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ABSTRACT

- .Path analysis wsting is a white box testing approach which generates test data r'using
. the proéram structure to test computer programs. The process is divid'e)d ‘into two
operations: the selection of paths where testing is to be condo(:ted and the selection
of test data Wthh execute the chosen paths. This research is concemed with the
automation of a test path selection process which utilizes a path. analy51s testing
strategy to detect predicate errors in ‘computer programs. The approach is based on
a v,ector space analftlcal moflel. A summary of the vector space'analytical model, as
well' as an over’vievtt of SPTEST, a system that implements the model, are given.
The problems of SPTEST are discussed, and ideas in solving those problems are
.proposed. Fhe concepts of subpath extcnsio.n are introduced and a new ‘heuristic
method based on those concepts for the automatic test path generation is provided: ,
A new sys.tem_ callcd-SPTEST II, which implements the heuristic method; has been -
developed and is presented as' an improved sversion of SPTEST. Experimental
results obtained from SP’I'EST IT are dxscussed and analyzed. Some side. issues
related to path selectlon concemmg 1nvanant expressions and testmg programs

'
.which uulrzc arrays are also dlscussed.
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Chapter 1

) Intro'du'ct'i'on

1.1 Program Testing

'Program testing is the process of executing a program using selected test data
with the aim of revealing errors.in the program. Ideally, one would like"to discover
all possible errors in a program and correct them. Unfortunately, wrth the current

state-of-the- art in software engmeenng, ﬁndmg all possible errors in an arb1trary

program is v1rtually 1mp0551ble Consequently, our requlrement for programs must

Shlft fnom the state of perfecuon toa level of being consistent and acceptable -

Testm gis one of the pracucal approaches to reveal errors in. a program and it

is'by far the most popular and w1dely used -approach in today s 1ndustr1es In most

software development prOjCCtS over 50% of’the total cost is s’pent on testlng‘ )

Based on this fact, one WOuld expect that tesung is a fully developed and well

formalrzed process On the contrary, to paraphrase Myers[Mye79] "...‘._,...., less P

seems to be known about software testmg than any other aspect of software

development Testmg as done in’ 1ndustry is mostly ad hoc and human factors ’
such as personal experience and i intuition play a very important role Thus there is
' “a need for more systemanc and formal work on program testing. Wlth the ,

avmlablltty of a systemauc testmg strategy, the effect of human interaction’ on’

testlng will be greatly reduced, theneby speeding up the process of testmg

ThlS thests is concemed w1th the automauon of a test path generator wh1ch '

uuhzes the™ path ana]ys1s testmg stratcgy to detect predlcate errors Our mam

P
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interest is.the vector space model proposed by Zeil[ZeWS§1]. Based on this model,

' a computer program callcd SP’I’EST has been developed by Sahay[WhP85] to
- detect predicate errc\>rs fora partlcular prec.cate in a prégram. Howcvcr SPTEST

“isan 1nteract1ve program and considerable user mteracuon is requ1red when using

the program One of the ma;or obJecnves of this thesis i IS to automate the process

of test path selcctlon A review of the vector space model is grven and some
shortcommgs of S‘“’EST are 1dent1ﬁed The concepts of subparh extension are
presented and a new heunstlc method de51gned for the system automanon are

discussed. A new autornatlc system, ‘SPTEST 11, is developed as-an extension of

SPTEST Tssues mvolvmg mvanam expressions in Zc11 s mode] are examined and

a problem is 1dent1ﬁed when applymg the model to test programs which U[lllZC .

arrays

1.2 Predicate Errors and Missing Pat‘h'Errors‘

. Aceordi'ng,.'to_ Howden's oeﬁnitioh[How76], €rrors in a program can be

classified into two major categories: domain errors and computation errors.

A domain error occurs when incorrect output is generated due to the execution

of the Wrongvpath through a program. A _compu;tation error occur$ when the correct

path through the program is taken, but the output is incorrect because of errors in

3

the computations along that path.

&

Domain errors can occur as a résult of an error in the program predicate, or

due to'an error in sornc a551gnment statements which sabscqucmly affcct a later

predmate these will be ldentlﬁed asa predlcaie error and an ass1gnmenr error ,

Y
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respectively. It is mtcr‘ésnng to note that an assignment error may generate a
p .

domain error or a computation error or both.

" Missing path errors constitute a subclass of domain errors, and they occur
when the required conditional statements do not appear in the given program to be

tested.
1.3 Path Analysis Testing

Testing strategies are usually‘classiﬁcd into two classes: black box testin
~and white box testing . Bﬂiack box testing approaches devise test data witr.out any
-knowledge of the software under test or any aspect of its structure, whereas whité
box testing approaches explicitly use the program structure to develop test data. A
whité box testing strategy that is most co'mmbnly used is known as path analjsis
' resnng Smcc path analyms testing stratcglcs only deal with thc existing program

- structure, no tcsung stratcgy in this category can detect rmssmg path errors.

- In path analysis testing , the process of testing a computer program consists

of two main parts:
1. selection of a path or set of paths along which testing is to be conducted,
and
2. selection of input data to serve as test cases whicﬁ will cause thc_chos::n

paths to be executed.

This research focuses only or the first part of path analysis testing; thcreforc the

issue of test data selection will a0l be dlSCLbSCd In addition, the ava11ab111ty of a

Lo



reliable testing strategy is assumed. A testing strategy is reliable if it generates test
data to indicate errors whenever the pmgram being tested is incorrcc@Sincc a
program could have a potentially infinite number of paths, exhaustively testing all
the paths in a program to reveal the errors is unreasonable and impractical.

‘ v
Furthermore, many test paths may not reveal errors, especially when taken in
combination with othcr?éelected paths. A more reasonable approach is to test only ‘

those paths that will produce errors.

In [ZeWS81]; Zeil has dévelopcd a Vvector space analytical model which
- represents the set of all possible undetected predicate errors for a particular
predicate. Based on this mode;l, the sufficient péth testing strategy was introduced
to select a set of paths to sufficiently test a predicate. A path selecti‘o/n_ criterion was
proposed such that every selected path is capable’ of revealing some testing
information for that predicate. The details of the véctor space model are reviewed

in Chapter 2.

A computer system called SPTEST, which implements Zeil's .nodel, was
developed by Sahay[WhP85] to serve as a tool in the process of tést path selection.
The objective 6f SPTEST is to evaluate a given path and determine its usefulness
in testing a predicate according to the path rejection cﬁterion. With the experiments
‘condu‘ctcd on SPTEST, Sahay was able to give some guidelines for selecting test
paths 1o reveal hidden predicate errors. Discussions ’of SPTEST and those

-idelines are given in Chapter 2.
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1.4 Extending SPTEST

The current version of S:PIEST is only #vﬂlable as atool to évaluate propdsed
paths to test program predicatés.’ The user is responsible for providi;xg thc test :
paths which are to be cva:luatcd. Consequently, since the system is running in an
interactive mode, the user must spend a significant amount of time to manually
conduct the path selection process. There are also some other problems w‘hich
limit the applicability of SP’I’ES_T and are di/SCl:lSSC‘d in Chapter 2. Taking those
problems into consideration, SPTEST ITis developed as an extension of SPTEST
in order to reduce the amount of human interaction so that the tcstiné approach can

be applied in a more effective way.
1.5 Thesis Objective and Organization -

' ;
SPTEST is only available as an aid to evaluate the usefulness of proposed test
paths in testing a predicate. It gives the user little assistance in generating the test

paths. Therefore, a considerable amount of human interaction is required to

generate a set of sufficient test paths to test a computer program. The objective of

-this thesis is focused on the development of a new computer progrém called
. !/
SPTEST 11, which is an extension of SPTEST, to automatically and systematically

conduct the path selection process in order to reduce the amount of human

=

interaction.

# The rest of the thesis is organized in five chapters. Chapter 2 summarizes

Ky N ]
Zeil's model, and the contribution made by Sahay[WhP85] in putting the sufficient
v : :

path testing strategy int® practice with the system SPTEST. The problems of

SPTEST are discussed and ideas to solve those problcms.are proposed. An

Lo .
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overview of the extended system SPTEST II 1S ngen in Chapter 3 The concepts
of subpath extcnsmn and the hcunsuc method for test path geucration is
| mu'oduccd. ’_I’h¢ shqrtcommgs of the heuristic method are discussed. Crapter 4
presents the re'.sul‘ts of experiments conduc.tcd o.n the extended sy stem, to"géther v
with an analysis of the pcrformance of SPTEST Il Side i issues related to pruhA

selectlon are discussed in Chaptcr 5 Thc dlscussron focuscs on mvarmm
‘expressmns m the error space as well as testing programs which utilize arrays.

Chapter 6 glvcs the conclusmn of this research project and makes some

: suggesuons for future research.
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. @hapter 2

o~ Sufﬁcnent Path Testmg and the System
A SPTEST .

2. 1 Background

L»\'

| Thcrc ark: two major classes of vaiable in a‘program‘:‘ program variables and
Y } - _input variables . Input variables ar= variables Wnich appear in READ statements.
Program .van'azbles are variables whose values are obtained from assignmest
statements vdirectly. The major components of most proérams are computations
and predicates , which correspond to assignment statements Aand' iogical constrycts,
| respectively.‘ Computations assign new values to prograﬁn variables, whereas
prcdxcates determine the contml flow of the execution. A predicate is called a loop

predicate when it controls thc loop iterations in the program. | .

A computer program can be rcpresented by a dlrected graph (dzgraph )
con51stmg of a set of nodes and arcs, where an arc is a directed line between two
nodcs. For the sakc.of simiplicity, we will restrict the pmng
entry and ‘a single exit. Moreover, we will remove most of the c'omputationalﬁ

details from the program in order to place emphasis on the decision points of a

program which determine the contrel flow.

™
The 'digraph rcprcsontation; of .a program will confain a nodc for each
occurrence of a predicate, and an arc for each possible flow of control between .
these nodes. In addition, the dlgraph should contain exactly one entry node En

~ which has no mcommg arcs, and should also contain _exactly one exit node Ex

-

o



which has no arcs leaving it, Moreover, for every node in the digraph, there -

should exist a sequence of arcs such that this sequence can be traversed in t
diréction of the arcs from the entry node to that specified node. This sequence ¢f
arcs is called a directed path . Similarly, for every node-in the digraph, ther
should also exist a directed path from that node to the exit node of the digraph.

A path in a computer program is defined to be aldirécncd path from the entry
node to the exit node of the digraph. A subpath is a directed path which begins at
an arbitrary node P; and ends at an arbitrary prcdicaté Pj in the digraph. such that
P; # Pj# Ex. A subpath S which ends“at predicatc Pj can reach predicate P; if

there exists a directed path between their corresponding nodes in the di graph séch

that Pj # Pj. Thus, subpath S is called an extendible subpa_th ! \;fith_rcspcct to

_predicates Pj and P;. For subpaths which begin at the entry of the proéram,' the

specification of the entry node is omitted from the notation in the contéx‘? of this

thesis. The following notations are used throughout this thesis:

Notation: A denotes logical or ; | denotes concatenation ; * denotes

repetitions; and == denotes equivalent to. |

Notation: Ep | (T1AF)) | (TIAF)* | (TyAF,) | Ex denotes a path, where n
| is the last predicate which leads to the exit of the program and

A =2...n-1,

~ Notation: (T;AF;)) | (TjAF;)* 1 7¢ denotes a subpath, wherne i indicates the
startihg node of 'the sﬁbpath, k indicates the predicate number -
to which the shﬁpath leads, and j represent the nodes traversed
in the directed path such that j = i+1 ... k-1.



 Example 1: Program 1.

For easy reference, the predicates are numl;ered in the order of their appearance
in the text of the program. Paths that consist of different numbers of loop iterations

are considered as different paths. The maximum number of paths that exist in a

program containing only n IF-THEN-ELSE conétructs will be 27- When a

WHILE-DO construct app’ea:sbin a program, the nppér bound on the number of
paths cannot be obtdined as there are potentially an infinite numbers of paths
available. A ’path is feasiblé if there exists a set of datz} which causes execution
along that path. An infeasible path occurs when no ini)ut points exist for which

that path can be executed. For example, consider the following program:

READ X, Y

R=0

A=0"

P1 WHILE (R .NE. 2) DO

A=A+(X-Y).
R=R+1

END WHILE

PRINT X, Y, A

STOP

END 0

of

In this example, E T T F|Ey is a path'and T;?; is a subpath. The paths EﬁTlFlEx
and E;T T FEy are considered as two different paths. The path E T F1Ey is an
infeasible path as there exists no input data point to execute this path because of the

contradiction in predicate P1.

To determine the feasibility of a subpath/path is the same as finding solutions
to the set of inequalities that correspond to the predicates encountered albng that
subpath. Davis[Dav73} has shown that the problem of determining the existence of

a solution to a system of inequalities is undecidable; thus, the path feasibility



problem is undecidable. Howcvcr if thc system of mequahues are shown to be
f

linear, the techniques of linear programmmg can be n1sed to obtain a solution to the

system of inequalities. -

The expréssion in a predicate éften makes use of variables whose values have
been dctefmincd by previous computations. .It is therefore necessary to know the
’rcsults of the preccdmg computatlons before a predicate can bc evaluated. In
general prcdlcates can be expressed in terms of both program vanables and input
variables. However, in generating input data to satisfy the path condition we must
work w1th constraints in terms of input variables. If we replace each program
var%able appean'nguin the prcdicate‘ by its symbolic value calculated in terms of
input variables along that path, we get an cqulvalent constraint which is called the

‘ predtcate mterpretanon A single prcdxcatc can appear on many different paths.

Smce each of theSe paths will in general consist of a different sequence of

&

a551gnment statements, a single predicate can have many different i mterprctanons

Cong{ar the followmg program segment: T .
READ X, Y
A=0Q0 *~ x
B=0 '
C=X-¥ -
: D=X-2Y -
Pl IF (C.GT.0) THEN
= \ C=C-D -
' A=A+1
ELSE ‘
: C=C+D -
B=B+1
END IF

P2 IF(D-C.EQ.B)THEN

10



If the decision is true on predicate P1, then the predicate P2 is interpreted as

follows:

) (D-C'.EQ. B) == ((X-2Y) -(X-Y)-(X-2Y)) .EQ. 0)

(X-2Y)-(X-Y-X+2Y) EQ. 0
== X-2Y-Y.EQ.0
== X-3Y EQ. 0

So the predicate intcrpfetatibn for(D-C EQ B)is (X -3Y .ﬁEQ. 0). On the other
hand, if the decision is"-'v_.false on p,riédic‘ate P1, the'p_redicaté interpretation for P2
: Will become the follows: -
(D-C EQ.B) = (X-2Y)-(X+Y)+(X-2Y)) .EQ. 1)
= (X-2Y)-(X+Y+X-2Y).EQ. 1
= X-2Y-2X+Y .EQ.1 ‘
= X-YEQ1
For the above program ségment, the number of predicate imerpretations" for
predicate P2 is t;:vo. .

2.2 * The Vector Space Model

~

‘I(n [Zewsl], Zeil introduced the vector space model to represent a computer
program by a finite-dimensional vector space. The dimension of the vector space is
defined to be m+n+1, thrc m is the number of input ‘variables and n is the
number of the i)rogram variables used ini'thc program. Expressions in a program
.can be expressed by vectors from the defined vector space. Each vector comi)onent

corresponds to a unique variable used in the program. The value of a component

11



represents the variable coefficient in an expression. The extra dimension in the

error space is required to accommodate computations which involve constants.

Suppose a program uses two input variables, A and B, and two program
variables, C and'D. An expression, P1, "D =C - A + 1" can be rewritten to the

form"D-C+A-1=0".1tis represented by a vector with five cordronents; |

A B C D ' Constant

( 1 0 -1 1 -1 )
By the same token, another expression, P2,."D = C - B" can also be
represented by the vector (0 1 -1 1 0). The difference of P' anc P2 is also an

expression, namely P1-P2="-A + B + 1 =0", which can also be represented

by a vector (-1 1 00 1). Thus, all expressions can be expressed in terms of vectors

»

with a defined number of components.. .

A vector space provides a powerful way of dcscriﬁing and manipulating an
mﬁmtely large set of functions. Two significant properues of vector spaces should
be rcv1ewed here. Flrstly, any finite-dimensional vector space can be described by
spccxfymg a finite set of basis vectors, such that ay membc;fof the vector space
can be formed as a linear combination of thcsc;, basis vectors. Secondly, a vector

- space is closed under the operations of addition and scalar multiplication. It is

shown in alater stage that these two propcmcs are useful to dcscnbc the

undetected errors in predmaxes

Suppose that some correct predlcatc T has been replaced by an erroneous form

T The expression " T - T' " will thcn represent the error term in the incorrect



predicate. Since the vector space containing T and T" is closed under subtraction,
the error term " T - T' " must also be in the same vector space. An error could

easily escape detection if the expression " T - T' " is equal to zero. If a reliable

method of testing a given predicate is employed, then a predicate error is detécta_ble :

‘whenever theinterpretation of the incorrect predicate is not a multiple of the correct

(éredicate's interpretation. |

Albng with this model, Zeil also identified three types of predicate error which

are undetectable. He called them Assignment Blimfness » Equality Blindness yand
Self-Blindness . Furthermore, the property of closure ih vector spaces reminds us
ihat af{y\li'ncar cdmbination of these blindness errors, for a particular predicate, is
also undetectable. An assignment blindness occurswhen an assignment statement
"X =f(y) " is executed, where f(v) is the function on a set of variables v, fhe
expression X - f (v) can be added to a predicate without detection because

~

- X -f(v) is equal to zero.

B

" Example of Assignment Blindness: .

_ Incorrect Segment Correct Seglnent‘ ~,

A=1 A=1

IF(B+A .GT.1)THEN IF (B .GT.0) THEN

.

An equality blindness occurs in a similar situation with an equality restriction

on a selected path.

13



Example of Equakry Blindness:

Incorrect Segment I Correct Segment
IF (A EQ.2) THEN  IF (A EQ.2) THEN
IF (A +B .GT. 3) THEN IF (B .GT. 1) THEN

'i'his assignment blindness or equality blindness may be removed if a second
path is selected such that variablo A assumes a different value. Self-blindness
occurs in rhc predicate itself in that the incorrect predicate T" may be-a multiple of
the correct predicate T, and no mechanism can distin guish the difference because it
does not produce a domain error. vMore concern has been placed on the errors

formed by the combinations of the self-blindness and other blindness errors other

than the self-blindness itself

Example of Self Blindness:

Incornoot Segment Corrcct Segment |

N D ’ : ‘
A=B A=B
IF(A+B-2.GT.0) THEN IF(CA-1.GT.0) THEN

Although the set of all blindness errors for a program can be infinitely large, it
can be represented by a vector space of bﬁnitc dimension. As we have mentioned
above, the dimension of that ‘ﬁnitc vector space is m+n+1, whcrc m is the number |
of irrput variables and n is the numbér of program variables. Since this vector
space wili include vectors corresponding to all possible blindness errors, we will
call it the error space . For a partrcular predicate p in thc program, a subpath s

lcadmg to p is selected and has an error space E; . Thc error spacc Es contains the



<«

blindness errors for p after s is uscd to test the prcdlcatc The dlmensmn of Egis
always (o+c+1) where o is the number of program variables used along p and e is
thc number of equality restrictions encountered along p. More precisely, the error

space E; has a vector for each program variable used along p, a vector for each

equality restriction and also a vector for the self-blindness. The construction of the

error space Es is based on.the computations of the subpath p sdch that the
symbolic valucs of program variables; cquahty restrictions and self-blindness are

expressed by vcctors of (m+n+1) componcnts as shown earlier.

Suppose that error space ESi ahd ES; are the respective error spaces after
subpath S; and S; have been selected to test predicate P, in a program. A vector V;
in Eéi but not in ES; indicétes that the blindness error., corresponding to Vj, is
detectable by subpath Sj. Afteruesting the predicate with both subpaths, the
remaiﬁing blindness errors are those.which correspond to existing vectors in both
ES; and ES;j. Thus, the blindness errors for P, after using subpaths S and §;
correspond to the imcrscctiph of ES; and ES;. |

-

Zeil[ZeW81] also proposcd a path rejecnon crzterzon such that a path is

sclcctcd if it can reduce thc dimension of the error space; otherwise the path is

rejected.. In other words, a path is only selected if it has the capability of

eliminating some blindness errors. Suppose we are testing a predicate P in a

program such that the initial error space ESjpjt for P has a dimension of (m+n+1).

An initial subpath p; is used to produce an error space ES; ofﬁdimcnéion k, such -

that k < (\m+_n+1)..Since the intersection of ES; and ESin.it has a smaller

dimension than ES;p;, which is of dimension (m+n+1); therefore, p; is accepted. If

15
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a subsequent subpath pl+1 is pmposed and it produces an error space ES;,, one

of the followmg four cases w1ll occur as shown in Figure 1.

It is 1mpossxble that the mtersecuon betweeh ES; and ESis1is a null set
because they always have a common self-blindness vector in their respecuve error
spaces. Knowing that the initial dimension of the error space is (m+n+1) and each

. selected path will reduce the dimension of the error space at least by one

dlmenstbn it can be deduced that the maximum number of subpaths to form a.

sufficient set forapredacate will be men+l. . &}

A set of subpaths is con51dered to be a sujf icient set [ZeW81] for a predlcate if

the faﬂure to detect some errors in that construct, usm% a rehable testing strategy to

select test data for those paths, implies that this error wo(zld have gone undeteeted o '

for any subpath leadmg to that predlcate Suﬂiczent path lesting is a path selection

strategy to obtain a sufficient set of paths which could test the program predicates C

~ for predicate errors.

In sufﬁment path test1ng, an 1mt1al érror spacc ESmu of d1m¢nsxon (m+n+1) is
set up for a pred1cate under test. A current error space EScm, 1mt1ally set to ESjnit, .
' "1s used to descnbe the remaining blindness et{rors after muluple subpaths are
selected to test a predlcate A corresponding error spacc ES;, thh respect to the -

predxcate under test, is constructed for each generated subpath. The error

spaceES¢, of the same predicate i is updated as new subpaths are selected To
determme whether or not a subpathis selected the lntersectwn ESpew of ESl and
EScurr is computed If the computed mtersectmn ESpew has a dimension smaller

than the current error space EScu,—r, the subpath is selected and ES{urr will be

A3



Case I :

\

Intersection of Esi and ESH1

equal 0 ESi

Then subpampi+1i3 rejected

Error Space Intersection

Case 2 :

| IntersectwnofESi tdeSi+1
ES
. iel n'o?‘eqx@p ES; nor ESi+1

. - Then subpath pi+1 i3 gelected
Error e Intersection '
Case 3 :
Intersection of ESi and ESi+1
equal 0 IZSi+ 1

“_rror Space Intersection

Then subpath it

i3 selected

Cased: L

. ' ESi 1:.5equaltoESi+.1
Then subpath P, 1 is rejected

Error Space Intersection °

Figure 1: Path Rejection / Accepganéé Criterion .

is

is

is
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replaced by ESnew. In other words, the subpath is selected if ESpey is a proper
subspace of EScyer. By successively replacing the error spz;ce. EScurr as additional
subpaths are selected, the dimgnsion of ES¢yr'will be reduced monotonically.
- This process will terminate when none of the available subpaths can reduce ESqyrr
- 10 a lower dimension and we will call ES¢yr the irreducible error spacev for that

predicate.

Ideally one might assume the dimension of the irreducible error space for a
particular predicate to be zero, as we would like to eliminate all the blindness errors
in the program. However, we have mentioned earlier that $clf-b1indness cannot be
removed no matter how many subpaths are chosen to test the predicate. Thus hc

dlmensmn of the irreducible error space is at least one.

The process of subpath selection to obfajn an irreducible error space can be
looked upon as a search for the appropriate subpaths to form the sufficient set.
Search problems are often expressed by trees and a search féils .whcn an
inappropriate branch is traversed in the tree. This iniplics that if an inappropriate
selection ic madé, a global optimum cannot be reached. However, this is not true
in subpath selection, as the characteristics of the vector space model give us the
property that an irreducible error spz{cc can always be obtained if enough subpaths
are examined. Suppose an initial subpath Sy is selected and a current error sp’ace

EScurr is produced."Any subpath S; which produces an error space ES; can be

selected into the seificient set if the intersection of EScyrr and ES; is a proper

¢

subspace of ESC.;". A subpath S; which pr.oducés an error space ES; is rejected |

when the intersection of ES¢yr and ESj is not a proper subspace-of EScyrr. As

more subpaths are selected, a current error space ES'cyr is obtained. The

f



intersection of ES'cyr and ESj can never be a proper subsp.. ¢ of ES'cyr because
the intersection of ES¢r and ES; is not a proper subspace of ES¢yr, and ES'cyry is

a proper subspace of ES¢yy. It is clear that the order of subpath selection does not

affect the dimension of the irreducible error space and an irreducible error space.

can always be obtained.

v

2.3 Basic Asshmptions

~ In this research, we are only interested in a class of programs called linearly
domained programs. Programs in this class must satisfy the following

assumpi.ons:

I. Missing path errors do not occur;

2. The input space is continuous;

3. Predicates are simple, not combined with AND, OR, or other logical
operators; | .

4. Adjacent domains compute different functions;

5. Predicate interpretations are linear in the input variables for both the given

predicate as well as the correct pr=.licate.
4

The ﬁrst assumption is inherent to the naturé of path analysis tesfing because no
testing su'atggy, based only on the program strﬁcture, can guarantee the detection
- of missing path errors. The second aSsﬁmde.rl of continuity permits the use of
standard mathematical tools. The third asstmpfion simplifies the functional forrns
of the predicz;tes, but need not actually restrict the set of‘ accepzble programs since

any program can be easily transformed to eliminate compound predicates.

4
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Assumption 4 ensures that if a domain cr)ror occurs, there must exist some point in
at least one of the affeétéd.domains which produces incorrect output. The final
assumption assures that operations are closed in an appropriate vectot space. The
assumption of linearity also simplifies the problem of path feasibility. If ail thé
predicate constraints along a path can be shown to be linear in the input variables,

then the feasibility problem will become decidable since the technique of linear

programming can be employed to obtain a soMtion of the linear constraints.

2.4 The Sufficient Path Testing System SPTEST

SPTEST is a-computer system, implemented by Sahay[WhP85], which
obtains sufficient test paths.. for selected predicates. The purpose of SPTEST is to
evaluate a proposed path for tc;ting a given predicate by obtaining the r]cducn'on in
the predicate error space due to that path. SPTEST. does not depend upon any
testing strategy, nor does it assume th_fat a particular testing.strategy will be used to
test progr:-1m predicates. It simply selects a set of test paths that is appropriate for
testing predicates in a computer program. Once a set of paths is selected, any
reliable testing strategy can be used to perform the actual testing along the selected

paths. ]

L

An invariant éxpression is an algebraic expression which can be added to a
program statement without being detected along all possiblé paths through that
statement. An unused variable occurs when a program variable is initialized, but is
noti used in any of the path$. In [ZeWS81], Zeil has pointed out that the set of
undetectable predicate errors can be classified into three tyI;cs of blindness errors:
assignment blindness, equality blindness, and self—blir{dncss. From the

experimental results on SPTEST, Sahay has observed that it is not unusual for the



irreduciblc error space to have a dimension‘w ell beyond one. His experiments also
confirmed that the irreducible errof space contains those blindness errors
mentioned by Zeil, In addiﬁunﬂ, he has characterized that an irreducible error space
contains vectors corresponding to unused variables, equality restrictions, inwgriant
expressions and self-blindness. It is expected that vectors corresponding to unused
variables and equality restrictions would appear in the error space as they are
related to assignmcni blindness and equality blindness. In [ZeW81], Zeil stated

that "..... one consequence of utilizing this testing criterion is that eventually all

invariant linear relations for a program will be derived at each prcdicate." Thus, the

presence of invariant expressions in the error space should not surprise us at all.

Invariant expressions will be discussed furthex in Chapter 5.

Based on the results obtained from his experiments, Sahay[WhP85] has

provided us with considerable insight into the process of path selection. He has .

proposed the following heuristics to assist us in selecting paths:

1. In testing any predicate, choose the first path such that it has the least equality

restrictions.

2. By utilizing common subpaths for testing subsequent predicates and by first
. ) - . \\
evaluating predicates which occur early in the program, the total number of

paths required for testing all the predicates in a program can be substanually
reduced.

3. If possible, sclcct additional paths which employ unuscd program vanablcs

after selecting the first path.



4. For any lo~ in the program, test only those paths which execute that loop
with no more than m+n iterations, where m is the number of input variables

and)n is the number of program variables.
2.5 Problems with SPTEST and Proposed Solui‘iﬁné

SPTEST runs in an interactive mode with user-specified decisions on all
predicates encountered along the subpath. The usefulness of SPTEST is limited by
the following major problems: ‘ /\

'

1. Time-consuming Process :

r
During the selection of a test path, the user has to enter the predicate

decisionf, one at a time, at the terminal. Thus, the process is very tedious
and time-consuming . It has been demonstrated in reference [WCLS87] that
the time spent on manually selecting paths is much more significant than the
time spent on the process execution.

2. Reducibility Detettion.;

e " - '
SPTES#‘ only informs the users that a sufficient set of subpaths has been

obtained when the final error space is of dimen_sioh one. It makes no attempt
to provide a termination indicator when the irreducible error space has been
obtained, and has a dimension greater than one.

-
!
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3. Feasibility Detection :

The system is incapable of detecting infeasible paths. Since it makes no
decisions in choosing subpaths, users have to be very férniliar with the

program being tested in order to specify feasible subpaths.

4. Extensibility of Subpaths :

14

3

SPTEST provides us with sets of sufficient subpaths for each predicate in

the program. To test the entire program, we have to use some scheme to

collect these fragments and extend them to form test paths for all predicates
in the program. There exists a close relationship between feasible paths and
subpath extensions. It is clear that to extend a subpath to the next predicate,

the resulting subpath must be feasible in order to be useful.

As a result, the system requires a lot of human intervention and insight to be

effectivetherefore, it serves only as an aid in selecting subpaths.

4 In an attempt to provide solutions to the above problems, the extended system

SPTEST II will incorporate those heuristics proposed ny Sahay, and automate the

whole path selection process. The following approaches serve as guidelines for

this research project as well as solutions to the problems menticned above:

1.

To automate the process, the system must be capable of idcntifying the
terminating condjtion..Thc terminating condition occurs when the error
space obtained is irreducible for each predicate in the program. Sahay has
csiablishcd the categorization of the vector components in an irreducible

error space as invariant expressions, unused variables, equality restrictions
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and’self-blindness. In order to determine the reducibiiity of an error space,
we must be able to recognize each vector in the error space according to
- these four categories. Vectors cofresponding to uhl;SCd variablcé‘ self-
blindness and equality restrictions can be identified by kecpmg track of the
computation process at the program statement level and all the predicates
encountered along the subpaths. Since our knowledgc' concéming invaﬁ;i‘r\it
expressions is limited, heuristics are developed to determine if an error
space is irreducible. ' | i

i

- In selecting subpaths, we have to make sure that the selected subpaths are
feasible. Since the predicates in the program are linear, we can group all the
prcdvicatcs‘ which are encountered along the. subpath ‘z‘md feed this
information in;o a linear programming problem solver. I'f the solver returns
a solution to the corresponding linear incquality S)-fstcm, then the selected
subpath is feasible; othcrwiée, the solver ‘will indicate the sﬁbpath is

infeasible and should not be used.

. To form test paths to test all the prcciicates in the program, we can extend
the subpaths to the next predicate. Eventually, we will reach the last
predicate in the program, thus forming test paths for an entire program.
However, this method does not work when extendible subpaths do not exist
in the program. When a set of sufficient extendible subpaths cannot be
obtamcd from the prevxous sufﬁc1ent set, additional test paths are normally

required to achlcve the same error space reduction.

\



Chapter 3 g
The Automatic Test Path Generator
3.1 System Components of SPTEST II

SPTEST II is an automatic test path generator ‘which generates test paths
according to the sufficient path criterion for computer programs. An overall

structure of the system SPTEST II is presented in Figure 2.

The input for this system is a Jinearly domained ANSI FORTRAN program.
- Since the objective of the system is to generate paths to detect predicate errors only,
the input program is assumed to be syntax error free, and the system will not
perform any syntax error checking on the inpl;t. SPTEST II is written in

FORTRAN 77 and presently runs on UNIX.

SPTEST II consists of five phases:

1. Parse, Compile and Tokens Scanning | \
Path Generation

Symbolic Execution

Feasibility Test and Sufficient Path Testing -

S

Subpath Collection and Completion

The pha$e§ for program parse and compilation, symbolic execution and sull;ﬁcient
| path testing are the same as those in SI_”I'EST. Minor modifications are made in

order to change them into independent procedures to interact with other phases in

SPTEST IL. .
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3.1.1 Program Parse, Compile and Token Scanning ’

The ﬁrst phase of SPTEST I is a parse of the input program. It construc:s the

’ Syrqbol table which differentiates input variables and program variables. Predicate
lists and other control information is secured from this parse. Arithmetic
expressions for either assignment statements or predicate expressions are stored as
binary trees. The compilation program determines the linearity of all assignments
and predicate expressions. The process of token scanning constructs a simple
prcdic‘atc control flow table which is used to determine the reachability of subpaths,
and a list of decision optidns within each loop predicate. The deci’s’ior? option list is

later used in generating subpaths which involve iterations.
3.1.2 Path Generation

Path generation is the second phase of SPTEST II. For each predicate in the
input, it generates test subpaths to test the predicate until the predicate is sufficiently
tested or when the system limits are exceeded. The path generatior process,operates

under the concepts of subpath extension, information provided by the control flow

table, and the loop decision options list. Further discussion on path gengration will

be presented in subsequent sections.

3.1.3 Symbolic Execution >

The symbolic execution of a subpath is 'carried out by evaluating the sequence
of computations and predi‘cateé‘ epcounteréd along the subpath. Predicate
interpretations for all the predicates that are encountered along the subpath are

obtained. These interpretations are stored in a file which serves as input for thetnext

o

~
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phase. To demonstrate the process of symbolic execution, let us consider the

following example with a subpath T T,T3T4F4%3:

Example 2: Program 2.

C
C A program to find the remainder of X divided byY
C
1 -~ READX,Y
2 R=0
3 A=0 ‘
4 IF (X .GE. 0) THEN DO
5 IF (Y .GT. 0 ) THEN DO
6 R=X
7 " WHILE (R .GE.Y ) DO
8 | A=Y | )
9 . . WHILE (R .GE. A) DO
10 R=R-A
11 A=A+A
12 'END WHILE
13 END WHILE -
b8 END IF o ‘
15 END IF | — | |
16 PRINTR,X,Y = o | /
17 STOP '
18 ‘

END o

N



The following substitutions will be made during the process of symbolic execution:

Line ~  Symbolic Execution 4\\
: TN
2 R=0
3 A=0
4 (X .GE.0)
5 (Y .GT.0)
6 R =.7X
7 (X.GE.Y)
8 LA=Y
9 (XGEY) .
10 | R=X-Y
11 A=Y+Y
9 (X-Y.LT.2*Y)
7 ?

At this point, variables R and A have symbolic values of "X-Y" and "2%Y",

'rcspcctivcly. The predicate intcrprctations on the subpath are:

(X GE.0)

| (Y.GT.0)
2 (X.GE.Y)
‘ (X.GE.Y)

(X-Y LT.2*Y).

The predicate interpretations will serve as the linear consu-aints/spcciﬁed by the

_subpath T\ToT3T4Fg?3. , | <
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3.1.4  Feasibility Test and Sufficient Path Testing

The feasibility of a subpath is determined in this phase, and'thc sﬁfﬁcicnt path

testing is conducted after the subpath is found to be feasible. The overall objective

. . . ¥
of this phase is to determine the usefulness of a' test subpath according to the path

' acceptance/rejection criterion. A subpath is selected to test a predicate if it is feasible

" and reduces the error space of that predicate to a smaller dimension. The constraint .

set of a'subpath can be obtained by performing a predicate interpretation on the

predicates along the subpath. By utilizing ;Tinear programming problem solver

(LP solver) to obtain a solution to the ca“umnt set, we can determine the f6d81blllty

of the subpath If a subpath is found to be infeasible, it will be rejected, and
sufficient path testing will not be performed on that subpath. Among the restrictions
specified by the package, two of them affect the performance of SPTEST II:

1. the inequality constraints must beiﬁ the form of either .LE. or ,.EQ.:'and

2. all the unknowns must have non-negative values.

We often encounter program predicates with .NE. constraints. In. addition,

there is no guarantee that input to a program will be non-negative. The first

mentioned restriction affects the system in terms of efficiency because any non-

equahry constramt must be converted into two strong mcquahtlcs Thc unspccxﬁed

interpretations of non—equahty constraints force us to examine all the combinations .-

-~ :
of replacement by strong inequa{ides before we can determine whether a subpath is

infeasible. The worst case to conclude that a subpath is infeasible is O(2"), where n
vl . ' ' '
is the number of non-equality constraints in the constraint set.

w
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Suppose we have a constraint set as follows:

A NE. B
A+1.GT.B
B LE.S5

A-B .NE.C -
C GT.2

To determine if the constraint set is infeasible, we will have to look at all four

possible interpretations that the non-equality constraints in the set can assume.

1. A .GT.B ' 2. ALT.B

A+1.GT.B . A+1GT.B

. BLE5 = " B.LE.5
A-B.GT.C | A-BGT.C
CGT.2 : C .GT.2

3. AGTB 4. ALT.B ,

A+1.GT.B A+1.GT.B
B.LE.5 - B .LE. 5
A-B.LT.C g A-BLT.C

C GT.2 C.GT.2

In addition, the strong inequalities have to be modified to become weak
inequalities .LE., and these extra computations turn ou to be a significant factor

which affects me’px:ocessing.tiqle.

The second restriction mentioned w{ilLaffect,the process of path selection. The
reliability of the computation of the LP scil\.;er is not applicable when unknowns in

the constraint set are forced to }pvehyganve values by the generated subpath.

Therefore, the constraint sets a;preﬁccked before it is passed to the LP solver. Any'
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occurrence of unknowns having negative values in a constraint set will be

considered as an infeasible set. Thus, it reduces the number of potential test paths

in the path generation process.

RN ) ‘ |
Sufficient path testing is performed on ‘fcasiblc subpaths only. As mentioned
earlier, since the self-blindness fof a predicaté can never be removed from its error
space, we decided to exclude the self—blindr.less”vector from the error sp‘acc
calculation in order to reduce the processing time. Subpaths which do not reduce
the current error spé'ce will be stored in the system for possible re'fercncé in a‘late.r

i

stage.
3.1.5 Subpath Collection and Completion

This is the last phasc of the system SPTEST II. After we havc obtained a set
of sufficient test subpaths for the last prcdlcatc in the input program, we have to
collect all the subpaths which are rcl(_tvant for testing the predicates in the program,
and complete them to form test paths. The set of test paths is stored in a file for the

&

use of test data generation.

3.2 Concepts of Subpath Extension

One of the major problems associated with SPTEST is the extensibility of -

_ subpaths to form test paths. SPTEST does not have to deal with this problem
directly since it is an mteractlve system which accepts subpaths glvcn by the user,

and conducts sufficient path testing. The attempt to generate the rmmmum sufficient

set of paths to test a program using SPTEST bnngs us thc 1dca of "re- -using the

subpaths”. Thc idea described here can only apply to structured programs , and as



we havg mentioned in Section 2.1, the predicates are numbered in the order of their

appearance in \}7? text of the program.

The conc(c t of subpath extension is based on the fact that information is "re-
uscai)le"' in testing predicates because of the relationship held by consecutive
predicates in the program The prcdommant idea is to extend subpaths that end at
predlcate i, Wthh are sufﬁc1ent to test predlcate iin the input program, to test
predicate i+1. With this approach, we‘arc able to formulate a heuristic mcthod for

test path generation. Prior to the layout of wne heuristic method, several definitions

shall be introduced.

L

~3.2.1  Definitions and Basic Concepts

An illegal flow error occurs when an extended subpath does not reach the
desired predicate. Instead, it reaches some other prpdicafc and creates no conflict in
terms of symbolic execution. There are two types of illegﬁ] flow errors, illegal flow
type I error and zl‘llegal flow type 2 error . An illegabflow type 1 error occurs when
the subpath rcaé( es an untested prcdlcatc while an illegal flow type 2 error ocours

when the subpath reaches a previously tested prcdlcatc

. A candidate list contains a set of subpaths which» are generated frd;n the
s'ﬁbpath extension me.'thod for testing the predica;e in a program. There are three
kinds of éahdidatc.lists: the prime caﬁdidate list, thé secondary candidate Iist , and
the missing path candidate list . Whenever a subpath is generated, it has to’ go
through thc’ tests on reachability and feasibﬂity, and rﬁus; satisfy the path acceptance

criterion ir: order to determine its usefulness. The three candidate lists reflect the

usefulness of the subpaths constructed by the method. The prime candidate list
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contains subpaths which reduce the dimension of the error space for the current

predicate being tested. When a subpath produces an illegal flow type 1 error and is
part of the sufficient test path set for some previous predicate, it is stored in the

secondary candidate list. Subpaths in the secondary candidate list will not be needed

to test the current predicate but are required to test some previous predicate in the

program; they may also be needed to test some subsequent predicates. In order to
AN )
redhce the number of test paths in the final test set, each subpath in these two

categories has a sratus word to indicate its applicability.

Prime candidate list entries having a status word of 1 are subpaths which are
needed to test the current pred’ivcate; vsubpaths which are carried over from the
‘previous tested predicafe will have a status word of 2. .A status word of 1 in the
secondary candidate lis.t“ indicates a subpath has coMttcd an illegal flow error
when testing prédicate 1, but is needed to test some othcr predicate(s) prior to
predi‘cate' i. Eventually, it will be needed in the final test path set. A subpath in this
category having a status word of 2 indicates it produces an illegal floW error when

| testing predicate i, but one of its extended versions is already kep. . the prime
candidate list. If these subpaths do not contribi. (o the error space reduction at a

later stage, they can be discarded. The reason for retaining them is to provide entry

points to some future predicates in case these subpaths provide the only feasible

way to get to lsubsequent predicates. infeasible paths will not be stored in any of the

candidate lists.

A missing path candidate list contains subpaths which do not reduce the error
space at the time they were generated. They will serve as the final alternatives to test

some future predicates when needed. Once a subpath is entered into the missing
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path candidate list, it will be extended to the current testing predicate after the
current predicate has been sufficiently tested. Subpaths in the missing path
candidate list may generate infeasible paths after extension because we only check
their feasibilities when it's required. When an extended subpath in the missing path
candidate list produces an illegal 'fl'ow error, that subpath will be deleted from the

list.

A loop path list is a list where we keep all subpaths which have ended at a
loop predicate, and these subpaths will be used for loop iteration extensions. A
work space is a working area which we use to transfer subpaths to‘and from the
collection. The final colle'ction provides storage for the subpaths when they reach
the exit of the program instead of any other predicates during the extension. They

will constitute the test paths for the program.

A control ﬂow'table bco'ntains entries which indicate the destinations of both

true and false options for each predicate. With this table, a)"simple table-look-up

method can be used to distinguish paths which prodﬁce illegal flow erTors.
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STOP
END

For example, the program structure above will have a control flow table as follows:

-~ Control Flow Table:

Predicate True ="  False
1 2 2
3 0
3 2 2

Note : a zero entry in the table represents the exit of the program.

A single loop in ai test program is sufficient to create a potentially infinite ‘

number of paths for us to cxammc If we were allowed to test all the possible paths
in a program, the process would never end as there ate an infinite number of paths
for us to examine. Thereforé, loop predicates are entitled to special attention in this

- heuristic method. A loop 5attern is defined to be a directed path which starts at

R1o)



node i where node i corresponds to a loop predicate and ends at node j where node j
has an arc leading to node i. Every loop predicate in the 'i)rogram has its own set of

loop patterns which is formed by making all possible combinations of decisions for

the embedded predicates. In other wbrds,.‘the set of loop patterns contains all the |

possible directed paths in a single iteration from node i to node j. Consider the

following program segment:

P3 WHILE ( ....... ) DO

P4 IF ( ... ) THEN
~ ELSE
P5 IF (.. ) THEN
ELSE
END IF
END IF
END WHILE

In this program, F4Ts is one of the loop patterns in the loop for predicate P3.

There can be many different loop patterns within a loop but not all of them are
feasible. In the hcuﬁst;c method, a subpath to test a loop predicate is extended by
one iteration at a time. This will give us the advantage of fonfﬁng a relatively small
set of lodp patterns before the subpath extehsion begins. To perform the extension
- with one extra iteration, the original subpath is used as the source and appended by
different loop patterns to form a set of new) extended subpaths. This idea is easily

illustrated by the following example:
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Example 3 : Program 3.

= WHILE (........) DO T3
' IF (........ ) THEN T4
ELSE
END IF |
7 IF (......) THEN, TS
4 : IF (.........) THEN T6
] END IF
END IF
} END WHILE
(]

In this example, the set of Ioop patterns for predicate T3 are :

T3T4T5Tg
T3T4T5F6
T3T4F5

" T3F4TsTg
T3F4TsFg
T3F4F5s



Assuming that the original subpath is T1F2?3, then the set of new extended
subpaths are shown as follows:

T1FaT3T4TsTg?3

T1FyT3T4TsFe?3

“T1F2T3T4F573

T1FT3F4T5Tg?3

T1FT3F4TsFe?3

T1FyT3F4F573

This idea is important to us in terms of generating paths through itcrations.‘.\
We can extend the subpath, which ended at a loop predicate, with one of the loop
patterns without making arbitrary decisions on the predicates encountered within the
loop. When nested loop predicates are found, a zero iteration is placed on the nested
loop predicates and fhen the nested loop is iterated once every time untit it reaches
the system limits. The following is a more compli\cated example of setting up the

loop patterns which involves a rested loop:

Example 4: Program 4.

WHILE ( .) DO . T3
¥ (.._) THEN T4
"~ ELSE | /

END IF L
WHILE (........{) DO Ts
IF (.........) THEN T6
END IF
~ END WHILE
END WHILE

1]
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In the above example, the loop patterns for predicate T3 (with no iteration on the
inner loop) are: '

T3T4F5
T3F4Fs5

and the loop patterns for predicate TS5 are:

TsTe
TsFe. ' ' ’

Again if we assume that the original subpath is T{F2?3, the set of new extended

subpaths for predicate T3 with no inner loop iteration and orie nested loop iteration

will look as follows:

Subpaths with no inner loop iteration : T1FaT3T4Fs?3
- T1FT3F4Fs?3

Subpaths witfalk one inner loop itex:ation : T1F2T3T4T5Ti,j5?3
T1F2T3T4TsFgFs?3
{T1FT3F4TsTeF573
T1F3T3F4TsFgFs?3,
2 .
It is inbtercsting to note that not only can thc loop predicates be extended by

using the loop patterns, but any predicate that is embedded in loop predicates can

also be extended as well. Considcr’the following example:

1
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Example 5: Program 5.

. P4
WHILE (....)DO - T3
IF (......)) THEN T4
END IF | A\
) IF (......) THEN - T5
‘f[ END IF \
END WHILE
, | | 0
The loop patterns for T3 are: T3T4Ts
' T3T4F5
T3F4Ts ' )
T3F4Fs, N

However, these loop patterns can be wrapped around to form loop patterns for T4
as’shown below:
T4TsT3
T4FsT3
F4TsT3
.F4FsT3,
Any subpath which tests predicate T4 can be extended by one of these loop patterns
whenever extra iterations are peeded. This special property adds a certain degree of
versatility to loop exterisions. The loop patterns for each loop predicate in the
program can be constructed and stored before the process of test path genératic‘)n.
When a subpath requires loop extensions, a simple concatenation of the loop

\Kattcms to the current subpath is performed, and a new set of potential test subpaths

are gvailable for examination.
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3.2.2 Heuristic Method for Test Path Generation

Subpath extension and loop extension are the two major operations in the
heuristic method. An initial subpath 1s generated to test the first predlcate and loop
extenston is performed when the predlcate 1s a loop predicate. Subpaths are stored
in dxfferent_hsts according to their usages. ‘When an irreducible error space has been
.obtained, the method will prnceed to test subsequent predicates. For each
subsequent predlcate subpath extensxon is performed on subpaths from thc prime
candldate list, the secondary candeate list and the mlssmg path candldate list urttil
an irreducible error space is obtained, and loop extension is con51dered when
—. necessary. After- all the predicates are sufficiently tested, subpaths from the
sufficient set are extended to form test paths. The method will stop generating
subpaths to test a particular predicate when previuus information is insufficient to

obtain the irreducible error space by loop extension and subpath’extension. The

process will continue to test subsequent predicates until the last predlcate in the

program has been tested.

The heuristic method can be described in seven steps. For each predicate in

the input program, apply step one to step six until termination. After applying these

six steps to the last predicate in the input program, the method terminates with step

seven. The path generation process on a predicate may stop at any step when the
corresponding error space becomes irreducible. The details of the heuristic method

is presented in a psuedo code format as follows:
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.Step 1 :

if the prime candidate list is empty then
) {it must be the first subpath to be selected)
generate subpath "?” and calculate Lhc error s‘bacc;
add this subpath into the prime candidate list;
goto Step 2; '
else ‘

goto Step 3;
end if

—— Step 2 :

3
-
[

"if the current predicate is a loop bredicate then
do a loop extension on the subpath;
goto Step §; |
else

{done with this predicate) |

if this is the last predicate in the input program then
goto Step 7, |

else | ‘
goto Step 1 and test the next predicate;

end if ‘

end if
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Step 3.

y n
copy the prime candifate 1is; to the wo'rk space; ,
empty the prime candidate list; _
for each subpath i in the work space do ‘
replace the "?" in subpath i by both "T?" and "F?" to form subpaths a’and b, \
respectively;
select action according to the action table shown in '1_“ablc 15
end for ‘
If the dimension of the ebrror space is not zero then
empty. the work space;
select subpaths from the secondary candidate list to the work spaéc if ‘lhcy can ’ .
reach thchtesting predicate ( according to the control flow table )
for every subpath i in the work g:c do
append a " to subpath i and ;ssign it to a;
assign a null path to b;
select action according to the action table shown in Table 1; N ' 5.
c‘xit the FOR loop when error space is of dimt_:nsion Zero;
end for .

end if
goto Step 4;




. FEASBLE | FEASBLE ! ILLEGAL ILLEGAL
& BUT NoOT INFEABBBLE | FLOV FLOW EXIT

b REDUCES REDUCES TYPE 1 TYPE 2
FEABIBLE 1(1) 2(1 2(1)

A & & 2(1) & 2(1) 2(1)
REDUCES 2(1) ) 3(2) .
FEASIBLE 1y T 1(2) ‘

BYT NOT & & 2(2) (1) 2(2) 2(3)
REDUCES 6 6 - . .
INFEASIBLE 1(y) 1(2) 3(1) I 7
ILLEGAL 1) . 3(Y)
FLOW ° & \ 4(1 4(1) - & 4(1) Vi
.| TYPE 1 a2 4(2)
ILLEGAL . ) ' .
FLOW 1(1) 1(2) (1) 4(1) 10 7
TYPE 2 et ‘
EXTT 1) 1(2) 8 - ] -8 7
: 13 1:3(1) 1:3(1)
NULL . 1(1) Z:S‘ e . 2.5 . 2:5
Notwdons ;

n(f) means action n should be taken and status f is assigned © te path ]

D means action n is taken and no status is assigned .

{:n(f) means if the previous status is i then action n is taken
. swuws j is essigned © the path .

{:n means if the previous status is { then action n is taken

)
>

» .
Acton Code: . ) )
- 1. sdd subpath "a" w0 the prime candidate list

. add subpath *b" © the prime candidate list  ° &

2
3! add subpath “a" © the secgndary candidam list without the ="

4. 4dd subpath *b* © the secondary candidate st without the 7"
S: add subpath "a" © the missing path candidate list without the 7°
6; add sddpa " © e missing path candidaw list without the *?*
7: add subpath "a" © the final collection without the *?*

: add subpath *)* ™ the final collecton without the *?2*

: ignore the ath : - ) "

O:change “7* in both subpaths © "F7* and repeat the &

- i~ i : ’ -

v

. 8
9
1

3

Table1: Ac  Table for Path Selection.

45



In Table 1, there are two cases that cannot occur:

1) both subpaths are infeasible when extended.
2) subpath a extended to EXIT and subpath b is a ﬁull subpath.

Case 2 cannot happen because when subpath b is a null path, we know th'at
subpath a must be selected frofn the secondary candidate list. However, for
subpaths whicﬁ have been extended to EXIT and are used to-test some predicates in
the program, they will be selected and stored in either the prime candidate list or the

final collection. Therefore it is impossible to have the existence of case 2.

It is true for both loop predicates and non-loop predicates that casc 1 cannot
)

L

occur. This can be explained by the following lemma:

lemma :

Given a structured program and a feasible subpath p which ends at
predicate i. Let the true branch of i go to predicate j1, thereby forming
subpath pj; let the false h;anch of i go to predlcatc J2, thus forming
subpath p3. Either j] and _]2 could be the exit of the program Then either
p1 or p2 must be feasible. " .

proof :

We know that p is feasible and the constraint set pc along p must ajso be
feasible. Assume pj is infeasible, and the true branch we made on
predicate i which adds the comstraint i¢ to p¢ to form the constraint set p]c:
along P1 must have created the infeasibility. Therefore p2, which took the
false branch, must be feasible because the constraint set poc along p2
contains pc and the inverse of ic which are both feasible. Similarly, if p2
is infeasible, p; must be feasible. n e
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Step 4:

Loy

e o

fi-

é'o

B

7 else

if the dimension of the error space is not zero then
if the testing predicate is within a loop and not a loop predicate then
find the first oukr loop predicate j in which the current predicate is embedded;
find the loop patterns for loop predicate j; -
fdrm wrap-around loop pattems for the curren.t predicate;
copy the prime candid:ie list to the loop path list;
for cach s;prath i in the loop path list do

) fdrm all‘possible extension with the wrap-around loop patterns using subpath

ias the source and put them in the work space;
end for

cmpiy the loop path liét;

for each subpath i in the work space do

perform feasibility test and sufficient path test on s.ubpath 1to determine its

usefulness;
if subpath i is selected then
 add subpath i u: the prime candidate list; .
add subpath i io the looi) path liSl;
exit the FOR loop if error space is of dimension zerg;
else if subpath i is feasible then
4dd subpath i 10 the missing path candidate list;
5 add subpath i'td:the loop path list;
end if o
end if a :
end for - L
if the dim.ensidﬁr'}:ﬁf the error space is not zero and number of
: f_"i,;,;'vileral.ion performed is not greater than the system limit then
ot *¥%; |
else.
golo Step 6;

B U
-end if

»y

~ if the testing predicate is a loop predicate then
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goto Step §;
g,end if
-'%jend if s ,}r 5
end if ) - ¥
oto Step 6; '

Step 5 : 3

v
4

empty the w_érk space; i

" copy the prime candidate list to the loop path list;

find the loop p@lmmg'fd: the predicate;
for each sﬁbpzith i in the loop path list do
. form all possible extensions wnh the'loop patterns using subpath i as the source
and put them in the work spacc;'
end for -
empty the loop path list;

for each subpath i in the work space do

e

perform feasnbxhty test and sufficient: path test on subpath i;
if subpath i is selected then
add subpath i to the prime candidale list;
add subpath i to the loop path list;
else nf subpath i is feasible then ‘
add subpath i to the missing paLh candidate list ;
add subpath i to the: loop path list;
end if - ‘ |
end if ‘ .
exit the FOR loop whenever the error space is of dimension zero;
end for | » g
if the dimension of the error space is not zero and number o‘f iterations performed -
is not greater than the system limit then
goto * wos.
else
goto Step 6;
end if

7



Step 6 :

if the dimension of .the error space is zero then
if the testing predicate is the last predicate in the program then
goto Step 7; k
else
goto Step 1 and test the next predicate;
end if
else
copy the missing path candidate list to the work space;
empty the missing path candidate list;
for cach subpath i in the work space do
if subpath i lcads to the testing predicaté then
if subpelh iis fea§iblé then
if subpath i reduces the error space then
add subpath i to the prime candidate list;
if the dimension of the error space is zero then
if the current predicate is the last predicate in the program then
goto Step 7 :
{"‘ else
goto Step 1 and test the next predicate;
end if
end if
else
adq subpath i to the missing path candidate list;
end if
end if
else _ »
add subpath i to the missing path candidate list;
end if
end for

end if
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,
{ At this point, the system has explored all the available alternatives in hand
. including subpaths in the missing path candidate list, no malicr what the error space
looks like, the system has run out of sub{aaths o ¢xamine. }
if the current predicate is the last predicate in the input program then
goto Step 7;
else.k ;
go&wp 1 and test the next prcdiciitc;
end if

Step 7 :

empty the work space;
transfer all the sdbpaths in the prime candidate list and subpaths having status 1 in
the secondary candidate list to the work space;
for each subpath in the work space do
complete the subpath until it reaches EXIT with appropriate feasible predicate
decisions;
add the test path to the final collection;

'

end for
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We will demonstrate the process of the hcuristic'};.;fj‘:i"\éthod‘for test path
generation briefly by the following example which finds the Euclid GCF:

Example 6: Program 6. s

PN
JREAD A,B -
S=A

3 "~ IF(S.EQ. 1) THEN
PRINT A, B
' ELSE <
. PRINTA,B, S |
" END IF
STOP
END (]

The Control Flow Table for this program looks like the following:

Predicate. True False

1 2 3
2 1 1
3 0 0

The loop patterns for predicate 1 are:

TTz 4
T\F2 : | , {"
\)'V\(l
Initially, the Prime Candidate List (P), Secondary Candidate List (S), Missing Path
Candidate List (M), Loop Path List (L) and the Final Collection (F) are empty. The

original error space (ES) is of dimension 6 and the work space (WS) is also empty;

-
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Testing Predicate 1: “Cj

P S : M .
[ WS:

o

?1 I‘CduCéS the ES}O/ 4, add 'vo.?ln to P ]

P s ' M ' L |

T
['WS: $

Predicate 1 is a léop prcdicatc,’thus do a loop extension.
CopyPtoL )

Fetch the loop patterns for Predicate I *
Formed subpaths: TF"y
i
T TRy - reduces the ES to 3, add "T1F2?;" to P
T1T2" reduces mé@@io 1,add "T1T2?1" to P
Current ES contains the self-blindness vector only, thus sufficient paths
obtained for Predicate 1] o
P S M L
N t-- --- N
T1F?
TiToN ’
Testing Predicate 2;
P 5 M L
N --- --- ---
Ty TN
TiF27

[ WS:

Copy P to WS
o



obtained for Predicate 2]

"B S M L ES E
T Fi1 - — . 1 ---
T1T2T1" T1T7F, ‘
T\FT1 7,

4 s M L fES N\ E -
T1% F 6 -
T T2 T\ T2F;
T\F2Th 7,
[ WS:
Copy P to WS

TiT2?y
TiF2? } [
?1 => F oD N {
: A o . v .
A \ )
F172. . i,%an 1Heg%q .
T2 }; reduces the. i
S add "T17," t0
TiF%=> 4 TuToF172 - a
' T1TaT 7
T ToF 17, an illegal flow type 1 error oécurs
‘T1TaT17, reduces the ES to 3
add "T Tod'12," to P and add "T; ToF " to S
T1Fp?i=> TF2F 17,
T FT1?
TF2E1 7 infeasible path ©
T1FaT1 7, reduces the ES to 1

add "T1FaTy7," to P

Current ES contains the self-blindness vector only, thus sufficient paths

T2
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TiTo 7, = ’ L
TiFTi 7 } ;
Ty7=> T1Fy?73
- TiTa?s
T1F73 an illegal flow type 2 error occurs
TiTe?3 an illegal flow type 2 error oceurs iy

change "?" to "Fo"
L 4 o
T1FF173 infeasible path _
T1T7F 73 reduces the ES to 5, add "T, ToF;?3" to P

TiTTi7=> TiToT F73
T1TaT 1T

y

T1T2T1F2?3  anillegal flow type 2 error occurs

T1TaTiT2?3  anillegal flow type 2 error occurs A \/\/
change "?" to "F?" 2 i | |

T1T,T FoFy g infeasible path |
T1TTToF 13 reduces the ES to 4, add "T1TT1T2F 73" to P

T1FT172=> T1FTFp23
. T1FT1Ty?s

T1F;T1F»?3  anillegal flow type 2 error occurs
T1F2T1T2?3  anillegal flow type 2 error occurs

change "?" to "F?"

T1FoT1FF 73 “infeasible path 4
T\FaTToF 73 reduces the ES to 3, add "T|F,T T2F 73" to P}
B s M L ES E -
T1F2“F1?3 --- --- 3 ---
TIT3 T ToF 23
T1FTToF 73

Fl )

1T2F

Copy S to WS and empty S
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{ Fi
T\ ToF; }

F173 does niot reduce ES,-add "F]" toM
T ToF 173 does not reduce ES, add "T1ToF{" to M

At this point, we have run out of subpaths to examine. Proceed to Step 7
for subpath completion ]

)l S M L ES: E
T1FF 173 - Fy --- 3 -
T1ToTToF 73, TiT2Fy . - -
TiFT 1 T2F 173 ' e '
Copy Ptc VS
(4 { T1F2F173

T T2T 1 T2F1 73

T1F T ToF 173 )

EnT1FoF T3E, feasible path, add to F
E%1T2T1T2F1T3Ex feasible path, add to F
1F2T 1 ToF T3E,  .feasible path addtoF ]

Now we have obtained three paths in -F which are sufficient for tcsung the
program. ,

3.2.3

Shortcomings of the Heuristic Method

The heuristic method has been demonstrated to.t@ effective in finding the

sufficient test path set on most programs examined. However, the method is not

cd_mplctcly flawless; it has shortcomings which could lead to a failure in obtaining a

sufficient path set. The heuristic method wilt keep generating sﬁbpaths to test a -

particular predicate until a set of vs'ufficient ‘subpaths has been dbtqined or until the

system limit has been exceeded. When one of these conditions occurs, the method

will terminate as if a sufficient set of subpaths has been obtained and proceed to test

the. next prédicate. Although it gives us no explicit indications of failure when

testing a particular predicate, we can examine the obtained subpaths and the

o3
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corresponding error space for that predicate. As a matter of fact, any method for
test path generation which limits the number of iterations of loops could fail to

obtain the sufficient path set. This can be illustrated in the following example:

=0

WHILE (........) DO T3

I=1+1

: 3 : '
END WHILE : ‘
IF (1.GT. K) THEN - T4

IF (o, ) THEN TS5

END IF

END IF

If the number of 1terat10ns is limited to K, then any method for test path
" generauon will fail to obtain feasible paths to test prcdxcatc TS as long as the loop

: on T3 is iterated less than K+1 times.




Chapter 4

1

Experiments with SPTEST I
Ny \ | ‘

4.1 Input Programs and Experimental Results

With SPTEST, Sahay[WhP85] was able to perform experiments on a set of

linearly domained programs in order to obtain greater-insight into path-oriented
d : N

testing methods. In addition to the experiments on SPTEST, SahayA also spent a lot

of time in choosing the optimum number of paths to test the programs.

has also computed Table 2 to illustrate the complexity of the programs.

v

The setof

linearly domained programs has been shown to be diversified and n'on—tn'iz;ial. He .~

X

%of | ®of |Dimeasion RentionLoops|  MeCade
Inpw Prognay of $of Nasting Complexity
Fuastion Linas | varidlas | Variadles | Error Space | Predicates | & |y 0y Massum
1 Ewlil GCD 13 2 2 5 3 3 1 4
2 Integer Round-vp 15 1 3 5 2 1 3
3 : 15 2 | 4 3 0 4
4 Integer” Division 18 2 2 5 4 2 1 H
o Reanindar L
s Ewld GCF 19 2 3 6 3 1 ‘
6 Conlitiosal Serdas | 27 2 5 ' 4 1 5
Svxanstioa
? Sodtd et - 3t e s 14 6 2 1 3
Intersection
] Binary Besrch «Q 1 s 17 7 1 9

-

Table 2: The §ct of Programs Used for Exberiments on SPTEST II.
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In order to demonstrate the Capability of the new system SPTE§T II.

experiments are conducted on SPTEST II with the same set of programs. The |
cx’pen'ments are conducted at night on a VAX 780, and the computation time
requires to perform the path generation process on a particular program iS*atL(nJ',ost
half-an-hour. The results obtained from SPTEST II arc shown after the presentation

of the results from SPTEST in the follbwing tables. Both results are compiled to

exclude the self-blindness vector from the error space.

’ Program | Predicate | Number of Final Dimension| Error Totwl Number of Full
Subpaths Obtained | of-Rrror Space | Classification| Test Paths for Program
1 3 0
3 0
3 3 0 3
(:C&:
2 1 2 2 1 Unused
Yarabls
. 1 Invariant
Expression
-2 2 2 Invarisit
: ) Expression
, A 2
W
3 1 1 1 Unused
. Variable
2 0
2 0 2
4 1 -2 2 Unused
Variables
A 2 2 Unused -
Yariables
3 0
3 0 4 : v

~

Table 3: Results of Expcrimcntf/LIsing SPTEST.
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Program | Predicate Niwnber of Final Dimension| Exror Total Number of Full
’ S\ubpnths Obmined | of Emror Space | Classification| Test Paths for Program
5 1 4 0
.
2 4 . 0
3 4 o 1 1 Equality
s Restriction
q
[ 2 ‘o
6 ) S 5 S Unused
. YVariables
[ 14
2 2 4 3 Unused
. Variables
1 Invariant
Expression
3 q 2 1 Unused
. Variable
. "1 Invariant
Expression
4 4 2 1 Unused
Variahle
1 Invertant
Expressions 4
7 1 4 0
2 5 . 0
’
3 3 0
’ 4 3 1 1 Equality
) ] Restriction
S, 3 1 1 Equality
i Restriction ' .
5 . C

~ -

Table 3: Results of. Experiments Using SPTEST (Continued).

-
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Program | Predicaw | Number of ‘ Final Dimension| Error Totwl Number of Full
Subpaths Obtained | of Error Space | Classification] Test Paths for Program

8 1 ’ 1 5 S Unused
- Variables
2 1 ’ 5% |5 Unused
. Variables

3 "4 1 1 Invariant
Expression \

4 3 “ 2. 1 Unused -
Variable

1 Invariant

. | Expression

5 3 2 . 1 Unused
: Variable '

{ Invariant .

B : Expression

6 3 2 I Inveriant -
Expression

1 Unused
Yariable

7 4 2 1 Unused

Y ‘ Variable
AT . ) 1 Inveriant o
L - Expression 4

Table 3: Results of Experiments Using SPTEST (Continued).
s
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Program | Predicate | Number of Final Dimension| Error Totwl Number of Full
o Subpaths Obtained | of Exyor Space | Classification| Test Paths for Program
! y € 3 ! 0 L
2 3 0
; 3 3 0 3
2 1 2 2 1 Unused
Yariable
1 Invariant
Expression
2 2 2 1 Unused
Veriable
1. Invariant
Expression
2
3 1 1 1 1 Unused
Yariable
2 2 0
3 2 0 2
q 1 1 2 2 Unused
3 Variables: °
2 1 2 2 Unused
. Yariables
3 3 0
4 3 0 2

Table 4: Results of Experiments Using SPTEST II.

<«
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P
y ® “a )
Program | Predicats’ | Number of Final Dimsnsion| Error Total Number of Full
Subpaths Obtained | of Ermr Space | Classification| Test Paths for Program
5 1 3 0
' . '
2 3 0
3 3 2 1 Equality
: Restricton
1 Invariant
Expression 3
3
6 1 1 S S Unused
Yariables
2. 2 4 3 Unused
Variables
1 Invariant -
| Expression
T
3 4 2 { Unused
Variabls -
1 Inveriant »
o Expms_aioh .
4 3 -3 ' Unused. .|
. ) Variable
< 2 {nvariant
*| Expressions |’ -3
7 1, 4. IS | 1 Inveriant
Expression
2 45 o U'Invariant | .
. o " Expression |
3 .8 o ol
4 3 1 1 Invariant
* g Expression
5 a 0. 6

.

Table 4: Results of Experiments Using SPTEST II (Continued).
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Program

Predicate

Number of

Subpaths Obtained

Final Dimension|
of Error Space

Error
Classification

Towl Number of Full
Test Paths for Program

are

| Expression

S Unused
Variables

S Unused
Variables

{ Invariant

{ Unused
Yariable

i Inveariant
Expression

1 Unused
Variable

1 Invarisnt
Expression

1 Inveriant
Expressioh

3 Invariant
Expressions

’

' Table 4: Results of Experiments Using SPTEST I (Continued).
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Number of Subpaths Obined
Program Predicatwe
SPTEST SPTESTI
S 1 K N | 3
</
2 4 3
3 4 3
6 1 1 1 *
B
2 2 2
3 4 4
4 4 3
7 1 4 4
2 S 4
3 3 S
4 3 3
5 3 4
8 1 1 1
2 1 1
3 4 5
4 3 3
S 3 3
6 3 4
7 4 3

Table 5: Comm.nson of the Numbcr of Subpalhs Obtained to Tcst the

Prcdlcates for Programs 5-8.




) ¥ .

4.2  Analysis of the Results

 For Programs 1, 2 3 and 4, the sufﬁment subpaths obtamed for each
predicate are 1denncal for both systems. Minor drfferences occur in the number of
¥

subpaths and the contents of the error space for Progmms 3, 6 7, and 8 As shown

in Table 5, the maximum dxfferencc in. the num,%r of subpaths obtamed for

predicates is within the range of two, whxle the dlmensxons of the erroruspace

Lo ‘, . »-;.7

differed by no more than one.

PRI

In testing predicate 3 and predicate 5 for Program 7 and élso predicate 3 and

predicate 6 for Program 8, the mcreased numbcr of subpaths'obtamed is ‘a result of |

subpaths would have multiple {oop patterns appended in a single extensron. It,turns

a

out that subpaths which'employ multiple loop patterns in a single‘extens‘ion can

reduce the error space more effectively. However, subpaths with multiple loop

- -

patterns are longer paths which have bigger constraint sets. Bigger constraint sets’

require more time to de&rm'me their feasibility. Also the 1»arger theconstrajnt set, the
greater the chance of being infeasible. As we have me.ntioned earlier, the cost of
feasibility determination is much higher than any other subprocesses in the system.
This issue has been taken mto account during the development of the heuristic
method and we have decided to select shorter paths in order to reduce the
processing time as well as the chance of generating infeasible paths. Incident_ally,
the perspective that longer paths can reveal errors more effectively than shorter
_paths has been confirmed in a recent research resullt using loop analysis for the

domain teSting strategy by White and Wiszniewski [WhW88] .

5

ol

] the trade-off between the loop extension and path fea51b111ty The heunstlc method )

Vﬁxammes loop paths with one single iteration extended each’ timée suc‘h that no
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The differences in the size of the error spaces are mostly due to the

E

occurrences of invariant expressions. Although we have a better understanding of

how invariant expressions are formed, we cannot identify or remove them in

general.

Number of Test Paths Obtained
Program
SPTEST SPTESTII
1 3 3
2 2 2
3 2 2
4
| - q 2
5 4 3
6 4 3 :
7 5 6
8 4 6

) Table 6: ‘Comparison of the Number of Test Paths Obtained to Test

Programs 1-8.

| One interesting result from SPTEST II cbnceming the number of test paths
should be mentioned. In Pré)gram 4, the maximum number of subpaths needed to

‘ test the i)rédicate is three; therefore, we would expect that a minimum of three test
A pgth§ ‘are needed to“testbthe,grpgram. Surprisingly, we could only obtain twu
difféferit,test p/atfxs’ from thgge three subpaths because one of the subpath. is

9]

“identical to the other after the process of subpath completion. This occurs when a



shorter path is forced to have additional iterations in order to produce a feasible . -

:pathv In all testing strategies, it has been a'wcil' accepted faci that all programs -

“# vshould be tested with multiple paths. Ironically, the above observation gives us thie
insight that it may be possible to sufﬁciéntl.y test some programs with only a single

path.

!

“As we can see, the resulté obtaibcd from SPTEST II ar'e.comparablcl to the
resqlts obtained from SPTEST. Although we cannot claim that the new system is
superior to the old system, at least this study indicatcs that iho heuristic method is
very close to using human 1n51ght and intyition in selecung test paths. We should
remind ourselves that the results obtained from SPTEST were conducted manually
by Sahay, whlch req—mred an extensive amount of time and intuition. Now SPTEST
IT can obtain a comparable result by justa few keystrokes on thc keyboard Wlthout

any doubt the objective of this research has been achlevcd at least for thls restricted

set of programs.
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Chapter 5

We have defined an invariant expres§ion as an algebraic expression which can be
added to a program statement (assignment or predicate) without being detected Alon g
any possible path through that statement. An unused variable is an initialized
program variable but is not used along any of the paths, so it also forms an invariant
expression in the error space. In [7], Sahay has characterized that an irreducible
error space contains vectors that correspond to unused variables, equality |
restrictions, the self-blindness vector and invariant expressions. The following
example illustrates that aJ} subpaths which stop at predicate T3 have unused variables
I 'and J. These are also the inQariants among the subpaths since variable I has a value
of zero and variable J has a value of one.

Example 7: Program 7.

READ M, N
=0

I=1 ‘

K=0

IF (M .LE. 5) THEN T1
K=N

ELSE
K=M

ENDIF

IF (K.GT.M-N)THEN- T2
PRINT K

END IF

IF (oo ) THEN T

[}

68



Allhough Zeil has anticipated the occurrence of invariant expressio.ns in the
error space, little has been done to identify or eliminate . =m. The occurrence of
invariant expressions in an error space introduces ¢ complication in the
determination of an irreducible error space. In an attempt tc e greater insight into

this problem, wehave classified the invariant expression int¢ wo categories:

1. Explicit [nvariant Expression (EIE )

2. Implicit Invariant Expression (IIE )

An EIE is an invariant which is caused by a single program st‘z;tement, SO an.
unused variable is an EIE. An IIE is an invariant which is caised by muitiplc
program statements, and arises from: |

1. the reconstruction of the original error space‘after some algebraic

Opcratibns; or

2. the intersection of two or more error spaces. _ -

To determine an irreducible error space, we have to identify the basis vectors jn
-the error space. A trace on the program text is needed to identify unused variables,
-equality restﬁetions, self—blindnesg vectors and EIEs because they have a one-to-
one correspondence with the progrérn statements. In order to identify IIEs, some

additional vector manipulations on the error space are required.

Since invariant expressions cannot be eliminated from the error space, they do
not affect the choice of path selections. However, the existence of IIEs causes a
major problem in the determination of irreducible error space. It is desirable to have

an error space such that every basis vector in the error space expresses-a program

'?:h
B

L ey
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statement without any additional transformations. We will call such an error space

a recognizable error space .

A suggested method to obtain a rccogmzab}c error space is to find out the
corresponding progmm statement for each basis vector in the new error space after

the calculatlon of the error space intersection.

Given subpaths P, and Py, such that each hds an independent error space ES,
and ESy, rcspectivclyv, and ES; = {v], V2, ... y Vx 1, ESb = {wy, wa, ... ,» Wyl,
the resulting error spéce after selecting these two paths is the intersection of ES aand
ESp, say ESap, such that ES,p = {u1,u2,..7, uz}. To construct a recognizable error
space R, initially empty, if we can express any basis vector ( v; or wj ) in ES, and
ESy using a linear ‘combination of {uk} in ESgp, then that particular v; or wjis
added to R. Thus, we have preserved the original vector components in B.and we
can determine whether R is reducible by 'c:onduciing a trace on the text of the input
program Consider the following example:

Example 8: Program 8.

. 1) THEN Tl

=]+1.

PRINT N, I, K
STOP
END : (]
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For the above example, two test paths are used to test predicate T2, and they

produce two error spaces {v} and {w], respectively.

N\,
N

D Ti% | R s
vPV |
vi= (I-1) =>[=]+1
va=(J-M) =>J=M
vi=(K-M-2N) ==>K=M+2N
va=(1+J-3) ==>IF(I+J.GE.3)THEN
- .
2) Fi7y
wi=(I-M-1) =>]=M=+1
wy=(J) =>J=0

w3=(K-M-2N) ==>K=M+2N"

wa=(1+]-3) ==> IF (1+J .GE. 3 ) THEN

The final intcrsecti;nUisv \ ‘ | i
uy=(M-2) ==>M=2
up=(I+J-3) ;=>IF(1+J.GE.3)THEI§
vu3=(K-2N-25 s K=2N+2.

Notice that only the basis vector up occurs explicitly in the program and both uj and *
u3 are [IEs. If we px;o\ceed to construct the recognizable error space R, we will have

the following basis vectors in R;
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In=u3-uy=v3=w3 =(K-M-2N)

n=uw=(I1+J-3).

The basis vectors vy, vy, w1, and wop cannot be expressed in terms of the basis of .

the error space intersection U; there are only two unique explicit vectors
expressible by U. Vector rl.is the EIE (K = M + 2N) and vector ra is the self-
blindnesé vector. A trace of the program text shows that all the subpaths which-stop
at predicate T2 have to go through the statement K = M + 2*N, and variable K does

not receive a new vajue before reaching predicate T2. Thus, the value for variable K

remains unchang%"

addmon knowing gia.' findness vector cannot be removed at any cost, it

&
#tucible error space for predicate T2 contains an

" invariant expression afid self-blindness.

5.2 Sufficient Path Testing with Array Programs

The sufficient path testihg strategy requrres us to identify the size of the initial
error space before the tesu’dg approac#H;ould apply. 'In order to géhcratc different
paths to test a program we must allow a certain degree of flexibility in the values
for the input variables. A hidden problem is revealed when the testing approach is
applied to programs utilizing arrays, and the lengths of the arrays are spccxﬁcd by
some other input variables. To determme the initial error space, we need to know

|

the number of input varlables Each'element in an array vanablc is considered to be
a unique input variable. Since the length of an array is deterrmncd by one of the
ﬁinput variables, we have to know the "actual‘va}uc of that particular variable. Ll‘hus,

that particular variable can only assume one value, the same value which defines the

length of the array. In this case we havé lost all the value flexibility for that

~

0 ’

~

NS an invariant expression in the error space. In-



particular variable. This does not really create problems because it is justifiable to
put a bound on the amount of memory that a program requires, as no computer can

guarantee the successtul execuuon of a program if it requires an arbitrary amount of :

Al
inemory.

-

The real problem arises, in terms of path generation, when a bound is put on the
length of an array at the begmmng of the program to determine the size of the initial

error space, but due to the value flexibility, the bound is ignored afterwards The. -

do

path ge@azion process will utilize the value flexibility of the input variables as if
the bound does not exist at all. As a result, the ineonsistehcy of these two processes
can create a large number of infeasible‘paths. The following example will illustrate

this ldea /

G ‘ \
Example 9: Program 9. . )

- READM,N .
.~ DO10 I=1,M o T1e
| . READ 5() o ’
10  .CONTINUE , | )
J= 1 ' |
. 4. WHILE (J .LE.N)D |
o gm IF (S(J) .GT. 0 )THEN T3

B S‘(J)= (J)+l o '

J=J+1 _
END WHILE . B
WHILE (J .LE.M ) DO T4
PRINT SA) ] -
J=J+1 /
END WHILE'. '

v
. . g -
..t . RIE
. .\ 2 . . .
.

PES

Iu the above examplex M, N, S(l) . S(M) are mput vanables We need to P
know the value of M such that the number of i mput vanables is M +2. Suppose we

know that M is3, Nis lcss than M, and the number of loop 1terauons is lmnted to
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2

- two. A subpath which iterates the loop at T2 twice would give variable J a value of

3. The same subpath which iterates the loop at T4 twice would give variable J a
value of 4, and reference is made to 3(4) which does not exist. Thus, any subputh

extended along this pattern will be infeasible. One of the alternatives to handle this

A éroblem is to modify the input program to replace all the occurrences of vﬁ.riablc M

with a constant value of 3 as follows:

»
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~

READN ot
 DO10 1=1,3 , Ti
- READ, §(I) ,‘i
10 CONTINUE R
J=1 ' -
WHILE (J .LE. N) DO T2 :
IF (S(J) .GT. 0) THEN T3 \
S = S0 + 1 .
END IF '
N@}}i] =1+1 - 2
END WHILE .
~WHILE (J .LE. 3 % DO T4
' PRINT S{J
J=J+1

END WHILE ' L -

L4

. : 9 Y '
Since SPTEST II is unable to handle this problem, it is suggested that such

array programs should be modified before SPTEST 11 is applied.

\
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Chapter 6 SN
Conclusions
N
6.1 ,Summary )

As the demand for reliable software increases, the role of software testing
bccgmcs mcrcasmgly smportant Testing strategies can be cla551ﬁcd into two
categories, white box testing and black box tesu’ng. We are interested in one of the

subclasses in the white box testing approach called path analysis testing.

A computer system called SPTEST, which implements a vector &ace model

proposed by Zeil, is available as an aid to select paths to test program predicates.

This research focuses on an extension of SPTEST such that the path selegtion 4

process is done automatically and systemaﬁcaﬂy. To automate the pfocess, several
related issues of path selection, including the determination of path feasibility,
iteration of loops, collection ‘of subpath fragﬁlents and thc determination of -an
irrcduciBlc error spaccﬁ have to be examined and resolved. As a r;;sult, an extended
X systervﬁc’allt;d SP’I"EST Ilis impl_eme,n;tcd on UNIX using:FORTRAN 77. SP’I‘EST'
II adopts the concepts of subpath extension to produce a set of test paths instead of
subpath fragments, and can be used to cﬁnduét the actual testing of the program
using any rchablc testing strategy. ThlS rcéearch has made the followmg

conmbuuons to the field of program tcsung *

-

L. the dcvclopmcnt of a hcunstac method which gcncratcs test patﬁs :

systemaueally, Y

s

TN
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2. anautomated computer system, which implements the above heuristic, as an
extension of SPTEST for generating a sufficient set of test paths in order to

test a computer program;

3. a set of experiments to show that the new system can generate results
comparable ‘to those obtained by SPTEST which is utilized manually by

someone with considerable experience and intuition:

- 4. a proposed method to obtain the recognizable error space which helps to
identify an irreducible error space.
In summary, the attempt to extend SPTEST to an automatic system which

produces test paths, instead of subpath fragments, has been successful The

PRge eSS of runmng SPTEST to obtam sufficient paths and the huge amount of
g

demandlng to be'practical. Wl[h the new system SPTEST II, a set of sufficient test

paths will be avarlable to the user by usmg a few sim

generatlon and test data generation, togethe“r to pefform tesung on programs
3] . : . . t .

62 ~Future Work

Although satllsfactory prehrmnary expenmental results suggest that the "
performance of the heunstlc method is comparable to usmg human mtumon to

- ‘generate test .paths for the selected programs further reﬁnement of the heuristic

O3
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method is needed to relax the restrictions, to accommodate more complicated

programs and to provide system integration to speed up the process.

v

To enhance the performance of the system, a better linear programming solver

package should replace the current package such that it could accept all p"ossibl_e/y ’
vitlues for ifie unknowns in the constraint sets. As a result, a bigger collection of—

- feasible paths will be available for selection, and a sufficient set of test paths can be

<

obtained in a short period of time.

\

At present SPTEST Il can only be used to detect predlcate errors on lmearly ’
domamed pr%grams I(onuld be desxrable to expand the system such that it could
detect assignment errors and computation errors. In M 8\)-41 strategy to unify the
testing of assignment errors and predicate errors is proposed. The strategy is called
blindness based testing and is implemented into an interactivos&stem called bbrest..
It would be interesting to see how\v:kell the heuristic method could utilize bbtest to
detect predicate errors and assignment errors. In addition, more research nged to be
done on testmg non-linear predicates in programs. What kind of pracucal approach

could be used to determmc the fea51b111ty of paths.in non- lmear programs" ‘

*

It has been observed in our experiments that most irreducible error spaces for

predicates contain invariant expressions; it would be interesting to look at invariant:

’

have.a set of §ubpaths totest a pre cate which extended to forrn a smaller set of

expressions to see, if they could be used to reflect program correctness. To wha

‘extent are invariant expressions related to program specifications? : S

- ,
3.

-

*: The anéﬂy'sis of the experime? rgsults has shown that it is not unhéual to

pa{hs due to the problem of path feasxblllty An mterestmg branch:that we could

L
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pursue is the possibility of testing a given program using a single path. What class
of programs can this be applied to and how practical are that class of programs in

general?

!
| »

/

The problem In testing programs which utilize arrays has been identified in

thls research. ThlS class of programs and their introduced complications need to be

exammed further. More practical ways must be developed to test this class of
. ~ .

programs so that the sufficient path testiqg strategy can.ybe applied more effectively.

k3

As for the applicability of paths in testing programs, it would be interesting to
iy

know which paths éive the greatest ‘i'nformation for testing a particular program.

[

sorted llst .usingthe path rejection criterion would allow us to converge to the

‘optimum number of:paths to test a program.

3

m;" -
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Appendix 1

‘Input Programs

The input programs used in this research project are listed in this appendix.

Program 1: Euclid GCD

¢
'READ, X, Y
A=X
'B=Y
WHILE (A .NE. B) DO
~ WHILE (A .GT. B) DO %

A=A-B
END WHILE ‘
WHILE (B .GT. A) DO
B=B-A
END WHILE
END WHILE
PRINT, X, Y, A
STOP
END
R ;;:f VU

'
G~
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82
Program 2 : Integer Round-up
READ, N ) /
I=0
J=N
R=0
WHILE (J .GE. 1.0) DO
I=T+1
J=N-1I “
END WHILE
R = N - I
IF (R .GE. 0.50) THEN DO
I[=1+1 -
END IF
PRINT, N, I
STOP
END
LY
< .
B
;,:“ , “ - _.4,-" \
- ) A:; ; ‘?3«,,: .
. ’ - .Dv o lpif#




Program 3 :

READ, X, Y

A=0 |

IF (Y .GT. X) THEN DO
A=X '

ELSE DO
A=Y

END IF

IF (A .EQ. 0) THEN DO
PRINT, A

END IF

IF (Y .GT. 0) THEN DO
PRINT, Y

END IF

STOP

END



J

Program 4 : Integer Division Remainder,

READ, X, Y

R=0

A=0 '

IF (X .GE. 0) THEN DO

IF (Y .GT. 0) THEN DO
| : R=X
WHILE (R .GE. Y) DO
A=Y

3 WHILE (R .GE. Y) DO
2 R=R-A :
: . A=A+A

- : END WHILE




Program § : Euclid GCF

READ, A, B

S=A

T=B

U=0

WHILE (S .NE. T) DO
IF (S .GT. T) THEN D

S=S-T

ELSE DO

U
S
T

nony
cwn

_ END IF
"~ END WHILE
IF (S .EQ.1) THEN
PRINT, A, B
ELSE DO
~ PRINT, A, B, S
END IF
STOP

END
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Program 6 : Conditional Series Summation

F (A .GT.B) THEN DO -
C=B+1 Oy
ELSE DO 4
C=_le
END IF

D=2*A+B

IF (C .GT. 0) THEN DO
I=1 ; :
WHILE (I .LE. B) DO

: E=E+2*]
I=1+1
END WHILE
END IF _
IF (D .LE. 2) THEN DO

STOP -
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20

4

: o
-Program 7 : Sorted Set Intersection

AT

READ, M, N
DO10I=1,M :
~“READ, S1(I) ~~,
CONTINUE
DO201=1,N
READ, S2(I)

WHILE (I .LE. M) DO
IF (N .GT.'0) THEN DO
J=

)

1
.-  DONE=(G -
3 WHILE (DONE EQ 0) DO
‘ X =81
Y = S2(J) .
IF(X EQi Y) THEN DO .
PR » S1¢D
‘ DONE—I
ENDIF -~ =
J=J+1 o
IF (J .EQ. N) THEN DO
- DONE=1
END IF
- END WHILE
ELSEDOQ..
,I:M+1
ENDIF
. I:I% -,. . .
ENDWHILE ~ .
- sTOP. -
%END : ~
&

~r
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Prbgram~8 : Bir;a\ry Search

LN READ, N
A - DO10I=]1,N .
: READ, B(I)
10 CONTINUE
READ, /\\ o
=0 - |
HIGH = 0 (’
LOW 0 . . (W
MID =0 , ’
TEMP =0
IF (N .GT. 0) THEN DO
, HIGH =N +1
LOW=1 ' '
MID = (HIGH + LOW) / 2
¢ I =0
TEMP B(MID)
IF (A EQ TEMP) THEN DO
. =1

ENDIF
* _ WHILE (1.NE. 1) DO

" TEMP = B(MID)
3 rFa EQ TEMP) THEN DO
g

ELSE DO

IF (A LT. TEMP) THENDO

HIGH=MID "~
ELSE DO
~ LOW=MD
END IF
_ MID = (HIGH + LOW) /2
ENDIF
, IF (LOW .EQ. MID) THEN DO
r-,‘ - ° I_l
, END IF >
END WHILE
TEMP = BMID) _
IF (A .EQ. TEMP) THEN DO "
PRINT, A .

. - END IF ‘\.
n END IF.
: STOP -

r

}y
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Appendix 2

Sufficient Paths Generated For P‘rogramskln- Appendix 1

- T1FaT3F3F1
- T ToF2F3F, ‘ - ) e
TF2T3T  ToF2T3T3F3Fy R - —

FiTy -
TiF T2

FiFTs o v
' T1F2T3 _ | |

ThiT2T3T4F4T3F4F4F3
T1TT3T4F4F3

- ThToF T3
CTITaT TR Ty
T1FaTToF T3 ' o=

TToFsTy
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