variable selection, variables known to have 

little or no predictive power were removed to create a dataset composed of variables that have 

biological relevance and have been shown to have valuable predictive power for canopy fuel 

attributes in other studies (e.g., Andersen et al., 2005; Skowronski et al., 2011; Bright et al., 

2017).  

 

Lasso was performed in R using the “glmnet” package (Friedman et al., 2010). The plot-level 

ALS metrics and plot-level field-based canopy fuel estimates were merged by plot ID into a 

single dataframe. In order to satisfy the assumptions of linearity between the dependent and 

independent variables in linear regression, a square root transformation was used for CFL, CBD 

and stem density and CBH values. The 79 plots used in this analysis were divided into training 

data (52 plots) and validation data (27 plots). Note that data were combined for analysis 

irrespective of stand condition (i.e., managed versus natural) as it was assumed that the managed 
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stands would be representative of naturally thin black spruce stands. With the training data set, a 

linear regression model was fitted to each response variable (stand height, sqrtCFL, sqrtCBD, 

sqrtDensity and CBH) using the cv.glmnet function. To enable reproducible results, the set.seed 

value was set to “123”. 10-fold cross validation with mean squared error was the evaluation 

statistic used to obtain the optimal value for λ. 

 

Table 2.3 Plot metrics produced in FUSION (McGaughey, 2018b) and used for lasso regression. 

Source 

Predictor 

Name Metric Description 

First returns above 1.37 

m height threshold hMax Maximum height 

 hMean Mean height 

 hCV Coefficient of variation for heights 

 h25 Height of 25th percentile 

 h50 Height of 50th percentile 

 h75 Height of 75th percentile 

 h90 Height of 90th percentile 

 h99 Height of 99th percentile 

 Pc1.37 Percentage first returns above 1.37 m 

 Pcmean Percentage first returns above mean height 

All returns, including 

ground and nonground Prop<0.15 Percentage of first returns <0.15 m 

 Prop0.15to1.37 Percentage of first returns >0.15 m and ≤1.37 m 

 Prop1.37to5.00 Percentage of first returns >1.37 m and ≤5.00 m 

 Prop5.00to10.00 Percentage of first returns >5.00 m and ≤10.00 m 

 Prop10.00to20.00 Percentage of first returns >10.00 m and ≤ 20.00 m 

 

2.5 Model Performance and Evaluation 

The estimated linear regression model with a λ value that resulted in the simplest model was then 

used to predict the response variable values of the testing data. Performance of each model was 
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evaluated on the training data using the coefficient of determination (R2) and root mean squared 

error (RMSE). The coefficient of determination and RMSE of the testing data (R2
test and 

RMSEtest respectively) were also calculated and compared to the training R2 and RMSE to 

evaluate the predictive power and goodness of fit of the models. The coefficient of determination 

is the proportion of variance that is explained by the model. The RMSE is the square root of the 

variance of the residuals. Both measurements indicate how close the observed values (field-

measured metrics) are to the model’s predicted values. These statistical parameters are a 

common way to evaluate the performance of ALS models (e.g., Andersen et al., 2005; González-

Olabarria et al., 2012; Bouvier et al., 2015; Greaves et al., 2016; Engelstad et al., 2019).  

 

The derived predictive models were used to map the Pelican Mountain study area to visually 

assess and compare model performance.  The Pelican Mountain site was selected for visualizing 

predicted stand densities due to the largely homogenous C-2 fuel type across the site, and the 

researcher’s personal knowledge of the pattern of natural and managed stand densities within the 

study area. Mapping was completed with the “GridMetrics” function in FUSION which 

calculates ALS metrics for each cell of a defined grid size over the area of interest. To maintain 

consistency, the same parameters were set as when the point cloud metrics were calculated for 

each plot location. A grid with a 6.3 m x 6.3 m cell size was used as this equals the 40 m2 area of 

the circular ground plots. A CSV for each of the three LiDAR point clouds used in this study was 

generated with the GridMetrics tool and imported into R. The lasso regression model for each 

fuel characteristic of interest was then applied to the datasets to generate predictive values for 

each cell within the grid. For ease of interpretation, any variables transformed during the analysis 

process were transformed back to their original units for mapping. Finally, the files were 
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converted into ASC file format and imported into ArcGIS. The models were applied only to 

black spruce stands identified by the Alberta Vegetation Inventory (AVI) data and field-verified 

with site visits. Raw differences in predicted values between models was also mapped across 

Pelican Mountain using the Raster Calculator tool in ArcGIS. Scales used for mapping were 

based on maximum and minimum values.  
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Chapter 3 Results 

This chapter presents the linear models developed using lasso regression that compare Airborne 

Laser Scanning (ALS) metrics to field-based measurements. This chapter also evaluates the 

predictive ability of each model by applying it to independent testing data and comparing the 

field-measured values to predicted model values. To demonstrate practical applications, the 

models were used to map forest attributes continuously across a broad area within the Pelican 

Mountain Research Site. A model was developed for each of five forest characteristics of interest 

(canopy bulk density (CBD), canopy fuel load (CFL), stem density, canopy height and canopy 

base height (CBH)) and for each ALS point cloud dataset using different resolutions (hereafter 

referred to as “dense” for the dataset consisting of all three multispectral ALS point clouds 

merged into one; “intermediate” for the ALS dataset consisting of returns only from the 1064 nm 

laser; and “thin” for the dataset consisting of the 1064 nm point cloud that had been thinned to 

approximately 1 pulse m-2). Stand and canopy characteristics of field-measured stands are 

summarized in Table 3.1. Airborne Laser Scanning metrics selected for each of the models are 

shown in Table 3.2. 

 

3.1 Canopy Bulk Density 

Diagnostic plots indicated that the square root transformation of field measured CBD was 

appropriate for linear regression for all three ALS pulse density models. The linear models that 

were developed to predict the square root of CBD (sqrtCBD) using lasso regression for each 

ALS point cloud datasets are presented in Table 3.3. The lasso method generated relatively 

simple models with only four ALS metrics selected for the dense model (Pc1.37, Pcmean, Prop<0.15 
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and Prop1.37to5.00), three ALS metrics for the intermediate model (Pc1.37, Pcmean and Prop1.37to5.00) 

and one ALS metric for the thin model (Pc1.37).  

 

Table 3.1 Stand and canopy characteristics of field-measured black spruce stands by status (a) 

natural/unmanaged, (b) managed and (c) combined and study area (Pelican Mountain, Conklin). 

Descriptive statistics of range, mean and standard deviation (SD) are shown by stand status to 

document variation in data sources. All data were combined irrespective of stand status for 

analysis and model building 

(a) Unmanaged stands  

 Pelican (31 plots) Conklin (8 plots) 

 Range Mean SD Range Mean SD 

Tallest Tree Height (m) 5.5-13.1 8.7 2.2 9.9-15.7 11.5 2.3 

Stem Density (tree/ha) 3996-35 989 14 711 6577 5320-33 967 14 536 9413 

Canopy Fuel Load (kg/m2) 1.10-6.57 3.31 1.22 1.54-6.63 3.72 1.48 

Canopy Bulk Density 

(kg/m3) 

0.17-1.06 0.57 0.19 0.24-1.07 0.55 0.24 

Canopy Base Height (m) 1.17-3.83 2.19 0.75 1.25-3.95 2.64 0.79 

(b) Managed stands  

 Pelican (28 plots) Conklin (12 plots) 

 Range Mean SD Range Mean SD 

Tallest Tree Height (m) 4.5-11.3 8.7 1.8 2.6-17.2 10.6 4.3 

Stem Density (tree/ha) 250-3497 1629 877 749-4995 2529 1339 

Canopy Fuel Load (kg/m2) 0.08-2.12 1.02 0.51 0.07-4.59 1.69 1.43 

Canopy Bulk Density 

(kg/m3) 

0.02-0.34 0.19 0.09 0.03-0.62 0.24 0.19 

Canopy Base Height (m) 1.56-5.48 3.45 0.91 0.32-5.13 2.44 1.53 

(c) All data combined (79 plots) 

 Range Mean SD 

Tallest Tree Height (m) 2.6-17.2 9.3 2.6 

Stem Density (tree/ha) 250-35 989 8206 8156 

Canopy Fuel Load (kg/m2) 0.072-6.63 2.30 1.55 

Canopy Bulk Density 

(kg/m3) 

0.02-1.07 0.38 2.72 

Canopy Base Height (m) 0.32-5.48 2.72 1.10 
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Table 3.2 Predictor variables selected using lasso regression for each ALS pulse density dataset (i.e., dense (den), intermediate (int) 

and thin) and five canopy fuel attributes. Selected predictor variables chosen in the final models for square root transformed canopy 

bulk density (√𝐶𝐵𝐷), square root transformed canopy fuel load (√𝐶𝐹𝐿), square root transformed stem density (√𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦), 

canopy height (height) and square root transformed canopy base height (√𝐶𝐵𝐻) and for each ALS dataset are indicated with an ‘X’. 

All height measurements in meters. 

Note: Predictor name and ALS metric descriptions are as follows: Maximum height, hMax; Mean height, hMean; Coefficient of variation 

for heights, hCV; Height of 25th percentile, h25; Height of 50th percentile, h50; Height of 75th percentile, h75; Height of 90th percentile, 

h90; Height of 99th percentile, h99; Percentage of first returns above 1.37, Pc1.37; Percentage of first returns above mean height, Pcmean; 

Percentage of first returns <0.15 m, Prop<0.15; Percentage of first returns >0.15 m and ≤1.37 m, Prop0.15to1.37; Percentage of first returns 

>1.37 m and ≤5.00 m, Prop1.37to5.00; Percentage of first returns >5.00 m and ≤10.00 m, Prop5to10; Percentage of first returns >10.00 m 

and ≤20.00 m, Prop10to20 

 √𝐶𝐵𝐷 √𝐶𝐹𝐿 √𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 Height √𝐶𝐵𝐻 

Predictor Name Den. Int. Thin Den. Int. Thin. Den. Int. Thin. Den. Int. Thin. Den. Int. Thin. 

hMax          X X X    

hMean       X  X      X 

hCV            X    

h25       X      X X  

h50                

h75                

h90            X    

h99           X     

Pc1.37 X X X X X X X X X  X    X 

Pcmean X    X X         X 

Prop<0.15 X X  X   X X X      X 

Prop0.15to1.37                

Prop1.37to5.00 X X     X X X       

Prop5to10                

Prop10to20               X 
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The coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate 

model performance. The R2 values for the sqrt(CBD) models fitted to the dense, intermediate and 

thin pulse density training datasets were 0.84, 0.84 and 0.75, respectively. When the model was 

applied to independent data (testing data), R2
test values were 0.78 (dense), 0.78 (intermediate) and 

0.69 (thin). It is important to keep in mind that R2 values represent the linear relationship 

resulting from the square root transformation. Results should be interpreted with caution as they 

are not in the original units of the CBD field measurements.     

 

The RMSE and RMSEtest values for the dense, intermediate and thin pulse density ALS models 

to predict the sqrt(CBD) values were 0.087 and 0.098, 0.100 and 0.102 and 0.106 and 0.126, 

respectively. The RMSE and RMSEtest values for each model are close enough to conclude that 

the models are suitable for generalized use (i.e., they are suitable for generating predictions with 

new data that was not used in the modeling process).  

 

Goodness of fit of the ALS models for predicting the testing dataset sqrt(CBD) values was 

assessed visually with scatterplots of observed versus predicted values (Figure 3.1). The 1:1 

diagonal line in these plots is a visual representation of perfect fit. Data points below the 1:1 line 

indicate the model has underpredicted the field-measured value. Data points above the 1:1 line 

indicate the model overpredicted the field-measured value. If the data points are not scattered 

symmetrically around the 1:1 line, it indicates that the model may have some bias. Shading of 

Figure 3.1 symbols denotes the origin of the data (i.e., managed or natural stands). Data origin 

was inspected visually to assess whether or not the relationship between ALS data and field 

measured sqrt(CBD) varied between managed and natural stand conditions. For all three 
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datasets, data points for natural and managed stands exhibited a consistent trend and were 

therefore grouped for analysis. Data points for the dense and intermediate models were scattered 

symmetrically around the perfect 1:1 line; however, the model showed apparent bias towards 

underpredicting at the highest values of square root CBD. This bias was exacerbated when the 

lowest density ALS data (i.e., the thin dataset) was used to fit the model.   

 

Maps displaying predicted CBD in black spruce stands within the Pelican Mountain Research 

Site were created for each ALS pulse density model (Figure 3.2). In all cases, CBD is shown in 

true units, rather than the square root transformation used in model building. All maps are rasters 

with a 6.3 m x 6.3 m cell size that matches the extent of the majority of field sampling plots used 

in this study (i.e. 40 m2). The model was only applied to areas identified as black spruce using 

the Alberta Vegetation Inventory (AVI) dataset and to cells that had at least one canopy return 

recorded (defined in this study as a lidar return at least 1.37 m above the ground). Differences in 

CBD values predicted by the dense model compared to the intermediate and thin models can be 

seen in Figure 3.3. The mean and standard deviation of CBD differences predicted by the 

intermediate and dense models across the Pelican Mountain Research Site was -0.039 and 0.053 

kg m-3, respectively. The mean and standard deviation of CBD differences predicted by the thin 

and dense models across the Pelican Mountain Research Site was -0.059 and 0.066 kg m-3, 

respectively. 

 

Figure 3.4 compares the FBP Fuel Type grid currently used by Alberta Wildfire to predict 

wildfire behaviour to the CBD map created using the dense ALS model. The FBP fuel grid 

currently maps stand structure across the Pelican Mountain Research Site uniformly for any cells 
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identified as C-2 Boreal Spruce (Figure 3.4a). Maps produced with ALS data were able to 

describe stand structure in much more detail (Figure 3.4b). Photos of crown structure taken at 

sampling plots throughout the Pelican Mountain Research Site suggest that the models were 

doing a good job at capturing the natural variability of canopy bulk density values (Figure 3.4c).  
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Table 3.3 Lasso linear regression models and performance metrics predicting the square root of canopy bulk density (CBD) by ALS 

point cloud density 

ALS Dataset Equation R2 R2
test RMSE RMSEtest 

Dense √𝐶𝐵𝐷= 0.63 + (0.0032)Pc1.37 + (0.0000075)Pcmean + (-0.40)Prop<0.15 + 

(0.013)Prop1.37to5.00 

0.84 0.78 0.087 0.098 

Intermediate √𝐶𝐵𝐷= 0.25 + (0.0035)Pc1.37 + (0.0031)Pcmean + (0.18)Prop1.37to5.00 0.84 0.78 0.100 0.102 

Thin √𝐶𝐵𝐷= 0.30 + (0.0052)Pc1.37 0.75 0.69 0.106 0.126 

 

(a) (b) (c) 

Figure 3.1 Plot-level (square root transformed) canopy bulk density estimated from ALS data for the testing dataset (predicted) versus 

field-measured values (observed): (a) dense ALS pulse density model, (b) intermediate ALS pulse density model, (c) thin ALS pulse 

density model. Solid line shows 1:1 relationship denoting perfect model fit. 
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0 0.5 10.25 Kilometers

(a) (b) (c) 

Figure 3.2 Canopy bulk density (CBD) predicted for black spruce stands within the Pelican Mountain Research Site using statistical 

models developed with three different ALS pulse densities: (a) dense, (b) intermediate, and (c) thin. Note that predicted values from 

the ALS models were back transformed into original CBD units. 
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Figure 3.3 The difference between canopy bulk density (CBD) values predicted using (a) models developed with intermediate and 

dense ALS pulse density datasets and (b) models developed with thin and dense ALS pulse density datasets. Pixels in blue indicate 

areas where the intermediate/thin model underpredicted CBD in comparison to the dense ALS model. Pixels in red indicate areas 

where the intermediate/thin model overpredicted CBD in comparison to the dense ALS model. 
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(a

) 
(b

) 

(c

) 

Figure 3.4 (a) The Fire Behaviour Prediction (FBP) fuel type map shows that Pelican Mountain is almost entirely 

covered by the C-2 Boreal Spruce Fuel Type. Within-stand variation in fuel structure is ignored in FBP System fuel 

classifications. The ALS-derived fuel attributes from the “dense” dataset shows that canopy bulk density can vary 

substantially within black spruce stands (b) model results also correspond well with field photos that show the model is 

accurately detecting areas of high (c, top), intermediate (c, middle), and low (c, bottom) canopy bulk density values.  
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3.2 Canopy Fuel Load 

Field-measured canopy fuel load data did not meet the assumptions of linear regression and a 

square root transformation was therefore applied. The linear models that were developed to 

predict the square root of CFL (sqrtCFL) using lasso regression for each ALS point density 

datasets (i.e., dense, intermediate and thin) are presented in Table 3.4. Simple models with only 

two predictor variables were selected for each pulse density model (Pc1.37 and Prop<0.15 for the 

dense model and Pc1.37 and Pcmean for the intermediate and thin models). The R2 values fitted to 

the training data for the dense, intermediate and thin models were 0.84, 0.86, and 0.80, 

respectively. The R2
test values were similar to the training data; for the dense, intermediate and 

thin models R2
test values were 0.85, 0.82 and 0.77, respectively.  

 

The RMSE and RMSEtest for the dense, intermediate and thin models were also closely aligned 

with values of 0.227 and 0.215, 0.232 and 0.234, and 0.255 and 0.265, respectively. For the 

dense model, the RMSEtest is smaller than the RMSE for the training data. One would expect that 

the RMSE would be less than the RMSEtest given that the model was designed to best fit the 

training dataset. Although this is unusual, given that the values were so similar this was likely 

due to random chance. The RMSE and RMSEtest values for each model were close enough to 

conclude that the models are suitable for generalized use. 

 

Scatterplots comparing field-measured (observed) square root transformed CFL and predicted 

values from ALS point cloud datasets can be seen in Figure 3.5. Data points for all models were 

scattered symmetrically around the perfect 1:1 line; however, all models showed apparent bias 

towards underpredicting field-measured values in the mid-range and for very high sqrt(CFL) 
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values. Once again, this bias was exacerbated when the lowest density ALS data is used to fit the 

model.  

 

Maps displaying predicted CFL in black spruce stands within the Pelican Mountain Research 

Site boundaries were created for each ALS pulse density model (Figure 3.6). In all cases, CFL 

was shown in true units, rather than the square root transformation used in model building. The 

model was only applied to areas identified as black spruce using the AVI datasets and to cells 

that had at least one canopy return recorded. Differences in CFL values predicted by the dense 

model compared to the intermediate and thin models can be seen in Figure 3.7. The mean and 

standard deviation of CFL differences predicted by the intermediate and dense models across the 

Pelican Mountain Research Site was -0.14 and 0.23 kg m-2, respectively. The mean and standard 

deviation of CFL differences predicted by the thin and dense models across the Pelican Mountain 

Research Site was -0.19 and 0.36 kg m-2, respectively.
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Table 3.4 Lasso linear regression models and performance metrics predicting the square root of canopy fuel load (√𝐶𝐹𝐿) by ALS 

point cloud density. 

ALS Dataset Equation R2 R2
test RMSE RMSEtest 

Dense √𝐶𝐹𝐿= 1.11 + (0.012)Pc1.37 + (-0.49)Prop<0.15  0.84 0.85 0.227 0.215 

Intermediate √𝐶𝐹𝐿= 0.57 + (0.016)Pc1.37 + (0.000071)Pcmean  0.86 0.82 0.232 0.234 

Thin √𝐶𝐹𝐿= 0.64 + (0.014)Pc1.37 + (0.00088)Pcmean 0.80 0.77 0.255 0.265 

(a) (b) (c) 

Figure 3.5 Plot-level (square root transformed) canopy fuel load estimated from ALS data for the testing dataset (predicted) versus 

field-measured values (observed): (a) dense ALS pulse density model, (b) intermediate ALS pulse density model, (c) thin ALS 

pulse density model. Solid line shows 1:1 relationship denoting perfect model fit. 
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0 0.5 10.25 Kilometers

(a) (b) (c) 

Figure 3.6 Canopy fuel load (CFL) predicted for black spruce stands within the Pelican Mountain Research Site using statistical 

models developed with three different ALS pulse densities: (a) dense, (b) intermediate, and (c) thin. Note that predicted values from 

the ALS models were back transformed into original CFL units. 
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Figure 3.7 The difference between canopy fuel load (CFL) values predicted using (a) models developed with intermediate and dense 

ALS pulse density datasets and (b) models developed with thin and dense ALS pulse density datasets. Pixels in blue indicate areas 

where the intermediate/thin model underpredicted CFL in comparison to the dense ALS model. Pixels in red indicate areas where the 

intermediate/thin model overpredicted CFL in comparison to the dense ALS model.  



60 

 

3.3 Stem Density 

A square root transformation was applied to stem density measurements to account for 

nonlinearity and variance observed in the diagnostic plots of all three ALS point resolution 

models. The linear models that were developed to predict the square root of stem density using 

lasso regression for each ALS point cloud dataset are presented in Table 3.5. In the dense pulse 

density ALS model, 5 predictor variables were selected (hmean, hCV, Pc1.37, Prop<0.15 and 

Prop1.37to5.00). Three predictor variables were selected for the intermediate pulse density ALS 

model (Pc1.37, Prop<0.15, Prop1.37to5.00) and 4 were selected for the thin pulse density ALS model 

(hmean, Pc1.37, Prop<0.15, Prop1.37to5.00). The R2 values for the dense, intermediate and thin models 

were 0.89, 0.80 and 0.78, respectively. When the models were applied to the testing data the 

R2
test values were 0.81, 0.74 and 0.71 for the dense, intermediate and thin models, respectively.  

 

The RMSE and RMSEtest for the dense, intermediate and thin models were 15.24 and 23.24, 

19.30 and 29.62, and 20.71 and 30.04, respectively. Scatterplots comparing field-measured and 

predicted values from ALS point cloud datasets can be seen in Figure 3.8. All models showed 

apparent bias towards underpredicting field-measured values for high square root stem density 

values. Bias was exacerbated as point resolution of the ALS data decreased.  

 

Maps displaying predicted stem density within the Pelican Mountain Research Site boundaries 

were created for each ALS pulse density model (Figure 3.9). In all cases, stem density was 

shown in true units. The model was only applied to areas identified as black spruce using the 

AVI datasets and cells that had at least one canopy return recorded. Differences in stem density 

values predicted by the dense model compared to the intermediate and thin models can be seen in 
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Figure 3.10. The mean and standard deviation of stem density differences predicted by the 

intermediate and dense models across the Pelican Mountain Research Site was -1514 and 2039 

stems ha-1, respectively. The mean and standard deviation of stem density differences predicted 

by the thin and dense models across the Pelican Mountain Research Site was -1220 and 2335 

stems ha-1, respectively. 
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Table 3.5 Lasso linear regression models and performance metrics predicting the square root of stem density (√𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) by 

ALS point cloud density. 

ALS Dataset Equation R2 R2
test RMSE RMSEtest 

Dense √𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦= 57.96 + (-3.27)hmean + (-3.28)hCV + (0.61)Pc1.37 + (-

23.22)Prop<0.15 + (123.99)Prop1.37to5.00 

0.89 0.81 15.24 23.24 

Intermediate √𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦= 29.16 + (0.28)Pc1.37 + (-16.41)Prop<0.15 + 

(154.02)Prop1.37to5.00 

0.80 0.74 19.30 29.62 

Thin √𝑠𝑡𝑒𝑚 𝑑𝑒𝑛𝑠𝑖𝑡𝑦= 42.04 + (-1.49)hmean + (0.46)Pc1.37 + (-34.95)Prop<0.15 + 

(122.62)Prop1.37to5.00 

0.78 0.71 20.71 30.04 

 

(a) (b) (c) 

Figure 3.8 Plot-level (square root transformed) stem density estimated from ALS data for the testing dataset (predicted) versus field-

measured values (observed): (a) dense ALS pulse density model, (b) intermediate ALS pulse density model, (c) thin ALS pulse 

density model. Solid line shows 1:1 relationship denoting perfect model fit. 
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0 0.5 10.25 Kilometers

(a) (b) (c) 

Figure 3.9 Stem density predicted for black spruce stands within the Pelican Mountain Research Site using statistical models 

developed with three different ALS pulse densities: (a) dense, (b) intermediate, and (c) thin. Note that predicted values from the ALS 

models were back transformed into original stem density units. 
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Figure 3.10 The difference between stem density values predicted using (a) models developed with intermediate and dense ALS pulse 

density datasets and (b) models developed with thin and dense ALS pulse density datasets. Pixels in blue indicate areas where the 

intermediate/thin model underpredicted stem density in comparison to the dense ALS model. Pixels in red indicate areas where the 

intermediate/thin model overpredicted stem density in comparison to the dense ALS model. 
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3.4 Canopy Height 

Field-measured canopy height measurements satisfied the requirements of linear regression for 

all three ALS pulse density models. The linear models that were developed to predict canopy 

height using lasso regression for each ALS point density dataset are presented in Table 3.6. The 

dense ALS dataset produced a simple model with only one predictor variable (hmax). The 

intermediate and thin models both had three predictor variables (hmax, h99 and Pc1.37 for the 

intermediate model and hmax, hCV and hP90 for the thin model). Although the hmax and h99 variables 

that were selected using lasso were highly correlated, the lasso models were not adjusted. This 

was because the intent of the model was to make predictions and multicollinearity is not an issue 

for this purpose if the training and testing sets have the same covariance structure (Belsley, 

1984). The R2 values fitted to the training data for the dense, intermediate and thin models were 

0.81, 0.79, and 0.69, respectively. When the dense model was applied to the testing data, the 

R2
test value (0.84) exceeded the R2 value. The R2

test values for the intermediate and thin testing 

datasets were 0.73 and 0.66, respectively.  

 

Comparison of RMSE and RMSEtest values for dense (1.29, 0.96), intermediate (1.32, 1.21) and 

thin (1.63, 1.37) models indicated RMSEtest was less than the RMSE in all cases, which means 

the model exhibited a better fit to the independent testing data even though it was derived from 

the training data.  

 

Scatterplots comparing field-measured canopy height and predicted values from ALS point cloud 

datasets can be seen in Figure 3.11. Data points for all models strongly follow the 1:1 line; 

however, there is a slight bias towards overprediction of canopy height when field-measured 
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values are small. The degree of overprediction appears to increase as the ALS pulse resolution 

decreases. Maps displaying predicted canopy height in black spruce stands within the Pelican 

Mountain Research boundaries were created for each ALS pulse density model (Figure 3.12).  

Differences in canopy height values predicted by the dense model compared to the intermediate 

and thin models can be seen in Figure 3.13. The mean and standard deviation of stem density 

differences predicted by the intermediate and dense models across the Pelican Mountain 

Research Site was 0.13 m and 0.40 m, respectively. The mean and standard deviation of stem 

density differences predicted by the thin and dense models across the Pelican Mountain Research 

Site was 0.34 m and 0.72 m, respectively.
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Table 3.6 Lasso linear regression models and performance metrics predicting the canopy height by ALS point cloud density. 

ALS Dataset Equation R2 R2
test RMSE RMSEtest 

Dense Height = 2.71 + (0.79)hmax 0.81 0.84 1.29 0.96 

Intermediate Height = 3.42 + (0.48)hmax + (0.27)h99 + (0.0012)Pc1.37 0.79 0.73 1.32 1.21 

Thin Height = 4.19 + (0.69)hmax + (0.43)hCV + (0.021)h90 0.69 0.66 1.63 1.37 

 

(a) (b) (c) 

Figure 3.11 Plot-level canopy height estimated from ALS data for the testing dataset (predicted) versus field-measured values 

(observed): (a) dense ALS pulse density model, (b) intermediate ALS pulse density model, (c) thin ALS pulse density model. Solid 

line shows 1:1 relationship denoting perfect model fit.  
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(a) (b) (c) 

Figure 3.12 Canopy height predicted for black spruce stands within the Pelican Mountain Research Site using statistical models 

developed with three different ALS pulse densities: (a) dense, (b) intermediate, and (c) thin. 
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Figure 3.13 The difference between canopy height values predicted using (a) models developed with intermediate and dense ALS 

pulse density datasets and (b) models developed with thin and dense ALS pulse density datasets. Pixels in blue indicate areas where 

the intermediate/thin model underpredicted canopy height in comparison to the dense ALS model. Pixels in red indicate areas where 

the intermediate/thin model overpredicted canopy height in comparison to the dense ALS model. 
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3.5 Canopy Base Height 

A square root transformation was applied to CBH measurements to satisfy the requirements for 

linear regression based on the diagnostic plots. The linear models that were developed to predict 

the square root of CBH using lasso regression for each ALS point cloud dataset are presented in 

Table 3.7. The regression models for the dense and intermediate datasets were almost identical 

and both utilized only one predictor variable (h25); however, six variables were selected for the 

thin model (hmean, hCV, Pc1.37, Pcmean, Prop<0.15 and Prop10to20).  

 

The R2 values fitted to the training data for the dense, intermediate and thin models were 0.63, 

0.71 and 0.80, respectively. When the models were applied to the testing data there R2
test values 

were 0.51, 0.51 and 0.59 for dense, intermediate and thin models. Despite relatively large 

differences between the R2 and R2
test values, the RMSE and RMSEtest were in close alignment. 

The RMSE and RMSEtest values for dense, intermediate and thin models were 0.2347 and 

0.1999, 0.2094 and 0.2001, and 0.2137 and 0.2088. For the thin model, the RMSE of the training 

data was slightly higher than the RMSEtest value.  

 

Scatterplots comparing field-measured square root transformed CBH values and predicted values 

from ALS point cloud datasets can be seen in Figure 3.14. Significantly more scatter is evident 

around the 1:1 line for the sqrt(CBH) models compared with all other models developed in this 

study. This may indicate that this forestry metric may be more challenging to predict compared 

with canopy bulk density, canopy fuel load, stem density and canopy height values for black 

spruce stands.  
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Maps displaying predicted CBH in black spruce within the Pelican Mountain Research Site 

boundaries were created for each ALS pulse density model (Figure 3.15). All maps look quite 

similar despite the thin model having more predictor variables than the dense or intermediate 

models. The scale of CBH measurements for the maps indicates that some CBH values were 

predicted to be up to 18 m high. These values are inflated in comparison with those measured in 

the field where all CBH measurements were under 5.5 m.  Maps displaying predicted canopy 

height in black spruce stands within the Pelican Mountain Research boundaries were created for 

each ALS pulse density model (Figure 3.12). The differences in CBH values predicted by the 

dense model compared to the intermediate and thin models can be seen in Figure 3.16. The mean 

and standard deviation of CBH differences predicted by the intermediate and dense models 

across the Pelican Mountain Research Site was 0.002 m and 0.149 m, respectively. The mean 

and standard deviation of stem density differences predicted by the thin and dense models across 

the Pelican Mountain Research Site was -0.25 m and 0.5 m, respectively.
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Table 3.7 Lasso linear regression models and performance metrics predicting the square root of canopy base height (√𝐶𝐵𝐻) by ALS 

point cloud density. 

ALS Dataset Equation R2 R2
test RMSE RMSEtest 

Dense √𝐶𝐵𝐻= 1.02 + (0.19)h25 0.63 0.51 0.235 0.200 

Intermediate √𝐶𝐵𝐻= 1.02 + (0.19)h25  0.71 0.51 0.209 0.200 

Thin √𝐶𝐵𝐻 = 0.69 + (0.19)hmean + (-1.34)hCV + (0.0049)Pc1.37 + (0.00022)Pcmean7 + 

(0.78)Prop<0.15 + (-1.67)Prop10to20 

0.80 0.59 0.214 0.209 

(a) (b) (c) 

Figure 3.14 Plot-level (square root transformed) canopy base height estimated from ALS data for the testing dataset (predicted) 

versus field-measured values (observed): (a) dense ALS pulse density model, (b) intermediate ALS pulse density model, (c) thin 

ALS pulse density model. Solid line shows 1:1 relationship denoting perfect model fit. 
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0 0.5 10.25 Kilometers

(a) (b) (c) 

Figure 3.15 Canopy base height (CBH) predicted for black spruce stands within the Pelican Mountain Research Site using statistical 

models developed with three different ALS pulse densities: (a) dense, (b) intermediate, and (c) thin. Note that predicted values from 

the ALS models were back transformed into original CBH units. 
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Figure 3.16 The difference between canopy base height (CBH) values predicted using (a) models developed with intermediate and 

dense ALS pulse density datasets and (b) models developed with thin and dense ALS pulse density datasets. Pixels in blue indicate 

areas where the intermediate/thin model underpredicted CBH in comparison to the dense ALS model. Pixels in red indicate areas 

where the intermediate/thin model overpredicted CBH in comparison to the dense ALS model.
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Chapter 4 Discussion 

Results of this study indicate that Airborne Laser Scanning (ALS) data are a viable resource for 

predicting forest structural characteristics important to wildfire behaviour in black spruce stands. 

Similar studies completed for other forest types have reported varying degrees of success when 

comparing field-based measurements of forest characteristics important to wildfire with ALS 

data (Table 4.1); however, all of these forest types were quite distinct compared with the black 

spruce stands analyzed in this study. Black spruce stands typically have shorter canopy height 

and canopy base height (CBH) values and larger canopy bulk density (CBD), canopy fuel load 

(CFL) and stem density values compared with other studies. In this chapter, the predictive power 

of using ALS data to estimate CBD, CFL, stem density, canopy height and CBH in black spruce 

stands is examined in detail. The influence of ALS pulse density on developing fine scale fuel 

models in black spruce stands is also evaluated. Possible sources of error and suggestions for 

future research are discussed. Finally, management implications of this research are reviewed.  

 

4.1 Evaluation of Model Performance 

Model performance for predicting sqrt(CBD) and sqrt(CFL) in black spruce stands declined as 

pulse density of the ALS data decreased. As pulse density decreased, RMSEtest values increased 

and the degree of underprediction increased for the high-end range of field-measured values of 

CBD and CFL. The RMSEtest values for sqrt(CBD) indicate very similar predictive power 

between models developed using dense and intermediate ALS datasets. In contrast, model 

performance declined when the least dense ALS dataset was utilized for model building. The 

RMSEtest values for the sqrt(CBD) models developed from dense and intermediate ALS datasets 
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differed by just 4% whereas there was a 24% increase in RMSEtest values between the models 

derived with the thin and intermediate ALS models, respectively.   

 

For the sqrt(CFL) predictive models, RMSEtest values increased by 9% when comparing model 

results for the intermediate ALS dataset to those estimated from the dense dataset. When 

comparing model results for the thin ALS dataset to the intermediate dataset, the RMSEtest 

increased by 13%. Although the predictive error increased as ALS pulse density of the data 

decreased, the thin models still performed reasonably well. The produced fuel maps using the 

thin ALS dataset for the Pelican Mountain Research Site exhibited spatial variation that was 

consistent with maps generated using the models derived from dense and intermediate ALS 

datasets.  

 

These results are consistent with the findings of Jakubowski et al. (2013b) who reported that 

performance of ALS models for predicting common forestry metrics was largely insensitive to 

pulse density until it dropped below 1 pulse m-2. The effect of ALS pulse density on predictions 

of forest variables required in forest resource inventories for black spruce stands in Ontario, 

Canada was also evaluated by Treitz et al. (2012). In that study, three ALS datasets with varying 

pulse densities were analyzed (i.e., 3.2, 1.6 and 0.5 pulses m-2 resolutions). They found no 

reduction in model predictive ability as ALS pulse density was reduced. It is important to note 

that neither of these studies involved predicting either CBD or CFL metrics specifically. Much 

larger plot sizes of 500 m2 and 400 m2 were also used in the Jokubowski et al. (2013) and Treitz 

et al. (2012) studies, respectively. The sampling area of the majority of plots used in this study 

was 40 m2. Use of fine- scale measurements may necessitate higher pulse densities to adequately 
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describe forest structure, which could potentially explain why results reported in this study were 

slightly more sensitive to pulse density compared with prior investigations.  

 

To compare the results from this study to other studies, the coefficient of determination (R2) for 

the testing data was used (Table 4.1). This is because RMSEtest values reflect the range in field 

measured variables which will change depending on forest type and structure, whereas R2 is a 

common statistic reported in similar studies. Nonetheless, comparisons of R2 values across 

studies should be approached with caution given differences in forest types, response variables 

and transformations imposed on dependent variables can all affect results. The coefficient of 

determination for the sqrt(CBD) estimation models were 0.84, 0.84 and 0.75 for dense, 

intermediate and thin models respectively, which is higher than the R2 values reported by 

Hermosilla et al. (2014), Bright et al. (2017) and Engelstad et al. (2019) and comparable to the 

R2 values reported by Andersen et al. (2005), Erdody and Moskal (2010) and Skowronski et al. 

(2011). The coefficient of determination values for the sqrt(CFL) models (0.84, 0.86 and 0.80 for 

the dense, intermediate and thin models, respectively) were also comparable to those reported by 

Andersen et al. (2005), Erdody et al (2010), Skowronski et al. (2011) and Hermosilla et al. 

(2014) and were significantly higher than reported by Bright et al. (2017). 
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Table 4.1 Previous studies that utilized Airborne Laser Scanning (ALS) data to predict forest characteristics important to wildfire 

behaviour. Coefficient of Determination values (R2) are listed if the study modelled canopy bulk density (CBD), canopy fuel load 

(CFL), stem density, canopy height and canopy base height (CBH) values. For comparison, R2 values using the testing data for models 

derived in this study are also shown. 

Note: * indicates a square root transformation was used and ** indicates natural log transformation was used in derived model.  

 

  Coefficient of Determination (R2) 

Author Study Site Description CBD CFL 

Stem 

Density 

Canopy 

Height CBH 

Andersen et al. (2005) 

Capital State Forest in western 

Washington State 0.84** 0.86* n/a 0.98 0.77 

       

Erdody and Moskal (2010) 

Ponderosa pine stands in eastern 

Washington State 0.83** 0.88** n/a 0.94 0.78* 

       

Skowronski et al. (2011)  

Pinelands National Reserve of southern 

New Jersey 0.83 0.71 n/a n/a n/a 

       
González-Olabarria et al. (2012)  Forested areas in the Mediterranean n/a n/a 0.64 0.91 0.56 

       
Hermosilla et al. (2014) Mixedwood forest in north-west Oregon  0.67 0.79 n/a 0.79 0.78 

       

Bright et al. (2017) 

Mountain pine beetle affected stands in a 

coniferous montane forest in Colorado 0.46 0.56 n/a 0.66 0.28 

       

Engelstad et al. (2019) 

Boundary Waters Canoe Area in northern 

Minnesota 0.48 n/a n/a n/a 0.7 

       
Results from Present Study      

Models derived using the dense ALS point cloud dataset 0.78* 0.85* 0.81* 0.84 0.51* 

      
Models derived using the intermediate ALS point cloud dataset 0.78* 0.82* 0.74* 0.73 0.51* 

      
Models derived using the thin ALS point cloud dataset 0.69* 0.77* 0.71* 0.66 0.59* 



79 

 

Although the CBD and CFL models developed in this study appear to have strong predictive 

power and similar results compared with other studies, some model shortcomings were evident. 

Firstly, plots of predicted versus observed (transformed) CBD and CFL values indicated that all 

models under-predicted at the high end of the range of values. Hermosilla et al. (2014) reported 

similar findings when developing a model for CBD and suggested the under prediction was 

caused by outliers. Although not mentioned explicitly, predicted versus observed CBD plots 

reported by Erdody and Moskal (2010) and Andersen et al. (2005) indicated that CBD values at 

the high end of the range were also under predicted by their models. These discrepancies may be 

due to the nature of the forest and ALS data itself. In very dense stands, which would be 

associated with high CFL and CBD values, the ALS laser pulse may not sufficiently penetrate 

the canopy. This could lead to occlusion at lower elevations and affect ALS metrics (Vauhkonen 

et al., 2011; Kandare et al., 2016). Due to the limited number of sampling plots used in this study 

it is difficult to conclude whether occlusion is causing the slight underprediction of high 

sqrt(CBD) and sqrt(CFL) values. Further studies of how stand density impacts occlusion in black 

spruce stands is recommended, as it may be possible to correct the bias through data 

transformation (e.g., Lefsky et al., 2002).  

 

Underpredicted high sqrt(CBD) and sqrt(CFL) values could also be due to the fixed interval 

height metrics used. For example, if dense stands happen to be stunted, then ALS metrics, such 

as the percent of first returns above 1.37 m (Pc1.37), may be smaller in value compared with taller 

stands. This would be because the ALS laser pulse has to travel a shorter distance through the 

canopy to reach this height value. When comparing the predicted stem density and canopy height 

maps for the Pelican Mountain Research Site, it does appear that areas of high predicted stem 
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density often have lower relative canopy heights (elevations). Given the volume of ALS models 

that have been developed using height strata values (e.g., Andersen et al., 2005; Erdody and 

Moskal, 2010; Bright et al., 2017; Engelstad et al., 2019), more studies should be conducted to 

determine how these fixed height variables may affect model results.  

 

In addition to underpredicting high-end values for field-measured sqrt(CFL), the predicted versus 

observed scatterplots suggest the models also underpredicted field-measured values in the mid-

range for sqrt(CFL) values. This resulted in the scatterplots having a slight “step” in appearance 

in relation to the linear 1:1 line. This may indicate that the square root transformation used to fit 

the training data was not the best fit for the testing data. The effects of this appear to be very 

minor given the small RMSEtest and high R2 values for all models. However, if more field data 

were collected it may help strengthen confidence in the transformations needed to fit a linear 

model.  

 

The degree of under-prediction for CBD and CFL were minimal for the dense and intermediate 

models, but more pronounced in the thin models which relied on lower pulse density ALS data. 

As a result, the range in predicted values were smaller for the thin models when compared with 

the intermediate and dense models. The effect of this was evident when predicted CBD and CFL 

values were mapped across the Pelican Mountain Research Site for each ALS pulse density 

model. Maps produced from models that used intermediate and dense point clouds looked almost 

identical whereas the maps based on the thin models were slightly muted in colour, indicating 

that the range of true values was not being detected. This may limit the potential for using CBD 

and CFL maps from thin ALS point clouds in fire behaviour models. The maps generated with 
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the thin models were still similar to those generated with the intermediate and dense models and 

still clearly delineate the same overall trends evident across the research site. Comparison of 

model results with a field-verified site map that delineated stand conditions demonstrated that all 

three ALS pulse density models were able to identify the variability of stand structure at the site. 

For example, patches of managed forests that were thinned appear as lighter areas on the ALS-

derived map, indicating lower CBD and CFL values. Stands that were unmanaged and naturally 

dense appear as dark areas on the map, indicating higher CBD and CFL predictions. Although 

the model developed using the lowest density ALS point cloud had lower predictive ability in 

comparison with intermediate or dense models, it may still be suitable for informing land 

management decisions that do not require highly precise stand structure information and would 

be more easily applied across larger landscapes where thin density point clouds are widely 

available.  

 

Use of ALS data to predict stem density is widely recognized as an unresolved challenge, 

especially in the case of ALS data with lower point cloud density (Kandare et al., 2016). Results 

of this study confirmed that ALS data currently has limited potential for predicting stem density 

in black spruce forests, especially as point cloud resolution used for model building decreases. 

Relatively large differences between the RMSE and RMSEtest values for each model indicated 

that there was overfitting of the training dataset. In addition, the field-measured versus predicted 

square root stem density scatterplots indicate that all ALS models underpredicted high field-

measured stem density values. Under prediction for high stem density values became more 

pronounced as the ALS pulse density decreased. The increased difficulty with fitting a model in 

very dense stands is logical. As a stand density increases, the ability for the ALS laser pulse to 
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penetrate the bottom of the forest floor decreases, which can lead to occlusion and therefore 

skewed ALS metrics (Vauhkonen et al., 2011; Kandare et al., 2016). Despite these issues, the 

stem density models have R2 values of 0.89, 0.80, 0.78 for the dense, intermediate and thin 

models respectively, which were similar or better than those reported by Treitz et al. (2012), 

Luther et al. (2013) and Shang et al. (2019).  

 

The studies by Treitz et al. (2012) and Luther et al. (2013) both related ALS data to black spruce 

forest characteristics in eastern Canada and are the most similar in stand types to this study. In 

both studies, variables important to the forest industry were examined, such as canopy height and 

stem density, which has some overlap with the variables analyzed in this study. Treitz et al. 

(2012) reported R2 values ranging from 0.79 to 0.89 for models comparing field measured 

density to ALS data, while Luther et al. (2013) reported an adjusted R2 value of only 0.55. Both 

studies only used trees with larger DBH measurements to count towards their density 

measurements (≥10.0 cm threshold for Treitz et al. (2012) and ≥9.0 cm threshold for Luther et al. 

(2013)). In this study, all trees over 1.37 m in height were counted. As such, mean stem density 

values were very different. The mean stem densities for this study, Treitz et al.’s (2012) study 

and Luther et al.’s (2013) study were 8206 stems ha-1, 1643 stems ha-1 and 1725 stems ha-1, 

respectively. Similar to this study, Treitz et al. (2012) required a large number of ALS predictor 

variables to derive a measure of stem density, which can inflate R2 values. Luther et al. (2013) 

only had three ALS predictive variables used in their models.  

 

The canopy height models estimated in this study performed poorly in comparison with prior 

studies. Canopy height models had R2 values of 0.81, 0.79 and 0.69 for dense, intermediate and 
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thin models respectively, which were comparable Hermosilla et al. (2014), but lower than R2 

values reported in several other studies (e.g., Andersen et al., 2005; Erdody and Moskal, 2010; 

Treitz et al., 2012; Luther et al., 2013). This may reflect the shorter canopy heights of the black 

spruce stands in this study compared with the forest types investigated in other studies. Even in 

Treitz et al.’s (2012; R2 of 0.92) and Luther et al.’s (2013; R2 of 0.90) studies that were specific 

to black spruce stands, average stand height was significantly higher at 16.7 m and 11.9 m 

respectively. In the present study, average stand height was only 9.3 m. Predictor variables 

chosen to model dominant height by Treitz et al. (2012) using multiple stepwise regression 

aligned closely with variables chosen with lasso regression in this study. In their study the 

maximum LiDAR return height and the 90th percentile return height were selected as predictor 

variables for all three models. In this study, the maximum LiDAR return height was consistently 

selected, in addition to the 99th percentile return height and percent of first returns above 1.37 m 

for the intermediate model and coefficient of variation in LiDAR return height and 90th 

percentile return height for the thin model. In Luther et al.’s (2013) study, dominant stand height 

(considered analogous to canopy height for comparison) was modeled with the 99th percentile 

return height, as well as two terrain metrics that were selected using best-subsets regression.  

 

The performance of the canopy height models are more impressive when RMSE errors are 

compared with other studies rather than R2 values. The RMSE errors for estimating canopy 

height using ALS data were 1.5 m for Andersen et al.’s (2005) model, 1.9 m for Erdody and 

Moskal’s (2010) model, between 0.7-0.8 for Treitz et al.’s (2012) models, 1.0 for Luther et al.’s 

(2013) model and 4.0 m for Hermosilla et al.’s (2014) model. For this study, the RMSEtest for the 

dense, intermediate and thin models were 1.0 m, 1.2 m and 1.4 m respectively. Although the 
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RMSEtest for canopy height models developed in this study are relatively small or comparable to 

previous studies, the canopy heights for black spruce stands are much shorter so the relative error 

is larger (hence the lower R2 values). It is also noteworthy that the scatterplots of predicted 

versus observed values for canopy height models indicate that all models developed in this study 

over predicted canopy heights at the lower-end of the range of values, where canopy height was 

less than 8.0 m. Once again, this bias became more pronounced as the point resolution of the 

ALS model decreased. Gopalakrishnan et al. (2015) also found that their ALS models over-

predicted height for short stands. They suggest that a piecewise linear model may improve 

predictive ability.  

 

Several prior studies reported success using ALS data to predict the height of the base of the 

canopy for a variety of different forest stand types (e.g., Andersen et al., 2005; Erdody and 

Moskal, 2010; Hermosilla et al., 2014; Engelstad et al., 2019); however, when the understory 

vegetation is close to the base of the canopy it can be difficult to define CBH using ALS models 

(Popescu and Zhao, 2008). Black spruce trees tend to have crowns that extend to the forest floor 

with a buildup of dead branches and lichen. The relatively poor CBH models generated with the 

three different ALS point cloud density datasets support that ALS data is not well suited for 

measuring the distance between the ground and the base of the canopy in stands where tree 

morphology includes crown vegetation that extends continuously from the top of the tree to the 

forest floor.  

 

It is also noteworthy that all canopy height models, all canopy base height models and the dense 

CFL model, had smaller RMSEtest values compared with RMSE values. Although the differences 
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were small, this was unusual given that the model was designed fit the training data best, rather 

than the testing data. The higher training errors may indicate that the models were generalizing 

well and were able to properly adapt to new data. It could also reflect the relatively small size of 

the testing data and random chance. If the testing error was much larger than the training error, it 

could indicate that the training and testing groups were not randomly selected. Given that the 

errors were similar in value, this was likely not the case for the models developed in this study 

and it can be assumed that the low testing errors are due to random chance. Had a larger training 

data sample size been used for this study the chance of the model fitting the testing data better 

than the training data would have been reduced.   

 

4.2 Sources of Error  

There are a number of sources of possible error in this study. Firstly, plot summaries of field 

measurements involved many assumptions. Given the time and logistics involved with 

destructive sampling, canopy fuel load was calculated from DBH measurements using allometric 

equations. It is common practice to use allometric equations to infer CFL values (e.g., Andersen 

et al., 2005; Erdody and Moskal, 2010; Engelstad et al., 2019); however, by doing so can 

introduce sources of error as trees will naturally have different physical attributes and structure 

based on location and growing conditions. If the allometric equations used to calculate field-

measured CFL values do not adequately represent the trees within the study area then the CFL 

values may be incorrect. Further, the crown fuel load for each tree was assumed to be distributed 

evenly across the plot and throughout the crown of the tree. Heterogeneity of stand structure 

within the sampling plot was therefore ignored, which could affect field-measured CFL values 
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and subsequently CBD and CBH values used in this study. This error would be propagated into 

the ALS derived models and could result in inaccurate predictions.  

 

Field measurements in this study were conducted at a relatively fine resolution to minimize the 

effects of horizontal heterogeneity common in natural black spruce stands; however, these finer-

resolution data introduced potential sources of error. White et al. (2013) emphasizes the 

importance of keeping plot size and grid resolution equivalent when using the area-based 

approach, which was utilized in this study. Although necessary for generating high resolution 

maps, smaller plot sizes have increased potential for edge effects. Edge effects occur when tree 

crowns found along the perimeter of the plot boundary are included in analysis when they are 

actually located (fully or partially) outside the plot boundary or excluded in analysis when they 

are actually located (fully or partially) inside the plot boundary (White et al., 2013). Borderline 

trees are an issue because the ALS point cloud clipped to the boundary of the plot may not reflect 

exactly what was measured on the ground. Edge effects will increase as the plot area decreases 

because the perimeter to sampling area ratio increases. In this study, it was assumed that edge 

effects were offsetting, such that partial crowns of trees in and out of the plot effectively 

cancelled each other out. Edge effects likely had the most influence on the canopy height models 

as they all depended on the maximum return height. This value was calculated from a single 

LiDAR return pulse, rather than the other ALS metrics that were statistical calculations 

representing the distribution of LiDAR returns. Therefore, the edge effects for this parameter 

would not cancel out at the plot level and may explain why the canopy height models had 

relatively poor performance compared to other studies.  
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Human error during field measurements are another potential source of error. Canopy base 

height measurements are somewhat subjective in nature, owing to inconsistent tree crown 

morphology. Accuracy of tree height measurements can be compromised in dense stands where 

nearby trees obstruct the clear line-of-site required for Vertex Hypsometer readings. 

Georeferencing errors can also cause discrepancies between ALS data and field data. The center 

of the ground plot must be determined with a high degree of horizontal accuracy, otherwise the 

ALS point cloud that is trimmed to the boundary of the plot may not completely align with the 

ground plot. Small plots are also more prone to the effects of georeferencing errors as there 

would be less spatial overlap between ground plot and ALS areas given the same degree of error 

for a larger plot. In this study, plot coordinates were determined with a high horizontal accuracy 

of 0.39 m using a Trimble® Geo7X global navigation satellite system device with a Trimble® 

Tempest Antenna (Sunnyvale, CA). 

 

Time elapsed between field measurements and ALS data collection could cause discrepancies 

between field-measured and ALS data. In this study, field measurements were conducted within 

15 months of ALS data collection. It is possible that small changes within the plot could have 

occurred during this time period; however, black spruce is a slow growing tree (Gamache and 

Payette, 2004) and minimal impacts on results are expected. Field plots were monitored with 

frequent on-site visits and no significant disruptions occurred at any of the plots between field 

measurements and ALS data collection. One thing to note is that in the managed stands trees 

were occasionally not perpendicular to the ground because they had been affected by higher 

winds. This angle of the canopy relative to the ground may have affected ALS metrics. It is 
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assumed that naturally less dense stands would be equally affected by high wind speeds and 

would have a similar canopy structure.  

 

Different laser wavelengths were used for the dense ALS dataset which may cause 

inconsistencies when comparing the ALS derived models. The dense ALS dataset used in this 

study consisted of three multispectral point clouds merged into one. The intermediate and thin 

ALS datasets only consisted of returns from the 1064 nm laser. There is potential for error when 

comparing dense ALS point cloud models to intermediate and thin models because different 

wavelengths were used for the remaining two channels (1550 and 531 nm) and these may be 

better or worse at detecting various structural attributes. Given that models developed using 

dense and intermediate ALS datasets had similar performance, the impact of differing 

wavelengths is expected to be minimal. 

 

4.3 Management Implications 

Timely and cost-effective mapping of canopy fuel characteristics across large landscape areas 

could have a profound impact on fire management practices and decisions and the underlying 

fire research and decision support tools that guide them. This research shows the potential to 

utilize ALS data to map canopy fuels at higher resolution than ever before. Airborne laser 

scanning data has been used extensively to map canopy fuels for a variety of stand types and at a 

variety of pulse densities (e.g., Andersen et al., 2005; Erdody and Moskal, 2010; Skowronski et 

al., 2011; Gonzalez-Olabarria et al., 2012; Hermosilla et al., 2014; Bright et al., 2017; Engelstad 

et al., 2019). The highest resolution canopy fuel maps produced with ALS data to date have 

resolutions as fine as 100 m2 (e.g. Bright et al., 2019). In this study, 40 m2 resolution maps were 
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generated. This level of detail opens the door to further developing empirical models that can be 

used for fire behaviour modelling, fire occurrence prediction or strategic planning. In addition, 

this study shows that expensive, high resolution ALS datasets may not be necessary to 

adequately describe canopy fuels as lower point cloud densities had reasonable predictive 

accuracy. 

 

Modeling canopy fuel parameters with low density, 1 pulse m-2 ALS data would have immediate 

applications. In Alberta, low density ALS data is currently available for most of the provincial 

forest area. The majority of these data were collected between 2007 and 2008. With new ALS 

data, temporal comparisons between forest structures could be made. Utilizing the provincial 

ALS dataset could also be used for space-for-time substitution studies. For example, following 

Beverly’s (2017) approach, the age of black spruce stands could be determined using fire 

perimeter shapefiles obtained from the Government of Alberta. Analysis of how black spruce 

forest structure changes over time could then be conducted. Forest structure differences could 

also be compared between time since fire black spruce stands and time since logging black 

spruce stands to understand how human activities affect stand structure during regeneration. 

Analysis could also be conducted with forest structure attributes from the ALS data to determine 

why observed wildfires behaved the way they did. This information could be used to calibrate 

fire models, especially if rate of spread information were available.  

 

One of the largest unknowns that affects fire management decisions is how black spruce 

managed stands affect wildfire behaviour (Flat Top Complex Wildfire Review Committee, 

2012). The FBP system, currently used by most wildfire operations in Canada to predict wildfire 
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behaviour, does not account for managed stands. This research not only focused on identifying 

forest structure attributes important to wildfire behaviour in natural black spruce stands, but also 

stands that have undergone fuel reduction treatments in an effort to reduce potential wildfire 

behaviour. By developing a model that works for both natural and managed stands, wildfire 

managers can begin to understand what effect these fuel treatments may have on the landscape. 

In addition, ALS data could be collected before and after fuel reduction treatments to standardize 

fuel treatment design, confirm whether objectives have been met and to justify costs. Collecting 

further ALS data overtime could be used to monitor how managed stands change over time and 

how often they need to be treated. Finally, ALS data could be used to identify areas where fuel 

treatments may be the most effectively placed to protect communities (e.g. Beverly et al., 2010).  

 

The significance of this research extends much further than simply identifying canopy structural 

attributes for black spruce stands. Any model attempting to understand the effects of wildfire 

depend on fuel information. Whether modeling the impacts of climate change on wildfire 

behaviour (e.g., Fried et al., 2004; Flannigan et al., 2005), trying to predict where fire may occur 

on the landscape (e.g., Martell et al., 1987; Wotton et al., 2003) or trying to predict how a 

wildfire might behave (e.g., Forest Fire Danger Group, 1992; Linn et al., 2002; Reinhardt and 

Crookston, 2003; Rebain et al., 2010), fuel information will be either a direct or indirect input. In 

addition, there are endless other research applications that mapping fuel structure could inform. 

For example, being able to better describe fuels could be used for ecological studies (e.g., 

Rhodes and Baker, 2008; McArthur and Cheney, 2015), habitat suitability (e.g., Southgate et al., 

2007; Brown et al., 2009) and for monitoring changes/recovery after a disturbance (e.g., Bater et 
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al., 2010; Bright et al., 2012; McCarley et al., 2017). By offering higher resolution data, 

increased performance and reliability could be expected for any of these research pursuits.  

 

Although results of this study are promising, they should be used with caution and consideration 

of data and methodological weaknesses and limitations. If using fuel maps produced from ALS 

as inputs into other models it is important to understand how the error and variability in 

predictions may be propagated. It is also important to recognize that the models developed in this 

study are only suitable for mapping stand attributes in black spruce forests with structural 

characteristics that fall within the range of variability observed in the model source data. Stand 

structural characteristics present at the Pelican Mountain and Conklin study sites used in this 

study are unlikely to represent the full range of variability in black spruce stands in Alberta. To 

improve the robustness of the models, additional plots could be collected for black spruce stands 

with a wider range of structural variability. A larger sample size of field measurements would 

also be expected to reduce bias observed in some of the predictive models. Finally, it is 

important to note that these models were only designed for black spruce stands and are not 

intended to summarize forest attributes of any other stand type. Future work could focus on using 

the multispectral ALS data to distinguish different tree species automatically, creating models for 

other stand types and studying the effects that plot size has on the predictive models.  
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Chapter 5 Conclusion 

Fuel flammability and observed wildfire behaviour both depend on the structure of the fuel 

complex. In a forested stand, the structure and attributes of the canopy fuels can affect how 

efficiently a surface fire can transition into a crown fire, how intense the crown fire may be and 

how fast the wildfire is able to move. Fuel type maps were created to provide fire managers a 

very general description of the vegetation to be expected across a landscape; however, no within 

stand variation is accounted for within these broad categories despite its influence on fire 

behaviour. With present day technology, fuels can be accurately mapped at high resolutions. This 

provides an opportunity for models that use fuel information to evolve and perhaps produce more 

accurate predictions with the higher quality data. Even on their own, fuel maps have the ability to 

help fire management personnel develop prevention and management strategies. 

 

This study evaluated whether airborne laser scanning (ALS) data is a viable tool for predicting 

forest structure characteristics important to wildfire behaviour on a fine scale (40 m2 resolution) 

in black spruce stands. We also analyzed the influence of ALS pulse density on model form and 

performance. To achieve these objectives, 79 field plots were established in black spruce stands 

across two study sites in Alberta. Airborne laser scanning data were collected over the study sites 

and processed into three different pulse density datasets (with pulse densities of approximately 

10.7, 4.5 and 1 pulse m-2). Field data were randomly divided into training (52 plots) and testing 

(27 plots) datasets. Least absolute shrinkage and selection operator (lasso) regression was used 

for variable selection and fitting a linear model between the training data and ALS data. Model 

performance was evaluated on the testing dataset using root mean square error (RMSE) and 
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coefficient of determination (R2) statistics. Models were also applied across the Pelican 

Mountain study area to visually assess model performance.  

 

Results indicate that ALS data are suitable for accurately estimating forest structure 

characteristics important to wildfire behaviour within pure black spruce stands in Alberta, 

Canada. Maps generated with the ALS data provided much greater detail over larger areas than 

would otherwise be possible using limited plot-based information. Model performance was 

strong for all point density datasets analyzed in this study; however, predictive power did 

decrease for all canopy fuel parameters analyzed as point resolution decreased. Although 

performance of the 1 pulse m-2 dataset was weaker than the higher resolution datasets, ALS data 

at this low-density is currently available for much of Alberta’s forests. This data availability 

offers endless opportunities for future studies to evaluate how canopy fuel structure changes over 

time, how it may affect wildfire behaviour or occurrence and how we can better manage fuel on 

the landscape. In addition, it can be used towards numerous other studies that may indirectly use 

canopy fuel information, such as determining habitat suitability, ecological impacts of 

disturbances or analyzing post-harvest forest structures.  

 

Results of the lasso regression technique used in this study exhibited similar performance to prior 

studies that used stepwise regression to relate ALS and field data; however, the lasso method is 

less prone to overfitting data and is therefore recommended for future studies of this nature. 

Recommended future work includes collection of field data to enable development of more 

robust models. New sampling plots could be established at different study sites in an effort to 

capture a broader range of black spruce characteristics.  
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