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Abstract

Mathematical models are used to simulate the behavior of the electrical

activity of a single cell or multiple cells of the heart. Single cell models contain

a system of ODEs (ordinary di↵erential equations) while multi-cell models

consist of a coupled system of ODEs and PDEs (partial di↵erential equations).

We present di↵erent algorithms to explore the e�ciency of di↵erent solvers

for simulating cardiac models. We use operator splitting methods to split the

coupled system of equations into the ODE and PDE parts. Then, we examine

di↵erent solvers for simulating each part separately. Experiments shows that

solving the ODE part contributes significantly to the total work required for

the simulation of the multi-cell models. Therefore, utilizing e�cient solution

methods for this part of the problem is a requirement. The goal of this research

is investigating e�cient algorithms for solving these mathematical models.
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Chapter 1

Introduction

Mathematical modeling of cardiac electrical activity plays a crucial role in

cardiovascular research. Many of the life-threatening heart problems are in

fact related to disorder in the heart’s electrical activity. Mathematical models

can be used to simulate the heart activity and the e↵ects of certain drugs

designed to treat them. With the current technology in hand, the expected

cost of development of a drug is often at the order of hundreds of millions of

dollars [DiMasi et al., 2003]. One goal of mathematical modeling is to reduce

this cost by reducing the number of physical experiments needed for designing

a drug [Spiteri and Dean, 2008].

The main function of the heart is to pump the blood throughout the body.

The heart consists of four chambers: right atria, left atria, right ventricle and

left ventricle. The chambers are separated by atrioventricular valves. The

atrioventricular valves are one way valves that allow blood to move from atria

to ventricle [Katz, 2010]. Opening and closing of the valves delivers the blood

around the body and back to the heart.

Electrical activity of the heart is initiated by the sinoatrial (SA) node, that
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serves as a pacemaker, and propagated through the atria provoking contraction.

Then the electrical signal reaches the atrioventricular (AV) node which is placed

just above the ventricles. The AV node delays the electrical impulse for a brief

period that allows the right and left atrium to finish emptying their blood into

the two ventricles. After the delay, the electrical impulse travels through both

ventricles which results in contraction of ventricles and blood is pumped into

the pulmonary artery and aorta.

From a microscopic point of view, because of the di↵erence in the net

electrical charges of di↵erent ions in the cytoplasm of heart cells, a heart cell is

negatively charged compared to its surroundings. This results in a potential

di↵erence across the cell membrane known as transmembrane potential [Sundnes,

2006]. In this thesis we study the transmembrane potential from a numerical

point of view.

The mathematical models of the heart employ ordinary di↵erential equations

(ODEs) as well as partial di↵erential equations (PDEs) to simulate the electrical

activity. Models of the electrophysiology of a single cell consist of a system of

ODEs only while a network of cells can be modeled via a coupled system of

ODEs and PDEs [Shuaiby et al., 2011].

Simulation of the tissue scale electrophysiological models e↵ectively is a

challenging task. Indeed, the non-linearity and sti↵ness of the large ODE

system make accurate simulations either di�cult or not feasible. The goal of

this research is to explore numerical algorithms, which are proper to solve both

single cell and tissue scale electrophysiological models.
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1.A Related Work

A large body of research has been done in the area of mathematical modeling

of cardiac cells. The most notable contributions in this area include [Hodgkin

and Huxley, 1952], [Noble, 1962], [DiFrancesco and Noble, 1985], [Luo and

Rudy, 1991], [Luo and Rudy, 1994], [Courtemanche et al., 1998], and [Winslow

et al., 1999]. Typically, the models consist of a system of nonlinear di↵erential

equations. Newer mathematical cardiac cell models capture more detailed and

accurate cellular activities. Nevertheless, the accuracy usually comes at the

cost of complexity of the model [MacLachlan et al., 2007]. The aim of this

research is not to develop new cardiac cell models but to find e�cient solutions

to the existing ones.

Sti↵ness of the most advanced cardiac cell models makes it a challenging job

to solve them e�ciently. On the one hand, explicit ODE solvers require very

small time steps to maintain stability, which result to ine�cient solutions. On

the other hand, e�cient implementation of the implicit methods is a di�cult

task.

The research in the area of numerical simulation of cardiac cell models can

be generally divided into the research on the single cell models and the research

on tissue scale models. Since single cell models consist only of ODEs, the

solutions to these models are supposedly simpler. Forward Euler is a common

choice among the researchers to solve the single cell models, e.g., see [Roth,

1995,Saleheen and Ng, 1998]. A more e�cient alternative to forward Euler is the

Rush and Larsen’s method [Rush and Larsen, 1978], that is popularly used in

the field of cardiac cell modeling, for instances see [Qu et al., 2000], [Jacquemet

et al., 2003], and [Ten Tusscher et al., 2004]. Rush-Larsen method uses the
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fact that while the ODE systems of the cell models are nonlinear, most of

the ODEs become linear if some of the variables are assumed constants. As a

result, an update formula can be derived using the analytical solution of the

linear ODEs. The rest of the equations (the remaining nonlinear ones) can be

solved using forward Euler. In [Spiteri and MacLachlan, 2003] the performance

of Rush-Larsen method to solve the Luo-Rudy model is investigated. Usage of

the methods other than forward Euler in combination with the Rush-Larsen

method is also studied in a number of papers including [Sundnes et al., 2009].

In [Spiteri and Dean, 2008] the authors investigate the e�ciency of implicit-

explicit Runge-Kutta (IMEX-RK) splitting methods for the simulation of four

cardiac electrophysiological models namely Luo-Rudy I, Courtemanche et al.,

Winslow et al., and Puglisi-Bers. In [Belhamadia et al., 2012] a nested implicit

Runge-Kutta method of order 4 is employed to solve the Luo-Rudy I and

Hund-Rudy models. Since the focus of the authors is on single-cell models, the

results cannot be generalized to tissue-scale simulations.

Splitting methods are commonly used in tissue scale cardiac simulations

in which coupled systems of ODEs and PDEs are studied [Sundnes et al.,

2005, Lines et al., 2003, Santos et al., 2005]. Using operator splitting, one

can split the coupled system into ODEs and PDEs. Then, each of the ODE

and the PDE parts can be solved using an appropriate method. Experiments

shows that solving the ODE part contributes significantly to the total work

required for the simulation of the multi-cell models [Sundnes et al., 2001].

Therefore, most of the research that employ operator splitting methods focus

on the ODE part. For instance in [Sundnes et al., 2001] the authors use a first

and second order operator splitting method combined with an implicit Runge-

Kutta solver (ESDIRK32) to solve the Winslow et al. model which contains 33
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variables. A second-order operator splitting method for the monodomain model

combined with Luo-Rudy I is studied in [Qu and Garfinkel, 1999]. In [Keener

and Bogar, 1998], the authors use an implicit method for the PDEs, and an

explicit method for the ODEs.

1.B Thesis Structure

The remainder of this thesis is structured into four chapters. In Chapter 2, the

models of cardiac cells for both single cell and tissue scale models are presented.

Chapter 3 reviews the numerical methods used in the thesis. The chapter

describes the first and the second operator splitting methods as well as the

ODE solvers used in the thesis. The numerical results of the thesis is presented

in Chapter 4 and Chapter 5 is devoted to a conclusion.
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Chapter 2

Cell Models

The mathematical models that simulate the electrical activity of the heart

describe the behavior of ionic activity of either a single cell or multiple cells

(i.e., tissue scale models). Single cell models consist of a set of ODEs while tissue

scale models consist of a coupled system of ODEs and PDEs. Monodomain (that

contains a single PDE) and bidomain (that contains two PDEs) are two very

well known tissue scale models. Theses two models can be coupled to system of

ODE to accurately simulate the single cell behavior. The monodomain model

is actually a simplification of the bidomain model. While the bidomain model

is more accurate, monodomain is mostly used as it requires less computational

e↵ort. Because of the high computation demand of bidomain, the focus of this

thesis is mainly on the monodomain model coupled with various single cell

models. Figure 2.1 shows an overview of the cell models studied in this thesis.

In this chapter, we first describe several single cell models in Section 2.A.

Then, in Section 2.B, we study the monodomain and bidomain models.
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Models

Single

Cell

Aliev-
Panfilov

Luo-
Rudy

Hodgkin-
Huxley

FitzHugh-
Nagumo

Tissue

Scale

Mono-
domain

Figure 2.1: Single cell and tissue scale models studied in the thesis.

2.A Single Cell Models

In this section, we present di↵erent single cell models that is later used in

Chapter 4 for the numerical results.

2.A.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model was first introduced in 1952 by A.L. Hodgkin

and A.F. Huxley [Hodgkin and Huxley, 1952] to describe the initiation and

propagation of action potentials in the squid giant axon. In 1963, they received

the Nobel Prize in Physiology or Medicine for this work. The model serves as

the basis of the subsequent models for heart cells [Sundnes, 2006] and consists

of four non-linear ODEs as follows,
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where,

↵
m
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�0.1(V

m

+ 50)

e�0.1⇤(V
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+50) � 1

�
m

= 4e�(V
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↵
h
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�
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↵
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e�0.1⇤(V
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I
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)

I
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The following values is used for the constants: E
R

= �75, C
m

= 1,

E
Na

= E
R

+ 115, E
K

= E
R

� 12, E
L

= E
R

+ 10.613, g
Na

= 120, g
K

= 36, and

g
L

= 0.3. A brief description of the variables follows.

• V
m

: Transmembrane potential

• v1, v2, v3: Gate variables
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• I
ion

: Total ionic current across the membrane ( µA

cm

2 )

• I
Na

: Sodium current across the membrane ( µA

cm

2 )

• I
K

: Potassium current across the membrane ( µA

cm

2 )

• I
L

: Leakage current across the membrane ( µA

cm

2 )

• g
Na

: Sodium conductance ( mS

cm

2 )

• g
K

: Potassium conductance ( mS

cm

2 )

• g
Na

: Sodium conductance ( mS

cm

2 )

• C
m

: Membrane capacity per unit area ( µF

cm

2 )

• ↵
n

and �
n

: Rate constants which vary with voltage but not with time ( 1
mS

)

Figure 2.2 shows the transmembrane potential over time produced by the

Hodgkin-Huxley model.

Figure 2.2: Transmembrane potential over time in the Hodgkin-Huxley model
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Figure 2.3: Transmembrane potential over time in the FitzHugh-Nagumo model

2.A.2 FitzHugh-Nagumo Model

FitzHugh-Nagumo is one of the simplest cardiac cell models that has only two

variables. The model is a simplified version of the Hodgkin-Huxley model and

consist of,

8
>><

>>:

dV
m

dt
= k1Vm

(V
m

� a)(1� V
m

)� k2w + I
st

dw

dt
= b(V

m

� k3w),

(2.2)

where V
m

is the transmembrane potential, w is the dimensionless recovery

variable, I
st

is the stimulus current, and a, b, k1, k2, and k3 are the parameters

of the model [Sundnes, 2006]. Figure 2.3 shows the transmembrane potential

produced by the FitzHugh-Nagumo model.
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Figure 2.4: Transmembrane potential over time in the Aliev-Panfilov model

2.A.3 Aliev-Panfilov Model

Aliev and Panfilov proposed their model in 1996. The Aliev-Panfilov model

reproduces more realistic shapes of the cardiac action potential [Belhamadia

et al., 2009] and consists of the following equations [Aliev and Panfilov, 1996],

8
>><

>>:

dv

dt
=
⇣
✏+ µ1v

µ2+V

m

⌘⇣
� v � kV

m

(V
m

� a� 1)
⌘

dV
m

dt
= kV

m

(V
m

� a)(1� V
m

)� V
m

v

(2.3)

in which, V
m

is the transmembrane potential, v is the dimensionless recovery

variable, and a, k, ✏, µ1, µ2 are parameters to the model. An example of the

evolution of V
m

over time for this model is given in Figure 2.4.
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Figure 2.5: Transmembrane potential over time in the Luo-Rudy model

2.A.4 Luo-Rudy I Model

The original version of the Luo-Rudy model, known as Luo-Rudy I model,

is a model of guinea pig ventricular action potentials and was introduced in

1991 [Luo and Rudy, 1991]. Compared to the other models we described above,

this model gives a more detailed description of the ionic currents across the

membrane. For an individual cardiac cell we have that the transmembrane

potential V
m

, typically measured in mV , satisfies dV

m

dt

= �1
C

m

(I
ion

+ I
st

) in which,

C
m

is the membrane capacitance, I
ion

is the total transmembrane ionic current,

and I
st

is the stimulus current [Spiteri and Dean, 2008].

The Luo-Rudy I model itself consists of 8 nonlinear ODEs. More detail is

provided in Appendix A where the C++ code is presented. An example of the

evolution of V
m

over time for this model is given in Figure 2.5.
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2.B Tissue Scale Models

To model the electrical activity across a network of cells, a single cell model

should be coupled with one or more PDEs. In this research, we are specifically

interested in a model known as the monodomain model that can be described

as,

8
>>>>>>>>>><

>>>>>>>>>>:

dv

dt
= f(u, v), x 2 H

�C
du

dt
+ �I

ion

(u, v) = r.(�
I

ru), x 2 H

n.ru = 0, x 2 @H

n.rv = 0, x 2 @H

(2.4)

where the variables are defined as follows,

• u: transmembrane potential

• v: vector of gate variables

• H: physical domain of interest

• @H: boundary of H

• n: an outward pointing normal vector of the boundary

• �
I

: symmetric conductivity tensor

• C: Capacitance

• �: Membrane area to volume ratio

• The functions I
ion

(u, v) and g(u, v) depend on the ionic model

Note that u and v are functions of time and space. As in [Sundnes et al., 2001],

we use the following values for the monodomain parameters in our simulations:

C = 1µF/cm2, � = 2000cm�1, �
I

= 1.3514mS/cm.
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As mentioned earlier, the monodomain model must be coupled with one

of the single cell models to have a complete tissue scale model. For instance

monodomain coupled with Hodgkin-Huxley is as follows,

8
>>>>>>>>>><

>>>>>>>>>>:

dV
m

dt
= �I

ion

C

m

+r.(�
I

ru), x 2 H

dv1
dt

= ↵
m

(1� v1)� �
m

v1

dv2
dt

= ↵
h

(1� v2)� �
h

v2

dv3
dt

= ↵
n

(1� v3)� �
n

v3

(2.5)

The variables are as already described in Section 2.A.1.
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Chapter 3

Numerical Methods

Since the electrical activity models of the heart deals with a coupled system of

ODEs and PDEs, in this chapter, we first describe several methods to solve the

ODE systems and then we will present the methods that can solve the coupled

systems of ODEs and PDEs.

In one part of the experiment, we compare several Runge-Kutta ODE

solvers to simulate the single cell models. Specifically, we use the following

ODE solvers: forward Euler of order one (FE1), explicit Runge-Kutta of

order four (ERK4), implicit Midpoint of order two (IMP2), explicit first stage

singly diagonally implicit Runge-Kutta of order three (ESDIRK3), embedded

singly diagonally implicit Runge-Kutta (ESDIRK32), singly diagonally implicit

Runge-Kutta of order four (SDIRK4), embedded Dormant-Prince 45.

In the other part, we use operator splitting methods of the first and second

order to solve the tissue scale (i.e., multi-cell) models. In operator splitting

methods, we split the mathematical equations into two parts. The first part

consists of solving the ODEs with an appropriate solver and the second consists

of solving the PDE with implict methods.
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3.A Numerical Methods for ODEs

It is well-known that the solution of the ODEs contributes significantly to the

total work of the simulation [Sundnes et al., 2001]. Therefore, the focus of our

research is to explore the e�ciency of di↵erent ODE solvers for the problems.

To that end, we try several ODE solvers of di↵erent orders and accuracies.

The models we study in this thesis usually contain sti↵ equations. There are

di↵erent definitions of sti↵ness in the literature. One typical definition is based

on the ratio of the smallest and the largest negative real parts of the eigenvalue

of the Jacobian matrix. It is commonly assumed that no real part is positive.

More formally, suppose we have a system x0 = f(x) and x 2 Rn. The system

is called sti↵ at x = x0 if:

(1) The system at x = x0 is stable, i.e., all eigenvalues, �
k

, of the Jacobian

matrix J = Df(x0) have negative real parts.

(2) The ratio,

L =
max

k

|Re�
k

|

min
k

|Re�
k

| (3.1)

is su�ciently large. The ratio L is known as the sti↵ness index. A larger

ratio results in a sti↵er problem. Another common definition is that certain

numerical methods for solving the equations are numerically unstable unless

extremely small step sizes are considered. In our research, we consider the

latter definition.

The widely used Runge-Kutta(RK) class is used in this research. However,

because of the sti↵ness of the ODEs and the poor stability properties of the

explicit solvers we mainly focus on implicit RK methods [Butcher, 2008,Hairer

and Wanner, 2004]. A general s stage RK method has the form [Sundnes,
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2006,Hairer and Wanner, 2004,Hairer et al., 1993],

y
n

= y
n�1 +�t

n

sX

i=1

b
i

K
i

, (3.2)

where for i = 1, 2, ..., s,

K
i

= f(t
n�1 +�t

n

c
i

, y
n�1 +�t

n

sX

j=1

a
ij

K
j

), (3.3)

which can be summarized via the Butcher tableau,

c A

bT
=

c1
...

c
s

a11 · · · a1s
...

. . .
...

a
s1 · · · a

ss

b1 . . . b
s

(3.4)

A RK method is called an explicit RK (ERK) if A is strictly lower triangular;

otherwise it is called an implicit RK (IRK). If an IRK method has a matrix

A that is lower triangular, then it is called a diagonally IRK (DIRK) method.

If we additionally have all a
ii

to be equal, it is called singly DIRK (SDIRK)

method [Sundnes et al., 2001,Hairer et al., 1993]. As an example, Table 3.1

shows the Butcher tableau of the ERK4 method, that is an explicit method of

order 4.

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Table 3.1: Butcher tableau of ERK4
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As another example, the Butcher tableau of SDIRK4 is shown in Table 3.2.

SDIRK methods are often considered e�cient when solving sti↵ systems [Hairer

et al., 1993]. A SDIRK4 is a 5-stages method of order 4 and the Butcher

tableau of this method is presented in Table 3.2.

c1 �
c2 a21 �
c3 a31 a32 �
c4 a41 a42 a43 �
c5 a51 a52 a53 a54 �

b1 b2 b3 b4 b5

Table 3.2: SDIRK4 Butcher tableau

The coe�cients a
ij

, b
i

and are provided in [Hairer et al., 1993].

Adaptive step-size methods are also important class of the ODE solvers. In

these methods, the step-size is adjusted according to the rate of the change

of the solution, i.e., if the solution is changing rapidly a smaller step-size is

used while a larger step-size is used for the parts of the solution that slowly

change [LU, 2011].

An embedded RK method is an adaptive method that uses two ordinary

Runge-Kutta methods, one with order p and one with order p� 1, to estimate

the local truncation error of a single RK step. The Butcher tableau of an

embedded RK method is given by,

c1
...

c
p

a11 · · · a1p
...

. . .
...

a
p1 · · · a

pp

b1 . . . b
p

b⇤1 . . . b⇤
p

(3.5)
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Given upper and lower local error bounds denoted by e
U

and e
L

and upper

and lower bounds on the step size denoted by h
U

and h
L

, in every iteration of

the method the following steps are followed,

1. Compute the values y
n+1 and y⇤

n+1 using,

y
n+1 = y

n

+
pX

i=1

b
i

K
i

(3.6)

y⇤
n+1 = y

n

+
pX

i=1

b⇤
i

K
i

(3.7)

where K
i

’s are given by Eq. (3.3).

2. Compute the local error estimate e
n+1 = |y

n+1 � y⇤
n+1|.

3. If e
n+1 is within the bound e

L

and e
U

, propagate one of the values y
n+1

or y⇤
n+1 (the one with the higher order) as the answer of the iteration and

continue to the next iteration.

4. If e
n+1 > e

U

reject the iteration, choose a smaller step size1, and recom-

pute the current iteration from the beginning.

5. If e
n+1 < e

L

accept the iteration, choose a larger step size2, and continue

with the next iteration.

In summary, Table 3.3 shows the list of ODE solvers used in this research

with a brief description.

1 In our code, the smaller step size is computed as h
new

= h

old

⇥ 0.8
⇣

eU
en+1

⌘
1/4

and we

always ensure that h
new

is within hL and hU .

2 In our code, the larger step size is computed as h

new

= h

old

⇥ 0.8
⇣

eL
en+1

⌘
1/4

and we

always ensure that h
new

is within hL and hU .

19



Method Description

FE1 Explicit RK of order 1
ERK4 Explicit RK of order 4
IMP2 Fully implicit method of order 2 [LU, 2011]
ESDIRK3 Explicit first stage, singly diagonally implicit RK

of order 3 [Van Zuijlen and Bijl, 2005]
SDIRK4 Singly diagonally implicit RK of order 4
ESDIRK23A A third order singly diagonally implicit RK with

adaptive step size
Dormant-Prince45 An adaptive explicit RK method with order 5

Table 3.3: List of ODE solvers used in this research

3.A.1 Implicit versus Explicit Solvers

An ODE solver is called explicit if the value of y
n+1 is given directly from

known quantities and previous values of y
n

. In the other case, in which y
n+1

is found by solving a system of (nonlinear) equations, the method is called

implicit (because y
n+1 is given implicitly). Because of poor stability of explicit

methods, the focus of this thesis is mainly on implicit methods. To solve

the nonlinear equations, Newton iterations is commonly used as the standard

procedure [Sundnes et al., 2001]. To do so, after computing the initial value of

k0
i

, the following formulas are used to compute the rest of the values,

(I ��t�J)�km

i

= �km + f

 
t
n

+�tc
i

, y
n

+�t
i�1X

j=1

a
ij

km

i

+ �km

i

!
(3.8)

km+1
i

= km

i

+�km

i

, (3.9)

for i = 2, 3, . . . until the termination criteria is satisfied. The matrix J is the

Jacobian of the right hand function f(.). In standard Newton method, this
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matrix should be computed for every iteration by,

J =
@f

@y
(t

n

+�tc
i

, y
n

+ r�t), (3.10)

where r is the collection of terms in Eq. (3.8). However, since computation of J

using the above formula is computationally costly, the following approximation

is used in my experiments,

J ⇡ @f

@y
(t

n

, y
n

). (3.11)

3.B Numerical Methods for PDEs

In this section, we present the numerical methods that we employ to solve the

PDE part of the coupled system. To simplify the presentation consider the

boundary-initial value problem,

8
>>>>>><

>>>>>>:

u
t

= cu
xx

, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 (boundary conditions)

u(x, 0) = f(x) (initial condition)

(3.12)

where u = u(x, t) and c is a constant. To solve this problem numerically, x and

t are discretized such that,

x
j

= j�x, j = 0, 1, 2, ... (3.13)

and

t
n

= n�t, n = 0, 1, 2, .... (3.14)
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If we use the backward di↵erence at time t
n+1 and a second-order central

di↵erence for the space derivative at position x
j

we have the following scheme

known as backward Euler,

un+1
j

� un

j

�t
=

un+1
j+1 � 2un+1

j

+ un+1
j�1

�x2
(3.15)

We can obtain un+1
j

by solving the following system,

(1 + 2�)un+1
j

� �un+1
j�1 � �un+1

j+1 = un

j

(3.16)

where � = �t

�x

2 .

If we use the central di↵erence at time t
n+1/2 and a second-order central

di↵erence for the space derivative at position x
j

we have the scheme,

un+1
j

� un

j

�t
=

1

2

 
un+1
j+1 � 2un+1

j

+ un+1
j�1

�x2
+

un

j+1 � 2un

j

+ un

j�1

�x2

!
(3.17)

known as the Crank-Nicolson method. We can obtain un+1
j

by solving the

following system,

(1 + 2r)un+1
j

� run+1
j�1 � run+1

j+1 = (1� 2r)un

j

+ run

j�1 + run

j+1 (3.18)

where r = �t

2�x

2 . This system has the matrix form of Au = b [LeVeque, 2007].

We use direct method (LU) to solve this system.
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3.C Numerical Methods for the Monodomain

Model

We consider two type of numerical methods, known as operator splitting and

semi-implicit finite di↵erence methods, to solve the coupled system.

3.C.1 Operator Splitting Methods

With operator splitting technique, a coupled system of ODEs and PDEs can be

split into smaller parts which are easier to solve. For most of the cases, instead

of using one single method to solve the whole system of equations, it would be

more e�cient to use di↵erent numerical methods for di↵erent parts [Sundnes

et al., 2001]. There are several di↵erent operator splitting techniques but in

this research we are interested in first order operator splitting (OS1) and second

order operator splitting (OS2) methods [Sundnes, 2006].

OS1 is a two-step method with a first order accuracy while OS2 is a three

step method with a second order accuracy. OS1 and OS2 are general techniques

to solve the system of coupled PDEs and ODEs but we describe the methods

in the context of the monodomain problem only. Using this method for the

monodomain problem, for OS1 we have the following steps [Sundnes, 2006],

1. Solve the ODEs

�C
du

dt
= ��I

ion

(u, v), u(t
n

) = un

dv

dt
= f(u, v), v(t

n

) = vn

for t
n

< t  t
n

+�t. The solutions of this step are denoted by ũ and
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v(t
n

+�t)

2. Solve the linear PDE

�C
du

dt
= r.(�

I

ru), u(t
n

) = ũ

for t
n

< t  t
n

+�t. The resulting solution u(t
n

+�t) is denoted by un+1

in which �t is the time step.

For the OS2 method, the steps are as follows,

1. Solve the ODEs

�C
du

dt
= ��I

ion

(u, v), u(t
n

) = un

dv

dt
= f(u, v), v(t

n

) = vn

for t
n

< t  t
n

+ 1
2�t. The solutions of this step are denoted by ũn and

ṽn.

2. Solve the linear PDE

�C
du

dt
= r.(�

I

ru), u(t
n

) = ũn

for t
n

< t  t
n

+�t. The resulting solution is denoted by ūn+1

3. Solve the system

�C
du

dt
= ��I

ion

(u, v), u(t
n

+
1

2
�t) = ūn+1

24



dv

dt
= f(u, v), v(t

n

+
1

2
�t) = ṽn

for t
n

+ 1
2�t  t

n

+ �t. The resulting solutions are un+1 and vn+1 at

t = t
n

+�t.

in which �t is the time step.

For some simple problems the subproblems can be solved analytically but

for most of the cases, we have to solve the subproblems numerically.

3.C.2 Semi-implicit Methods

In order to verify the correctness of our implementation for the operator splitting

methods, the semi-implicit method is used for comparison. The semi-implicit

method is useful for some particular cases where the PDE is coupled with only

one ODE. Given a non-linear PDE of the form,

8
>><

>>:

u
t

= r2u+ f(u, v)

v
t

= g(u, v),

(3.19)

with the Dirichlet boundary condition of,

8
>><

>>:

u(x0, t) = h1

u(x
N

, t) = h2

(3.20)

We consider discretization of Eq. (3.19) which replace the solution of u(t)

with the approximate solution of un ⇡ u(t
n

) at times t0 < t1 < . . . < t
n

< . . .

and t
n

= n�t for a constant �t. A semi-implicit method deals with r2u

implicitly and with f(u, v) explicitly, i.e., at time t
n

we have the following
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scheme,

8
>><

>>:

un+1 � un

�t
= r2un+1 + f(un, vn)

vn+1 � vn

�t
= g(un, vn)

(3.21)

If we also partition the domain in space using a mesh x0, . . . xN

we have

the following scheme,

8
>><

>>:

un+1
i

� un

i

�t
=

un+1
i+1 � 2un+1

i

+ un+1
i�1

�x2
+ f(un

i

, vn
i

) i = 0 . . . N

vn+1
i

� vn
i

�t
= g(un

i

, vn
i

)

(3.22)

Letting � = �t

�x

2 we can rewrite Eq. (3.23) as,

8
>><

>>:

��un+1
i+1 + (1 + 2�)un+1

i

� �un+1
i�1 = �tf(un

i

, vn
i

) + un

i

i = 0 . . . N

vn+1
i

� vn
i

= g(un

i

, vn
i

)�t

(3.23)

The linear system of the first equation in Eq. (3.23) is,

8
>>>>>>>>>><

>>>>>>>>>>:

i = 1 �(�un+1
2 � (1 + 2�)un+1

1 + �un+1
0 ) = �tf(un

1 , v
n

1 ) + un

1

i = 2 �(�un+1
3 � (1 + 2�)un+1

2 + �un+1
1 ) = �tf(un

2 , v
n

2 ) + un

2

...

i = N � 1 �(�un+1
N

� (1 + 2�)un+1
N�1 + �un+1

N�2) = �tf(un

N�1, v
n

N�1) + un

N�1

(3.24)

with boundary conditions of un+1
0 = h1 and un+1

N

= h2. The above system has
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the matrix form of Au = F where u, A, and F are defined as follows,

u =

2

666666666666664

u0

...

u
N

v0
...

v
N

3

777777777777775

2 R2N+2 (3.25)

A =

1

�� 1 + 2� ��

. . . . . . . . .

�� 1 + 2� ��

1

1

1

. . .

1

1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

2 R2N+2⇥2N+2

(3.26)
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F =

2

6666666666666666666666666664

h1

�tf(un

1 , v
n

1 ) + un

1

�tf(un

2 , v
n

2 ) + un

2

...

�tf(un

N�1, v
n

N�1) + un

N�1

h2

�tg(un

0 , v
n

0 ) + vn0

�tg(un

1 , v
n

1 ) + vn1
...

�tg(un

N

, vn
N

) + vn
N

3

7777777777777777777777777775

T

2 R2N+2 (3.27)
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Chapter 4

Results

In this chapter, simulation results of several di↵erent single cell models as

well as the results of monodomain model for 1D and 2D are presented. To

solve the single cell models, which only consist of nonlinear ODEs, several

di↵erent ODE solvers that were introduced in Chapter 3 are used. To solve the

monodomain model, we use first and second order operator splitting techniques,

for both 1D and 2D models, to split the model into the ODE and PDE parts.

Backward Euler and Crank-Nicolson methods are used to solve the PDE

part. To investigate the e�ciency of ODE solvers, we compare the result of

various implicit and explicit Runge-Kutta ODE solvers. Specifically, we use the

following ODE solvers: forward Euler of order one (FE1), explicit Runge-Kutta

of order four (ERK4), implicit Midpoint of order two (IMP2), explicit first stage

singly diagonally implicit Runge-Kutta of order three (ESDIRK3), embedded

singly diagonally implicit Runge-Kutta (ESDIRK32), singly diagonally implicit

Runge-Kutta of order four (SDIRK4). In addition, we use embedded Dormant-

Prince 45 to generate the reference solutions of ODEs. To verify the correctness

of our implementations, we use a number of test problems, most of which have
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known analytical solutions.

Recall that most of the computation cost is consumed to solve the ODE part

of the coupled systems. Therefore, the study is mostly focused on solving the

ODE part. As expected, the results show that implicit ODE solvers, specially

for sti↵er ODEs, give a much more accurate result. In addition, implicit ODE

solvers have a more stable behavior for sti↵ ODEs.

To evaluate the accuracy of suggested methods, we use e1 and e2 errors

defined as follows,

e1 = max |Vref � Vm| . (4.1)

e2 =

sZ
t

f

t

i

|Vref � Vm|2 . (4.2)

where Vref and Vm are the reference solution and obtained numerical solution

vectors respectively and are reinterpolated at N equally spaced points between

t
i

and t
f

.

4.A Numerical Results for ODEs

In this section, we present the result of applying the ODE solvers described

in Section 3.A to several single cell models. To verify the correctness of the

algorithms of our ODE solvers, we first apply the algorithms to a number of

test problems. Then, we present the results of the single cell models.
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4.A.1 Test Problems for ODE Solvers

The ODE solvers are verified using several test problems. However, for brevity,

only the results of two of them are presented here. The first test problem is

an analytically solvable ODE. The second one is the well-known Van der Pol

equations. A brief description of each test problem follows.

Problem 1: The first test problem is a function of one variable and consist of

the following equations,

y0 = �200(y � cos(t)), 0  t  1.5, (4.3)

y(0) = 0,

with an exact solution of,

y(t) =
200(�200e�200t + sin(t) + 200 cos(t))

400001
. (4.4)

Figure 4.1 shows the plot of di↵erent ODE solvers applied to the test

problem 1. The plot shows that, compared to the other methods, FE1 has

poor stability properties. Table 4.1 shows the details of the simulation. Note

that the error ratios follow the expected order of the methods.

Problem 2:

For the second test problem, we consider the well known Van der Pol

equations. The equations are o↵ered by the Dutch physicist Balthasar Van der

Pol in 1920 as a description for the circuit of a vacuum tubes.
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Method Time Steps Newton Iterations e1
e1[dt]

e1[dt/2]

FE1 1.50⇥ 10�3 - 3.00⇥ 10�7

7.50⇥ 10�4 - 1.50⇥ 10�7 1.998
3.75⇥ 10�4 - 7.55⇥ 10�8 1.997

ERK4 1.50⇥ 10�3 - 1.94⇥ 10�10

7.50⇥ 10�4 - 1.13⇥ 10�11 17.10
3.75⇥ 10�4 - 7.10⇥ 10�13 15.95

IMP2 1.50⇥ 10�3 2000 2.22⇥ 10�8

7.50⇥ 10�4 4000 5.55⇥ 10�9 4.0001
3.75⇥ 10�4 7998 1.38⇥ 10�9 4.0000

ESDIRK3 1.50⇥ 10�3 5043 4.13⇥ 10�11

7.50⇥ 10�4 10072 5.89⇥ 10�12 7.344
3.75⇥ 10�4 20117 7.35⇥ 10�13 8.025

SDIRK4 1.50⇥ 10�3 9933 1.67⇥ 10�11

7.50⇥ 10�4 18051 1.13⇥ 10�12 14.81
3.75⇥ 10�4 34596 0.75⇥ 10�13 15.20

Table 4.1: The result of test problem 1 solved with di↵erent ODE solvers

Figure 4.1: Comparison of di↵erent ODE solvers for test problem 1: y0 =
�200(y � cos(t)), y(0) = 0, 0  t  1.5, dt = 1.5⇥ 10�3
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Figure 4.2: Comparison of di↵erent ODE solvers for test problem 2: Van der
Pol equations for dt = 1.25⇥ 10�2

Method Time Steps Newton Iterations e1
e1[dt]

e1[dt/2]

IMP2 1.25⇥ 10�2 12912 1.487⇥ 10�1

6.25⇥ 10�3 25716 3.722⇥ 10�2 3.99
3.12⇥ 10�3 51336 9.292⇥ 10�3 4.00

ESDIRK3 1.25⇥ 10�2 28566 5.043⇥ 10�2

6.25⇥ 10�3 52972 5.332⇥ 10�3 9.4591
3.12⇥ 10�3 94777 6.405⇥ 10�4 8.3249

SDIRK4 1.25⇥ 10�2 37938 1.633⇥ 10�3

6.25⇥ 10�3 70445 1.674⇥ 10�4 13.8512
3.12⇥ 10�3 135760 1.079⇥ 10�5 15.5163

ESDIRK23A [10�3, 10�2]⇤ 35595 5.560⇥ 10�3

[10�3, 10�2]⇤ 36360 5.661⇥ 10�4 -
[10�3, 10�2]⇤ 37777 4.501⇥ 10�4 -

Table 4.2: The result of test problem 2 solved with di↵erent ODE solvers.
*Note that ESDIRK23A is an adaptive method. Therefore, the table shows
the range of Time Steps used. The chosen tolerances for the entries of the
ESDIRK23A is set to 10�2, 10�4, and 10�6 respectively.
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y01 = y2 y1(0) = 2 (4.5)

y02 = µ(1� y21)y2 � y1 y2(0) = 0 .

We choose 0  t  80 and µ = 50 in our experiment. Figure 4.2 and

Table 4.2 show the result of di↵erent ODE solvers applied to problem 2. The

reference solution is obtained by applying an adaptive Dormant-Prince 45 with

very small tolerance. To ensure the precision of the result, two solutions with

di↵erent tolerances of 10�14 and 10�15 are obtained. The errors between the

solutions are as follows: e1 = 3.81465⇥ 10�9 and e2 = 3.89881⇥ 10�9. The

higher precision solution (i.e., the one with tolerance 10�15) is then chosen

as the reference solution. Note that the error ratios of Table 4.2 converge

to expected order of the methods. Comparing the results of SDIRK4 and

ESDIRK23A from Table 4.2 it can be seen that ESDIRK23A, which is an

adaptive method, can obtain almost the same error value with fewer number

of Newton iterations.

4.A.2 Result of Single Cell Models

In this section, we present the result of applying di↵erent ODE solvers to solve

the Luo-Rudy I model. The reference solutions are generated by applying an

adaptive Dormant-Prince 45 with very small tolerances. Two solutions with

di↵erent tolerances of 10�16 and 10�17 are obtained where the e1 error between

the solutions is 4.84034⇥ 10�8. Then, the solution with the smaller tolerance

is selected as the reference solution.

Table 4.3 show the results of the Luo-Rudy I model. The results show that
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Method Time Steps Newton Iterations e1
e1[dt]

e1[dt/2]

IMP2 1.00⇥ 10�1 9408 1.90
5.00⇥ 10�2 18059 0.47 4.05
2.50⇥ 10�2 36072 0.11 3.98

ESDIRK3 1.00⇥ 10�1 22881 1.63
5.00⇥ 10�2 44844 0.18 9.00
2.50⇥ 10�2 88085 0.02 8.64

SDIRK4 1.00⇥ 10�1 31733 9.19⇥ 10�2

5.00⇥ 10�2 58750 7.69⇥ 10�3 18.38
2.50⇥ 10�2 113456 5.98⇥ 10�4 15.49

ERK4 1.00⇥ 10�1 - -
5.00⇥ 10�2 - - -
2.50⇥ 10�2 - - -
1.25⇥ 10�2 - 2.30⇥ 10�4 -
6.25⇥ 10�3 - 1.33⇥ 10�5 17.23

ESDIRK23A [10�3, 10�1]⇤ 22872 2.19⇥ 10�2

[10�3, 10�1]⇤ 23053 2.92⇥ 10�3 -
[10�3, 10�1]⇤ 24222 1.71⇥ 10�4 -

Table 4.3: The result of simulation for the Luo-Rudy I model. ERK4 is not
stable for time steps > 1.25⇥ 10�2. *Note that ESDIRK23A is an adaptive
method. Therefore, the table shows the range of Time Steps used. The chosen
tolerances for the entries of the ESDIRK23A is set to 10�1, 10�2, and 10�4

respectively.

for ERK4, which is an explicit method, we need to choose very small time steps

to have a stable output. The table also shows that SDIRK4 and ESDIRK23A

give the most accurate results compared to other methods, between which

ESDIRK23A need fewer Newton iterations.
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4.B Result of One Dimensional Monodomain

Model

The results of one dimensional monodomain model are presented in this section.

Both OS1 and OS2 methods, as well as semi-implicit method are used to

solve coupled systems of ODE and PDE in one dimension. Note that semi-

implicit method is only used in the case that the system has one ODE. To

verify the correctness of our programs, we first test our programs against two

test problems with exact solutions. Then, we present the results of the 1D

monodomain model using ionic models. To compute the errors, we used two

functions, kek2 and kek1, which are defined by Eq. (2.12) and Eq. (2.13) in

Appendix B.

4.B.1 Test Problems for Coupled Systems in One Di-

mension

(a) Varying dx for dt = 10�4

dx kek2 kek2[dx]
kek2[dx/2]

1/8 9.623⇥ 10�2 -
1/16 2.846⇥ 10�2 3.381
1/32 8.270⇥ 10�3 3.441

(b) Varying dt for dx = 10�3

dt kek2 kek2[dt]
kek2[dt/2]

1/8 1.719 -
1/16 6.875⇥ 10�1 2.500
1/32 3.079⇥ 10�1 2.232

Table 4.4: The results of test problem 4 using OS1 and IMP2 for solving the
ODE part.
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Test Problem 4: The test problem consists of the following system of equa-

tions,

u
t

= u
xx

+ (2t� 4)(
v

5
)1/3 (4.6)

v
t

= 30 tu3

u(x, 0) = e2x, 0  x  1

u
x

(1, t) = 2e2+t

2

, 0  t  1

u
x

(0, t) = 2et
2

, 0  t  1,

with an exact solution of u(x, t) = e2x+t

2
, v(x, t) = 5(e2x+t

2
)3. The results

of applying OS1, OS2, and semi-implicit to the test problem are shown in

Tables 4.4 to 4.6 respectively. Figure 4.3 also shows the plots of kek2 over dt

for test problem 4. The results show that the order of the outputs follow what

we expect in theory. It confirms the correctness of our implementation of the

PDE model.

(a) Varying dx for dt = 10�3

dx kek2 kek2[dx]
kek2[dx/2]

1/8 9.700⇥ 10�2 -
1/16 2.918⇥ 10�2 3.324
1/32 9.260⇥ 10�3 3.151

(b) Varying dt for dx = 10�3

dt kek2 kek2[dt]
kek2[dt/2]

1/4 1.027 -
1/8 3.441⇥ 10�1 2.984
1/16 1.059⇥ 10�1 3.249

Table 4.5: The results of test problem 4 using OS2 and IMP2 for solving the
ODE part.
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(a) Varying dx for dt = 10�4

dx kek2 kek2[dx]
kek2[dx/2]

1/8 9.630⇥ 10�2 -
1/16 2.845⇥ 10�2 3.384
1/32 8.310⇥ 10�3 3.423

(b) Varying dt for dx = 10�3

dt kek2 kek2[dt]
kek2[dt/2]

1/8 1.719 -
1/16 6.873⇥ 10�1 2.500
1/32 3.083⇥ 10�1 2.229

Table 4.6: The results of test problem 4 using Semi-implicit method.
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shows the least-square error fit of a polynomial
of degree 2.

Figure 4.3: Plots of kek2 over dt for test problem 4.
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Test Problem 5: The test problem consists of the following system of equa-

tions,

u
t

= u
xx

+ 4 t(v + 1) + u� 1 (4.7)

v
t

= �1

2
(u� 1)

u(x, 0) = 2 sin x+ 1, 0  x  ⇡

4

u
x

(
⇡

4
, t) = 2 cos(

⇡

4
+ t2), 0  t  ⇡

4

u
x

(0, t) = 2 cos t2, 0  t  ⇡

4
,

with an exact solution of u(x, t) = 2 sin(x+ t2)+1 and v(x, t) = cos(x+ t2)� 1.

(a) Varying dx for dt = ⇡
40000

dx kek2 kek2[dx]
kek2[dx/2]

⇡/16 9.642⇥ 10�3 -
⇡/32 2.644⇥ 10�3 3.646
⇡/64 7.072⇥ 10�4 3.738

(b) Varying dt for dx = ⇡
4000

dt kek2 kek2[dt]
kek2[dt/2]

⇡/16 1.462⇥ 10�1 -
⇡/32 5.110⇥ 10�2 2.861
⇡/64 2.080⇥ 10�2 2.456

Table 4.7: Results of test problem 5 using OS1 and IMP2 for solving the ODE
part.

Tables 4.7 and 4.8 show the results of test problem 5. The results of test

problem show that the order of the outputs follow what we expect in theory. It

confirms the correctness of our implementation of the PDE model. In addition,

OS2 gives more accurate results compared to OS1.
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(a) Varying dx for dt = ⇡
40000

dx kek2 kek2[dx]
kek2[dx/2]

⇡/16 9.459⇥ 10�3 -
⇡/32 2.468⇥ 10�3 3.832
⇡/64 5.849⇥ 10�4 4.219

(b) Varying dt for dx = ⇡
4000

dt kek2 kek2[dt]
kek2[dt/2]

⇡/16 4.891⇥ 10�2 -
⇡/32 1.419⇥ 10�2 3.44
⇡/64 4.393⇥ 10�3 3.23

Table 4.8: Results of test problem 5 using OS2 and IMP2 for solving the ODE
part.

4.B.2 Results of One Dimensional Monodomain Cou-

pled with Luo-Rudy I

We have already described the monodomain and Luo-Rudy I model in Sec-

tions 2.A.4 and 2.B. In this section, we present the result of our simulations for

the one dimensional monodomain model coupled with Luo-Rudy I. Table 4.9

shows the results of monodomain combined with Luo-Rudy I model using

di↵erent methods. The parameters of the model are the same as the ones

described in Section 2.B and the initial condition is assumed to be,

u(x, 0) =

8
>><

>>:

�84.5 x � 0.3

20 x < 0.3

(4.8)

The reference solution for the Luo-Rudy I model is generated using IMP2

method with dt = 10�5 and dx = 2⇥ 10�3. To solve the PDE part, backward

Euler and Crank-Nicolson methods are used. For the ODE part, the results of

40



IMP2, ESDIRK3, and SDIRK4 are presented. Please note that for the ODE

part, we also tried two explicit methods (namely Forward Euler and ERK4).

However, since they don’t give a stable output for the time steps of Table 4.9,

we don’t present the result here.

The results show that IMP2, which is a fully implicit method, gives the

most accurate results compared to other methods we tried 1. Furthermore, if

we use Crank-Nicolson instead of backward Euler, we receive better results.

Table 4.10 shows the timing result of backward Euler and CrankNicolson

methods for the Aliev-Panfilov model. Simulations are run on an Intel Core

Due CPU with 3 gigabytes of RAM. Table 4.11 shows the timing result for the

Luo-Rudy model with the same configuration.

4.C Result of Two Dimensional Monodomain

Model

The results of two dimensional monodomain model using di↵erent ionic models

are presented in this section. Both OS1 and OS2 methods are used to solve

coupled systems of ODE and PDE in two dimensions. For the ODE part, we

tried IMP2, ESDIRK3, SDIRK4, FE1, and ERK4 methods. However, the

results with FE1 and ERK4 are not presented as they do not produce a stable

solution with a large value of time step. For the PDE part backward Euler

is used. The results show that IMP2, which is a fully implicit method, gives

the most accurate results compared to other ODE solvers we tried. We first

test our programs against an analytical solution. Then, we use complex ionic

1Note that we only examined non-adaptive methods in this section.
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(a) OS1 with backward Euler

ODE Solver dt dx kek2
IMP2 0.05 0.005 6.771⇥ 10�2

ESDIRK3 0.05 0.005 7.141⇥ 10�2

SDIRK4 0.05 0.005 7.053⇥ 10�2

(b) OS2 with backward Euler

ODE Solver dt dx kek2
IMP2 0.05 0.005 6.300⇥ 10�2

ESDIRK3 0.05 0.005 7.129⇥ 10�2

SDIRK4 0.05 0.005 6.970⇥ 10�2

(c) OS1 with Crank-Nicolson

ODE Solver dt dx kek2
IMP2 0.05 0.005 1.508⇥ 10�2

ESDIRK3 0.05 0.005 1.733⇥ 10�2

SDIRK4 0.05 0.005 1.697⇥ 10�2

(d) OS2 with Crank-Nicolson

ODE Solver dt dx kek2
IMP2 0.05 0.005 1.157⇥ 10�2

ESDIRK3 0.05 0.005 1.252⇥ 10�2

SDIRK4 0.05 0.005 1.244⇥ 10�2

Table 4.9: Results of monodomain combined with Luo-Rudy I model using
di↵erent methods

PDE Solver dt dx Total Time (S) PDE Time (S)

backward Euler 0.1 0.5 28.41 3.97
CrankNicolson 0.1 0.5 30.84 5.05
backward Euler 0.1 0.25 70.47 22.45
CrankNicolson 0.1 0.25 72.55 23.96

Table 4.10: Comparison of the timing of backward Euler and CrankNicolson
methods for the Aliev-Panfilov model.
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PDE Solver dt dx Total Time (S) PDE Time (S)

backward Euler 0.1 0.05 50.41 2.57
CrankNicolson 0.1 0.05 58.84 2.55
backward Euler 0.1 0.025 135.43 17.32
CrankNicolson 0.1 0.025 141.21 17.26

Table 4.11: Comparison of the timing of backward Euler and CrankNicolson
methods for the Luo-Rudy model.

models. To compute the errors, we used two functions, kek2 and kek1, which

are defined by Eq. (2.14) and Eq. (2.15) in Appendix B.

4.C.1 Test Problem for Coupled Systems in Two Di-

mensions

Test Problem 6: The test problem consists of the following system of equa-

tions,

8
>><

>>:

u
t

= u
xx

+ u
yy

� 7( v

11)
1/5

v
t

= 55u5

(4.9)

with the following boundary conditions,

u(x, y, 0) = e2u+2y

u
x

(0, y, t) = 2e2y+t

u
x

(1, y, t) = 2e2+2y+t

u
y

(x, 0, t) = 2e2x+t

u
y

(x, 1, t) = 2e2x+t+2 .
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The problem has an exact solution of u(x, y, t) = e2x+2y+t and v(x, y, t) =

11(e2x+2y+t)5. The results of the test problem for OS1 and OS2 methods are

shown in Tables 4.12 and 4.13 respectively, which verifies the correctness of the

programs. Additionally, OS2 provides more accurate results than OS1, which

is the expected behavior.

(a) Varying dx = dy for dt = 10�5

dx = dy kek2 kek2[dx]
kek2[dx/2]

1/16 6.41⇥ 10�2 -
1/32 1.76⇥ 10�2 3.64
1/64 4.97⇥ 10�3 3.54

(b) Varying dt for dx = dy = 10�2

dt kek2 kek2[dx]
kek2[dx/2]

1/8 2.93⇥ 100 -
1/16 1.51⇥ 100 1.94
1/32 7.46⇥ 10�1 2.02

Table 4.12: The result of test problem 6 using OS1 method and IMP2 for
solving the ODE part.

In Sections 4.C.2 to 4.C.4, we present the result of Aliev-Panfilov, Hodgkin-

Huxley, and Luo-Rudy I combined with the monodomain model in two dimen-

sions. The parameters of the model are the same as the ones described in

Section 2.B.

4.C.2 Results of 2D monodomain coupled with Aliev-

Panfilov

We have already described the monodomain and Aliev-Panfilov model in

Sections 2.A.3 and 2.B. In this section we present the result of our simulations

44



(a) Varying dx = dy for dt = 10�3

dx = dy kek2 kek2[dx]
kek2[dx/2]

1/16 7.030⇥ 10�2 -
1/32 1.830⇥ 10�2 3.84
1/64 4.710⇥ 10�3 3.88

(b) Varying dt for dx = dy = 10�2

dt kek2 kek2[dx]
kek2[dx/2]

1/8 1.7900 -
1/16 4.610-1 3.88
1/32 1.480-1 3.11

Table 4.13: The result of test problem 6 using OS2 method and IMP2 for
solving the ODE part.

for the two dimensional monodomain model coupled with Aliev-Panfilov. The

initial condition of the simulations of this section is as follows,

u(x, y, 0) =

8
>><

>>:

0
p

(x� 50)2 + (y � 50)2 � 25

1
p

(x� 50)2 + (y � 50)2 < 25

(4.10)

Table 4.14 shows the result of OS1 and OS2 methods applied to the two

dimensional monodomain model combined with Aliev-Panfilov model. Com-

pared with ESDIRK3 and SDIRK4, IMP2 gives more accurate results for

both OS1 and OS2 methods. Note that, FE1 and ERK4 do not provide a

stable output for the given �t and �x. Figure 4.4 also shows the evolution of

transmembrane potential over time for the 2D monodomain model combined

with Aliev-Panfilov. The reference solution is generated using the OS2 method

with dt = 0.00025 and dx = 0.001. The ODE part is solved with IMP2 while

the PDE part is solved using the backward Euler method.
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(a) t=0 (b) t=10 (c) t=20

(d) t=30 (e) t=40 (f) t=50

(g) t=60 (h) t=70 (i) t=80

(j) t=90 (k) t=100

Figure 4.4: Evolution of transmembrane potential over time for the 2D mon-
odomain model combined with Aliev-Panfilov model.
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(a) Results of OS1

ODE Solver dt dx kek2
IMP2 0.04 0.05 1.229⇥ 10�1

ESDIRK3 0.04 0.05 1.467⇥ 10�1

SDIRK4 0.04 0.05 1.342⇥ 10�1

(b) Results of OS2

ODE Solver dt dx kek2
IMP2 0.04 0.05 1.176⇥ 10�1

ESDIRK3 0.04 0.05 1.377⇥ 10�1

SDIRK4 0.04 0.05 1.241⇥ 10�1

Table 4.14: The result of 2D monodomain combined with Aliev-Panfilov model

4.C.3 Results of 2D monodomain coupled with Hodgkin-

Huxley

We have already described the monodomain and Hodgkin-Huxley model in

Sections 2.A.1 and 2.B. In this section, we present the result of our simulations

for the two dimensional monodomain model coupled with Hodgkin-Huxley.

The initial condition of the simulations of this section is as follows,

u(x, y, 0) =

8
>><

>>:

�75
p

(x� 100)2 + (y � 100)2 � 30

20
p

(x� 100)2 + (y � 100)2 < 30

(4.11)

Table 4.15 shows the result of OS1 and OS2 methods applied to the two

dimensional monodomain model combined with Hodgkin-Huxley model. Com-

pared with ESDIRK3 and SDIRK4, IMP2 gives more accurate results for

both OS1 and OS2 methods. As mentioned earlier, FE1 and ERK4 do not

provide a stable output for the given �t and �x. Figure 4.5 also shows the

evolution of transmembrane potential over time for the 2D monodomain model
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combined with Hodgkin-Huxley. The reference solution is generated using the

OS2 method with dt = 7⇥ 10�4 and dx = 10�3. The ODE part is solved with

IMP2 while the PDE part is solved using the backward Euler method.

(a) Results of OS1

ODE Solver dt dx kek2
IMP2 0.0175 0.01 8.324⇥ 10�2

ESDIRK3 0.0175 0.01 9.154⇥ 10�2

SDIRK4 0.0175 0.01 8.872⇥ 10�2

(b) Results of OS2

ODE Solver dt dx kek2
IMP2 0.0175 0.01 7.915⇥ 10�2

ESDIRK3 0.0175 0.01 8.513⇥ 10�2

SDIRK4 0.0175 0.01 8.252⇥ 10�2

Table 4.15: The result of 2D monodomain combined with Hodgkin-Huxley
model

4.C.4 Results of 2D monodomain coupled with Luo-

Rudy I

We have already described the monodomain and Luo-Rudy I model in Sec-

tions 2.A.4 and 2.B. In this section, we present the result of our simulations for

the two dimensional monodomain model coupled with Luo-Rudy I. The initial

condition of the simulations of this section is as follows,

u(x, y, 0) =

8
>><

>>:

�84
p

(x� 100)2 + (y � 100)2 � 30

20
p

(x� 100)2 + (y � 100)2 < 30

(4.12)

Table 4.16 shows the result of OS1 and OS2 methods applied to the two
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(a) t=0 (b) t=3 (c) t=6

(d) t=9 (e) t=12 (f) t=15

(g) t=18 (h) t=21 (i) t=24

(j) t=27 (k) t=30 (l) t=35

Figure 4.5: Evolution of transmembrane potential over time for the 2D mon-
odomain model combined with Hodgkin-Huxley model.
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dimensional monodomain model combined with Luo-Rudy I. Compared with

ESDIRK3 and SDIRK4, IMP2 gives more accurate results for both OS1 and

OS2 methods. As mentioned earlier, FE1 and ERK4 do not provide a stable

output for the given �t and �x. The reference solution is generated using OS2

with dt = 0.00125 and dx = 0.005. The ODE part is solved with IMP2 while

the PDE part is solved using the backward Euler method.

(a) Results of OS1

ODE Solver dt dx kek2
IMP2 0.05 0.01 1.883⇥ 10�1

ESDIRK3 0.05 0.01 1.987⇥ 10�1

SDIRK4 0.05 0.01 1.932⇥ 10�1

(b) Results of OS2

ODE Solver dt dx kek2
IMP2 0.05 0.01 1.773⇥ 10�1

ESDIRK3 0.05 0.01 1.811⇥ 10�1

SDIRK4 0.05 0.01 1.802⇥ 10�1

Table 4.16: The result of 2D monodomain combined with Luo-Rudy I model

4.D Spiral Waves

In this section, we present the result of applying the semi-implicit method to a

special case of FitzHugh-Nagumo model to obtain spiral waves. Spiral waves

are believed to initiate the ventricular fibrillation. Ventricular fibrillation is a

severely abnormal heart rhythm that is produced by one or many spiral propa-

gation waves of the excitation cardiac wall [Bourgault et al., 2003,Belhamadia,

2008]. Figure 4.6 shows the two point simulation of the spiral waves using

monodomain model combined with the modified FitzHugh-Nagumo model with
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the following equations,

@u

@t
= r.Dru+ c1u(u� a)(1� u)� c2uv + I

s

(4.13)

@v

@t
= b(u� dv),

with Neumann boundary condition @u

@n

= 0. In the above system, u is the

transmembrane potential, v is the recovery variable, n is a vector normal to

the boundary, and I
s

is the stimulus current. The parameters are chosen as

a = 0.13, b = 0.013, c1 = 0.26, c2 = 0.1, and d = 1 similar to [Rogers and

McCulloch, 1994]. Two electrical stimuli are applied to the cell at the beginning

of the simulation and at time 570ms. The amplitude of both of the stimuli

are I
s

= 30µA/cm2. The figure shows that a point stimulus is applied in the

center of the domain. Later, it follows by another point stimulus at the center.

For more details see about the spiral waves see [Pertsov et al., 1993].
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Figure 4.6: Spiral waves for the FitzHugh-Nagumo model for t = 0 to 3750ms.
The flow is from top to bottom and from left to right.
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Chapter 5

General Discussion and

Conclusions

Mathematical models of electrophysiology of the heart can generally be grouped

into single cell and tissue scale models. A single cell model consist of a system

of ODEs. There are many di↵erent single cell models with di↵erent degrees of

loyalty to the real world model and di↵erent levels of computation intensiveness.

However, it is known that the models that capture more details of the heart

ionic activity are more complex and require more computational power to solve.

Tissue scale models, in addition to a set of ODEs, contains one or more PDEs.

Two well known tissue scale models, namely monodomain and bidomain are

commonly studied in the literature. Nevertheless, because of high computational

power required by the bidomain model, the main focus of this thesis was on

the monodomain model.

On the one hand, because of complexity and sti↵ness of the equations,

solving the models is a challenging task and requires an enormous amount of

computational power. On the other hand, accurate solutions to the electro-
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physiological models of the heart can improve the heart disease detection and

prevention. Therefore, having e�cient solutions for these models translates

into more e↵ective and less expensive ways to prevent and cure heart diseases.

In this thesis, we explored the Runge-Kutta family of ODE solvers to find

out which of the methods best fit for solving the electrophysiological models of

the heart. To e↵ectively employ the ODE and PDE solvers, we used operator

splitting methods of order one and two to split a coupled system of equations

into the ODE and PDE parts. Then, we examined di↵erent ODE and PDE

solvers to find out which method works better. As a general rule of thumb, we

can say operator splitting method of order two works better than the order

one counterpart. Furthermore, implicit ODE solvers outperform the explicit

solvers. Among di↵erent implicit ODE solvers we tried, IMP2 usually produces

the most accurate result. In some cases, explicit ODE solvers are not able to

produce a stable output or require very small time steps to be stable. The

latter case means explicit methods require a longer time to solve a problem

compared to the implicit methods. Since, most of the computation cost is

consumed to solve the ODE part, using implicit methods of order 2 results in

faster and more accurate solutions. For the PDE part, in the cases that we

tried two solvers, Crank-Nicolson performs better than backward Euler.
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Appendix A

Cell Models

1.A Luo-Rudy I Model

1.B Source Code of the Models

1 #ifndef LUORUDY_H_INCLUDED
2 #define LUORUDY_H_INCLUDED
3

4 #include "XArray.h"
5 #include <math.h>
6

7 XArray<double> luo_rudy_model(double t, XArray<double>
y)

8 {
9 const double Kplusi = 145;

10 const double Kpluse = 5.4;
11 const double Naplusi = 18;
12 const double Napluse = 140;
13 const double gNa = 23;
14 const double gKp = 1.83 * 0.01;
15 const double gb = 3.921 * 0.01;
16 const double Cm = 1;
17 const double Eb = -59.87;
18 const double R = 8314;
19 const double T = 310;
20 const double F = 96484.6;
21 const double PR = 1.833 * 0.01;
22 const double ENa = ((R * T) / (F)) * log(Napluse /

60



Naplusi);
23

24 double alphax = (5 * (0.0001) * ((exp(0.083 * (y
(+0) + 50))) / (exp(0.057 * (y(+0) + 50)) + 1)))
;

25 double betax = (1.3 * (0.001)) * ((exp(-0.06 * (y
(+0) + 20))) / (exp(-0.04 * (y(+0) + 20)) + 1));

26 double alpham = (0.32 * (y(+0) + 47.13)) / (1 -
exp(-0.1 * (y(+0) + 47.13)));

27 double betam = 0.08 * exp(-y(+0) / 11);
28 double alphad = (0.095) * ((exp(-0.01 * (y(+0) -

5))) / (exp(-0.072 * (y(+0) - 5)) + 1));
29 double betad = (0.07 * ((exp(-0.017 * (y(+0) + 44)

)))) / (exp(0.05 * (y(+0) + 44)) + 1);
30 double alphaf = 0.012 * ((exp(-0.008 * (y(+0) +

28))) / (exp(0.15 * (y(+0) + 28)) + 1));
31 double betaf = 0.0065 * ((exp(-0.02 * (y(+0) + 30)

)) / (exp(-0.2 * (y(+0) + 30)) + 1));
32

33 double alphah = 0;
34 double betah = 0;
35 double alphaj = 0;
36 double betaj = 0;
37

38 if(y(+0) >= -40)
39 {
40 alphah = 0;
41 betah = 1 / (0.13 * (1 + exp(-(y(+0) + 10.66)

/ 11.1)));
42 alphaj = 0;
43 betaj = (0.3 * exp(-2.535 * (1.0 / 10000000) *

y(+0))) / (1 + exp(-0.1 * (y(+0) + 32)));
44 }
45 else

46 {
47 alphah = 0.135 * exp((-80 - y(+0)) / 6.8);
48 betah = (3.56 * exp(0.079 * y(+0))) + (3.1 *

(100000) * exp(0.35 * y(+0)));
49 alphaj = (((-1.2714 * (100000) * exp(0.2444 *

y(+0))) - ((3.474 * (1.0 / 100000) *
50 exp(-0.04391 * y(+0))))) * (y(+0)

+ 37.78)) / (1 + exp(0.311 * (y
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(+0) + 79.23)));
51 betaj = (0.1212 * exp(-0.01052 * y(+0))) / (1

+ exp(-0.1378 * (y(+0) + 40.14)));
52 }
53

54 double Esi = 7.7 - (13.0287 * log(y(+7)));
55 double Isi = 0.09 * y(+4) * y(+5) * (y(+0) - Esi);
56 double gK1 = 0.6047 * sqrt(Kpluse / 5.4);
57 double EK1 = (R * T / F) * log(Kpluse / Kplusi);
58 double EK = (R * T / F) * log(((Kpluse) + (PR *

Napluse)) / (Kplusi + (PR * Naplusi)));
59

60 double Xi = 0;
61

62 if(y(+0) <= -100)
63 {
64 Xi = 1;
65 }
66 else

67 {
68 Xi = (2.837) * (exp(0.04 * (y(+0) + 77)) - 1)

/ ((y(+0) + 77) * exp(0.04 * (y(+0) + 35)));
69 }
70

71 double gK = 0.282 * sqrt(Kpluse / 5.4);
72 double IK = gK * y(+6) * Xi * (y(+0) - EK);
73 double gamma = exp(0.06175 * (y(+0) - EK1 -

594.31));
74 double alphaK1 = 1.02 / (1 + exp(0.2385 * (y(+0) -

EK1 - 59.215)));
75 double betaK1 = ((0.49124 * exp(0.08032 * (y(+0) -

EK1 + 5.476))) + gamma) /
76 (1 + exp(-0.5143 * (y(+0)

- EK1 + 4.753)));
77 double K1infinity = alphaK1 / (alphaK1 + betaK1);
78 double IK1 = gK1 * K1infinity * (y(+0) - EK1);
79 double EKp = EK1;
80 double Kp = 1 / (1 + exp((7.488 - y(+0)) / 5.98));
81 double IKp = gKp * Kp * (y(+0) - EKp);
82 double Ib = gb * (y(+0) - Eb);
83 double INa = gNa * pow(y(+1), 3) * y(+2) * y(+3) *

(y(+0) - ENa);
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84 double Iion = INa + Isi + IK + IK1 + IKp + Ib;
85

86 XArray<double> df(8);
87

88 df(0) = -(Iion) / Cm;
89 df(1) = (alpham * (1 - y(+1))) - (betam * y(+1));
90 df(2) = (alphah * (1 - y(+2))) - (betah * y(+2));
91 df(3) = (alphaj * (1 - y(+3))) - (betaj * y(+3));
92 df(4) = (alphad * (1 - y(+4))) - (betad * y(+4));
93 df(5) = (alphaf * (1 - y(+5))) - (betaf * y(+5));
94 df(6) = (alphax * (1 - y(+6))) - (betax * y(+6));
95 df(7) = (-0.0001 * Isi) + (0.07 * (0.0001 - y(+7))

);
96

97 return df;
98 }
99

100 double luo_rudy_initu(double x)
101 {
102 return (x >= 0.3) ? -84.5 : 20;
103 }
104

105 XArray<double> luo_rudy_initv(double x)
106 {
107 XArray<double> r(7);
108

109 if(x >= 0.3)
110 {
111 r(0) = 0.00167;
112 r(1) = 0.928;
113 r(2) = 1;
114 r(3) = 0.00298;
115 r(4) = 1;
116 r(5) = 0.00602;
117 r(6) = 0.000178;
118 }
119 else

120 {
121 r(0) = 0.0001;
122 r(1) = 0.0001;
123 r(2) = 0.0001;
124 r(3) = 0.0001;
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125 r(4) = 0.0001;
126 r(5) = 0.0001;
127 r(6) = 0.0001;
128 }
129

130 return r;
131 }
132

133 #endif // LUORUDY_H_INCLUDED
134

135 /*********************************************/
136

137 XArray<double> aliev_panfilov_AD_v1(double t, XArray<
double> y)

138 {
139 const double k = 8;
140 const double a = 0.15;
141 const double u1 = 0.2;
142 const double u2 = 0.3;
143 const double epsilon0 = 0.002;
144 int dims[] = {2};
145 XArray<double> df(1, dims);
146

147 double epsilon = epsilon0 + ((u1 * y(1)) / (y(0) +
u2));

148 df(0) = -(k * y(0) * (y(0) - a) * (y(0) - 1)) - (y
(0) * y(1));

149 df(1) = epsilon * ((-y(1)) - (k * y(0) * (y(0) - a
- 1)));

150 return df;
151 }
152

153 /*********************************************/
154

155 XArray<double> fitzhugh_nagumo_AD_v1(double t, XArray<
double> y)

156 {
157 double c1 = 1;
158 double a = 0.25;
159 double c2 = 1;
160 double b = 0.0016875;
161 double c3 = 0.01;
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162 XArray<double> df = y;
163 df(0) = (c1 * y(0) * (y(0) - a) * (1 - y(0))) - (

c2 * y(1));
164 df(1) = ((b * y(0)) - (c3 * y(1)));
165 return df;
166 }
167

168 /*********************************************/
169

170 #ifndef XARRAY_H_INCLUDED
171 #define XARRAY_H_INCLUDED
172

173 #include <string>
174 #include <sstream>
175 #include <vector>
176 #include <assert.h>
177

178 using namespace std;
179

180 template <class T = double>
181 class XArray
182 {
183 // Fields (keep data)
184 int index_helper[10];
185 // cells of the array
186 vector<T> table;
187 // dimensions of the array
188 vector<int> dims;
189

190 public:
191 XArray(){}
192

193 XArray(unsigned int n, int *d)
194 {
195 dims.resize(n);
196 int size = 1;
197 for (unsigned int i = 0; i < n; i++) {
198 size *= d[i];
199 dims[i] = d[i];
200 }
201 table.resize(size);
202 }
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203

204 XArray(unsigned int d1)
205 {
206 dims.resize(1);
207 dims[0] = d1;
208 table.resize(d1);
209 }
210

211 XArray(unsigned int d1, unsigned int d2)
212 {
213 dims.resize(2);
214 dims[0] = d1;
215 dims[1] = d2;
216 table.resize(d1 * d2);
217 }
218

219 XArray(unsigned int d1, unsigned int d2,
unsigned int d3)

220 {
221 dims.resize(3);
222 dims[0] = d1;
223 dims[1] = d2;
224 dims[2] = d3;
225 table.resize(d1 * d2 * d3);
226 }
227

228 XArray(const XArray<T>& xa)
229 {
230 this->table = xa.table;
231 this->dims = xa.dims;
232 }
233

234 int dim(int i)
235 {
236 return dims[i];
237 }
238

239 int num_dims()
240 {
241 return dims.size();
242 }
243
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244 T& operator()(int i)
245 {
246 index_helper[0] = i;
247 return get_helper(1, index_helper);
248 }
249

250 T& operator()(int i, int j)
251 {
252 index_helper[0] = i;
253 index_helper[1] = j;
254 return get_helper(2, index_helper);
255 }
256

257 T& operator()(int i, int j, int k)
258 {
259 index_helper[0] = i;
260 index_helper[1] = j;
261 index_helper[2] = k;
262 return get_helper(3, index_helper);
263 }
264

265 XArray<T> operator*(double m)
266 {
267 XArray<T> r = *this;
268 for (unsigned int i = 0; i < table.size(); i

++) {
269 r.table[i] *= m;
270 }
271

272 return r;
273 }
274

275 XArray<T> operator+(const XArray<T> &that)
276 {
277 assert(this->dims.size() == that.dims.size());
278 for (unsigned int i = 0; i < dims.size(); i++)

{
279 assert(this->dims[i] == that.dims[i]);
280 }
281

282 XArray<T> r = *this;
283 for (unsigned int i = 0; i < table.size(); i
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++) {
284 r.table[i] += that.table[i];
285 }
286

287 return r;
288 }
289

290 private:
291 T& get_helper(unsigned int n, int *indices)
292 {
293 assert(n == dims.size());
294

295 int multiplier = 1;
296 int index = 0;
297

298 for (unsigned int i = 0; i < n; i++) {
299 //cerr << "index " << i << " out of range.

Expected [0, " << dims[i] - 1
300 // << "] found " << indices[i] << endl

;
301 assert(indices[i] >= 0 && indices[i] <

dims[i]);
302 index += indices[i] * multiplier;
303 multiplier *= dims[i];
304 }
305

306 return table[index];
307 }
308 };
309

310 template <class T>
311 ostream &operator<<(ostream &stream, XArray<T> xa)
312 {
313 int d = xa.num_dims();
314

315 if(d == 1)
316 {
317 int n = xa.dim(0);
318 for(int i = 0; i < n; i++)
319 {
320 stream << xa(i);
321 if(i < n - 1)
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322 {
323 stream << ", ";
324 }
325 }
326 }
327 else

328 {
329 stream << "XArray[";
330 for(int i = 0; i < d; i++)
331 {
332 stream << xa.dim(i);
333 if(i < d - 1)
334 {
335 stream << "x";
336 }
337 }
338 stream << "]";
339 }
340

341 return stream;
342 }
343

344 #endif // XARRAY_H_INCLUDED

69



Appendix B

Definitions

2.A Computation of Continuous and Discrete
Norms

Consider a problem in which the solution is a function u(x) over the interval
a  x  b. Assume a method approximate the solution by û(x). The error is
given by,

e(x) = û(x)� u(x) (2.1)

The magnitude of the error can be measured using the appropriate p-norm,

kek
p

=

0

@
bZ

a

|e(x)|pdx

1

A
1/p

(2.2)

For two dimensions the p-norm is defined analogously as,

kek
p

=

0

@
bZ

a

dZ

c

|e(x, y)|pdxdy

1

A
1/p

(2.3)

for a  x  b and c  y  d.
Some methods such as finite di↵erence methods, instead of producing a

function as the solution, produce a set of values U
i

at grid points x
i

= a+ ih
for i = 0, . . . , N (i.e., U

i

⇡ u(x
i

)). Let the vector of errors e = (e1, . . . , eN) be
defined by,

e
i

= U
i

� u(x
i

) (2.4)

The usual vector norms for e
i

would grow unboundedly with the increase of
the number of grid points and therefore the following norms for grid functions
are used,
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kek1 = h
NX

i=0

|e
i

| (2.5)

with h as the scaling factor. Note that the scaling factor h scales the sum by
1/N as the number of point increases. Without the scaling factor h, the error
grows unboundedly when N ! 1. Therefore, kek

i

is the average value of e
over the interval. Similarly, the p-norm kek

p

is defined as,

kek
p

=

 
h

NX

i=0

|e
i

|p
! 1

p

(2.6)

Note that Eq. (2.6) is the discretization of Eq. (2.2). For p = 2 we have,

kek2 =

vuuth
NX

i=0

|e
i

|2 (2.7)

While h1/p ! 1 as p ! 1, the 1-norm is defined as,

kek1 = max
1iN

|e
i

| (2.8)

In two dimensions, the p-norm is analogously defined as,

kek
p

=

 
�x�y

X

i

X

j

|e
ij

|p
! 1

p

(2.9)

with the special cases of,

kek2 =
s

�x�y
X

i

X

j

|e
ij

|2 (2.10)

and

kek1 = max
1iN

1jM

|e
ij

| (2.11)

In the above equations we have x
i

= a+ i�x for i = 0, . . . , N , y
i

= c+ j�y
for j = 0, . . . ,M , and e

ij

= U
ij

� u(x
i

, y
j

). For higher dimensions the p-norm
is defined analogously.

Please note that since we use finite di↵erence methods in this thesis, we
use the error definitions for the grid functions. More specifically, we use the
2-norm and 1-norm for the models throughout the thesis. For the models
with one dimension in space we use the following error functions,
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kek2 =
s

�t�x
X

i

X

j

|e
ij

|2 (2.12)

and

kek1 = max
1iN

1jM

|e
ij

| (2.13)

where x and t denote the variables in space and time and M and N are defined
as above. While for two dimensional models we use,

kek2 =
s
�t�x�y

X

i

X

j

X

k

|e
ijk

|2 (2.14)

and

kek1 = max
1iN1
1jN2
1kM

|e
ijk

| (2.15)

where x and y denote the variables in space and t denotes the time. It is assumed
that N1 and N2 are the number of grid points along x and y directions.
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