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Abstract

Coral reefs are essential to the marine ecosystem, and provide some of the

most diverse habitats in the world. Coral reef fisheries contribute 6.8 billion

to the economy a year globally. However, coral reefs are under significant

threat because of human activities such as overfishing, ocean pollution, and

habitat destruction. Overfishing leads to shrinkage of the herbivorous fish

population, and ocean pollution results in the rapid growth of nutrients in the

water. These activities give rise to macroalgae, since herbivorous fish eat many

algae and excessive nutrients provide macroalgae with abundant necessities

to grow. Macroalgae constantly compete with coral for living space. Adult

coral and algae can grow by overgrowing other functional groups or available

space. Coral larvae and algae propagules can recruit into adult coral and algae

by dispersal and settlement onto available space. Existing literature mainly

treats the whole coral reefs as one big patch and focused on one functional

group overgrowing other functional groups. However, that is rarely the case

in nature. Coral reefs are composed of hundreds of coral skeleton patches and

between each patch are sand and rocks. Living coral, macroalgae, and turf

algae grow on the coral skeletons. The mechanism of how coral, macroalgae,

and turf algae occupy available space while competing; and how macroalgae

invade coral and turf algae spatially through larval or propagules dispersal and

settlement is still poorly understood. We develop several differential equation

models from the first principles and a solid biological background to answer

those two questions in chapters 2 and 3. We also give conditions under which
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coral will retreat or expand. The interactions between macroalgae and coral

were widely studied, but how turf algae interact with other benthic groups is

still poorly understood. We also generate some insights into the role of turf

algae from the analysis from chapters 2 and 3.

In chapter 2, we develop a one-patch ordinary differential equation model

by introducing available space explicitly and incorporating larval dispersal.

We undertake bifurcation analysis to understand the effect of grazing on the

coral-algae dynamics. We show coral persist under high grazing pressure. We

show reasonable fishing helps maintain the herbivorous fish population, and a

healthier herbivorous fish population can support a higher level of coral cover.

We find coral are more resistant to the decline of larval recruitment when the

rate of turf algae occupying available space is high.

In the chapter 3, we consider multiple patches and derive a weakly-coupled

network of ordinary differential equations and a reaction-diffusion equation

model for the continuous space case from the first principles for modelling

brooding coral dynamics. We use the spatially explicit reaction-diffusion equa-

tion model to understand the spatial dynamics of the coral-algae ecosystem,

and we simulate travelling waves to explain how the macroalgae invade coral

spatially through larval dispersal at different grazing levels.

Keywords: coral, algae, larval dispersal, patches, reaction-diffusion equation,

persistence, bifurcation, travelling wave.
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Glossary

Available space (S)

Available space, not occupied by any functional groups.

Coral (C)

Adult coral.

Delay differential equation (DDE)

Differential equations that involve both time derivatives and delay, which
can be represented as the trajectory of the solution in the past.

Macroalgae (M)

Adult macroalgae.

Macroalgae, coral, turf algae, and parrotfish model (MCTP model)

A differential equation model with macroalgae, coral, turf algae, and
parrotfish as dependent variables.

Macroalgae, coral, and turf algae model (MCT model)

A differential equation model with macroalgae, coral, and turf algae as
dependent variables.

Ordinary differential equation (ODE)

Differential equations that only involve time derivative.

Partial differential equation (PDE)

Differential equations that involve both time and space derivatives.

Travelling wave (TW)

A special form of solution to reaction-diffusion equations, that keeps the
same shape of time profile.

Turf algae (T)

Adult turf algae.

x



Chapter 1

Introduction

In this chapter, we summarize the challenges that coral reefs face and list the

efforts other researchers have made to understand coral-algae phase shift. We

narrow down the broad question of how we can help prevent coral reefs from

degrading to specific coral-algae related problems. Coral reefs are degrading

due to anthropogenic influences, such as ocean polluting, overfishing herbivo-

rous fish, destructive fishing methods, and global warming. Phase shift from

coral-dominant state to macroalgae-dominant state is one of the critical signals

of coral reef degradation, where macroalgae replace abundant coral (Bellwood

et al., 2004; Hughes, 1994). There has been extensive work to understand

the phase shift and give management suggestions. The goal has been to find

anthropogenic and climatic causes of phase shift and provide management

measures on how to prevent or reverse the unwanted phase shift (McManus

and Polsenberg, 2004; Mumby et al., 2007; Blackwood et al., 2010; Hughes

et al., 2007, 2010; Fung et al., 2011, 2013; Brown et al., 2018; Briggs et al.,

2018; Tekwa et al., 2021). There have been various methods to study phase

shift and interactions between coral and algae. There are both exogenous and

endogenous factors that drive coral algae phase shift. These include runoff,

upwelling, storms, direct impact from human activities, fishing, macroalgae,

herbivores, urchins, and predators. See McManus and Polsenberg (2004) for a

conceptual diagram. Controlled experiments on the Great Barrier Reef to test

the influence of herbivorous fish on the resilience of coral after a regional coral

bleaching found population density of herbivorous fish was a critical compo-
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nent in understanding the phase shift (Hughes et al., 2007). Experiments and

statistical results suggested the need for new methods for monitoring coral reefs

to understand the signals of degrading reefs and innovative designs for marine

reserves to reverse the unwanted phase shift (Hughes et al., 2010). Surveys

conducted at the Great Barrier Reef found seasonal changes in environmental

conditions promoted predictable seasonal cycles in the coral-algae interaction

(Brown et al., 2018). In addition to statistical tools, mathematical models,

predominantly deterministic ordinary differential equation models, have been

used to understand the phase shift (Mumby et al., 2007; Blackwood et al.,

2010; Fung et al., 2011, 2013; Briggs et al., 2018; Tekwa et al., 2021).

It is easy to distinguish macroalgae cover from coral cover, so it is common

to observe coral cover replaced by macroalgae cover. However, turf algae are

also an essential part of the benthic coral reefs ecosystem, and their effects on

other benthic groups are poorly explored (Vermeij et al., 2012). We aim to

1) understand how coral, macroalgae, and turf algae occupy available space

while competing; 2) understand how macroalgae invade coral and turf algae

spatially through larval or propagules dispersal and settlement; 3) generate

insights into the role of turf algae in the coral-algae ecosystem.

1.1 Biological background

In this section, we introduce our three main functional groups of focus in this

thesis, macroalgae (M), coral (C), and turf algae (T ).

1.1.1 Macroalgae

Macroalgae are a common term used for seaweeds and other benthic algae.

They are visible to the eyes, and most macroalgae reproduce sexually by

producing gametes or propagules and asexually by vegetative propagation or

fragmentation. Macroalgae may replace coral because overfishing and ocean

pollution. In the context of coral reefs, macroalgae are unwanted, and a large

number of macroalgae is one sign of coral reef degradation (Diaz-Pulido and

McCook, 2008).
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1.1.2 Coral

In this thesis, we refer to living coral as the marine invertebrates coral,

dead coral as coral skeletons, and the colony formed by both living and

dead coral as coral reefs or patches . Coral can reproduce both asexually

and sexually, as summarized in figure 1.1. The asexual reproduction of coral

involves budding or fragmentation. Budding happens when new coral polyps

bud off from parent polyps, and together with the parent polyps, form an

immense colony. Fragmentation happens when parent coral break into smaller

fragments because of natural disturbances and, if the fragmented pieces land

in suitable places, the fragmented pieces can grow and form a new colony

(Richmond and Hunter, 1990). The location of fertilization can classify sexual

reproduction. External fertilization happens when adult coral releases both

sperm and eggs into water and spermatozoid meets eggs in the water. Internal

fertilization happens when adult coral release only sperm into the water, and

spermatozoid meets the eggs in the coral polyps. Spawning coral adapt the

external fertilization strategy, and spawning coral larvae can survive and drift

along with the current for days before settling in a suitable spot. As a result,

the spawning coral larvae can disperse over a long distance. Brooding coral

adapt the internal fertilization strategy.

In this thesis, we focus on coral sexual reproduction and the brooding

coral situation. There are several steps involved for brooding coral sexual

reproduction with internal fertilization. The first step is coral spawning; adult

coral produce only sperm into the water column above the patch of coral reefs.

The second step is coral brooding; the spawned sperm fertilizes the eggs inside

coral polyps. The fertilized eggs become little larvae, and the larvae develop in

the coral polyps for some time before they are released into the current. The

final step is larval settling; the polyps release the well developed larvae and,

if they attach to the suitable substrata, they can grow to new coral polyps

by division. Since the brooding coral larvae are relatively well developed and

ready to settle when they are released, the brooding coral larvae travel and

disperse over a significantly shorter distance than the spawning coral larvae
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(James Gilmour and Pincock, 2013).

Fig. 1.1 Reproduction of coral. (A) Asexual reproduction of coral through budding.
(B) Asexual reproduction of coral through fragmentation. (C) Sexual reproduction
of brooding coral through internal fertilization. (D) Sexual reproduction of spawning
coral through external fertilization.

1.1.3 Turf algae

Turf algae are a combination of filamentous algae, microalgae, zooxanthellae,

and other types of benthic algae (Connell et al., 2014). The interaction between

coral and turf algae largely depends on what specific species to include as a

collective term for turf algae. With different compositions of species, turf algae

may have a minor effect on coral, kill coral, or even help coral (Jompa and

McCook, 2003). In this thesis, we consider the case when turf algae help coral.

Turf algae are the fastest colonizer compared to macroalgae and coral and can

fill up available space in a short time. Coral usually win in the competition

against turf algae (Swierts and Vermeij, 2016).
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1.2 Historical approaches

In this section, we specifically focus on the historical efforts of modelling coral-

algae dynamics using ordinary differential equations (ODE).

Mumby et al. (2007) developed a macroalgae-coral-turf algae (MCT) model

that includes three functional groups: macroalgae, coral, and turf algae. One

of the primary assumption was that any particular location was occupied by

a certain proportion of each of the three groups. In their model, the variables

represented the proportion of space occupied by either macroalgae, coral, or

turf algae in that given region and the proportions added up to one, in other

words, T = 1 −M − C. Mumby et al. (2007)’s MCT model model showed

bistability behaviour with either macroalgae-dominance or coral-dominance,

when the grazing effect was high. A detailed global ODE analysis of the MCT

model was undertaken by Li et al. (2014). They also developed a delay dif-

ferential equation (DDE) model with inherent time delay for the system and

undertook local stability analysis for the model, with a focus on assessing the

impact of grazing on the population dynamics. The MCT model was extended

to a MCTP model by explicitly incorporating the population dynamics of her-

bivorous parrotfish, and management options were considered based on the

analysis of grazer dynamics (Blackwood et al., 2010). A comprehensive stabil-

ity, bifurcation, and persistence analysis of a slightly modified version of the

MCTP model was undertaken by Fattahpour et al. (2018). They also used

a DDE model to provide biologically important coexistence state attracting

region and management suggestions. A stage-structured model with the as-

sumption that available free space was covered by turf algae immediately was

promoted by Briggs et al. (2018) to study the effect of the vulnerability of

macroalgae to grazing on coral-algae phase shift. Available space and larval

recruitment were introduced into the ODE models by Fung et al. (2011) and

Fung et al. (2013). However, the detailed mechanism of how coral and algae

occupy available space and how larvae or propagules recruit into adults is still

poorly understood. The idea of intraguild competition between coral and al-

gae has been commonly used to formulate the deterministic models. Intraguild
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predation involves both competition and predation. Species in intraguild pre-

dation kills and eats other potential competitive species that use the same

limited resources (Polis, 1989). Algae and coral compete for living space by

overgrowing each other rather than actually killing or eating, so here we avoid

using the word predation directly. Instead, we use intraguild competition to

show the difference.

One drawback of the existing methods is that ODE models cannot capture

the spatial structures that are commonly seen in coral reefs. There are many

patches of coral skeletons of a certain size in coral reefs, and macroalgae, coral,

and turf algae grow on the surface of coral skeletons. These patches of coral

skeletons become larger and even connect to other patches to form a bigger

reef. Coral larvae and algae propagules travel from one patch to another,

and the coral skeletons also expand through the metabolism of living coral

(James Gilmour and Pincock, 2013).

In this thesis, we will develop ODE models based on Mumby et al. (2007)’s

MCT model with explicit consideration of available space to emphasize the

fact that it takes time for the dead coral and algae to form available space,

and different groups take available at vastly different speeds. We will also

develop a network of patches model and reaction-diffusion equation model to

explicitly consider the spatial invasion of coral by macroalgae through larval

dispersal.

1.3 Model assumptions

In this section, we state our main model assumptions.

We include four components in our model: macroalgae (M), coral (C), turf

algae (T ), and available space (S). Each variable is measured by the surface

area of coral skeletons it occupied. The first three components interact through

intraguild competition, and available space serves as a buffer between them,

as illustrated by figure 1.2. Macroalgae are the most competitive component

and can take the space occupied by coral and turf algae during competition.

Coral are the second most competitive component. Coral overgrow turf algae
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during the sub-competition between coral and turf algae (Barott et al., 2012).

Space freed by the death of coral and algae becomes available space. We

assume that although this space is available to both types of algae and coral,

turf algae are the fastest colonizer and rapidly take up available space, as

opposed to most literature that has been treating turf algae as a synonym of

available space. In chapter 2, we consider the whole reefs as one big patch,

as illustrated in figure 1.3(a), and we assume that the macroalgae, coral, and

turf algae spread spatially within the big patch by larvae, in the case of coral,

and propagules, in the cases of macroalgae and turf algae. In chapter 3, we

assume there are multiple patches, and they are connected by larval dispersal,

as illustrated in figure 1.3(b). We assume that the macroalgae, coral, and

turf algae spread spatially between patches by larvae, in the case of coral,

and propagules, in the cases of macroalgae and turf algae (James Gilmour

and Pincock, 2013). More specifically, we focus on the brooding coral. Since

the dispersal range of brooding coral larvae is relatively short, we can apply

the nearest neighbour principle to simplify the larval dispersal process. This,

in turn, gives rise to a partial differential equation (PDE) approximation,

which can be analyzed for the spatial spread of macroalgae, coral, and turf

algae using methods of travelling wave (TW) theory. PDE models, especially

reaction-diffusion equation and TW analysis, can be instrumental in dealing

with spatial spread and invasion problems.
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Fig. 1.2 Intraguild competition dynamics for macroalgae, coral, and turf algae.
The arrow from X to Y means X is good for Y . (a) Macroalgae overgrow coral.
(b) Coral overgrow turf algae. (c) Macroalgae overgrow turf algae. (d) Space freed
by the death of macroalgae due to grazing becomes available space. (e) Space freed
by the natural death of coral becomes available space. (f) Turf algae quickly take
up available space. We neglect the processes of macroalgae and coral taking up
available space in this figure because the rates are much lower than turf algae. We
neglect the contribution from the natural death of macroalgae and turf algae to
available space in this figure because grazing is the main death factor for algae. We
neglect the contribution from the death of turf algae due to grazing to available
space because turf algae occupy available space much faster than contribute to it.

Fig. 1.3 One patch and multiple patches visualizations. (a) Illustration of one coral
patch. The seafloor is covered by sand outside of the coral patch, and macroalgae,
coral, and turf algae can not survive on the sand. Macroalgae, coral, and turf
algae compete for living space within one patch, and living space is measured by
the surface area of coral skeletons. (b) Illustration of multiple coral patches. For
simplicity, we assume patches are on the same line. Multiple coral patches are
connected by larval or propagules dispersal through current.
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1.4 Mathematical tools

In this section, we introduce the mathematical tools that we will use.

We mainly use stability analysis, persistence theory, bifurcation analysis in

chapter 2 and asymptotic expansion, diffusion approximation, and travelling

wave analysis in chapter 3 as mathematical tools to derive the models and

study the coral-algae dynamics. We use local stability analysis to figure out

the behaviour of solutions near equilibria analytically for our ODE models in

chapter 2; however global stability analysis usually is challenging to conduct

for a non-linear ODE system of more than two variables. Persistence theory

gives us a way to show some global properties of the solution without proving

global stability for an equilibrium. We will use persistence theory to give

conditions for the persistence of coral in the long run. Bifurcation analysis

can help us study the qualitative change in solution behaviour concerning

specific parameters. Although analytically bifurcation analysis is difficult to

conduct for our ODE models in chapter 2, numerical bifurcation analysis is

greatly helpful in understanding the equilibrium behaviour of solutions by

varying the parameter of interest within a proper range and fixing all other

parameters at appropriate values. We will use numerical bifurcation analysis

to understand the coral-algae dynamics of our ODE models in chapter 2 by

varying the grazing effect.

We will use PDE models, more specifically reaction-diffusion equation mod-

els, to investigate the population dynamics for continuous time and space.

Spatially structured models, such as reaction-diffusion equation models, can

account for environmental heterogeneity, heterogeneity in initial population

distribution, and species dispersal (Kot, 2001). A typical routine is first to

use ODE models to understand the multi-species intraguild competition with-

out spatial dynamics and then develop the reaction-diffusion equation models

based on the ODE models. Asymptotic expansion gives us a way to reduce

the non-linear terms by ignoring the higher order terms and only focusing on

the linear terms. We will use asymptotic expansion extensively to formulate

the network of weakly-coupled patches model in chapter 3. We apply dif-
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fusion approximation to transit from the network of weakly-coupled patches

model in the discrete space case to the reaction-diffusion equation model in the

continuous space case. Travelling wave analysis is excellent for investigating

the spread of species and how certain species spatially invades other species

(Bampfylde and Lewis, 2007).

We state the mathematical definition of weak persistence, strong persis-

tence, uniform weak persistence, and uniform strong persistence adapted from

Definition 3.1 on page 61 of Smith and Thieme (2011). These definitions will

be helpful in the proof of persistence in chapter 2.

Let X be the nonempty state space, J be the time set, and function ρ :

X → R+.

Definition 1.4.1 (Persistence). A semiflow ϕ : J× X → X is called weakly

ρ-persistent, if

lim sup
t→∞

ρ
(︁
ϕt(x)

)︁
> 0 for arbitrary x ∈ X such that ρ(x) > 0.

ϕ is called strongly ρ-persistent, if

lim inf
t→∞

ρ
(︁
ϕt(x)

)︁
> 0 for arbitrary x ∈ X such that ρ(x) > 0.

Definition 1.4.2 (Uniform persistence). A semiflow ϕ : J × X → X is

called uniformly weakly ρ-persistent, if there exist ϵ > 0 such that

lim sup
t→∞

ρ
(︁
ϕt(x)

)︁
> ϵ for arbitrary x ∈ X such that ρ(x) > 0.

ϕ is called uniformly strongly ρ-persistent, if there exist ϵ > 0 such that

lim inf
t→∞

ρ
(︁
ϕt(x)

)︁
> ϵ for arbitrary x ∈ X such that ρ(x) > 0.

Remark. For uniform persistence, the choice of ϵ is independent of the initial

conditions.
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Chapter 2

Temporal dynamics

In this chapter, we develop a one-patch ODE model, and undertake local

stability analysis and bifurcation analysis to show how coral and algae occupy

available space while competing. We show the conditions under which coral

will persist. We investigate the effect of a decline in larval recruitment on coral

persistence.

2.1 ODE model derivation and assumptions

In this section, we develop a six dimensional ODE model in subsection 2.1.1,

which includes both adults and larvae. We reduce the six dimensional model

to a three dimensional model using non-dimensionalization and quasi-steady-

state approximation in subsection 2.1.2.

2.1.1 Dimensional one-patch model

One of the primary assumption in the MCT model from Mumby et al. (2007)

was that any particular location was occupied by a certain proportion of each

of the three groups, which implied there was no empty space left at any given

time. One justification for their assumption was that turf algae were good at

occupying empty space, so any empty space became turf algae immediately.

This assumption is an oversimplification of reality. Although turf algae are

faster in occupying available space, macroalgae and coral can still take available

space at a lower rate. Explicit consideration of available space also allows us

to study the process of larvae settlement and larval dispersal, which paves
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the way for studying spatial dynamics in chapter 3. We modify the MCT

model from Mumby et al. (2007) with explicit consideration of available space

and larvae or propagules settling. Larvae or propagules are in the water, and

adults are on the bottom. Since larvae are microscopic, we assume that larvae

or propagules can settle anywhere in the reef. However, larvae or propagules

can only grow if they land on available space S. If they land elsewhere, they

settle and die immediately. Once settled on available space, we assume larvae

or propagules grow into adults instantly, which is a simplifying assumption so

as to keep the model analytically tractable.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM

dt
= αMC⏞ ⏟⏟ ⏞

macroalgae
overgrow coral

+βMT⏞ ⏟⏟ ⏞
macroalgae

overgrow turf

+ρMMS⏞ ⏟⏟ ⏞
macroalgae
take space

−δMM⏞ ⏟⏟ ⏞
death

no grazing

−gM⏞ ⏟⏟ ⏞
death
grazing

+ϕMκM lMS⏞ ⏟⏟ ⏞
propagules
settling

dlM
dt

= bM
ψMM

NL⏞ ⏟⏟ ⏞
macroalgae

produce propagules

−µM lM⏞ ⏟⏟ ⏞
propagules

natural death

−κM lM⏞ ⏟⏟ ⏞
propagules
settling

dC

dt
= γCT⏞⏟⏟⏞

coral
overgrow turf

+ρCCS⏞ ⏟⏟ ⏞
coral

take space

−αMC −δCC⏞ ⏟⏟ ⏞
coral

natural death

+ϕCκC lCS⏞ ⏟⏟ ⏞
larvae
settling

dlC
dt

= bC
ψCC

NL⏞ ⏟⏟ ⏞
coral

produce larvae

−µC lC⏞ ⏟⏟ ⏞
larvae

natural death

−κC lC⏞ ⏟⏟ ⏞
larvae
settling

dT

dt
= ρTTS⏞ ⏟⏟ ⏞

turf
take space

−βMT − γCT − δTT − gT + ϕTκT lTS

dlT
dt

= bT
ψTT

NL⏞ ⏟⏟ ⏞
turf

produce propagules

−µT lT − κT lT

S = N −M − C − T⏞ ⏟⏟ ⏞
available space is total space minus space occupied by three functional groups

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.1e)

(2.1f)

(2.1g)

Variables are listed in table A.1 and parameters are listed in table A.2. We

assume all the parameters are positive throughout our analysis. Larvae or

propagules can only grow if they settle on available space S.
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2.1.2 Non-dimensional one-patch model with larvae in-
corporated

We non-dimensionalize the dimensional one-patch model (2.1) and use tilde

˜ to denote the dimensionless values. R is a variable representing any of the

three population groups: macroalgae, coral, and turf algae.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM̃

dt̃
= α̃M̃C̃ + β̃M̃ T̃ + ρ̃MM̃S̃ − δ̃MM̃ − g̃M̃ + κ̃M l̃M S̃

ϵM
dl̃M

dt̃
= ψ̃M b̃MM̃ − l̃M − κ̃M l̃M

dC̃

dt̃
= γ̃C̃T̃ + ρ̃CC̃S̃ − α̃M̃C̃ − C̃ + κ̃C l̃CS̃

ϵC
dl̃C

dt̃
= ψ̃C b̃CC̃ − l̃C − κ̃C l̃C

dT̃

dt̃
= ρ̃T T̃ S̃ − β̃M̃ T̃ − γ̃C̃T̃ − δ̃T T̃ − g̃T̃ + κ̃T l̃T S̃

ϵT
dl̃T

dt̃
= ψ̃T b̃T T̃ − l̃T − κ̃T l̃T

S̃ = 1− M̃ − C̃ − T̃

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

(2.2g)

ϵR =
δC
µR

is a very small parameter, for R =M , C, or T . Non-dimensionalized

variables and parameters are listed in table A.3. Larval equations (2.2b),

(2.2d), and (2.2f) are assumed to have fast dynamics compared to adult dy-

namics described by equations (2.2a), (2.2c), and (2.2e). The mortality rate

of coral is much smaller than the death rate of larvae or propagules. By using

a quasi-steady-state approximation, we assume ϵR → 0, and then equations

(2.2b), (2.2d), and (2.2f) can be summarized as the following equation (2.3):

⇒ ψ̃Rb̃RR̃− l̃R − κ̃R l̃R = 0, (2.3)

⇒ l̃R =
ψ̃Rb̃R
κ̃R + 1

R̃. (2.4)
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We substitute equation (2.4) into equations (2.2a), (2.2c), and (2.2e). We drop

superscript tilde˜in the future for notational convenience.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM

dt
= αMC + βMT + ρMMS − δMM − gM + θMψMbMMS

dC

dt
= γCT + ρCCS − αMC − C + θCψCbCCS

dT

dt
= ρTTS − βMT − γCT − δTT − gT + θTψT bTTS

S = 1−M − C − T

(2.5a)

(2.5b)

(2.5c)

(2.5d)

θR =
κR

κR + 1
, R = M , C, or T . θR is the probability of settling before dying

and
κR

κR + 1
+

1

κR + 1
= 1. We regroup θRψRbR into the parameter ΘR. ΘR

denotes the total contribution rate from larvae or propagules settling to adult

abundance. We obtain the following reduced non-dimensional one-patch model

(2.6): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM

dt
= αMC + βMT + ρMMS − δMM − gM +ΘMMS

dC

dt
= γCT + ρCCS − αMC − C +ΘCCS

dT

dt
= ρTTS − βMT − γCT − δTT − gT +ΘTTS

S = 1−M − C − T.

(2.6a)

(2.6b)

(2.6c)

(2.6d)

We undertake analysis of the above reduced non-dimensional one-patch model

(2.6) in section 2.2.

2.1.3 Assumptions on parameters

We assume all the parameters are positive throughout our analysis, and we

introduce two additional classes of assumptions and conditions. Assumptions

labelled with a A tag are based on biological mechanisms and A1 to A4 are as-

sumed to always hold throughout the analysis of the reduced non-dimensional

one-patch model (2.6). Conditions labelled with a CD tag may not always

hold. Thus, different combinations of CD conditions lead to different equilib-

rium dynamics, which are discussed in section 2.2.

Assumption A1.

ρT ≫ ρM , ρT ≫ ρC , ρM > α, ρM > β, and ρC > γ
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A1 is about the rate of taking available and overgrowing other functional groups.

We assume turf algae are the fastest colonizer, so the rate of taking available

space for turf algae is much larger than the rate for macroalgae and coral. We

assume occupying empty space is much easier than overgrowing other func-

tional groups.

Assumption A2.

γ > 2, 2 > β > 1, and 1 > α > 0

A2 is made based on the choice of parameter values listed in table A.3.

Assumption A3.

δM < g and δT < g

A3 states the death rate of macroalgae and turf algae if not grazed is less than

the grazing effect from herbivorous fish because, in literature, the grazing effect

from herbivorous fish is considered the main death factor for algae.

Assumption A4.
ρT
ΘT

>
ρM
ΘM

and
ρT
ΘT

>
ρC
ΘC

A4 states the ratio of growth from occupying available space and larvae or

propagules settling for turf algae is larger than the ratio for macroalgae and

coral. We further assume turf algae mainly expand from vegetative growth or

lateral growth over available space rather than propagules settling.

It makes biological sense if we only consider the case when all functional

groups are non-negative and available space is non-negative. We prove the

reduced non-dimensional one-patch model (2.6) has dynamics such that the

region D is positively invariant in Theorem 2.1.1.

Theorem 2.1.1 (Positive invariance). If all parameters are positive, then

the region,

D =
{︁
(M,C, T, S) | 0 ≤M,C, T, S ≤ 1

}︁
,

is positively invariant for the solution semiflow generated by the system (2.6),

i.e. ϕt(D) ⊆ D, t ≥ 0.
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Proof.

dM

dt

⃓⃓⃓⃓
M=0

= (αMC + βMT + ρMMS − δMM − gM +ΘMMS)
⃓⃓
M=0

= 0

dC

dt

⃓⃓⃓⃓
C=0

= (γCT + ρCCS − αMC − C +ΘCCS)
⃓⃓
C=0

= 0

dT

dt

⃓⃓⃓⃓
T=0

= (ρTTS − βMT − γCT − δTT − gT +ΘTT )
⃓⃓
T=0

= 0

⇒ ϕt(D) ⊆
{︁
(M,C, T, S) |M,C, T ≥ 0

}︁
, and M + C + T = 1 when S = 0,

i.e. ϕt(D) ⊆ D, t ≥ 0.

⇒ dS

dt

⃓⃓⃓⃓
S=0

= (δMM + gM + C + δTT + gT )
⃓⃓
S=0

=
[︁
(δM + g)M + C + (δT + g)T

]︁⃓⃓⃓
S=0

≥ min {δM + g, 1, δT + g} (M + C + T )
⃓⃓
S=0

= min {δM + g, 1, δT + g}
⃓⃓
S=0

> 0

⇒ ϕt(D) ⊆
{︁
(M,C, T, S) |M,C, T, S ≥ 0

}︁
, and since M + C + T + S = 1,

ϕt(D) ⊆
{︁
(M,C, T, S) | 0 ≤M,C, T, S ≤ 1

}︁
= D. ■

Remark. Theorem 2.1.1 implies the proportion of surface area occupied by

each functional group and the proportion of available space are always non-

negative and bounded by one, given the initial conditions are between zero and

one.

2.2 Local stability, persistence, and bifurca-

tion results

In this section, we undertake local stability analysis and numerical bifurcation

analysis to determine the stability of equilibria and the qualitative nature of

the flow connecting the equilibria. We calculate one trivial equilibrium, three

axial equilibria, and three boundary equilibria symbolically, and we give the

linear system that the interior equilibrium should satisfy. We sort out the

conditions of existence and the linear stability of trivial, axial, and boundary
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equilibria. Those conditions are theoretical backup for the bifurcation analy-

sis in subsection 2.2.4. Based on the bifurcation results, we show reasonable

fishing helps maintain the herbivorous fish population, and a healthier herbiv-

orous fish population can support a higher level of coral cover. Using time

simulations, we find coral are more resistant to the decline in larvae recruit-

ment when turf algae occupy available space fast. We undertake persistence

analysis to determine the conditions under which coral will survive in the long

run.

2.2.1 Equilibria

In this subsection, we calculate explicit formula for the equilibria of one-patch

model (2.6).

We assume A1 to A4 always hold in the following equilibrium analysis,

ensuring our model is reasonable. We use “CD number” to label conditions

in subsection 2.2.1. We use “CD number−” to denote the same condition but

with the opposite sign. For example, if CD0 is “parameter > x”, then CD0−

would be “parameter < x”. We regroup the reduced one-patch model (2.6) in

the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM

dt
=M

[︁
αC + βT + (ρM +ΘM)S − (δM + g)

]︁⏞ ⏟⏟ ⏞
= function F (M,C, T )

:=MF (M,C, T )

dC

dt
= C

[︁
γT + (ρC +ΘC)S − αM − 1

]︁⏞ ⏟⏟ ⏞
= function G(M,C, T )

:= CG(M,C, T )

dT

dt
= T

[︁
(ρT +ΘT )S − βM − γC − (δT + g)

]︁⏞ ⏟⏟ ⏞
= function H(M,C, T )

:= TH(M,C, T )

S = 1−M − C − T.

(2.7a)

(2.7b)

(2.7c)

(2.7d)

Trivial equilibrium

1. Trivial equilibrium: E1 = (0, 0, 0). E1 ∈ D.
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Axial equilibrium

1. M axis: We solve the macroalgae-only equilibrium from the following

equation:

F (M, 0, 0) =
[︁
αC + βT + (ρM +ΘM)S − (δM + g)

]︁⃓⃓⃓
C,T=0

= 0,

⇒ E2 = (M∗
2 , 0, 0) =

(︃
1− δM + g

ρM +ΘM

, 0, 0

)︃
.

Condition CD1.

δM + g < ρM +ΘM

The total death rate of macroalgae is less than macroalgae growth rate

from occupying available space and propagules settling. M∗
2 > 0 iff CD1

holds.

M∗
2 < 1 because we assume all parameters are positive. E2 ∈ D iff CD1

holds. Macroalgae-only equilibrium is in the positive invariant feasible

region D when the total death rate of macroalgae is less than macroalgae

growth rate from occupying available space and propagules settling.

2. C axis: We solve the coral-only equilibrium from the following equation:

G (0, C, 0) =
[︁
γT + (ρC +ΘC)S − αM − 1

]︁⃓⃓⃓
M,T=0

= 0,

⇒ E3 = (0, C∗
3 , 0) =

(︃
0, 1− 1

ρC +ΘC

, 0

)︃
.

C∗
3 < 1 because we assume all parameters are positive. E3 ∈ D. ρC >

γ > 2 by A1 and A2, so ρC + ΘC > 1, implying C∗
3 > 0. Coral-only

equilibrium is always in the positive invariant feasible region D. The

total coral growth from occupying available space and larvae settling is

always larger than the natural mortality of coral, guaranteed by A1 and

A2.

3. T axis: We solve the turf algae-only equilibrium from the following equa-

tion:

H (0, 0, T ) =
[︁
(ρT +ΘT )S − βM − γC − (δT + g)

]︁⃓⃓⃓
M,C=0

= 0,
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⇒ E4 = (0, 0, T ∗
4 ) =

(︃
0, 0, 1− δT + g

ρT +ΘT

)︃
.

Condition CD2.

δT + g < ρT +ΘT

The total death rate of turf algae is less than turf algae growth rate from

occupying available space and propagules settling. T ∗
2 > 0 iff CD2 holds.

T ∗
4 < 1 because we assume all parameters are positive. E4 ∈ D iff CD2

holds. Turf algae-only equilibrium is in the positive invariant feasible

region D when the total death rate of turf algae is less than turf algae

growth rate from occupying available space and propagules settling.

Boundary equilibrium

1. M C plane: We solve the macroalgae and coral coexistence equilibrium

from the following equations:⎧⎪⎨⎪⎩
F (M,C, 0) =

[︁
αC + βT + (ρM +ΘM)S − (δM + g)

]︁⃓⃓⃓
T=0

= 0

G (M,C, 0) =
[︁
γT + (ρC +ΘC)S − αM − 1

]︁⃓⃓⃓
T=0

= 0,

⇒ E5 = (M∗
5 , C

∗
5 , 0) ,

with

M∗
5 =

(ρM +ΘM − α) + (ρC +ΘC) (α− δM − g)

α (α + ρC +ΘC − ρM −ΘM)
(2.8)

C∗
5 =

(δM + g) (α + ρC +ΘC)− (ρM +ΘM) (α + 1)

α (α + ρC +ΘC − ρM −ΘM)
. (2.9)

Assumption A5. We assume

ρC > ρM +ΘM − α−ΘC

to eliminate cases and better focus on the grazing effect g. Denominator

of M∗
5 and C∗

5 is positive under A5.

Condition CD3.

g >
(α + 1) (ρM +ΘM)

α + ρC +ΘC

− δM

The grazing effect is larger than some threshold value. Numerator of C∗
5

is positive iff CD3 holds.

19



Condition CD4.

g < α +
ρM +ΘM − α

ρC +ΘC

− δM

The grazing effect is less than some threshold value. Numerator of M∗
5

is positive iff CD4 holds.

M∗
5 + C∗

5 < 1 is equivalent to g < α + 1, which is guaranteed by CD4

under A5. E5 ∈ D iff CD3 and CD4 hold under A5. CD3 and CD4

combine to be:

(α + 1) (ρM +ΘM)

α + ρC +ΘC

− δM < g < α +
ρM +ΘM − α

ρC +ΘC

− δM .

This means macroalgae and coral coexistence equilibrium is in the pos-

itive invariant feasible region D when the grazing effect is between two

threshold values.

2. M T plane: We solve the macroalgae and turf coexistence equilibrium

from the following equations:⎧⎪⎨⎪⎩
F (M, 0, T ) =

[︁
αC + βT + (ρM +ΘM)S − (δM + g)

]︁⃓⃓⃓
C=0

= 0

H (M, 0, T ) =
[︁
(ρT +ΘT )S − βM − γC − (δT + g)

]︁⃓⃓⃓
C=0

= 0,

⇒ E6 = (M∗
6 , 0, T

∗
6 ) ,

with

M∗
6 =

(δT + g) (ρM +ΘM − β) + (ρT +ΘT ) (β − δM − g)

β (β + ρT +ΘT − ρM −ΘM)
(2.10)

T ∗
6 =

(δM + g) (β + ρT +ΘT ) + (ρM +ΘM) (−β − δT − g)

β (β + ρT +ΘT − ρM −ΘM)
. (2.11)

Assumption A6. We further assume

ρT > ρM +ΘM − β −ΘT

to eliminate cases and better focus on the grazing effect g. This assump-

tion is more concrete than ρT >> ρM in A1. Denominator of M∗
6 and

T ∗
6 is positive under A6.
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Condition CD5.

g >
(β + δT − δM) (ρM +ΘM)

β + ρT +ΘT − ρM −ΘM

− δM

The grazing effect is larger than some threshold value. Numerator of T ∗
6

is positive iff CD5 holds.

Condition CD6.

g <
(β + δT − δM) (ρT +ΘT )

β + ρT +ΘT − ρM −ΘM

− δT

The grazing effect is less than some threshold. Numerator of M∗
6 is pos-

itive iff CD6 holds.

Condition CD7.

δM < β + δT

Macroalgae growth from overgrowing turf algae plus mortality of turf

algae if not grazed is larger than mortality of macroalgae if not grazed.

M∗
6 + C∗

6 < 1 iff CD7 holds.

M∗
6 +C∗

6 < 1 is equivalent to δM < β+ δT , which is guaranteed by CD7.

E6 ∈ D iff CD5, CD6, and CD7 hold under A6. CD5 and CD6 combine

to be:

(β + δT − δM) (ρM +ΘM)

β + ρT +ΘT − ρM −ΘM

− δM < g <
(β + δT − δM) (ρT +ΘT )

β + ρT +ΘT − ρM −ΘM

− δT .

This means macroalgae and turf algae coexistence equilibrium is in the

positive invariant feasible region D when the grazing effect is between

two threshold values.

3. C T plane: We solve the coral and turf algae coexistence equilibrium

from the following equations:⎧⎪⎨⎪⎩
G (0, C, T ) =

[︁
γT + (ρC +ΘC)S − αM − 1

]︁⃓⃓⃓
M=0

= 0

H (0, C, T ) =
[︁
(ρT +ΘT )S − βM − γC − (δT + g)

]︁⃓⃓⃓
M=0

= 0,

⇒ E7 = (0, C∗
7 , T

∗
7 ) ,
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with

C∗
7 =

(δT + g) (ρC +ΘC − γ) + (ρT +ΘT ) (γ − 1)

γ (γ + ρT +ΘT − ρC −ΘC)
(2.12)

T ∗
7 =

(ρT +ΘT + γ) + (ρC +ΘC) (−γ − δT − g)

γ (γ + ρT +ΘT − ρC −ΘC)
. (2.13)

Assumption A7. We further assume

ρT > ρC +ΘC − γ −ΘT

to eliminate cases and better focus on the grazing effect g. This assump-

tion is more concrete than ρT >> ρC in A1. Denominator of C∗
7 and T ∗

7

is positive under A7.

Condition CD8.

g <
γ + ρT +ΘT

ρC +ΘC

− γ − δT

The grazing effect is less than some threshold value. The numerator of

T ∗
7 is positive iff CD8 holds.

Numerator of C∗
7 > 0 is equivalent to g > −(ρT +ΘT ) (γ − 1)

ρC +ΘC − γ
− δT ,

which is always true under A1 and A2. Numerator of C∗
7 is always

positive. C∗
7 + T ∗

7 < 1 is equivalent to g > 1 − γ − δT , which is always

true under A2 because 1− γ − δT < 0. E7 ∈ D iff CD8 holds under A7.

CD8 and condition for numerator of C∗
7 > 0 combine to be:

−(ρT +ΘT ) (γ − 1)

ρC +ΘC − γ
− δT < g <

γ + ρT +ΘT

ρC +ΘC

− γ − δT .

This means coral and turf algae coexistence equilibrium is in the posi-

tive invariant feasible region D when the grazing effect is between two

threshold values.

Interior equilibrium

1. We solve the macroalgae, coral, and turf algae coexistence equilibrium

from the following linear system:⎧⎪⎪⎨⎪⎪⎩
F (M,C, T ) = αC + βT + (ρM +ΘM)S − (δM + g) = 0

G (M,C, T ) = γT + (ρC +ΘC)S − αM − 1 = 0

H (M,C, T ) = (ρT +ΘT )S − βM − γC − (δT + g) = 0.

(2.14)
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The unique macroalgae, coral, and turf algae coexistence equilibrium

E8 = (M∗
8 , C

∗
8 , T

∗
8 ) can be solved from the linear system (2.14), provided

the matrix A is invertible.

⇒

⎛⎜⎝ M∗
8

C∗
8

T ∗
8

⎞⎟⎠ = A−1

⎛⎜⎝ ρM +ΘM − δM − g
ρC +ΘC − 1

ρT +ΘT − δT − g

⎞⎟⎠ (2.15)

with A =

⎛⎜⎝ ρM +ΘM ρM +ΘM − α ρM +ΘM − β
α + ρC +ΘC ρC +ΘC ρC +ΘC − γ
β + ρT +ΘT γ + ρT +ΘT ρT +ΘT

⎞⎟⎠
We calculate explicit formula for equilibria E1 to E7. The interior coexis-

tence equilibrium, E8, is implicitly described as the solution of a linear system.

We give conditions for the equilibria E1 to E7 to be in the positive invariant

region D.

2.2.2 Local stability of equilibrium

In this subsection, we give conditions for the local stability of equilibria E1 to

E7. The local stability of equilibria tells us whether the solution will approach

the equilibrium or move away from it in the long run if the initial condition

is near the equilibrium. The local stability analysis also helps us to prove

persistence theorems.

We calculate the Jacobian matrix of ODE system (2.7) to determine the

local stability of the equilibrium.

J(M,C, T ) =

⎛⎜⎝ F +MFM MFC MFT
CGM G+ CGC CGT

THM THC H + THT

⎞⎟⎠
=

⎛⎜⎝ F − (ρM +ΘM)M − (ρM +ΘM − α)M − (ρM +ΘM − β)M
− (α + ρC +ΘC)C G− (ρC +ΘC)C − (ρC +ΘC − γ)C
− (β + ρT +ΘT )T − (γ + ρT +ΘT )T H − (ρT +ΘT )T

⎞⎟⎠
(2.16)
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Trivial equilibrium

1. We consider the trivial equilibrium. From subsection 2.2.1, we know

E1 ∈ D. We evaluate the Jacobian matrix at equilibrium E1:

J (0, 0, 0) =

⎛⎜⎝ ρM +ΘM − δM − g 0 0
0 ρC +ΘC − 1 0
0 0 ρT +ΘT − δT − g

⎞⎟⎠ .

(2.17)

J (0, 0, 0) is a diagonal matrix. Eigenvalues are the diagonal elements:

ρM +ΘM − δM − g, ρC +ΘC − 1, and ρT +ΘT − δT − g. We analyze the

sign of the eigenvalues.

(a) ρM + ΘM − δM − g = (ρM +ΘM)M∗
2 . ρM + ΘM − δM − g < 0 is

equivalent to M∗
2 < 0, equivalent to CD1−.

(b) ρC + ΘC − 1 = (ρC +ΘC)C
∗
3 . ρC + ΘC − 1 < 0 is equivalent to

C∗
3 < 0, which is impossible under A1 and A2.

(c) ρT +ΘT −δT −g = (ρT +ΘT )T
∗
4 . ρT +ΘT −δT −g < 0 is equivalent

to T ∗
4 < 0, equivalent to CD2−.

In summary, trivial equilibrium E1 is in the positive invariant feasible

region D and is always unstable under A1 and A2. Biologically, three

functional groups will not all go extinct.

Axial equilibrium

1. We consider the macroalgae-only equilibrium E2. From subsection 2.2.1,

we know E2 ∈ D iff CD1 holds. We evaluate the Jacobian matrix at

equilibrium E2:

J (M∗
2 , 0, 0) =⎛⎜⎝ − (ρM +ΘM)M∗

2 − (ρM +ΘM − α)M∗
2 − (ρM +ΘM − β)M∗

2

0 G∗
2 0

0 0 H∗
2

⎞⎟⎠ ,

(2.18)

with G∗
2 = G (M∗

2 , 0, 0) and H
∗
2 = H (M∗

2 , 0, 0). J (M∗
2 , 0, 0) is an upper

triangular matrix. Eigenvalues are the diagonal elements: − (ρM +ΘM)M∗
2 ,

G∗
2, and H

∗
2 . We analyze the sign of the eigenvalues.
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(a) − (ρM +ΘM)M∗
2 < 0 if M∗

2 > 0, which is equivalent to CD1.

(b) G∗
2 =

α (α + ρC +ΘC − ρM −ΘM)

ρM +ΘM

C∗
5 . G∗

2 < 0 is equivalent to

C∗
5 < 0, equivalent to CD3−.

(c) H∗
2 =

β (β + ρT +ΘT − ρM −ΘM)

ρM +ΘM

T ∗
6 . H∗

2 < 0 is equivalent to

T ∗
6 < 0, equivalent to CD5−.

In summary, macroalgae-only equilibrium E2 is in the positive invari-

ant feasible region D and locally stable if CD1, CD3−, and CD5− hold.

Those local stability conditions also imply that the local stability of

macroalgae-only equilibrium E2 and the existence of macroalgae and

coral coexistence equilibrium E5, as well as macroalgae and turf algae

coexistence equilibrium E6, are mutually exclusive. Biologically, if no

coral and turf algae exist, then macroalgae will remain dominant when

the grazing pressure is low.

2. We consider the coral-only equilibrium E3. From subsection 2.2.1, we

know E3 ∈ D. We evaluate the Jacobian matrix at equilibrium E3:

J (0, C∗
3 , 0) =⎛⎜⎝ F ∗

3 0 0
− (α + ρC +ΘC)C

∗
3 − (ρC +ΘC)C

∗
3 − (ρC +ΘC − γ)C∗

3

0 0 H∗
3

⎞⎟⎠ ,

(2.19)

with F ∗
3 = F (0, C∗

3 , 0) andH
∗
3 = H (0, C∗

3 , 0). We can view J (0, C∗
3 , 0) as

a lower triangular block matrix. Eigenvalues are the diagonal elements:

F ∗
3 , − (ρC +ΘC)C

∗
3 , and H

∗
3 . We analysis the sign of the eigenvalues.

(a) F ∗
3 =

α (α + ρC +ΘC − ρM −ΘM)

ρC +ΘC

M∗
5 . F ∗

3 < 0 is equivalent to

M∗
5 < 0, equivalent to CD4−.

(b) − (ρC +ΘC)C
∗
3 < 0 if C∗

3 > 0, which is guaranteed by A1 and A2

in subsection 2.2.1.

(c) H∗
3 =

γ (γ + ρT +ΘT − ρC −ΘC)

ρC +ΘC

T ∗
7 . H

∗
3 < 0 is equivalent to T ∗

7 <

0, equivalent to CD8−.
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In summary, coral-only equilibrium E3 is in the positive invariant feasible

region D and locally stable if CD4− and CD8− hold. Those local stability

conditions also imply that the local stability of coral-only equilibrium E3

and the existence of macroalgae and coral coexistence equilibrium E5,

as well as coral and turf algae coexistence equilibrium E7, are mutually

exclusive. Biologically, if no macroalgae and turf algae exist, then coral

will remain dominant when the grazing pressure is high.

3. We consider the turf algae-only equilibrium E4. From subsection 2.2.1,

we know E4 ∈ D iff CD2 holds. We evaluate the Jacobian matrix at

equilibrium E4:

J (0, 0, T ∗
4 ) =⎛⎜⎝ F ∗

4 0 0
0 G∗

4 0
− (β + ρT +ΘT )T

∗
4 − (γ + ρT +ΘT )T

∗
4 − (ρT +ΘT )T

∗
4

⎞⎟⎠ ,

(2.20)

with F ∗
4 = F (0, 0, T ∗

4 ) and G∗
4 = G (0, 0, T ∗

4 ). J (0, 0, T ∗
4 ) is a lower

triangular matrix. Eigenvalues are the diagonal elements: F ∗
4 , G

∗
4, and

− (ρT +ΘT )T
∗
4 . We analysis the sign of the eigenvalues.

(a) F ∗
4 =

β (β + ρT +ΘT − ρM −ΘM)

ρT +ΘT

M∗
6 . F ∗

4 < 0 is equivalent to

M∗
6 < 0, equivalent to CD6−.

(b) G∗
4 =

γ (γ + ρT +ΘT − ρC −ΘC)

ρT +ΘT

C∗
7 . G

∗
4 < 0 is equivalent to C∗

7 <

0, which is not possible under A1 and A2.

(c) − (ρT +ΘT )T
∗
4 < 0 if T ∗

4 > 0, which is equivalent to CD2.

In summary, turf algae-only equilibrium E4 is in the positive invariant

region feasible region D if CD2 holds but is always unstable under A1 and

A2. Those local stability conditions also imply that the local stability

of turf algae-only equilibrium E4 and the existence of macroalgae and

turf algae coexistence equilibrium E6, as well as coral and turf algae

coexistence equilibrium E7, are mutually exclusive. Biologically, if no

macroalgae and coral exist, then turf algae can not remain dominant

alone.
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Boundary equilibrium

1. We consider the macroalgae and coral coexistence equilibrium E5. From

subsection 2.2.1, we know E5 ∈ D if A5, CD3, and CD4 hold. We

evaluate the Jacobian matrix at equilibrium E5:

J (M∗
5 , C

∗
5 , 0) =⎛⎜⎝ − (ρM +ΘM)M∗

5 − (ρM +ΘM − α)M∗
5 − (ρM +ΘM − β)M∗

5

− (α + ρC +ΘC)C
∗
5 − (ρC +ΘC)C

∗
5 − (ρC +ΘC − γ)C∗

5

0 0 H∗
5

⎞⎟⎠ ,

(2.21)

with H∗
5 = H (M∗

5 , C
∗
5 , 0). When T = 0,

dT

dt
= 0, so the M -C plane

is invariant. We decompose the 3×3 Jacobian matrix (2.21) in the

M -C plane. In the M -C plane, J (M∗
5 , C

∗
5 , 0) reduces to the minor ma-

trix:

J (M∗
5 , C

∗
5 , 0)3,3 =

(︄
− (ρM +ΘM)M∗

5 − (ρM +ΘM − α)M∗
5

− (α + ρC +ΘC)C
∗
5 − (ρC +ΘC)C

∗
5

)︄
,

(2.22)

⇒ tr
(︂
J (M∗

5 , C
∗
5 , 0)3,3

)︂
= − (ρM +ΘM)M∗

5 − (ρC +ΘC)C
∗
5 ,

⇒ det
(︂
J (M∗

5 , C
∗
5 , 0)3,3

)︂
=
[︁
α (α + ρC +ΘC − ρM −ΘM)

]︁⏞ ⏟⏟ ⏞
denominator of M∗

5 and C∗
5

M∗
5C

∗
5 .

When E5 ∈ D, tr
(︂
J (M∗

5 , C
∗
5 , 0)3,3

)︂
< 0, and det

(︂
J (M∗

5 , C
∗
5 , 0)3,3

)︂
> 0.

Macroalgae and coral coexistence equilibrium E5 is always locally stable

in the M -C plane if E5 ∈ D. The local stability of E5 in the full three

dimensional space is determined by the sign of
dT

dt
evaluated at E5, which

is equivalent to the sign of the third eigenvalue H∗
5 in matrix (2.21). H∗

5

is positive proportional to T ∗
8 from the interior equilibrium. H∗

5 ∝ T ∗
8 ,

so H∗
5 < 0 is equivalent to T ∗

8 < 0.

In summary, macroalgae and coral coexistence equilibrium E5 is in the

positive invariant region feasible region D and locally stable if CD3 and

CD4 hold, and H∗
5 < 0 under A5. Those local stability conditions also

imply that the local stability of macroalgae and coral coexistence equi-

librium E5 and the existence of interior equilibrium E8 are mutually

27



exclusive. Biologically, if no turf algae exist, then macroalgae and coral

can coexist when the grazing effect is between two threshold values.

2. We consider the macroalgae and turf algae coexistence equilibrium E6.

From subsection 2.2.1, we know E6 ∈ D if A6, CD5, CD6, and CD7 hold.

We evaluate the Jacobian matrix at equilibrium E6:

J (M∗
6 , 0, T

∗
6 ) =⎛⎜⎝ − (ρM +ΘM)M∗

6 − (ρM +ΘM − α)M∗
6 − (ρM +ΘM − β)M∗

6

0 G∗
6 0

− (β + ρT +ΘT )T
∗
6 − (γ + ρT +ΘT )T

∗
6 − (ρT +ΘT )T

∗
6

⎞⎟⎠ ,

(2.23)

with G∗
6 = G (M∗

6 , 0, T
∗
6 ). When C = 0,

dC

dt
= 0, so the M -T plane

is invariant. We can decompose the 3×3 Jacobian matrix (2.23) in the

M -T plane. In theM -T plane, J (M∗
6 , 0, T

∗
6 ) reduces to the minor matrix:

J (M∗
6 , 0, T

∗
6 )2,2 =

(︄
− (ρM +ΘM)M∗

6 − (ρM +ΘM − β)M∗
6

− (β + ρT +ΘT )T
∗
6 − (ρT +ΘT )T

∗
6

)︄
,

(2.24)

⇒ tr
(︂
J (M∗

6 , 0, T
∗
6 )2,2

)︂
= − (ρM +ΘM)M∗

6 − (ρT +ΘT )T
∗
6 ,

⇒ det
(︂
J (M∗

6 , 0, T
∗
6 )2,2

)︂
=
[︁
β (β + ρT +ΘT − ρM −ΘM)

]︁⏞ ⏟⏟ ⏞
denominator of M∗

6 and T ∗
6

M∗
6T

∗
6 .

When E6 ∈ D, tr
(︂
J (M∗

6 , 0, T
∗
6 )2,2

)︂
< 0, and det

(︂
J (M∗

6 , 0, T
∗
6 )2,2

)︂
> 0.

Macroalgae and turf algae coexistence equilibrium E6 is always locally

stable in the M -T plane if E6 ∈ D. The local stability of E6 in the full

three dimensional space is determined by the sign of
dC

dt
evaluated at

E6, which is equivalent to the sign of the second eigenvalue G∗
6 in matrix

(2.23). G∗
6 is positive proportional to C∗

8 from the interior equilibrium.

G∗
6 ∝ C∗

8 , so G
∗
6 < 0 is equivalent to C∗

8 < 0.

In summary, macroalgae and turf algae coexistence equilibrium E6 is

in the positive invariant region feasible region D and locally stable if

CD5, CD6, and CD7 hold, and G∗
6 < 0 under A6. Those local stability

conditions also imply that the local stability of macroalgae and turf al-

gae coexistence equilibrium E6 and the existence of interior equilibrium
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E8 are mutually exclusive. Biologically, if no coral exist, then macroal-

gae and turf algae can coexist when the grazing effect is between two

threshold values.

3. We consider the coral and turf algae coexistence equilibrium E7. From

subsection 2.2.1, we know E7 ∈ D if A7 and CD8 hold. We evaluate the

Jacobian matrix at equilibrium E7:

J (0, C∗
7 , T

∗
7 ) =⎛⎜⎝ F ∗

7 0 0
− (α + ρC +ΘC)C

∗
7 − (ρC +ΘC)C

∗
7 − (ρC +ΘC − γ)C∗

7

− (β + ρT +ΘT )T
∗
7 − (γ + ρT +ΘT )T

∗
7 − (ρT +ΘT )T

∗
7

⎞⎟⎠ ,

(2.25)

with F ∗
7 = F (0, C∗

7 , T
∗
7 ). When M = 0,

dM

dt
= 0, so the C-T plane

is invariant. We can decompose the 3×3 Jacobian matrix (2.25) in the

C-T plane. In the C-T plane, J (0, C∗
7 , T

∗
7 ) reduces to the minor matrix:

J (0, C∗
7 , T

∗
7 )1,1 =

(︄
− (ρC +ΘC)C

∗
7 − (ρC +ΘC − γ)C∗

7

− (γ + ρT +ΘT )T
∗
7 −ρTT ∗

7

)︄
,

(2.26)

⇒ tr
(︂
J (0, C∗

7 , T
∗
7 )1,1

)︂
= − (ρC +ΘC)C

∗
7 − (ρT +ΘT )T

∗
7 ,

⇒ det
(︂
J (0, C∗

7 , T
∗
7 )1,1

)︂
=
[︁
γ (γ + ρT +ΘT − ρC −ΘC)

]︁⏞ ⏟⏟ ⏞
denominator of C∗

7 and T ∗
7

C∗
7T

∗
7 .

When E7 ∈ D, tr
(︂
J (0, C∗

7 , T
∗
7 )1,1

)︂
< 0, and det

(︂
J (0, C∗

7 , T
∗
7 )1,1

)︂
>

0. Coral and turf algae coexistence equilibrium E7 is always locally

stable in the C-T plane if E7 ∈ D. The local stability of E7 in the full

three dimensional space is determined by the sign of
dM

dt
evaluated at

E7, which is equivalent to the sign of the first eigenvalue F ∗
7 in matrix

(2.25). F ∗
7 is positive proportional to M∗

8 from the interior equilibrium.

F ∗
7 ∝M∗

8 , so F
∗
7 < 0 is equivalent to M∗

8 < 0.

In summary, coral and turf algae coexistence equilibrium E7 is in the

positive invariant region feasible region D and locally stable if CD8 holds

and F ∗
7 < 0 under A7. Those local stability conditions also imply that the
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local stability of coral and turf algae coexistence equilibrium E7 and the

existence of interior equilibrium E8 are mutually exclusive. Biologically,

if no macroalgae exist, then coral and turf algae can coexist when the

grazing effect is between two threshold values.

We summarize the equilibrium and local stability discussion in the following

theorem 2.2.1 and table 2.1.

Theorem 2.2.1 (Coral equilibria). If all parameters are positive and A1 to

A7 hold, then the trivial equilibrium E1 and turf algae-only equilibrium E4 of

the system (2.6) are unstable. Moreover,

(a) Coral-only equilibrium E3 is locally stable if CD4− and CD8− hold,

(b) Coral and macroalgae coexistence equilibrium E5 is locally stable if CD3

and CD4 hold, and H∗
5 < 0,

(c) Coral and turf algae coexistence equilibrium E7 is locally stable if CD8

holds, and F ∗
5 < 0.

Table 2.1 Summary of the existence and stability conditions of equilibrium

Equilibrium Existence Local stability conditions

E1 (0) always in D always unstable

E2 (M) CD1 CD1, CD3−, and CD5−

E3 (C) always in D CD4− and CD8−

E4 (T) CD2 always unstable

E5 (M,C) CD3 and CD4 CD3, CD4, and H∗
5 < 0

E6 (M,T) CD5, CD6, and CD7 CD5, CD6, CD7, and G∗
6 < 0

E7 (C,T) CD8 CD8 and F ∗
7 < 0

This table summarizes the existence and local stability results of equilibria in sub-
sections 2.1.1 and 2.1.2, one trivial equilibrium, three axial equilibria, and three
boundary equilibria. We assume A1 through A4 always hold, and we further assume
A5 through A7 hold to eliminate uninteresting cases. We do not give conditions for
the unique interior equilibrium E8.
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2.2.3 Persistence results

It is challenging to derive the global stability conditions for the one-patch

model (2.2). In this subsection, we use the persistence theory as a rigorous

mathematical tool to determine whether coral will survive or go extinct in the

long run. Under certain conditions, we can ensure coral will not go extinct

by formulating a positive lower bound for the long-term value of the coral

population. We show that there is always some available space left under all

conditions, and coral persist under high grazing pressure by proving persistence

theorems for available space and coral.

Theorem 2.2.2 (Space-persistence). If all parameters are positive, then

the solution semiflow generated by the system (2.6) is uniformly strongly space-

persistent on the state space X = D.

Proof. We use the contradiction to show uniform weak space-persistence first.

If all parameters are positive and the solution semiflow ϕ is not uniformly

weakly space-persistent, then for arbitrary ϵ > 0, there exists a solution with

S(0) > 0 and lim sup
t→∞

S(t) ≤ ϵ. Furthermore, there exists some t0 > 0 such

that S(t) < ϵ for t ≥ t0. For t ≥ t0, we have the following:

dS

dt
= −dM

dt
− dC

dt
− dT

dt

= − (ρMM + ρCC + ρTT )S − (ΘMM +ΘCC +ΘTT )S

+ (δM + g)M + C + (δT + g)T

= −
[︁
(ρM +ΘM)M + (ρC +ΘC)C + (ρT +ΘT )T

]︁
S

+ (δM + g)M + C + (δT + g)T

≥ −max {ρM +ΘM , ρC +ΘC , ρT +ΘT} (M + C + T )S

+min {δM + g, 1, δT + g} (M + C + T )

= −max {ρM +ΘM , ρC +ΘC , ρT +ΘT} (1− S)S

+min {δM + g, 1, δT + g} (1− S)

=
[︁
−max {ρM +ΘM , ρC +ΘC , ρT +ΘT}S

+min {δM + g, 1, δT + g}
]︁
(1− S) .

(2.27)
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We choose ϵ <
min {δM + g, 1, δT + g}

max {ρM +ΘM , ρC +ΘC , ρT +ΘT}
such that the right hand

side of (2.27) > 0. S(t) is monotone increasing ⇒ S(t) → 1 as t → ∞, a

contradiction. We check a few conditions, which lead to uniform strong space-

persistence based on uniform weak space-persistence. We choose the time set

J = R+ and the state space X = D. We choose the nonempty subset B = X.

ρ(M,C, T, S) = S and σ = ρ (ϕt) are continuous. For every (M,C, T, S) ∈ X

such that ρ(M,C, T, S) > 0, ϕt(X) → B as t → ∞. If 0 < d1 < d2 < ∞,

then B ∩ {d1 ≤ S ≤ d2} is compact. If S(0) > 0, then S(t) > 0 for all t > 0.

The conditions in Theorem 4.13 on page 99 of Smith and Thieme (2011) are

satisfied. The uniform weak space-persistence and Theorem 4.13 on page 99

of Smith and Thieme (2011) together imply uniform strong persistence of

available space. ■

Theorem 2.2.3 (Coral-persistence). If all parameters are positive, A1 to

A7 hold, and g > c∗, where c∗ = max {ρM +ΘM − δM , ρT +ΘT − δT}, then

the solution semiflow generated by the system (2.6) is uniformly strongly coral-

persistent on the state space X = D.

Proof. We use the contradiction to show uniform weak coral-persistence first.

If all parameters are positive, A1 to A7 hold, g > c∗, and the solution semiflow

ϕ is not uniformly weakly coral-persistent, then for arbitrary ϵ > 0, there exists

a solution with C(0) > 0 and lim sup
t→∞

C(t) ≤ ϵ. M(t), C(t), and T (t) > 0 for

t ≥ 0. Furthermore, there exists some t0 > 0 such that C(t) < ϵ for t ≥ t0.
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For t ≥ t0, we have the following:

d (M + T )

dt
= αMC + ρMMS − δMM − gM +ΘMMS

+ ρTTS − γCT − δTT − gT +ΘTTS

= αMC + (ρM +ΘM)MS − (δM + g)M

+ (ρT +ΘT )TS − γCT − (δT + g)T

≤ αMC + (ρM +ΘM)M − (δM + g)M

+ (ρT +ΘT )T − γCT − (δT + g)T

= (αC + ρM +ΘM − δM − g)M

+ (ρT +ΘT − γC − δT − g)T

≤ (αϵ+ ρM +ΘM − δM − g)M

+ (ρT +ΘT − δT − g)T.

(2.28)

Since g > c∗, ρM + ΘM − δM − g < 0 and ρT + ΘT − δT − g < 0. We

choose ϵ <
g − (ρM +ΘM − δM)

α
such that the right hand side of (2.28) < 0.

M(t)+T (t) is monotone decreasing⇒M(t)+T (t) → 0 as t→ ∞⇒M(t) → 0

and T (t) → 0 as t→ ∞. Furthermore, lim inf
t→∞

S(t) ≥ 1− ϵ.

lim inf
t→∞

dC

dt
= ρCCS − C +ΘCCS

=
[︁
(ρC +ΘC)S − 1

]︁
C

≥
[︁
(ρC +ΘC) (1− ϵ)− 1

]︁
C

(2.29)

We choose ϵ < min

{︃
g − (ρM +ΘM − δM)

α
, 1− 1

ρT +ΘC

}︃
such that the right

hand side of (2.29) > 0. 1 − 1

ρT +ΘC

> 0 because ρC > 1 by assump-

tions A1 and A2. C(t) is monotone increasing ⇒ C(t) → 1 as t → ∞, a

contradiction. We check a few conditions, which lead to uniform strong coral-

persistence based on uniform weak coral-persistence. We choose the time set

J = R+ and the state space X = D. We choose the nonempty subset B = X.

ρ(M,C, T, S) = C and σ = ρ (ϕt) are continuous. For every (M,C, T, S) ∈ X

such that ρ(M,C, T, S) > 0, ϕt(X) → B as t → ∞. If 0 < d1 < d2 < ∞, then

B ∩ {d1 ≤ C ≤ d2} is compact. There is no (M,C, T, S) ∈ B, t1, t2 > 0 such

that C(0) > 0, C(t1) = 0, and C(t2) > 0 due to the format of coral equation
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in the system (2.6). The conditions in Theorem 4.13 on page 99 of Smith and

Thieme (2011) are satisfied. The uniform weak coral-persistence and Theorem

4.13 on page 99 of Smith and Thieme (2011) together imply uniform strong

persistence of coral under high grazing pressure. ■

Theorem 2.2.2 implies there will always be some available space left at any

given time for any initial conditions and any positive parameter values as long

as S(0) > 0. Theorem 2.2.2 also suggests the three functional groups will

never use up the available space in the long run. However, it is possible to

have minimal empty space left in the long run because Theorem 2.2.2 only

guarantees available space is bounded away from zero. Still, it does not ensure

the amount of available space left is adequate. Theorem 2.2.3 implies coral

will persist in the long run at high grazing pressure. Biologically, suppose

the sum of the grazing effect and the natural death rate is larger than the

total growth rate from occupying available space and propagules settling for

both macroalgae and turf algae. In that case, coral will not go extinct in

the long run. However, coral persist in what form is still unknown: it is

possible that the reefs are dominated by coral, or coral coexist with algae, or

even the coral population does not go extinct but eventually remains at a low

level. Theorem 2.2.3 only guarantees coral are bounded away from zero at

high grazing pressure. Still, it does not ensure the amount of coral left in the

long run is adequate or that the coral population remains healthy.

2.2.4 Bifurcation results

In this subsection, we analyze the possible equilibrium states using bifurca-

tion diagrams based on the grazing effect g for slow turf algae and fast turf

algae scenarios. Both empirical observations and experiments indicate the

density of herbivorous fish has a considerable influence on the phase shift of

the coral-algae ecosystem. The absence of herbivorous fish leads to the boom

of macroalgae, which weakens the larval recruitment and squeezes the living

space of adult coral (Hughes et al., 2007). The abundance of herbivorous fish

is positive related to the grazing effect. A decrease in grazing effect led to an
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increase in algae biomass (Lirman, 2001). In the following numerical bifurca-

tion analysis, we find four possible stable states in the slow turf algae scenario:

macroalgae only or macroalgae and turf algae coexistence at low grazing pres-

sure, macroalgae and coral coexistence at moderate grazing pressure, and coral

only at high grazing pressure. We find five possible stable states in the fast

turf algae scenario: macroalgae only or macroalgae and turf algae coexistence

at low grazing pressure, three functional groups coexistence or coral and turf

algae coexistence at moderate grazing pressure, and coral only at high graz-

ing pressure. We show reasonable fishing helps support a higher level of coral

cover.

Bifurcation at slow turf algae

In A1, we assume turf algae are the fastest colonizer. However, how much

faster turf algae occupy available space than other functional groups is still

unknown. As a result, we undertake bifurcation analysis in both slow and fast

turf algae scenarios. In the first scenario, we undertake bifurcation when turf

algae occupy available space relatively slowly. We choose parameter values

based on A1 to A7 and table A.3: α = 0.23, β = 1.82, γ = 2.27, ΘM = 0.2,

ΘC = 0.2, ΘT = 0.2, δM = 0.05, δT = 0.05, ρM = 3, ρC = 5, and ρT = 10. ρT

can range from 4.55 to 90.91, so ρT = 10 indicates turf algae occupy available

space faster than macroalgae and coral. Still, the rate of turf algae occupying

available space is relatively low in its own feasible range. We vary the value

of grazing effect g to investigate how grazing effect affects the stability of

equilibrium of interest in this scenario.
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Fig. 2.1 Bifurcation diagram at low ρT . The upper panel shows the bifurcation
result of the equilibrium level of coral and the lower panel for macroalgae. They
share the same bifurcation values for grazing effect g. We summarize bifurcation
points and values for low ρT case in table 2.2. All equilibria are linear with respect
to g, based on the equilibrium calculation in section 2.2.1.

Table 2.2 Bifurcation points and values at low ρT

Bifurcation points (C) Bifurcation points (M) Bifurcation values

ACl = (0.6103, 0) AMl = (0.6103, 0.7937) gCD5
low = 0.6103

BC
l = (0.6892, 0) BM

l = (0.6892, 0.7501) g
G∗

6
low = 0.6892

CC
l = (0.7512, 0.8077) CM

l = (0.7512, 0) gCD4 = 0.7512

This table summarizes the bifurcation points and values for the slow turf algae case.

We find the bifurcation value g
G∗

6
low = 0.6892 using matcont package in MATLAB.

We calculate other bifurcation values from the stability analysis of equilibrium.

Macroalgae-only equilibrium E2, represented as the red line, is globally

stable at grazing level 0 < g < gCD5
low , where gCD5

low = 0.6103. When the

grazing effect rises above gCD5
low , E2 loses stability and macroalgae and turf
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algae coexistence equilibrium E6, represented as the blue line, is globally stable

for a short grazing effect range. Macroalgae and coral coexistence equilibrium

E5, represented as the purple line, emerges and is globally stable at grazing

level g
G∗

6
low < g < gCD4, where g

G∗
6

low = 0.6892, and gCD4 = 0.7512. When the

grazing effect rises above gCD4, E5 loses stability and joins the globally stable

coral-only equilibrium E3, represented as the black line.

Biologically, for the slow turf algae scenario, the reefs will be dominated

by macroalgae and turf algae in the long run when the grazing pressure is low.

The reefs will be dominated by coral in the long run when the grazing pressure

rises to a very high level. When the grazing pressure remains at a moderate

level, macroalgae and coral can coexist in the long run.

Bifurcation at fast turf algae

In the second scenario, we undertake bifurcation when turf algae occupy avail-

able space relatively fast. We choose parameter values based on A1 to A7 and

table A.3: α = 0.23, β = 1.82, γ = 2.27, ΘM = 0.2, ΘC = 0.2, ΘT = 0.2,

δM = 0.05, δT = 0.05, ρM = 3, ρC = 5, and ρT = 70. ρT = 70 indicates turf

algae occupy available space faster than macroalgae and coral, and the rate is

relatively high in its own feasible range. We vary the value of grazing effect g

to investigate how grazing effect affects the stability of equilibrium of interest

in this scenario.
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Fig. 2.2 Bifurcation diagram at high ρT . The upper panel shows the bifurcation
result of equilibrium level of coral and the lower panel for macroalgae. They share
the same bifurcation values for grazing effect g. The stable coral and turf algae
coexistence equilibrium will join the stable coral-only equilibrium under extremely
high grazing pressure, which is not shown in the figure range. We summarize bifur-
cation points and values for high ρT case in table 2.3. All equilibria are linear with
respect to g, based on the equilibrium calculation in section 2.2.1.

Table 2.3 Bifurcation points and values at high ρT

Bifurcation points (C) Bifurcation points (M) Bifurcation values

ACh = (0.0346, 0) AMh = (0.0346, 0.9736) gCD5
high = 0.0346

BC
h = (0.8283, 0) BM

h = (0.8283, 0.4939) g
G∗

6
high = 0.8283

CC
h = (0.8583, 0.5944) CM

h = (0.8583, 0) ginthigh = 0.8583

This table summarizes the bifurcation points and values for the fast turf algae case.

We find the bifurcation values g
G∗

6
high = 0.8283 and ginthigh = 0.8583 using matcont

package in MATLAB. We calculate other bifurcation values from the stability anal-
ysis of equilibrium.

Macroalgae-only equilibrium E2, represented as the red line, is globally
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stable at a very narrow range of low grazing level 0 < g < gCD5
high , where

gCD5
high = 0.0346. When the grazing effect rises above gCD5

high , E2 loses stability and

macroalgae and turf algae coexistence equilibrium E6, represented as the blue

line, is globally stable at grazing level gCD5
high < g < g

G∗
6

high, where g
G∗

6
high = 0.8283.

Macroalgae, coral, and turf algae coexistence equilibrium E8, represented as

the cyan line, emerges and is globally stable at grazing level g
G∗

6
high < g <

ginthigh, where g
int
high = 0.8583. When the grazing effect rises above ginthigh, E8

loses stability and joins the globally stable coral and turf algae coexistence

equilibrium E7, represented as the orange line.

Biologically, for the fast turf algae scenario, the reefs will be dominated by

macroalgae and turf algae in the long run when the grazing pressure is low.

The reefs will be dominated by coral and turf algae in the long run when the

grazing pressure rises to a very high level. When the grazing pressure remains

at a moderate level, macroalgae, coral, and turf algae can coexist in the long

run.

Overall, the equilibrium level of coral is positive related to the grazing

effect g. The grazing effect is positive related to the population density of

herbivorous fish, such as giant humphead parrot fish, and the fish population

is inversely related to fishing effort. Overfishing dramatically decreases the

population density of herbivorous fish around the reef, significantly decreasing

the grazing effect g. As a result, reasonable fishing helps maintain the herbiv-

orous fish population, and a healthier herbivorous fish population can support

a higher level of coral cover. Most degrading reefs are moving from macroalgae

and coral coexistence equilibrium to no coral equilibrium, point CC
l to point

BC
l in figure 2.1 when turf algae are slow; from macroalgae, coral, and turf

algae coexistence equilibrium to no coral equilibrium, point CC
h to point BC

h

in figure 2.2 when turf algae are fast. If the the herbivorous fish population

declines, there is less coral cover, replaced by more macroalgae and turf algae

cover, as shown in figure 2.1 point CC
l to point BC

l and figure 2.2 point CC
h to

point BC
h .
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2.2.5 Effect of larval contribution

In this subsection, we investigate how coral larval contribution affects the per-

sistence of adult coral in both slow turf algae and fast turf algae scenarios.

Competition between coral and macroalgae causes a severe decline in the fe-

cundity of coral larvae (Foster et al., 2008). A decrease in the birth rate of

coral larvae leads to the decline of coral larval contribution. The presence of

macroalgae dramatically decreases the survivorship of juvenile coral (Box and

Mumby, 2007). The left panel of figure 2.3 shows that when ρT is low, coral

shift gradually from stable macroalgae and coral coexistence equilibrium to

no coral equilibrium as coral larval contribution ΘC drops from 0.2 to a low

level of 0.01. However, the structure is more robust when ρT is high. The

equilibrium level of coral decreases as ΘC drops. Still, it does not decrease to

zero even for a deficient level of coral larval contribution, as shown in the right

panel of figure 2.3. A high rate of turf algae occupying available space serves

as a shield to help coral resist hostile environmental hazard. Coral persist even

when coral larval contribution drops to zero if turf algae can occupy available

space fast enough.
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Fig. 2.3 Coral a with declining larval contribution. The left panel is the time
simulation of coral when ρT = 10, g = 0.7, and larval contribution ΘC declines from
0.2 to 0.01. The right panel is the time simulation of coral when ρT = 70, g = 0.845,
and larval contribution ΘC declines from 0.2 to 0.01.

2.3 Discussion

Throughout the analysis of the one-patch model (2.6), we get a pretty good

understanding of coral-algae interactions within the patch. We calculate the

explicit formula of equilibria, E1 to E7, and give conditions for their existence

and stability, as summarized in table 2.1. We prove available space persists

under all conditions, whereas coral persist under high grazing pressure. We

illustrate a high rate of turf algae occupying available space helps coral persist

during the decline of larval contribution. The numerical bifurcation analysis

shows algae dominate in the long run at low grazing pressure, coral dominate

in the long run at very high grazing pressure, and algae and coral can coexist

at moderate grazing pressure. Based on the bifurcation results, we show rea-

sonable fishing helps maintain the herbivorous fish population, and a healthier
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herbivorous fish population can support a higher level of coral cover. The

numerical bifurcation analysis also provides theoretical backup and paves the

way for the travelling wave analysis in the chapter 3.
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Chapter 3

Spatial dynamics

In chapter 2, we develop a reduced non-dimensional one-patch model (2.6) to

answer how coral and algae occupy space while competing and what is the

effect of a decline in larval recruitment on coral persistence. In this chapter,

we relax the assumption of only one patch and consider multiple patches for

the discrete space case. We develop a reaction-diffusion equation model for

the continuous space case to investigate how macroalgae invade coral spatially

through larval dispersal using TW analysis. We give conditions under which

coral will retreat or expand based on the TW results.

3.1 PDE model derivation and assumptions

In this section, we derive a network of weakly-coupled multiple-patches model

for the discrete space case and a reaction-diffusion equation model for the

continuous space case. In subsection 3.1.1, we develop a multiple-patches

model incorporating adult and larvae or propagules based on the one-patch

ODE model in chapter 2. In subsection 3.1.2, we simplify the multiple-patches

model by assuming patches are weakly coupled and solving larvae or propag-

ules in terms of adults. Next step in subsection 3.1.3, we derive the network of

weakly-coupled ODE system by combining the previous two steps. Lastly in

subsection 3.1.4, we apply diffusion approximation to the network of weakly-

coupled ODE system, and we derive a reaction-diffusion equation model to

capture larval dispersal.
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3.1.1 Weakly-coupled spatial patches

In this subsection, we specify assumptions and spatial setups for multiple

patches. We write down the dimensional system of ODE with semipermeable

boundary condition, and then we non-dimensionalize the system.

We consider several patches of coral skeletons located on the same line,

as illustrated in figure 1.3(b) . We assume there are no significant differences

between patches, so parameter values are the same for every patch. As a result,

the patch size presented by N is homogeneous among patches. R is a variable

representing any of the three population groups: macroalgae, coral, and turf

algae. dRi,j represents the immigration or emigration rate from patch j to

patch i for functional group R. We specifically consider the spatial dynamics

of brooding coral. Since the dispersal range of brooding coral larvae is much

shorter than spawning coral larvae, we further assume that each brooding coral

patch only interacts with its nearest two neighbours and the immigration or

emigration rates are the same for every patch. We choose semipermeable

boundary condition for patches i = 1 and i = n, and use hostile exterior

lR0 = lRn+1 = 0. We assume that larvae or propagates move out of the

boundaries from patches i = 1 and i = n at a fraction 0 ≤ ξ ≤ 1 of the

standard rate eR. The immigration or emigration rate for functional group R

takes the following form (3.1):

dRi,j =

⎧⎪⎨⎪⎩
ξeR i = 1, j = 0 and i = n, j = n+ 1
eR 2 ≤ i ≤ n− 1 and |i− j| = 1
0 otherwise .

(3.1)

We assume patches are weakly coupled, so eR is very small such that the second

order terms or higher order terms of eR goes to zero and can be neglected.
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Dimensional multiple-patches model

For 2 ≤ i ≤ n− 1, we have the following system of equations:

dMi

dt
= αMiCi + βMiTi + ρMMiSi − δMMi − gMi⏞ ⏟⏟ ⏞

adult dynamics in patch i

+ϕMκM lMiSi⏞ ⏟⏟ ⏞
juvenile settling to patch i

(3.2a)

dlMi

dt
= bM

ψMMi

NL⏞ ⏟⏟ ⏞
birth

−µM lMi⏞ ⏟⏟ ⏞
death

−κM lMi⏞ ⏟⏟ ⏞
settling to patch i

+

⎛⎝ n∑︂
j ̸=i

dMi,jlMj

⎞⎠
⏞ ⏟⏟ ⏞

flow into patch i

−

⎛⎝ n∑︂
j ̸=i

dMj,ilMi

⎞⎠
⏞ ⏟⏟ ⏞

flow out of patch i

(3.2b)

dCi
dt

= γCiTi + ρCCiSi − αMiCi − δCCi + ϕCκC lCiSi (3.2c)

dlCi
dt

= bC
ψCCi
NL

− µC lCi − κC lCi +

⎛⎝ n∑︂
j ̸=i

dCi,jlCj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

dCj,ilCi

⎞⎠ (3.2d)

dTi
dt

= ρTTiSi − βMiTi − γCiTi − δTTi − gTi + ϕTκT lT iSi (3.2e)

dlT i
dt

= bT
ψTTi
NL

− µT lT i − κT lT i +

⎛⎝ n∑︂
j ̸=i

dT i,jlTj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

dTj,ilT i

⎞⎠ (3.2f)

Si = N −Mi − Ci − Ti, (3.2g)

with semipermeable boundary condition with hostile exterior:

dM1

dt
= αM1C1 + βM1T1 + ρMM1S1 − δMM1 − gM1 + ϕMκM lM1S1 (3.3a)

dlM1

dt
= bM

ψMM1

NL
− µM lM1 − κM lM1 + eRlM2 − (ξeRlM1 + eRlM1) (3.3b)

dC1

dt
= γC1T1 + ρCC1S1 − αM1C1 − δCC1 + ϕCκC lC1S1 (3.3c)

dlC1

dt
= bC

ψCC1

NL
− µC lC1 − κC lC1 + eRlC2 − (ξeRlC1 + eRlC1) (3.3d)

dT1
dt

= ρTT1S1 − βM1T1 − γC1T1 − δTT1 − gT1 + ϕTκT lT1S1 (3.3e)

dlT1
dt

= bT
ψTT1
NL

− µT lT1 − κT lT1 + eRlT2 − (ξeRlT1 + eRlT1) (3.3f)

S1 = N −M1 − C1 − T1, (3.3g)
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dMn

dt
= αMnCn + βMnTn + ρMMnSn − δMMn − gMn + ϕMκM lMnSn (3.4a)

dlMn

dt
= bM

ψMMn

NL
− µM lMn − κM lMn + eRlMn−1 − (ξeRlMn + eRlMn) (3.4b)

dCn
dt

= γCnTn + ρCCnSn − αMnCn − δCCn + ϕCκC lCnSn (3.4c)

dlCn
dt

= bC
ψCCn
NL

− µC lCn − κC lCn + eRlCn−1 − (ξeRlCn + eRlCn) (3.4d)

dTn
dt

= ρTTnSn − βMnTn − γCnTn − δTTn − gTn + ϕTκT lTnSn (3.4e)

dlTn
dt

= bT
ψTTn
NL

− µT lTn − κT lTn + eRlTn−1 − (ξeRlTn + eRlTn) (3.4f)

Sn = N −Mn − Cn − Tn. (3.4g)

Variables are listed in table B.1, and parameters are listed in table B.2. If

we focus on coral and patch i, the adult coral in patch i produce larvae and

larvae produced in other patches j ̸= i can flow into patch i. These are the

two primary incoming sources of larvae in patch i. Then, the larvae in patch i

may die or settle to patch i. The idea is larvae from patch j will not directly

settle on patch i but travel to patch i first and then become part of larvae in

patch i, die or settle to patch i afterwards.
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Non-dimensional multiple-patches model

We non-dimensionalize the dimensional multiple-patches model. For 2 ≤ i ≤

n− 1, we have the following system of equations:

dM̃ i

dt̃
= α̃M̃ iC̃i + β̃M̃ iT̃ i + ρ̃MM̃ iS̃i − δ̃MM̃ i − g̃M̃ i + κ̃M l̃MiS̃i (3.5a)

ϵM
dl̃Mi

dt̃
= ψ̃M b̃MM̃ i − l̃Mi − κ̃M l̃Mi +

⎛⎝ n∑︂
j ̸=i

d̃Mi,j l̃Mj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

d̃Mj,il̃Mi

⎞⎠
(3.5b)

dC̃i

dt̃
= γ̃C̃iT̃ i + ρ̃CC̃iS̃i − α̃M̃ iC̃i − C̃i + κ̃C l̃CiS̃i (3.5c)

ϵC
dl̃Ci

dt̃
= ψ̃C b̃CC̃i − l̃Ci − κ̃C l̃Ci +

⎛⎝ n∑︂
j ̸=i

d̃Ci,j l̃Cj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

d̃Cj,il̃Ci

⎞⎠ (3.5d)

dT̃ i

dt̃
= ρ̃T T̃ iS̃i − β̃M̃ iT̃ i − γ̃C̃iT̃ i − δ̃T T̃ i − g̃T̃ i + κ̃T l̃T iS̃i (3.5e)

ϵT
dl̃T i

dt̃
= ψ̃T b̃T T̃ i − l̃T i − κ̃T l̃T i +

⎛⎝ n∑︂
j ̸=i

d̃T i,j l̃Tj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

d̃Tj,il̃T i

⎞⎠ (3.5f)

S̃i = 1− M̃ i − C̃i − T̃ i, (3.5g)

with semipermeable boundary condition with hostile exterior:

dM̃1

dt̃
= α̃M̃1C̃1 + β̃M̃1T̃ 1 + ρ̃MM̃1S̃1 − δ̃MM̃1 − g̃M̃1 + κ̃M l̃M1S̃1 (3.6a)

ϵM
dl̃M1

dt̃
= ψ̃M b̃MM̃1 − l̃M1 − κ̃M l̃M1 + ẽR l̃M2 −

(︂
ξẽR + ẽR l̃M1

)︂
(3.6b)

dC̃1

dt̃
= γ̃C̃1T̃ 1 + ρ̃CC̃1S̃1 − α̃M̃1C̃1 − C̃1 + κ̃C l̃C1S̃1 (3.6c)

ϵC
dl̃C1

dt̃
= ψ̃C b̃CC̃1 − l̃C1 − κ̃C l̃C1 + ẽR l̃C2 −

(︂
ξẽR + ẽR l̃C1

)︂
(3.6d)

dT̃ 1

dt̃
= ρ̃T T̃ 1S̃1 − β̃M̃1T̃ 1 − γ̃C̃1T̃ 1 − δ̃T T̃ 1 − g̃T̃ 1 + κ̃T l̃T1S̃1 (3.6e)

ϵT
dl̃T1

dt̃
= ψ̃T b̃T T̃ 1 − l̃T1 − κ̃T l̃T1 + ẽR l̃T2 −

(︂
ξẽR + ẽR l̃T1

)︂
(3.6f)

S̃1 = 1− M̃1 − C̃1 − T̃ 1, (3.6g)
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dM̃n

dt̃
= α̃M̃nC̃n + β̃M̃nT̃ n + ρ̃MM̃nS̃n − δ̃MM̃n − g̃M̃n + κ̃M l̃MnS̃n

(3.7a)

ϵM
dl̃Mn

dt̃
= ψ̃M b̃MM̃n − l̃Mn − κ̃M l̃Mn + ẽR l̃Mn−1 −

(︂
ξẽR + ẽR l̃Mn

)︂
(3.7b)

dC̃n

dt̃
= γ̃T̃ nC̃n + ρ̃CC̃nS̃n − α̃M̃nC̃n − C̃n + κ̃C l̃CnS̃n (3.7c)

ϵC
dl̃Cn

dt̃
= ψ̃C b̃CC̃n − l̃Cn − κ̃C l̃Cn + ẽR l̃Cn−1 −

(︂
ξẽR + ẽR l̃Cn

)︂
(3.7d)

dT̃ n

dt̃
= ρ̃T T̃ nS̃n − β̃M̃nT̃ n − γ̃C̃nT̃ n − δ̃T T̃ n − g̃T̃ n + κ̃T l̃TnS̃n (3.7e)

ϵT
dl̃Tn

dt̃
= ψ̃T b̃T T̃ n − l̃Tn − κ̃T l̃Tn + ẽR l̃Tn−1 −

(︂
ξẽR + ẽR l̃Tn

)︂
(3.7f)

S̃n = 1− M̃n − C̃n − T̃ n, (3.7g)

where ϵR =
δC
µR

, a very small parameter, for R = M , C, or T . Non-

dimensionalized variables and parameters are listed in table B.3.

3.1.2 Larvae in terms of adults

In this subsection, we undertake quasi-steady-state approximation to eliminate

larval or propagules equations, and we solve larvae or propagules in terms of

adults. We use the assumption of weakly-coupled patches in subsection 3.1.1

with two special cases of n = 2 and n = 3 to find the general patterns of

solution to larvae or propagules in terms of adults. Finally, we summarize the

patterns for the general n case as Theorem 3.1.1.

We drop superscript tilde ˜ for convenience and undertake quasi-steady-

state approximation to solve lRi in terms of Ri. R is a variable representing

any of the three population groups: macroalgae, coral, and turf algae. Ri

represents the surface area occupied by functional group R in patch i. We let

ϵR → 0, then equations (3.5b), (3.5d), and (3.5f) can be summarized as the

following equation (3.8):

⇒ ψRbRRi − lRi − κRlRi +

⎛⎝ n∑︂
j ̸=i

dRi,jlRj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

dRj,ilRi

⎞⎠ = 0. (3.8)
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We substitute dRi,j (3.1) into equation (3.8):⎧⎪⎪⎨⎪⎪⎩
ψRbRR1 = (1 + κR + ξeR + eR) lR1 − eRlR2

ψRbRRi = pRlRi − eRlRi−1 − eRlRi+1 for 2 ≤ i ≤ n− 1

ψRbRRn = (1 + κR + ξeR + eR) lRn − eRlRn−1,

(3.9)

where pR = 1+κR+2eR. pR describes the removal rate of larvae or propagules

in patch i for functional group R. We choose hostile boundary condition, i.e.

lR0 = lRn+1 = 0. We write the system (3.9) in matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎝

pR − (1− ξ) eR −eR 0 . . . 0

−eR pR
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . pR −eR

0 . . . 0 −eR pR − (1− ξ) eR

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

PR

⎛⎜⎜⎜⎜⎜⎜⎝
lR1

lR2
...
...
lRn

⎞⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

LR

=

⎛⎜⎜⎜⎜⎜⎝
ψRbRR1

ψRbRR2
...

ψRbRRn−1

ψRbRRn

⎞⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

BR

.

(3.10)

We rewrite the linear system (3.10) as PRLR = BR with PR being a symmetric

tridiagonal banded matrix, LR for the vector for larvae or propagules, and BR

for the right hand side of the linear system.

Special case n = 2

We consider a special case with only two patches, the left and right boundary.

The linear system (3.10) becomes the following 2×2 system:(︄
pR − (1− ξ) eR −eR

−eR pR − (1− ξ) eR

)︄(︄
lR1

lR2

)︄
=

(︄
ψRbRR1

ψRbRR2

)︄
, (3.11)

⇒

(︄
1 + κR + (1 + ξ) eR −eR

−eR 1 + κR + (1 + ξ) eR

)︄(︄
lR1

lR2

)︄
=

(︄
ψRbRR1

ψRbRR2

)︄
,

(3.12)
⇒ LR = P−1

R BR

=
ψRbR(︁

pR − (1− ξ) eR
)︁2 − e2R

(︄ (︁
pR − (1− ξ) eR

)︁
R1 + eRR2

eRR1 +
(︁
pR − (1− ξ) eR

)︁
R2

)︄

= ψRbR

⎛⎜⎜⎝
(pR−(1−ξ)eR)R1+eRR2

(pR−(1−ξ)eR)
2
−e2R

eRR1+(pR−(1−ξ)eR)R2

(pR−(1−ξ)eR)
2
−e2R

⎞⎟⎟⎠ .

(3.13)
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We consider a weak-dispersal situation and assume that eR is very small such

that the second order terms or higher order terms of eR go to zero and can be

neglected. We undertake linear Taylor expansion to
1

pR − (1− ξ) eR
in terms

of eR:

1

pR − (1− ξ) eR
=

1

1 + κ+ (1 + ξ) eR

=
1

1 + κR
− 1

(1 + κR)
2 (1 + ξ) eR +O(e2R).

(3.14)

We substitute
1

pR − (1− ξ) eR
(3.14) into equation (3.13):

⇒ LR = ψRbR

⎛⎜⎜⎝
(pR−(1−ξ)eR)R1+eRR2

(pR−(1−ξ)eR)
2
−e2R

eRR1+(pR−(1−ξ)eR)R2

(pR−(1−ξ)eR)
2
−e2R

⎞⎟⎟⎠
= ψRbR

⎛⎝ 1

(pR−(1−ξ)eR)
R1 +

eR

(pR−(1−ξ)eR)
2R2

eR

(pR−(1−ξ)eR)
2R1 +

1

(pR−(1−ξ)eR)
R2

⎞⎠+O(e2R),

(3.15)

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lR1 =

ψRbR
1 + κR

(︃
R1 +

eR
1 + κR

R2 −
(1 + ξ) eR
1 + κR

R1

)︃
+O(e2R) (3.16)

lR2 =
ψRbR
1 + κR

(︃
R2 +

eR
1 + κR

R1 −
(1 + ξ) eR
1 + κR

R2

)︃
+O(e2R). (3.17)

Special case n = 3

We consider a special case with only three patches, the left and right boundary

and one interior patch. The linear system (3.10) becomes the following 3×3

system:⎛⎜⎝ pR − (1− ξ) eR −eR 0
−eR pR −eR
0 −eR pR − (1− ξ) eR

⎞⎟⎠
⎛⎜⎝ lR1

lR2

lR3

⎞⎟⎠ =

⎛⎜⎝ ψRbRR1

ψRbRR2

ψRbRR3

⎞⎟⎠ .

(3.18)

We solve the inverse matrix using the adjugate matrix P−1
R =

1

det(PR)
adj(PR),

det(PR) = pR
(︁
pR − (1− ξ) eR

)︁2 − 2
(︁
pR − (1− ξ) eR

)︁
e2R

and

adj(PR) =

⎛⎜⎝ pR
(︁
pR − (1− ξ) eR

)︁
− e2R

(︁
pR − (1− ξ) eR

)︁
eR e2R(︁

pR − (1− ξ) eR
)︁
eR

(︁
pR − (1− ξ) eR

)︁2 (︁
pR − (1− ξ) eR

)︁
eR

e2R
(︁
pR − (1− ξ) eR

)︁
eR pR

(︁
pR − (1− ξ) eR

)︁
− e2R

⎞⎟⎠ .
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We consider a weak-dispersal situation and assume that eR is very small such

that the second order terms or higher order terms of eR go to zero and can be

neglected:

⇒ P−1
R =

⎛⎜⎜⎜⎝
1

pR−(1−ξ)eR
eR

pR(pR−(1−ξ)eR)
0

eR
pR(pR−(1−ξ)eR)

1
pR

eR
pR(pR−(1−ξ)eR)

0 eR
pR(pR−(1−ξ)eR)

1
pR−(1−ξ)eR

⎞⎟⎟⎟⎠+O(e2R),

(3.19)
⇒ LR = P−1

R BR

= ψRbR

⎛⎜⎜⎜⎝
1

pR−(1−ξ)eR
R1 +

eR
pR(pR−(1−ξ)eR)

R2

eR
pR(pR−(1−ξ)eR)

R1 +
1
pR
R2 +

eR
pR(pR−(1−ξ)eR)

R3

eR
pR(pR−(1−ξ)eR)

R2 +
1

(pR−(1−ξ)eR)
R3

⎞⎟⎟⎟⎠+O(e2R).

(3.20)

We undertake linear Taylor expansion to
1

pR
in terms of eR:

1

pR
=

1

1 + κ+ 2eR
=

1

1 + κR
− 1

(1 + κR)
22eR +O(e2R). (3.21)

We substitute PR (3.21) and
1

pR − (1− ξ) eR
(3.14) into equation (3.20):

⇒ LR = ψRbR

⎛⎜⎜⎜⎝
1

pR−(1−ξ)eR
R1 +

eR
pR(pR−(1−ξ)eR)

R2

eR
pR(pR−(1−ξ)eR)

R1 +
1
pR
R2 +

eR
pR(pR−(1−ξ)eR)

R3

eR
pR(pR−(1−ξ)eR)

R2 +
1

(pR−(1−ξ)eR)
R3

⎞⎟⎟⎟⎠+O(e2R)

=
ψRbR
1 + κR

⎛⎜⎝ R1 +
eR

1+κR
R2 − (1+ξ)eR

1+κR
R1

R2 +
eR

1+κR
R1 +

eR
1+κR

R3 − 2eR
1+κR

R2

R3 +
eR

1+κR
R2 − (1+ξ)eR

1+κR
R3

⎞⎟⎠+O(e2R),

(3.22)

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

lR1 =
ψRbR
1 + κR

(︃
R1 +

eR
1 + κR

R2 −
(1 + ξ) eR
1 + κR

R1

)︃
+O(e2R) (3.23)

lR2 =
ψRbR
1 + κR

(︃
R2 +

eR
1 + κR

R1 +
eR

1 + κR
R3 −

2eR
1 + κR

R2

)︃
+O(e2R) (3.24)

lR3 =
ψRbR
1 + κR

(︃
R3 +

eR
1 + κR

R2 −
(1 + ξ) eR
1 + κR

R3

)︃
+O(e2R). (3.25)

lR1 and lR3 correspond to the left and right boundary patches and are sym-

metric. lR2 is a representative of all the interior patches, including flow in from

two adjacent patches and flow out to two adjacent patches.

51



Generalization

We summarize the patterns found in the special cases, n = 2 and n = 3. We

use the following Theorem 3.1.1 to show the linear approximated solution to

the larval equation (3.8) for the generalize n patches case.

Theorem 3.1.1 (Linear approximated solution). If we assume the patches

are weakly coupled, i.e.

dRi,j =

{︄
ϵd̂Ri,j i ̸= j
0 otherwise,

(3.26)

and ϵ is a small parameter such that 0 < ϵ << 1, then equation (3.27)

lRi =
ψRbR
1 + κR

⎡⎢⎣Ri +
1

1 + κR
ϵ

⎛⎝ n∑︂
j ̸=i

d̂Ri,jRj

⎞⎠− 1

1 + κR
ϵ

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠Ri

⎤⎥⎦
(3.27)

is the solution to the larval equation (3.8) with hostile boundary condition up

to the leading order of ϵ.

Proof. We substitute dRi,j (3.26) into the left hand side of the larval equation

(3.8) and rewrite the left hand side:

ψRbRRi − lRi − κRlRi +

⎛⎝ n∑︂
j ̸=i

dRi,jlRj

⎞⎠−

⎛⎝ n∑︂
j ̸=i

dRj,ilRi

⎞⎠
= ψRbRRi − lRi − κRlRi + ϵ

⎛⎝ n∑︂
j ̸=i

d̂Ri,jlRj

⎞⎠− ϵ

⎛⎝ n∑︂
j ̸=i

d̂Rj,ilRi

⎞⎠
= ψRbRRi −

⎡⎢⎣1 + κR + ϵ

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠
⎤⎥⎦ lRi + ϵ

⎛⎝ n∑︂
j ̸=i

d̂Ri,jlRj

⎞⎠ .

(3.28)

We substitute the equation (3.27) into equation (3.28) to verify the theorem.

We write expressions explicitly up to order of ϵ, and terms with order ϵ2 or
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higher are absorbed in O(ϵ2):

ψRbRRi −

⎡⎢⎣1 + κR + ϵ

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠
⎤⎥⎦ lRi + ϵ

⎛⎝ n∑︂
j ̸=i

d̂Ri,jlRj

⎞⎠

= ψRbRRi − ψRbR

⎡⎢⎣Ri +
ϵ

1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Ri,jRj

⎞⎠− ϵ

1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠Ri

⎤⎥⎦
− ϵ

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠ ψRbR
1 + κR

Ri +
ψRbR
1 + κR

ϵ

⎛⎝ n∑︂
j ̸=i

d̂Ri,jRj

⎞⎠+O(ϵ2)

= ψRbRRi − ψRbRRi −
ψRbR
1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Ri,jRj

⎞⎠ ϵ+
ψRbR
1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠Riϵ

− ψRbR
1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Rj,i

⎞⎠Riϵ+
ψRbR
1 + κR

⎛⎝ n∑︂
j ̸=i

d̂Ri,jRj

⎞⎠ ϵ+O(ϵ2)

= O(ϵ2).

■

Since ϵ is a small parameter such that 0 < ϵ << 1, we drop the O(ϵ2) term

and incorporate lRi into the non-dimensional multiple-patches model (3.5):

lRi =
ψRbR
1 + κR

⎡⎢⎣Ri +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jRj

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠Ri

⎤⎥⎦ ,
(3.29)

⇒ κRlRi =
κRψRbR
1 + κR

⎡⎢⎣Ri +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jRj

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠Ri

⎤⎥⎦
= θRψRbR

⎡⎢⎣Ri +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jRj

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠Ri

⎤⎥⎦
= ΘR

⎡⎢⎣Ri +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jRj

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠Ri

⎤⎥⎦ .
(3.30)
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3.1.3 Network of weakly-coupled ODE system

In this subsection, we combine the results from subsections 3.1.1 and 3.1.2 to

derive the network of weakly-coupled ODE system.

We substitute equation (3.30) into equations (3.5a), (3.5c), and (3.5e). We

obtain the following network of weakly-coupled ODE system (3.31):

dMi

dt
= αMiCi + βMiTi + ρMMiSi − δMMi − gMi⏞ ⏟⏟ ⏞

within patch interactions

+ΘMSi

⎡⎢⎢⎢⎢⎢⎣ Mi⏞⏟⏟⏞
production of
propagules

+
1

1 + κM

⎛⎝ n∑︂
j ̸=i

dMi,jMj

⎞⎠
⏞ ⏟⏟ ⏞

flow into patch i

− 1

1 + κM

⎛⎝ n∑︂
j ̸=i

dMj,i

⎞⎠Mi⏞ ⏟⏟ ⏞
flow out of patch i

⎤⎥⎥⎥⎥⎥⎦
(3.31a)

dCi
dt

= γCiTi + ρCCiSi − αMiCi − Ci⏞ ⏟⏟ ⏞
within patch interactions

+ΘCSi

⎡⎢⎢⎢⎢⎢⎣ Ci⏞⏟⏟⏞
production of

larvae

+
1

1 + κC

⎛⎝ n∑︂
j ̸=i

dCi,jCj

⎞⎠
⏞ ⏟⏟ ⏞

flow into patch i

− 1

1 + κC

⎛⎝ n∑︂
j ̸=i

dCj,i

⎞⎠Ci⏞ ⏟⏟ ⏞
flow out of patch i

⎤⎥⎥⎥⎥⎥⎦
(3.31b)

dTi
dt

= ρTTiSi − βMiTi − γCiTi − δTTi − gTi⏞ ⏟⏟ ⏞
within patch interactions

+ΘTSi

⎡⎢⎢⎢⎢⎢⎣ Ti⏞⏟⏟⏞
production of
propagules

+
1

1 + κT

⎛⎝ n∑︂
j ̸=i

dT i,jTj

⎞⎠
⏞ ⏟⏟ ⏞

flow into patch i

− 1

1 + κT

⎛⎝ n∑︂
j ̸=i

dTj,i

⎞⎠Ti⏞ ⏟⏟ ⏞
flow out of patch i

⎤⎥⎥⎥⎥⎥⎦
(3.31c)

Si = 1−Mi − Ci − Ti. (3.31d)

3.1.4 Diffusion approximation

In this subsection, we undertake diffusion approximation to transform the

weakly-coupled ODE system (3.31) into a reaction-diffusion equation model
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(3.38) with non-linear diffusion for the continuous space case.

We assume all patches are on the same line, and each patch only interacts

with adjacent patches. We assume

dRi,j =

{︄
dR

(∆x)2
if |i− j| = 1

0 otherwise
(3.32)

by the nearest neighbour principle, where ∆x is the uniform distance between

adjacent patches. dRi,j is the immigration or emigration rate from patch j to

patch i for functional group R = M , C, or T . dR is the diffusion coefficient

for functional group R. Ri(t) represents the fraction of surface area occupied

by functional group R at time t in patch i, and i ≤ n. We introduce one

dimensional spatial variable by assuming:

Ri(t) = R̂ (i∆x, t) , (3.33)

where R0(t) = R̂(0, t) is the origin of the one dimensional spatial x axis. Ri(t)

is defined on the lattice Z×R+, and R̂(x, t) is defined for the continuous space

R × R+. We substitute Ri(t) (3.33) into the weakly-coupled ODE system
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(3.31):

dM̂ (i∆x, t)

dt
= αM̂ (i∆x, t) Ĉ (i∆x, t) + βM̂ (i∆x, t) T̂ (i∆x, t)

+ ρMM̂ (i∆x, t) Ŝ (i∆x, t)− δMM̂ (i∆x, t)− gM̂ (i∆x, t)

+ ΘM Ŝ (i∆x, t)

⎡⎢⎣M̂ (i∆x, t) +
1

1 + κM

⎛⎝ n∑︂
j ̸=i

dMi,jM̂ (j∆x, t)

⎞⎠

− 1

1 + κM

⎛⎝ n∑︂
j ̸=i

dMj,i

⎞⎠ M̂ (i∆x, t)

⎤⎥⎦ ,
(3.34a)

dĈ (i∆x, t)

dt
= γĈ (i∆x, t) T̂ (i∆x, t) + ρCĈ (i∆x, t) Ŝ (i∆x, t)

− αM̂ (i∆x, t) Ĉ (i∆x, t)− Ĉ (i∆x, t)

+ ΘCŜ (i∆x, t)

⎡⎢⎣Ĉ (i∆x, t) +
1

1 + κC

⎛⎝ n∑︂
j ̸=i

dCi,jĈ (j∆x, t)

⎞⎠

− 1

1 + κC

⎛⎝ n∑︂
j ̸=i

dCj,i

⎞⎠ Ĉ (i∆x, t)

⎤⎥⎦ ,
(3.34b)

dT̂ (i∆x, t)

dt
= ρT T̂ (i∆x, t) Ŝ (i∆x, t)− βM̂ (i∆x, t) T̂ (i∆x, t)

− γĈ (i∆x, t) T̂ (i∆x, t)− δT T̂ (i∆x, t)− gT̂ (i∆x, t)

+ ΘT Ŝ (i∆x, t)

⎡⎢⎣T̂ (i∆x, t) +
1

1 + κT

⎛⎝ n∑︂
j ̸=i

dT i,jT̂ (j∆x, t)

⎞⎠

− 1

1 + κT

⎛⎝ n∑︂
j ̸=i

dTj,i

⎞⎠ T̂ (i∆x, t)

⎤⎥⎦ ,
(3.34c)

Ŝ (i∆x, t) = 1− M̂ (i∆x, t)− Ĉ (i∆x, t)− T̂ (i∆x, t) . (3.34d)

We further substitute the immigration or emigration rate dRi,j (3.32) into part

of the equations (3.34a), (3.34b), and (3.34c), and we use R to denote M , C,
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or T for concision:

R̂ (i∆x, t) +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jR̂ (j∆x, t)

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠ R̂ (i∆x, t)

= R̂ (i∆x, t) +
1

1 + κR

(︃
dR

(∆x)2
R̂
(︁
(i− 1)∆x, t

)︁
+

dR
(∆x)2

R̂
(︁
(i+ 1)∆x, t

)︁)︃
− 1

1 + κR

(︃
dR

(∆x)2
+

dR
(∆x)2

)︃
R̂ (i∆x, t)

= R̂ (i∆x, t) +
dR

1 + κR

(︄
R̂
(︁
(i− 1)∆x, t

)︁
− 2R̂ (i∆x, t) + R̂

(︁
(i+ 1)∆x, t

)︁
(∆x)2

)︄
.

(3.35)

We assume patches are arbitrarily close to each other, so we can take the limit

by letting ∆x→ 0, i→ ∞, and we write i∆x = x:

lim
∆x→0

(︄
R̂
(︁
(i− 1)∆x, t

)︁
− 2R̂ (i∆x, t) + R̂

(︁
(i+ 1)∆x, t

)︁
(∆x)2

)︄
=

∂2

∂x2
R̂ (x, t) .

(3.36)

We combine equations (3.35) and (3.36), and

R̂ (i∆x, t) +
1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRi,jR̂ (j∆x, t)

⎞⎠− 1

1 + κR

⎛⎝ n∑︂
j ̸=i

dRj,i

⎞⎠ R̂ (i∆x, t)

→ R̂ (x, t) +
dR

1 + κR

∂2

∂x2
R̂ (x, t) as ∆x→ 0.

(3.37)

We substitute equation (3.37) into equations (3.34a) to (3.34d) and take the

limit ∆x → 0. We obtain the following reaction-diffusion equation model
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(3.38):

∂M̂

∂t
= αM̂Ĉ + βM̂T̂ + ρMM̂Ŝ − δMM̂ − gM̂⏞ ⏟⏟ ⏞

dynamic for adult macroalgae

+ΘM Ŝ

(︄
M̂ +

dM
1 + κM

∂2M̂

∂x2

)︄
⏞ ⏟⏟ ⏞

production + diffusion

(3.38a)

∂Ĉ

∂t
= γĈT̂ + ρCĈŜ − αM̂Ĉ − Ĉ⏞ ⏟⏟ ⏞

dynamic for adult coral

+ΘCŜ

(︄
Ĉ +

dC
1 + κC

∂2Ĉ

∂x2

)︄
⏞ ⏟⏟ ⏞

production + diffusion

(3.38b)

∂T̂

∂t
= ρT T̂ Ŝ − βM̂T̂ − γĈT̂ − δT T̂ − gT̂⏞ ⏟⏟ ⏞

dynamic for adult turf algae

+ΘT Ŝ

(︄
T̂ +

dT
1 + κT

∂2T̂

∂x2

)︄
⏞ ⏟⏟ ⏞

production + diffusion

(3.38c)

Ŝ = 1− M̂ − Ĉ − T̂ . (3.38d)

Variables and parameters are listed in tables B.3 and B.4. R̂(x, t) denotes the

proportion of surface area occupied by functional group R at time t and loca-

tion x. We study the reaction-diffusion equation model (3.38) using numerical

TW analysis in section 3.2.

3.2 Numerical travelling wave results

In chapter 2, we discuss all possibilities of equilibria, which describe the long-

term fate of the coral reef ecosystem. However, how those equilibria are

connected or related remains unknown. In this section, we investigate how

macroalgae invade coral and turf algae spatially and how one equilibrium

state transforms into another using travelling waves. We exclude the cases

where coral cover is zero for all space x since those cases are not biologically

relevant. We simulate the reaction-diffusion equation model (3.38) with homo-

geneous Neumann boundary conditions to approximate TW conditions. We

take diffusion coefficients dR as 0.0001 for all functional groups.

3.2.1 Invasion under slow turf algae

In this subsection, we investigate the invasion of coral by macroalgae at high

ρT . The interactions between macroalgae, coral, and turf algae are complex,
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especially how turf algae affect the invasion of coral by macroalgae is rarely

investigated. Here we consider two scenarios, the slow turf algae case and

the fast turf algae case. The slow turf algae case is when turf algae occupy

available space relatively slowly, ρT = 10, and the fast turf algae case is when

turf algae occupy available space relatively fast, ρT = 70. In the slow turf algae

scenario, turf algae are always invaded and driven to extinction, as shown in

figure 3.4. ρT is not big enough to support the persistence of turf algae.

Consider a case where coral are dominant initially, described by coral-

only equilibrium; however, the grazing effect is low due to overharvesting of

herbivorous fish, and turf algae are slow, ρT = 10. Figure 3.1 shows macroalgae

invade coral fast when grazing g = 0.3 is minimal. As a result, coral-dominant

state shifts to macroalgae-dominant state in a short period. Figure 3.2 shows

macroalgae invade coral slowly when grazing g = 0.6 is higher but still below

the threshold bifurcation value gCD5
low = 0.6103. As a result, it takes more time

for coral-dominant state to shift to macroalgae-dominant state.
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Fig. 3.1 TW of macroalgae invading coral fast at low ρT . Numerical TW simulation
corresponds to the transition from point Cl to point Al in figure 2.1. We apply
homogeneous Neumann boundary conditions and take the grazing effect g = 0.3.
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Fig. 3.2 TW of macroalgae invading coral slowly at low ρT . Numerical TW simula-
tion corresponds to the transition from point Cl to point Al in figure 2.1. We apply
homogeneous Neumann boundary conditions and take the grazing effect g = 0.6.

Consider a case where herbivorous fish are not severely overharvested; thus,

the grazing effect g = 0.72 remains at a moderate level, and turf algae is slow,

ρT = 10. The invasion depends on the initial level of coral cover. Figure

3.3 shows macroalgae invade coral when the initial coral cover is above the

macroalgae and coral coexistence level. As a result, coral-dominant state shifts

to macroalgae and coral coexistence state. Figure 3.4 shows macroalgae fail

to invade coral when the initial coral cover is below the coexistence level. As

a result, macroalgae and turf algae coexistence state shifts to macroalgae and

coral coexistence state.
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Fig. 3.3 TW of macroalgae invading coral and turf algae at low ρT . Numerical
TW simulation corresponds to the transition at point Cl in figure 2.1. We apply
homogeneous Neumann boundary conditions and take the grazing effect g = 0.72.
We set the initial coral cover to coral-only equilibrium level 0.8077, which is above
macroalgae and coral coexistence level.
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Fig. 3.4 TW of macroalgae failing to invade coral at low ρT . Numerical TW simula-
tion corresponds to the transition at point Bl in figure 2.1. We apply homogeneous
Neumann boundary conditions and take the grazing effect g = 0.72. We set the
initial coral cover to 0, which is below macroalgae and coral coexistence level.

3.2.2 Invasion under fast turf algae

In this subsection, we investigate the invasion of coral by macroalgae at low

ρT . In the fast turf algae scenario, turf algae always persist, as shown in figures

3.5, 3.6, 3.7, and 3.8. ρT is big enough to support the persistence of turf algae.

Consider a case where coral and turf algae are dominant initially, described

by coral and turf algae coexistence equilibrium; however, the grazing effect is

low due to overharvesting of herbivorous fish, and turf algae are fast, ρT = 70.

Figure 3.5 shows macroalgae invade coral and turf algae fast when grazing

g = 0.3 is minimal. As a result, coral and turf algae coexistence state shifts

to macroalgae and turf algae coexistence state in a short period. Figure 3.6

shows macroalgae invade coral and turf algae slowly when grazing g = 0.6 is

higher but still below the threshold bifurcation value g
G∗

6
high = 0.8283. As a
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result, it takes more time for coral and turf algae coexistence state to shift to

macroalgae and turf algae coexistence state.

Fig. 3.5 TW of macroalgae invading coral and turf algae fast at high ρT . Numerical
TW simulation corresponds to the transition from point Ch to point Bh in figure
2.2. We apply homogeneous Neumann boundary conditions and take the grazing
effect g = 0.3.
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Fig. 3.6 TW of macroalgae invading coral and turf algae slowly at high ρT . Nu-
merical TW simulation corresponds to the transition from point Ch to Bh in figure
2.2. We apply homogeneous Neumann boundary conditions and take the grazing
effect g = 0.6.

Consider a case where herbivorous fish are not severely overharvested; thus,

the grazing effect g = 0.84 remains at a moderate level, and turf algae are

fast, ρT = 70. The invasion depends on the initial level of coral cover. Figure

3.7 shows macroalgae invade coral when the initial coral cover is above the

three functional groups coexistence level. As a result, coral and turf algae

coexistence state shifts to three functional groups coexistence state. Figure

3.8 shows macroalgae fail to invade coral when the initial coral cover is below

the coexistence level. As a result, macroalgae and turf algae coexistence state

shifts to three functional groups coexistence state.
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Fig. 3.7 TW of macroalgae invading coral at high ρT . Numerical TW simulation
corresponds to the transition at point Ch in figure 2.2. We apply homogeneous
Neumann boundary conditions and take the grazing effect g = 0.84. We set the
initial coral cover to coral and turf algae coexistence equilibrium level 0.6009, which
is above three functional groups coexistence level.

66



Fig. 3.8 TW of macroalgae failing to invade coral at high ρT . Numerical TW
simulation corresponds to the transition at point Bh in figure 2.2. We apply homo-
geneous Neumann boundary conditions and take the grazing effect g = 0.84. We
set the initial coral cover was set to 0, which is below three functional groups coex-
istence level.

If we do not harvest any herbivorous fish, the abundant herbivorous fish

put high grazing pressure on both macroalgae and turf algae. Coral remain

dominant in the slow turf algae case and drive macroalgae and turf algae to

extinction. Coral only drive macroalgae to extinction and coexist with turf

algae in the fast turf algae case. Maintaining such a high grazing pressure is

unrealistic, so we do not discuss the transitions under high grazing pressure in

detail.

3.3 Discussion

We derive a network of weakly-coupled ODE system to describe the dynamics

of multiple patches in the discrete space case and a reaction-diffusion equa-

tion model to emphasize larval dispersal in the continuous space case. Using
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numerical travelling wave analysis, we give conditions for coral to expand or

retreat. In some cases, invasion depends not solely on the grazing effect but on

the initial coral cover. If the grazing effect is low, macroalgae invade coral any-

way; if the grazing effect is very high, macroalgae fail to invade coral anyway.

The less extreme middle case with moderate grazing effect is more interesting.

If the initial coral cover is high, macroalgae invade coral; if the initial coral

cover is low, macroalgae fail to invade coral. Whether coral retreat or expand,

multiple functional groups can eventually coexist at moderate grazing effect.

Table 3.1 summarizes the TW results for slow turf algae scenario. Macroal-

gae invade coral and drive coral to extinction if the grazing effect g is less

than the bifurcation value g
G∗

6
low = 0.6892. The invasion speed is inversely re-

lated to the grazing effect, provided that the grazing effect is less than 0.6892.

Macroalgae and coral can coexist if the grazing effect g is between two bifurca-

tion values g
G∗

6
low = 0.6892 and gCD4 = 0.7512. Macroalgae fail to invade coral,

and coral drive macroalgae and turf algae to extinction if the grazing effect g

is larger than the bifurcation value gCD4 = 0.7512.

Table 3.1 Summary of TW results at low ρT

Grazing Initial coral cover Macroalgae (M) Coral (C)

low any invade coral extinct

moderate
high invade coral M and C coexist

low not invade coral M and C coexist

high any not invade coral dominant

This table summarizes the TW simulations at low ρT . The last column shows the
equilibrium state of coral. Extinction corresponds to zero coral equilibrium, and
dominance corresponds to coral-only equilibrium.

Table 3.2 summarizes the TW results for fast turf algae scenario. Macroal-

gae invade coral and turf algae and drive coral to extinction if the grazing

effect g is less than the bifurcation value g
G∗

6
high = 0.8283. The invasion speed

is inversely related to the grazing effect, provided that the grazing effect is

less than 0.8283. Macroalgae, coral, and turf algae can coexist if the grazing
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effect g is between two bifurcation values g
G∗

6
high = 0.8283 and ginthigh = 0.8583.

Macroalgae fail to invade coral, and coral drive macroalgae to extinction if the

grazing effect g is larger than the bifurcation value ginthigh = 0.8583.

Table 3.2 Summary of TW results at high ρT

Grazing Initial coral cover Macroalgae (M) Coral (C)

low any invade coral extinct

moderate
high invade coral M , C, and T coexist

low not invade coral M , C, and T coexist

high any not invade coral C and T coexist

This table summarizes the TW simulations at high ρT . The last column shows
the equilibrium state of coral. Extinction corresponds to zero coral equilibrium. T
represents turf algae.

Since we focus on brooding coral, the assumptions of the nearest neighbour

principle and weak dispersal among patches are reasonable. The brooding

coral larvae are well developed before being released to the current, so their

ability to move is relatively restricted. These two crucial assumptions allow

us to solve larvae in terms of adult for the general n patches and derive the

weakly-coupled network model and reaction-diffusion equation model.
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Chapter 4

Concluding remarks

4.1 Conclusion

This thesis aims to 1) understand how coral, macroalgae, and turf algae occupy

available space while competing and give conditions for coral persistence; 2)

understand how macroalgae invade coral and turf algae spatially through larval

or propagules dispersal and give conditions under which coral will retreat or

expand; 3) generate some insights into the role of turf algae in the coral-algae

ecosystem.

In this thesis, we develop a one-patch model (2.6) that emphasizes the dif-

ference in the ability to occupy available space for different functional groups.

Using persistence theorems, we show coral persist under high grazing pres-

sure. We understand the coral-algae interaction within the patch concerning

the various levels of grazing effect through numerical bifurcation analysis. We

split our investigation into two main scenarios, slow turf algae and fast turf

algae, based on the rate that turf algae take available space. In both sce-

narios, algae are dominant at low grazing effect, and coral are dominant at

very high grazing effect; when the grazing effect is within a moderate range,

algae and coral can coexist. We show reasonable fishing helps maintain the

herbivorous fish population, and a healthier herbivorous fish population can

support a higher level of coral cover. We find coral are more resistant to the

decline of larval recruitment due to the negative environmental impact in the

fast turf algae case.

We derive a weakly-coupled network of multiple-patches model (3.31) and
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reaction-diffusion equation model (3.38) for brooding coral based on the one-

patch model (2.6). Using numerical travelling wave analysis, we understand

how macroalgae invade coral spatially through travelling waves and how coral-

dominant phase shifts into algae-dominant phase in both fast and slow turf

algae scenarios. Macroalgae invade coral and drive coral to extinction at low

grazing effect. Macroalgae fail to invade coral at a very high grazing effect.

For moderate grazing level, the invasion depends on the initial coral cover;

high initial coral cover induces invasion by macroalgae, and low initial coral

cover prevents the invasion. Algae and coral can coexist after the invasion at

a moderate grazing level.

4.2 Limitations and future work

Our one-patch ODE model (2.6) does not show bistability behaviour at high

grazing pressure as in the original MCT model proposed by Mumby et al.

(2007). This difference is primarily due to the structure of the grazing term.

The original MCT model proposed by Mumby et al. (2007) used Holling Type

II response for the grazing term, and our models use linear grazing term to

make the mathematical analysis easier. Since Mumby et al. (2007) assumed

that available space became turf algae immediately, T = 1 − M − C, the

resulting model is a two dimensional ODE system and mathematical anal-

ysis is relatively easier than our three dimensional ODE system (2.6). The

original MCT model proposed by Mumby et al. (2007) showed macroalgae

dominance at low grazing pressure and bistability behaviour at high grazing

pressure. Mathematically, the macroalgae-only equilibrium was the only global

stable equilibrium at low grazing pressure; the macroalgae-only equilibrium

and coral-only equilibrium were both locally stable at high grazing pressure.

In the bistability behaviour, coral dominated if the initial coral cover was high

and macroalgae dominated if the initial coral cover was low. Mathematically,

the coral-only equilibrium attracted all solutions with high initial coral cover,

and the macroalgae-only equilibrium attracted all solutions with low initial

coral cover. Although our one-patch ODE model (2.6) does not show bistabil-
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ity behaviour, our findings are compliant with the MCT model proposed by

Mumby et al. (2007) that coral-algae system is sensitive to the grazing effect

and macroalgae dominate at low grazing pressure. The explicit discussion of

available space allows us to investigate two important scenarios: slow and fast

turf algae. The coral-algae dynamics are quite different in those two scenarios.

The separation of turf algae from available space allows us to study the effect

of turf algae on the invasion of coral by macroalgae. The reaction-diffusion

model gives us the tool to study the spatial invasion of coral by macroalgae

through travelling waves, which is rarely discussed in the literature.

In the future, we can test different grazing forms. Suppose we use the

Holling Type II response for the grazing. In that case, our model may exhibit

bistability behaviour in addition to the existing spatial dynamics, though it will

be mathematically challenging. We mainly focus on the grazing effect in this

thesis; however, we can also investigate the impact of other parameters, such

as the rates of taking available space and diffusion coefficients on dynamics.

We derive a network of weakly-coupled multiple-patches model, but we lack

the mathematical tools to do rigorous analysis. We can run simulations for

different patches to understand how the patches are connected in the discrete

space case. We assume every patch is the same for simplicity. However,

it is promising to consider some spatial heterogeneity in the grazing effect.

Herbivorous fish are often observed in groups, travelling between patches and

even reefs searching for food. They will move from low algae density patches

to high algae density patches. Fishing effort is also not uniform across all

locations in reality. We can consider the grazing effect as a function of space

g(x) to account for the spatial heterogeneity. We simulate travelling waves

numerically without proving their existence. We can find rigorous conditions

for the existence and non-existence of travelling waves mathematically in the

future.
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Appendix A

Tables for one-patch model in
chapter 2

Table A.1 Description of original variables

Original Description Units

M surface area occupied by macroalgae meter2

C surface area occupied by coral meter2

T surface area occupied by turf algae meter2

S available space meter2

lR density of larvae or propagules 1
meter3

t time year

This table explains the dependent and independent variables in the dimensional
one-patch model (2.1). R = M , C, or T represents three functional groups. Adult
macroalgae, coral, and turf algae are measured as surface area in meter square;
propagules of macroalgae and turf algae are measured as density in number per
meter cubic; time is measured in year.
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Table A.2 Description of original parameters

Original Description Units Value

α rate macroalgae overgrow coral 1
meter2∗year

0.1
N

β rate macroalgae overgrow turf algae 1
meter2∗year

0.8
N

γ rate coral overgrow turf algae 1
meter2∗year

1
N

ρM rate of macroalgae taking available space 1
meter2∗year ≪ ρT

ρC rate of coral taking available space 1
meter2∗year ≪ ρT

ρT rate of turf algae taking available space 1
meter2∗year

[︁
2
N
, 40
N

]︁
g grazing effect of fish 1

year
-

ϕC volume of water column per coral polyp meter3
[︁
3.95× 10−5, 8.85× 10−3

]︁
ϕM , ϕT volume of water column per algae meter3 -

AC cross-sectional area of coral polyp meter2
[︁
0.79× 10−6, 1.77× 10−4

]︁
AM , AT cross-sectional area of algae meter2 -

κC coral larvae settling rate 1
year

29.66

κM , κT algae propagules settling rate 1
year

-

δM mortality rate of macroalgae if not grazed 1
year

< g

δC mortality rate of coral 1
year

0.44

δT mortality rate of turf algae if not grazed 1
year

< g

N total surface area of the reef as one patch meter2 -

L average depth of water column meter ≤ 50

ψC number of coral adults per unit area 1
meter2

[︁
2.82, 6.33× 102

]︁
ψM , ψT number of algae adult per unit area 1

meter2
-

bC birth rate of coral larvae 1
year

[︁
2.31× 102, 5.18× 105

]︁
bM , bT birth rate of algae propagules 1

year
-

µC death rate of coral larvae 1
year

168.09

µM , µT death rate of algae propagules 1
year

-

This table explains the parameters in the dimensional one-patch model (2.1). R =
M , C, or T represents three functional groups. ϕR = ARL can be decomposed
as the cross-sectional area of a single individual polyp multiplies the height of the
water column. bRψR the number of larvae or propagules produced per polyp per
unit time represents the fecundity. NL is the volume of the water column above the
whole patch. bRψRI

NL is the density of larvae or propagules produced by functional
group R per unit time.

Values for α, β, γ, and δC are adapted from Blackwood et al. (2010). We

assume turf algae are the fastest colonizer, and occupying empty space is
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much easier than overgrowing other functional groups, so ρT ≫ ρM > α,

ρT ≫ ρM > β, and ρT ≫ ρC > γ. ρT ranges from
2

N
to

40

N
, adapted from

Fung et al. (2011). In literature, the grazing effect from herbivorous fish is

considered the main death factor for algae, so we assume δM and δT are less

than the grazing effect g. We only consider coral reefs in the tropical area, and

hermatypic coral live in the photic zone, so L < 50 meters. We assume the age

of death for coral larvae follows an exponential distribution with mean
1

µC
.

The survival rate of coral larvae in the early stage is extremely low, only about

ten percent (Harriott, 1985). The probability of coral larvae settling before

dying during the five days settlement period is around 0.15 (Cameron and

Harrison, 2020). We solve for µC = 168.09 and κC = 29.66 from e−µC
5

365 = 0.1

and
κC

κC + µC
= 0.15. We further assume κM , κT and µM , µT are of the same

scale as κC and µC . The fecundity has vast variations. ψCbC approximately

ranges from 1.46×105 to 1.46×106 based on different coral species and healthy

conditions. The range for ψCbC is adapted from figure 2(B) in Hartmann

et al. (2017). The diameter of an individual coral polyp is usually 1 to 15

millimetres, so the cross-sectional area of a single individual ranges from 0.79×

10−6 to 1.77 × 10−4 meter2, which implies ϕC ∈
[︁
3.95× 10−5, 8.85× 10−3

]︁
.

ψC can be calculated as the coral cover rate divided by the cross-sectional

area of a single individual polyp. Coral cover rate is measured as the area

of coral cover per unit area and is estimated to be 5 centimetres square per

meter square from figure 2(A) in Hartmann et al. (2017), which implies ψC ∈[︄
5× 10−4

1.77× 10−4
,

5× 10−4

0.79× 10−6

]︄
=
[︁
2.82, 6.33× 102

]︁
. The birth rate of coral larvae

bC ∈

[︄
1.46× 105

632.91
,
1.46× 106

2.82

]︄
=
[︁
2.31× 102, 5.18× 105

]︁
.
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Table A.3 Non-dimensionalization and Non-dimensionalized parameters

Non-dimensionalized non-dimensionalization Value

M̃ M̃ = M
N

-

C̃ C̃ = C
N

-

T̃ T̃ = T
N

-

S̃ S̃ = S
N

-

l̃R l̃R = ϕRlR -

t̃ t̃ = δCt -

ϵC ϵC = δC
µC

0.0026

ϵM , ϵT ϵR = δC
µR

-

θC θC = κ̃C
κ̃C+1

0.15

θM , θT θR = κ̃R
κ̃R+1

-

ΘM ΘM = θM ψ̃M b̃M -

ΘC ΘC = θCψ̃C b̃C
[︁
1.03× 10−4, 2.31× 10−1

]︁
ΘT ΘT = θT ψ̃T b̃T -

α̃ α̃ = αN
δC

0.23

β̃ β̃ = βN
δC

1.82

γ̃ γ̃ = γN
δC

2.27

ρ̃M ρ̃M = ρMN
δC

≪ ρ̃T

ρ̃C ρ̃C = ρCN
δC

≪ ρ̃T

ρ̃T ρ̃T = ρTN
δC

[4.55, 90.91]

g̃ g̃ = g
δC

-

δM̃ δM̃ = δM
δC

< g̃

δT̃ δT̃ = δT
δC

< g̃

κ̃C κ̃C = κC
µC

0.18

κ̃M , κ̃T κ̃R = κR
µR

-

ψ̃C ψ̃C = ϕCψC

L
5× 10−4

ψ̃M , ψ̃T ψ̃R = ϕRψR

L
-

b̃C b̃C = bC
µC

[︁
1.37, 3.08× 103

]︁
b̃M , b̃T b̃R = bR

µR
-

This table explains the variables and parameters in the non-dimensional one-patch
model (2.2). R = M , C, or T represents three functional groups. R̃ represents the
proportion of surface area occupied by functional group R. θR is the probability of
settling before dying. ΘR counts the total contribution from larvae or propagules
settling to adult abundance. ϵR is the ratio of adult mortality rate and larvae or
propagules mortality rate for functional group R.
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The probability of settling before dying θC equals 0.15 (Cameron and Har-

rison, 2020). ϵC is very close to zero since the larvae mortality rate is much

higher than adult coral. ψ̃C is the same as the coral over, equals to 5× 10−4:

ψ̃C =
ϕCψC
L

=
ACL

L

coral cover rate

AC
= coral cover rate.

The total contribution from larvae or propagules settling into adult abundance

ΘR depends on the probability of settling before dying, the cross-sectional area

of polyp, fecundity, and mortality:

ΘC = θCψ̃C b̃C = θC
ϕCψC
L

bC
µC

= θC
ϕC
L

ψCbC
µC

= θC
ACL

L

ψCbC
µC

=
θCACψCbC

µC
.

ΘR is independent of water depth L, so our models are independent of water

depth L after non-dimensionalization. The range of ΘC is estimated to be:

ΘC ∈

[︄
0.15× 0.79× 10−6 × 1.46× 105

168.09
,
0.15× 1.77× 10−4 × 1.46× 106

168.09

]︄
=
[︁
1.03× 10−4, 2.31× 10−1

]︁
.
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Appendix B

Tables for multiple-patches
model and reaction-diffusion
model in chapter 3

Table B.1 Description of original variables in weakly-coupled network model

Original Description Units

M i surface area occupied by macroalgae in patch i meter2

Ci surface area occupied by coral in patch i meter2

T i surface area occupied by turf algae in patch i meter2

Si available space in patch i meter2

lRi density of larvae or propagules in patch i 1
meter3

t time year

This table explains the dependent and independent variables in the dimensional
multiple-patches model (3.2). R = M , C, or T represents three functional groups.
Adult macroalgae, coral, and turf algae are measured as surface area in meter square;
propagules of macroalgae and turf algae are measured as density in number per meter
cubic; time is measured in year.
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Table B.2 Description of original parameters in weakly-coupled network model

Original Description Units Value

α rate macroalgae overgrow coral 1
meter2∗year

0.1
N

β rate macroalgae overgrow turf algae 1
meter2∗year

0.8
N

γ rate coral overgrow turf algae 1
meter2∗year

1
N

ρM rate of macroalgae taking available space 1
meter2∗year ≪ ρT

ρC rate of coral taking available space 1
meter2∗year ≪ ρT

ρT rate of turf algae taking available space 1
meter2∗year

[︁
2
N
, 40
N

]︁
g grazing effect of fish 1

year
-

ϕC volume of water column per coral polyp meter3
[︁
3.95× 10−5, 8.85× 10−3

]︁
ϕM , ϕT volume of water column per algae meter3 -

AC cross-sectional area of coral polyp meter2
[︁
0.79× 10−6, 1.77× 10−4

]︁
AM , AT cross-sectional area of algae meter2 -

κC coral larvae settling rate 1
year

29.66

κM , κT algae propagules settling rate 1
year

-

δM mortality rate of macroalgae if not grazed 1
year

< g

δC mortality rate of coral 1
year

0.44

δT mortality rate of turf algae if not grazed 1
year

< g

N total surface area of one patch meter2 -

L average depth of water column meter ≤ 50

ψC number of coral adults per unit area 1
meter2

[︁
2.82, 6.33× 102

]︁
ψM , ψT number of algae adult per unit area 1

meter2
-

bC birth rate of coral larvae 1
year

[︁
2.31× 102, 5.18× 105

]︁
bM , bT birth rate of algae propagules 1

year
-

µC death rate of coral larvae 1
year

168.09

µM , µT death rate of algae propagules 1
year

-

dRi,j immigration or emigration rate 1
year

-

eR uniform immigration or emigration rate 1
year

-

This table explains the parameters in the dimensional multiple-patches model (3.2).
R = M , C, or T represents three functional groups. dRi,j is the immigration or
emigration rate from patch j to patch i. We assume all patches are the same, so the
parameter values are the same for every patch; thus, the subscript i is neglected,
except for immigration or emigration rate.
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Table B.3 Non-dimensionalization and non-dimensionalized parameters in weakly-
coupled network model and reaction-diffusion model

Non-dimensionalized Non-dimensionalization Value

M̃ i M̃ i =
Mi

N
-

C̃i C̃i =
Ci

N
-

T̃ i T̃ i =
Ti
N

-

S̃i S̃i =
Si

N
-

l̃Ri l̃Ri = ϕRlRi -

t̃ t̃ = δCt -

ϵC ϵC = δC
µC

0.0026

ϵM , ϵT ϵR = δC
µR

-

θC θC = κ̃C
κ̃C+1

0.15

θM , θT θR = κ̃R
κ̃R+1

-

ΘM ΘM = θM ψ̃M b̃M -

ΘC ΘC = θCψ̃C b̃C
[︁
1.03× 10−4, 2.31× 10−1

]︁
ΘT ΘT = θT ψ̃T b̃T -

α̃ α̃ = αN
δC

0.23

β̃ β̃ = βN
δC

1.82

γ̃ γ̃ = γN
δC

2.27

ρ̃M ρ̃M = ρMN
δC

≪ ρ̃T

ρ̃C ρ̃C = ρCN
δC

≪ ρ̃T

ρ̃T ρ̃T = ρTN
δC

[4.55, 90.91]

g̃ g̃ = g
δC

-

δM̃ δM̃ = δM
δC

< g̃

δT̃ δT̃ = δT
δC

< g̃

κ̃C κ̃C = κC
µC

0.18

κ̃M , κ̃T κ̃R = κR
µR

-

ψ̃C ψ̃C = ϕCψC

L
5× 10−4

ψ̃M , ψ̃T ψ̃R = ϕRψR

L
-

b̃C b̃C = bC
µC

[︁
1.37, 3.08× 103

]︁
b̃M , b̃T b̃R = bR

µR
-

d̃Ri,j d̃Ri,j =
dRi,j

µR
0.0001

ẽR ẽR = eR
µR

-

This table explains the variables and parameters in the non-dimensional multiple-
patches model (3.5) and the parameters in the reaction-diffusion equation model
(3.38).
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Table B.4 Description of variables and partially non-dimensionalized parameters
in reaction-diffusion model

Variables Description Units

M̂(x, t) proportion of macroalgae at time t and location x -

Ĉ(x, t) proportion of coral at time t and location x -

T̂ (x, t) proportion of turf algae at time t and location x -

Ŝ(x, t) proportion of available space at time t and location x -

x one-dimensional space meter

t non-dimensionalized time -

dR partially non-dimensionalized diffusion coefficient meter2

This table explains the dependent and independent variables in the reaction-diffusion
equation model (3.38). R =M , C, or T represents three functional groups. R̂(x, t)
is non-dimensional and represents the proportion of surface area occupied by func-
tional group R at time t and location x. Time and diffusion coefficient are non-
dimensionalized by multiplying the same parameter δC .
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